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Abstract. In this paper we demonstrate the use of Multi-
dimensional Archive of Phenotypic Elites (MAP-Elites), a divergent
search algorithm, as a game design assisting tool. The MAP-Elites
algorithm allows illumination in the game space instead of just de-
termining a single game setting via objective based optimization.

We showed how the game space can be explored by generating a
diverse set of game settings, allowing the designers to explore what
range of behaviours are possible in their games.

The proposed method was applied to the 2D game Cave Swing.
We discovered different settings of the game where a Rolling Hori-
zon Evolutionary Algorithm (RHEA) agent behaved differently de-
pending on the selected game parameters. The agent’s performance
was plotted against its behaviour for further exploration, which al-
lowed visualizing how the agent performed with selected behaviour
traits.

1 Introduction

In the context of video games, the search space can be seen as the
game space, defined by all the possible combination of game param-
eters (such as gravity, distance between objects, force applied when
jumping, etc.). Search algorithms aim to find optimal game parame-
ters for a particular game evaluation function (fitness function) by ex-
ploring the game space. The solution to the search problem is there-
fore a parameter combination that gets the highest score from the
fitness function. However, while search algorithms traditionally fo-
cus on finding the best combination of game parameters, finding a set
of diverse solutions that lead to "good” games can also be interesting,
especially from a design point of view.

Recent literature has explored the game space to find different
game variants. Isaksen et. al. used Monte Carlo Tree Search (MCTS)
to automatically test the difficulty of various points in the game space
[7]. The authors used a player model based on human motor skills
(precision, reaction time and actions per second), allowing to retrieve
a certain point in the game space linked to the desired difficulty level.
Few other studies have focused on finding game variants associated
to different agent behaviours instead of level difficulties. Tremblay
et. al. compared MCTS with different search algorithms (A* and
Rapidly-exploring Random Trees) to explore the player trajectories
in platform games [16]. Different game levels were hand crafted and
several game solutions were found for each single level. Game space
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has also been explored to find unique game variants by clustering
the behaviours found for an agent playing different game levels [6].
However, these methods do not allow for automatic exploration of
different playing behaviours by searching the game space.

Procedural Content Generation (PCG), in the context of video
games, refers to the use of software to automatically generate con-
tent [14]. Content can be in the form of, for instance, game assets
(such as textures, 3D models, etc.) sound, dialog trees or mechan-
ics. Given its programmatic nature, this technique can accelerate the
video game development cycle, reducing the development cost. Con-
sidering the increasing cost of game development [15], PCG is a very
attractive solution, especially for bigger open world games. PCG can
also be used to assist creativity, helping developers to generate new
ideas faster.

This work proposes the use of a search algorithm to automatically
look for multiple, high performing game variants based on differ-
ent desired user-defined playing behaviour. The Multi-dimensional
Archive of Phenotypic Elites (MAP-Elites) algorithm [11] can be
used to illuminate the search space. In this way, different variants of
the same video game (with different parameters) can be played, re-
sulting in diverse ways of playing the game (different behaviours). In
this work a Rolling Horizon Evolutionary Algorithm agent (RHEA)
was used to evaluate each point in the game space, obtaining its per-
formance and behaviour with that particular set of parameters. This
allowed to map the game space to the desired set of features in the
behaviour space. By using MAP-Elites to search the game space,
designers could define the behaviour characterization, which results
in a diverse set of games, where different play styles are required
to achieve the game’s objective. In this work we tested MAP-Elites
on the game Cave Swing, where we found various levels, requiring
many different play styles.

2 Background
2.1 Optimization algorithms

Optimization algorithms have been traditionally used to find the best
solution of a given parameter set. To determine the best solution, a fit-
ness function is required, which can be the score in the game or some
designed heuristics. As most games have a high number of parame-
ters, it is usually impractical to find the best combination by manual
tuning. Parameters can be discrete, where a pre-defined set of values
are used, or continuous, where the values are arbitrary within a de-
fined range. Most optimization algorithms require the user to define
discrete values, such as Grid Search or NTBEA [10]. Continuous pa-
rameter optimization is more complex as more combinations arise.
Popular continuous optimization algorithms are Random Search and



CMA-ES [5]. One advantage of MAP-Elites is that it can be used for
both discrete and continuous optimization problems.

2.2 MAP-Elites

MAP-Elites is a divergent search algorithm which belongs to a fam-
ily of algorithms called Quality Diversity (QD) [13]. The goal of
Quality Diversity algorithms is to find a diverse set of high quality
solutions, instead of a single best solution. By optimizing for both
performance and diversity, these algorithms often outperform purely
objective based optimization by avoiding getting stuck in local op-
tima. Quality Diversity algorithms rely on a user defined Behaviour
Characterization (BC). This BC is used to measure similarity be-
tween solutions, which allows the algorithms to directly search for
diversity. The BC function is domain dependent. In the maze solving
domain [9], where a robot have to navigate in a maze, the BC can be
the trajectory taken by the robot, or the final position of the robot. In
a six legged robot walking domain [2] the BC can be defined by how
much each leg touches the ground. While some QD algorithms like
Novelty Search with Local Competition [9] focuses more on qual-
ity, MAP-Elites puts more emphasis on diversity. This is achieved by
considering multiple dimensions of behaviours separately, instead of
just calculating the distance between two behaviours. This property
makes MAP-Elites especially useful for exploring the search space,
by discovering all kind of different behaviours.

A recent work by Gravina et al. [4] surveys QD algorithms in the
context of game design. MAP-Elites have been used for designing
levels in Super Mario Bros [17], Dungeon levels [1], Bullet Hell Sim-
ulation [8] and to balance player decks in Hearthstone [3]. Our work
differs from these methods by tuning the game’s parameters directly,
not just the parameters of the level generator or using MAP-Elites to
output raw levels. We also visualize the behaviour map in the form of
heatmaps and agent trajectories to get a better insight of the resulting
behaviours.

2.3 Cave Swing

Cave Swing is a tap timing game that consists of travelling along a
cave of certain width and height by shooting a rope that can anchor
to specific locations. A run of the game is successful when an agent
manages to travel all the way along the cave in a certain amount of
time while avoiding accidentally hitting any of the borders of the map
(see Figure 1).

Only two actions are available for this game, a “null” action and
“shooting” action, which throws the rope so that it attaches to the
nearest available anchor location. Once a rope is anchored, the agent
remains hanging from it until another shooting action takes place.
The physics of the game are relatively simple, with the movement
of the hanging agent depends on both the pulling force exerted by
the rope and an external force. The rope is modelled as an elastic of
zero natural length, so its pulling force is determined by its stiffness
k. This force is multiplied by a loss factor (see Table 1 for informa-
tion regarding all game parameters). The external force acting on the
agent can be picture as a gravity (G) that pulls the agent on both
the horizontal (G) and vertical directions(G). The rope can only
attach to the anchor locations, which are placed at a certain height
depending on the map dimensions.

The score of this game is calculated for each time frame, and is
therefore available at all times during a run of the game (see Figure
1). The calculation of the score is based on how much the agent has
progressed in the x direction, how high it is on the vertical direction

and how fast it is completing the level. This is defined in equation 1,
for each given time ¢.

Score =P, +yP, —tP, (1

Where z and y are respectively the horizontal and vertical position
at any given time ¢ (in game ticks). Px, Py and Pt are the points for
x and y positions and the cost per time spent. If the agent succeeds
in the run, it will add to this score a positive bonus, but if it fails a
penalty will be subtracted from its score. The values of all the costs
are defined in Table 1.

2.4 Rolling Horizon Evolutionary Algorithm

To evaluate the different levels, an agent was required, which played
reasonably well. We chose a Statistical Forward Planning agent
called Rolling Horizon Evolutionary Algorithm (RHEA)[12].

At each step RHEA constructs a random sequence of actions,
which is executed in the forward model (given the current state and
an action returns the next state) and a score from the reached state
is calculated. The action sequence gets mutated and evaluated again.
This process is repeated until a time or an iteration budget is elapsed,
and then the first action of the highest-scoring action sequence gets
executed. A shift buffer is used, which allows the agent to keep the
previously evolved sequence, execute only the first action, shift ev-
ery element by one position to the left and fill the last position by a
random element. We avoid total random mutation, which means that
every element of the list cannot be mutated more than once per muta-
tion. The parameters used for the RHEA agent in this experiment can
be found in Table 2. The fitness function in our case is the numerical
score that Cave Swing provides.

Table 1: Game Parameters. Fixed parameters are those that were kept as a
default value. These includes the score-related parameters and parameters that
could affect the selected behaviour features. Explored parameters are those
that were tuned by the MAP-Elites.

Fixed Parameters Default Value
Map Width 2500
Map Height 250
Anchors Height 100
Maximum Ticks 500
Points per x 1000
Points per y 1000
Cost per Tick 10
Success Bonus -10
Failure Penalty 1
Explored Parameters | Min. Value | Max. Value
Number of Anchors 5 20
Gravity in x -1 1
Gravity in y -1 2
Rope Stiffness 0.005 0.1
Loss Factor 0.99 0.99999

3 Methodology
3.1 Experimental Procedure
The code used in this paper is available on Github at:

https://github.com/martinballa/MAPElitesCaveSwing. Our imple-
mentation has two main parts: The MAP-Elites algorithm and the
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Figure 1: Schematics of the game Cave Swing. The agent controlling the character travels along the cave hanging from a rope of stiffness k, which can only
attach to the anchors. G and G, are the horizontal and vertical components of the external gravity force acting on the agent. The game finishes if the agent hits
any of the grey borders of the map or exceeds a certain amount of time, giving a failure result; or if the agents reaches the goal, giving a successful result.
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Figure 2: Average game ticks (X axis) against average game height (Y axis).
The intensity of the heatmap represents the score achieved by the agent, with
the given parameter set (the brighter, the higher scores were achieved by the
agent). White regions correspond to areas where no behaviours were found
(i.e. either impossible to achieve or not explored by MAP-Elites in 10,000
iterations).

Cave Swing with the RHEA agent. For each iteration, the MAP-
Elites algorithm picks a set of game parameters, which gets submit-
ted to the game where it gets evaluated. Cave Swing is a fully deter-
ministic game, but the agent relies on random mutations and random
initial actions, which make its performance different from run to run.
To get a better estimate of the agent’s performance the game is played
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Trajectory plot for agent with ticks 260 and height 140

Trajectory plot for agent with ticks 56 and height 45

Figure 3: Agent behaviour plots for parameters from specific cells chosen
from the behaviour map. Intensity of scatter plot signifies the speed at which
the agent was traveling.

20 times in our experiments and the collected statistics are averaged.
From the collected statistics the MAP-Elites algorithm determines
the position of the given game parameters in the map and updates it.
We used 10, 000 iterations for the algorithm and a 50 x 50 grid for
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Figure 4: Average game ticks (X axis) against average game height (Y axis). The heatmap represents the performance of the agent with the gravity gradient

represented by arrows visualizing the intensity and direction of gravity (3a), the rope stiffness (given by the Hooke constant)(3b), the number of anchors (3c)
and loss factor (3d)

the map in this paper. determined by the value of the chosen BC. For demonstrating the
Each cell in the map produced by the algorithm belonged to a dif- effectiveness of our approach, we selected the following behaviours
ferent behaviour. The horizontal and the vertical dimensions were



Table 2: RHEA Parameters. All of these parameters were fixed for the exper-
iment.

RHEA Parameters Default Value
Sequence Length 200
Number of Evaluations 20
Mutation Rate 10
Shift Buffer true
Total Random Mutation false

for further analysis:

1. Game duration, which was calculated as the average number of
ticks per game run.

2. Average Height (vertical position averaged over the run) of the
agent in pixels throughout the evaluation runs.

Some parameters of Cave Swing would modify the score func-
tion used for evaluation, to avoid this, we fixed those parameters.
We decided to also fix the agent’s parameters as it would result in
additional stochasticity in the evaluations. Please refer to table 1 re-
garding which parameters were explored.

Table 3: parameters used for the MAP-Elites algorithm

MAP-Elites parameters
Mutation rate 4
Initial random evaluations 1000
Total evaluations 10000
Grid size 50 x 50

3.2 Data Analysis

The resulting output of 10, 000 iterations of the MAP-Elite algorithm
(with 1000 of these being initial random permutations) was com-
puted and the corresponding data collected.

The behaviour maps obtained were explored visually using
heatmap style graphs. Each cell of the heatmap contains the parame-
ter set for that agent’s evaluation in the game. If a behaviour could be
found for that set of parameters, the cell contains a coloured value,
which shade was changed depending on the performance value be-
ing represented. Those cells where a behaviour could not be found
remained in white. This allowed to easily identify regions of high
versus low performance within the behaviour space with a contrast-
ing gradient of colours.

Moreover, in order to facilitate the exploration of the found be-
haviours, a graphical interface was designed by making each of these
heatmaps interactive. In this way, each of the cells in the map return
its associated parameters by clicking them and the agent playing that
particular game variant is shown.

4 Results

The proposed MAP-Elites algorithm successfully found relation-
ships between the parameter space and several points in the be-
haviour space, with a 57.6% of the cells containing a solution. Note
that this percentage depends on the selected ranges of the BC and the
number of bins.

Figure 2 shows that the agent’s performance distribution depends
on both of the behaviour features selected. In this map, the horizontal
axis represents the average duration of the game and the vertical axis

represents the average height. The brighter the value, the better the
performance.

By visually inspecting Figure 2, it can be observed that for short
game duration, the performance tended to be very poor. In general,
this correspond to runs when the agent did not manage to succeed in
the game and the failure penalty was applied. Interestingly, the region
determined by medium game duration seems to show the best perfor-
mance values with longer runs of the game being more detrimental to
the agent’s performance. This region of medium game duration and
high performance values is also related to a larger range of average
height values for the agent. Specially for longer games, the variability
of the average height reduces considerably.

Figure 3 shows the game simulations corresponding to the sets of
parameters associated to 3 different cells in the behaviour map. As
it can be observed, the trajectory of the agent in Figure 2b shows
an oscillating behaviour as the agent travelled up and down around
the anchors and therefore achieved a medium average height. This
behaviour led to a long game duration. Figure 2a shows a very differ-
ent behaviour. The trajectory of the agent was restricted to the top of
the map and the duration of the game was relatively short. The agent
seemed to have gained momentum, propelling itself towards the top
of the map and being able to travel at fast speed. Figure 2c shows a
similar behaviour, however the agent propelled itself to the bottom
of the map. In order to understand how each of the five explored pa-
rameters affected the behaviour space four different heatmaps were
built (see Figure 4).

Figure 3a adds to the previously described behaviour-performance
relationship the corresponding direction and magnitude of the gravity
force. This figure suggests that the average height has a dependency
on the gravity direction, as high average height values correspond to
gravity values that would have pulled the agent upwards and low val-
ues correspond to gravity values pulling the agent downwards. This
could explain why the agent propelled itself downwards or upwards
in Figures 2a and 2c. Visual inspection of Figure 3a also suggests that
long games correspond to points in which the magnitude of the grav-
ity was very low, which would have difficulted the agent’s horizontal
movement and decreased its height range.

Figures 3b to 3d use the color intensity to represent the value of
the parameter selected instead of the performance.

Figure 3b suggests that the stiffness of the rope also played a rel-
evant role in determining the agent’s behaviour. Elite solutions with
high rope stiffness were only found for low to medium game duration
and medium average height, but more diverse solutions were found
for more elastic ropes.

Figure 3c displays the relationship between the number of anchors
and the behaviour map and Figure 3d presents the relationship be-
tween the different values of the loss factor and the behaviour space.
It can be observed that the agent’s behaviour does not seem to depend
on the value of these parameters.

5 Discussion

In general, the obtained results show that it is possible to explore
the behaviour space by using MAP-Elites. Visualization of the data
seems to be quite useful to explore which parameters are giving place
to interesting behaviours and how well a certain agent is able to per-
form in these conditions. In this way, using MAP-Elites can be useful
for game designers to find many variants of a game/level. Instead of
just highlighting the best solution, where the agent scores the highest,
this method illuminates many different variants. The variants can be
visualized, depending on their behaviour features, which would al-



low game designers to explore all the possible behaviours their game
could achieve.

The game selected for this work (Cave Swing) is relatively sim-
ple and is governed by non-complex physics. Therefore, not many
behaviour emerge from the Al This game was therefore ideal for a
proof-of-concept but the proposed method could be more interesting
with more complex games, where the relationship between the game
parameters and the agent’s behaviour is less clear. For this behaviour
characterization only 2 features were used at a time, but MAP-Elites
is not limited to having a maximum number of features. As the num-
ber of features increase the visualization becomes more complex, but
it is still possible to represent it as done by Cully et al [2].

The used agent for the evaluation had a fixed goal determined by
the game’s score, so the agent did not have any reason to follow a
particular play style, that would not result in a high-score. A better
evaluation would be to try either more agents or change the objective
of the agent. Our method could be used to tune the agent and fix the
level, or tune both simultaneously.

6 Conclusion and Future Work

This work presents an exploration of the use of MAP-Elites to a rel-
atively low-parameter game space in order to discover interesting
combinations of game parameters. The parameters were evaluated
by a RHEA agent by trying to achieve the highest score in the pro-
duced game. The visualization of the data collected through the use
of the MAP-Elites algorithms shows a high level of detail when com-
paring the features of the game space, which we chose to optimize
for the grid of the chosen behaviour values for both average height
and game duration. Furthermore, a plot of the agent playing a game
with a chosen set of behaviours (speed/ticks) was also presented to
understand how the game parameters affect the agent’s movement. In
this work we have shown the MAP-Elites can be effectively used to
explore the parameters of a game. In this paper we used a simplistic
game as a proof-of-concept and a Statistical Forward Planning agent,
but any parameterised game with a reasonable agent could be used
for this purpose.

As future work, the parameter tuning could be extended to tune
more parameters in the game and also the agent to play the game.
With MAP-Elites we were able to find parameters for many diverse
levels, which could be used to optimize agents to play well a large set
of different levels. As Cave Swing is fairly simple, applying MAP-
Elites to more complex games would be more interesting, which
could result in more complex behaviours.
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Abstract—This is a proposal describing a demo of Bonobo QA,
which is a work in progress tool and method for debugging game
Al using neuroevolution.

I. INTRODUCTION

When considering the problem with the testing of game
Al systems, the tools available to QA testers, designers and
programmers are fairly limited. The fact that for modern
games, an Al agent must gracefully handle a wide variety
of situations. To ensure that the agents handle these situations
correctly, QA testers need to invest a lot of time into checking
as many scenarios as they can.

When looking at traditional automated test types such as
unit tests, input-output tests and integration tests, they are not
appropriate for two reasons. Firstly, the rapid iterations and
changes that happen when developing games can mean that
the tests will break often, slowing down development time.
Secondly, in order to cover all of the situations and scenarios
needed a very large number of tests would be necessary.

Ideally, tools for testing would be robust enough to survive
the shifting development landscape, and flexible enough to
find abnormal behaviours without requiring a large number
of specifically written tests. Inspiration for such a tool could
be drawn from monkey testing, where randomly generated
inputs are used to check the behaviour of a software system.
However, for most games, the action space is so large that
randomly generated inputs will not explore the areas of
interesting behaviour.

Bonobo QA could be considered an extension of monkey
testing, using neuroevolution to guide the random inputs
towards exploring actions that are interesting in the context
of the game being tested. With a designer, programmer or QA
tester observing the playthroughs created by the system, they
will be able to make inferences about how their Al agents
are performing, and potentially spot exploits or weaknesses in
their implementations. The benefits of this are twofold. Firstly,
the exploration is not constrained to testing thing that the tester
has thought of. Secondly, being able to watch playthroughs
while not dealing with playing the game frees up the mental
load of the tester to just observe behaviours.

II. CURRENT DESIGN

In order to use Bonobo QA, there are a few requirements
for the game being tested. Firstly, the game needs to support

multiple instances of the game being run at the same time.
In the current implementation, this is done through the use of
each game instance being a self-contained Unity prefab.

In principle, this could be accomplished with a machine
farm with instances of the game streaming video and perfor-
mance data back to the Bonobo QA master.

Secondly, an interface needs to be written that allows an
agent to be controlled by an evolved neural network. The
inputs to the network, and how the network’s outputs are
converted into game actions will vary from game to game.
The final piece of game-specific setup is needed in the design
of a fitness function to evaluate the quality of the games.

For this demo there are two games that are shown, Ping -
an air hockey-like game - and DropFeet - an implementation
of the cult two-button fighting game Divekick. For Ping, the
inputs are the normalised direction to the ball, the normalised
direction to the opponent, and the ball’s X and Y speed.
The outputs are the desired X and Y movement direction.
For DropFeet, the inputs consist of normalised direction to
the opponent, and the opponent’s foot hitbox, the opponent’s
normalised velocity, and switches for both ourselves and our
opponent being on the floor, or being in a kick state. The
outputs used as boolean values for the jump and kick buttons.

With this setup complete, Bonobo QA can instantiate a set
of game instances of the game, and evaluate their state after
a period of time has passed, using NEAT as the underlying
neuroevolution algorithm. For example, in the current imple-
mentation there is a 10 second evaluation period before the
fitness function is applied to the game’s states. Figure 1 shows
the visualisation of Bonobo QA. You can observe the entire
population of game instances, and can also see a visualisation
of the neural network being used in the background. The
ability to observe the entire population at once allows the user
to quickly get a feel for the entire population of strategies that
are active. This overview is important for getting a feel for
potential problems.

While observing the overall population, the user can click
on any individual instance to focus on it. This makes the
selected instance full screen, allowing the user to focus their
attention on one particular behaviour. The user can also pause
the evaluation process, to allow time to run debugging tools
to further interrogate an abnormal behaviour. Additionally, the
user can override the automatic evaluation to manually select



Fig. 1. Bonbobo QA running the simple fighting game DropFeet

potentially interesting behaviours, and guide the evolutionary
process.

During the demo, players will be able to play against an
authored Al for the two described games, and then can watch
a Bonobo QA evolutionary process begin to exploit the Als.



Weighting NTBEA for Game AI Optimisation

James Goodman

Abstract. The N-Tuple Bandit Evolutionary Algorithm (NTBEA)
has proven very effective in optimising algorithm parameters in
Game Al A potential weakness is the use of a simple average of all
component Tuples in the model. This study investigates a refinement
to the N-Tuple model used in NTBEA by weighting these compo-
nent Tuples by their level of information and specificity of match.
We introduce weighting functions to the model to obtain Weighted-
NTBEA and test this on four benchmark functions and two game en-
vironments. These tests show that vanilla NTBEA is the most reliable
and performant of the algorithms tested. Furthermore we show that
given an iteration budget it is better to execute several independent
NTBEA runs, and use part of the budget to find the best recommen-
dation from these runs.

1 Introduction

In Game Al, as in many other fields, algorithms usually have several
parameters that need to be specified. For any given problem some
parameter settings may give good results, while other settings give
very poor results. For any new problem (a new game for example)
we need to decide on which parameter values to use. In many cases
a set of ‘standard’ parameter settings are available based on previous
work, but these may not be ideal for the new domain. An exhaustive
search of all possible parameter settings is usually unfeasible - it may
take days of processing time on a large parallel cluster to train a com-
plex neural network using Reinforcement Learning (RL). If the RL
algorithm has four parameters, each of which can have five values,
then training a policy under each possible setting will take 5* = 625
cluster-days, or about 2 cluster-years to evaluate each. The problem
is considerably worse if the outcome of any one evaluation (or exper-
iment) is stochastic, so that a good estimate of the value of a given
parameter setting requires many independent evaluations.

The field of parameter (and hyper-parameter) optimisation seeks
fast methods for deciding on parameter settings in a new domain
with an available computational budget. This generally involves con-
structing a predictive model for the result of a future untried evalua-
tion. After each time-consuming real-world evaluation has been run,
the computationally cheap predictive model is updated with the result
and interrogated to suggest the next set of parameter values to try. By
reducing the number of expensive full evaluations to find a good (if
not necessarily optimal) set of parameters, we save significant time
and money.

The N-Tuple Bandit Evolutionary Algorithm (NTBEA) was intro-
duced in [8, 11]. It has been benchmarked against several other opti-
misation algorithms in stochastic game environments and proven to
be more effective at finding a good set of parameter settings than
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other algorithms within a fixed computational budget [10]. Simi-
larly [13] find NTBEA is the best optimiser of a number tried mod-
ify MCTS parameters during algorithm execution for a number of
games.

NTBEA in [10, 11] estimates the value of a set of parameter val-
ues using the simple average of all matching Tuples in the model
(see Background for a detailed explanation). The current work ex-
tends this to weight the matching Tuples using the amount of data
(i.e number of real-world experiments) that inform a given Tuple,
and the degree of specificity of the Tuple match. We hypothesise that
this approach will allow us to converge to a good parameter setting
faster and more robustly than vanilla NTBEA.

In addition to introducing Weighted-NTBEA in this work, we also
modify four benchmark tests from the function optimisation litera-
ture to incorporate noise. These enable optimisation algorithms to be
compared cheaply (in terms of computational budget) and also pro-
vide greater confidence in conclusions because the true underlying
value is known exactly, and is not an estimate over multiple expen-
sive evaluations.

2 Background
2.1 Black-box optimisation

Black-box function optimisation addresses the problem of finding the
optimal value of some f(6)

y:mgmxf(@) 0 ¢ R? (1)
where f(6) can be evaluated at any 6, but not differentiated. When
f(0) is expensive to evaluate we wish to minimise the number of
evaluations we make and can use the real evaluations made so far
to model the result of f(6) (the ‘response surface’) to decide what
value of x should be evaluated next. A common approach is to use
Bayesian optimisation techniques with a prior over the response sur-
face, and update a posterior model after each evaluation. To pick the
next point a trade-off is made between exploitation and exploration;
for example the point with the largest expected improvement (EI), or
the highest 95% confidence bound (UCB) [3,7, 12]. Bayesian meth-
ods require either a model to be specified, or a decision on the ker-
nel functions to use in a (non-parametric) Gaussian Process. They
are sensitive to stochastic noise, especially noise that is highly non-
Gaussian [3]. Approaches exist to integrate different types of noise
into the model, but these add complexity to the model [12].

Most Bayesian methods and libraries assume that 6 is continuous
in all dimensions d, and do not work in discrete spaces. This is not
true for all, for example BOCS [2] uses Bayesian Linear Regression
with semi-definite programming to optimise a discrete combinato-
rial problem. However, BOCS does assume uniform Gaussian noise.
Other approaches have been used to model the response surface in



black-box optimisation: Random Forests are used in the SMAC al-
gorithm [6].

In a bandit-based approach, each setting of the parameters is one
‘arm’ of the bandit, and we seek to find out which ‘arm’ gives us the
highest reward in a limited number of pulls. This is a natural fit if
each 6; can take a small number of discrete values, but it cannot cope
easily with continuous dimensions.

NTBEA combines a bandit-based approach with an N-Tuple
model [8] and an evolutionary algorithm to select the next point to be
evaluated. The UCB1 (Upper Confidence Bound) algorithm is used
to balance exploration and exploitation [1]. NTBEA is described in
detail in the next section.

2.2 NTBEA

This explanation of NTBEA closely follows [11]. During each itera-
tion of NTBEA we:

1. Run a full game (or experiment, or other expensive function eval-
uation) using the current test setting 6. For the first iteration 0 is
selected at random.

2. Update the N-Tuple Model with the evaluation result.

3. Generate a neighbourhood of points by applying a mutation oper-
ator to @ (repeat X times to get a neighbourhood of size X).

4. Evaluate the Upper Confidence Bound (UCB) for each of the N
points using the N-Tuple Model. Select the one with the highest
UCB as the new 6, and repeat from 1.

In this study, as in [8, 10, 11] we set X=50, and the mutation op-
erator used is to randomly mutate each 6; to a random setting with
probability %, always mutating at least one ;.

2.2.1 N-Tuple Model

An 1-Tuple model breaks down the modelled f(8) into d compo-
nents, where @ € R using Equation(2). Each component i is the ex-
pected value of f assuming that only 60; affects the value. If 8, = z,
this is the mean of all evaluation results so far where 6; = z. In (2),
1(0; = ¢;) is a delta-function that is 1 when a previously evaluated
¢ matches with the current @ setting in the ith dimension, NV is the
total number of previous evaluations, and fops(m) is the mth of
these. M; is the number of evaluations that match with tuple <.
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In other words, our prediction f (0) is the average of all the d match-
ing 1-Tuple predictions based on past observations. There are no in-
teractions between different parameters, and there are no assump-
tions about relationships between different values of a given param-
eter. For example, if one parameter has discrete values 1, 2 or 3 then
the result of evaluations where this was 1 or 3 will have no impact at
all on predictions for the intermediate 2. This is a very conservative
non-parametric model. In the case of 5 dimensions with 10 possible
values for each, we need to maintain just 50 sets of statistics for a
1-Tuple model (M, the number of times each tuple-setting has been
tried, and f , the mean of these evaluations). Any 6 will match with
exactly five of these, and f(8) is the mean of these five.

A 2-Tuple model extends this to consider interactions between
two parameter settings. We replace 1(6; = ¢;) in (2) with 1(6; =
¢i,0; = ¢;), and now consider all evaluations that were a match on
two different parameters. In the case of 5 dimensions with 10 possi-
ble values for each this gives a total of (3) x 10 x 10 = 1000 distinct
2-Tuples for which N and f are maintained. Any € will match with
exactly (g) = 10.

In all the experiments in this study, as in [8, 10, 11] we use 1-
Tuples, 2-Tuples and d-Tuples in the model. A d-Tuple matches on
all parameters, so is unique for each 0. The predicted value f of
the model for any new @ is the arithmetic mean across all matching
tuples.

222 UCB

The UCBI1 algorithm [1] calculates a probable upper bound on the
true value J of the ‘arm’ of a bandit 6, given the data observed so
far using (4). N is the total number of trials of the bandit, and n(0)
is the number of times this ‘arm’ has been pulled (i.e. the number of
times that @ has been evaluated).

log N

J(O) = f(0)+k ()

C)

The N-Tuple model uses equation (2) to calculate f (0), but we still
have the second term of equation (4) that controls exploration. We
can calculate this for each individual tuple, with NV equal to the total
number of NTBEA iterations, and () equal to the number of these
for which the tuple matches 6 in (2). NTBEA calculates the second
term for each matching tuple, and then takes the arithmetic average.
There is one additional nuance that some tuples will never have been
evaluated, and formally (4) will return oo in this case. To avoid this
an additional hyper-parameter € is added, so that

log N
n(0) + € )

J(0) = f(6) +k
In this study, as in [8, 10, 11] we set ¢ = 0.5. The value of k£ needs
to be scaled to the range of f(@), and is set for each domain (see
Method section).

3 Hypothesis

Vanilla NTBEA estimates the value of a parameter setting 6 as the
simple arithmetic mean of all the matching Tuples in the model that
match. For example if we have five parameters and are using 1-, 2-
and N-Tuples then any @ will have one matching d-Tuple (where
d = 5), five matching 1-Tuples and (g) = 10 matching 2-Tuples.
The statistics gathered for each of these 16 Tuples is then averaged.
The same approach applies to calculating the exploration estimate
using (4). Even if we have evaluated a specific & multiple times,
the results from those evaluations still only comprise 1175 of the NT-
BEA estimate; % always comes from the matching 1-Tuples. Our
hypothesis is that NTBEA will better estimate the value of a param-
eter setting if it applies greater weight to the more specific tuples as
the number of evaluations increases. In the limit of a large number
of evaluations of a specific 6, then only the statistics from the fully-
matching d-Tuple should be relevant.

We propose four distinct weighting schemes, which vary in the
rate of decay in the influence of less-specific tuples. In all cases the
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Figure 1: The four weighting functions used in Weighted-NTBEA.
The x-axis is n(6) the number of evaluations that match the tuple,
and the y-axis is the weighting applied to the tuple between 0 and 1.
The remainder of the value is calculated from the average of the next
level of tuples. T' = 15 in all cases.

value V' of a parameter setting O, with N different parameters is
1
V(ON) :wTP(ON)—&-(l—w)ﬁ E V(GN_l) (6)
N-1

where T P(6y) is the average value from the N-Tuple statistics of
Oy and w € [0, 1] is the weight used for the N-Tuple statistics. The
remaining 1-w weight is applied to the average of all (N-1)-Tuples,
i.e. all Tuples on the next level down. In (6), |@n—1]| is a slight abuse
of notation and refers to the number of such Tuples. In the case that
no Tuples are held at the N-1 level, then this descends to the next
level for which we do have Tuples in the NTBEA model. Note that
(6) is recursive, and each of the V(@n—_1) terms is calculated from
weighting its Tuple statistics, T'P(@n—1), with a sum over V(O —_2)
at the next level down.

In our N = 5 example vanilla NTBEA always weights the 5-
Tuple, the ten 2-Tuples and the five 1-Tuples at %6 each. Using (6)
this weighting will change as we gain more information. With no
evaluations, the w for any Tuple will be 0.0, and as the number of
evaluations for a Tuple increases we want w to increase towards a
maximum of 1.0 so that asymptotically we ignore information from
lower-level Tuples.

The four weighting schemes use linear, inverse, inverse square-
root and exponential decay functions.

1. Linear
w = min (@, 1.0) @)
2. Inverse-root
w=10-— 71(09)% ®)
3. Inverse T
w=1.0-— W 9

4. Exponential

wzl.()—exp( T

—n(6) ) (10)
These functions are sketched in Figure 1. They have the desired prop-
erties that w = 0 when n(f) = 0 (when no evaluations have been
conducted that match the tuple), and w — 1 as n(6) — oo. They
differ in the rate at which this decay happens, which in all cases
must be parameterised by some 7'. The Linear decay is most dra-
conian, and will ignore any information from lower level tuples once

n > T, while under Inverse-root decay lower-level tuples have a
residual weight of 0.71 after 7" evaluations. For all experiments in
this study we set 7' = 15. This is somewhat arbitrary, but scaled to
be about 5% of the total iterations in the smallest experiments with a
budget of about 300 NTBEA iterations.

4 Method

We apply each of the decay functions (7), (9), (8), 10) to a number
of different optimisation problems to determine whether our hypoth-
esis holds and the modified model does converge faster and more ro-
bustly than vanilla NTBEA. By using a number of different problems
we seek to test that any improvement generalises, and is not specific
to one domain. A secondary goal is exploratory, to see if the four
different weighting functions have varying patterns of performance.

4.1 Benchmark functions

We test on four benchmark functions from the global optimisation
literature [4,7]. These are interesting non-convex functions for which
we can calculate the true value, and hence judge the performance for
the NTBEA variants. Some amendments are needed to the original
functions:

1. These are all deterministic functions with no noise. To convert
them to a stochastic win/lose setting appropriate for a game bench-
mark we convert the function value to a probability p of a +1 score
(a ‘win’), and a 1-p probability of a -1 score (a ‘loss’).

2. They are continuous functions in all dimensions. We discretise by

taking values at equally spaced intervals for each dimension.

3. Global optimisation seeks to minimise a function. To maximise

we multiply by -1.
We outline the four functions below. A complete description is in [4].

e Hartmann-3. A three-dimensional function with four local optima.
Two of these optima are close in value, with one slightly higher. In
the original problem the output range is [0.0, 3.59], so we divide
by 4.0 to get a p value between 0 and 1. We split all three dimen-
sions into ten equally spaced discrete values, for a total parameter-
space size of 1000 with a true value p € [0, 0.897].

e Hartmann-6. A six-dimensional function with a similar four op-
tima to Hartmann-3. We apply the same modifications as with
Hartmann-3, and discretize each dimension into five equally
spaced values, for a parameter-space of size 15,625 with p €
[0,0.737].

e Branin. A two-dimensional function with three global maxima at
0.4. We split each dimension into 20 equally spaced intervals to
get a parameter-space of 400. We add 10 to the result, divide by
12 with a floor at 0 to get to a valid range for p € [0,0.795]. In
this case only 14.8% of the 400 points are non-zero.

e Goldstein-Price. A two-dimensional function with one global
maximum, and several local ones. We split each dimension into
20 equally spaced intervals to get a parameter-space of 400. We
add 400 to the result, divide by 500 with a floor at 0 to get to a
valid range for p € [0,0.794]. 13.3% of the 400 points are non-
Zero.

In all cases we try each weighting function, plus vanilla NTBEA on
each benchmark function with 300, 1000 and 3000 iterations. For
each setting we run NTBEA 1000 times, and record the estimated p
value (by NTBEA) of the finally selected 6 and the actual p value. In
NTBEA we use k = 1 for the exploration constant in (5).



Parameter Planet Wars 1 Asteroids 1 Planet Wars II Asteroids II
Sequence Length 5, 10, 15, 20, 25,30 | 5, 10, 15, 20, 50, 100, 150 | 7,10, 13, 16, 20, 25, 30 50, 75, 100, 125, 150, 200
Mutated Points 0,1,2,3 0,1,2,3 1,2,3,5,10, 15,20 1,2, 3,5, 10, 20, 30, 50
Resample 1,2,3 1,2,3 1,2,3 1,2,3

Flip One Value false, true false, true false, true false, true

Use Shift Buffer false, true false, true false, true false, true
Mutation Transducer false false false, true false, true

Repeat Prob. - - 0.2,04,0.6,0.8 0.2,04,0.6,0.8
Discount Factor 1.0 1.0 1.0, 0.999, 0.99, 0.95,0.9 | 1.0, 0.999, 0.99, 0.95, 0.9
Parameter Space size 228 336 23,520 23,040

Table 1: Parameter space for RHEA in Planet Wars and Asteroids game experiments. The first two columns for the I experiments are as in [10].
The optimal values found for the games in that paper and in [11] are in bold.

4.2 Game Parameters

Lucas et al. 2019 [10] compare NTBEA against several other popular
optimisation algorithms in two games; Planet Wars and Asteroids.
They optimise a Rolling Horizon Evolutionary Algorithm (RHEA)
to find the best setting to win the 2-player Planet Wars (+1 for a win,
and -1 for a loss), and also to obtain the highest score in 2000 game-
ticks in the 1-player Asteroids. For comparable results we use exactly
the same games and settings. In Planet Wars we use k = 1 for the
exploration constant in (5), and £ = 5000 for Asteroids.

In Planet Wars each player has a number of planets which gener-
ate ships at a constant rate. Players send ships from a planet to invade
another, and to win the game they must conquer all planets. In Aster-
oids the player controls a ship which can rotate and shoot to destroy
surrounding asteroids. Points are gained for shooting asteroids, and
if one collides with the player then a life is lost; after three lost lives
the game ends. The details of the gameplay are not central to this
study, and more details can be found in [10, 11].

RHEA is optimised over five parameters in [10], which are listed
in Table 1. Each optimisation algorithm was permitted 288 evalua-
tions in Planet Wars, and 336 in Asteroids. This allowed Grid Search
to run one game for each parameter setting. We repeat these exper-
iments up to 100 times for each game and each weighting function.
We record the parameter setting that is chosen each time. To get a
good estimate of the actual value of the 288 and 336 possible set-
tings it is feasible to run 1000 games for each setting of Planet Wars
and 500 for Asteroids, although this takes 6 days to run for Asteroids,
illustrating the value of a rapid optimiser.

These small parameter spaces of 228 and 336 have the advan-
tage of permitting a good estimate of the ‘best’ setting to be found
by brute force computation, but they are not representative of larger
spaces in real problems. For example when optimising RHEA for a
Game of Life variant [9] use NTBEA with 100 evaluations in a space
of size 28,800. As a final experimental set we add further parameters
to RHEA (discount factor, mutation transducer and repeat probabil-
ity) from [9], and extend the other parameters to give a larger overall
space as detailed in Table 1 in the ‘II’ columns. These extensions
were fixed after seeing the results of the first set of experiments (the
‘I’ columns) to focus on areas with higher performance. For Planet
Wars we increased the concentration of Sequence Length options
around the optimal 10-15 range, and in Asteroids we did the same
around the optimal 100 value. We also increased the upper range of
Mutated Points significantly, especially for Asteroids where the op-
timal value of 3 was the highest possible.

For these larger parameter spaces we used a budget of about
20,000 total iterations to try different overall approaches:

e 10 runs of 2,000 iterations each

e 3 runs of 7,000 iterations each
e 2 runs of 10,000 iterations each
e 1 run of 20,000 iterations

Given the size of the parameters spaces it was not feasible to esti-
mate an accurate value for all parameter settings. Instead we do this
(by running 1000 or 500 games for Planet Wars and Asteroids re-
spectively) for just the settings suggested by any of these runs. The
purpose of these experiments is to understand how best to spend an
available budget of iterations. Should we use them in a single NT-
BEA run, or spread them out and then pick the best of the sugges-
tions. This is motivated by an observation from Deep Reinforcement
Learning research, in which the random seed can have a major effect
on the outcome of the algorithm, and results are often reported using
‘best of N’ runs [5].

5 Results
5.1 Benchmark functions

Table S1 in the Supplementary Material tabulates the numeric means
and confidence intervals for the NTBEA experiments on the four
benchmark functions with added noise. Figure 2 displays boxplots
of the true value of the NTBEA recommended parameters for each
benchmark function and weighting function (1000 NTBEA runs for
each, at 300, 1000 and 300 iterations).

e Hartmann-3. The appears to be the easiest of the four functions
for NTBEA to optimise, with 300 iterations getting a mean value
of 0.862 of a maximum of 0.897 for both Vanilla NTBEA (STD),
and the Linear and Inverse-root weighting functions. With 3000
iterations all of the variants obtain a mean score of between 0.88
and 0.89; in all cases 25% to 35% of all runs recommend one of
the three top parameter settings with actual values between 0.895
and 0.897

e Hartmann-6. This is harder to optimise with a clear progression
as iterations increase from 300 to 3000. Vanilla NTBEA is a
clear winner at only 300 iterations, and the Inverse-root and In-
verse weighting functions are joint top with the Vanilla version at
3000 iterations (in a parameter space of size 15,625). The Linear
weighting function does very poorly in comparison.

e Branin. As with Hartmann-6, Vanilla NTBEA is a clear winner
at 300 iterations, and is joint top with the Inverse-root and In-
verse weighting functions at 3000 iterations. The parameter space
is only 400.

e Goldstein-Price. The same pattern is repeated here. Vanilla NT-
BEA is best for a small number of iterations, and all except the
Linear weighting function are equally good with 3000 iterations
to explore a parameter space of size 400.



The key finding is that here vanilla NTBEA (‘STD’ in Figure 2) is
always the best or joint best for any combination of benchmark func-
tion and number of iterations, and is particularly effective for smaller
numbers of iterations.

5.2 Games

Table 2 shows the results for Planet Wars I and Asteroids I exper-
iments, with 228 and 336 NTBEA iterations on similarly sized pa-
rameter spaces. Figures 3 and 4 have box plots for the data. These are
averaged over 100 runs for each setting for Planet Wars, and between
62 and 69 runs for Asteroids (the number that completed in an 84
hour window). For Planet Wars vanilla NTBEA gives both the best
and most reliable (i.e. lowest standard deviation) results. The Expo-
nential decay variant is the only one to have a performance within
the 95% confidence interval of vanilla NTBEA. The single highest
parameter setting gives a score of 0.732, with 6 of the 288 settings
having a score of 0.65 or higher averaged over 1000 games. Since
we have run 1000 games for each of the 288 settings and then picked
the highest result, the 0.732 will be an over-estimate. Apart from the
Linear weighted variant, all algorithms pick one of the top 6 settings
between 50% and 60% of the time.

For Asteroids the results are quite similar. Vanilla NTBEA gives
the best result with the smallest standard deviation. One of the vari-
ants is within the 95% confidence interval, but in this case it is the
Inverse weighting function. In both games is is clear, as in the Bench-
mark Function results, that vanilla NTBEA gives the best recom-
mended parameter setting despite giving a very poor estimate of the
absolute value that the recommendation will provide when used.

The 95% confidence intervals in Table 2 are calculated on the basis
that the estimated values of each parameter setting are exact. This
was true for the benchmark functions in Table S1, but is not true here
due to noise in these estimates from averaging across 1000 or 500
independent games. We do not have an estimate of this additional
uncertainty.

Encouragingly, we obtain exactly the same the optimal parameter
settings for both games as those found in the original work (high-
lighted in Table 1) [10, 11]. However, we get rather higher values for
these in game play. For Planet Wars the original work finds that 288
iterations of NTBEA achieves a score of 0.51 4= 0.01, while we ob-
tain 0.65. In Asteroids the relevant values are 8, 760 + 40, against
our 9600. The reason for this discrepancy is not clear, but we do not
believe it affects the key conclusions of this study.

Table 3 shows the results from the Planet Wars II and Asteroids II
experiments with larger, more realistic parameter spaces to explore.
There were 142 unique parameter settings recommended by the 150
NTBEA runs for the Planet Wars II experiments and an estimated
value for each of these was calculated from averaging 1000 runs of
the game. The best estimated scores of the recommended parameter
settings have increased to 0.77 compared to the best possible score
of 0.73 for Planet Wars I, so the additional parameters enable RHEA
to better play the game if we can efficiently explore the space.

For Planet Wars vanilla NTBEA gives the best mean result at 1k
iterations, and does not give significantly different results at more it-
erations (within 95% error bounds). The same caveat applies to these
error bounds as in Table 2 as they do not include the additional un-
certainty from the average over 1000 runs used to estimate the value
of the final parameter settings.

The Inverse-root weighting functions matches vanilla NTBEA at
1k, and at 3k all variants at least match vanilla performance, with the
Exponential weighting being the best. These results make clear that

there is a high level of uncertainty in any individual NTBEA run.
The best of the 20 vanilla runs at 1k gives a parameter setting that
scores 0.772 over 1000 games, and the worst scores a mere 0.616.
This remains true at 10k and 20k iterations, with three of the 20k
runs recommending parameters that score less than 0.7.

Even with a large number of iterations any single NTBEA run
may give a relatively poor result. Given a fixed budget of games to
optimise a parameter Table 3 suggests that it is not a good idea to
put the whole budget into a single NTBEA run. Far better to execute
several NTBEA runs with a small number of iterations, and then use
the remaining game budget to estimate the true value of each of these
and pick the best.

This is reinforced when we look at the Asteroids results in Table 3.
Vanilla NTBEA does joint best with 1k iterations, and the mean score
does not increase significantly for higher numbers of iterations. At
higher iterations all variants except the Linear function are at least as
good, but not necessarily reliably better. In the Asteroids case there is
an effective maximum score of 10000 when we use 2000 game ticks
as here, so with all the mean and best results in the 9700 to 9800
range the optimisation does not have much room to work, especially
when we add noise.

6 Discussion

In all four of the benchmark functions, and in both games across
small and large parameter spaces vanilla NTBEA is at least as good
as the weighting variants tried for small numbers of iterations; and
usually better with lower variance in results. As the number of it-
erations increases this effect shrinks, and for some cases one of the
weighting variants can be significantly better. For example Inverse-
root with 1000 iterations on the Hartmann-6 function, or the Expo-
nential function with 3000 iterations in Asteroids II. However, this is
cherry-picking. Furthermore the weighting variants introduce com-
plexity with a new hyper-parameter 7 to be specified.

When we optimise an expensive function such as game perfor-
mance over a parameter space we are deliberately trying to use a
small number of iterations. Vanilla NTBEA works best in this situ-
ation, and we conclusively reject the hypothesis that improving the
N-Tuple model with these weighting functions improves either reli-
ability or performance.

We do not reject the hypothesis that the variants provide a better
estimate of the true value of a parameter setting. Across all bench-
mark functions and game environments vanilla NTBEA provides
very poor estimates of the actual value, under-estimating by a very
large margin because it is averaging over all possible Tuple matches.
The Inverse and Inverse-root weighting functions consistently do a
much better job of estimating the value of their recommendation.
However, this is not as important when our key objective is to get a
good recommendation; we can always go on to get a good estimate
of its value later.

Linear weighting is clearly worse than the other options that do not
exclude all contributions from less-specific Tuples with more infor-
mation after only 7" iterations. The appears to be because once it has
T evaluations of a specific setting it ignores all other data, and uses
the average of those evaluations. With a larger number of iterations
what often happens is that sequential iterations focus on the current
best estimate until the mean falls sufficiently and the focus shifts to
another setting. With noisy function evaluations this often leads to
a recommendation with a smaller number of trials (but more than
T"), that happens to currently have a high estimate. Hence the recom-
mendation is optimistic because it picks the best (stochastic) estimate
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Figure 2: Boxplots for the true Score of settings recommended by NTBEA after 300, 1000 and 3000 iterations in each of the four benchmark

functions.

NTBEA Runs Iterations Game Mean S Dev 95% Interval Delta  95% Interval Top6
STD 100 288  Planet Wars  0.655 0.079 0.640 0.671 -0.185 -0.203 -0.167 60%
LIN 100 288  Planet Wars  0.615 0.111 0.593 0.636  0.187 0.164 0.211 44%
INV 100 288  Planet Wars  0.630 0.110 0.610 0.656 0.086 0.061 0.107 53%
SQRT 100 288  Planet Wars 0.633  0.097 0.616 0.653 -0.017 -0.036 0.001 51%
EXP 100 288  Planet Wars  0.643 0.091 0.625 0.663 0.130 0.107  0.151 58%
STD 62 336  Asteroids 9596 67 9580 9613 -709 =741 -680  94%
LIN 66 336  Asteroids 9577 87 9556 9598 129 104 155  88%
INV 68 336  Asteroids 9584 77 9567 9604 -27 -52 -3 87%
SQRT 69 336  Asteroids 9563 118 9536 9591 -248 -274 -222 81%
EXP 67 336  Asteroids 9570 82 9552 9590 104 80 125  87%

Table 2: Results for Weighted NTBEA variants with Planet Wars and Asteroids. Mean is the estimated value of the final recommended
parameter setting from 1000 offline games, with a 95% confidence interval. Delta is the average difference to the NTBEA-estimated value
of this point in the N-Tuple model, with a 95% confidence interval. All confidence intervals are calculated with a basic bootstrap. Bold entries
indicate the best performing variants (within confidence bounds) for each game. LIN is the Linear weighting function; INV is Inverse, SQRT
is the Inverse-root and EXP is the Exponential. STD is vanilla NTBEA. Top6 is the percentage runs that recommended one of the Top 6

parameter settings as estimated from the 1000 games run for each.

across all options with more than 7" evaluations, and we can see this
reflected in the general over-estimate of the value of its recommen-
dation (a version of the ‘winner’s curse’). This effect is less evident
for the other weighting functions, as they never let the weighting of
other Tuples fall to zero.

7 Conclusion and Future Work

We hypothesised that adding a recursive weighting function to apply
to Tuples in NTBEA would improve performance in parameter opti-
misation in terms of quality and reliability of a recommended (opti-
mised) parameter setting and in providing a more accurate estimate
of the value of this. We tried four different weighting functions with
different decay characteristics (linear, inverse, inverse-root and expo-

nential) across four benchmark functions from the function optimi-
sation literature, and two games with two distinct sizes of parameter
space.

Across all ten experiments we found no evidence that the proposed
weighting functions improved NTBEA except in the least important
one of providing a better estimate of the true value of the parame-
ter setting recommended by the optimising process. On the contrary,
we found strong evidence that vanilla NTBEA is better able than the
weighting function variants to reliably find a higher quality recom-
mendation. This is especially true for the smaller number of iterations
that would tend to be used in real world applications.

Finally we investigated how best to use a fixed budget of NTBEA
iterations in the Planet Wars and Asteroids games. These showed
than any individual NTBEA run may give a poor recommendation,



Game NTBEA Iterations Runs Bestscore Mean SD 95% Bounds

Planet Wars  STD 1000 20 0.772 0.707 0.045 0.688 0.727
Planet Wars  LIN 1000 20 0.752 0.679 0.067 0.652 0.711
Planet Wars INV 1000 20 0.788 0.694 0.070 0.665 0.728
Planet Wars  SQRT 1000 20 0.762 0.712 0.035 0.697 0.728
Planet Wars EXP 1000 20 0.774 0.681 0.061 0.656 0.708
Planet Wars  STD 3000 7 0.762 0.709

Planet Wars  LIN 3000 7 0.762 0.718

Planet Wars INV 3000 7 0.762 0.708

Planet Wars  SQRT 3000 7 0.760 0.714

Planet Wars EXP 3000 7 0.774 0.735

Planet Wars  STD 10000 2 0.756 0.717

Planet Wars  LIN 10000 2 0.748 0.736

Planet Wars INV 10000 2 0.756 0.747

Planet Wars  SQRT 10000 2 0.756 0.740

Planet Wars EXP 10000 2 0.770 0.748

Planet Wars  STD 20000 1 0.708

Planet Wars  LIN 20000 1 0.640

Planet Wars INV 20000 1 0.674

Planet Wars  SQRT 20000 1 0.732

Planet Wars EXP 20000 1 0.632

Asteroids STD 1000 20 9815 9701 63 9675 9728
Asteroids LIN 1000 20 9776 9655 &9 9617 9694
Asteroids INV 1000 20 9803 9706 70 9690 9722
Asteroids SQRT 1000 20 9811 9702 68 9676 9736
Asteroids EXP 1000 20 9819 9620 125 9569 9673
Asteroids STD 3000 7 9804 9707

Asteroids LIN 3000 7 9804 9764

Asteroids INV 3000 7 9835 9778

Asteroids SQRT 3000 7 9817 9736

Asteroids EXP 3000 7 9818 9758

Asteroids STD 10000 2 9705 9705

Asteroids LIN 10000 2 9709 9612

Asteroids INV 10000 2 9804 9801

Asteroids SQRT 10000 2 9817 9814

Asteroids EXP 10000 2 9779 9762

Asteroids STD 20000 1 9735

Asteroids LIN 20000 1 9783

Asteroids INV 20000 1 9783

Asteroids SQRT 20000 1 9815

Asteroids EXP 20000 1 9815

Table 3: Results for Weighted NTBEA variants with Planet Wars and Asteroids over larger parameter spaces. Mean is the estimated value of the
final recommended parameter setting from 1000/500 offline games for Planet Wars/Asteroids, with 95% confidence intervals calculated with a
basic bootstrap. Bold entries indicate the best performing variants (within confidence bounds) for each game. Best score is the best individual
result for any of the runs for that line.
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Figure 3: Boxplots for the estimated true Score of settings recom-
mended by NTBEA after 288 iterations in Planet Wars (top), and
the Delta of the NTBEA predicted value to this (bottom). The red
horizontal line marks a Delta of 0.0, indicating perfect prediction by
NTBEA.
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Figure 4: Boxplots settings recommended by NTBEA after 336 iter-
ations in Asteroids. Key as in Figure 3.

and it is better to run several NTBEA runs with a smaller number
of iterations, and then use the remaining budget to estimate more
accurately the value of these, and then pick the best.

We have not explored different values of 7', the hyper-parameter
introduced to determine how the weighting function is used, and it is
possible that other values may perform better. There are other more
adventurous options to improve the N-Tuple model, such as regres-
sion across the tuples to determine which ones are important. The up-
dated model in this paper still assumes that each Tuple at a given level
is equally important. If we have no data for the full d-Tuple then we
average across all matching 2-Tuples, when in practise some of these
may be more important than others. One approach to try would be to
construct a regression model across the tuples to up-weight the ones

that better predict the observed results. We have also not changed the
exploration model, which averages across all matching tuples as in
vanilla NTBEA. It could be worthwhile to experiment with differ-
ent noise models, for example using a square root instead of a log
function in Equation (4), which has been found useful in other areas
where exploration is more important than exploitation [14].
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NTBEA Runs Iteration Function Mean SD 95% Bounds Delta 95% Bounds
STD 1000 300 Hartmann-3 0.859 0.051 0.856 0.862 | -0.056 -0.061 -0.052
LIN 1000 300 Hartmann-3 0.862 0.104 0.855 0.868 | 0.080 0.074 0.087
INV 1000 300 Hartmann-3 0.855 0.057 0.852 0.859 | -0.075 -0.084 -0.066
SQRT 1000 300 Hartmann-3 0.848 0.066 0.844 0.853 | -0.235 -0.241 -0.230
EXP 1000 300 Hartmann-3 0.862 0.044 0.859 0.865 | -0.003 -0.012 0.006
STD 1000 1000  Hartmann-3 0.881 0.016 0.880 0.882 | -0.075 -0.078 -0.072
LIN 1000 1000 Hartmann-3 0.872 0.032 0.870 0.874 | 0.087 0.084 0.091
INV 1000 1000  Hartmann-3 0.881 0.016 0.879 0.882 | 0.046 0.044 0.049
SQRT 1000 1000  Hartmann-3 0.883 0.013 0.882 0.883 | 0.007 0.004 0.010
EXP 1000 1000  Hartmann-3 0.879 0.018 0.878 0.880 | 0.067 0.065 0.070
STD 1000 3000 Hartmann-3 0.888 0.009 0.887 0.888 | -0.021 -0.022 -0.020
LIN 1000 3000 Hartmann-3 0.882 0.022 0.881 0.884 | 0.042 0.040 0.044
INV 1000 3000 Hartmann-3 0.886 0.010 0.885 0.886 | 0.031 0.029 0.032
SQRT 1000 3000 Hartmann-3 0.888 0.009 0.887 0.888 | 0.020 0.018 0.021
EXP 1000 3000 Hartmann-3 0.885 0.012 0.884 0.886 | 0.037 0.035 0.039
STD 1000 300 Hartmann-6 0.551 0.142 0.542 0.560 | -0.127 -0.135 -0.118
LIN 1000 300 Hartmann-6 0.535 0.142 0.526 0.544 | 0.119 0.107 0.130
INV 1000 300 Hartmann-6 0.516 0.149 0.506 0.525 | 0.026 0.015 0.038
SQRT 1000 300 Hartmann-6 0.461 0.155 0451 0471 | -0.120 -0.133 -0.108
EXP 1000 300 Hartmann-6 0.526 0.149 0.516 0.535 | 0.065 0.053 0.077
STD 1000 1000  Hartmann-6 0.633 0.095 0.627 0.639 | -0.178 -0.188 -0.168
LIN 1000 1000 Hartmann-6 0.633 0.092 0.628 0.639 | 0.108 0.100 0.115
INV 1000 1000  Hartmann-6 0.639 0.085 0.634 0.645 | 0.046 0.040 0.052
SQRT 1000 1000  Hartmann-6 0.610 0.101 0.604 0.617 | -0.031 -0.041 -0.020
EXP 1000 1000 Hartmann-6 0.633 0.092 0.627 0.639 | 0.082 0.076 0.088
STD 1000 3000 Hartmann-6 0.666 0.085 0.661 0.672 | -0.202 -0.220 -0.184
LIN 1000 3000 Hartmann-6 0.635 0.104 0.628 0.641 | 0.100 0.092 0.107
INV 1000 3000 Hartmann-6 0.666 0.066 0.661 0.670 | 0.031 0.027 0.036
SQRT 1000 3000 Hartmann-6 0.668 0.057 0.664 0.671 | -0.006 -0.012 0.000
EXP 1000 3000 Hartmann-6 0.658 0.079 0.653 0.663 | 0.058 0.054 0.063
STD 1000 300 Branin 0.705 0.098 0.699 0.712 | -0.020 -0.027 -0.013
LIN 1000 300 Branin 0.676 0.142 0.667 0.685 | -0.389 -0.398 -0.380
INV 1000 300 Branin 0.670 0.136 0.661 0.679 | -0.389 -0.398 -0.380
SQRT 1000 300 Branin 0460 1.327 0.376 0.544 | -0.204 -0.288 -0.120
EXP 1000 300 Branin 0.678 0.126 0.670 0.686 | -0.397 -0.405 -0.388
STD 1000 1000  Branin 0.773 0.027 0.771 0.775 | -0.031 -0.035 -0.028
LIN 1000 1000  Branin 0.768 0.035 0.766 0.771 | 0.055 0.050 0.060
INV 1000 1000  Branin 0.772 0.026 0.771 0.774 | 0.015 0.011 0.019
SQRT 1000 1000  Branin 0.773 0.028 0.771 0.775 | -0.047 -0.052 -0.042
EXP 1000 1000  Branin 0.773 0.029 0.771 0.775 | 0.041 0.037 0.044
STD 1000 3000 Branin 0.789 0.012 0.788 0.790 | -0.020 -0.021 -0.018
LIN 1000 3000 Branin 0.781 0.024 0.780 0.783 | 0.024 0.021 0.026
INV 1000 3000 Branin 0.789 0.013 0.788 0.789 | 0.011 0.009 0.012
SQRT 1000 3000 Branin 0.78 0.015 0.787 0.789 | -0.002 -0.004 0.000
EXP 1000 3000 Branin 0.784 0.020 0.783 0.785 | 0.019 0.017 0.022
STD 1000 300 GoldsteinPrice | 0.700 0.076 0.695 0.705 | -0.005 -0.011 0.001
LIN 1000 300 GoldsteinPrice | 0.621 0.145 0.612 0.630 | -0.318 -0.328 -0.308
INV 1000 300 GoldsteinPrice | 0.622 0.142 0.613 0.631 | -0.323 -0.333 -0.313
SQRT 1000 300 GoldsteinPrice | 0.622 0.142 0.613 0.631 | -0.350 -0.360 -0.340
EXP 1000 300 GoldsteinPrice | 0.614 0.142 0.605 0.623 | -0.313 -0.323 -0.303
STD 1000 1000  GoldsteinPrice | 0.759 0.029 0.757 0.761 | -0.017 -0.021 -0.014
LIN 1000 1000  GoldsteinPrice | 0.755 0.035 0.753 0.758 | 0.071 0.066 0.075
INV 1000 1000  GoldsteinPrice | 0.756  0.029 0.754 0.758 | 0.024 0.020 0.028
SQRT 1000 1000  GoldsteinPrice | 0.750 0.030 0.748 0.752 | -0.042 -0.046 -0.037
EXP 1000 1000  GoldsteinPrice | 0.756 0.032 0.754 0.758 | 0.057 0.053 0.060
STD 1000 3000 GoldsteinPrice | 0.779 0.020 0.778 0.781 | -0.016 -0.018 -0.014
LIN 1000 3000 GoldsteinPrice | 0.775 0.026 0.774 0.777 | 0.024 0.021 0.026
INV 1000 3000 GoldsteinPrice | 0.780 0.020 0.778 0.781 | 0.014 0.012 0.016
SQRT 1000 3000 GoldsteinPrice | 0.778 0.021 0.777 0.779 | -0.001 -0.003 0.001
EXP 1000 3000 GoldsteinPrice | 0.778 0.022 0.777 0.780 | 0.020 0.018 0.022

Table S1: Results for Weighted NTBEA with benchmark functions. Mean is the actual value of the optimised parameters. Delta is the difference
between actual and N-Tuple estimated value of these parameters. Bold entries are the best performing variants (within confidence bounds) for
each combination of function and number of iterations. LIN is the Linear weighting function; INV is Inverse, SQRT is the Inverse-root and
EXP is the Exponential STD is vanilla NTBEA
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Abstract. Artificial Intelligence for General Video Game Playing
(GVGP) is challenging not only because agents must be generalis-
able to a range of games, but they must also make decisions within
the time constraints of real-time video games. The General Video
Game Artificial Intelligence framework (GVGALI) is one of the most
popular frameworks for GVGP. Recently, a two-player track has be-
come available where two agents play a game together, either com-
petitively or cooperatively, which poses an additional challenge to
agents because they have to adapt to the other player. Commonly,
agents only consider their own moves in these two-player games. In
this paper, we present a Rolling Horizon Co-evolutionary Planning,
a modification to Rolling Horizon Evolutionary Algorithms which
considers the actions the opponent may take. We present the re-
sults of experiments which compare its effectiveness against other
agents playing a subset of GVGAI games and show that co-evolution
can improve results by planning for the opponent and outperforms a
RHEA agent.

1 Introduction

Two-player General Video Game Playing (GVGP) is an interesting
challenge for Al, not only must agents be able to form effective plans
for a wide range of games, but also be capable of developing plans
expediently (given the real-time nature of these games) and consider
the opposing agent in the environment. The unknown actions of this
second agent add stochasticity to the environment and may impact
the plans made by the player. This means two-player games can pose
a more difficult challenge to state-of-the-art GVGP agents compared
to single-player games.

The flagship competition/framework for developing Al for general
video game playing is the General Video Game AI (GVGAI) compe-
tition [19]. GVGALI has a large library of more than 160 games that
can be used to test agents in a wide range of single-player and multi-
player games. Many games in the framework are re-implementations
of classic games, such as Frogger, Pac-Man and Sokoban, although
there are also many new and unique games. GVGAI holds yearly
competitions for GVGP across a range of tracks, including the two-
player games track from which the games and framework used in this
study are taken.

The current state of the art in Al agents for two-player GVGAI
often uses a random model for simulating which moves the opponent
may take. However, it seems modeling the opponent could be use-
ful when planning actions as the utility of certain action sequences

1 Goldsmiths University of London, email:
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2 Queen Mary University of London, Game AI Research group, email:

{c.pacheco,diego.perez} @qmul.ac.uk

United Kingdom,

may be highly dependent on the actions of the opponent. The main
contribution of this paper is the proposition of Rolling Horizon Co-
evolutionary Planning (RHCP) for GVGAL This is a modification of
Rolling Horizon Evolutionary Algorithms (RHEA) where the agent
both evolves a plan for itself, which represents the moves it may take
in the game, alongside a “best guess” plan for what the opponent may
do. This method assumes that the opponent is playing rationally and
is seeking to maximise its score because the RHCP opponent model
is evolved to maximise its score when playing against the agent’s
best known action sequence. The experiments described in this pa-
per compare these approach against other dominant methods in two-
player GVGALI, and also analyze the prediction accuracy of RHCP
over the actions taken by the opponent player.

2 GVGAI

Competitions have been used as a way of testing game playing Al
algorithms and their ability to solve specific problems. These range
from board games, such as Go [22], platformers, for example, Super
Mario Bros [23], and real-time strategy games, e.g. StarCraft [14].
However, these have the major disadvantage that the Al developed
will be tailored to one game only and will rarely be applicable to
other games.

To tackle this problem, a General Game Playing competition was
developed in 2005 [8] where submitted agents are evaluated on un-
known games (to both the agents and the competitors). For this com-
petition, the games used are variations of existing turn-based discrete
games. Therefore, GVGAI was developed to test the adaptability of
a single Al to many real-time games. Similar environments, such as
the Arcade Learning Environment [1] and Open Al Gym [2], have
been developed to tackle artificial general intelligence in games, al-
though these are typically used, without a forward model, in iterative
learning tasks.

2.1 Framework and Competition

The GVGAI [18] framework uses the Video Game Description Lan-
guage (VGDL) [21] to describe games and levels, and to provide
a Forward Model (FM) to the agents. This gives the possibility of
rolling the state forward to simulate possible upcoming states upon
providing an action. There is a great variety of games both within the
arcade and puzzle genres, where all the interactions and objects are
defined with an objected-oriented language - providing more gen-
eralised games. Sprites can be created and parameterized in levels
within a 2D game using text files. Currently, GVGAI has 80 publicly
available single player games and 50 two-player games, with fur-
ther private sets of 20 single-player and 20 two-player games used



Figure 1. An example of two dimensional arcade style games from
GVGALI framework: Samaritan (top), Steeplechase (middle), Sokoban
(bottom left) and Gotcha (bottom right).

for evaluating competitions (examples of these games can be seen
in Figure 1). In these games, agents receive data about their status
in game state. This includes the score, the time step, current win-
ner/loser (if any), sprite positions, orientations, resources and colli-
sions with other sprites. Given this information, it is up to the agent(s)
to decipher the games’ mechanics and its rules. A complete descrip-
tion of the implementation of the framework and rules of the compe-
tition can be found at [19].

At present there are several tracks for this competition: single-
player learning [24], single-player planning [19], level genera-
tion [11], rule generation [10] and the two-player planning [4] tracks.

2.2 Two-Player Track

The two-player track extends GVGAI to multiplayer games [4]. In-
teractions and other game state data must be given to both players as
well as information on the number of players in the game. Agents can
both win, both lose, or only one of them wins. For the state observa-
tion, it is possible to access all agents’ current score, action, position,
speed and orientation.

As previously indicated, the avatars have access to a Forward
Model (FM) that allows them to simulate potential future states dur-
ing their thinking time. This FM permits the agents to make copies of
a game state and to roll the state forward by providing an action for
every player on the game. Moves in two-player GVGAI are simulta-
neous in all games. The agents have no previous information about
the game rules or mechanics, hence these can only be estimated given
the interactions with the environment and other players. The games
still range within different genres and games for this track feature
both cooperative and competitive scenarios (which is not revealed to
the playing agents). Since these new mechanics are introduced, there
are many differences in the games: more interactions are available,
scores’ systems and end conditions - such as defence of objects and
both players having to finish in a given location.

A recent survey in GVGALI research can be found in [17], which

highlights the different approaches that have been tried in this do-
main. The two most popular are variants of Monte-Carlo Tree Search
(MCTS) [3] and Rolling Horizon Evolutionary Algorithms (RHEA)
[15].

2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) based techniques are widely used
in the GVGALI framework for both single and two-players games.
MCTS combines Tree Search with Monte Carlo simulations by
building the search tree incrementally and evaluating leaf nodes by
using a Monte Carlo simulation. A multi-armed bandit algorithm
is used to balance exploring tree nodes that have little information
known about them with exploiting nodes that are known to be good.
At each iteration, MCTS performs 4 steps: selection of a node us-
ing Upper Confidence Bounds [12] (UCB), expansion of its chil-
dren, simulation using a random sequence of moves (rollout) and
back-propagation of the reward back through to tree to update par-
ent nodes. This process is repeated until a predefined computational
budget is reached. An insight on this algorithm is outside of the remit
of this work; for a comprehensive overview see [3].

Of particular interest to this study, [9] investigated the effects
of using an opponent model for MCTS in two-player GVGAI [9].
Some of the 9 models implemented are simplifications or variations
of the sample MCTS algorithm, while others follow a probabilistic
approach. The latter involves off-line learning to have a probability
distribution over the possible player’s actions on a game state. The
results show that the probabilistic models perform the highest win
rates. It is interesting to observe that this work is, to the knowledge
of the authors, the only one in which an attempt to modelling the
opponent is made - all the other approaches for two-player GVGAI
assume a random move for the opponent in their use of the FM (or a
similarly simple approach).

2.4 Rolling Horizon Evolutionary Algorithms

Rolling Horizon Evolutionary Algorithms (RHEA) are statistical
planning algorithms which aim to evolve a sequence of actions (a
plan), which maximises a reward function. RHEA was first proposed
for real-time games in [15], where the authors applied it to the Phys-
ical Travelling Salesman Problem, showing better performance than
MCTS in this scenario. Their applications in GVGP has recently
been subject to attention, by first studying the vanilla algorithm and
its parameters [4], seeding techniques [5] and overall improvements
regarding shift buffer, statistical trees and added rollouts [7]. Initially,
a population of uniformly random action sequences is generated.
Each action is represented by an integer [0, N — 1], where N is
the number of actions available to the agent. Once this initial pop-
ulation is generated, individuals are evaluated by stepping through
the forward model and applying each action in the sequence when
the Al is required to act. After this, an heuristic function is used to
calculate the value of the game state, which then becomes the fitness
for this individual. Once the initial population has been evaluated,
genetic operators are applied to evolve a new population of action
plans which are, in turn, evaluated and evolved until a set computa-
tional budget is exhausted. At this point, the first move in the best
individual is returned as the action to take.

3 Rolling Horizon Co-evolutionary Planning

Rolling Horizon Co-evolutionary Planning (RHCP) is a modifica-
tion of RHEA where the agents’ plans are co-evolved with a popu-



lation of opponent plans. It was first proposed in [13] although, in
this work, experimentation was carried out on only one game and as
such RHCP’s viability for GVGAP was untested. Whilst the player’s
plan represents the moves the player will make, the opponent’s plans
represent “best guess” plans about what actions they may take. This
is intended to give the agent some information about strong actions
the opponent might take when evolving its own plan. This popula-
tion of opponent plans is then used when calculating the fitness of
individuals in the player’s plan population and likewise the player
plan population is used when assessing the fitness of the opponent’s
plan. Compared to [9], this approach does not require off-line learn-
ing of move probability distributions because plans are evolved on-
line, alongside the agent’s plan. However, it does assume that the
opponent is playing rationally and its moves are similar to those that
are discoverable by a RHEA agent.

In the work presented in this paper, two different evolutionary
strategies are used depending on whether the agent’s plan or the op-
ponent’s plan is being evolved. This is because part of the computa-
tional budget is dedicated to investigate which moves the opponent
may take, but there needs to be a balance with the time spent on plan-
ning the own agent’s move. It is possible that, for some games, the
opponent’s moves are not relevant, for example, a racing game where
blocking is not possible and, ideally, little computational time should
be employed in this case.

3.1 Agent move planning: ;1 + A Evolutionary
Strategy

The population of a player’s plan is evolved using a p + A evolu-
tionary strategy. First, the population is sorted based on fitness, and
elitism is applied, selecting the p most fit individuals. Then A in-
dividuals are generated by first selecting some individuals from the
previous population, using tournament selection of size t_size, and
then applying uniform crossover and random mutation to these in-
dividuals. Uniform crossover is carried out by, for each gene in the
new individual, selecting with equal probability either the gene from
one of the parents. Random mutation is carried out by selecting a
gene uniformly at random and then setting it to a new valid value,
which in this case is an integer [0, N — 1]. The fitness for this new
population is then calculated and this process is repeated until a com-
putational budget is exhausted at which point, the individual with the
highest fitness is then returned as the best solution.

3.2 Opponent move planning: (1+1) Random
Mutation Hill Climber

A (1+1) Random Mutation Hill Climber (RMHC) is an evolutionary
algorithm whereby a population of N = 1 is evolved by first assess-
ing the fitness of the single individual; followed by mutating its chro-
mosomes using genetic operators and assessing the mutated fitness.
If the mutated individual has the same or better fitness, it replaces the
original individual as the single member of the population. This pro-
cess is repeated until a computational budget is exhausted, at which
point, the first move in the individual is returned. For this algorithm,
the mutation operator used is the same as in the ;1 + A ES described
above, although it is applied M times to maximize exploration.

3.3 State Evaluation

Both the ;4 A ES and (1 4 1) RMHC use the same scoring heuristic
when determining the fitnesses of an individual. The fitness is defined

Algorithm 1 Rolling Horizon Co-evolutionary Planning

1: Requires state: current game state.
2: procedure ACT(state)

3: init()

4: while budgetremains do

5 evaluate(population, opponent, state)

6: evolve(population, opponent, state)

7 return population.best(). first_move()

8: procedure INIT

9 population < randompopulation

10: opponent < randomindividual

11: procedure EVALUATE(population, opp, state)
12: for indv in population do

13: indv. fit + simulate_game(indv, opp, state)
14: population < sort(population)

15: procedure SIMULATE_GAME(indv, opponent, state)
16: for i in indv.length do

17: moveq <— indvli|

18: movey, < opponent|[i]

19: state.advance(moveq, movey,)
20: return score_heuristic(indv, state)

as the game score for the player in the state reached at the end of the
sequence, plus a large negative value if the player lost (—1000) or a
large positive if the player won (1000). This scoring heuristic is also
used in our experiment as the scoring heuristic for the other agents
which require a scoring function (RHEA and MCTS).

3.4 Co-Evolution

Co-Evolution refers to evolving chromosomes for two (or more) dif-
ferent populations in parallel by using one to influence the fitness
of the other[20]. This study presents a methodology for co-evolution
of the agent’s plan with a “best guess” plan for the opponent. When
evaluating the fitness of the agent’s plan, we use the best guess op-
ponent plan to simulate what actions the opponent may take. Like-
wise, when evaluating the opponent’s plan, we simulate the actions
the agent takes using its best known plan.

In this paper, we use a p + A evolutionary strategy to evolve the
agent’s plan and a (1+1) RMHC to evolve our “best-guess” oppo-
nent’s plan. In each iteration of the algorithm, the population of plans
is evaluated, the elite selected and the rest mutated. Then the op-
ponent plan is mutated and both the original and mutated plans are
evaluated against the best known player plan. The opponent plan with
the highest fitness is then preserved and survives into the next iter-
ations of the algorithm. This process is repeated until the budget is
exhausted. Algorithm 1 details the core RHCP loop as well as initial-
isation and evaluation policies; algorithm 2 details the genetic oper-
ators for RHCP.

4 Experiment

For this experiment, 10 games from the GVGAI Two-Player track
were used, those found in the GVGAI Two-Player Training Set 1.
This training set contains a mixture of Competitive (8) - games where
players are competing and there is at most one winner - and Coopera-
tive (2) games - where players are working towards a shared goal and
win or lose together - as well as a mixture of Symmetric (7) games
- where each player has the same goal - and Asymmetric (3) games



Table 1.

Games Set comprising of all games from the GVGAI Two-Player Training Set 1. The key attributes that each game can have are Cooperative (Co) or

Competitive (Cp), Symmetric(Sym) or Asymmetric(Asym), and Stochastic (S) or Deterministic (D). The descriptions given here are abridged version of the

descriptions found at http://www.gvgai.net.

ID Game Key Description
Attributes

0 Akka Arrh Co, Sym, S Two players defend a locked spaceship from aliens, while trying to open and enter in it. Both
players win when they enter the spaceship but lose if one is hit by the aliens.

1 Asteroids Cp, Sym, S Space game where players shoot asteroids for points, which are then broken into smaller aster-
oids. The players can also shoot each other. Last player standing wins, or the one with more
points at the end.

2 Capture the Cp, Sym, D The level is divided into two areas, each with a flag. Players must capture the opponent’s flag

Flag and bring it to their area. Players can capture each other. Capturing gives points, the player with
most points wins at the end.

3 Cops N Cp, Asym, D | One player is the robber and the other is a cop. The robber wins if all gems are collected and

Robbers the cop wins if he catches the robber.

4 Gotcha Cp, Asym, S One player has to chase the other. There are safe places where the chased one can hide. If the
chaser catches the other player, they win but loses if time is over before that.

5 Klax Cp, Sym, S Coloured objects fall from the sky. Players catch them for points (own colour is worth more
points). Higher score at the end decides the winner.

6 Samaritan Cp, Asym, D | One player tries to cross a portal to another world, while the other tries to avoid so. The first
player wins the game by reaching it on time.

7 Sokoban Co, Sym, D Both players must push all boxes into determined locations. The game ends when all boxes are
correctly placed.

8 Steeplechase Cp, Sym, D Racing game. Players win by reaching the end. There are many obstacles and a hidden gem is
worth many score points.

9 Tron Cp, Sym, D A version of the classic game with the same name. Players race in a wall-encircled arena creat-
ing walls as they move. The first player that collides with a wall loses.

Algorithm 2 Rolling Horizon Coevolutionary Planning Genetic Op-
erators

1: Requires elitism ()
2: procedure EVOLVE(population, opponent, state)
newPop < emptypopulation
while new Pop.size < elitism do
newPop <+ add(next_fittest_indiviudal)

newPop + selectandmutate(population)

mutOp < mutate(oppoenent)

: opFit < simulate_game(opponent, bestindv, state)
10: opM Fit + simulate_game(mutOp, bestindv, state)
11: if opM Fit <= opF'it then
12: opponent < mutationOpponent

4
5
6: while new Pop.size < population.size do
7
8
9

13: Requires t_size: tournament size
14: procedure SELECTANDMUTATE(population)

15: while tournament.size <t_size do

16: tournament < population.rand_indv()

17: parentA < tournament. fittest()

18: parent B « tournament.secondF'ittest()

19: new_indv < uniformcrossOver(parentA, parentB)
20: return mutate(new_indv, mutation)

21: Requires M : mutation repetitions
22: procedure MUTATE(individual)
23: for M do

24: gene;dx < individual.new_random_gene()
25: individual [gene;dx] < new_random_gene()
26: return individual

- where each player has a different goal. There is also a mixture of
Stochastic games, those with a random element, and Deterministic
games, those that have no randomness from the environment. A list
of games and their properties can be found in Table 1.

Four algorithms were tested; our RHCP agent and 3 control
agents. All 3 control agents, RHEA, MCTS, and Random, were mod-
ifications of sample agents provided with the GVGAI framework.
RHEA and RHCP use both the same length for their individuals
(I = 15), tournament selection (t_size = 2), uniform crossover
and mutation. The only difference between the two algorithms is that
RHEA used a population of n = 10 whereas RHCP used a popula-
tion of n = 8. This was in order to allow computational budget for
the secondary population for the opponent’s plan, such that it also
evaluates 10 individuals per generation.

In RHCP, the player’s plan population has a p of 1, selected
through elitism, and A = n — u. The population of A individuals
is generated by selecting past individuals through tournament selec-
tion, crossover and random mutation, where 1 gene is mutated, se-
lected uniformly at random. When mutating the opponents plan in
RHCP, M is set to 5.

The default MCTS, included in the GVGAI framework, is used for
the experiments. This is a closed loop version [16] of the algorithm,
using a standard UCB1 [12] function for its tree policy. Uniform ran-
dom roll-outs, limited to a depth of 15, are used for the default policy.
Finally, the random agent is also taken verbatim from the provided
agents and it simply chooses one of the available moves in the current
state uniformly at random.

RHEA, MCTS and RHCP substituted the time-based budget from
the competition (40ms of real-time per decision) for a number of us-
ages of the forward model’s function that rolls the state forward. This
ensures that all experiments are consistent independently from the
machine used. As in [6], 900 FM calls were provided as the decision-



making budget for each game tick.

For each game, all 5 levels were evaluated with 2 different orders,
each agent playing either side, providing 10 different scenarios. Each
scenario is then played 10 times, resulting in 100 trials per agent pair-
ing on each game, and a total of 1000 matches per pair of controllers.

5 Results

This experiment compares our proposed RHCP algorithm against a
suite of control algorithm as well as investigating if co-evolution help
predict the opponent’s next move. The overall win/loss results for all
ten games are shown in Table 2 and the prediction accuracy against
each opposing algorithm is in Table 3. These are discussed below.

5.1 Comparison of Agent vs Agent performance
5.1.1 RHCP vs RHEA

Comparing RHCP to RHEA is perhaps most interesting as RHCP
operates similarly to RHEA, with the addition of co-evolving an op-
ponent’s plan at the expense of some computational time for evolving
its own plan. Of the 1000 games played, RHCP won 360 compared
to 309 games won by RHEA. These 51 games, or 5.1% increase is a
significant (p < 0.05) improvement. A 2-sample Z test was carried
out for significance testing with a Z-Score of 2.417 and a p-value of
0.01552.

Furthermore, RHCP performed at least as well as, if not better,
in every game, indicating that spending time planning for the oppo-
nent’s is worthwhile, even in environments such as GVGAI where
there is a very limited computational budget. It is interesting to note
that the two games where RHCP really performed well, Game 2 -
Capture the Flag and Game 9 - Tron, are particularly adversarial; the
actions the opponent takes have a huge impact on the performance of
the agent.

5.1.2 RHCP/RHEA vs MCTS

MCTS is the most dominant two-player GVGAI approach and it
is clear that whilst RHCP performs better than RHEA, the perfor-
mance of both is considerably worse than MCTS. Neither RHCP nor
RHEA is significantly better than one another when playing against
MCTS. It does seem that RHCP is more competitive than RHEA
against MCTS (winning more and losing less), although further test-
ing would be required to confirm this, especially due to the stochastic
nature of evolutionary algorithms. However, it is interesting to note
that RHCP and RHEA performed similarly, within 4 wins of each
other, for all games except Game 5 - Klax. Whilst this win ratio im-
provement is not significant, this is another example of RHCP per-
forming better in games which are highly interactive and are reliant
on your opponent’s moves, exactly the sorts of games RHCP can give
a competitive advantage.

5.1.3 RHCP/RHEA/MCTS vs Random

Understandably RHCP, RHEA, and MCTS all performed very well
against a random agent. It is interesting to note that even against a
random agent, no other agent was able to achieve a better than 50/50
win ratio in Game 4 - Gotcha. We believe this because not only is
Gotcha asymmetric, but also unbalanced such that when playing one
‘role’ it is very challenging.

Against a random agent our implementations of RHEA and MCTS
actually use an opponent model with exactly the same logic as the

real opponent. It can be observed that RHCP performs similarly to
the other agents, with no significant difference between RHCP and
RHEA when playing against Random.

5.2 Prediction Accuracy

The opponent’s predicted next move based on the first move of the
RHCP evolved opponent’s plan and the opponent’s actual move were
recorded for each tick in games involving RHCP. Table 3 shows the
average accuracy of these predictions for each game played against
each opponent.

The prediction accuracy was not significantly different amongst
the various opponents. Given that one agent is a Random agent, this
essentially means that across all games predicting the next move
based on co-evolution is no better than random. That said Game 4
- Gotcha is a game where RHCP was able to predict the next move
with a high average accuracy against the RHEA agent. The prediction
accuracy was 0.418, compared to 0.199 against random, a significant
improvement (Z Score = 3.36, p < 0.05).

Even though the average move prediction accuracy against
RHEA/MCTS is not very high, co-evolution is clearly making a pos-
itive difference to decision making, evidenced by RHCP agent per-
forming better than RHEA. One possible reason for the poor pre-
diction accuracy reported is the stochastic nature of the evolutionary
algorithm coupled with the small number of evolution iterations, ap-
proximately 6, the algorithm performs each game tick (as the FM
budget each game tick is 900, the population is n=10, the simulation
length is 1=15, therefore 10 * 15 x 6 = 900). It is possible that the
prediction plan may find a strong move sequence, but not the exact
move sequence found by the opponent.

6 Conclusion

In this paper, we present Rolling Horizon Co-evolutionary Planning
(RHCP) for General Video Game Playing, which evolves plans of
actions for itself and the opponent. We have experimented and com-
pared this algorithm to three others, RHEA, MCTS and Random in
a set of 10 two-player GVGAI games. We have found that spending
computation time considering the potential opponent’s moves shows
improvement compared to the same algorithm without this feature
(RHEA), but still performed worse than MCTS. Surprisingly, de-
spite RHCP outperforming RHEA, it was not able to predict the next
move of ‘rational’ agents (RHEA/MCTS) with a greater accuracy
than against Random. Perhaps the opponent plan evolution is finding
strong sequences over 15 moves but due to the stochastic nature of
RHCEP it often disagrees on one move in particular.

Further investigation into this is required to fully understand the
positive effect of co-evolution, but it’s reasonable to think that pre-
dicting the opponent’s move more accurately would improve the per-
formance of RHCP. Future work should additionally investigate how
existing RHEA modifications impact RHCP, including probabilistic
approaches to further improve the prediction of the opponent’s ac-
tions. Also, submitting RHCP to the GVGAI competition would al-
low assessing its performance against other approaches.
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WordClicker: Tuning our approach for Language
Resourcing

Chris Madge' and Richard Bartle? and Jon Chamberlain® and Udo Kruschwitz* and Massimo Poesio®

Abstract. Previous work has shown great promise for overcoming
the challenges of embedding text annotation tasks in games through
the application of incremental game mechanics. This demo describes
some of the design choices that are being explored to tune the incre-
mental game approach to perform well as a true GWAP (Game With
A Purpose) for language resourcing.

1 Introduction

There is a growing number of Games-With-A-Purpose (GWAPs) for
creating language resources, that have shown promise in terms of
their ability to gather high quality annotations. However, player re-
cruitment and retention remain a challenge with such games, that
have yet to acquire or retain players at a scale comparable to the
most successful GWAPs [8, 1]. To address this, previous work pro-
posed the application of incremental game design mechanics.

The original GWAPs, such as The ESP Game, were effective in
presenting their tasks, as per the original definition, in such a way
that the labels gathered were a byproduct of play [8]. In contrast, it
has been said that language resourcing games such as PhraseDetec-
tives , are not really GWAPs as annotations are not a byproduct, but
rather it is evident that the player is annotating text [S]. This can be
said of the majority, if not all language resourcing GWAPs. Wordrobe
for example, unlike PhraseDetectives, is a game which deliberately
aims to hide the true nature and linguistic complexity of the tasks by
presenting them as multiple choice questions and removing linguistic
terminology [7]. However, it remains evident the player is annotating
text. Similarly for other well-known gamelike approaches to NLP re-
source creation such as Jeux-de-Mots and Zombilingo [4, 2]. Proper
GWAPs have been proposed, but never really used for resource cre-
ation [3] nor one that can be easily hidden. Ultimately this creates an
inescapable problem of a core game mechanic that the majority of
people find tedious and repetitive.

To address this, we chose to employ selective design concepts
from incremental games, a game genre of entertaining games cre-
ated out intrinsically repetitive activities. We developed a game that
incorporated text annotation as the core mechanic. This has yielded
very positive results for player recruitment and retention [6].

In this work we demonstrate some of the design concepts being
explored to fine tune WordClicker [6] as a GWAP.
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2  WordClicker

WordClicker is a web-based, desktop and mobile friendly, one-player
game in which a player learns the classes of words by playing a
baker that gets her/his ingredients by clicking on words associated
with those ingredients. The core game mechanics is simply classify-
ing individual words into classes (associated with ingredient jars) by
clicking on them, a mechanics that should be transferable to the ma-
jority of word-labelling tasks. If the player is correct, after clicking
he/she gets ingredients that are used to make the cakes. The game is
very simple, taking approximately two weeks for one person to de-
velop. To begin with, the player is shown details of the task they will
be performing with a short explanation. When they press play they
are presented with an interactive tutorial that takes them through ba-
sics of the game. They can repeat this tutorial and view additional
instructions regarding the classes at any point. During gameplay, the
player is shown a single sentence at a time. They can advance to
the next sentence by using the “Next sentence” button. As the action
step of the game loop, they mark words by clicking on the appro-
priate ingredients jar, then selecting one or more words in the sen-
tence that are of that category. When the player selects the correct
item, the tag is shown with a shimmering effect and an animation
shows the ingredients going into the appropriate jar. In the wait step
of the loop, that jar empties over time as cakes are automatically cre-
ated and sold, giving the player a reward. To encourage the player
to explore all the categories, the cakes that are produced are worth
more when the player has more ingredients available (depicted by
the changing cake). When the player labels incorrectly, they are given
feedback in the form of a text notification message that appears in the
bottom left hand corner and a flashing red outline on the token. In-
correct labels damage the player’s purchases. Purchases are acquired
from the shop by the player investing their reward. They increase the
number of cakes produced per second and the number of ingredi-
ents produced by selecting a correct token. Progress bars in the shop
area show how far away they are from being able to purchase a new
item, with item abilities being hidden until they have almost accu-
mulated sufficient funds. The cost of items increments exponentially
after each purchase, giving the game an infinite feel.

3 Tuning our Approach

In tuning our design for language resourcing, we want to raise accu-
racy as high as possible, without detracting too greatly from player
retention or engagement.



3.1 Feedback

Before investigating mechanics that positively reinforce accurate an-
notation, we looked for methods of giving the player more feedback
in relation to their accuracy that could be themed and incorporated
into the game setting. We achieved this in the form of a “Company
Report” that informs the player what their “Reputation” is (shown
in Figure 1). They are told that the more accurately they label, the
higher their reputation would be. Technically speaking, their reputa-
tion is linked to their F-measure based on each round they label. The
company report is available after three rounds, and is opened from
the navigation bar. Further achievements may be linked to “Reputa-
tion” performance in future to draw further attention to the player’s
accuracy.
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Figure 1. Company Report - Provides themed ongoing in-game feedback

to player about their accuracy

3.2 Precision

Next we looked at methods of increasing precision. To achieve this
we reward a winning streak. We take a winning streak to be five con-
secutive correct judgements, without error. The player is rewarded
with a “Sugar Rush” (shown in Figure 2). This gives the player dou-
ble the points for thirty seconds or until they make a mistake. The
current winning streak status is depicted by five cakes that are grey
silhouettes prior to a win. In Sugar Rush mode a spinning radial burst
attracts the players eye to the status panel of the game where they are
told they are in “Sugar Rush” and will receive double points. This
is accompanied by the further visual effect of the cakes in the game
dancing back and forth. We hope that this will encourage players to
label more carefully, in turn raising precision.

3.3 Recall

It is possible that any measure that rewards players for labelling with
high precision may cause them to narrow in on a safe and familiar
strategy, impacting learning of new labels and reducing recall. We
next devised a method of attenuating that potential affect and increas-
ing recall. We now require a player to find ingredients for all the jars
currently available to them in the game in order to produce any cakes.
While the virtual currency of ingredients is increasing as the player
finds correct tokens, the virtual currency of in-game dollars remains
stationary unless there is at least some quantity of every ingredient. A
message beneath the jars informs the player which ingredients they
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Figure 2. Complete Winning Streak resulting in “Sugar Rush”

are lacking (shown in Figure 3). We hope this encourage players to
continue to explore all of the labels throughout their gameplay, rather
than repeatedly return to labels they are more comfortable with.
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Figure 3. Notification of required ingredients

4 Conclusion

This work is a demo of the continued design in WordClicker. With
our latest designs we hope to increase precision, recall and player
awareness of their current accuracy through the use of new in-game
elements and visualizations without impacting the current entertain-
ment factors. Further work will test these new elements and examine
their effects.
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