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Preface: Overcoming Opacity in Machine Learning

Carlos Zednik1 and Hannes Boelsen2

1 Themes of the Symposium

AI  systems  developed  using  machine  learning  (ML)  are
notoriously opaque: it is difficult to know why they do what they
do or how they work [1]. Opacity arises not only because many
of  these  systems are  high-dimensional  and  complex,  but  also
because  software  developers  do  not  themselves determine the
parameter values that drive their behavior [2]. 

Opacity gives rise to the Black Box Problem: an AI system’s
behavior cannot be readily explained, interpreted, or understood.
This problem affects many different stakeholders in the machine
learning ecosystem [3]:  software developers cannot effectively
improve the performance of systems whose inner workings they
do  not  fully understand;  end-users  are  unlikely  to  trust  the
outputs  of  a  system  they  are  unable  to  interpret;  regulatory
bodies are  unable  to identify the causes of,  and thus possibly
prevent,  unwanted  behavioral  tendencies  such  as  algorithmic
bias.  The  problem  is  exacerbated  as  AI  systems  become
increasingly  prevalent  in  safety-critical  domains  such  as
transportation, medicine, policing, finance, and others.

The  Black  Box  Problem  has  given  rise  to  significant
concerns about the proliferation of AI in society. These concerns
have spurred ethical debates about the kinds of AI technology
that  are  really  worth  wanting  [4],  as  well  as  legal  efforts  to
mandate transparency in algorithmic decision-making [5]. At the
same  time,  these  concerns  must  be  balanced  against  the
assumption  that  machine  learning  methods  may  bring
considerable gains in efficiency, reliability, accuracy, and overall
performance.

The desire to retain the transformative potential of machine
learning while mitigating the negative effects of opacity has led
to the birth of a new research program:  Explainable Artificial
Intelligence (XAI). Some investigators expect to evade the Black
Box Problem by developing  ML methods that are “inherently
interpretable” [6]. Others, in contrast, intend to solve the Black
Box Problem by developing analytic techniques with which to
develop “post-hoc explanations” [1]. No matter the approach, the
overall aim is to overcome opacity in machine learning.

Like any nascent research program,  XAI faces foundational
uncertainties: What exactly is opacity, whom does it affect, and
how? What is explanation, and how can it be delivered? What, if
any,  are  the  limits  of  explanation  in  this  particular  context?
These questions must be answered if opacity is to be overcome
eventually. For this reason, they constitute the central themes of
this symposium.

2 Contributions to the Symposium

The  symposium  brings  together  researchers  from  higher
education  and  industry,  spanning  the  disciplines  of  artificial
intelligence and philosophy.  In a  total  of  seven contributions,
these researchers introduce several current XAI methods and AI
application  domains.  In  so  doing,  they  introduce  the

technological state-of-the-art and address a focal point of current
philosophical investigation.

Four contributions consider the way in which opacity might
be  overcome  in  Explainable  AI.  Whereas  Kathleen  Creel
provides  a  pragmatist  analysis  of  “explanation”  in  the  XAI
context  generally,  the  others  focus  on  post-hoc  explanation
specifically. Lok Chan investigates the extent to which post-hoc
methods can adequately explain a computing system’s behavior
without  faithfully  representing  its  internal  structure.  David
Watson  evaluates  existing  post-hoc  methods  and  identifies  a
lacking commitment to the quantification of uncertainty. Eunjin
Lee,  Harrison  Taylor,  Liam  Hiley,  and  Richard  Tomsett
introduce two specific problems for post-hoc explanation: a lack
of robustness, and a lack of representational fidelity.

Three contributions focus on opacity itself, and thus, on the
scope  and  limits  of  XAI.  Considering  the  role  of  machine
learning  methods  in  scientific  research,  Julie  Schweer,  Paul
Grünke,  and  Rafaela  Hillerbrand  introduce  the  notion  of
“epistemic  risk”,  and  evaluate  the  extent  to  which  models
developed using machine learning can, despite their opacity, be
used  as  scientific  tools.  Andrés  Paéz  focuses  on  human
interaction  with  robotic  agents,  viewing  attempts  to  increase
transparency  in  this  context  as  antithetical  to  the  aim  of
increasing  trust  in  human-robot  interaction.  Finally,  Vincent
Müller  distinguishes  between  different  kinds  of  opacity,  and
considers  their  relative  impact  on  ethical  debates  about  data
privacy.

These  contributions  yield  an  improved  understanding  of
opacity itself, as well as of recent attempts to overcome opacity
in  Explainable  Artificial  Intelligence.  Although  brief,  these
contributions have the potential to significantly advance current
research in artificial intelligence and philosophy alike.
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Function and User-Satisfaction in Explainable AI
Kathleen A. Creel1

Abstract. In order for a machine learning model to be useful, it
must be used. Opaque models that predict or classify without ex-
plaining are often ignored. Thus measuring the satisfaction of those
who receive an explanation is one natural way to measure the value
of that explanation. A satisfied user will be more likely to trust and
therefore to use the system. Nevertheless, I argue that user satisfac-
tion with an explanation alone is not a good metric for the value of
that explanation, proposing instead benchmark tests based on accu-
racy and suitability of explanations for purposes.

1 EXTENDED ABSTRACT

In applied machine learning, success at providing an explanation is
often measured by ease and frequency of use among the constituent
population. For example, when doctors do not trust decision-assisting
software, they will not use it in clinical practice even when they are
told that its use decreases diagnostic errors [9]. Since studies have
shown that doctors value explanations for the diagnosis very highly,
especially step-by-step rationales for decisions, the developers of
these systems sought to provide explanations of the kind desired by
the doctors [18].

Doshi-Velez and Kim [4] formalized this implicit standard of ex-
plainability, equating explanation with satisfaction among the target
population. They propose a benchmark measure against which fu-
ture purported explainers will be measured, similar to the benchmark
tests used in Human-Computer Interaction (HCI) [1]. The success of
any new proposed explanation or tool for explaining would be mea-
sured using human-subject trials. Human subjects would be asked
to rate the quality of various short explanations on the same topic.
Unbenownst to them, some of the explanations will be written by
humans, a pool that will serve as the benchmarks of success. Other
explanations will be written by the new automated explainer to be
tested. Using such a benchmark, proposed explainers may be com-
pared against each other and against the gold standard of human-
generated explanations.

When such a human-subject trial is not possible for financial or
other logistical reasons, Doshi-Velez and Kim suggest that those at-
tempting to provide explanations can rely on a default ranking of in-
terpretability (here used synonymously with explanability) of types
of models previously established by human-subject trials. For exam-
ple, they suggest that a sparse linear model or a decision tree can
function as a more-interpretable proxy model for an opaque neural
net. Thus although token-level tests are best, the general type or class
of model can also be ranked in order of its interpretability.

Doshi-Velez and Kim’s work has been widely cited [7, 8] and has
been followed by similar work using human subject trials to mea-
sure the success of various methods for providing interpretability or

1 Stanford University, USA, email: kcreel@stanford.edu

explanation [13, 15]. I will call these approaches generally the “sat-
isfaction account” of explanation and argue that it has serious prob-
lems.

First, classes of models cannot be ranked by their interpretability.
A simple decision tree is easy to create and structurally clear when
small. However, a thousand-node decision tree is uninterpretable, as
it often relies on variables or features that seem to a human to be
grue-like or so tiny as to be indistinguishable from one another. Scale
matters for the interpretability of a model. There is too much inter-
class variability for a simple ranking of classes of models to be a
good guide to interpretability. A ranking also presupposes a goal-
agnostic or model-independent explanation. In order to argue that
creating a post-hoc decision tree or fitting a linear model to an opaque
algorithm will always improve its explainability, the satisfaction view
must posit a unique metric of similarity. But explainability, as with
other metrics of comparison, is goal relative [3, 17]. An explanation
that suits one purpose may not suit another. Likewise different kinds
of opacity may prompt different forms of explanation [2, 19].

The second problem with the satisfaction account is that user pref-
erence is the criterion of evaluation. There is no room in the satisfac-
tion account for distinguishing between a feeling of understanding
and genuine understanding, let alone the epistemic achievement of
a scientific explanation, although doing so is foundational to most
accounts of both understanding and explanation [6, 12, 5, 16, 10].
Of course, idealization and abstraction and the fictions they bring
with them have long been acknowledged to be an important part of
the creation of cognitively tractable explanations [8, 14]. But without
access to any information about the functioning of the system, users
have no way to determine whether anything about the explanation is
factive. Without this knowledge, it is impossible for the user to know
whether their trust is warranted.

A third and related concern is that many strategies such as vi-
sualization simplify complex models in a misleading way, but may
boost their scores with respect to the benchmark merely by relying
on human preference for images. For example, visual explanations
in machine learning, such as heat maps or saliency methods, often
prioritize local explanations over general features and can be fragile
to minor and non-adversarial perturbations in the input [11]. How-
ever they are rated as being highly explanatory [15]. Likewise, if an
image classifier has suggested that an image contains a dog, point-
ing out the pixels of the original image which most contributed to
the diagnosis of “dog” does not answer the why and how of neural
network image classification, object detection, and feature localiza-
tion. On one construal, it explains correct performance on the task
by pointing to the algorithms correct performance circular at best.
However, ostension may not even uniquely explain correct perfor-
mance, depending on the counterfactual or contrastive requirements
one holds for an explanation. Imagine a classifier suggests with 99%
confidence that an image contains a dog. Its second choice, with 78%
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confidence, might be wolf, relying on many of the same pixels. Such
an explanation lacks the implicit contrastive value of many human
generated explanations. The lack of a criterion beyond subjective un-
derstanding leads to an over-reliance on visualization and condones
misleading but prima facie plausible explanations.

For all these reasons, I argue that user-satisfaction human subject
trials will not solve the problem of choosing between types of expla-
nation. However, the original goal of the satisfaction theorists should
not be abandoned. Benchmark tests and suites have proved to be use-
ful in spurring and measuring progress in other domains. Thus I pro-
pose alternate benchmark tests for explainability based on functional
explanations, or matching of explanations to goals, in domains where
the explanation produced can be compared with insight into the true
functioning of the machine learning model or system.
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Beyond Opacity –
Epistemic Risks in Machine Learning

Julie Schweer1, Paul Grünke2 and Rafaela Hillerbrand 3

Extended abstract

Machine learning models play an increasingly important role in a
multitude of areas and for a wide range of application contexts. Yet,
it is often stated that a central challenge lies in their epistemic opacity
or black box nature.

In our contribution, we suggest that besides exploring ways to ren-
der machine learning models more transparent, it is fruitful to shed
light on sources of epistemic risks that arise in the context of machine
learning practices. More precisely, we indicate that machine learning
models are epistemically challenging not only because they are often
‘opaque’ but also because their construction and usage involves deal-
ing with a variety of epistemic risks. Approaching machine learning
models from an ‘epistemic risk perspective’ can, or so we suggest,
help addressing them not only as black boxes whose ‘inner work-
ing’ one might aim to reveal but also as tools or artefacts that are
intended to serve certain purposes and whose construction (and us-
age) involves drawing on certain assumptions and making various
decisions (cf. e.g. [3]). Seeing how (and at which points) epistemic
risks are involved might help to better clarify as to how they can help
achieve specific epistemic aims (e.g. make predictions or provide un-
derstanding).

Our understanding of epistemic risk differs from the classical no-
tion of inductive risk (as e.g. in [5]). Rather than mainly focusing
on the risk of wrongly accepting or rejecting a hypothesis, we fol-
low Justin Biddle and Rebecca Kukla in broadly defining epistemic
risk as any risk of error that can arise at various points in knowledge
practices ([2], 218). While commonly drawing on the conception of
‘epistemic risk’ seems particularly motivated by the aim to examine
the roles of values in scientific practice, we think that it more gener-
ally offers a fruitful framework in order to address challenges arising
in the construction and usage of (machine learning) models as the
notion of ‘epistemic risks’ does not (simply) hint to the fact that in
various steps epistemic errors may occur, but that even though they
may be unavoidable, the epistemic risks can be managed.

Epistemic risks may occur e.g. during problem identification, the
operationalization of concepts, data choice, or algorithm design (see
[2], p. 220f. or [1]). For example, consider the process of data se-
lection, preparation, and preprocessing in machine learning. Here,
several decisions need to be made that involve epistemic risks: What
data should be taken as input? How should we deal with redundan-

1 Institute for Technology Assessment and System Analysis, Karlsruhe Insti-
tute of Technology, Germany, email: julie.schweer@kit.edu

2 Institute for Technology Assessment and System Analysis, Karlsruhe Insti-
tute of Technology, Germany, email: paul.gruenke@kit.edu

3 Institute for Technology Assessment and System Analysis, Karlsruhe Insti-
tute of Technology, Germany, email: rafaela.hillerbrand@kit.edu.

cies, noise or incomplete data?
Now an interesting question is as to how precisely both of the

aforementioned challenges – namely, that (a) machine learning sys-
tems are often in some sense opaque and that (b) their construction
and usage involves epistemic risks – are related to each other.

For example, think of cases in which the aim is to acquire under-
standing of real-world phenomena. Here, a common worry is that
due to their opacity, complex machine learning models provide only
limited understanding of the respective phenomenon under investi-
gation. Yet, Emily Sullivan [6] has recently argued that what hinders
us from understanding real-world phenomena by means of machine
learning models is not primarily their opacity or lack of transparency
but the extent to which the ‘link’ between model and target phe-
nomenon is uncertain.

Consider, for example, the case of machine learning models used
in medical diagnostics. If the aim is to acquire understanding of real-
world phenomena such as the development of certain diseases, it
seems not only important to learn about the factors relevant for the
model to make a particular prediction but also to be certain enough
that these factors indeed reflect the actual key-drivers for the devel-
opment of the respective disease. As Sullivan ([6], 18) puts it, “[w]e
want some indication that the model is picking out the real difference
makers for identifying a given disease and not proxies, general rules
of thumb, or artefacts within a particular dataset.”

This suggests that when it comes to an understanding of real-world
phenomena, it might be worthwhile to go beyond the functioning of
a given model. As an example, Sullivan discusses the case of the so-
called ‘deep patient model’ (see [4]). Taking electronic health records
of patients as input, the deep patient model shall help predicting the
development of diseases. Yet, despite its remarkable accuracy in pre-
dicting certain medical conditions, Sullivan ([6], 18-19) argues that
link uncertainty is still present and that therefore, the model provides
only limited understanding of why e.g. a particular patient might de-
velop a particular disease.

Moreover, Sullivan points out that the model had difficulties with
predicting some diseases such as cases of diabetes mellitus without
complications ([6], p. 18f., see also [4], 8f.). The scientists’ hypoth-
esis for explaining this was that diabetes mellitus is often diagnosed
during general routine checkup tests and that thus, the frequency of
these tests does not reliably help predict the occurrence of diabetes
([4], 8-9; see also [6], 18). As Sullivan ([6], 19) puts it, this indicates
that the “model in part tracks proxies of disease development, such
as previous physicians’ decisions to carry out a diagnostic test”.

This brings us back to the conception of epistemic risk. Obviously,
the decision to rely on a certain kind of data (here: health records)
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comes with certain risks (here, for example: tracking proxies rather
than causes of disease development). Drawing on the framework of
epistemic risk and examining sources of epistemic risks can, or so
we suggest, help address the question of how the model is ‘linked’ to
its target. This, in turn, may provide a very first step to approaching
the question of how much understanding these models provide.
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Explainable AI as Epistemic Representation
Lok Chan

Abstract. As a way to increase transparency for black box mod-
els, post hoc but interpretable models have been proposed as “ex-
planations” for these opaque models’ behaviors. However, the sup-
posed relationship between these models has been criticized, espe-
cially given the structural dissimilarity between them. I propose that
theories of representation in philosophy of science can address how
these post hoc models can faithfully represent another model with-
out completely replicating the structure of the target model. I argue
that the philosophical framework of epistemic representation, which
concerns itself with how representation mediates our inference of its
target, provides a rigorous way in which we can evaluate the success
of Explainable AI in the broader context of ethics and transparency.

1 Introduction

Increasing awareness of the potential biases and inaccuracies in ar-
tificial intelligence/machine learning has prompted calls for greater
transparency in the deployment and development of so-called black
box models. A model is considered a black box when its structure is
inaccessible or opaque to people, due to the model being either pro-
hibitively complex or a proprietary product. Because of these con-
siderations, the concept of explanation has taken a prominent role
in recent research in AI. “Explainable AI” (XAI) refers to a set of
methods that, in order to increase transparency and trustworthiness
of black box models, construct post hoc but interpretable models that
represent black box models in some capacity and serve as the expla-
nation for the behaviors of the original models [4]. Nevertheless, this
model of explanation has been criticized on the ground that post hoc
models never completely reproduce the structure of the target model
[8].

This raises an important philosophical question: must the relation-
ship between the two models be evaluated in terms of similarity? In
this paper, I critically examine this problem and propose that philo-
sophical theories of representation can address how these post hoc
models can faithfully represent another model without completely
replicating the structure of the target model. To be clear, my pur-
pose is not to provide a blanket defense of XAI; rather, the point is
to suggest how the philosophical framework of epistemic represen-
tation, which concerns itself with how representation mediates our
inference about its target, provides a richer way to evaluate whether
or not a particular proxy model has adequately represented its target.
The upshot is an account that will allow us to specify with greater
rigor the criteria for misrepresentation.

2 Interpretability and Explainability

Let us draw a distinction between models that are interpretable and
those that are explainable [8]. Interpretable models are characterized
by their native intelligibility. For instance, decision trees are typically

considered to be interpretable, as they make predictions based on
decision rules that are understandable to humans.

XAI, on the other hand, has been taken to refer to the model’s
capability of being explained by another post hoc model that is inter-
pretable (in the sense described). Somewhat counterintuitively, ex-
plainability is generally a feature of a black box model, i.e., a model
whose structure is natively inaccessible to people, as usually only an
opaque model would require explaining. Model opacity could occur
for two reasons. First, a model can be a black box when its formal
structure is beyond human comprehension due to its complexity, or
when the structure is simply too disanalogous to human reasoning.
Deep learning models, such as convolutional neural networks, are
often black boxes due to their deeply recursive structure. Second, a
model could become a black box, not because it is uninterpretable,
but because the company or corporation that owns the model main-
tains that its inner workings are a trade secret. For instance, a model
called ’Correctional Offender Management Profiling for Alternative
Sanctions’ (COMPAS), which is widely used in parole decisions in
the U.S. justice system to predict an inmate’s recidivism risk, is a
black box due to its proprietary nature, even though experts have
speculated that it is technically an interpretable model [1].

To make a black box model explainable, then, another model has
to serve as an “explanation.” For example, one proposed explana-
tion of neural networks is to extract a decision tree model, which
is considered to be interpretable, by incorporating the outcome of
the target neural networks as the training set [9]. Local Interpretable
Model-agnostic Explanations (LIME) are proposed to explain com-
plex models with a simplified and interpretable model that is built
specifically around one particular prediction and the set of similar
cases [7]. Another proposal is to explain black boxes by using coun-
terfactual explanations, which constructs a model that will provide
information about how a black box model could have made a differ-
ent classification or prediction, had the features been different [12].
The essential feature of these XAI methods is that they aim to gen-
erate an interpretable model without presupposing knowledge about
the internal workings of the black box model [4].

3 The Dissimilarity Argument
One particular relevant view is from the computer scientist Cynthia
Rudin, who in a recent paper criticizes the use of post hoc models
to explain black box models. Consider the argument in the passage
below [8].

Explanations must be wrong. They cannot have perfect fidelity
with respect to the original model. If the explanation was com-
pletely faithful to what the original model computes, the ex-
planation would equal the original model, and one would not
need the original model in the first place, only the explanation.
(In other words, this is a case where the original model would
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be interpretable.) This leads to the danger that any explanation
method for a black box model can be an inaccurate representa-
tion of the original model in parts of the feature space.

The intuition behind this argument seems to be a conceptual link
between fidelity and similarity. A completely faithful post hoc model
here seems to mean for any set of input, the post hoc model would
give the same output as the target model, so the maximal fidelity
here is assumed to be maximal similarity, which, in turn, is assumed
to be identity. From this, the idea that “explanations must be wrong”
follows as a matter of definition, since any post hoc model that does
not make identical prediction is a misrepresentation.

Let us call this the “dissimilarity argument”, as the key assumption
here is that ”to faithfully represent” is taken to mean ”to perfectly re-
semble”. Based on this strict equivalence between resemblance and
representation, the rest of the conclusion follows: representational fi-
delity is to be measured in terms of resemblance, and anything short
of complete resemblance entails misrepresentation and untrustwor-
thiness.

The difficulty with assuming a strong relationship between repre-
sentation and similarity is that no model except itself can be a faithful
representation. This has two undesirable consequences. First, an ar-
gument against XAI that presupposes such a strong assumption is
somewhat self-defeating, as a definition that renders by fiat all proxy
models “wrong” is tantamount to begging the question against the
XAI project. Second, this leaves no room for the possibility that there
could be trustworthy representation of systems that are very dissim-
ilar to their targets, which, as we shall see in the next section, is a
philosophically untenable position.

To be clear, the point is not just a semantic one, but to make ex-
plicit the normative implications that the notion of representation has
on how these proxy models ought to be evaluated. Both proponents
and critics of XAI, I think, would agree that we would benefit from
an account of model representation that allows us to specify, with
reasonable precision, criteria under which a proxy model can be re-
garded as a good representation or a misrepresentation of its target.
Crucially, then, the following questions must be answered.

• Must a representation’s fidelity to the target model be measured
solely in terms of likeness, resemblance, or similarity?

• Must a representation completely resemble its target in order to be
trustworthy?

I now turn to philosophical theories of representation for possible
answers.

4 Representation, Fidelity, and Transparency

Philosophical discussion concerning the relationship between repre-
sentation and resemblance dates as far back as Plato [6]. More re-
cently, in his book The Language of Art, Nelson Goodman famously
argues against the often assumed view that “A represents B to the ex-
tent that A resembles B” [5]. Goodman objects to this definition by
pointing out conceptual distinctions between resemblance and rep-
resentation. Resemblance is reflexive: as a matter of fact, the object
that most resembles x is x itself. Yet, representation lacks reflexivity,
since it seems absurd to assert that someone is a representation of
herself. Resemblance is also symmetric: if X resembles Y , then Y
resembles X , but representation, unlike resemblance, is asymmetric:
a painting of a historical figure, say, George Washington, represents
him, but Washington does not represent the painting.

The relaxation of the resemblance requirement opens the door to
a fruitful inquiry into how representation can help us overcome the
opacity of black box models. I suggest that XAI can be seen as a form
of epistemic representation: representation that facilitates the acqui-
sition of knowledge about the target system through a vehicle of rep-
resentation [3]. A classic example originates from Rudolf Carnap: a
series of connected dots on a subway map represents a subway sys-
tem by emphasizing the structure as an interconnected network [2].
Even though the subway map does not bear identical or proportional
physical properties, such as distance and size, to the actual subway
system, it nevertheless allows us to reason about the target system
by virtue of being an adequate representation of it. For instance, I
can draw valid inferences about the relative locations of the stations
based on the map alone. Representation enables what some philoso-
phers call surrogative reasoning, which is the act of learning about a
target, such as a subway system, by drawing a parallel from a vehicle
of representation, such as the subway map [10].

The notion of surrogative reasoning opens the door to a richer
framework with which we can evaluate the adequacy of a proxy
model as a representation of its target. First, the evaluation of a rep-
resentation requires us to identify features of the target system the
proxy model is intended to highlight [11]. Thus, a good representa-
tion must allow us to draw reliable and analogous inferences about
these features. This also forges a link between model representation
and model transparency. The proxy modeler’s intention to use the
proxy model to highlight some aspects of the system of interest is
also open to critical assessment: she must be able to provide reasons
as to why she has chosen to highlight certain features but not others.
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No Explanation without Inference
David S. Watson1

Abstract. Complex algorithms are increasingly used to automate
high-stakes decisions in sensitive areas like healthcare and finance.
However, the opacity of such models raises problems of intelligibil-
ity and trust. Researchers in interpretable machine learning (iML)
have proposed a number of solutions, including local linear approxi-
mations, rule lists, and counterfactuals. I argue that all three methods
share the same fundamental flaw – namely, a disregard for severe
testing. Techniques for quantifying uncertainty and error are central
to scientific explanation, yet iML has largely ignored this method-
ological imperative. I consider examples that illustrate the dangers
of such negligence, with an emphasis on issues of scoping and con-
founding. Drawing on recent work in philosophy of science, I con-
clude that there can be no explanation – algorithmic or otherwise –
without inference. I propose several ways to severely test existing
iML methods and evaluate the resulting trade-offs.

1 Introduction
Machine learning (ML) is increasingly ubiquitous in modern society.
Complex algorithms are widely deployed in private industries like
finance [3], as well as public services such as healthcare [20]. Their
prevalence is driven by results. ML models outperform humans not
just at strategy games like chess [17], but at important scientific tasks
like antibiotic discovery [19] and tumor diagnosis [10].

High-performance algorithms are often opaque, in the sense that
it is difficult for humans to understand the internal logic behind indi-
vidual predictions. This raises fundamental issues of trust. How can
we be sure a model is right when we have no idea why it predicts
particular values? While model interpretation is by no means a new
concern in statistics, it is only in the last few years that a dedicated
subfield has emerged to address the issues surrounding algorithmic
opacity.

Interpretable machine learning (iML) comprises a diverse collec-
tion of technical approaches intended to render statistical predic-
tions more intelligible to humans [11]. My focus here is on model-
agnostic, post-hoc local methods, which explain the individual pre-
dictions of some target model without making any assumptions about
its form. Prominent examples include local linear approximators
(e.g., SHAP [6]), which produce feature attributions that sum to the
explanandum; rule lists (e.g., Anchors [15]), which provide explana-
tions via sequences of if-then statements; and counterfactuals (e.g.,
MACE [4]), which identify one or several nearest neighbors on the
opposite side of a decision boundary. Despite their merits, all three
approaches fail to meet the severity criteria outlined in Sect. 2. I il-
lustrate the issues with this failure in Sect. 3, and propose some di-
rections for improvement. I conclude in Sect. 4 with a reflection on
the trade-offs implied by this analysis.

1 University College London, London, United Kingdom. Email:
david.watson@ucl.ac.uk

2 Severe Testing

Mayo [9, 8, 7] argues that the problem of induction is defeasibly
resolved by severe testing. The basis for this resolution is her severity
principle, which states that “We have evidence for a claim C just
to the extent it survives a stringent scrutiny. If C passes a test that
was highly capable of finding flaws or discrepancies from C, and
yet none or few are found, then the passing result, x, is evidence
for C” [7, p. 14]. On Mayo’s view, the justification for believing a
given hypothesis is a function not of the hypothesis itself or the data
it purportedly explains, so much as the tests it has passed. When tests
are sufficiently sensitive (i.e., likely to detect true effects) and specific
(i.e., likely to reject false effects), then we say they are severe.

To make matters concrete, consider a single parameter location
test. Let Θ denote the parameter space, and let T be a test that decides
between H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1, where Θ0 and Θ1 are some
partition of Θ. We observe sample data x and compute sufficient
statistic d(x), which measures the disagreement between x and H0.
Test T rejects H0 when d(x) meets or exceeds the critical value cα.
We say that H0 passes an (α, β)-severe test T with data x if:

(S1) d(x) < cα; and
(S2) with probability at least 1− β, if H1 were true, then we would

observe some sufficient statistic d(x′) such that d(x′) ≥ cα.

Readers well-versed in frequentist inference will recognize some fa-
miliar concepts here. The critical value is indexed by the type I error
rate α, such that, under H0, the rejection region of statistics greater
than or equal to cα integrates to α. Under H1, the rejection region
of statistics less than cα integrates to the type II error rate, β. The
complement of this value, 1−β, denotes the power of the test. A test
with small α is said to be specific, since it only accepts hypotheses
that are likely to be true; a test with small β is said to be sensitive,
since it is able to detect even slight deviations from the null.

While this explication is faithful to the frequentist framework that
Mayo favors, the severity criteria are in fact very general, and have
been reformulated along Bayesian lines [2]. ML is not inherently
aligned with any particular interpretation of probability, and nothing
in the proceeding argument depends upon one’s preferred method
of inference. The epistemological upshot of Mayo’s analysis is that
science advances knowledge not just by falsifying theories, as Pop-
per would have it [12], but by subjecting hypotheses to increasingly
severe tests. Hypotheses earn their warrant by passing such tests,
thereby providing positive justification for successful theories.

3 Severity and iML

An algorithmic explanation is an empirical claim relating certain
factors in the input data to the resulting prediction. Since empirical
claims are typically the realm of science, we may justifiably wonder
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whether Mayo’s severity criteria can be fruitfully applied in this set-
ting. I argue that they can and should. I highlight two ways that algo-
rithmic explanations mislead when severity criteria are not taken into
account: through ambiguity of scope and sensitivity to confounding.

Local explanations are constructed to apply only in some fixed re-
gion of the feature space. Yet iML methods do not generally provide
information about the bounds of a given explanation or goodness of
fit within the target region. For illustration, I will focus on linear ap-
proximators, but the point applies more broadly.

If you zoom in far enough to any point on a continuous func-
tion, you will eventually find a linear tangent. This is the intuition
behind methods like LIME [14] and SHAP [6]. However, when the
regression surface or decision boundary around the target point is ex-
tremely nonlinear, the linear region tends to be very small and the es-
timated coefficients highly unstable. In this case, feature attributions
are acutely sensitive to regional bounds. In a simple two-dimensional
example, Wachter et al. [21] visually demonstrate how a linear expla-
nation for the same model prediction may assign positive, negative,
or zero weight to a feature depending on the scope of the linear win-
dow (see Fig. 1).

The most obvious statistical solution here would be to augment
iML outputs with information regarding the scope and fit of the
approximation. It is common, for instance, in linear regression to
compute the significance and standard error of model coefficients.
This would satisfy (S1). Power analysis typically requires paramet-
ric assumptions or data simulations, which could be used to satisfy
(S2). Unfortunately, these strategies are not readily available to al-
gorithms like LIME and SHAP, which use unconventional sampling
techniques, kernel weights, and regularization penalties that preclude
easy analytic solutions for calculating expected error rates. Nonpara-
metric resampling methods could help but at major computational
cost. The problem becomes especially acute as the number of ex-
plananda increases.

Another challenge for iML arises when features are highly depen-
dent. The issue can be especially nefarious when auditing for algo-
rithmic bias. If a sensitive attribute is associated with a permissible
variable (e.g., if race is well predicted by zip code) then the latter can
serve as a proxy for the former. This allows bad actors to get away
with discrimination, so long as they can fool an auditor into believ-
ing they were using the permissible variable rather than the sensitive
one. The concern is not merely speculative. Authors have exploited
these vulnerabilities to make discriminatory models pass algorithmic
audits [18] and appear fair in user studies [13].

Severe testing cannot, on its own, prevent bad actors from en-
gaging in discriminatory behavior. However, it can make it harder
for them to get away with it by elucidating the uncertainty associ-
ated with algorithmic explanations under confounding. Just as stan-
dard errors for regression coefficients are inflated by collinear pre-
dictors, the severity of particular explanations will tend to decrease
with strongly correlated features. Reporting the error rates of given
outputs will provide much-needed context for users and regulators
alike.

Algorithmic fairness is a complex and contested topic. Dozens of
statistical fairness criteria have been proposed [1], while impossibil-
ity theorems have shown that most popular definitions are mutually
incompatible except in trivial cases [5]. No matter which criteria one
adopts for a given application, almost all may be expressed in terms
of marginal or conditional independences, which means that classi-
cal tests can be used for auditing purposes. Severity therefore has a
central role to play in holding people and institutions accountable for
their algorithmically mediated decisions.

Figure 1: Unstable linear approximations. The grey line in each panel
shows a local approximation of the same function centered at the
same location. The varying range is indicated by the black bars, lead-
ing to vastly different linear explanations. From [21, p. 885].

4 Discussion

Many authors motivate the iML project with appeals to trust. “Why
should I trust you?” reads the title of Ribeiro et al.’s paper introduc-
ing LIME [14]. “Building trust is essential to increase societal accep-
tance of algorithmic decision-making,” [21, p. 843] write Wachter et
al. in their paper on counterfactual explanations. So long as complex
algorithms remain opaque, users will harbor suspicions about their
reliability in particular cases. That is why we seek transparent ex-
planations that can assuage concerns about unfair or unreasonable
model predictions.

But do iML algorithms really settle matters, or merely push the
problem one rung up the ladder? After all, why should we trust their
outputs? Presumably the target function at least has the advantage
of performing well on some test dataset. Can we say the same of
algorithms like SHAP, Anchors, or MACE? Their outputs are read-
ily intelligible, and that is clearly a start. But does that necessarily
mean that their explanations should all be given equal weight, or are
some more reliable than others? How can we be sure that they have
not produced unstable estimates or selected the wrong features? Are
there principled methods for critically evaluating individual explana-
tions, much like we can critically evaluate individual predictions?

I argue that severe testing holds the key to securing the trustwor-
thiness of algorithmic explanations. The goal of all iML algorithms
is to produce claims relating inputs to outputs. Such claims can in
principle be tested. That, for instance, is how we come to trust scien-
tific theories – by repeatedly, mercilessly subjecting them to severe
tests with quantifiable error rates. There is no good reason to hold
iML to a lesser standard.

Concerns over feasibility are legitimate. Bootstrapping methods
for evaluating the scope and stability of local explanations could be
time consuming. Conditional independence testing, which may aid
in fairness audits, is notoriously difficult in high-dimensional settings
and provably hard for continuous conditioning events [16]. But if the
stakes are sufficiently high that we need an algorithmic explanation
in the first place – perhaps even a legally mandated one – then it is
important that we get that explanation right.

Proponents of black box algorithms argue that results often matter
above all else. Would we prefer a transparent model that diagnoses
cancer with 90% accuracy or an opaque one that does so with 99%
accuracy? By the same token, we cannot dismiss severe testing for
iML merely due to concerns about the computational burden. When
consequential decisions depend upon algorithmic explanations, we
had better make sure they withstand a stringent scrutiny.

10



ACKNOWLEDGEMENTS

Thanks to Luciano Floridi and Carl Öhman for their valuable feed-
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[14] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin, ‘“Why
Should I Trust You?”: Explaining the Predictions of Any Classifier’,
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’16, pp. 1135–1144.
ACM, (2016).
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Technical Barriers to the Adoption of Post-hoc
Explanation Methods for Black Box AI models

Eunjin Lee1, Harrison Taylor2, Liam Hiley2, Richard Tomsett1

Abstract.  We  examine  two  key  technical  barriers  to  the
adoption of post hoc methods for explaining the outputs of black
box AI models:  their lack of  robustness,  and the difficulty in
assessing explanation fidelity.1

1 INTRODUCTION

The  recent  expansion  of  Explainable  Artificial  Intelligence
(XAI)  research  has  resulted  in  a  variety  of  methods  that  can
produce “explanations” for black box AI model outputs. Given
the perception that black box methods such as neural networks
perform better  than more intrinsically  interpretable  models  on
some tasks – particularly those involving low level perception
(e.g. image recognition, object detection, speech recognition) or
natural  language  processing  (e.g.  machine  translation,  text
generation) – much XAI work has attempted to create methods
that  can  explain  black  boxes  without  having  to  modify  the
models themselves. This approach is illustrated in figure 1: the
“explanator” is designed to produce a suitable explanation of the
black  box  AI  system’s  output.  The  explainee  uses  this
explanation to form an interpretation of how the model arrived at
that output (by contrast,  for an inherently interpretable model,
the “explanator”  box would not  be needed,  and the explainee
would be able to examine the model directly to interpret how it
arrived at a particular output). 

Figure 1. Conceptual framework for XAI. From [1].

In this extended abstract, we ask a key question for such  post
hoc explanation  methods  [2]:  are  they  good  enough?  Our
discussion expands on the technical issues around XAI identified
in [3].  First,  we examine some important  failings of  common

1 Emerging Technology,  IBM Research,  Hursley,  UK. Email:  {ele3,
rtomsett}@uk.ibm.com.
2 Crime and Security Research Institute, Cardiff University, Cardiff, UK.

explanation  techniques  that  can  lead  to  them  producing
misleading  explanations.  Second,  we  describe  recent  work
evaluating  metrics  that  have  been  proposed  to  measure  the
fidelity of post hoc explanations (i.e. how well the explanations
represent  the  true  internal  workings  of  the  model  being
explained). We discuss the implications of these observations in
the context of AI systems for supporting high stakes decision
making.

2 PROBLEMS WITH ROBUSTNESS

Papers reporting on new explanation techniques rarely evaluate
the  methods  beyond  qualitative  comparisons  with  previous
methods. Those that perform quantitative evaluations do not use
a  consistent  methodology,  so  the  evaluations  are  difficult  to
compare. One result of this is that various flaws in explanation
methods have only come to light after extensive testing by other
researchers.  A  particularly  popular  method  that  suffers  from
several  serious  flaws  is  LIME:  Local  Interpretable  Model-
agnostic  Explanations  [4].  LIME  has  been  shown  not  to  be
robust: given two very similar inputs that result in very similar
outputs  from the  model,  LIME is  not  guaranteed  to  produce
similar explanations [5]. In other work, it has also been shown
that LIME could produce very different explanations when run
many times on the same input/output pair, due to its reliance on
stochastic  perturbations  of  the  input  data  [6].  More  generally
than just LIME, several explanation methods for neural networks
are susceptible to adversarial attacks: it is possible to generate an
imperceptibly  modified  input  that  produces  the  same  model
output,  but  results  in  a  totally  different  explanation  by  the
explanation method [7]. Other research has shown the possibility
of designing adversarial  patches for images that fool both the
classifier  and  the explanation  method [8,9]  –  specifically,  the
popular  Grad-CAM  method  [10].  These  vulnerabilities  are
perhaps unsurprising given the findings of Adebayo et al. [11],
which demonstrated that several explanation methods for neural
networks produced explanations that were largely independent of
the neural network parameters. This means that they do not do a
good job of representing the internal processing that occurs in
the network, so cannot be faithful explanations. 

3 PROBLEMS WITH ASSESSMENT

While [11] showed that several methods did not produce faithful
explanations, it did not attempt to quantify explanation fidelity to
allow  for  quantitative  comparisons  between  methods.  Such
quantification  requires  a  metric  for  measuring  explanation
fidelity. A few such metrics have been proposed; these rely on
perturbing input features and measuring the change in output of
the model, to see if the explanation has appropriately assigned
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importance to that feature. Recent work tested these metrics on a
standard image classifier model [12]. It found that the metrics
were  statistically  unreliable  in  several  aspects:  they  produced
inconsistent rankings of explanation methods between images,
such that the average metric score over images is an unreliable
indicator of how faithful explanations of future images will be;
they produced inconsistent scores between explanation methods,
indicating  that  the  metrics  were  measuring  different  things
despite  all  purporting  to  measure  fidelity;  and  they  produced
different results depending on their implementation details. It is
therefore hard to recommend using current metrics as a reliable
guide for picking an explanation method, which is particularly
problematic as the explanations produced by different methods
vary greatly. 

4 DISCUSSION

Two important drivers for the pursuit of reliable XAI systems
are: (1) to increase trust in AI tools to facilitate a wider adoption
of  these  systems  and  (2)  the  increase  of  regulations  which
require explanations for accountability purposes. The instability
of the post hoc results and the inherent difficulty in quantifiably
assessing  these  methods  are  concerning  for  both  drivers.
Understanding  this  issue  is  especially  vital  in  the  context  of
using AI systems which support high stakes decision making.

Consider  a  scenario  where  a  machine  learning  system  is
deployed to assist military personnel in an operation to identify
and strike a target [13]. It is crucial that the military personnel
have  appropriate  trust  in  the  system  to  make  an  informed
decision in the operation. After the event, this decision may be
scrutinised  at  a  tribunal  and  without  a  reliable  XAI
infrastructure, it is problematic, both technically and legally, to
investigate  the  decision.  This  problem  is  also  significant  in
existing  industry  scenarios;  for  example,  where  AI  systems
advise medical professionals in diagnosing patients or calculate
whether an applicant should be granted a loan. The performance
and  assessments  of  current  post-hoc  methods  make  them
questionable tools to use in these situations.

5 CONCLUSIONS & FUTURE WORK

In this abstract, we have reviewed two key technical issues with
explanation  methods  for  black  box  models:  their  lack  of
robustness,  and the difficulty in assessing their fidelity.  These
problems mean that such methods are difficult to trust when used
to help decision making,  particularly in high stakes scenarios.
Indeed, Rudin recommends avoiding black box models entirely
in these situations, instead relying on intrinsically interpretable
models [3].  Some progress has already been made in creating
new neural network models that are self-explaining [14, 15], thus
making such models inherently interpretable. This is a promising
area for future research. However, post hoc explanation methods
may still  be  desirable  in  situations  where  a  black box model
genuinely outperforms the interpretable equivalent, and the use
case requires this higher performance. Before developing further
explanation techniques,  we suggest that the community places
more  emphasis  on  appropriately  evaluating  these  methods,
ideally with a set of standard benchmarks. This could help drive
progress in a similar way to how standardized machine learning

benchmarks  have  contributed  to  the  improvement  in  machine
learning techniques.
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Robot Mindreading and the Problem of Trust 

Andrés Páez1

Abstract.  Robot mindreading is the attribution of beliefs, desires, 
and intentions to robots. Assuming that humans engage in robot 
mindreading, and assuming that attributing intentional states to 
robots fosters trust towards them, the question is whether the de-
velopment of mind-readable robots is compatible with the goal of 
enhancing transparency and understanding in automatic decision 
making. There is a risk that features that enhance mind-readability 
will make the mechanisms that determine automatic decisions 
even more opaque than they already are. And current strategies to 
eliminate opacity do not enhance mind-readability. This paper dis-
cusses different ways of analyzing this apparent trade-off and sug-
gests that a possible solution is to adopt tolerable degrees of opac-
ity that depend on pragmatic factors connected to the level of trust 
required for the intended uses of the robot. 

1 INTRODUCTION 
Autonomous Artificial Intelligent Systems (AIS) designed to in-
teract socially with humans are becoming a common presence in 
our private and public lives. Our increased interaction with per-
sonal virtual assistants, social chatbots and, especially, humanoid 
robots invites the question of how humans interpret, predict and 
explain their behavior and decisions. The interpretation frame-
work adopted will have practical effects, such as facilitating hu-
man-robot interaction and cooperation. But the favored interpre-
tative framework also has implications for the transparency and 
trustworthiness of AIS, two of the main concerns of software en-
gineers committed to the EPSRC Principles of Robotics [1] and 
of researchers involved in the explainable AI project (XAI). 
Whether AIS are interpreted as intentional agents or as purely me-
chanic devices will affect the perception of transparency and the 
level of trust placed in them. This paper explores the effects of 
interpretative frameworks on our trust in AIS and on our ability to 
understand their decisions. In particular, I want to examine 
whether transparency and mindreading-based trust are compatible 
goals in the case of robots. The risk is that by attempting to make 
AISs more mind-readable, we are abandoning the project of un-
derstanding automatic decision processes. 

2 WHAT IS ROBOT MINDREADING? 
I will use the expression robot mindreading to designate the atti-
tude of attributing mental states to AIS in order to explain and 
predict their decisions and actions. According to the conventional 
meaning of “mindreading” [2], successful interaction with others 
involves the attribution of beliefs, desires, emotions, and inten-
tions to make sense of their behavior and predict their future 
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actions. Humans readily attribute mental states to other humans, 
to non-human animals [3], and even to abstract shapes [4]. It thus 
seems natural to assume that they also spontaneously attribute 
mental states to robots.2 Many researchers have defended the idea 
that humans naturally engage in robot mindreading [5, 6, 7]. This 
assumption has been strengthened by recent developments in ro-
bot design that aim at facilitating meaningful interaction between 
robots and humans. The goal for many researchers in robotics is 
to create multimodal interfaces that closely mimic human appear-
ance, behavior and speech to provide social communicative func-
tionality that is natural and intuitive [8]. Social bots can now eval-
uate the emotional state of a human and adjust their behavior to 
build rapport and appear empathic [9]. AIS can also rationalize 
their decisions by translating their internal state-action represen-
tations into natural language [10]. And we must not forget that 
humans have been primed by pop culture and science fiction to 
regard robots as autonomous intentional agents. Although there 
are dissenting views [11, 12], for the purposes of this paper I will 
assume that humans readily engage in robot mindreading. 

3 ROBOT MINDREADING AND TRUST 
There is no doubt that the attribution of beliefs, desires and inten-
tions to AIS facilitates human-robot interaction [13, 14]. A 
gamer’s experience will be enhanced if she believes that her arti-
ficial opponent has (evil) intentions and desires, and a companion 
robot will better achieve its purpose if its owner believes that the 
robot actually cares about his woes. The general idea is that the 
cognitive and emotional response to robots will be more positive 
if the user treats it as an intentional agent.  

But trust demands more than fluid interaction. Distrust in AIS 
can take different forms. One source of concern is the widely pub-
licized danger posed by biased algorithms. Governments and the 
private sector have taken strides to address the ethical challenges 
posed by AI because they are aware that public trust is essential 
for the consolidation of the so-called 4th Industrial Revolution. A 
different source of concern is the perception that decisions made 
by an automatic system are not reliable, even when unbiased, and 
should not be trusted. Patients are reluctant to use health care pro-
vided by medical artificial intelligence even when it outperforms 
human doctors [15] and most people do not trust automated vehi-
cles [16]. 

In human-human interaction, honesty, competence and value 
similarity are essential to establish both cognitive and emotional 
trust [17]. Cognitive trust is based on good rational reasons [18], 
on one’s acquaintance with the trustee, and on evidence about his 
or her reliability; emotional trust is based on the positive feelings 
generated by our interactions with others. Honesty, competence 

2
  In the literature on human-robot interaction it has become increasingly 

popular to talk about taking “the intentional stance” towards AIS. I pre-
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and value similarity can only be ascribed to others by attributing 
to them the adequate intentions and beliefs from which these traits 
can be inferred. The question is whether people will also be more 
trustful towards AIS if their decisions and behavior are seen as the 
result of mental states from which honesty, competence and value 
similarity can be inferred. Intuitively the answer should be affirm-
ative. If a robot behaves in ways that resemble to a high degree 
those of a trustworthy human, and if the user makes sense of the 
AIS’s behavior by attributing mental states to it, there is no reason 
to believe that the user will not trust the AIS. Prima facie, then, 
enhancing traits that convey intentions and beliefs conducive to 
the creation of trust should be a goal of robotics. 

The main problem with this answer is that it extrapolates the 
trust-building features of human relations to the field of robotics 
without having enough empirical support. A meta-analysis of fac-
tors affecting trust in human-robot interaction revealed that “robot 
characteristics, and in particular, performance-based factors, are 
the largest current influence on perceived trust in HRI” [19, p. 
523]. This finding is in line with the performance-based defini-
tions of trust found in the literature on multi-agent systems [20]. 

The meta-analysis also found that factors related to human at-
titudes towards robots had a small role in trust building. The au-
thors do not conclude that human factors have no influence on 
HRI. “Rather, the small number of studies found in this area sug-
gests a strong need for future experimental efforts on human-re-
lated, as well as environment-related, factors” [19, p. 523]. It 
could be argued that this meta-analysis focused only on cognitive 
trust, ignoring the fact that emotional trust is more likely to be 
detected as an effect of robot mindreading. There are in fact sev-
eral studies about the emotional reaction of humans towards ro-
bots [21], and there is anecdotal evidence of emotional 
attachments to robots [22]. However, none of these studies have 
measured emotional trust as an independent variable, so it is im-
possible to draw any conclusions about the relationship between 
mindreading and emotional trust. 

In sum, the empirical evidence for the trust-building effects of 
people’s attitudes towards robots, and in particular, of the inter-
pretative framework adopted towards them, is inconclusive. I 
should add that in most cases humans are plainly aware that they 
are interacting with an artificial being that lacks intentions, con-
sciousness, desires and free will. Despite attributing mental states 
to machines as an expedient means to predict and explain their 
behavior in certain contexts, humans are still able to identify true 
intentional systems. More importantly, momentary rapport and 
fluid interaction do not entail overall trust and understanding. 
Trust is not directed towards the individual decisions of an AIS 
but rather towards its global performance and towards the object 
itself. The sense of understanding and trust that arises from attrib-
uting mental states to AIS can quickly disappear when the ma-
chine behaves in unexpected ways. 

4 ROBOT MINDREADING AND OPACITY 
For the purposes of this paper, I will assume that robot mindread-
ing builds trust, i.e., that there are certain design features of robots 
that make it easier for people to attribute to them trust-conducive 
mental states. Working under this assumption we can now ask if 

 
 

the field of robotics should work towards enhancing mindreading. 
The main reason for raising this question is that the problem of 
trust in AI systems has a flip side. According to many recent pa-
pers that advance the research agenda of XAI [23, 24, 25, 26, 27, 
28, 29], to trust an AIS is to understand its actual decision-making 
process, to make it explainable, transparent, comprehensible and 
interpretable.3 Transparency and trust go hand in hand. The ques-
tion I want to address is whether this second source of trust is the-
oretically and practically compatible with the goal of promoting 
the attribution of trust-conducive mental states to robots. If they 
are not, which one should prevail? Is it possible to develop them 
in complimentary fashion? 

In many cases, the question of trust in AIS is not accompanied 
by a demand for transparency. For example, when the goal of a 
humanoid robot is to provide emotional support, users need to feel 
that their social companion is empathic and understanding. Oth-
erwise they will stop using it. This is a form of interaction that 
requires trust, in particular, trust in the judgments, perceptions and 
advice of the AIS, but it is unlikely that users will feel the need to 
know how these are reached. In fact, the AIS’s utility may be neg-
atively affected by increased transparency [31]. However, since 
many social robots are used in healthcare environments, providers 
and regulators will want to know whether the content that the AIS 
is transmitting to a patient, a child or a senior in a vulnerable 
emotional or physical condition promotes their emotional 
wellbeing and is not detrimental to their mental health. Thus, 
healthcare professionals will seek transparency in the decision-
making process of social robots. 

Furthermore, according to the 4th Principle of Robotics 
crafted by EPSRC and AHRC, 

 

Robots are manufactured artefacts. They should not be de-
signed in a deceptive way to exploit vulnerable users; instead 
their machine nature should be transparent. … although it is 
permissible and even sometimes desirable for a robot to some-
times give the impression of real intelligence, anyone who 
owns or interacts with a robot should be able to find out what 
it really is and perhaps what it was really manufactured to do 
[1, p. 127]. 

 

Is making robots more mindreadable a violation of this principle? 
Is mindreadability a kind of deception? The principle allows for 
robots that give the impression of real intelligence, but at the same 
time there must be a way to make their decision processes trans-
parent. Is it possible to have it both ways? 

Although they both aim at trust-building, transparency and 
mind-readability are goals that pull in different directions. The 
purpose of the addition of features that promote the attribution of 
beliefs and intentions to an AIS is to facilitate the kind of interac-
tion and closeness that leads to emotional trust, and that allows the 
user to make sense of its decisions. But the search for an explana-
tion for the decisions of an AIS aims at a different goal: to make 
sure that its decisions are warranted. Transparency generates cog-
nitive trust in AIS [32, 33]. Chances are that in order to achieve 
one goal, developers will sacrifice the possibility of achieving the 
other. 

Robot systems are still in their infancy in terms of their ability 
to accurately explain their own behavior, especially when 

3  Each of these terms has been fleshed out in different ways in the liter-
ature. I will use “transparency” as a catch-all term for all of these vari-
ants. See [30] for a comprehensive analysis. 
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confronted with noisy sensory inputs and executing complex se-
quential decision processes [28]. Attempts to explain a robot’s de-
cisions and behavior using data-driven approaches are likely to 
fail given the noisy inputs [34], but the possibility of designing a 
“transparent robot” is an ongoing research project with some 
promising results (see below). 

However, the current trend in HRI is to design robots that of-
fer natural language explanations that do not purport to represent 
their inner state or describe their sequential decision processes. 
Instead, the idea is to offer the explanation that a human would 
offer when performing a similar action. This idea has been labeled 
“explainable agency” [35].  

Consider two recent examples of this approach. Ehsan et al. 
introduce what they call “AI rationalization”: 

 

AI rationalization is a process of producing an explanation for 
agent behavior as if a human had performed the behavior. AI 
rationalization is based on the observation that there are times 
when humans may not have full conscious access to reasons 
for their behavior and consequently may not give explanations 
that literally reveal how a decision was made. In these situa-
tions, it is more likely that humans create plausible explana-
tions on the spot when pressed [10, p. 81]. 

 

There is no intention to make AI rationalizations an accurate rep-
resentation of the true decision-making process. Instead, rational-
ization sacrifices accuracy for real-time responses, is more intui-
tive to non-expert humans and will generate higher degrees of 
satisfaction, confidence, rapport, and willingness to use autono-
mous systems. 

Hellström and Bensch defend a similar approach in which 
“understanding a robot” means having a successful interaction 
with it. And achieving a natural, efficient and safe interaction 
requires mindreading: 

 

Understanding of a robot is not limited to physical actions and 
intentions, but also includes entities such as desires, 
knowledge and beliefs, emotions, perceptions, capabilities, 
and limitations of the robot. … Hence, we say that a human 
understands a robot if she has sufficient knowledge of the ro-
bot’s [state-of-mind] in order to successfully interact with it. 
[36, pp. 115-116]. 

 

A common assumption of both accounts is that robot min-
dreading is useful to fulfill the intended purpose of the AIS. But 
usefulness is an interest-relative notion. Robot mindreading is not 
useful at all for a developer trying to debug or improve the relia-
bility of a robot. Thus usefulness—or utility—is one of the keys 
to understanding the relation between transparency and mindread-
ing. For some users it is useful to tolerate a high degree of opacity; 
for some, it is not useful at all. 

Risk is the other key to the relation between transparency and 
mindreading. If robots are perceived as intentional agents, their 
actions have real effects on the psyche of their users, as we saw in 
the case of social robots used in healthcare environments. This 
means that robot designers have a responsibility towards vulnera-
ble users of the robot that goes beyond the intended goal of provid-
ing companionship and entertainment. Their responsibility is to 
guarantee to a reasonable degree that the actions of the robot will 
not be detrimental to the patients, and this can only be achieved 
by understanding the underlying decision processes. 

Thus, both dimensions have to be considered in robot design 
and implementation. A robot can fulfill the utility dimension to a 
very high degree while also obtaining a high grade on a risk scale. 

What should the recommended course of action be? There is no 
algorithm that can help us decide which dimension should prevail. 
It depends on the kind of utility, the kind of risk, the needs of the 
users and the risk aversion of the people responsible for the im-
plementation of the robot. Therefore, the resolution of the tension 
between mindreading and transparency is pragmatic through and 
through. 

Seen from another angle, the relation between mindreading 
and transparency has an ethical side. The rationalizations offered 
by a robot are, strictly speaking, a false account of its decision 
process, but they are offered to the user without disclaimer to 
make her interaction with the robot easier. In a sense, we have 
created lying robots. Should this disqualify them as morally wor-
thy companions? Zerilli et al. have expressed their concern “that 
automated decision-making is being held to an unrealistically high 
standard here, possibly owing to an unrealistically high estimate 
of the degree of transparency attainable from human decision-
makers” [37, p. 661]. Should we then tolerate the same level of 
insincerity that we find in human-human interactions? 

The philosophy of testimony offers a possible answer to this 
question. According to the anti-reductionist position about testi-
mony, human communication would be impossible if we did not 
have a natural tendency to believe what other people say without 
demanding justification at every junction. In Tyler Burge’s words, 
“a person is a priori entitled to accept a proposition that is pre-
sented as true and that is intelligible to him, unless there are 
stronger reasons not to do so” [38, p. 469]. Among the reasons to 
doubt a testimony are clear signs of insincerity or incompetence 
or both. A user interacting with a social robot could also claim a 
presumptive right [39] to believe the reasons it offers to explain 
its behavior, unless the reasons are perceived as obviously false or 
nonsensical. 

But this answer is insufficient. In high-stakes situations, such 
as those encountered in law, finance or medicine, a user will de-
mand that the reasons offered match the underlying decision pro-
cesses. It will not be enough that the explanations offered make 
sense and seem true. In these areas, procedure, evidence, statutes, 
and precedent are necessary elements of a satisfactory explana-
tion. In the parlance of philosophers of testimony, the testimony 
has to be “reduced” or justified. Robots also have to make high-
stakes decisions that require complex explanations not likely to be 
delivered in the form of friendly chatter or ready-made natural 
language explanations. The use of real-time graphical outputs to 
represent the internal states and decision-making processes taking 
place within a robot seems to be a promising road to robot 
transparency [28. 40]. This approach does not require the use of 
mindreading-friendly features. Quite the contrary. By making 
explicit the robot’s software hierarchical architecture, it makes it 
difficult to think of the robot as a being with human-like mental 
states. 

5 CONCLUSIONS 
Many intuitions about our interaction with robots might turn out 
to be right, but it is important to verify them empirically. My first 
goal in this paper has been to call attention to the lack of empirical 
evidence for the success of robot mindreading as a trust-building 
mechanism. Even if robot mindreading turns out to be an effective 
way to generate emotional trust, this goal has to be balanced 
against other competing goals such as transparency and cognitive 
trust. There is no formula that can determine how to weigh these 
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factors, and it is necessary to acknowledge that pragmatic factors 
will inevitably decide the way forward. 

I do not want to claim that transparency and emotional trust 
are incompatible in principle. Some authors remain confident that 
it is possible to create transparent robots that are nevertheless 
emotionally engaging and useful tools across a wide range of do-
mains [31]. But it is important to recognize that mindreading and 
transparency are in tension and that there are practical, theoretical, 
and philosophical obstacles that must be overcome before this 
tension can be resolved. 
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Deep Opacity Undermines Data Protection and
Explainable Artificial Intelligence

Vincent C. Müller1

Abstract: It is known that big data analytics and AI pose another
threat  to  privacy,  and  it  is  known that  there  is  some kind  of
‘black box problem’ in AI. I propose that (1) the ‘black box’ be-
comes the ‘black box problem’ in a context of justification for
judgments and actions, crucially in the context of privacy. (2)
This will suggest distinguishing two kinds of classic opacity and
introducing a third: The subjects may not know what the system
does (‘shallow opacity’),  the analysts may not know what the
system does (‘standard black box opacity’), or even the analysts
cannot  possibly  know  what  the  system  might  do  (‘deep
opacity’). (3) If the agents, data subjects as well as analytics ex-
perts, operate under opacity, then they cannot provide some of
the justifications for judgments that are necessary to protect pri-
vacy – e.g. they cannot give “informed consent” or assert “an-
onymity”. It follows from (2) and (3) that agents in big data ana-
lytics and AI, often cannot make the judgments needed to protect
privacy.  So  big  data  analytics  makes  the  privacy  problems
worse, and the remedies less effective. Closing, I provide a brief
outlook on technical ways to handle this situation.

Keywords: big data analytics, black box problem, deep opa-
city, explainable AI, justification, opacity, privacy

1. Background: Opacity and data protection 

1.1. Opacity and justification
It  has  not  been sufficiently  explained in  the modest  literature
there is why ‘opacity’ or ‘the black box problem in AI’ is an is-
sue, and for whom. I will show that at bottom the phenomenon
of epistemic ‘opacity’ in computational modelling [1], machine
learning [2] and data science [3], stems from our human practice
of  explaining  and  justifying  our  actions,  especially  our  judg-
ments. And that is a problem for data protection.
It turns out that the opacity issue is not limited to AI, it appears
in data analytics, also; particularly in big data analytics. 

1.2. Standard regulations
In the EU, many of these issues have been taken into account
with the  General Data Protection Regulation (GDPR)  [4]. The
GDPR  [4] was agreed in the European Parliament and the EU
Council in April 2016 and became law from May 2018 in the
member states. Member states have the right to specify further
rules that do not contradict this regulation (§10, cf. §13). It is a
very powerful regulation that embeds a number of new features,
while being the result of extended negotiations. I expect it to be a

setting the political debate for a numbers of years and would be
surprised if  substantial  changes of the political  and regulatory
situation were to occur in the next 10 years. Note that the major
prior EU document, 95/46/EC, was approved 21 years earlier,
only at the level of a ‘directive’ for national law [5], whereas the
GDPR automatically became law itself.  The GDPR foresees a
“right  to  explanation” – the extent  to  which this  goes and to
which it can be enforced is disputed, however [6-8]. In any case,
an inability to explain decisions appears to violate due process,
especially when such decisions are challenged. 

I  will  thus take this  regulation  as  a  general  indicator  on
what kind of criteria are needed to act lawfully and, to some ex-
tent, ethically in privacy matters. It is not my aim to evaluate this
regulation, but rather to take it as “what we’ve got” and see what
kinds of problems we can expect in our special case: big data.

The  GDPR  can  be  summarised  in  the  following
points:

1. It  concerns  “Personal  Data”:  Name,  address,
localisation,  online identifier,  health  informa-
tion, income, cultural profile, … 

2. Communication:  Who  gets  the  data,  why,  for  how
long? (No use for other ‘incompatible’ purposes. Use
as long as necessary.)

3. Consent: Get clear informed consent
4. Access: Provide access to my data
5. Right to be forgotten (not for research)
6. Right to explanation for contracts (& right to have a

person decide)
7. Marketing: Right to opt out
8. Legal: Maintain EU legislation when transferring data

out
9. Need for a “data protection officer” in your organisa-

tion

10. Impact  assessment  prior  to  high-risk  pro-
cessing (new technology, personal information,
surveillance, sensitive)

The crucial points for our discussion of opacity are no. 3 (in-
formed consent) and 6 (right to explanation), to a lesser extent 4
(access to my data) and 5 (right to be forgotten). To stress this
again, these demands of an exemplary data protection regulation
like the GDPR just reflect the demands that we make on human
agents: to be able to justify their decisions and actions to some
extent.

2. Types of opacity

1 Philosophy & Ethics Group, TU Eindhoven, Netherlands. 
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2.1. Shallow opacity: AI as an instrument 
of power

AI is used in automated decisions systems and decision support
systems, especially through ‘predictive analytics’. The output of
such  a  system  may  be  relatively  trivial  like  “this  restaurant
matches your preferences”, “the patient in this X-ray has com-
pleted bone growth”, or have greater significance for a person,
e.g. if it says “application to credit card declined”, “donor organ
will  be given to another patient” or “target identified and en-
gaged”. At the same time, it will often be impossible for the af-
fected person to know how the system came to this output, i.e.
the system is ‘opaque’ to that person, who is typically also the/a
data subject. The institution using the system (e.g. the bank) may
just tell me that “the system has decided” but not how and why –
even if the institution can find out what the reasons were. In such
cases opacity is just a matter of decision from some party that is
in power and which could find a justification, if it wanted. The
opacity in these cases I shall call ‘shallow opacity’. This kind of
asymmetric opacity to  users only is the classic (and important)
‘knowledge is power’.  The users have no control over output,
and thus not responsible for the output. This kind of opacity is
not specific to AI, it can happen in any use of data science for a
decision or decision-support system.

This has been used to classify the notion of opacity in gen-
eral: “They are opaque in the sense that if one is a recipient of
the output of the algorithm (the classification decision), rarely
does one have any concrete sense of how or why a particular
classification has been arrived at  from inputs.”  [2],  but as we
shall see it is really a special case. It appears that shallow opacity
is the notion Surden and Williams had in mind when they talk
about  ‘technological  opacity’:  “‘technological  opacity’  applies
any time a technological system engages in behaviors that, while
appropriate, may be hard to understand or predict, from the per-
spective of human users.” [9].

It is often said that such matters raise “significant concerns
about lack of due process,  accountability,  community engage-
ment, and auditing” [10]. These algorithmic systems are part of a
power structure,  which is  why Danaher  talks  about  an  ‘algo-
cracy’ and concludes that “we are creating decision-making pro-
cesses that constrain and limit opportunities for human participa-
tion” [11]. Again, however, the issue of power structure also ap-
plies when the opacity does not concern only the user or data
subject – this kind of opacity is the subject of our next section.

2.2. Standard or ‘black box’ opacity
Many AI systems rely on machine learning techniques in (simu-
lated)  neural  networks  that  will  extract  patterns  from a given
dataset through ‘learning’. These networks are organised in ‘lay-
ers’, one of which is the ‘input layer’ and one the ‘output layer,
with one or many ‘hidden layers’ in between. If there is more
than one such hidden layer, the network is often called a ‘deep’
neural network (DNN), and the learning is ‘deep learning’ [12].
Data connections either flow between layers in one direction, in
‘feed-forward’ systems, or in any direction, in ‘recurrent’ sys-
tems. The network is can be recalibrated through a feedback sys-
tem, which changes the outcome on a given income, i.e. the sys-
tem ‘learns’.

These networks learn broadly in three different ways: super-
vised,  semi-supervised  (e.g.  reinforcement)  or  unsupervised  –
though these  ways  are  not  mutually  exclusive.  In  the  ‘super-

vised’ case the system is told about an output whether it is cor-
rect or incorrect, or is shown ‘good’ outputs (‘AlphaGo’ was of
this sort, which beat a top-ranked Go player in 2016, using a su-
percomputer with 1920 processors and 280 GPUs  [13]). In the
‘reinforcement’ case it is told about a broader target (e.g. win the
game of Go) but not whether an output (e.g. a move) was correct
or incorrect (‘AlphaGo Zero’ is of this sort [14]); finally, in the
unsupervised  case  the  system tries  to  find  patterns  by  itself,
without feedback on which patterns are useful or correct (these
systems are of central importance in statistics [15]). We may find
patterns we were not looking for – that nobody knew, and that
we cannot explain.

With these techniques,  the ‘learning’  captures  patterns  in
the data and these are labelled in a way that appears useful to the
programmer while the programmer does not really know how
these patterns came about: “We can build these models, but we
don’t know how they work.” [16]. In fact the programs are typic-
ally evolving, so when new data comes in, or new feedback is
given, the patterns in the learning system change. There is a sig-
nificant recent literature about the limitations of machine learn-
ing systems [17, 18], that are essentially sophisticated data filters
– and quite possibly at the peak of the ‘hype cycle’ at the mo-
ment. Furthermore, the quality of the program depends heavily
on  the quality  of  the  data  provided,  following the  old slogan
“garbage in, garbage out”. So, if the data already involved a bias
(e.g. police data about the skin colour of suspects, or job data in-
cluding gender), then the program will reproduce that bias. There
are proposals for a standard description of datasets in a ‘data-
sheet’ that would make the identification of such bias more feas-
ible [19]. 

What this means for our purposes is that the outcome can-
not really be explained, it is opaque to the user or programmers,
especially but not uniquely in the less supervised learning ways.
It  this  thus  more  opaque  than  the  cases  of  ‘shallow opacity’
above, in that the opacity does not just apply to the users or data
subjects; it also applies to the experts – the agent-relativity was
stressed by [20]. Opacity for experts is a remark not only about
what  the  experts  know at  a  particular  point  in  time,  but  also
about what they can know, even after research. For that reason,
the resulting AI is often called ‘black box AI’ – it  features a
black box between input and output rather like the human mind
is a black box in the eyes of a (methodological) behaviourist.

This kind of opacity is what is often mentioned in general
discussions of opacity, so I call it ‘standard opacity’. It is, how-
ever, specific to AI, in fact to a particular method of AI, namely
machine  learning.  It  features  the  problems  of  distribution  of
power mentioned under shallow opacity, and it shows the inabil-
ity to provide justification for its output. It is probably what au-
thors have in mind who say that the systems “… are opaque: it is
difficult to know why they do what they do or how they work“,
how to explain their  “explanatory success”  [20].  The systems
know things, but we do not, i.e. in the terminology of the ‘Rums-
feld cases’ there are “unknown knowns” [21]. 

Perhaps the issue of democratic legitimacy is more urgent
in the case of standard opacity, since it cannot be easily relieved.
Kissinger pointed out that there is a fundamental problem for
democratic decision-making if we rely on a system that is sup-
posedly  superior  to  mere  humans,  but  cannot  explain  its  de-
cisions. He says we may have “generated a potentially dominat-
ing technology in search of a guiding philosophy“ [22]. In a sim-
ilar vein, [23] stresses that we need a broader societal move to-
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wards more ‘democratic’ decision-making to avoid AI being a
force that leads to a Kafka-style impenetrable suppression sys-
tem in public administration and elsewhere.

2.3. Deep opacity
What has not been sufficiently taken into account in the discus-
sions of opacity and the ‘black box’ is  to whom the system is
opaque, and to what extent. It can be opaque to a user, but not to
the programmer. It may be opaque to both, but in a way that the
expert  analyst  can  overcome.  I  suggest  there  is  a  third  case,
where opacity cannot possibly be removed, even for the human
expert, even if best efforts are made in the generation of the al-
gorithms: ‘deep opacity’.

In order to introduce deep opacity it will be useful to re-
mind ourselves of the kinds of questions we are supposed to an-
swer, where opacity gets in the way – this follows from the sec-
tion  “Standard  regulations”  above.  We had  said  “The  crucial
points for our discussion of opacity are no. 3 (informed consent)
and 6 (right to explanation), to a lesser extent 4 (access to my
data) and 5 (right to be forgotten).” Some questions that follow
from these demands are:

Does this data include information about me?
Can you give me access to all the data about me?
Does this data include personal information?
Does this data include a particular piece of information ‘that

p’?
Is  the  data  in  this  dataset  anonymous?  Can  it  be  de-

anonymised?
What information can be derived from this data?

Data analytics and AI for data are ways to find information that
is in the data. Prior to carrying out the analysis, and prior to com-
bining this data with other data, we cannot even know what kind
of result the analysis will reveal. It might even reveal patterns
that are unknown to the subject of the data itself, if the data is
about a person or a company. It will reveal statistical patterns
that only allow predictions with a certain degree of certainty –
and correlation is not causation. It can be shown formally, that
certain sets of queries to a database will reveal the entire data-
base  [24] or that the data can be re-identified. No matter how
well blended the data soup is, there are ways to de-blend some of
it and find some information. Anonymisation is a case in point:
A dataset that provably cannot reveal any information about a
particular item in it would have to be devoid of information – if
there is information, who knows how useful it can be? (E.g. the
nationality of individuals may reveal very little, but if a particu-
lar one is a rare property, perhaps even unique, it can unravel the
whole  information  about  that  person.)  There  is  a  host  of  ex-
amples with databases that were deemed safe to be released into
the public domain – and then a smart way to de-anonymise them
was found [25].

The data contains information, but how much? – We cannot
know. We can only know what a particular method can reveal on
a particular dataset,  not  what future  methods might reveal,  or
what a dataset might reveal when combined with another dataset.
So even under ideal conditions and with perfect expert know-
ledge, we cannot justify answers to the questions above. That is
deep opacity.

3. Ethical judgment under opacity
If an agent operates under opacity (on a set of data) they cannot
judge certain things, e.g. whether that data constitutes a threat to
privacy. They can also not “give informed consent” to the use of
data since being “informed” would require knowing at least the
main implications of giving that consent. I cannot be responsible
for what I cannot know (which is more than what I can know,
which is more than what I do know).

There is a long tradition in ethics that recognises what one
knows as an important factor in how one’s actions are evaluated.
This tradition is especially important and developed in criminal
law, so I will use this standard used there to explain – note that
the terminologies used differ in different jurisdictions.

Opacity in big data analytics is truly a dilemma: Big data
analytics  always has deeper  opacity  (it  is  definitional  for  this
field), and if we have deeper opacity, then we do not have stand-
ard data protection. So with big data we get the worse of both
worlds: Increasing potential to do harm, with less ability to find
out what is ethically right and to enforce what we think is right.

4. Conclusion
We have proposed an analysis of opacity in AI and data science
that is shaped by the societal context in which the issue arises,
namely data protection and justification in automated decision
systems. It appeared that there are three main types of opacity,
‘shallow’ opacity which is a matter of power structures; ‘stand-
ard’  opacity,  which  is  a  matter  of  processing  method;  finally
‘deep’ opacity, which is a matter of informational content and
robustness  in  the  face  of  new methods  or  additional  data.  It
would appear that avoiding the standard and deep varieties of
opacity would require massive changes in the practices of data
science,  in  particular  the  avoidance  of  identifiable  data  alto-
gether,  as well  as openness about data sources,  processes and
stakeholders – this is not impossible, but it may prove a large de-
mand for this very fruitful new science. 
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