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INTRODUCTION


Our symposium is the continuation of a series of events starting with the Symposium “computing nature” 
organized at the AISB/IACAP World Congress 2012. We would like to offer an occasion to discuss new 
directions in the development of understanding of representation as a means of sense-making and 
communication. It is closely related to the question of what capacities can be plausibly computed and what 
are the most prominsing approaches that try to solve the problem.


The authors discuss the various faces of the relationship between reality and representation in humans, other 
animals and machines from different perspectives (cognitive, computational, philosophical, logical and 
machine-centered) and deep insights into the topic. Among other issues, the symposium focuses on:


- The discussion of current developments of the classical debate between representationalism and anti-
representationalism with the question of in what sense it can be argued that cognition relies on 
representations mirroring reality, with its assumptions and constrains  and in what way it is an adaptive form 
of dynamics based on the interaction of an agent with the environment. 


- A fruitful strategy to analyze the problem of representation from a philosophical perspective that implies 
the comparison between human and machine capacities and skills. Searle presented an interesting theory of 
representation based on the mind’s capacity to represent objects and to the linguistic capacities to extend the 
representation to social entities.


- Evolutionary aspects of the development of increasingly complex capacities in (embodied, embedded) 
living organisms to process information in the interaction with the environment and as a consequence 
development of new morphological structures - process of morphogenetic is and meta-morphogenetic which 
we want to elucidate from multiple disciplinary and interdisciplinary perspectives, from philosophy to 
neuroscience and computational approaches and cognitive science.




On the use of collaborative interactions for embedded
sensing applications: Memristor networks as intelligent

sensing substrates
Vasileios Athanasiou 1 and Zoran Konkoli 2

Abstract. A novel sensing approach has been investigated in which
environment-sensitive memristor networks are used as intelligent
sensing substrates. A substrate collects pieces of environment-related
information over time and encodes this information into its state. The
stored information can be extracted by monitoring how the substrate
responds to an external drive signal. An advantage of this indirect
sensing approach is that the drive signal can be optimised to make the
inference process efficient: even small pieces of information (which
might go unnoticed in the traditional sensing setup) are collected.
To demonstrate the main ideas an instance of a binary classification
problem has been investigated. A separability index has been used
as a measure of the substrate quality. By simulating the dynamics
of a large number of memristor networks and computing their sepa-
rability indices, it has been found that heterogeneous networks with
delayed feedback elements make good sensing substrates.

1 Introduction
The most important architectural feature of a traditional sensing de-
vice is that data acquisition and data analysis processes are sepa-
rated and must be engineered as two distinct modules, rendering the
devices unnecessarily large and energy-inefficient. This study ex-
plores the possibility of constructing sensing devices, in which the
data acquisition and the data analysis steps are performed simultane-
ously. Such sensors can be used in situations where it is necessary
to: have embedded information processing, pre-process information
in situ and reduce the necessary communication bandwidth and need
for centralised analysis. There are further advantages to decentralis-
ing computational power such as low power consumption, less post-
processing and bio-compatibility [11]. Moreover, from the techno-
logical point of view, such sensing solutions could be more flexible
and with fewer engineering constraints needed to implement them.

As the overarching design principle for constructing decentralised
sensors, we explore the option of using intelligent sensing substrates
that both accumulate and analyze environment-related information in
situ and in real-time. [8] An intelligent sensing substrate should be an
environment-sensitive dynamical system, the state of which may be
queried. Scattered pieces of information, which might go unnoticed
or lost in the traditional sensing setup, can be collected gradually
and stored in the substrate state. The substrate state is inferred by
interfacing it with a readout layer. Ideally, the “intelligence” of the
sensing device should reside in the substrate and not in the readout
layer: the readout layer should be a simple inference unit.
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A “good” substrate should be able to adopt a different config-
uration for every distinct environmental condition to which it has
been exposed (the separability property). Conversely, a “bad” sub-
strate is completely unresponsive, staying in the same state regardless
of the environmental condition. A further desirable substrate prop-
erty is that the environment-related information encoded in the sub-
strate should be easy to decode. If an environmental condition always
drives the system to the same region of the state space, then the sub-
strate exhibits a clustering property. This can be used to infer this
particular environmental condition, because the associated decision
boundary in the state space represents a surface of a closed region.
Taken together, the separability and clustering properties determine
the amount of environment-related information that can be inferred
(the sensing capacity of a substrate). The best substrates feature both
these properties and can be used to build an efficient sensing device
by using a simple readout layer.

We posit that memristor networks are natural sensing substrates.
The memristor is one of the simplest electronic components which
accumulate information about their past [4]. It is a non-linear,
passive, two-terminal component. The voltage-current response of
such an element resembles that of a normal resistor. However,
the resistance value can change over time depending on the cur-
rent that has been passing through the memristor. The resistance
value can only vary within a finite interval [Rmin, Rmax], where
the bounds Rmin and Rmax are material dependent constants. The
state space of a multi-memristor substrate is a collection of points
(R1, R2, · · · , RNR) where NR is the number of memristances in
the system, with each memristance bound by the respective inter-
val [Rmin, Rmax]. If it can be arranged for different environmental
conditions to drive each memristance to either of the bounds, then
the inference process can be simple. This allows for a very natural
encoding scheme in which distinct environmental conditions can be
associated with distinct sequences of Rmin and Rmax. One might
think of this as a binary encoding scheme, in which environmental
conditions are labelled with binary words of length NR with logical
0 (1) representing Rmin (Rmax).

Indeed, in the earlier study [2], it was demonstrated in silico that
a single memristor can be used to distinguish between two classes of
environmental signals, representing a static and a varying environ-
ment. It was shown that there is a way to operate the element so that
the memristance value is driven towards Rmax or Rmin, depend-
ing on whether the element is exposed to either of the environmental
conditions. This was done by optimising (training) an external drive
signal using a supervised learning technique. What makes the sen-
sor efficient is that the analysis part is memory-less, as it just means



checking whether the memristance values cluster close to Rmax or
Rmin. If this were not the case, then an auxiliary analysis tool would
need to be used, such as an artificial neural network.

The overarching goal is to identify topological features that are a
trademark of efficient memristor networks and to understand whether
the cooperative behaviour between memristor components can be
exploited to gain additional sensing functionality. The separability
index is used to compare memristor networks with different topo-
logical features in three ways: by considering more nodes and by
adding more connections between the nodes (network complexity),
by adding delayed feedback element around memristors (element
complexity) and by combining these two approaches.

The work is organised as follows. Section 2 explains the sensing
procedure in detail. In section 3 the substrate model is introduced
and an explanation is provided regarding how the collaboration be-
tween network elements is expected to increase the sensing capacity.
Section 4 introduces the GA scheme used to train the drive signal for
a environment classification problem. Section 5 presents a strategy
of searching for optimal network designs. The best performing sys-
tems are presented in the results section 6. A summary of the main
findings appears in section 7. This section contains a comprehensive
synthesis of numerical results. Section 8 sums up important aspects
of the work and points to possible extensions.

2 The sensing setup

Figure 1 illustrates the sensing setup of interest. The most important
mathematical primitives that are necessary to formalize the sensing
problem are shown [7, 8]. Depicted is a hand-drawn example of a
binary classification problem. The key primitive is the drive signal
u(t). The drive signal can be optimised to improve the sensing ca-
pacity of the device. The reservoir (substrate) state should be strongly
correlated with the environmental signals q1 and q2 that represent the
two states of the environment. In the figure, a two-dimensional state
space is assumed, described by two memristances R1 and R2.
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Figure 1. Exploiting a reservoir D in the SWEET sensing setup context.
Hand-drawn examples appear in a) and b): a) illustrates when the reservoir is

driven by a signal u1 and state space separation is not feasible. In other
words, the trajectories of the state are driven to common regions of the

configuration space. In b), state space separation is feasible when driven by
signal u2, with the trajectories driven to different regions.

The reservoir D is “driven” by both the drive signal u(t) and an
environmental signal q(t). The key point is that while the environ-
mental signal cannot be controlled the drive signal can. The state of
the reservoir changes in time and forms a trajectory in the two di-
mensional space as shown in Figs. 1a and 1b. Figure 1a shows two
typical state trajectories when the reservoir is driven by a drive signal
u1 that is not optimal. Regardless of whether q = q1 or q = q2 the
reservoir adopts roughly the same state. In this case, the trajectories

in the figure are driven to common regions of the configuration space
and the environmental condition cannot be inferred.

Conversely, in Fig. 1b, under another drive signal u2, the environ-
mental signals can be inferred because the trajectories are driven to
different regions. This is the property of state space separation be-
cause the trajectories are driven to different regions of the substrate
state space. For such substrates there is no need to use sophisticated
artificial intelligence (AI) systems to infer the state of the environ-
ment. For example, if a substrate has a response that resembles the
one in Fig. 1b, then a linear decision boundary could be used to infer
the environment: if the state is to the right (left) of the linear bound-
ary, then, the environmental condition is q1 (q2). For such a device,
most of the computation takes place in the substrate and the process
of reading the reservoir state should be seen as a supplement with low
computational complexity imposing modest engineering overhead. It
is important to realize that the behavior depicted in Fig. 1b does not
occur naturally. One is more likely to encounter the behavior shown
in Fig. 1a. In fact, one has to work hard to find a drive signal that
results in the behavior depicted in Fig. 1b.

In the figure and throughout the text, a special notation has been
used. To emphasize that a quantity s depends on the history of u and
q up to a time instance t one writes s(t) = F [u, q](t) where F is a
functional that describes this dependence.

In a sensing classification problem, the task of a sensor would be
to classify k environmental conditions c1, c2, · · · , ck. Every con-
dition is represented as a class of typical environmental signals
ci = {qi1, qi2, · · · , qiNi

} where i = 1, 2, · · · k. If the device is ex-
posed to an environmental signal belonging to class ci, e.g. qij with
j ∈ {1, 2, . . . , Ni}, then the readout layer should report a corre-
sponding class label li. In the general case of considering many
environmental conditions, state space separation can be achieved
if the trajectories are driven to different regions of the state space
Ω1,Ω2, · · · ,Ωk when the network is exposed to the different envi-
ronmental conditions c1, c2, · · · ck. [6, 5, 13]

3 The substrate model
Figure 2 depicts the substrate model of interest: the network of
environment-sensitive memristor elements. A memristor network
used for classification consists of NR environment-sensitive mem-
ristors with resistances R1, R2, · · · , RNR . The state of the network
under a drive signal u and an environmental condition qij is written
as:

S[u, qij ](t) ≡ (R1[u, qij ](t), R2[u, qij ](t), · · · , RNR [u, qij ](t)) (1)

and evolves in time depending on the environmental condition the
device has been exposed to and the drive applied. The sensor con-
sists of a memristor network substrate equipped with a readout layer
that is used to assess the state of the network and infer the class of
environmental condition that the network is exposed to.

Multi-memristors substrates are interesting since two or more
memristors in the same network can collaborate to improve the state
space separation. This is possible since in a network the voltage dif-
ference across a memristor depends on the resistances of memristors
somewhere else in the network. Therefore, the state of one memristor
depends on the states of all the other memristors and they respond to
the external drive signal as a group. These dependencies are a trade-
mark of complex dynamical systems. In this study we view them in
a very special way: These interactions realize an indirect communi-
cation between memristor elements and can distribute the task of the
state space separation among the memristor elements.



 !["#
$ , %](&)

 '["#
$ , %](&)

 *+["#
$ , %](&)

network/

reservoir

drive: %(&)

- "#
$ , % & = { ! "#

$ , % & ,. ,  *+["#
$ , %](&)}

Readout Layer

Classes of environmental conditions: c! = "!
!, "'

!, . , "*/
! ,    � ,  c0 = "!

$ , "'
$ , . , "*1

$

corresponding labels:                2 = 2! ,    � ,                2 = 2$

Environment of class 3: "#
$(t)

label: 2$

Figure 2. Sensing as the classification of an environmental conditions qki
with the label lk . The network is exposed to the environmental condition qki .

The state S[qki , u](t) is given as input to the readout layer. Based on the
information stored in the state the readout layer should infer the label lk to

the environmental condition qki . The drive signal u(t) is used to improve the
state space separation.

To describe the dynamics of a memristor, a model is chosen that
is realistic but not too complicated to work with. The model used in
the study is built on the original Pershin-Di Ventra memristor model
[14], augmented with the dependence on the environmental signal
as described in [2]. If the voltage ∆V is being applied across the
memristor model, the value of the memristance R(t) changes as

Ṙ(t) = f(∆V (t), β(t))Θ(R(t),∆V (t)) (2)

with

f(∆V, β) = β∆V +
1

2
(α−β) ·

(
|∆V +Vthr|−|∆V −Vthr|

)
(3)

and

Θ(R,∆V ) =


0, if ∆V = 0

θ(Rmax > R), if∆V > 0

θ(R > Rmin), if∆V < 0

where θ(Rmax > R) is zero unless the condition in the argument
is satisfied, and likewise for θ(R > Rmin). Additionally, Vthr is
the threshold voltage, andRmin andRmax are the minimum and the
maximum memristance values introduced earlier. The parameter α
(β) describes the rate of memristance change in the regions |∆V | <
Vthr (|∆V | > Vthr).

By assumption, the memristor “feels” the environment through the
parameter β:

β(t) = q(t) (4)

where q(t) is a time-series that describe the environmental condition.
The rest of the parameters are assumed to be independent of the envi-
ronment, but this may not be the case in reality. The threshold voltage
might be environment dependent too. For a device used for ion sens-
ing, the presence of ions in the solution usually screens the surfaces
from the external electrical field. As a result, the voltages felt by the
device will be different from the external applied voltages. A more
detailed discussion regarding the validity of the model can be found
in [2].

4 Learning the drive signal
To recognize the environmental condition ci which the substrate
model is exposed to, it is needed to find the optimal drive signal u∗

so that the degree of state space separation is maximised. To measure
the degree of state space separation, we use a separability index ν.

The separability index ν is obtained by computing a typical dis-
tance between trajectories. This typical distance is obtained if one

averages the trajectories over time first and then compute the Eu-
clidean norm. The algorithm used to compute the typical distance
between two trajectories S[u, qij ] and S[u, qi

′

j′ ], i 6= i′

di,i
′

j,j′ =
1√
NR
‖S̄[u, qij ]− S̄[u, qi

′

j′ ]‖ (5)

where

S̄[u, qij ] ≡ (R̄1[u, qij ], R̄2[u, qij ], · · · , R̄NR [u, qij ]) (6)

with

R̄m[u, qij ] =
1

T

∫ T

0

dtRm[u, qij ](t) (7)

The above equations result in the following compact expression

di,i
′

j,j′ =

√√√√ 1

NR

NR∑
m=1

(
R̄m[u, qij ]− R̄m[u, qi

′
j′ ]
)2

(8)

The typical distances between trajectories are combined into an
overall measure. The separability index is calculated as the geometric
mean over all the typical distances:

ν[u; c1, c2, · · · , ck] =

 k∏
i=1

k∏
i′=i+1

Ni∏
j=1

Ni′∏
j′=1

di,i
′

j,j′

 1
ND

(9)

where ND denotes the number of all possible distances in the set of
the training data. This number is given by:

ND =

k∑
i=1

k∑
i′=i+1

Ni∑
j=1

Ni′∑
j′=1

1 (10)

The geometric mean has been chosen for calculating the separa-
bility index against the arithmetic mean because we prefer that all the
distances are fairly large. By using the geometric mean, a very small
distance contributes to a small final product. If we used the arithmetic
mean, a very small distance would not appropriately contribute to a
small sum given that another large distance exists. The optimisation
problem is expressed mathematically as:

u∗ = arg max
u

ν[u; c1, c2, · · · , ck] (11)

The optimal drive signal is found by using a genetic algorithm
(GA) optimisation where the separability index is used as a fitness
function. We have developed the genetic algorithm in a previous
work [3]. GA is a strong optimisation technique that can be used to
solve problems regardless of their complexity [15, 16, 1]. GA is used
in this work instead of gradient based optimisations because gradi-
ents of the fitness have not been calculated analytically. Additionally,
GA is advantageous in cases where there is no prior knowledge of the
fitness function form. For example, it is not possible to know before-
hand if the suggested fitness function (separability index) is convex.

The drive signal u(t) is represented as a Fourier series:

u(t) = a0 +

Nc∑
i=1

ai sin(iωt) +

Nc∑
i=1

bi cos(iωt) (12)

In the GA scheme the signal u is encoded as the set of 2Nc + 2
parameters

Pu = {a0, a1, ..., aNc , b1, ..., bNc , ω} (13)



When there are delay feedback mechanisms in the network, their
delay times are optimised too. In principle one could try to optimise
the full list of the time delays: τ,τ2, τ3, · · · However, the first time
delay τ is kept fixed since we noticed that the optimal frequency ω
and the time delays τ2, τ3, · · · are strongly dependent on the value
of τ . If τ is changed, other parameters adjust to τ so that there is
no overall change in the systems behavior. For example, in a case
of a network with two delay times the set of parameters to optimise
is given by Popt = Pu ∪ Pτ , Pτ = {τ2}. In a case with three time
delays we use the set Popt = Pu∪Pτ , Pτ = {τ2, τ3} etc. In general,
we have these two cases:

• Popt = Pu, when there are no more than one delay feedback
mechanisms,

• Popt = Pu ∪ Pτ , when there are more than one delay feedback
mechanisms.

The goal is to find the optimal choice of parameters P ∗opt for a
fixed training dataset c1, c2, · · · , ck (and a fixed network) by maxi-
mizing the separability index:

P ∗opt = arg max
Popt

ν[Popt; c1, c2, · · · , ck] (14)

The genetic algorithm is used to identify a globally optimal solu-
tion within the given bounds for Popt and for the specific network
under consideration. In somewhat simpler terms, the genetic algo-
rithm works as follows. The network of interest is simulated3 in a
time interval [0, T ] for a wide range of Popt and environmental con-
ditions, which produce the typical trajectories discussed earlier. From
those trajectories the separability index ν can be calculated ( Eq. 9).
The values for ν are sorted and finally the solution P ∗opt is found as
the one with the largest separability index ν.

Since the index ν is maximized by using the training data, we will
refer to it as the training data index:

νtrain = ν[P ∗opt; c1, c2, · · · , ck] (15)

Furthermore, to evaluate the ability of the network to generalize, one
should test its performance on some other set of environmental con-
ditions that the network has not been trained for. In practical terms
this is hard to do since we are not explicitly training any readout
layer. To estimate the ability to generalize we compute the index ν
with the optimised parameters P ∗opt but with a different set of envi-
ronmental conditions c′1, c′2, · · · , c′k:

νtest = ν[P ∗opt; c
′
1, c
′
2, · · · , c′k] (16)

The test data set c′1, c′2, · · · , c′k is generated with similar features as
the training data set c1, c2, · · · , ck but with a much bigger number of
signals per class. The related separability index will be referred to as
the test data index νtest. In the following, the symbol ν will be used
to denote both νtrain and νtest.

5 Strategies for increasing network complexity
To study the collaboration between memristor elements in a system-
atic way, a range of memristor networks is investigated with an in-
creasing degree of complexity. As it is shown in Fig. 3, we choose
three ways of increasing that complexity.

3 In this work the simulator was developed in Java programming language
by using modified nodal analysis and the concepts of simulating memristor
networks given in [9].
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Figure 3. Three essential ways of increasing the network complexity. In
direction 1, we increased the complexity of the network topology. In

direction 2, we added to the networks elements with increased complexity.
In direction 3, we increased the complexity of elements by providing

heterogeneous memristor elements and simultaneously we increased the
complexity of the network topology.

Direction 1: An example of increasing the complexity of the mem-
ristor network topology is shown in Fig. 4. The network N1 is a sim-
ple one-memristor network studied earlier [2]. The networks N2, N3,
N4, N5 and N6 are samples of more complicated networks with an
increasing number of memristors and various combinations of serial
and parallel couplings.

N1

N2

N3

N4

N5

N6

Figure 4. The memristor networks we used to examine how the increased
network topology can favor the state separation.

Direction 2: An example of adding elements with an increasing
degree of complexity is shown in Fig. 5. The network NFB1 consists
of a memristor feedback (MFB) unit, being essentially a memris-
tor equipped with a delay feedback mechanism with time delay τ
and a summation (SUM) unit. The value of memristance R1(t) is
given as input to the delay feedback loop. This loop has an internal
queue which stores the earlier memristance values: R1(t), R1(t −
dt), R1(t− 2dt) · · · , R1(t− τ). The last memristance value in this
list, R1(t− τ), is converted to the voltage Vfb(t− τ) according to an
internal resistance to voltage mapping. The voltage Vfb(t− τ) is the
output of the delay feedback mechanism. The drive signal u(t) and
the voltage Vfb(t− τ) are given as input to the SUM unit which adds
them up and feeds as a modified input at the time t.

One expects that the delay feedback mechanism adds memory
properties to the network. The memristance R1(t) depends on the



NFB1

MFB unit

NFB2

Figure 5. The networks NFB1 and NFB2 were used to examine whether
increasing the complexity of the network element favors the state space

separation. An MFB unit is added in series to the network NFB1 so as to
form the network NFB2. Similarly, by adding an MFB unit in series to the
NFB2, the network NFB3 was formed, by adding an MFB unit in series to
the NFB3, the network NFB4 was formed, etc., until the formation of the

network NFB6.

time series of the drive signal u, the time series of the environmental
condition q and on all the past values of the memristanceR1 because
of the memristor memory properties. Additionally, when adding the
delay feedback mechanism, the current state has an extra dependence
on the past values {R1(t− τ), R1(t− 2 τ), R1(t− 3 τ), · · · }.

Additionally, in Fig. 5, the network NFB2 is formed by adding in
series an MFB unit to network NFB1. The delay feedback mecha-
nism of the added MFB unit has a delay τ2 6= τ . The memristance
R2(t) has an extra dependence on the memristances R1(t), R1(t −
1 τ), R1(t − 2 τ), · · · because of the connection of the two MFB
units. Additionally, the memristance R2(t) has an extra dependence
on the past memristances R2(t − 1 τ), R2(t − 2 τ), · · · because of
the delay feedback with time τ2. Therefore, the memristance R2(t)
has a memory of both the memristances R1 and R2.

The freedom to choose the time delays of the two MFB units
could allow for completely different time series of voltage differ-
ences across the memristors. These different memristor inputs ought
to favor the collaboration between memristors because every mem-
ristor would have different tasks of state separation.

In the same way by adding MFB units in series, we construct the
networks NFB3 (three MFB units in series, delay times: τ, τ2, τ3),
NFB4 (four units in series, delay times: τ, τ2, τ3, τ4), up to NFB6
(six units in series, delay times: τ, τ2, τ3, τ4, τ5, τ6). These networks
are not shown.

Direction 3: The complexity of the elements can be also increased
by taking advantage of the memristor variability [17, 12]. If two
memristors have different parameters β, then, these differences can
be exploited so that each memristor can be used for processing dif-
ferent features of the environmental conditions, e.g. occurring at dif-
ferent scales.

Additionally, in an experimental scenario, two or more memris-
tors might sense simultaneously different instantaneous values of q
because they are placed at different positions. In such a case, the pa-
rameter β of each memristor would be affected differently.

We model the variability by assuming:

β(t) = (1 +m0) q(t) +m0 (17)

where m0 is unique for every memristor element and randomly cho-
sen between 0 and 1.

In direction 3, the complexity of network topology increases by
combining memristor elements with series and parallel couplings.
The purpose is to build networks where the different memristor ele-
ments experience different local voltage differences. The question is
whether such structures, with variability in local voltage drives could
favor the collaboration in the network. The networks NSP2, NSP4,

NSP6 and NSP8, being shown in Fig. 6, are examples.
NSP2

NSP4

NSP6

NSP8

Figure 6. The networks NSP2, NSP4, NSP6 and NSP8 were used in
direction 3 to investigate whether considering both inhomogeneous

memristor elements and increased network topology favors the state space
separation.

6 Results
An elementary two-class problem is investigated where two environ-
mental states are allowed: stable or varying. The training signals that
describe each of these classes are shown in Fig. 7. Each class is repre-
sented by 10 signals. As test data, 1000 environmental signals have
been generated for each class. The signals have been generated by
assuming a certain periodicity and then by sampling the period and
the coefficients of the Fourier series. The series with four coefficients
have been used. The coefficients have been sampled from two uni-
form distributions with variances σ1 (varying) and σ2 (stable) such
that σ1 � σ2.

Class 0: Stable environmental conditions

(10 randomly generated conditions)

Class 1: Varying environmental conditions

(10 randomly generated conditions)

Training data

a b

Figure 7. a) The training data for the class 0: stable environmental
conditions. Ten environmental conditions were generated randomly. b) The

training data for the class 1: varying environmental conditions. Ten
environmental conditions were generated randomly.

Circa 5, 000 virtual experiments per network are conducted to
identify the optimal mode of operation for each network. For simpler
networks, histograms of memristance values are built to visualize the
state space separation. However, the visualization of the histograms
is not easy when the state space dimensionality is large. For more
complicated networks (NR > 2), we compute only the separabil-
ity index ν. All separability index values are expressed in units of
∆M = Rmax − Rmin where ∆M is the maximum distance be-
tween the trajectories:

0 ≤ ν ≤ ∆M (18)

The relative memristance ν/∆M is always bound between 0 and 1.
The drive signals of all simulated networks are optimised with the

same number of parameters, ten in total: α0, α1, α2, α3, α4, β1, β2,
β3, β4, ω. One could increase the number of the parameters and pos-
sibly achieve a better separability index. But this would be a draw-
back since the optimisation would need to search for an optimum
solution in a larger space of parameters. The goal is to achieve larger



separability indices not by introducing smarter signals but by making
the reservoir, i.e. the memristor network, smarter.
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iterations

Genetic Algorithm

Random Search

N1

Figure 8. The performance of the genetic algorithm is compared to a
random search algorithm. At every iteration the best solutions of each

algorithm are presented. The index ν denotes the separability index and the
value ∆M is the maximum value that the index ν can obtain.

Starting with the simplest network topology (N1), the results for
every iteration of the genetic algorithm optimisation are shown in
Fig. 8. One can see that to increase the separability index, it is im-
portant to find an appropriate drive signal. At every iteration of the
algorithm the separability index was calculated for 300 candidate so-
lutions and 30 solutions with the largest separability index were used
for genetic operations at the next iteration. The best drive signal was
found after six iterations. The GA performs clearly better than the
random search algorithm. At every iteration of the random search al-
gorithm, 300 random solutions were evaluated. The twenty best after
each iteration are shown. After thirteen iterations, the random search
algorithm has not found a drive signal with equally good separability
index as the one found by using the genetic algorithm.
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Class 0

Class 1

Figure 9. The optimum state separation for the network N1 found by the
optimisation algorithm. The two distributions depict the histograms of the

memristance values collected during the simulations of the system under the
two classes of environmental conditions of the training data.

We recorded the values of the memristances (states of the system)
under the two different environments, class 0 and class 1, and the best
drive. The histograms in Fig. 9 show how the values are distributed.
The trajectories are driven to a region closer to Rmin under the en-
vironment 0 and closer to Rmax under the environment 1. Clearly,
the external drive tries to separate the states to the best of its abili-
ties, but cannot achieve a perfect state space separation because the
distributions in the histogram are still overlapping.

Direction 1: To examine whether the process of increasing the
complexity of the network topology leads to larger separability in-
dices, the separability index ν has been computed for the networks
N1, N2, N3, N4, N5 and N6. The values of ν are shown in Fig. 10.
On the vertical axis we plot the relative memristance.

N1 N2 N3 N4 N5 N6
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training data

test data

Direction 1

Figure 10. The separability index for the training data and the test data for
the networks N1, N2, N3, N4, N5 and N6. All networks are homogeneous:

They are made of a single memristor element.

The key result: The separability index ν did not increase (im-
prove) when the complexity of the network topology was increased.
There was not enough collaboration between the memristor ele-
ments, even when the networks with up to 6 memristor elements were
considered (from N2 up to N6). To identify whether a genuine col-
laboration exists between the elements, all the memristor elements
were chosen to be identical (the results for heterogenous networks
are discussed below).

Direction 2: A few networks with (heterogenous) delayed-
feedback elements have been studied: NFB1 (one feedback element),
NFB2 (two feedback elements), NFB3, NFB4, NFB5 and NFB6.

Network NFB1 features only one feedback element, the MFB unit
explained earlier. The optimal state såpace separation achieved is
shown in Fig. 11. By coarse graining and dividing the state in two in-
tervals, left half region [Rmin, (Rmin+Rmax)/2] and right half re-
gion [(Rmin+Rmax)/2, Rmax], the following can be observed: Un-
der the environment class 0, the 60% of the trajectories were driven to
the left interval, while the rest of the trajectories (40%) were driven to
the right interval. However, under the environment class 1, the 100%
of the trajectories were driven to the right half. Therefore, the state
space separation is not perfect, but it is better than the one achieved
with the (feedback-free) network N1.
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Figure 11. The optimum state space separation for the network NFB1. The
two distributions have been obtained using the optimum drive signal. The
optimum state space separation is achieved with 60% (100%) of the state
driven to the left (right) half region of the state space for environmental

conditions 0 (1).

The state space separation for network NFB2 was studied to see
whether the state space separation of NFB1 can be improved further
by adding another MFB unit. The histograms in Fig. 12 show how
the states are distributed for the two environmental conditions. By
coarse graining and dividing the state in four regions: up-right, up-
left, down-right and down-left, we found the following:

• Under the environment 0, 60% of the trajectories were driven to
the up-right square region of the state space, 30% were driven to
the down-left square region and 10% to the up-left square.

• Under the environment 1, 70% of the trajectories were driven to
the up-left square region of the state space, 20% were driven to
the down-right square region and 10% to the down-left square.
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Figure 12. The optimum state space separation for the network NFB2
obtained for the training data. We coarse-grain the state space into four

regions: 90% (90%) of the trajectories are driven to the up-right or
down-left (up-left or down-right) quarters of the state and the network is

exposed to the environmental conditions of class 0 (1).

Therefore, if the state was read in the up-right or in the down-
left square (in the up-left or in the down-right square), then a read-
out layer could be constructed to classify the environment as class
0 (1). Still, the state space separation is not ideal in the up-left and
down-left regions. For example, an ideal case would be that under
the environment class 0 (1), 100% of the trajectories were driven to
the up-right or down-left square (up-left or down-right square) of the
state space.

Networks NFB3, NFB4, NFB5 and NFB6 contain three or more
MFB units. Their separability indices are shown in Fig. 13.

• The separability index νtrain was better for NFB1 than for N1. The
state space separation increased by adding a delay feedback mech-
anism to a single memristor element. The index νtest was roughly
the same for NFB1 and N1.

• Both νtrain and νtest increased when adding MFB units in series
to network NFB1 resulting in NFB2, NFB3 and NFB4. There is
more collaboration among elements when adding MFB units.

• When constructing the networks NFB5 and NFB6, the separability
index ν was similar to the one of the network NFB4. This means
that when adding more MFB units in the direction from NFB4 to
NFB6 there was little additional information about the environ-
ment.

• The largest allowed value of ν/∆M equals 1. The observed max-
imum value of ν/∆M is roughly 0.7.

• Four MFB units (NFB4) were adequate to reach the maximum
separability index ν, while connecting five or six MFB units in
series (NFB5 or NFB6) would be a waste of resources. Therefore,
the graph in Fig. 13 shows the minimum amount of resources to
reach the maximum separability index.

• νtest increased when adding MFB units in the direction from
NFB1 to NFB6.

• νtest was lower than νtrain for all the networks NFB1 - NFB6.
• νtest did not increase as much as νtrain in the direction NFB1-NFB3.
• νtest increased more than νtrain in the direction NFB3-NFB4.
• Figure 13 suggests that the state space separability is easier to

achieve in large dimensions: networks NFB4-NFB6 have the
largest separability index νtest. It seems that in large dimensions
the system has a better ability to generalize: network NFB4-NFB6
exhibit a relatively small difference between νtest and νtrain.

Direction 3: The separability indices for the networks NSP2,
NSP4, NSP6 and NSP8 are shown in Fig. 14.

N1 NFB1 NFB2 NFB3 NFB4 NFB5 NFB6
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training data
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Direction 2

Figure 13. The maximum separability index for the training data and the
testing data for the networks N1, NFB1, NFB2, NFB3, NFB4, NFB5 and

NFB6.

• The training data separability index νtrain was found slightly larger
for NSP2 than N1. This means that two heterogeneous parallel
memristors worked better than one memristor. However, we found
that by just putting in parallel memristors did not result in increas-
ing νtrain. We tried three heterogeneous memristors in parallel and
the separability index was worse than the one for N1.

• Increasing the size of the networks resulted in larger νtrain.
• The same behavior was not observed for νtest. Firstly, νtest for

NSP4 was smaller than the ones for NSP2 and N1. Secondly, νtest

for NSP6 was larger than the one for NSP4.

N1 NSP2 NSP4 NSP6 NSP8
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Figure 14. The maximum separability index for the training data and the
testing data for the networks N1, NSP2, NSP4, NSP6 and NSP8.

7 Discussions
Judging by the values of νtest and νtrain, it seems that memristor net-
works have a good ability to generalize. As expected, all networks
performed worse on the test data with νtest < νtrain. However, for
some networks, νtest was remarkably close to νtrain even with such a
huge difference between the size of the two data sets, being in the
1:100 ratio: the training data set contains 20 time series, and the test
data set contains 2000. Further, the test data index ν was more sen-
sitive to the increase of the state space dimension (NFB4, NFB5 and
NFB6): For a larger state space dimension there were more chances
that the trajectories would be driven to different regions of the state
space under the two environmental conditions. This is also the rea-
son why the difference νtrain − νtest decreases as the dimension of
the state space increases following the direction NFB4, NFB5 up to
NFB6.

Both νtest and νtrain roughly follow the same trend when computed
for different networks. Thus the findings discussed in the previous
subsections ought to hold for any data set. An interesting finding
concerns perhaps a naive expectation that elements with a larger de-
gree of complexity should lead to better substrates (direction 2 in
Fig. 3). It is true that when adding elements with increased com-
plexity there is an increase in the separability index ν, but only for
more complex networks. Figure 13 illustrates this behavior. An in-
crease in ν is marginal between N1 (a single memristor with no
feedback) and NFB1 (a single memristor with feedback). It is true



that for more complex networks there is a substantial increase in ν
(e.g. going through NFB2, NFB3, NFB4). However, it seems that this
trend does not continue ad infinitum (e.g. moving to NFB5 or NFB6
does not further increase ν). The question is whether the observed
behavior is generic or just an artefact of following a particular way
of adding elements into the network.

Our hypothesis is that by just adding more complex elements into
the network will not necessarily lead to a better sensor. To obtain a
better sensor it is necessary to ensure that there is an advantageous
collaboration between the elements, it is important how elements
work as a group. We showed a way of achieving this by optimising
the time delays of the MFB units. When the MFB units have differ-
ent time delays then each one can react to different features of the
environmental conditions, i.e. to collaborate and divide the burden of
state separation. This further suggests that heterogeneity of the net-
works is important: it is essential to allow for different time delays
of the MFB units. Note that the memristor elements of all the MFB
units were considered identical. Thus the heterogeneity of the time
delays was the main reason for achieving collaboration between the
memristor elements.

When increasing the complexity of the network topology (direc-
tion 1 in Fig. 3) there was no improvement in the separability index
ν. This means that in this direction we did not find a network struc-
ture where the collaboration between the memristor elements favors
a larger separability index ν. This shows that the state space separa-
bility is a non trivial requirement. Note that the elements of the net-
works were identical. Our hypothesis is that the increased complexity
of the network topology would have a better effect on the separability
index when considering heterogeneous memristor elements.

8 Conclusions
A separability index ν has been used as a measure of substrate qual-
ity. A good separability index should measure the degree of corre-
lation between the information embedded in the time-series signal
(environment) and the system state (sensor). Several difficulties re-
lated to a suitable definition of this index have been identified and
solved. We found a way of defining a separability index without con-
sidering a specific analysis (readout) layer. Further, the separability
index has been constructed to detect a genuine collaboration between
elements. If an element is added into a network, the dimensionality
of the state space increases and it should be easier to separate tra-
jectories for different environmental conditions. However, there are
ways of adding elements into the network that will not lead to a larger
trajectory separation. For example, if an identical element is added
into the network that copies the functionality of an existing element,
the “intelligence” of the substrate will not increase. In such a case, a
good separability index should not report a false improvement.

As an alternative to the separability index suggested here, the
mutual information could be used to quantify how much informa-
tion about the environment is stored in the system state. However,
the computational cost associated with estimating the mutual in-
formation can be high, rendering the approach impractical in some
cases. [10] An important advantage of the approach advocated here
is that the computational cost of calculating ν is relatively modest
when compared to the mutual information approach.

By computing the separability index for a range of memristor
networks, with an increasing degree of complexity, we were able
to identify which architectural features of such networks guarantee
good substrate quality. The presence of feedback loops and increased
degree of network heterogeneity have the most impact on the sens-
ing capacity of the substrate. The presence of feedback loops leads to

faster responses and more precise decision boundaries. Adding iden-
tical elements does not improve the sensing capacity. Such elements
tend to interact in the same way with the environment without pro-
viding additional clues about it. If heterogeneous elements are linked
into a network, each element can recognise a different environmental
feature.

This work can be extended in various ways. The approach sug-
gested here could be applied in situations where the substrate re-
sponse is not simulated but measured in the actual experiment. How-
ever, finding the right drive could be problematic. Further, the net-
work space has been explored using the trial and error method. How-
ever, one could develop an automatic GA optimisation procedure
to identify the best performing networks and then study them to
reverse-engineer useful design principles. Such a GA could be natu-
rally implemented by using the separability index as the fitness func-
tion. While the numerical experiments were conducted on memristor
networks, the principles established are universal and provide use-
ful guidelines for designing similar sensing devices with other types
of hardware. The non-linear behaviour of the memristor could be
mimicked by other non-linear elements, such as artificial neurons
or other non-linear electronic components. In this study, ideas from
various disciplines were exploited including theoretical and applied
computer science (neuromorphic computation, computing capacity),
the theory of complex dynamical systems (state space structure), sig-
nal engineering (filters) and machine learning (supervised learning).
The results of this work may be of considerable interest to the wider
information processing community.
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Morphological Computation and Learning to Learn  
In Natural Intelligent Systems And AI 

Gordana Dodig-Crnkovic 1,2 

Abstract. At present, artificial intelligence in the form of 
machine learning is making impressive progress, especially the 
field of deep learning (DL) [1]. Deep learning algorithms have 
been inspired from the beginning by nature, specifically by the 
human brain, in spite of our incomplete knowledge about its 
brain function. Learning from nature is a two-way process as 
discussed in [2][3][4], computing is learning from neuroscience, 
while neuroscience is quickly adopting information processing 
models. The question is, what can the inspiration from 
computational nature at this stage of the development contribute 
to deep learning and how much models and experiments in 
machine learning can motivate, justify and lead research in 
neuroscience and cognitive science and to practical applications 

of artificial intelligence. 12 

1 INTRODUCTION 
This paper explores the relationships between the info-
computational network based on morphological computation and 
the present developments in both the sciences of the artificial 
(with the focus on deep learning) as well as natural sciences 
(especially neuroscience, cognitive science and biology), social 
sciences (social cognition) and philosophy (philosophy of 
computing and philosophy of mind).  

Deep learning is based on artificial neural networks 
resembling neural networks of the brain, processing huge 
amounts of (labelled) data by high-performance GPUs (graphical 
processing units) with a parallel architecture. It is (typically 
supervised) machine learning from examples. It is static, based 
on the assumption that the world behaves in a similar way and 
that domain of application is close to the training data. However 
impressive and successful, deep-learning intelligence has an 
Achilles heel, and that is lack of common sense reasoning 
[5][6][7]. It bases recognition of pictures on pixels, and small 
changes, even invisible for humans can confuse deep learning 
algorithm and lead to very surprising errors.  

According to Bengio, deep learning is missing out of 
distribution generalization, and compositionality. Human 
intelligence has two distinct mechanisms of learning – quick, 
bottom up, from data to patterns (System 1) and slow, top-down 
from language to objects (System 2) which have been recognized 
earlier [8][9][10]. The starting point of old AI (GOFAI) was 
System 2, symbolic, language, logic-based reasoning, planning 
and decision making. However, it was without System 1 so it 
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ended in symbol grounding problem. Now deep learning has 
grounding for its symbols in the data, but it lacks the System 2 
capabilities in order to get to the human-level intelligence and 
ability of learn and  meta-learning, that is learning to learn.  
The step from big-data based System 1 to manipulation of few 
concepts like in high level reasoning is suggested to proceed via 
concepts of agency, attention and causality. 

It is expected that agent perspective will help to put 
constraints on the learned representations and so to encapsulate 
causal variables, and affordances. Bengio  proposes that “meta-
learning, the modularization aspect of the consciousness prior [7] 
and the agent perspective on representation learning should 
facilitate re-use of learned components in novel ways (even if 
statistically improbable, as in counterfactuals), enabling more 
powerful forms of compositional generalization, i.e., out-of-
distribution generalization based on the hypothesis of localized 
(in time, space, and concept space) changes in the environment 
due to interventions of agents.” [5] 

This step, from System 1 (present) to System 2 (higher level 
cognition will open new and even more powerful possibilities to 
AI. It is not the development into the unknown, as some of it has 
been attempted by GOFAI, and new developments in cognitive 
science and neuroscience. In this article we will focus on the 
connections to another computational model of cognition, 
natural infocomputation [3][4]. 

1 LEARNING ABOUT THE WORLD 
THROUGH AGENCY 
When discussing cognition as a bioinformatic process of special 
interest, we use the notion of agent, i.e. a system able to act on 
its own behalf [11]. Agency in biological systems in the sense I 
use here has been explored in [12][13]. The world as it appears 
to an agent depends on the type of interaction through which the 
agent acquires information [11].  

Agents communicate by exchanging messages (information) 
which helps them to coordinate their actions based on the 
information they possess and then they share through social 
cognition. 

We start from the definition of agency and cognition as a 
property of all living organisms, building on Maturana and 
Varela [13][14] and Stewart [16]. The next question will be how 
artifactual agents should be built in order to possess cognition 
and eventually even consciousness. Is it possible at all, given 
that cognition in living organisms is a deeply biologically rooted 
process? Along with reasoning, language is considered high-
level cognitive activity that only humans are capable of. 
Increasing levels of cognition evolutionary developed in living 
organisms, starting from basic automatic behaviours such as 
found in bacteria to insects (even though they have nervous 



system and brain, they lack the limbic system that (in amniota = 
limbed vertebrates = reptiles, birds and mammals) controls 
emotional response to physical stimuli, suggesting they don't 
process physical stimuli emotionally) to increasingly complex 
behaviour in higher organisms such as mammals. Can AI “jump 
over” evolutionary steps in the development of cognition?  

The framework for the discussion is the computing nature in 
the form of info-computationalism. It takes the world (Umwelt) 
for an agent to be information with its dynamics seen as 
computation. Information is observer relative and so is 
computation. [11][17][18] 

Cognition has been studied as information processing in such 
simple organisms as bacteria [19], [20] as well as cognitive 
processes in other, more complex multicellular life forms. While 
the idea that cognition is a biological process in all living 
organisms has been extensively discussed [14][16][21], it is not 
clear on which basis cognitive processes in all kinds of 
organisms would be accompanied by (some kind of, some 
degree of) consciousness. If we in parallel with “minimal 
cognition” [22] search for “minimal consciousness”, what would 
that be? Opinions are divided at what point in the evolution one 
can say that consciousness emerged. Some would suggest as 
Liljenström and Århem that only humans possess consciousness, 
while the others are ready to recognize consciousness in animals 
with emotions (like amniota) [23][24]. From the info-
computational point of view it has been argued that cognitive 
agents with nervous systems are the step in evolution which first 
enabled consciousness in the sense of internal model with the 
ability of distinguishing the “self” from the “other” [4][25].  

2 LEARNING IN THE COMPUTING NATURE 
For naturalist, nature is the only reality [26]. Nature is 

described through its structures, processes and relationships, 
using a scientific approach [27][28]. Naturalism studies the 
evolution of the entire natural world, including the life and 
development of human and humanity as a part of nature. Social 
and cultural phenomena are studied through their physical 
manifestations. An example of contemporary naturalist approach 
is the research field is social cognition with its network-based 
studies of social behaviors. 

Computational naturalism (pancomputationalism, naturalist 
computationalism, computing nature)[29][30][31][3][4] is the 
view that the entire nature is a huge network of computational 
processes, which, according to physical laws, computes 
(dynamically develops) its own next state from the current one. 
Among prominent. representatives of this approach are Zuse, 
Fredkin, Wolfram, Chaitin and Lloyd, who proposed different 
varieties of computational naturalism. According to the idea of 
computing nature, one can view the time development 
(dynamics) of physical states as information processing (natural 
computation). Such processes include self-assembly, self-
organization, developmental processes, gene regulation 
networks, gene assembly, protein-protein interaction networks, 
biological transport networks, social computing, evolution and 
similar processes of morphogenesis (creation of form). The idea 
of computing nature and the relationships between two basic 
concepts of information and computation are explored in 
[11][17][18]. 

In the computing nature, cognition is a natural process, seen 
as a result of natural bio-chemical processes. All living 

organisms possess some degree of cognition and for the simplest 
ones like bacteria cognition consists in metabolism and (my 
addition) locomotion. [11] This “degree” is not meant as 
continuous function but as a qualitative characterisation that 
cognitive capacities increase from simplest to the most complex 
organisms. The process of interaction with the environment 
causes changes in the informational structures that correspond to 
the body of an agent and its control mechanisms, which define 
its future interactions with the world and its inner information 
processing. Informational structures of an agent become 
semantic information first in the case of highly intelligent agents. 

 Recently, empirical studies have revealed an unexpected 
richness of cognitive behaviors (perception, information 
processing, memory, decision making) in organisms as simple as 
bacteria. [18][19][32]. Single bacteria are too small, and sense 
only their immediate environment. They live too short to be able 
to memorize a significant amount of data. On the other hand 
bacterial colonies, swarms and films extends to a bigger space, 
have longer memory and exhibit an unanticipated complexity of 
behaviors that can undoubtedly be characterized as cognition 
[33][34][35]. Fascinating case are even simpler agents like 
viruses, on the border of the living [36][37]. Memory and 
learning are the key competences of living organisms [33]. 

Apart from bacteria and archaea [38] all other organisms 
without nervous system cognize (perceive their environment, 
process information, learn, memorize, communicate), such as 
e.g. slime mold, multinucleate or multicellular Amoebozoa, 
which has been used as natural computer to compute shortest 
paths. Even plants cognize, in spite of being typically thought of 
as living systems without cognitive capacities [39]. However, 
plants too have been found to possess memory (in their bodily 
structures that change as a result of past events), the ability to 
learn (plasticity, ability to adapt through morphodynamics), and 
the capacity to anticipate and direct their behavior accordingly. 
Plants are argued to possess rudimentary forms of knowledge, 
according to [40] p. 121, [41] p. 7 and [42] p. 61. 

Consequently, in this article we take primitive cognition to be 
the totality of processes of self-generation/self-organization, self-
regulation and self-maintenance that enables organisms to 
survive using information from the environment. The 
understanding of cognition as it appears in degrees of complexity 
in living nature can help us better understand the step between 
inanimate and animate matter from the first autocatalytic 
chemical reactions to the first autopoietic proto-cells. 

4 LEARNING AS COMPUTATION IN 
NETWORKS OF AGENTS 

Informational structures constituting the fabric of physical 
nature for an agent are networks of networks, which represent 
semantic relations between data. [17] Information is organized 
in layers, from quantum level to atomic, molecular, 
cellular/organismic, social, and so on. Computation/information 
processing, involve data structure exchanges within 
informational networks, represented by Carl Hewitt’s actor 
model [43]. Different types of computation emerge at different 
levels of organization in nature as exchanges of informational 
structures between the nodes (computational agents). [11] 

The research in computing nature/natural computing is 
characterized by bi-directional knowledge exchanges, through 
the interactions between computing and natural sciences. While 



natural sciences are adopting tools, methodologies and ideas of 
information processing, computing is broadening the notion of 
computation, taking information processing found in nature as 
computation. [2][44] Based on that, Denning argues that 
computing today is a natural science. [45] Computation found in 
nature is a physical process, where nature computes with 
physical bodies as objects. Physical laws govern processes of 
computation which appear on many different levels of 
organization.  

With its layered computational architecture, natural 
computation provides a basis for a unified understanding of 
phenomena of embodied cognition, intelligence and learning 
(knowledge generation), including meta-learning. [30][46] 
Natural computation can be modelled as a process of exchange 
of information in a network of informational agents [43], that is 
entities capable of acting on their own behalf. 

One sort of computation is found on the quantum-mechanical 
level where agents are elementary particles, and messages 
(information carriers) are exchanged by force carriers, while 
different types of computation can be found on other levels of 
organization in nature. In biology, information processing is 
going on in cells, tissues, organs, organisms and eco-systems, 
with corresponding agents and message types. In biological 
computing the message carriers are chunks of information such 
as molecules, while in social computing they are sentences while 
the computational nodes (agents) are be molecules, cells, 
organisms in biological computing or groups/societies in social 
computing. [18] 

5 INFO-COMPUTATIONAL LEARNING BY 
MORPHOLOGICAL COMPUTATION 

The notion of computation in this framework refers to the 
most general concept of intrinsic computation, that is a 
spontaneous computation processes in the nature, and which is 
used as a basis of specific kinds of designed computation found 
in computing machinery [47]. Intrinsic natural computation 
includes quantum computation [47][48], processes of self-
organization, self-assembly, developmental processes, gene 
regulation networks, gene assembly, protein-protein interaction 
networks, biological transport networks, and similar. It is both 
analog (such as found in dynamic systems) and digital. The 
majority of info-computational processes are sub-symbolic and 
some of them are symbolic (like languages). 

Within info-computational framework, computation on a 
given level of organization of information presents a 
realization/actualization of the laws that govern interactions 
between its constituent parts. On the basic level, computation is 
manifestation of causation in the physical substrate. In every 
next layer of organization a set of rules governing the system 
switch to the new emergent regime. It remains yet to be 
established how this process exactly goes on in nature, and how 
emergent properties occur. Research on natural computing is 
expected to uncover those mechanisms. In words of Rozenberg 
and Kari: “(O)ur task is nothing less than to discover a new, 
broader, notion of computation, and to understand the world 
around us in terms of information processing.” [2] From the 
research in complex dynamical systems, biology, neuroscience, 
cognitive science, networks, concurrency and more, new insights 
essential for the info-computational universe may be expected. 

Turing 1952 paper [49] may be considered as a predecessor of 
natural computing. It addressed the process of morphogenesis 
proposing a chemical model as the explanation of the 
development of biological patterns such as the spots and stripes 
on animal skin. Turing did not claim that physical system 
producing patterns actually performed computation. From the 
perspective of computing nature we can now argue that 
morphogenesis is a process of morphological computation. 
Informational structure (as representation of a physical structure) 
presents a program that governs computational process [50] 
which in its turn changes that original informational structure 
obeying/ implementing/ realizing physical laws. 

Morphology is the central idea in our understanding of the 
connection between computation and information. 
Morphological/morphogenetic computing on that informational 
structure leads to new informational structures via processes of 
self-organization of information. Evolution itself is a process of 
morphological computation on a long-term scale. It is also 
possible to study morphogenesis of morphogenesis (Meta-
morphogenesis) as done by Aaron Sloman in [51].  

Leslie Valiant [52] studies evolution by ecorithms – learning 
algorithms that perform “probably approximately correct” PAC 
computation. Unlike classical paradigm of Turing computing, 
the results are not perfect, but good enough (for an agent). 

6 LEARNING FROM RAW DATA AND UP – 
AGENCY FROM SYSTEM 1 TO SYSTEM 2 

Cognition is a result of a processes of morphological 
computation on informational structures of a cognitive agent in 
the interaction with the physical world, with processes going on 
at both sub-symbolic and symbolic levels. This morphological 
computation establishes connections between an agent’s body, 
its nervous (control) system and its environment. Through the 
embodied interaction with the informational structures of the 
environment, via sensory-motor coordination, information 
structures are induced (stimulated, produced) in the sensory data 
of a cognitive agent, thus establishing perception, categorization 
and learning. Those processes result in constant updates of 
memory and other structures that support behaviour, particularly 
anticipation. Embodied and corresponding induced (in the 
Sloman’s sense of virtual machine) [53] informational structures 
are the basis of all cognitive activities, including consciousness 
and language as a means of maintenance of “reality” or the 
representation of the world. 

From the simplest cognizing agents such as bacteria to the 
complex biological organisms with nervous systems and brains, 
the basic informational structures undergo transformations 
through morphological computation (developmental and 
evolutionary form generation), develop and evolve.  

Living organisms as complex agents inherit bodily structures 
resulting from a long evolutionary development of species. 
Those structures are embodied memory of the evolutionary past. 
They present the means for agents to interact with the world, get 
new information that induces memories, learn new patterns of 
behaviour and learn/construct knowledge. By Hebbian learning, 
world shapes human’s (or an animal’s) informational structures., 
Neural networks that “self-organize stable pattern recognition 
codes in real-time in response to arbitrary sequences of input 
patterns” are illustrative example. [54] 



If we say that for something to be information there must 
exist an agent from whose perspective this structure is 
established, and we argue that the fabric of the world is 
informational, the question can be asked: who/what is the agent? 
An agent (an entity capable of acting on its own behalf) can be 
seen as interacting with the points of inhomogeneity (data), 
establishing the connections between those data and the data that 
constitute the agent itself (a particle, a system). There are 
myriads of agents for which information of the world makes 
differences – from elementary particles to molecules, cells, 
organisms, societies… - all of them interact and exchange 
information on different levels of scale and this information 
dynamics is natural computation.  

On the fundamental level of quantum mechanical substrate, 
information processes represent actions of laws of physics. 
Physicists are already working on reformulating physics in terms 
of information [53]. This development can be related to the 
Wheeler’s idea “it from bit”. [55] and von Weizsäcker’s ur-
alternatives [56]. 

11 CONCLUSIONS AND FUTURE WORK 
Contemporary Deep-Learning-Centered AI is developing from 
the present state System 1 coverage towards the System 2, with 
agency, causality, attention and consciousness as mechanisms of 
learning and meta-learning (learning to learn). In this process 
like in the past, deep learning is searching inspiration in nature, 
assimilating ideas from neuroscience, cognitive science, biology, 
and more. This approach to understanding, via decomposition 
and construction is close to other computational models of nature 
in that it seeks testable and applicable models, based on data and 
information processing.  

At the same time, Computing nature approach models nature as 
consisting of physical structures that form levels of organization, 
on which computation processes develop. It has been argued that 
on the lower levels of organization finite automata or Turing 
machines might be an adequate model, while on the level of the 
whole-brain non-Turing computation is necessary, Ehresmann 
[57] and Ghosh et al. [58]  

Within info-computational framework, cognition is synonymous 
with the process of life, which enables learning from life 
characteristics to cognitive properties within evolutionary 
process. As mentioned before, evolution is learning process 
where nature tests varieties of possibilities. Following Maturana 
and Varela [21], we understand the entire living word as 
possessing cognition of various degrees of complexity. In that 
sense bacteria possess rudimentary cognition expressed in 
quorum sensing and other collective phenomena based on 
information communication and information processing. Brain 
of a complex organism consists of neurons that are networked, 
communicational and computational units. Signalling and 
information processing modes of a brain are much more complex 
and consist of more info-computational layers than bacterial 
colony. Knowledge of the world for an agent is an informational 
structure that is established as a result of as well the interactions 
of the agent with the environment (System 1) as the information 
processes in agents own intrinsic structures – reasoning, 
anticipation, etc. (System 2). 

For the future, work remains to be done on the connections 
between the low level and the high level cognitive processes. It 
is also important to find relations between cognition and 
consciousness as a mechanism helping to reduce number of 
variables that are manipulated by an agent (an organism) for the 
purpose of reasoning, decision-making, planning and acting in 
the world.  

The goals of AI different from the goals of the computing nature 
framework. AI builds solutions for practical problems and in that 
it focus on (typically highest possible level of) intelligence (not 
yet emotional nor embodied intelligence at this stage of the 
development), while computing nature framework seeks to 
provide computational models of all kinds of natural systems, 
including living organisms and their evolution and development, 
with not only intelligence but also full scale of cognition with 
emotion and behaviours that are not always goal-oriented in the 
sense of AI. The priority of info-computational naturalism is 
understanding and connecting knowledge about nature, while for 
AI the priority is practical problem solving. Nevertheless, paths 
of the two are meeting in many cases and mutual exchange of 
ideas promises benefits for both. 
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Is the Church Turing Thesis a Red Herring For Cognitive
Science?

Dean Petters 1 and Achim Jung 2

Abstract. This paper considers whether computational formalisms
beyond the Church Turing Thesis (CTT) could be helpful in under-
standing the mind. We argue that they may be, and that the way that
the CTT has been invoked in Cognitive Science may therefore act
as a Red Herring. That is, the way the CTT is invoked in Cognitive
Science may mislead and perhaps contribute to premature abandon-
ment of possibly fruitful research directions in Cognitive Science.
We do not suggest some sort of “hypercomputation’. Whilst it is pos-
sible to use a rich interactive machine to implement a simple function
this does not lead to new computable functions. In other words, the
CTT is valid even if more sophisticated machinery is employed. It is
the other direction that is the core of this paper: When considering
more sophisticated computational tasks, then standard Turing ma-
chines (and their mode of operation) are not sufficient to explore the
range of possibilities. The CTT is commonly interpreted as stating
that the intuitive concept of computability is fully captured by Tur-
ing machines or any equivalent formalism (such as recursive func-
tions, the lamba calculus, Post production rules, and many others).
The CTT implies that if a function is (intuitively) computable, then
it can be computed by a Turing machine. Conversely, if a Turing ma-
chine cannot compute a function, it is not computable by any mech-
anism whatsoever. We suggest an inadvertent error that has been
made which is the claim that relatively simple computational for-
malisms like Turing Machines can do anything that more complex
computional formalisms can do. To show this we present the land-
scape of computability within and beyond the bounds covered by
the mathematical CTT. This shows that in regions of the computa-
tional landscape beyond the CTT there may be hierarchies of increas-
ingly powerful computational formalisms. Erroneously interpreting
CTT as enforcing a ‘one size fits all’ interpretation to computational
formalisms leads to extreme reductionism that means contemporary
computationalism is viewed as inadequate to explaining many phe-
nomena related to thought and mind in living systems. Once this Red
Herring interpretation for CTT is avoided this leaves the way open
to exploring how richer kinds of computation that may possess many
shades of expressivity can form part of Cognitive Science explana-
tions.

1 Introduction
This paper takes the position that there are physically implementable
programs which are outside the scope of the Church-Turing the-
sis (CTT). That is, we refute the existing idea that all computation
has a boundary between what are computable functions and non-
computable functions that is clear and distinct boundary for all for-
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malisms. We show why this finding is important for Cognitive Sci-
ence. The central argument of this paper is that invoking a mathe-
matical theorem to make inferences about real-time physically in-
stantiated systems should be done with careful consideration of both
the scope of the theorem and the properties and complexity of the
physical system. Turing set out to solve the “Entscheidungsproblem”
(decision problem) and for this purpose proposed a mathematical for-
malism that faithfully emulates the process of a human being follow-
ing finitely specified instructions. It was soon found that other for-
malisms have the same expressive power in this specific setting, i.e.,
mathematical problem solving, and this then led to the CTT. Situa-
tions in contemporary computing are now so rich, they can no longer
be said to be covered by a paradigm where the inputs are known in
advance, the system is left alone to do its computation and then pro-
vides the answer. Critically, for richer kinds of computation, the em-
pirical evidence suggests that there are many shades of expressivity,
which is why no-one has ever postulated an analogue of the CTT for
them. This has implications for Cognitive Science and Artificial In-
telligence. This is because it means that there may be computational
formalisms which are strictly beyond the existing CTT but neverthe-
less recognisably symbolic/representational (GOFAI) in approach.
Thus showing that cognitive scientists do not need to ‘go all the way’
to invoke non-representational or non-computational approaches (so
called nouvelle AI such as enactivist [5], embodied [10], or dynam-
ical systems approaches [11]) when going beyond classic compu-
tational formalisms. Instead, to explore how recognisably compu-
tational (representational/symbolic) systems can model phenomena
of interest differently to formalisms that are within the scope of the
CTT they only need to go ‘slightly’ beyond CTT and keep within the
realm of computationalism. In discussing formalisms beyond CTT
we not proposing a form of hypercomputation. The CTT is still valid
when more sophisticated machinery is employed when that machin-
ery is used to do carry out computational tasks that can be carried out
by a Turing Machine (or computationally equivalent formalism). We
are instead considering more sophisticated computational tasks than
standard Turing machines (and their mode of operation) are sufficient
to explore. This is of critical relevance to Cognitive Science - which
studies humans performance on such sophisticated tasks to discover
what computational formalisms humans possess. These formalisms
may be beyond the CTT but still be symbolic computation.

2 The role of the CTT in Computationalism in
Cognitive Science

The CTT is closely linked to the historical origins of computational-
ist (cognitivist) account of cognition. For example, in his historical
review Clarke [2] notes:



“The next big development was the formalization (Turing,
1936) of the notion of computation itself. Turing’s work, which
predates the development of the digital computer, introduced
the foundational notion of (what has since come to be known
as) the Turing machine. This is an imaginary device consist-
ing of an infinite tape, a simple processor (a “finite state ma-
chine”), and a read/write head. The tape acts as a data store,
using some fixed set of symbols. The read/write head can read a
symbol off the tape, move itself one square backward or forward
on the tape, and write onto the tape. The finite state machine (a
kind of central processor) has enough memory to recall what
symbol was just read and what state it (the finite state machine)
was in. These two facts together determine the next action,
which is carried out by the read/write head, and determine also
the next state of the finite state machine. What Turing showed
was that some such device, performing a sequence of simple
computations governed by the symbols on the tape, could com-
pute the answer to any sufficiently well-specified problem. ”

“We thus confront a quite marvelous confluence of ideas.
Turing’s work clearly suggested the notion of a physical ma-
chine whose syntax following properties would enable it to
solve any well-specified problem.” ([2], p. 11-13)

In this historical analysis Clarke suggests that the concept of Tur-
ing Machines and the CTT, along with ideas that had previously been
formulated on logics and formal systems, led to a radical new com-
putationalist approach in Cognitive Science. Clarke cites Pylyshyn,
who made these same points in the 1970s:

“The work of Turing, in a sense, marked the beginnings of
cognitive activity from an abstract point of view, divorced in
principle from both biological and phenomenological founda-
tions. It provides a reference point for the scientific ideal of a
mechanistic process which could be understood without rais-
ing the spectre of vital forces or elusive homunculi but which
at the same time was sufficiently rich to cover every conceiv-
able formal notion of mechanism (that the Turing formulation
does cover all such notions is, of course, not provable but is
has stood all attempts to find exceptions. The belief that it does
cover all possible cases of mechanism has become known as the
Church-Turing thesis). It would be difficult to overestimate the
importance of this development for psychology. It represents
the emergence of a new level of analysis, which is indepen-
dent of physics, yet it mechanistic in spirit. It makes possible
a science of structure and function divorced from material sub-
stance, while at the same time it avoids the retreat to behav-
ioralistic periperheralismm. It speaks the language of mental
structures and of internal processes, thus lending itself to an-
swering questinos traditionally posed by psychologists”

“While Turing and other mathematicians, logicians, and
philosophers laid the foundations for the abstract study of cog-
nition in the 30s and 40s it was only in the last twenty or so
years thatthis idea begain to be articuated in a much more
specific and detailed form: A form which lends itself more di-
rectly to attacking certain basic questions of cognitive psy-
chology. The newer direction has grown with the continuing
development of our understanding of the nature of computa-
tional process and of the digital computer as a general, symbol-
processing system. It has led to the formation of a new intellec-
tual discipline known as artificial intelligence, which attemnpts
to understand the nature of intelligence by designing computa-
tional systems which exhibit it” ([8], 24-25)

What these quotes show is how the CTT led to promotion of mul-
tiple realisability and the stronger notion of medium independence
as supporting foundations for cognitive science. However, gaining
the notion of multiple realisability through invocation of the CTT
brought with it the possibility of a limiting misconception - a Red
Herring - as this misconception that all computational formalisms are
equivalent has led to a mistaken view of computational approaches
to the mind leading to extreme reductionism. This extreme reduc-
tionism follows from the misconception that very simple computa-
tional formalisms are computationally equivalent to more complex
formalisms because they can produce the same set of functions. Tur-
ing’s original machine is a very simple abstract concept. There is a
control unit in a particular state, and finitely many alternative states.
There is also an infinite tape, which acts as a memory and on which
can be marked ‘0’,‘1’ or ‘nothing’. There is also a read-write head
which takes decisions and can change a ‘0’ to a ‘1’, change a ‘1’
to a ‘0’, or erase a ‘0’ or ‘1’. There are even simpler computational
formalisms like the two-counter machine. This can increment and
decrement with branching. The extreme reductionism becomes ap-
parent when we ask: Can this or a Turing Machine be programmed
to be conscious? The line of reasoning that acts as a Red Herring
is: If consciousness arises from computation, and the CTT is correct
in stating that all computational frameworks are equivalent, then if
any computational system can exhibit self-awareness these kind of
simple machines will exhibit self-awareness. The widespread view
(that we agree with) that Turing Machines or two-counter machines
cannot be conscious simply by running the right program has led
to the conclusion that psychological phenomena such as conscious-
ness, agency or self-awareness are not computational in origin. We
suggest that a different route out of this impasse is to accept that ap-
plying CTT to all forms of computation is a Red Herring. That it, it
is an unhelpful misconception that misdirects research. Researchers
looking for computational explanations for complex psychological
phenomena that are not simply function computations should look
beyond the CTT to more sophisticated computational formalisms.

Not all researchers have been misdirected by a misconception that
the CTT applies to all forms of computation. Goldin and Wegner [3],
examine this misconception and suggest that the operation of “batch
processing” in the first generation of computing machines was so
similar to Turing’s mathematical concept of a (human) “computer”
(i.e., his “Turing machines”) that Turing machines were incorrectly
adopted as a sole formal abstraction of computing practice. Goldin
and Wegner point out the role of interactivity in processes that is so
central to modern computing system is simply not covered by the
CTT. Some researchers have been very aware that Turing machines
are not appropriate for modelling interactive processes and have pro-
posed alternative mathematical abstractions [4, 6]. A key issue is that
when we consider computation from fixed input to single output (the
“function view” of computation), then the equivalence of computa-
tional mechanisms is almost unavoidable. In contrast, mathematical
models for interactive behaviour (the “process view” of computa-
tion) can be quite different in expressivity. A canonical, maximally
expressive formalism for processes simply does not exist. We point
the interested reader to Abramsky’s [1] where this fact is highlighted
and explored.

3 The landscape of computability in diagrams

The landscape of computability includes regions within and beyond
the bounds of the classic Church-Turing thesis. Figure 1 shows that
for batch style computation (all of the formalisms on both the top



and bottom of the left half of the diagram) there is a ‘one size fits’
organisation of the landscape of computability due to the CTT. That
is, functions are either computable or non-computable whatever for-
malim is used. Regarding the right-hand side of the diagram: the
question mark signifies that we don’t know what the situation is.
Before we can distinguish computable from non-computable enti-
ties on the right hand side of the diagram, we first need to decide
what “entity” is being computed by a distributed or probabilistic or
other kind of program. Once we have a clear idea for that (unlikely
in the case of distributed computing), we can then try to see whether
we get an analogue of the CTT (with all reasonable formalisms be-
ing computationally equivalent), or whether the situation is more like
that of the total functions in the bottom left square of the left hand
side of the diagram. That is, for total functions that are computable,
different formalisms cover different parts of the computable realm
and none covers all of it. Therefore, the right hand side of the land-
scape of computability (for contemporary and future computation)
might have an infinite tower of increasingly powerful computational
formalisms. Or some other kind of hierarchy. Such as a finite tower
of increasingly powerful formalisms. This is important for Cognitive
Science because it means there may be computational formalisms for
contemporary and future computational approaches that do not have
a ‘one size fits all’ organisation. Therefore perhaps changing the cur-
rent extreme reductionism which is currently justified by invocation
of the CTT. The rationale for this extreme reductionism is that all for-
malisms within the scope of the CTT, however complex, can produce
the same set of computations as very simple formalisms like Turing
Machines).

4 From the Church Turing Thesis to the Chinese
Room Argument

Figure 2 situates particular kinds of programs in the landscape of
computability. In particular, situating the kind of batch program that
Searle describes in his Chinese Room Argument (CRA) [9] and a
class of adapted CRA program sketched by Petters and Jung [7]
- with interruptions and interactivity, real-time processing, never-
ending computation and parallel distributed control [1, 3, 4, 6]. This
adapted CRA program will not lead to new computable functions,
i.e., some sort of “hypercomputation”. The CTT is still valid when
more sophisticated machinery is employed to compute functions that
could be computed by programs within simpler formalisms. Our
claim is that when considering more sophisticated computational
tasks, standard Turing machines (and their mode of operation) are
not sufficient to explore the range of possibilities that can be pro-
duced with this kind of formalism.

5 Conclusion
This paper argues that due to the extreme reductionism enforced by
the Church Turing Thesis contemporary computationalism is inad-
equate to explaining many phenomena related to thought and mind
in living systems. This paper is not proposing a kind of hypercom-
putation. Whilst it is possible to use a rich interactive machine to
implement a simple function this does not lead to new computable
functions’. In other words, the CTT is valid even if more sophis-
ticated machinery is employed. It is the other direction that is the
core of this paper: When considering more sophisticated computa-
tional tasks, then standard Turing machines (and their mode of op-
eration) are not sufficient to explore the range of possibilities. This
paper suggests computational formalisms beyond the computational

formalisms covered by the mathematical Church Turing are likely to
be particularly valuable for explaining cognitive processes in living
organisms that are not simply function computations.
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Figure 1. The landscape of computability. There are two vertical lines in the diagram. The left line distinguishes between total and partial functions. In the
region of the landscape where total functions are computable it can be shown that for whatever formalism is considered, diagonalization can always be used to

create a new function beyond the set computable by that formalism. So there is an infinite number of possible formalisms forming a tower of increasing
computational power - represented by a series of curved dotted lines. The right hand split distinguishes classical batch computation or not. The right hand side
of the right hand vertical line is therefore contemporary approaches like never-ending, not-synchronised, distributed, real-time, and probabilistic computation.
As well as computations with other attributes we take for granted in 2020. Plus as yet undiscovered models possessing attributes that are beyond what can be

possessed by computations in Turings and other formalisms for computation (like Churchs, Posts, Gödel’s and many others). The dashed horizontal line
through the left half of the figure distinguishes computable and non-computable functions. According to CTT, every reasonable formalism gives all lower left

outputs below the dashed line. There is (as yet) no comparable thesis to the Church-Turing thesis for the right of the figure (contemporary computation). (Note:
the areas are not to scale, below the horizontal split (computable) would actually be a tiny sliver compared to non-computable.)

Figure 2. Situating particular kinds of programs in the landscape of computability. Turing showed that the halting problem was non-computable. Petters and
Jung [7] show that Searle’s original CRA argument through experiment described a batch job program that was computable. Petters and Jung [7] also briefly
sketch an adapted CRA program with interruptions and interactivity, real-time processing, never-ending computation and parallel distributed control which is

outside the scope of the traditional CTT and so on the right hand side of the landscape of computability. So this adapted CRA program may or may not be
computable, and the formalism used to implement it may be more computationally powerful than the formalism used to implement Searle’s original chinese

room program. Therefore, conclusions from the original CRA may not apply to all implementable programs.



Creativity, Eco-Cognitive Openness, Human and
Machine Inferential Capacities
Deep Learning and Locked Strategies

Lorenzo Magnani 1

Abstract. Locked and unlocked strategies are at the center of this
article, as ways of shedding new light on the cognitive aspects of
deep learning machines. The character and the role of these cog-
nitive strategies, which are occurring both in humans and in com-
putational machines, is indeed strictly related to the generation of
cognitive outputs, which range from weak to strong level of knowl-
edge creativity. I maintain that these differences lead to important
consequences when we analyze computational AI programs, such as
AlphaGo, which aim at performing various kinds of abductive hypo-
thetical reasoning. In these cases, the programs are characterized by
locked abductive strategies: they deal with weak (even if sometimes
amazing) kinds of hypothetical creative reasoning, because they are
limited in what I call eco-cognitive openness, which instead quali-
fies human cognizers who are performing higher kinds of abductive
creative reasoning, where cognitive strategies are instead unlocked.

1 ARE MACHINE COGNITIVE CAPACITIES
LOCKED? AN ABDUCTIVE PERSPECTIVE

In 2015, Google DeepMind’s program AlphaGo (able to perform the
famous Go game, aslo called Baduk in Souther Korea) beat Fan Hui,
the European Go champion and a 2 dan (out of 9 dan) professional,
five times out of five with no handicap on a full size 19 × 19 board.
Later on, in March 2016, Google also struggled againts Lee Sedol, a
9 dan player who was said to be the top world champion, to a five-
game match. The famous DeepMind program won in four of the five
games. It was seen that the program “generated” a new and eccentric
move—never used by human beings—which was able to originate a
new strategic path, considered as simulating actual “human” skillful
capacities, better than the ones of the more expert humans. AlphaGo
learnt its machine capacities to play the game by taking advantage
of “seeing” data of thousands of games, perhaps also including those
played by Lee Sedol, exploiting the so-called “reinforcement learn-
ing”: the program in turn plays successively against itself to improve,
enrich, and adjust once again further its own deep neural networks
grounded on trial and error procedures.

Let us adopt the meaning of the term ‘cognitive ‘capacity” to
refer—this seems particularly appropriate in the case of AI studies—
to an expert mixture in reasoning of various strategic and heuristic
devices. When we are referring to the non-computational and human
case of game theory, the meaning of the word capacity more amply
refers to the role of the agents in their relationships with other agents
and to the various related contentious or collective cognitive acts. I

1 Department of Humanities, Philosophy Section and Computational Philos-
ophy Laboratory, University of Pavia, Italy, email: lmagnani@unipv.it

contend that it is in the framework of abductive cognition [16] we can
appropriately and usefully analyze the concept of cognitive capaci-
ties to the aim of seeing the distinction between locked and unlocked
eco-cognitive settings. Indeed, I will contend that in AlphaGo only
locked cognitive capacities are at play, and this fact seriously limits
the type of creativity which is in general performed by deep learning
machines.

In my studies on abduction, I have extendedly illustrated various
kinds of human (but also computational) hypothetical cognition. I
proposed the adoption of the distinction between selective abduction
[14]—for example, in diagnosis (in which abduction is basically de-
scribed as an inferential process of “selecting” from a “repository” of
pre-stored hypotheses)—and creative abduction (abduction that pro-
duces new hypotheses). Furthermore, I have shown that abduction is
not only related to the propositional aspect, i.e. when processed using
human language (oral and written), but can also be “model-based”
and “manipulative”. In the first case, we deal with an abduction that
is basically performed thanks to internal cognitive acts that take ad-
vantage of models such as simulations, visualizations, diagrams, etc.;
in the second case the external dimension is at play: in this case, an
eco-cognitive perspective is fundamental because we have to refer to
those cognitive actions (embodied, situated, embedded, distributed
and extended, and/or enacted, as recent cognitive research says) in
which the role of external models (for example artifacts), props, and
technological devices, is relevant, and in which the characters of the
actions themselves are hidden and hard to be extracted. Action can
give origin to otherwise unavailable data that grant to the agent the
chance of solving problems by initiating and processing an appropri-
ate abductive procedure of production and/or selection of hypotheses.
As I say, manipulative abduction is occurring when we are think-
ing “through” doing and not only, in a pragmatic sense, about doing
(cf. [16] chapter 1). It is clear that, when we are dealing with games
such as Go, manipulative abduction is also at play, given the fact the
reasoning is considerably intertwined with the manipulation of the
stones and various embodied aspects are involved, together with the
visualization of the whole scenario, the adversary, etc.

I have also to add that, the concept of abduction has been involved
in AI at least since the beginnings of this young discipline. Already
in 1988 Paul Thagard [26] described four types of abduction imple-
mented in PI, a computational program devoted to perform some of
the main cognitive capacities illustrated by philosophy of science:
scientific discovery, explanation, evaluation, etc. The program ex-
plicitly executes the so-called simple, existential, rule-forming, and
analogical abduction. In this case the use of computer simulation ex-
hibited a first sophisticated new tool to increase knowledge about ab-



duction, illustrating how this kind of non deductive reasoning can be
automatically rendered thanks to computational concrete artefacts.
Early work on the so called machine scientific discovery, such as
the well-known Logic Theorist (Newell et al. [24]), DENDRAL in
chemistry (Lindsay et al. [13]), and AM in mathematics (Lenat [12]),
demonstrated that heuristic search in combinatorial spaces represents
an appropriate and general instrument for automating scientific dis-
covery, and abduction was explicitly or implicitly categorized.2 What
about the new perspectives on hypothetical abductive reasoning of-
fered by deep learning programs? To clarify the cognitive character
of this program, the examination of the kinds of strategies that are at
play is in my opinion central.

1.1 HUMAN AND MACHINE CAPACITIES AND
THEIR ABDUCTIVE CHARACTER

I hope it is now patent that studies on abduction are very useful when
we have to describe creative reasoning, and a simple, completely new
and unexpected move of a human being who is playing a Go game
surely represents a kind of creative reasoning. In this article, it will be
the key concept of knowledge-enhancing abduction and the related
one of eco-cognitive openness that will favor a deeper understand-
ing of the logical and cognitive condition of those kinds of cogni-
tive capacities I will describe and that I called locked and unlocked
abductive strategies [21]. Locked and unlocked strategies are at the
center of this article, as ways of shedding new light on the cogni-
tive aspects of deep learning machine capacities. The character and
the role of these cognitive strategies, which are occurring both in hu-
mans and in computational machines, is indeed strictly related to the
generation of cognitive outputs, which range from weak to strong
level of knowledge creativity. I maintain that these differences lead
to important consequences when we analyze computational AI pro-
grams, such as AlphaGo, which aim at performing various kinds of
abductive hypothetical reasoning.

We have to first of all to say that these programs are characterized
by locked abductive strategies: they deal with weak (even if some-
times amazing) kinds of hypothetical creative reasoning, because
they are limited in what I call eco-cognitive openness, which instead
qualifies human cognizers who are performing higher kinds of ab-
ductive creative reasoning, where cognitive strategies are instead un-
locked. An objection to the adoption of the concept of abduction to
shed more cognitive light on the strong impact of deep learning pro-
grams such as AlphaGo in contemporary AI regards the fact that they
are based on hierarchical neural networks that operate on a subcon-
ceptual level: abduction has been instead fundamentally investigated
thanks to symbolic formal models related to the tradition of logic.
I have indicated in the previous subsection that certainly the con-
cept of abduction enters in the last part of the previous century tra-
ditional AI research thanks to the studies concerning automated sci-
entific discovery (creative abduction) and medical diagnostic reason-
ing (selective abduction). The dominant representational tools were
the symbolic ones such as classical logic programming, rule-based
systems, probabilistic networks, etc. Can good abductive processes
be modeled using representational tools and algorithms that operate
on a subconceptual level? The answer is yes. For example, Bruza
et al. [2] insisted that it would be misguided to adopt a simple tra-
ditional, symbolic perspective of an abductive logical system by as-
suming a propositional knowledge representation and proof-theoretic

2 A more detailed illustration of the development, until the present times,
of programs related to abduction and scientific discovery are illustrated in
section 1.1 of [21].

approaches for driving it, because this perspective seems conceptu-
ally incomplete insofar as it ignores what is going “down below” [6],
which can be interpreted as the subconceptual level of cognition.

In sum, certainly the mainstream non-standard logical tradition
which created models of abductive inferences was characterized by
symbols but, from a more extended cognitive and philosophical per-
spective, also multimodality (that is cognition in terms of non propo-
sitional models, icons, thought experiments, simulations, etc.), and
implicit reasoning appear to be important. Moreover, I have to re-
member that, from a wide cognitive and philosophical perspective,
as I have illustrated in my own research [16, 19], the term abduc-
tion refers to all kinds of cognitive activities that lead to hypothe-
ses, in human and non human animals. For example, humans often
generate abductive hypotheses thanks to manipulative, embodied and
unconscious endowments, and higher mammals surely do not take
advantage of symbolic syntactic language but instead other multiple
cognitive capacities. Analogously to what is happening in the case of
humans, that can perform abductions in various ways, there is not in
AI a unique method able to favor the development of programs able
to reproduce abductive cognition to hypotheses. Various knowledge
representation formalisms and algorithms can be adopted to imple-
ment an appropriate computational program.3

At this point, we can go ahead and try to analyze the specific kind
of abductive performance (the generations of “moves”) that charac-
terizes the deep learning AI program AlphaGo.

2 NATURAL, ARTIFICIAL, AND
COMPUTATIONAL GAMES

2.1 LOCKED AND UNLOCKED STRATEGIES
IN NATURAL AND ARTIFICIAL
COGNITIVE CAPACITIES

Go is a game played by human agents and AlphaGo is a computa-
tional deep learning program that can play the role of an automatic
agent/player, so that a competition with humans can become partially
computationally determined. Go is already an “artificial” game, as it
is invented by human beings and, consequently, takes advantage of
abstract rules and artifacts, such as the board and other material ob-
jects. AlphaGo is artificial too, but a more complicated fruit of the
technological creativity of a more restricted and specialized group
of human beings. However, we have to remember that also “natural
cognitive games”, so to speak, can be contemplated. For example,
as I have already illustrated above when describing manipulative ab-
duction, a strategic human cognition not only refers to propositional
aspects concerning acts performed through written and spoken lan-
guage, but it is also active in a distributed cognition environment, in a
kind of “game” in which models, artifacts, internal and external rep-
resentations, sensations, and manipulations play a central function:
imagine the pre-linguistic cognitive “natural game” between humans
and their surroundings, in which “unlocked” strategies (see below)
are at play, such as the phenomenological tradition has illustrated, ex-
actly involving embodied and distributed systems, and visual, kines-
thetic, and motor sensations [20].

What counts here is that in the natural games the cognitive capaci-
ties are unlocked because, even if local constraints are always at play
in the interaction humans/environments, no preset background is es-
tablished. On the contrary, what happens in the case of the cognitive

3 The need of a plurality of representations was already clear at the time
of classical AI formalisms, when I was collaborating with AI researchers
to implement a Knowledge-Based System (KBS) able to develop medical
abductive reasoning [25].



capacities of human made “artificial games” such as Go, or in the
case of their computational counterpart, such as AlphaGo? In these
two last cases, the involved cognitive strategies are locked, as I will
describe in the following paragraphs.

Let us abandon the problem (I have just sketched) of the prelin-
guistic cognitive abductive strategies which are at play in a natural
interaction—natural game—between humans and their prepredica-
tive surroundings (for example, philosophically studied by Husserl
[9]) and let us concentrate on the cognitive abductive strategies that
are at play in the artifactual case of the moves that are occurring in
the adversarial game Go with two players and their respective chang-
ing surroundings, which in this case are basically formed by board,
stones, and possible artifactual assisting accessories. In this game,
analogously to the case of the natural processes, we still obviously
find the role of visual, kinesthetic, and motor sensations and actions,
but also the strong function of visual, iconic, and propositional artifi-
cial representations, anchored to the human made “meanings” (both
internal and external) which gave birth to the game and which char-
acterize its features and rules.

2.2 ANTICIPATION AS “READING AHEAD”
A fundamental strategy we immediately detect in artificial games
such as Go, which is necessary for proficient and smart tactical play,
is the capacity to read ahead,4 as the Go players usually say. Reading
ahead is a practice of generating groups of anticipations that aim at
being very robust and complex (either serious-minded or intuitive)
and that demand the consideration of

1. Clusters of moves to be adopted and their potential outcomes. The
available scenario at time t1, exhibited by the board, represents an
adumbration5 of a subsequent potential more profitable scenario
at time t2, which indeed is abductively credibly hypothesized:
in turn, one more abduction is selected and actuated, which—
consistently and believably—activates a particular move that can
lead to an envisaged more fruitful scenario.

2. Possible countermoves to each move.
3. Further chances after each of those countermoves. It seems that

some of the smarter players of the game can read up to 40 moves
ahead even in hugely complex positions.

Further strategies that are usefully adopted by human players in
the game Go are for instance related to “global influence, interaction
between distant stones, keeping the whole board in mind during local
fights, and other issues that involve the overall game. It is therefore
possible to allow a tactical loss when it confers a strategic advan-
tage”.6

The material and external scenarios (which are composed by the
sensible objects—stones and board) that characterize artificial games
are the fruit of a cognition “sedimented”7 in their embodiment, after
the starting point of their creation and subsequent uses and modifi-
cations. The cognitive tools that are related to the application of both
the game allowed rules and the individual inferential talents owned

4 In a book published in Japan, related to the description of various strategies
that can be exploited in Go games, Davies emphasizes the role of “reading
ahead” [4].

5 The word belongs to the Husserlian philosophical lexicon [9] I have ana-
lyzed in its relationship with abduction in ([16] chapter 4).

6 Cf. Wikipedia, entry Go (game) https://en.wikipedia.org/
wiki/Go\_(game).

7 An expressive adjective still used by Husserl [10]. Translated by D. Carr
and originally published in The Crisis of European Sciences and Transcen-
dental Phenomenology [1954].

by the two players, strategies, tactics, heuristics, etc. are sedimented
in those material objects (artifacts, in this case) that become cogni-
tive mediators:8 for example they orient players’ inferences, transfer
information, and provoke reasoning chances. Once represented in-
ternally, the external subsequent scenarios become object of mental
manipulation and new ones are further made, to the aim of producing
the next most successful move.

It is relevant to note again that these strategies, when actuated, are
certainty characterized by an extended variety, but all are “locked”,
because the elements of each scenario are always the same (what
changes is merely the number of seeable stones and their disposi-
tions in the board), in a finite and stable framework (no new rules, no
new objects, no new boards, etc.) These strategies are devoid of the
following feature: they are not able to recur to reservoirs of informa-
tion different from the ones available in the fixed given scenario. It
is important to add a central remark: of course the “human” player
can enrich and fecundate his strategies by referring to internal re-
sources not necessarily directly related to the previous experience
with Go, but with other preexistent skills belonging to disparate ar-
eas of cognition. This is the reason why we can say that the strategies
of a “human” player present a less degree of closure with respect to
the automatic player AlphaGo. In humans, strategies are locked with
respect to the external rigid scenario, but more open with respect
to the mental field of reference to previous wide strategic experi-
ences; in AphaGo and in deep learning systems, the strategic reser-
voir cannot—at least currently—take advantage of that mental open-
ness and flexibility typical of human beings: the repertoire is merely
formed/learned to play the game by checking data of thousands of
games, and no other sources.

I have also to say that the notion of cognitive locked strategy I
am referring to here is not present in and it is unrelated to the usual
technical categorizations of game theory. Fundamentally, in combi-
natorial game theory, Go can be technically illustrated as zero-sum
(player choices do not increment resources available-colloquially),
perfect-information, partisan, deterministic strategy game, belonging
to the same class as chess, checkers (draughts) and Reversi (Othello).
Moreover, Go is bounded (every game has to end with a victor within
a finite number of moves and time), strategies are obviously associa-
tive (that is in function of board position), format is of course non-
cooperative (no teams are allowed), positions are extensible (that is
they can be represented by board position trees).9

3 LOCKING ABDUCTIVE COGNITIVE
CAPACITIES JEOPARDIZES THE
MAXIMIZATION OF ECO-COGNITIVE
OPENNESS

As I have already anticipated above in Section 1, in my research I
have recently emphasized ([19] chapter 7) the knowledge enhancing
character of abduction. This means that in this case the abductive
reasoning strategies grant successful and highly creative outcomes.
The knowledge enhancing feature regards several kinds of new gen-

8 This expression, I have extendedly used in [14], is derived from Hutchins,
who introduced the expression “mediating structure”, which regards ex-
ternal tools and props that can be constructed to cognitively enhance the
activity of navigating. Written texts are trivial examples of a cognitive “me-
diating structure” with clear cognitive purposes, so mathematical symbols,
simulations, and diagrams, which often become “epistemic mediators”, be-
cause related to the production of scientific results [11]. that function as an
enormous new source of information and knowledge.

9 Cf. Wikipedia entry Go (game) https://en.wikipedia.org/
wiki/Go\_(game).



erated knowledge of various novelty degrees, from that new knowl-
edge about a suffering patient we have abductively accomplished in
medical diagnosis (a case of selective abduction, as no new biomed-
ical knowledge is created, just new knowledge about a person) to
the new knowledge developed in scientific discovery, which many
epistemologists celebrated, for example Paul Feyerabend in Against
Method [5]. In the case of an artificial game such as Go, the knowl-
edge activated thanks to an intelligent choice of already available
strategies or thanks to the invention of novel strategies and/or heuris-
tics must also be considered a result of knowledge enhancing abduc-
tion.

I strongly contend that, to arrive to uberous selective or creative
optimal abductive results, useful strategies must be applied, but it
is also needed to be in presence of a cognitive environment marked
by what I have called optimization of eco-cognitive situatedness, in
which eco-cognitive openness is fundamental [18]. This feature of
the cognitive environment is especially needed in the case of strong
creative abduction, that is when the kind of novelty is not restricted
to the case of a “simple” successful diagnosis. In Section 4, I will
illustrate in more detail that, to favor good creative and selective ab-
duction reasoning, cognitive capacities have to be freed thanks to
inferential strategies which are not “locked” in an external restricted
eco-cognitive environment, such as in a scenario characterized by
fixed defining rules and finite material aspects, which would func-
tion as cognitive mediators able to constrain agents’ reasoning.

At this point, it is valuable to furnish a short presentation of the
concept of eco-cognitive openness. Surely an updated logic of ab-
duction consists in what has been called “naturalization” of the well-
known fallacy “affirming the consequent”: in my recent research on
abduction [17, 18, 19], I emphasized the importance in good abduc-
tive cognition to hypotheses of what has been called optimization
of situatedness. Let us explain what is the meaning of the expres-
sion optimization of situatedness: abductive cognition is for example
very important in scientific reasoning because it refers to that activ-
ity of creative hypothesis generation which characterizes one of the
more valued aspects of rational knowledge. To get abductive results
in science, the “situatedness” of the involved cognitive activities is
strongly connected with eco-cognitive aspects, related to the contexts
in which knowledge is “traveling”: in the case of scientific abductive
cognition (but also in other abductive cases, such as medical diag-
nosis) to favor the solution of an inferential process the situatedness
also has to be characterized by the richness of the flux of information,
which in many cases (surely in the case of scientific reasoning and
discovery) has to be maximized. This maximization aims at a certain
optimization of situatedness, which, as I quoted above, can only be
made possible by a maximization of changeability of the basic start-
ing data which inform the abductive cognitive process: inputs have
to be maximally enriched, rebuilt, or modified and the same has to
occur with respect to the knowledge applied during the hypothetical
reasoning process. The aim is to have at disposal a favorable “cog-
nitive environment” in which available data can become optimally
positioned.10

In summary, abductive processes to hypotheses—in a considerable
quantity of cases, for example in science—are highly information-
sensitive, and face with a flow of information and data uninterrupted
and appropriately promoted and enhanced when needed (of course
also thanks to artefacts of various kinds). This means that also from
the psychological perspectives of the individuals the epistemological
openness in which knowledge channeling has to be favored is funda-
10 I have furnished more cognitive and technical details to explain this result

in [18, 19].
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4 LOCKED CAPACITIES BOUNDS
CREATIVITY

Optimization of situatedness is related to cognitive capacities char-
acterized by unlocked strategies. Instead locked strategies, such as
the ones active in Go game, AlphaGo, and other computational AI
systems and deep learning devices, do not favor the optimization of
situatedness. Indeed, I have already contended above that, to obtain
good creative and selective abductions, reasoning strategies must not
be “locked” in bounded eco-cognitive surroundings (that is, in sce-
narios designed by fixed defining rules and finite material objects
which would play the role of the so-called cognitive mediators). In
this perspective, a poor scenario is certainly responsible for the min-
imization of the eco-cognitive openness and it is the structural con-
sequence of the constitutive organization of the game Go (and also
of Chess and other games), as I have already described in Subsection
2.2. I have said that in the game Go stones, board, and rules are rigid
and so totally predetermined; what instead is undetermined are the
strategies and connected heuristics that are adopted to defeat the ad-
versary in their whole process of application. Of course, many of the
strategies of a good player are already mentally present thanks to the
experience of several previous games.

As I have already said, the available strategies and the adversary’s
ones are always locked in the fixed scenario: you cannot, during a
Go game, play for few minutes Chess or adopt another rule or an-
other unrelated cognitive process, affirming that that weird part of
the game is still appropriate to the game you agreed to play. Your
cognitive capacities are constrained. You cannot decide to change
the environment at will so unlocking your strategic reasoning, for ex-
ample because you think this will be an optimal way to defeat the
adversary. Furthermore, your adversary cannot activate at his discre-
tion a process of eco-cognitive transformation of that artificial game.
On the contrary, in the example of scientific discovery, the scientist,
or the community of scientists, frequently recur to disparate exter-
nal models and change their reasoning strategies12 to produce new
analogies or to favor other cognitive useful procedures (prediction,
simplification, confirmation, etc.) to enhance the abductive creative
process.

The case of scenarios in human scientific discovery precisely rep-
resents the counterpart of the ones that are poor from the perspective
of their eco-cognitive openness. Indeed, in these last cases, the rea-
soning strategies that can be endorsed (and also created for the first
time), even if multiple and potentially infinite, are locked in a deter-
mined perspective where the components do not change (the stones
can just diminish and put aside, the board does not change, etc.) I
would say that in scenarios in which strategies are locked, in the
sense I have explained, an autoimmunization [22, 1] is active, that
constitutes the limitations that preclude the application of strategies

11 A note on the history of philosophy can be added: already Aristotle pro-
vided a first fundamental study on abduction, which stresses the relevance,
we can hazard, of non-locked, but highly open, cognition, in the celebrated
(by Charles Sanders Peirce) passage of Chapter B25 of Prior Analytics re-
garding �pagwg  (that is abduction, translated, in the English edition,
with “leading away”). Indeed, it is exactly the idea of “leading away”
which expresses that in smart abductions we have to integrate (or “un-
lock”) the given components of the cognitive environment with the help of
other cognitive tools and data that are away from them. I think that in Aris-
totle some of the current central aspects of abductive cognition are already
present, and they are in tune with the EC-Model (Eco-Cognitive Model) of
abduction I have introduced in [16, 17, 18, 19].

12 Many interesting examples can be found in the recent [23].



that are not related to “pre-packaged” scenarios, strategies that would
be foreigners to the ones that are strictly intertwined with the com-
ponents of the given scenario. Remember I already said that these
components play the role of cognitive mediators, which anchor and
constrain the whole cognitive process of the game.

To summarize and further explain (by linking the problem of
locked and unlocked strategies to the various cases of selective and
creative abduction):

1. Contrarily to the case of those high level “human” capacities that
are characterized by creative abductive inferences such as the ones
expressed by scientific discovery or other examples of special ex-
ceptional intellectual results, the status of artificial games (and of
their computational counterpart) is very poor from the point of
view of the non-strategic knowledge involved. We are dealing with
stones, a modest number of rules, and one board. When the game
progresses, the shape of the scenario is stunningly modified but no
unexpected cognitive mediators (objects) are appearing: for exam-
ple, no diversely colored stones, or a strange hexagonal board. On
the contrary, to continue with the example of high levels creative
abductions in scientific discovery (for example, in empirical sci-
ence), first of all the evidence is extremely rich and endowed with
often unexpected novel features (not only due to modifications of
aspects of the “same things”, as in the case of artificial games).
Secondly, the flux of knowledge at play is multifarious and is re-
lated to new analogies, thought experiments, models, imageries,
mathematical structures, etc. that are rooted in heterogeneous dis-
ciplines and fields of intellectual research. In sum, in this exem-
plary case, we are facing with a real tendency to a status of optimal
eco-cognitive situatedness (further details on this kind of creative
abduction are furnished in [17, 18, 19]).

2. What happens when we are dealing with selective abduction (for
example in medical diagnosis)? First of all, evidence freely and
richly arrives from several empirical sources in terms of body
symptoms and data mediated by sophisticated artifacts (which
also change and improve thanks to new technological inventions).
Second, the encyclopedia of biomedical hypotheses in which se-
lective abduction can work is instead locked,13 but the reference to
possible new knowledge (locally created of externally available)
is not prohibited, so the diagnostic inferences can be enhanced
thanks to scientific advancements at a first sight not considered.
Third, novel inferential strategies and linked heuristics can be cre-
ated and old ones used in new surprising ways but, what is im-
portant, strategies are not locked in a fixed scenario. In sum, the
creativity that is occurring in the case of human selective abduc-
tion is poorer than the one active in scientific discovery, but richer
than the one related to the activity of the locked reasoning strate-
gies of the Go game and AlphaGo, I have considered above.

3. In Go (and similar games) and in deep learning systems such as
AlphaGo, in which strategies and heuristics are “locked”, these are
exactly the only part of the game that can be improved and ren-
dered more fertile: strategies and related heuristics can be used in a
novel way and new ones can be invented. Anticipations as abduc-
tions (which incarnate the activities of “reading ahead”) just affect
the modifications and re-grouping of the same elements. No other
types of knowledge will increase; all the rest remains stable.14 Of
course, this dominance of the strategies is the quintessence of Go,

13 It is necessary to select from pre-stored diagnostic hypotheses.
14 Obviously, for example, new rules and new boards can be proposed, so

realizing new types of game, but this chance does not jeopardize my argu-
mentation.

Chess, and other games, and also reflects the spectacularity of the
more expert moves of the human champions. However, it has to
be said that this dominance is also the reason that explains the fact
the creativity at stake is even more modest than the one involved in
the higher cases of selective abduction (diagnosis). I will soon il-
lustrate that this fact is also the reason that explains why the smart
strategies of Go or Chess games can be more easily simulated,
for example with respect to the inferences at play in scientific dis-
covery, by recent artificial intelligence programs, such as the ones
based on deep learning.15

The reader does not have to misunderstand me: I do not mean to
minimize the relevance of creative heuristics as they work in Go and
other board games. John Holland already clearly illustrated [7, 8] that
board games such as checkers, as well as Go, are wonderful cases
of “emerging” cognitive processes, where potentially infinite strate-
gies favor exceptional games: even if simply thanks to a few rules
regulating the moves of the pieces, games cannot be predicted start-
ing from the initial configurations. While other cases of emerging
cognitive processes (I have indicated the example of scientific dis-
covery) characterize what can be called “vertical” creativity (that is,
related to unlocked strategies), board games are examples of “hori-
zontal” creativity: even if board games are circumscribed by locked
strategies that constrain the game, “horizontal” creativity can show
astonishing levels of creativity and skilfulness. We already said that
these extraordinary humans skills have been notably appropriated by
artificial intelligence software (see below the last paragraphs of this
section): the example given in this article is the one of AI deep learn-
ing heuristics that were able to learn from human games. What are
the remaining most important effects which derive from these com-
putational AI programs equipped to concretize cognitive abductive
inferences characterized by “locked” strategies?

I think humans with their biological brains do not have to feel
mortified by these extraordinary skillful capacities of the AI pro-
grams. Unfortunately, given the present worldwide status of mass
media, other magnificent human performances in various fields of
creativity, much more creative than the ones related to locked strate-
gic reasoning, are unable to reach the global echo AlphaGo gained.
Indeed, human-more-skillful-abductive creative capacities, related to
unlocked strategies, as I have tried to demonstrate in this article—
still cognitively beautiful—are not sponsored by Google, which is a
herculean corporation that can easily obtain the attention of not only
the monocultural media of our age, but also of the social networks:
many human beings are more easily impressionable by the “mira-
cles” of AI, robotics, and information technologies, than by prodi-
gious knowledge results of human beings-like-us, too often out of
sight (after all—ça va sans dire—also AI traditional programs and
AI deep learning systems have been created by humans. . . )

Google managers also think that AI deep learning programs sim-
ilar to AlphaGo could be exploited to help science resolve impor-
tant real-world problems in healthcare but also in other fields. This
would be a good research program. Google seems to also expect
to implement some business thanks to a commercialization of new
deep learning AI powers to collect appropriate information and gen-
erate abductions in some advantageous fields. Simply checking the
Wikipedia entry DeepMind (https://en.wikipedia.org/
wiki/DeepMind),16 [DeepMind is a British artificial intelligence
company instituted in September 2010 and took by Google in 2014,

15 Some notes on the area of the so-called automated scientific discovery in
AI cf. ([16] chapter 2, section 2.7 “Automatic Abductive Scientists”).

16 Date of access 10 of January, 2019.



the company created the AlphaGo program].
Indeed, even if based on what I called in this article locked strate-

gies, and thus far from the highest levels of human creativity, AI deep
learning system and various other programs can also offer chances
for business and a good integration in the market. I think episte-
mologists and logicians have to monitor the use of these AI devices
(of course, when less transparent than the natural and limpid—and
so stupefying—performance of AlphaGo in games against humans).
Recent research in the field of epistemology, cognitive science, and
philosophy of technology17 illustrate that good AI software, which
surely furnishes a big new chance for opportunity and data analyt-
ics, can be transmuted in a tool that does not respect epistemologi-
cal and/or ethical rigor. For example, in the case regarding the com-
putational exploitation of big data, outcomes can inadvertently lead
to epistemologically unacceptable computer-discovered correlations
(instead possibly good from a commercial perspective), but these
tools are sometimes—unfortunately—seriously illustrated as aiming
at replacing tout-court human-based scientific research as a guide to
understanding, prediction and action. Calude and Longo say: “Con-
sequently, there will be no need to give scientific meaning to phe-
nomena, by proposing, say, causal relations, since regularities in very
large databases are enough: ‘with enough data, the numbers speak for
themselves’ ” ([3] p. 595). Unfortunately, some “correlations appear
only due to the size, not the nature, of data. In ‘randomly’ generated,
large enough databases too much information tends to behave like
very little information” (ibid.). I agree with these authors: we cannot
treat some spurious correlations as results of deep scientific creative
abduction, but just as trivial generalizations, even if reached with the
help of sophisticated artifacts.18 I cannot further deepen the problems
regarding issues connected to the impact of computational programs
on ethics and society. In this article, I limit myself to deal with cog-
nitive, logical, and epistemological aspects to the aim of introducing
the distinction between human and machine capacities characterized
by locked and unlocked strategies and its meaning with respect to
intelligent computation.

5 CONCLUSION

In this article, with the help of the concepts of locked and unlocked
strategies, abduction, and optimization of eco-cognitive openness, I
have illustrated some central aspects of the character of cognitive
capacities dominated by different reasoning strategies and related
heuristics, to the aim of shedding new light on the epistemological as-
pects of deep learning machines. Taking advantage of my studies on
abduction, I have contended that what I call eco-cognitive openness
is weakened in the case of famous computational programs such as
AlphaGo, because their cognitive capacities are governed by locked
abductive strategies. Instead, unlocked abductive strategies, which
are in tune with what eco-cognitive openness requires, qualify those
high-level kinds of abductive creative reasoning that are typical of
human-based cognition. Locked abductive reasoning strategies are
much simpler than unlocked ones to be rendered at the computational
level: they indeed take advantage of what I called a autoimmunity that
grants the limitations that preclude the application of strategies that
are not related to “pre-packaged” scenarios, strategies that would be
foreign to the ones that are strictly intertwined with the components
of a given scenario.

17 Relatively recent bibliographic references can be found in my book [15].
18 On this problem and other negative epistemological use of computational

programs, cf. the recent [3].
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Typifications, Play, and Ritual
Michael Barber1

Abstract. Recent anthropological analyses (e.g., [4], [7], [13], [14])
have suggested similarities between play and rituals, and have even
gone further to interpret ritual as derivative from play in accord with
R. Bellah’s claim that “Ritual is the primordial form of serious play
in human evolutionary history” [3]. Perhaps, though, such an explo-
ration of origins, instead of tracing back play and ritual to an evo-
lutionary history that begins with other species, might rather under-
take a genetic phenomenological investigation, excavating strata of
meaning, which activities such as play or ritual both presuppose and
which can be located in the everyday life-world. The phenomenolog-
ical tradition of Edmund Husserl and Alfred Schutz has articulated
the structures of that everyday world from which entire spheres of ac-
tivity (referred to by Schutz as “finite provinces of meaning”), such
as theory itself, phantasy, dreaming, play, religion, or art, arise and
distinguish themselves. Typifications, that is, typical, regularized pat-
terns of acting and interpreting, characterize everyday life and other
provinces of meaning, and this paper will show how play constitutes
itself on the basis of such typifications and how ritual also depends
on typified patterns and modifications of the experience of play. Rit-
ual and play reveal a pervasive creativity in the lives of animals and
humans.

1 TYPIFICATIONS IN THE SCHUTZIAN
LIFE-WORLD

In Schutz’s account of the life-world, typifications, that is, typical
patterns of acting, including the rules and classification systems of
language by which objects are typified (e.g. as apples, dogs, etc.),
interact with one’s interests or values, more or less ranked and sys-
temized and known as “relevances” (specifying what is of relevance
to one) [19]. In everyday life, one is above all pragmatically engaged,
seeking to master one’s world to one’s own satisfaction (and in more
reflective cases in accord with the overall meaning of one’s life in
the face of the fundamental anxiety one faces about one’s death).
Even the child’s haphazard movements, when they yield satisfactions
(e.g., in breast-feeding), result in those satisfactions becoming rele-
vant, and the infant has the sense that she “can do it again,” that is,
repeat the behavior (pursing one’s lips and sucking) that has pre-
viously brought about such satisfactions. Hence the infant acquires
in its stock of knowledge (in a non-discursive sense) the easily-re-
evocable typification that this type of behavior enacted in the pres-
ence of one’s mother’s breast can yield such satisfaction. Husserl
amplifies this point when he claims that when a child learns what a
scissors is and how to use it one single time, she is able from then on
to recognize any future scissors she encounters and put it to use—the
typification of “scissors” becomes sedimented in her stock of knowl-
edge and partially constitutive of it. Any future encounter with scis-
sors can evoke this typification not through inference, reflection, or

1 Saint Louis University, United States, email: michael.barber@slu.edu

ratiocination, but simply through passive synthesis or association,
immediately issuing in action.

Likewise, the infant might enjoy the warmth of being held in its
parent’s arms, but suppose it finds itself physically on the other side
of the room from its parents, the space between it and its parents then
becomes a kind of imposed relevance, that is, it now becomes rele-
vant to come to terms with that distance, to work around it, in order to
rejoin its parents (its ultimate intrinsic relevance). Then, perhaps, it
might put into practice the typical pattern of crawling (which it must
have already acquired through hit or miss practice or the imitation
of others) in order to overcome this imposed relevance of distance.
Indeed, such human creativity regularly appears on a higher level
when someone experiences an imposed relevance upsetting its typi-
cal ways of action (e.g. in the case of a disability) and yet learns to
deploy other typical behaviors to come to terms with the imposed rel-
evance that impedes its reaching its ultimate goal (or relevance). It is
significant that, for Schutz’s account of the pragmatic world of every-
day life, bodily engagement (as working) with the world defines its
form of spontaneity, and one’s understanding of reality depends on
a bodily location, a 0-point, from which one accesses other strata of
reality by physical locomotion, by the movement from here to there,
in which one seems repeatedly and preeminently to have the sense
“I can do it again” [19]. It is as though the adult in pragmatic ev-
eryday life still retains as a kind of deep-seated corporeal memory,
as a deep layer within its genetic constitution, the bodily processes
through which people first typify their world and achieve primitive
mastery through typified action.

2 PLAY’S LIFE-WORLDLY ROOTS IN
TYPIFICATIONS

In the enactment (or performance) of typifications, one can find the
life-worldly roots of both play and ritual. For instance, insofar as
play is concerned, having utilized a scissors already and upon en-
countering a new pair, the child (without discursively knowing it)
actually engages in a kind of experiment, anticipating that the new
scissors, although differing in some respects from the earlier pair,
will function as the previous pair did. One’s successful execution of
such a typification reinforces and strengthens one’s future employ-
ment of that typification in regard to scissors and thereby heightens
one’s sense of the ability to manage the environment (in this small
detail). In a sense the very enactment of a typification consists in fac-
ing an object that never exactly coincides with one’s typification, and
this lack of coincidence, this not according with one’s typification
(based on previous experience), this exceeding what the typification
encompasses, presents a small kind of imposed relevance that one
brings under one’s control by employing the typification and finding
it effectively functional.

This indeterminism or uncertainty, even if momentary, in imple-



menting typifications, that is, in being passively stimulated to bring
the typification in one’s stock of knowledge to bear on an object like
and yet different from previous ones, is also reflected in higher level
play and games whose outcome may never be completely predictable
[10], [17]. When one’s typification proves effective, a child at some
level acquires some mastery over its pragmatic environment, and,
perhaps at some level feels satisfaction, increased confidence, or even
inchoate joy. In like manner, when children engage in “pretend-play,”
such as acting as if a banana were a telephone receiver and holding it
up to their ear, they typify the banana as a kind of telephone receiver
(on the bases of their similar shapes), with a kind of anticipation and
playfulness. This typification proves successful, demonstrates a kind
of mastery, and confers a kind of joy insofar as this entire process
seems to exhibit, through mimicry, the “same” (typical, like and yet
different) behavior that their parents do when speaking on the phone.

Like children, animals, too, engage in pretend play, as when, for
instance, young female chimpanzees cradle sticks, tree bark, or small
logs (until they have real offspring), by projecting themselves into a
typified type of behavior like (and unlike) that engaged in by actual
chimpanzee mothers. Moreover, one might speculate that such chim-
panzee play-behavior, a kind of “virtual” mothering behavior, satis-
fies the young chimps by providing them with a sense of environ-
mental mastery insofar as such behavior conforms with that of “ac-
tual” chimpanzee mothers. In addition, animals repeatedly engage in
play, pouncing on each other, and more powerful dogs or cats, for in-
stance, allow themselves to be attacked by weaker animals, exchang-
ing roles, biting each other softly, or wrestling with claws retracted.
It is as though such animals project themselves into a virtual com-
bat situation—and of course, when any animal encounters an actual
attack by another animal, it, no doubt, faces an imposed relevance,
interfering with any other relevances the attacked animal may be pur-
suing (e.g. finding food) and requiring it immediately to master its
perilous situation. In playful animal conflict, it is as though the an-
imals playfully generate a virtual battle, an imposed relevance, just
for the sake of engaging in other typical behaviors (e.g. virtual biting,
virtual scratching) and virtually coming to terms with that imposed
relevance—as if the struggle and feeling of resultant success were
of pleasure all by themselves. Animal and human enjoyment of pre-
tending, then, demonstrates the playful dimensions of deploying typ-
ifications, namely, the passive creative synthesizing (without rational
inference) by which animals and humans conjoin under a typification
an object or event previously encompassed by it and something like
that object or event, but also dissimilar to it and even exceeding it
(e.g., a virtual combat). Such a playful deployment of typifications
reenact both the challenge of coming to terms with what might seem
to interrupt one’s regularized schemes of interpretation or pragmatic
mastery and also the enjoyment of striving to overcome such imped-
iments and actually overcoming them—even if all this is done only
virtually. Typifications pertain to the very structure of play [2], [4],
[7], [20].

3 RITUAL’S LIFE-WORLDLY ROOTS IN
TYPIFICATIONS

Ritual, by contrast with play, faces a different kind of imposed rele-
vance, which interrupts regularized, typified patterns and which one
must grapple with by means of a new level of typifications. For ritual,
imposed relevances are not benign interruptions to be overcome plea-
surably by playful forays, but rather painful disruptions in desperate
need of being repaired or brought into some kind of equilibrium.

In examining how animals transform their ordinary behaviors

into ritualized ones (like ritual dances by which animals demarcate
their territories against invaders) in “uncertain or conflicted circum-
stances,” Ellen Dissanayake identifies a similar, human ritualized be-
havior that is “biologically” based, universal, and cross-culturally ob-
served and reparative: the gestural and vocal interactions between
a mother and an anguished infant that are drawn from adult con-
texts of affinity and intimacy and that are rather typical, such as mu-
tual gazes, soft and high-pitched sounds, sympathetic touching, pats,
hugs, and kisses [7]. Likewise, Roy Rappaport refers to psycholo-
gist Erik Erikson’s suggestion that the pre-verbal infant’s experience
of its mother resembles the worshiper’s experience of God accord-
ing to Rudolph Otto. While the mother is “mysterious, tremendous,
overpowering, loving, and frightening,” trust and calm is restored
through regular stereotyped “daily rituals of nurturance and greeting”
between mother and infant [16]. One can imagine an infant, who is
typically experiencing comfort, being interrupted by an imposed rel-
evance, such as hunger, physical pain (e.g., gas, or teething pains),
or psychological terror about losing its mother. The imposed rele-
vance here cannot be seen as opening an opportunity for a typically
playful response, but rather there is a need for security, reassurance,
calm—and one can imagine a mother’s cooing or rubbing the child’s
back or kissing—all stereotypical, typified patterns that mothers uni-
versally deploy—restoring at a bodily level a tranquility that can also
transform the infant’s psyche.

Here the mother makes use of typical, tender physical responses
to pacify and come to grips with an infant’s terrifying, disruptive
imposed relevance, reiterating thereby the structure in which a rup-
ture upsets comfortable typical ways of proceeding only to be healed
or removed through newly developed typified patterns, as when the
child crawls to be with its distant parents or when someone comes
to terms with a disability by new typified behaviors (e.g., by using a
dictating machine to take notes when one’s writing arm is incapaci-
tated). Whether this generalized typification structure will be taken in
the direction of play or toward ritual depends, though, on the type of
the imposed relevance in question and how it is interpreted, whether
it poses merely a challenge to be playfully overcome or whether it
is experienced as a terrifying collapse that desperately requires typi-
cal behaviors to calm a distraught soul and/or to restore a lost order.
Here the model of typical ritual gestures might be traced back to
an almost universally experienced, intimate, foundational corporeal
stratum, namely the typical soothing gestures of a mother allaying
the infant anxieties that disruption imposes [11].

For instance, Dissanayake affirms that rituals “relieve individual
and group anxiety by instilling confidence and fostering a sense of
control over disturbing circumstances” [7]. Iain Morley also observes
that rituals can reduce stress [13]. Regularized, physical ritual acts
and movements, which are themselves typified patterns of action,
precisely help produce such tranquility. Thus, the Manus, as Mar-
garet Mead noted, chant monotonous tones together when cold and
frightened, and Trobrianders produce singsong melodies during a ter-
rifying storm, as Bronisław Malinowski observed. Furthermore, Dis-
sanayake comments on how, because of ritual actions “performed
in a coordinated fashion with others,” those practicing such ritu-
als “were psychologically comforted and felt relieved of tension,”
thereby drawing on “a ‘behavioral reservoir’ that existed in mother-
infant interactions” [7]. Singing, dancing, even breathing in unison,
rhythmic movements of any sort, the beating of drums approximating
the physical tempo of heartbeats, the highly repeated and unchange-
able prayers and movements—all typical of rituals—play a role in
reducing tension in much the way that ritualized, repeated, smooth,
physical caresses by a mother quiet a troubled infant [4], [16]. Kyri-



akidis compares ritual practice to what Mihály Csikszentmihalyi de-
scribes as “flow” [6] in which “one acts with a deep but effortless
involvement that removes from awareness the worries and frustra-
tions of everyday life. Flow assists attention and therefore learning
by helping to focus effortlessly, whilst creating a deep sense of en-
joyment” [10].

To locate such calming ritual behaviors in the pattern of the
Schutzian life-world, that is, as typified responses to imposed rele-
vances with which one must come to terms, it is important to consider
examples of occurrences [impositions, interfering with the regular
pursuit of (intrinsic) relevances and creating anxiety or even terror]
in relation to which rituals are celebrated. Major annual calendarial
changes, such as the disquieting transitions to a new year or passage
into spring or fall, are marked by ritual celebrations, as are major,
apprehensiveness-inducing transitions of life, such as passing from
childhood to adulthood or from adolescence to motherhood. Victor
Turner explains how liminal ritual celebrations accentuate such tran-
sitions with all their fearfulness as a prelude to facilitate a peaceful
accommodation to a new life [21]. Rituals celebrate precarious tribal
or national moments and diminish fears, as when a new chief is in-
stalled or a king crowned. Prehistoric Maltese groups celebrated rit-
uals in relationship to the excess or scarcity of food supplies (in par-
ticular, of the island’s animal population), and the Maring plant trees
as part of the rumbim that celebrates the end of warfare, and they rit-
ually sacrifice pigs when the supply of pigs becomes excessive and
dangerous [12], [16]. Likewise, the Sioux engage in rituals to uphold
Wakan-Tanka, that is, “the true, moral, eternal, harmonious, encom-
passing, unitary order” [16], and throughout history rituals are reg-
ularly used to domesticate impulses and to reinforce moral orders,
perhaps always in danger of deteriorating or collapsing. Finally, as
another example, rituals reassured the impoverished and threatened
Bog Irish immigrants in England, according to Mary Douglas [8].

Clearly there are differences between the “imposed relevances”
with which play and ritual deal: between relevances offering a chal-
lenge to be surmounted playfully (in which the play itself may be of
more value than any outcome) and those that pose a cosmic, momen-
tous, or communal threat to be addressed in ritual.

Several authors discuss how ritual counteracts the everyday life
efforts to master one’s environment through individualistic, rational,
this-worldly strategies. Rappaport, for example, suggests that ritual
usually involves an effort to re-establish a lost sense of communi-
tas among participants. Further, rituals incorporate properties such
as formality, invariance, canonicity, and perdurance to such an ex-
tent that ritual participants feel that they are partaking in activities
that they do not spontaneously produce but that have been handed
down to them by preceding generations and they thereby are part
of a community much larger than themselves and their present [16].
Gregory Bateson points out further that purposive rationality cannot
comprehend the wholeness of the world and so it finds itself inca-
pable of addressing many of the uncontrollable imposed relevances
that rituals handle (e.g. such as death, kinds of suffering and tragedy,
needs for deep healing, irreconcilable differences), and, as such, it
is prone, on its own, to become “pathogenic and destructive of life”
[1]. Perhaps because of the limits of rationality to diminish anxi-
eties produced by such large-sized, imposed relevances or even the
prospect of them, ritual behaviors tend to dive beneath the level of
rational thinking and to immerse themselves in corporeal rhythms,
dance, and music to sooth the troubled spirit, just as a mother’s ca-
resses and sounds pacify the infant in a way that no ratiocination
with the infant would be able to do (if it were even possible). Fi-
nally, when communities reach the end of their resources to come to

terms via pragmatic and rational techniques with the everyday, this-
worldly imposed relevances of cosmic proportions, they turn to the
ritual sphere, in which they look to a power beyond themselves to
entrust their fate to and to relieve anxieties, giving up (and entrusting
over) to it their very effort to come to terms.

Whether such surrender entails fatalism, authoritarianism, or the
suppression of individuality, or whether it relieves one or one’s com-
munity from paralyzing anxieties and makes possible a renewed
courageous engagement with those imposed relevances to make them
somewhat manageable are further questions. It is of interest, though,
that, in the cases of both play and ritual, when imposed relevances
threaten the everyday typifications by which one masters life, both
humans and animals seem able to revert to and indicate by signaling
to each other entrance into an alternative reality that many anthropol-
ogists recognize has “different ontological status” (see [13], [15]) and
that Schutz describes in terms of “finite provinces of meaning,” dis-
tinctive from everyday life. Such provinces of meaning, though, have
their own distinctive epochés by which one enters the province, ten-
sions of consciousness, sense of self, and forms of spontaneity2—in
sum, a distinctive type of activity with its own battery of distinc-
tive typifications. Just as the mother resorts to typified actions (ca-
resses, soft talk with certain accents and tones) to console the child,
agitated by its ruptured expectations, so one resorts to typified be-
haviors in typified provinces of meaning (like play and ritual) in re-
sponse to imposed relevances. When individuals or groups turn to
the typifications (and relevances) of diverse provinces of meaning in
this way—it appears as though it is impossible ever to escape typ-
ifications, whether they are everyday typifications disappointed by
unforeseen impositions or whether they are being used to come to
terms on a higher level with those disruptions.

4 IMAGINATION/CREATIVITY IN
TYPIFICATION, PLAY, AND RITUAL

This effort to think via genetic phenomenology about how play and
ritual can be traced back to everyday patterns of typification also
reveals the creative, imaginative dimensions of human, and even an-
imal, consciousness. In the case of typifications, it is as though the
mere acquaintance with the pleasurable experience of breast feed-
ing or with the handling of a scissors cannot just be stuck as just
a one-time occurrence, inertly there in one’s experience; but rather
these experiences by being immediately typified equip their recipi-
ents with a creative potential to deal productively with future expe-
riences of similar objects. Such objects of future experience are not
taken just to be there like dumb objects, isolated from other objects
and events, even if those objects and events are not exactly the same
as what one already has experienced, but actors through typifying

2 Patrick Bateson describes how dogs signal their readiness for play by drop-
ping down on their forelegs and wagging their tales, how cats crouch their
heads low, arch their backs, and paddle their back legs, and how chim-
panzees put on a special “play face” [2]; and Dissanayake discusses how
such movements indicate a desire to enter an “as if” or “other world” or
“meta-reality” that differs from present reality [7]. These “announcements
of a new reality” parallel the epochés by which, according to Schutz, one
departs everyday reality and embarks upon an alternative province of mean-
ing [19]. Of course, a question here is how animals engage in “provinces
of meaning” that one might have thought were available only for human
beings. In addition, one can find parallels between Schutz’s descriptions of
finite provinces of meaning in these discussions of play and ritual, whether
one is talking about humans or animals. For instance, play and ritual both
serve no functional purposes in contrast to the everyday life world and break
with everyday life through a kind of epoché, as we have seen (see [4], [9],
[10], [13], [16], [17]), and they engage in different goals than everyday life
and hence have distinctive forms of spontaneity.



give them meaning and make possible future action. Even the pas-
sive synthesis by which one recognizes similarity displays creativity
insofar as one brings one’s previous experience to bear on a different
but like individual. One not only refuses to see that new individual
as just a distinct individual but also envisions it as more, as bearing a
likeness to what one has previously experienced, as something with
which an agent will be able to interact as he or she has done with
previous experiences of like individuals, thereby enhancing future
action. It is not surprising, then, that Dorion Cairns remarks that “the
fundamental tendencies of mental life are tendencies to identify and
to assimilate” [5]. In fact, this deployment of typifications exhibits
a kind of experimental attitude toward life, in which like the sci-
ences, one—perhaps without even being reflectively aware—takes
one’s typification as hypothetical, ready to see if it works out or if
it is frustrated and does not seem to apply to the object or event at
hand—in which case one will withdraw it or venture another. What is
also of interest is that animals too exhibit such basic-level creativity
by operating with typifications even though they do not reflect upon
them.

Likewise, the mimicry of play, instanced when a child deploys a
banana as a telephone receiver, effect an original synthesis that ob-
servers might not have expected between two quite separate objects
sharing some level of similarity; one is reminded of poets whose in-
ventive metaphors, artistically conjoining objects never thought to-
gether before, such as the “rosy-fingered dawn,” evoke admiration.
Likewise, animals producing virtual mothering or virtual conflict
show themselves able to creatively transcend empirical givens, such
as actual chimpanzee mothering or real life-and-death animal con-
flicts, transposing such experiences into phantasied, imagined do-
main, where a chimp carries a log or a “pseudo-fight” is enacted,
without real biting or scratching and with claws retracted. That ani-
mals engage in such phantasied behaviors, in a way that seems purely
for the sake of their enjoyment, indicates further a capacity for cre-
ative imitation, an ability to break out from the entire context of ev-
eryday life and the pragmatic motives governing it. Animals and hu-
mans appear then able to build a parallel reality and to not be bound
by the seriousness of the everyday life world that we all start with.

And just as play involves even animals setting aside the every-
day life-and-death struggle with another animal attacker and imag-
inatively replicating a phantasied imposed relevance of this kind of
attack only for the seemingly pure enjoyment of a fictive struggle,
so in ritual people, facing life-and-death imposed relevances of of-
ten cosmic proportions (such as the destructiveness of an earthquake
or hurricane), can let go the misery resulting from such cataclysms
and transpose themselves to a separate sphere, that of ritual. In ritual,
the resilient spirit of the community is solidified, hope is provided,
and space is made for positive, constructive responses. In a similar
way, it is possible for mothers upon finding their children disturbed
by physical or psychological distress from which they seem unable
to escape to engage them with ritualized caressing or voice tones that
remove misery and restore tranquility. In fact, ritual, as part of the
finite province of meaning of religious experience runs parallel to
many other non-pragmatic provinces of meaning, such as phantasy,
dreaming, theoretical science, literature, and play—in all of which
one or one’s community creatively leap with freedom out of world of
everyday life whose pressing pragmatic imperatives can easily hold
us in bondage. From typifications to play to ritual, which pertain to a
kind of continuum, one can see the great creativity and imaginative
capacity of humans and animals to transcend the world that seems to
allow no escape and to do so in a variety of ways that no one could
have predicted. In this the non-pragmatic provinces of meaning re-

semble their prototype, Husserlian phenomenology, whose epoché
broke open a novel, unexplored realm that the natural attitude never
could have imagined.

REFERENCES
[1] G. Bateson, Steps to an Ecology of Mind, Ballentine, New York, 1972.
[2] P. Bateson, ‘Play and creativity’, Ritual, Play, and Belief, in Evolution

and Early Human Societies, Cambridge University Press, Cambridge,
University Press, 40–52, (2018).

[3] R. Bellah, Religion in Human Evolution, MIT Press, Cambridge, Mas-
sachusetts, 2011.

[4] G. Burghardt, ‘The origins, evolution and interconnections of play and
ritual: setting the stage’, Ritual, Play, Belief, in Evolution and Early Hu-
man Societies, Cambridge University Press, Cambridge, 23–39, (2018).

[5] D. Cairns, ‘Applications of the theory of sense-transfer’, Animism, Ad-
umbration, Willing, and Wisdom: Studies in the Phenomenology of Do-
rion Cairns, Zetabooks, Bucharest, 50–88, (2012).

[6] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience,
Harper and Row, New York, 1990.

[7] E. Dissanayake, ‘From play and ritualisation to ritual and its arts:
sources of upper pleistocene ritual practices In lower middle pleis-
tocene ritualized and play behaviors in ancestral hominins’, Ritual,
Play, and Belief, in Evolution and Early Human Societies, Cambridge
University Press, Cambridge, 87–98, (2018).

[8] M. Douglas, Natural Symbols: Explorations of Cosmology, Barrie and
Jenkins, London, 1973

[9] Y. Garfinkel, ‘Dancing with masks in the proto-historical near east’,
Ritual, Play, and Belief, in Evolution and Early Human Societies, Cam-
bridge University Press, Cambridge, 143–169, (2018).

[10] E. Kyriakidis, ‘Rituals, games, and learning’, Ritual, Play, and Belief,
in Evolution and Early Human Societies, Cambridge University Press,
Cambridge, 302–308, (2018).

[11] L. Malafouris, ‘Play and ritual: some thoughts from a material-culture
perspective’, Ritual, Play, and Belief, in Evolution and Early Human
Societies, Cambridge University Press, Cambridge, Cambridge Univer-
sity Press, 311–315, (2018).

[12] C. Malone, ‘Manipulating the bones: eating and augury in the Maltese
temples’, Ritual, Play, and Belief, in Evolution and Early Human Soci-
eties, Cambridge University Press, Cambridge, 187–207, (2018).

[13] I. Morley, ‘“The pentagram of performance: ritual, play and social
transformation’, in Ritual, Play, and Belief, in Evolution and Early
Human Societies, Cambridge University Press, Cambridge, 321–332,
(2018).

[14] I. Morley, ‘Pretend play, cognition and life-history in human evolution’,
Ritual, Play, and Belief, in Evolution and Early Human Societies, Cam-
bridge University Press, Cambridge, 66–86, (2018).

[15] R. Osborne, ‘Believing in play and ritual’, Ritual, Play, and Belief,
in Evolution and Early Human Societies, Cambridge University Press,
Cambridge, 316–320, (2018).

[16] R. Rappaport, Ritual and Religion in the Making of Humanity, Cam-
bridge University Press, Cambridge, 1999.

[17] C. Renfrew, ‘Introduction: play as the precursor of ritual in early hu-
man societies’, Ritual, Play, and Belief, in Evolution and Early Human
Societies, Cambridge University Press, Cambridge, 9–19, (2018).

[18] C. Renfrew, I. Morley, and M. Boyd, eds., Ritual, Play, and Belief,
in Evolution and Early Human Societies, Cambridge University Press,
Cambridge, 2018.

[19] A. Schutz, ‘On multiple realities’, Collected Papers 1: The Problem of
Social Reality, Martinus Nijhoff, The Hague, 207–259, (1962).

[20] P. Smith, ‘Pretend and socio-dramatic play in evolutionary and devel-
opmental perspective’, Ritual, Play, and Belief, in Evolution and Early
Human Societies, Cambridge University Press, Cambridge, 53–65,
(2018).

[21] Victor Turner, The Ritual Process: Structure and Anti-Structure, Aldine
Publishing Company, Chicago, 1969.



Habitual Behavior as a Bridge between I-intentionality and 
We-intentionality 


Raffaela Giovagnoli 
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Abstract. Habitual behavior represents a fundamental 
part of the nature of human beings in both the individual 
and social contexts. It presents two dimensions: 
“routine” and “goal-directed behavior” that organize 
human life and reduce its complexity. Habitual behavior 
could represent a plausible notion to bridge the gap 
between individual and joint intentions. 


1 COLLECTIVE INTENTIONALITY AND 
THE “CENTRAL PROBLEM”


													Intentionality is the propriety of the human mind to 
be directed at objects, state of affairs, goals and 
values. Collective Intentionality (CI) can be 
interpreted likewise and corresponds to that 
propriety of the human mind to be “jointly” 
directed at objects, states of affairs, goals and 
values. There are some important modes in which 
CI appears in everyday life: shared intention, joint 
attention, shared beliefs, collective acceptance, 
collective emotion. These topics are at the center of 
several cross-disciplinary researches. CI is the key-
notion to understand the nature and structure of 
social reality and the very modalities that occur in 
human construction of the social world. Even 
though we can trace back accounts of social 
interactions, practices, social consciousness in the 
philosophical tradition, CI in the contemporary 
debate focuses on the conceptual and psychological 
features of joint or shared actions and attitudes i.e. 
actions and attitudes of groups or collectives, their 
relations to individual actions and attitudes, and 
their implications for the nature of social groups 
and their functioning. It addresses to the study of 
collective action, responsibility, reasoning, thought, 
intention, emotion, phenomenology, decision-
making, knowledge, trust, rationality, cooperation, 
competition, and related issues, as well as their role 
in social practices, organizations, conventions, 
institutions, and ontology. 


   						If I want to go to the cinema to see “The Wolf of 
Wall Street” tomorrow and you want to go to the 
cinema to see “The Wolf of Wall Street” tomorrow, 
does it mean that we have a collective intention? 
No, to have a collective intention does not mean to 

summate individual intentions. CI is irreducible to 
individual intentionality, and by virtue of this 
irreducibility CI can be attributed to participants as 
a group. Obviously, the fact that shared intentions 
are had by a group does not block attribution of the 
intentionality in question to the individuals. So, for 
instance, to say that a group intends to go for a 
walk is the same as saying that the participating 
individuals intend to go for a walk. Some 
philosophers criticize the Irreducibility Thesis and 
propose the Individual Ownership Thesis namely 
the basic claim that each individual has a mind of 
her own and has a sort of intentional autonomy that 
is incompatible with the view that individual minds 
are somehow fused when intentional states are 
shared.


   					Consequently, the central question in the field of 
CI is a plausible consideration of the ontology of 
individual agents and their psychological states and 
interactions. There are ontological (do group agents 
exist?), conceptual (how do we consider social 
concepts?), and psychological (how do we 
understand collective mental states?) dimensions 
that characterize the field of CI [1]. These questions 
are relevant to the traditional debate between 
methodological individualism and collectivism in 
the social sciences. We'll consider the role of habits 
in human individual and social ordinary life and we 
move from the fact that habitual behavior is 
fundamental to organize our activities in individual 
as well as in social contexts. Instead of considering 
classical and revised theories of intentionality, we 
prefer to focus on the notion of habit to understand 
the process reduction of the complexity of daily 
life, Habits play an important role  and also in 
social life where we take part to informal joint 
practices as well as to institutionalized ones. We 
cooperate to create and to participate in social 
practices because we need to organize our life 
together with other people to create common 
spaces that have different functions and 
significance depending on the corresponding 
practice (for example, we all pay the ticket to take a 
train and many of us participate in religious rituals 
or similar activities). 
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2 D I M E N S I O N S O F H A B I T U A L 
BEHAVIOR 


The relationship between habits and rituals could 
provide the way to harmonise I-intentionality and 
We-intentionality. We begin with presenting a 
plausible sense for the notion of habit, which goes 
beyond the mere repetitive behavior or routine. 
Starting from Latin, there are two meanings for the 
English word “habit”. The first is Habitus, that 
entails a deliberate disposition to act; the second is 
Consuetudo, that implies the constant repetition of 
an event or behavior without deliberation. The 
traditional philosophical sense of habit (Habitus) is 
introduced by Aristotle to characterize the notion of 
“virtue”. Virtue can be considered as a habit in the 
sense of a disposition to deal with good or bad 
emotions and tendencies. Aristotle, conceived this 
notion of habit as a mechanism that is analogous to 
natural mechanisms, and somehow guarantees the 
uniform repetition of facts, acts, or behavior by 
eliminating or reducing effort and fatigue and so by 
making them pleasant. 

	  We argue for a plausible account of the notion of 
habit that rests on some aristotelian thesis also by 
reference to researches in psychology and 
neuroscience. A habit is not only a mere 
automatism or a repetitive behavior, but also a 
stable disposition for action (practical skill), that 
implies the relationship between automatism and 
flexibility. The same process is involved in our 
participation and constitution of social informal and 
formal spaces [2] [3] [4] [5]. 


   Habits have a very important function in 
individual life because they reduce the complexity 
of daily life; they make our daily life easier and 
pleasant. Naturally, we can control habits 
concerning the satisfaction of our basic natural 
needs. Depending from natural and social 
environment, we develop different habits that 
organize the way to satisfy our human needs. The 
difference between habits and automatism or 
simple routines is that the former give control over 
actions, while the latter don’t [6]. According to this 
view, that crosses philosophy and neurobiology, the 
habit is a “stable disposition for self-development”.


   Graybiel observes a plausible relation between 
habits and goals because goals are explicitly 
present during action evolution and selection and 
they increasingly blur the more an action is 
repeated. Along this line, we find interesting 
studies in the ambit of neural-dynamic logic [7].We 
have examples of habits as fixed action patterns 
namely complex repetitive behavior in non-human 
animals and repetitive behavior and thoughts in 
human pathological conditions. She concludes that 
a habit completely disengaged from a goal becomes 

either a stimulus-response pair for a non-human 
animal or a pathological trait for human beings. 
Her theoretical contribution resides in the 
classification of habits as “neutral”, “good” or 
“bad” where good habits seem to be those selected 
to guide our behavior and bad habits those that 
powerfully take control on our behavior. This 
categorization seems to make possible to include 
goals as drivers of habits. Graybiel also maintains 
that habits play an important role in social life; in 
this case they are “shaped” as mannerism and 
rituals.


   	The associationist view grounding William 
James’s research seems far from explaining the 
complexity of human habits. Consequently, 
Bernacer and Murillo [8] underscore three 
important results from a deep study of the 
Aristotelian analysis of habits in Nicomachean 
Ethics. An acquired habit is an acquired disposition 
to perform certain types of actions; this disposition, 
usually acquired by means of repetition of one or 
more actions, makes the exception of these actions 
prompter, more spontaneous and autonomous from 
continuous supervision, all of which generally 
leads to a better performance. If the habit increases 
cognitive control of actions it can be termed a 
habit-as-learning; on the contrary, if it increases 
their rigidity it is a habit-as-routine. Habits-as-
routines are fundamental for the cognitive 
enrichment of actions entailed by a variable amount 
of practice (efforts are required to engage in 
activities and performances). Differently, habits-as-
learning are not merely acquisition of a way of 
acting; they entail a cognitive capacity connected to 
the habit that can flexibly used in different 
contexts. 	Habits-as-routines and habits-as-learning 
have a different relation to consciousness. Habits-
as-routines represent a fully unconscious 
performance. Habits-as-learning reduce or 
eliminate consciousness of basic elements of the 
action in order to concentrate on higher goals, 
while preserving at all times the possibility of 
recovering them for conscious attention. It is 
worthy to underline the contribution of the 
Aristotelian distinction between good and bad 
habits, that intends good habits as those enhancing 
the agent’s control to reach certain goals. 
Consequently, we can clarify the relation between 
habits and emotions. The habits-as-learning entail 
control and for this reason they are fundamental to 
reach personal goals. This is the process that favors 
the agent’s pleasure and happiness.


	   Some authors intend the idea of “habit learning” 
as the performance of an action, previously learned 
after many repetitions namely in an unconscious 
manner, and whose execution is inflexible and 
independent to the outcome [9]. This perspective 
requires an integration with other perspectives that 



recognize the importance of the sensitivity to the 
outcome and of different levels of flexibility and 
feedback. According to Lombo and Giménez 
Amaya, a neurobiological view of “habit learning” 
and recent experimental contributions (especially 
those of Graybiel) are consistent with the 
Aristotelian notion of “habit”. Human habits are 
essentially based on two aspects: (a) the stable 
character of an acquired quality; and (b) the 
capacity for new actions that arises from that 
quality. 


	

3  RITUALS AS SOCIAL HABITS


Recent studies from cognitive neuroscience, 
biology and psychology show converging 
perspectives on the organization of goal-directed, 
intentional action in terms of (brain, computational) 
structures and mechanisms. They conclude that 
several cognitive capabilities across the individual 
and social domains, including action planning and 
execution, understanding others’ intentions, 
cooperation and imitation are essentially goal-
directed [10] [11] [12] [13]. To form habits we need 
goal representations both in the individual and 
social contexts. They have a crucial role in  
planning and control of action; moreover, action 
understanding and imitation are performed at the 
goal rather than the movement level.  It seems that 
the motor system is highly engaged in anticipatory, 
simulative and generative processes. Some authors 
introduce an interesting speculative perspective, 
and make the case that the same predictive 
mechanisms provide both a “linkage with the 
future” required for taking goal-directed action, and 
a “linkage with others” required to act socially. We 
can observe a significative reformulation of basic 
concepts in cognitive and behavioral sciences, and 
a common theoretical view—a motor-based (or 
action-based) view of cognition — is emerging 
across disciplines. They provide a description of 
the abilities of action execution, its planning, and 
understanding of others’ intentions as essentially 
g o a l - d i r ec t ed an d s e r v ed b y t h e s ame 
representations, which are action- oriented and 
involve deeply the motor apparatus.


   	Routines and goal-directed behavior characterize 
habits both in the case of individual and social 
behavior. We create our own habits while fulfilling 
our basic needs and desires. But, we are social 
beings and we need to organize our activities also 
to participate in different social practices. For 
example, rituals have the important function to 
create social spaces in which individuals can share 
emotions, experiences, values, norms and 
knowledge. The function to share experiences is 

fulfilled when there exist a social space created by 
cooperation for reaching a certain goal. If we want 
to get a positive result about the extension of habits 
in the social dimension we need to move from a 
sort of goal-directed activity that we can perform 
together. We create social habits in the form of 
rituals by using the “status function”, which is a 
peculiar kind of function from which we constitute 
the social world.. Rituals are characterized by two 
special features: (1) “collective intentionality” that 
expresses our social nature and (2) collective 
imposition and recognition of a status that deserve 
to concretely create institutions.


	   The “constitutive rule” is essential to the process 
of constitution of institutions in general [14]. The 
canonical form introduced by Searle is:


Status Function = X counts as Y in C


   	For instance, a certain expression counts as 
promise in a certain context C. So, it is 
fundamental to assign functions to objects and 
persons. We use ordinary language to represent 
state of affairs and norms, namely to understand 
what are the conditions of satisfaction of different 
speech acts (assertions, commands, promises etc.). 
Beyond the classical dimensions of syntax, 
compositionality and generativity, there is a 
fundamental dimension which generates public 
norms i.e. “deontology”, which is characterized by 
the speech act of “declaration”.  For example, if we 
say “This is my house” or “This is my coach”, we 
not only represent a state of affairs, but we create a 
deontology which manifests itself in rights, 
obligations and duties as well as in the acceptation 
of the corresponding speech acts from the part of 
the interlocutors. 


	   We pointed out the fundamental process of 
assigning functions to objects or to some non- 
physical entities, which is a form of symbolization 
aiming at creating institutional reality. This process 
is at the basis of the institutionalization of rituals 
and works in every community even though social 
practices in general are culturally characterized. 
Status Function apart, there are other two basic 
notions that occur in the explanation of successful 
functioning and stability of social institutions. The 
first is “cooperation” as a “strong” form of CI and 
the second is “collective recognition” as a “weak 
form” of it. We think that these two forms of 
intentionality correspond to the notion of 
“flexibility”, which imply the voluntary control 
over our actions and to the notion of “rigidity”, 
which characterize the mere following rules in the 
sense of routinely behavior. 


	 A very famous example of a ritual (Searle 
often refers to) is “marriage”. First, we need 



to be moved to act in a certain way. We-
Intentionality works when we want to do 
something together (we have a collective 
intention) so that we can cooperate to 
achieve our common goal. As we already 
anticipated, CI presents a weak form 
(collective recognition) and a strong form 
(cooperation). Both are crucial for rituals, in 
our case marriage. Now we can see how a 
social transition from one status to another is 
performed through an institutionalized ritual: 


	•	We have “collective recognition”, which 
means that the couple simply accepts the 
institution of marriage prior to actually 
getting married. 


	•	But, the actual marriage ceremony is an 
example of active cooperation, in which the 
couple enters in a new social situation 
acquiring new social statuses consequently.


	•	 This fact obtains by the performance of 
the speech act of promise. 


	•	The social context requires also the speech 
act of declaration from the part of the 
institutional figure who has the suitable 
deontic powers to celebrate the rite and to 
ascribe the new status to the couple.  


4  CONCLUSION 


We propose to consider the notion of “habitual 
behavior” and its dimensions of “routine” and 
“goal-directed behavior” as a bridge between 
individual and social intentions. A research that 
crosses philosophy and neuroscience/neurobiology 
could explain the functioning of habits and can 
extend to the social sphere of rituals and their 
function in individual and interpersonal contexts. 
The example of a ritual like marriage shows that 
we need to routinely follow the procedure and, at 
the same time, to actively cooperate in a joint 
activity to create a new social situation. 
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