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INFERRING THE POSITION OF BODIES FROM SPECIFIED SPATIAL RELATIONSHIPS

A.P. Ambler and R.J. Popplestone

Dept. of Machine Intelligence,
School of Artificial Intelligence,
University of Edinburgh,
Edinburgh EH8 9NW,

Scotland.

Abstract

A program has been developed which takes a specification of a set of
bodies and of spatial relations that are to hold between them in some goal
state, and produces expressions denoting the positions of the bodies in
the goal state, together with residual equations linking the variables in

these expressions.
1. Introduction

The work described in this paper is motivated by the desire to con-
struct an easily instructable robot to work in the domain of automatic
assembly, Earlier work at Edinburgh (1) produced a device capable of
being easily "taught" to recognise solid bodies from a small number of
viewpoints_and in isolation, and to stack them in pre-determined places.
Tt could also extract bodies from a heap and place them in isolation to
recognise them. However the ensuing assembly of the objects from their
standard positions was programmed bv specifying the motions of the robot
absolutely (e.g. moveto(9,7); graspto(0); ...). A much less painful way
of instructing the robot would be to specifv spatial relations that are to
be established between parts being manipulated. Thus one might say
"Place the cylindrical face of the rod against the sloping faces of the
Vee block" (see Fig. 9). Even if such an English sentence had to be
transcribed into a sort of predicate calculus form, the gain in instruct-

ability of the device would be great.
2. Positions

In order to describe the motions of a rigid bodv one needs the
Affine group of rotations and translations of 3-space. We call a member
of this group a position. If p, and P, are positions, then we write P.P,
for the functiocnal composition of p, and Pye We will use the two
positions valued functions twix and trans where twix(@) is a rotation b ©
about the X-axis zand trans(x,y,z) is a translation by (x.v,z), We also
use the constant position M which turns the X-axis back on itself. in

the program, consiant posiiions are represented bv 4 by 4 matrices in the
2 P T
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usual way (for example see [2'},

3. Features and spatisl relstions

The spatial relations we consider here are againgt and fits.
These hcld not between bodies but between features of bodies, Features are
either shafts (cylindrical), faces (planar), or holes (cylindrical).
Examples of features are depicted in Figs. 1-3. Each body has a set of
axes embedded in it. Each feature has axes associated with it. The
feature axes are chosen according to certain conventions, namely that the
{-axis of the axis set of a face is always pointing out from the face,
with the Y and Z axes lving in the face, and the X-axis of s shaft or
hole lies along the axis of symmetry of the feature, with the origin at
the tip of the shaft or the mouth of the hole. The position of a feature
in a bodv is defined to be that position which will transform the body

axes into the feature axes.

Figure 1. The axes of a face

X

Figure 2. The axes of a shaft
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Figure 3. The axes of a hole

At present, the descriptions of the bodies are input manually, but
work at Edinburgh is directed to being able to form suitable "body models"
of objects whose surfaces are all plane or cylindrical by using a TV
camera in conjunction with a projected light stripe. Such a body model
contains a specification of all the features with their type (face, shaft,

hole) and position.
In this peper we define the relation against to be such that:

a face is against another face when they are coplanar, and with their

normals in opposition;

a face is against a shaft when the X-axis of the shaft lies in a
plane parallel to the plane of the face, and removed from it by a
distance equal to the radius of the shaft;

4 bt
bt

$d VR TR

a shaft cannot be against a hole;

a shaft cannot be against a face;

ete,
We define the relation fits to be such that:

a shaft fits a hole when their X-axes lie along the same line, but in

opposition;

a face cannot fit a face;

etc.

Note that this is a verv incomplete description of against and fits.
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We also need conditions invelving the actual dimensions of the features,
such as that a face is against another face only when their outlines over-
lap by a certain minimal amount, and that a shaft fits a hole only when
its origin is between the origin of the hole and the point on the X-axis
at minus the depth of the hole. We need to include facts about the space
occupancy of objects - e.g. that two objects cannot occupy the same space
at the same time, These latter conditions give rise to inequalities.

It is envisaged that future work will concentrate on dealing with these
inequalities. At present we only consider the equalities produced using

our incomplete definitions of against and fits,

The program takes a list of body models, and a specification of the
against and fits relations that are to hold, and returns a function G from
bodies to expressions, where the expressions denote positions that the
bodies must be in to satisfy the relations. These expressions will in
general contain free variables, and the program also returns equations
(possibly null) between these free variables, having attempted to elim-

inate these variables as far as possible (the equations are non-linear).
4, Relations between two features

The program for deriving the equalities is based upon the following
considerations, Firstly it should be noted that if a feature of one body
is spatially related to a feature of another then the number of degrees of
freedom of the two bodies considered together is less than the 12 they
would have if thev were free to move. Suppose that a body B1 has
position P, and a body B2 has position Ps and face F1 of B1 is against
face F2 of B2 (Fig. 4) then for some 6, y and z

p?=f;1 M twix(6) trans(o,v,z) f,p, (4.1)

where f7 and f? are the positions of F1 and F

o°
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Figure 4. Face F1 against face F2

In equation (4.1) the variables y and z correspond to the ability of
F1 to be translated with respect to F2 while still remaining in contact,
and the variable © corresponds to the ability of F1 to rotate with respect
to F2 while preserving the contact. In the case where a shaft F1 fits a
hole F2 or conversely (Fig. 5), we have a similar equation to (4.1) except
that the relative translation is along the direction of the common axis of
svmmetry.

Tigure 5. Shaft F, fits hole F1
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Shaft F1 against face F2

The remaining case that we deal with is when F1 is a face and F2
is a shaft, (Fig. 6). Here we get two equations, one for expressing p2
in terms of P, and the other for expressing P, in terms of Py These are:
p2=f;1 twix(8) XTOY trans(x,-a,z) twix(#) P, (4.2)
p1=f;1 twix(@) trans(x,y,a) XTOY twix(@) f2p2 (4.3)

where a is the radius of the shaft, x and z in the one case, and x and y
in the other correspond to the translation of the shaft across the face,
© corresponds to the rotation of the shaft about a normal to the face, and
¢ corresponds to the shaft rotating about its axis of symmetry and XTOY is

a constant position which transforms the X-axis to the Y-axis.

5. Satisfying simultaneous relations

We have seen how to express the position of one body in terms of the
position of another when the two bear a specified spatial relationship to
each other. In general we are interested in making a number of relations
hold simultaneously between a number of bodies (see section 8 ‘or exampleé.
The program derives expressions for the positions of these bodies by first
selecting one to be the base. (A fixed one if possible, otherwise an
arbitrarily chosen one.) A body which has a feature related to a feature
of the base then has its position expressed symbolically in terms of the
position of the base according to the equations of section 4. This new

set of bodies with
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positions defined is then used to provide expressions for the positions
of the bodies related to them. Now it may happen that there are loops
in the graph relating bodies (for instance the rod mentioned in section 1
is related in 2 ways to the Vee block, namely it is against both faces).
In that case the program has two alternative expressions for the position
of the body. It selects one of them to be the position, and forms an
equation saying that the two are equal.

Thus at the end of this phase, assuming that the relation graph is
connected all bodies will have an expression for their position, and a
number of equations between positions will have been generated. Now,
related to the fact that the Affine group is the semi-direct product of
the group of translations and the group of relations, it is possible to
consider the rotational component of the equations separately. (See (3)
in which the treatment of these equations is considered in full) Briefly,
however the system deals with the equations of the form

twix(0)=a (5.1)
twix(0,) a twix(6,)=b and (5.2)
twiz(0,) a twix(6,) b twix(03)=c (5.3)

It is shown in (3) that, depending on the values of a, b and c, the
above equations have solutions, giving constant values for 01, 92, 93.
It should be noted that the rotation equations are first reduced by
applying the transformations

twix(01) twix(02)=tuix(o1 + 92) and (5.4)
twix(Q) M=M twix(-0) (5.5)

The effect of this phase is to produce a number of linear equations

on the ©'s. These are used to eliminate as many of the 8's as possible.,

Having deduced as much as possible by considering the rotations by
themselves, and having substituted symbolically or numerically for the
variables which have been eliminasted, the program proceeds to attack

the equaticns of the form
P.=P, (5.6)
by multiplving symbolically by the zero vector 0, tc get

0p,=0p, (5.7)
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It is shown in (3) that it is sufficient to solve this equation,

The svmbolic multiplication depends on the equalities

trans(a.b;c) ((x,¥,2))=(x+a,y+b, z+c) (5.8)
and

swix(8) ((x,v,2))=(x,v c0s@ -z sin@, v sin® +z cose) (5.9)

Using (5.8) and (5.9) an equation between twe symbolic vectors is
derived, and by equating the components, three real equations are

obtained for each equation of the form (5.6).

5. The implementation

The expeditious implementation on a computer of the symbolic
menipulation described in this paper obviously requires a language in
which it is easy to implement a range of data-types and with "heap"
rather than stack storage control. In fact we use POP-2 (4), Much of
the algebraic manipulation is not specified in POP-2, however, but in
terms of production which are input to an Algebra System written in POP-2.

Equalities such as 5.4 are written as:
ALL THETA PHI; TWIX(THETA) MP TWIX(PHI) - TWIX(THETA + PHI)

meaning that anything that matches the expression to the left of the arrow
is to be replaced by what is to the right. MP is an associative operator
meaning matrix product. The Algebra Svstem automatically performs cer-
tain simplifications such as working out constant subterms, the elimin-
ation of identity elements corresponding to operators, and the replace-
ment of anv subterm in which a zero of the operator occurs by the zero.
The matching process in applying productions tskes accoumt of
associativity, If an operator is both commutative and associative then

tne svstem automatically collects multiples of repeated subterms.
+  An example

Jiver a fixed block (the "world") of height 20, with position I and

#itn a nole of depth 8 drilled into its top surface a: (50,50,2C) - i.e.

posi*ion of hole feature=XT0Z trans(50,50,20)

position of face at bottom of hole=XTOZ trans(0,0,12)

8
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put a post into the hole so that the shaft (feature position of shafi=H)
fits the hole, and the end face of the post is sgainst the bottom of the
nole, (Fig. 7).

Figure 7. Post in hole, with 1 degree of freedom

Equating the position of the post derived through fits relation to
the fixed world

(W~ "M twix(01) trans(X1,0,0) XT0Z trans(50,50,20)1)
with the position derived through the against relation

(™M twix(02) trans(0,Y1,21) XT0Z trans(0,0,12)1)
produces the eguation

twix(81) 4rans(X1,0,0) XT0Z trans(50,50,20)
= twix(82) trans(0,Y!,21) XT0Z trans(0,0,12)

with 3 (post)=twix(62) trans(0,Y!,Z2‘) XTOZ trans(0,0,12), Solving the

rotation enuations produces the real equation
e - 68!l =0

Now substituting 82 for 9! in the equation, and solving tre trans-

lation equation gives
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L1==8, Y1=50, Z21=50
and = (post) becomes

?wIx(82) trens(0,50,50) XTOZ trans(0,0,12)

i,e. the post fitted into the hole has only one degree of freedom -

rotation about its own axis.

. Other problems
We have used the svstem to sclve several other problems:

(1) Given a fixed worlé with a fixed wall on it, put a block down
so that a particuler side is against the worldtop and another particular

side is against the wall.

(2) Given a fixed world with two fixed walls at right angles put
one block down so that specified faces are against the worldtop and the
wallside, and put a second block down so two specified faces are against
the worldtop and the second wall and so that a particular pair of faces
of the blocks are against each other, (Fig. 8). This produces a
situation where one block has no degrees of freedom, and the other block

is only free to slide along between the walls and the first block.

Figure K. Two blorks against two walla and each other
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(3) Given a fixzed world with a fixed wall on it, put a
cylindrical rod down so that it is lying on the worldfop with one end
sgainst the wallside.

(4) Given a fixed block with a "V" shaped groove cut into it, put
a cylindrical rod down so that its cylindrieal surface is against both
sides of the groove, (Fig. 9).

—
\

VEE BLOCK

Figure 9. Rod resting against groove in Vee block

(5) Given a fixed world with two holes drilled into it, fit two
posts into the holes, with their ends against the bottoms, and fit a
crossbar into two holes drilled into the posts, so that its ends are
against the bottoms of the holes, (Fig. 10). In this case the posts
have no degrees of freedom, and the crossbar can only rotate about its
own axis. During the course of solving this problem, five equations
are set up, and the rotation of the posts in their holes can only be

determined by considering both the fits relations of the crossbar.

11
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Figure 10. Crossbar fitted into two posts in holes

(6) Given three blocks, with holes drilled in each end, and pins
fitting into the holes to join the blocks into a triangle, determine the
position of two of the blocks, given that one is fixed, and they are of
relative lengths 3, 4 and 5.

9. The relation to previous work

Most work with robot manipulators requires the solution of equations
of one sort or another, but usually such equations are stereotyped, that
is to say it is required to get the ianipﬁlator to grip one block or to
put a block in a known place. For instance see Paul (5) and Ejiri et al
(6); Feldman (7). ”

Nevins et gl,(B) have dealt with the automatic production of the
:dynamic equatioﬁs for an arbitrarv manipulator whose connection graph is

linear.

1
Fikes (9), Moore and Foster (10) have considered the solution of

equations as part of a general problem solving svstem.
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Al and Sensari-Motor Intelligence

John Burges
Department of Psychology, University of Durham

In this talk I shall discuss the earliest period of human cognitive
development, the period of sensorimotor intelligence (SMI), in terms provided by
Al One aim in doing so is to show that the application of Al concepts and
techiniques in the study of this period will prove useful for the understanding
of infancy (and incidentally to Al itseif). A few issues central to Al will be
taken and used as a basis for discussion of aspects of sensorimotor
intelligence. SMI can be a good test-bed for Al ideas - at least as informative
as that provided by, say, chess. The world of an infant is in no sense a toy
world, yet itis small. Itis more than an arbitrary subset of our world but
can be computed manageably. Moreover, most of the phenomena anyone would
ascribe to the action of "intelligence” may be found in the first two years of
human life. Another aim of this paper is to give some feeling for the
significance of this earliest phase of human development for our understanding
of man.

The presentation will begin with a brief outline of the course of
sensorimotor development as described by Piaget. Attention will then be
focussed on the last stage, that of "rapid internal coordination”, which will be
compared with devices with a solution to the frame problemin Al. An
investigation of the behaviour of infants will be proposed as an approach to the
solution of the frame problem, and a number of issues involved in such an
attempt will be discussed. The paper ends with some comments aout the relation
between Al and Psychology.

*Currently at the Department of Computer Science,Carnegie -Mellon University
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2 The Psychology of SMI

Without a doubt the most famous student of children’s cognitive development
has been Piaget. He was interested in creating an experimental epistemology by
finding out how children interpret the world and seeing how their interpretation
develops with time and experience. He summed up his interests in the origin of
cognition with the name "genetic epistemology”. He began his research by
observing his awn children’s spontaneous actions and their reactions to
situations which he set up himself, as this example shows:

Obs 16. ... Laurent, at 0;7(5) [i.e. at 7 months and 5 days]loses a

cigarette box which he has just grasped and swung to and fro. Unintentionally
he drops it outside the visual field. He then immediately brings his hand

before his eyes and looks at it for a long time with an expression of surprise,
disappointment, something like an impression of its disappearance. But far from
considering the loss irremediable, he begins once again to swing his hand,
although it is empty; after this he looks at it once more! For anyone who has
seen this act and the child’s expressionit is impossible not to interpret such
behavior as an attempt to make the object come back. Such an observation. ..
places in full light the true nature of the object peculiar to this stage: a

mere extension of the action. ... he grasps and swings the cigarette box

...; when he loses it right after having taken it he searches on the coverlet
with his hand. However, when he drops it again under any other circumstance, he
does not try to find it again. 1then again offer him the same box above his

eye level; he makes it fall by touching it but does not search for it!

(Piazet ’54a)

Clearly the conceptual world of the baby is somewhat different from our
conceptual world and Piaget, by the use of simple but judicious experimentation,
has shown that it is organised on animmediately practical basis throughout the
first two years of contact with the physical world. He found that as
development proceeded there was an increasing capacity for the representation of
absent states of affairs, facility with which was held to mark the advent of the
nex! period. He called the first period, from O to 2 years, the period of
Sensori-Motor Intelligence. The brief survey of it which follows will show what
vast progress the child makes in his construction of reality within this first
period of intellectual growth.

15
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Piaget ("54a) describes six stages in the development of SMI. Stagelis
characterized by instinctive reflexes, stage II by habitual (acquired) reflexes,
stage I1I by secondary circular reactions, stage IV by means-end behaviour,
stage V by tertiary circular reactions and the final stage, stage VI by "rapid
internal coordination” of problem solving processes.

As an example of a reflex schema, Piaget cites sucking. At this stage
objects are known only through their capacity to enter into reflex activity. In
stage Il the reflexes are modified so as to become extended in scope - to, for
example, systematic thumbsucking. In Piaget’s terms, this "involves the
formation of a schema of a higher order (a genuine habit), which then integrates
the lower schema [i.e. the reflex] with itself.”

Stage 1], starting at about 3 or 4 months, is marked by the appearance of
the secondary circular reaction. Anexample of this is that of the infant
shaking some rattles on the pram cover by means of a string attached to it.
Initially, the child grasps the string and inadvertently shakes the rattles. On
hearing the result he repeats the process. Inatypical circular reaction this
repetition will recur for some time. In the primary circular reaction of stage
I (e.g. thumbsucking) the body itself is affected repetitiously; in the
secondary circular reaction, external objects are affected, usually via
prehension.

The fourth stage, starting around 8 to 10 months, involves the
concatenation of schemata which produces means-end behaviour. An example is the
removal of a screen to retrieve an object placed behind it. Because the
schemata may be concatenated in an arbitrary order, whereas the habitual
coordinations of the second stage are fixed firmly together in discrete
uncommunicating schemata, Piaget refers to an increase in the “mobility’ of the
schemata.

The characterization of these mobile means is the preoccupation of stage V.
The tertiary circular reactions consist,as do all circular reactions, of
repetitions of new phenomena, but this time with "variations and active
experimentation” - for example, dropping a toy from various heights and studying
the trajectory.

16
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The final stage, stage VI (around 18 months) involves the internal solution
of problems. Piaget cites the example of a stick, with which his child had
previously had no contact, affording insight into its practical potentialities
for reaching things without actual trial and error. Another example will be
discussed in the next section.

Figure 1 may help to conceptualize the stages and the relations between
them. Init are distinguished the stages involving a new type of information
processing behaviour - the "modes"” - from the stages involving the mere
acquisition of data in in association with these modes of organization -
“explicit data gathering”. Figure 2 attempts to relate these modes to a
progressively bifurcating development of descriptive terms which are justified
by the modes. These modes may be related to Kant’s "a priori” categories - "a
priori®, that is, so far as Kant’s introspections on his own, adult, state were
concerned.

Piaget’s rather homely methods and theoretical analysis may be attacked in
a variety of ways. To consider them would quickly generate a complex argument
for which there is no space here, but it would be inappropriate to take all that
Piaget has written without criticism. His writings can thus be put to only a
relatively weak use here - merely to provide a framework within which to
appreciate the character of sensorimotor development. Another aspect of
Piagetian theory for which there is insufficient space is its structural
aspects. These are less pronounced for the sensorimotor period than for the
later periods. The structures he uses for these are regular mathematical
structures (Beth and Piaget *66). Had he had a knowledge of the use of the
irregular structure manipulations of Al, he might have been able to characterize
the structural aspects of infant behaviour more completely. This line of
enquiry will not be pursued explicitly here. It will, however, be implicit in
the following discussion of insightful behaviour and its origin.

3 The Frame Problem and'Stage VI
The frame problem, simply stated, is that of keeping track of what is going

on in the world while attempting to change some aspect of it. The difficulty is
that an action may have side-effects not immediately representable in the

17
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data-base describing the state of the world. One is tempted at first sight to
believe that the problem should be gquite readily soluble, but this illustration
from Raphael (’71) should dispel such naivety. Suppose that initially a
situation is described by four facts:

{f1) A robaot is at position A.
(f2) A box called Bl is at position B.
{f3) A box called B2is on top of B1.
(f4) A, B, C and D are all positions in the same room.
Suppose moreover that two kinds of actions are possible:
(al) The robot goes from x to y, where x and y may be any of A, B,C
and D.
{a2) The robot pushes Bl fromx {oy.
Consider two tasks:
(t1) The robot should be at C.
(t2) B1 should be at C.

t1 can be accomplished by the action of type al,’go from A ta C". After
performing the action, the system should know that facts {2 to 4 are true, but
that f 1 must be replaced by
(f1°) The robot s at position C.
t2 requires the use of a2, and both and f1 and {2 must be changed. The problem
is to work out which facts have changed as a result of the action. Raphael says
that although one can think of ways of doing this, they all seem to break down
in complicated cases. He gives two examples:
(p 1) *Determine which facts change by matching the task specification
against the model.’
This would fail for t1 if the robot got to C by pushing B1 there (which is not
unreasonable if the box were between the robot and C and pushing it there were
easier than going round), thus changing f2.
(p2) *Specify which facts are changed by each action operator.”
This procedure is also not sufficient, since derived information such as
(f5) B2is at position B.
will be made false by t2.

18
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According to Raphael the solution to the frame problem is unknown. (Its
solution may, indeed, require abandoning the first-order predicate calculus of,
for instance, McCarthy and Hayes (’69), which anyway has rather definite
limitations according to Anderson and Hayes ('72). Be that as it may Jacqueline
Piaget demonstrated that she had solved it before her second year was over:

Observation 181 repeated.- ... Jacqueline at 1;8(9) arrives at a closed door

- with a blade of grass in each hand. She stretches out her right hand toward
the knob but sees that she cannot open it without letting go of the grass. She
puts the grass on the floor, opens the door, picks up the grass again and

enters. But when she wants to leave the room things become complicated. She
puts the grass on the floor and grasps the doorknob. But then she perceives
that in pulling the door toward her she will simultaneously chase away the grass
which she placed between the door and the threshald. She therefore picks it up
to put it outside the door’s zone of movement. (Piaget ’54b)

Perhaps this shows only a partial solution, as Jacqueline did make a
mistake as she was about to leave the room. The mistake was short-lived and
easily corrected. What is interesting about it is that the consequences of it
could be foreseen and that the correction was made without trial and error. She
certainly gained very little information about the nature of the problem of
getting herself and her blades of grass out of the room. Her *mistake’ - and if
she had not made it, it could have been argued that the blade of grass had been
placed outside the range of the door by chance - allows one to see what was
missing from a complete insightful action. A number of such observation of her
actions in similar situations might well provide alist of all the necessary
components. Itis only towards the end of the sensorimotor period that the
internal factors that define the next stage begin to obscure the origination of
performed behaviour, so that the components which are invisible at stage VI will
have been on display in the preceding mode, stage IV. Itis precisely this
invisibility which makes it plain that the child has solved the frame problem.
In order to find out how he has done it one could do worse than follow the
advice of Chairman Mao, quoted by Anderson and Hayes:

You can’t solve a problem? Well, get down and investigate the present facts and
its past history!... Only a blockhead cudgels his brains on his own, or
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together with a group, to *find a solution’ or ’evelve an idea’ without making
any investigation. It must be stressed that this cannot possibly lead to any
effective solution or any good idea.

4 Factors in Tracing the Child’s Selution

In following this advice and investigating the history of the problem (or,
rather, the history of the infant’s solution to it) we find that external
feecback governs the younger infant’s attempts, rather than some internal
feedback producing ’insightful’ actions. Moreover, exactly as quoted in the
examples above, one can see exactly what processes are occurring so that
theories can reflect the data rather closely.

One also needs well-understood theoretical constructs in order to fabricate
a viable theory. Fortunately those applicable to the mode preceding that of
rapid internal coordination (see Figure 1) have been elaborated in Al following
the work of Newell and Simon (’63) on GPS. Some aspects of this branch of Al
have even been amenable to systematic analysis, for instance the traversing of
graphs (Michie ’70). The lack of not only these formalised concepts but also
the computational power to deduce rigorously the results of theories based on
thern may be important reasons why Tolman’s (*32) attempt to apply "means-end
analysis” to learning by rats did not catch on in the Thirties.

Another issue which bears on this is that of representation, both in
general and particular terms. Generally, the infant constructs his reality ina
rmanner quite different from that of the adult, as has been illustrated above.
The classifications of Figure 2 correspond to gross structures for
representation, to Kant’s categories (Korner *55), perhaps. For the finer
details let us consider putting some meat on a guggestion of Meltzer’s (*70)
that a sensible way to acquire generalizations about the world is to generalize,
i.e.

from P(a) infer (x)P(x)

All structures are generalizations, although they may not be due to just such a
process of generalization. Let us, however, look at Meltzer’s process. He gave
two examples. The first was the inference of aimost all the axioms of group
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theory from ten statements about two groups. The second was from a more complex
domain. That was of a child throwing a stone and seeing it sink in a pool.

What is it that allows a child to make - as Meltzer claims he does - the

"(deductively invalid) inference that all stones if dropped on water will sink"

and not any of a host of more or less general inferences, some of which are
incorrect? Clearly the child must make careful use of his current representation

of the world in order to learn anything new about it and at the same time remain

in a state of approximate adaptation.

One could do experiments with children to explore this issue of how current
structures limit generalization in early learning. Here is a rather
entertaining example from linguistic development quoted by McNeill (66):

Child: Nobody don’t like me.
Mother: No, say "nobody likes me".
Child: Nobody don’t like me.

(eight repetitions of this dialogue)

Mother: No, now listen carefully; say "nobody likes me".
Child: Oh!Nobody don’t likes me.

The hapless child did not make the generalization his mother wanted him to.
Indeed, itis alittle difficult to see how she could have signified that she
wanted him to delete the "do" with the consequent double negative, evenif she
could have formulated the problemin the first place. (And as it happens, the
nterise" was correct anyway, given the presence of a "do” in the sentence.) It is
not easy to envisage a generalization procedure which the child could sensibly
employ to improve his grammar in the direction intended by his mother.

Investigation of the details of the child’s structural representation must
bear these considerations in mind.
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5 Structural Learning

Now that sophisticated software has made it possible to consider
implementing theories of sensorimoter development in detail as process models,
the question of how the structures develop with experience may be examined
afresh. Hopefully it will become practicable to identify exactly the potential
cracks in each structural level which allow the next level to unfold. A start
has been made in this direction by Newsted ('73). He has begun to implement
Cunningham’s (*72) interpretatiopn of the Piagetian first period in terms of
Hebb’s (*49) hypothetical neural learning processes.

It may be found that mere differentiation and recombination of reflexes (as
proposed by Piaget) cannot provide for early intellectual development and that
something additional will have to be added. That would lead to a position
similar to that of Chomsky ('65). He proposed that normal learning methods
would be inadequate for first language acquisition, and that extra principles
would be needed to latch on to "universal” (i.e. general) properties of all
adult languages. Supposing that we did use the same basic learning mechanism as
animals, these supernumary principles would help characterize whatitistobe a
man. This is animportant goal of psychology which seems to have been forgotten
long ago, and it may be that Al is in a position to help achieve it. This will
be especially so after Al-based work on learning by infants, for Chomsky had no
clear idea how children ordinarily learn about the world. The discovery of this
will be impossible without the wholesale importation into developmental
psychology of Al techniques and results. Another drawback for the Chomskian
view of universals of adult language as an explanatory aid in first language
acquisition is that they provide nothing more than constraints on the solution,
rather than specify the acquisition process. An Al approach would work close to
each structure as it grew and so could provide a better account of the
relationship between innate heuristics and generalizations in the
fully-developed structure than Chomsky’s conjecture that the former somehow lock
on to the latter. It could also distinguish any specitically linguistic prior
knowledge from that which is general to sensorimotor activity.
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6 Conclusion

This talk has attempted to show that Al and early developmental psychology
may be of value to each other. 1t has been suggested that the infant’s gradual
approach to the insightful solution of problems may be a valid technique to
employ in solving the frame problem. However the problem itself would not have
become apparent had it not been for the detailed analysis of action forced upon
Al by the neutrality of software ignorant of the ways of the world.

The position advanced does not fall wholly into one of Newell’s (70) eight
possible relationships between Al and psychology. They are

(1) No relationship

(2) Metaphor/attention-focussing
(3) Forces operationality

(4) Provides language

(5) Provides base (ideal) models
(6) Sufficiency analysis

(7) Theoretical psychology

(8) Self sufficient

In none of these is there provision for transferring ideas or results from
psychology to Al, and that this is possible and indeed desirable is one of the
contentions of this paper. Work on chess problems provides another example of
Al making use of psychology. Simon and Chase ('73) consider observations on the
perceptual abilities of grandmasters as a means of isolating the important

factors to develop in the evolution of better programs - rather as has been
suggested here for the frame problem. Good ('69) proposed a collection or
principles of play from good books on chess. These principles were the results
of their propounders’ introspective analyses of their own methods of working.

In present-day chess technology it is difficult to tease apart the psychological
from the purely Al components.

Clowes’ ('73) timely attempt to proselytize Al to a rather powerful subset
of psychology takes this one stage further. His argument was based partly on
the historical priority of psychology. What, he asked, was the point of
continually rediscovering the wheel?
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In contrast with both Clowes and Newell, this paper has argued neither that
"psychology proposes but Al dispases” or its reverse, but that the two
disciplines may best be developedtogether.
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REPRESENTING NEGATIOR 1IN A PLAMNER SVYSTEM
D.J.k. Davies

Theoretical Psychology Unit,
School of Artificial Intelligence,
Edinburgh University.

Abstract

A program is described which carries on a dialogue with the operator,
accepting English statements and questions, noting the statements and
answering the questionms. A method is described for representing negative
information. The program goes beyond previous question-ahswering systems
in that new information can be given in English even where this entails
selectively removing older information. Universal and existential
"quantifiers' and negation may be used in both statements and questions.
The treatment of the quantifiers is outlined. The program uses POPLER
1.5, a PLANNER-1ike system.
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Natural Language, PLANNER, Negation, Quantifiers, Question-answering,
Procedures.
Introduction

This paper concerns a Natural-language question-answering program
which will accept new information in English as well as answering
questions. The program uses POPLER 1.5 (Davies 1973), a PLANNER-like
system, rather than predicate logic; methods are presented for

(i) representing negative information such as in (1) and (2);

John doesn't own that house. 1)
No-one ate any apples. (2)
and

(ii1) removing or 'forgetting' old items of information which conflict
with new statements.
These methods depend on the use of 'self-erasing procedures'. The
relationships between negation and universal and existential quantifiers
will be outlined.

The program can be given new information by typing in a suitable
English indicative sentence, and the information will then be used in
answering subsequent questions to which it is relevant. A particular
problem arises when such a statement contradicts information stored
previously: the out-of-date informetion must be removed. This problem
is exceedingly difficult to solve in a system based on the storing of

predicate calculus formulas. Inconsistencies must be avoided; however
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it is generally hard to know which formulas to remove when a new formula
is added, particularly when quantifiers are involved. So far, no system
based on predicate calculus has demonstrated a solution to this, and that
is an important reason for using a PLANNER-like system.

In a PLANNER-like system, propositional information can be
represented by two different methods. First, a list-constant 'assertion'
can be stored in the 'data-base'; this method is suitable for 'atomic
facts' which do not contain any quantifiers or variables, e.g. [IN COW1
FIELD2]. Secondly, information can be represented by procedures -
programs called through pattern matching. A procedure has a pattern
as well as its body of program. In eppropriate circumstances, procedures
are called and their bodies run; the procedures called are those whose
patterns 'match' a given 'target pattern' item. Before any procedure is
used, it has to be 'asserted', telling the calling mechanism that it is
available for use. It is possible subsequently to 'erase' the procedure
withdrawing it from use again.

Two main types of procedure are used in the program: asserting
and infer procedures. Asserting procedures are called with the function
draw, which may be read as "draw conclusions from ...". Draw is applied
to an item (which represents a proposition) and calls all asserting
procedures whose patterns match that item. One call of draw may cause
several procedures to be called.

Infer procedures are called with the system function infer, which
also takes an argument item which represents a proposition; infer will
try to infer the proposition's truth. Infer calls an infer procedure
whose pattern matches the item; if several such procedures are available
then only one is called. If, however, a back-tracking 'failure' backs
up, then infer calls another procedure instead if there is one.

The operator maintains a dialogue with the program by typing English
statements and questions on a teletype, and the program responds to each
ocne in turn. The program is of interest as z (very incomplete) model of
a 'hearer' of English, not of a 'speaker’', and the program's responses are
stereotyped. A typical dielogue is shown in Figure 2; the marginal
rotes will be explained later. The cperator may use negaticn and
'quantifier' words in his questions and statements; this covers the
words: each, every, any, all, some, 2, an, not, there is, no-one,
something, etc. Collective uses ("I paid £500 for all those cows"),

cardinals ("Five sheep were stolen') and "many' and "few' are not hendled.

The domain of disccurse is very limited in subject matter. A
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npumber of pecple own various animals and keep them in varicus fields.
Certain facts are known to the program beforehand, but its ‘beliefs' will
change in accordance with what it is told. The precgram demonstrates some
'upderstanding' of negation and the quantifiers, but it is not a detailed
model for the concepts of ownership and place.

The program is based on the principles put forward by Davies and
Isard (1971) for a model of a hearer. The response to any utterance
takes place in two stages as shown in Figure 1. The utterance is first
'compiled' into a piece of program which represents the (cognitive)
meaning of the utterance. That is, if the hearer then runs this piece of
program he will respond appropriately. For instance, a statement
‘compiles’ into a program to store the information (and erase out-of-date
information). A question 'compiles' into a program which, if run, will
compute and print a suitable reply. This 'compilation' of the utterance
may be regarded as 'understanding' it. The program then goes on tec run
the compiled utterance, thus producing a response. There are no
interesting peripherals available to the program, so there is no provision
for responding to imperatives (e.g. '"Shut the door"). In what follows,
we shall not examine the 'compilation' process in detail but will look at

the programs which various types of utterance compile into.

Simple Assertions

The simple assertion (3) compiles into the program (4).

Cowl belongs to Brown. (3)
(ACKNLDGE (DRAW [BELONG COW1 BROWNI)) “)

This program looks like a mixture of LISP and POP-2. Parentheses mean a
function call in LISP format, while square brackets mean a list as in
POP-2. Every statement compiles into a program of the form (ACKNLDGE
(DRAW 1ist)) where list represents the proposition.

When (4) is run, draw is applied to the given list and (as described
earlier) calls asserting procedures whose patterns match it. Draw
returns some result, and the function acknldge is applied to it. Actually,
all the work is done by the procedures, and acknldge merely prints "OK'.
In (4) the argument of draw is a 'simple fact' and there are twec standard
procecures to be run. The procedure ASSTINFO is called for any 'simple
fact' and inserts it into the data-base. The procedure BELONGl is specific
to assertions about BELONG; it checks (in this case) whether COWl1 belonged
to someone other than Brown, and if so removes the out-of-date information.

It may be that draw will also call one or more other asserting procedures
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which have been created by previocus statements.

Other statements are handled in a generally similar way; draw is
applied to e list which represents the information, and calls procedures.
There are different standard procedures for all the various types of

statements (negations, existentials, etc).

Simple Yes-No Questions

A Yes-No question compiles into a program closely related to that

for the corresponding statement. For example, (5) 'compiles' into (6):

Does cowl belong to Brown? (6))]
(ANSWER (YESNO [BELONG COW1 BROWNI)) (6)

The program (6) differs from (4) only in the two functions called. Yesno
is a function which takes a list representing a proposition, and looks to
see whether (on the basis of the stored information) it is true, false, or

undecidable. It returns true, false or undef as its result, and the

function answer prints a suitable reply.

Yesno first tries to establish the truth of the proposition by using
the function deduce. Deduce takes the list and looks in the data-base to
see whether it is a 'simple fact' which has already been recorded there.

If that fails, deduce calls infer to see whether there is an infer proced-
ure which will establish the truth of the proposition. If deduce succeeds
then yesno returns true.

If deduce fails, then yesmo has to discover whether the proposition
is refutable. The method adopted for doing this in most question-answer-
ing systems is to try to 'prove' (i.e. deduce) its negation. In this
system, however, we capitalise on the fact that new information can be
added and that inconsistent old information is thereupon removed. That is,
yesno applies draw to its argument, and watches to see whether this entsails
erasing any piece of information., If anything has to be erased then the
given proposition is inconsistent with the available information, so yesno
returns false. If nothing was erased then yesno returns undef since the
question is undecidable. This application of draw by yespo is dome in
'Sceptical Mode', which means that any attempt to erase something will
irmediately be spotted (causing execution of draw to be terminated), and

that in any case all side-effects of the draw will be undone afterwards.

For example, suppose that (3) has already been typed in, and we now

ask (5). Deduce will find [BELONG CCWT BRCOWNI in the data~base, so
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yesno returns true and the reply is "Yes". On tke other hand, suppose
that we ask (7) which 'compiles' intoc (8): '

Does Williams own cowl? (7)
(ANSWER (YESNG [BELONG COW1 WILLIAMSI1)) (8)

Yesno tries deduce first, but that will fail; the given list is not in

the data-base, and no procedure will be able to infer it. Therefore draw
is applied to the list in Sceptical Mode. Draw operates as usual for a
simple fact, calling ASSTINFO ‘and BELONG1l in this case. BELONG1l will now
find that [BELONG COW1 BROWN] is recorded in the data-base, and therefore
erases it. Since this is done in Sceptical Mode, the erasure is 'trapped',
the effects of the draw are undone again, and yesno exits with result
false.

Let us now consider the treatment of a simple denial such as (9),

which compiles into (10):

Cow3 does not belong to Brown. (9)
(ACKNLDGE (DRAW [NOT [BELONG COW3 BROWN11)) (10)

When (10) is run, the standard procedure DENYFACT is called, which special-
ises in denials of simple facts. This procedure first erases the list
[BELONG COW3 BROWN] from the data-base if necessary. However, this is

not sufficient, because yesno would now merely return undef if applied to
that 1ist. DENYFACT therefore also creates (and asserts) a new asserting

procedure (11) which represents the specific denial.
(PLAMBDA ASSERTING [] [BELONG COW3 BROWN] (ERASEA (FRAMEDATA 1))) (11)

This procedure has pattern [BELONG COW3 BROWN] so it will be called if
draw is applied to that list. When it is called, its only effect is to
erase itself from the index of procedures in use. (The expression
(FRAMEDATA 1) will evaluate to the procedure itself at run-time.)

If we now ask the question (12), which compiles into (13),

Does Brown own cow3? (12)

(ANSWER (YESNO [BELONG COW3 BROWNI)) (13)

yesno will try deduce first as usual. As in the previous case, deduce
will fail, because Brown does not own cow3. Once again, yesno then
applies draw to its argument, in Sceptical Mode. As we have just remarked,
draw will now call procedure (11), which erases itself. This erasure is
'trapped’' in sceptical mode, so yesno finally returns false again, which
is correct.

On the other hand, i(fwe subsequently state '"Brown owns cow3", then

draw is applied to the same list, but not in Sceptical Mode this time.
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Procedure (11) is called, and erases itself; it will have no further
effect. It can be seen that procedure (11) represents the meaning of

the denial (9) in a very direct manner.

uantifiers

Figure 3 summarises the treatment of the various quantifiers by
draw and deduce. Each of the various actions is implemented by means
of a "specialist" procedure; the whole system is recursive (with the
exception of IFANY statements), permitting complicated propositions to
be handled.

It can be seen from Figure 3 that there are three quantifiers,
THEREIS, FORALL, and IFANY, not two as in predicate logic. THEREIS is
the existential quantifier, while FORALL and IFANY are distinct universal
quantifiers; this distinction arises because propositions may change
in truth value as the hialogue progresses. Each type of quantifier binds
a variable, of a specific type, over a 'matrix'. FORALL claims that the
matrix is true for all individuals of a given type, at the time of the
utterances (all utterances are in the present tense). IFANY goes further,
claiming that the matrix will remain true of all such individuals for all
future time (until a later statement explicitly rejects this again).

For example "Every one of my friends takes drugs' applies to my friends
now (and presupposes that I have at least one); it is a FORALL statement.
In contrast, "Anybody caught trespassing will be prosecuted" is an IFANY
statement, applying on future occasions (but not presupposing that
anybody will get caught).

A FORALL statement can be 'run' by checking off all the relevant
individuals in turn, asserting the matrix of each. This usually reduces
to a series of simple facts or simple denials. An IFANY statement,
however, also requires the creation of one or more procedures, depending
on the structure of the matrix. The procedures represent the meaning of
the statement as a rule of inference, permitting it to be used in
changed situations and about newly introduced individuals. The procedures
depend on the structure of the matrix. Each separate structure requires
different treatment, and consequently only a limited variety can be
handled.

In general, the words every and each translate into FORALL, while
all translates into IFANY. (Collective uses are not yet handled.)

Any also translates into IFANY in some contexts, but becomes THEREIS

31




D.J.¥. Davies

in questions and negative contexts, and in the antecedent of another
universal quantifier. 'Definite' comstructions such as "any of the ..."
become FORALL. This scheme follows Vendler (1967) and Johmson-Laird
(1870) .

Cornsider, for example, the statement (14) which compiles into (15).

Any cow in fieldl belongs to Brown. (14)
(ACKNLDGE (DRAW “[IFANY [(COW) V1]
[IMPLIES [IN £*V1 FIELD] [BELONG £%V1 BROWN111))
(15)
When (15) is run, draw calls the appropriate specialist procedure which
creates (and asserts) two new procedures. These new procedures will
read thus (slightly simplified):
proci=
(PLAMBDA INFER [[(COW) V11] [BELONG £*V1 BROWN]
(DEDUCE [IN £*V1 FIELD11)
(DRAW [BELONG £*V1 BROWNID)) (16)
and
{(PLAMBDA ASSERTING L[[(COW) V111 [NOT [BELONG £*V1 BROWN]]
(COND [(HASRICC (DEDUCE [IN £*V1 FIELD11))
(ERASEA procl )
(ERASEA (FRAMEDATA 1))1]
[ELSE (DRAW INOT [IN £%V1 FIELD111) 1)) 17
The first procedure (16) permits one to infer that a cow belongs to
Brown if it can be deduced to be in fieldl. Whenever this inference is
made, the conclusion is also put into the data-base to avoid having to
repeat the computation. The other procedure is triggered by a denial
that Brown owns a certain cow, and normally draws the conclusion that the
cow concerned is not in fieldl. The complication is required because it
must be possible to erase these two procedures again. This is done by
stating 'in one breath' that some cow is in fieldl but is not owned by
Brown. When (17) is triggered by a denial that Brown owns a certain cow,
it checks whether that cow is known to be in fieldl by virtue of the
current utterance (hasricc does this). If so, then the two procedures
are erased since the asserted conjunction is inconsistent with the IFANY
statement.
It can be seen from Figure 3 that the negation of a universal is
an existential, and vice versa. This is in accordance with predicate
logic. The negation of (14) will be converted to the existential (18),
by virtue of the rule for negating IMPLIES.

32



D.J.M. Davies

[THEREIS [(COW) V1l [AND [IN £xV1 FIELD1] INOT BELONG £+V1 BROWN111]l (18)

When a THEREIS list is supplied to draw, the specialist procedure
concerned first tries to deduce it, which is done by looking for any
instance. If no individual already satisfies the matrix, then an
'arbitrary' individual of the given type is hypothesised and the matrix
asserted of it. This will, for example, serve to erase the procedures
(16) and (17), and to permit THEREIS to be subsequently deduced.
However this technique is unsatisfactory; perhaps the system should
ask the operator which individual is dnvolved. A similar problem arises
with statements involving cardinals, e.g. "Brown owns five animals".

In a statement, the negation of THEREIS becomes IFANY (rather
than FORALL). This means that a procedure will be created. For
example, '"Brown doesn't own any animals" gives rise to the procedure

(19), which is self-erasing rather like (11).

(PLAMBDA ASSERTING [[(ANIMAL) V211 [BELONG £*V2 BROWN]
(ERASEA (FRAMEDATA 1))) 19)

On the other hand, 1n deduce the negation of THEREIS becomes FORALL. To
answer ''Who does not own anything?" the system looks for people with
no known possessions, rather than for people who are explicitly known

not to have possessions.

Relationship to Previous Work

The main previous attempt to translate English into a PLANNER-like
language is Winograd's system (1972). Winograd's system provided only
limited scope for the operator to tell the program things; on the
whole, the BLOCEKS program knows most things already. It was possible

to tell that program who "owned" various blocks, and subsequently to

ask questions. However, his treatment of denials was not entirely
satisfactory. When something was denied, an infer procedure (in our

terminology) was created which is triggered by the attempt to infer

the proposition denied; the procedure makes it its business to ensure
that the false propositicn cannot be inferred. The trouble with this is
that no distinction is drawn between the answers "No” and ""Dunno" to a
yes-no question.

The treatment of '"quantifiers" described here is based primarily on

Vendier's (1967) account, but has obvioue affinities with predicate logic.
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: Sheep4 belongs to Brown.

0K

: Does Williams own sheep4?

1 BELIEVE [BELONG SHEEP4 BROWN]
NO

: Willaims owns all animals in field2.
0K

: Sheep4 is in field2.

0K

: Who owns sheep4?

THE ANSWER IS: WILLIAMS

: Is every cow in field2 the property of

Williams?
[NO (COW) WHICH [IN £+V3 FIELD2]]
YES

: Is each sheep in field2 owned by Williams?

YES

: Does any sheep in field2 belong to Brown?
1 BELIEVE PROCEDURE (PLAMBDA INFER ...)

NO

: There is a cow in field2 which is owned by

Brown.
0K
: Do all the sheep in field2 belong to
Williams?
YES

D.J.M. Davies

Sceptical; item being erased.

IFANY inference.

The inference has been made.
FORALL question.

No referents.

THEREIS question.

Seeptiecal; procedure erased.

Procedures erased now.

FORALL question.

: Do all sheep in field2 belong to Williams? JIFANY question.

DUNNO

Figure 2. A Sample Dialogue
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UNDERSTANDING SIMPLE PICTURE PROGRAMS

Ira P. Goldstein
Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

A collection of powerful ideas--description, plans, linearity,
insertions, global knowledge and imperative semantics--are explored
which are fundamental to debugging skill. To make these concepts
precise, a computer monitor called MYCROFT is described that can debug
elementary programs for drawing pictures. The programs are those
written for LOGO turtles.

Keywords: debugging, program writing, planning, linearity

1. Introduction

This paper reports on progress in the development of a monitor for
debugging elementary programs. Such research is important both for
its practical applications as well as for its investigation of
concepts which are fundamental to programming skill. A computer
monitor called MYCROFT has been designed that can repair simple
programs for drawing pictures [Goldstein 1974]. The reasons to
develop such monitors are:

1. to provide a more precise understanding of the
fundamentals of programming;

2. to facilitate the development of machines capable of
debugging and expanding upon the programs given them by
humans; and

3. to produce insight into the problem solving process so
that it can be described more constructively to
students.

MYCROFT is intended to supply occasional advice to a student to
aid in the debugging of programs that go awry. {Just as the system's
namesake, Mycroft Holmes, occasionally supplied advice to his younger
brother Sherlock on particularily difficult cases.) 1In this
interaction, the user supplies statements that describe aspects of the
intended picture and plan, and the system fills in details of this
commentary, diagnoses bugs and suggests corrections. In this paper,
however, I shall not emphasize this interactive role. Instead, my
primary purpose will be to describe MYCROFT as a model of the
debugging process. This is reasonable since MYCROFT's utility as an
advisor stems directiy from its understanding of debugging skill.

MYCROFT is able to correct the programs responsible for the bugged

pictures shown in figures 2, 3, 4 and 5 so that the intended pictures
are achieved. In this paper, the debugging of figure 2, a typical
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example, will be thoroughly explained. Figures 3, 4 and 5 are
corrected in analogous ways: see [Goldstein 1974] for details.

K
N

\\\\\\\ 11::::::_
Intended MAN ) Picture drawn by NAPOLEON
FIGURE 1 . FIGURE 2

Picture drawn by
INTENDED TREE bugged TREE program

FIGURE 3
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Picture drawn by bugged WISHINGWELL
Intended WISHINGHELL . T rvaran

FIGURE 4

oio_ A

i I
SN L9
NI

Intended . Picture drawn by bugged
FACEMAN FACEMAN program

FIGURE 5

39



Goldstein

These pictures are drawn by program manipulation of a graphics
device called the turtle which has a pen that can leave a track aiong
the turtle's path. Turties play an important role in the LOGO
environment where childran learn problem solving and mathematics by
programming display turtles, physical turtles with various sensors,
and music boxes [Papert 19723. Turtle programs have proven to be an
excellent starting point for teaching programming to children of all
ages, and therefore provide & reasonable initial problem domain for
building a program understanding system.

The context of MYCROFT's activity is the interaction of three
kinds of description: graphical (i.e. the picture actually drawn),
procedural (the turtle program used to generate the picture) and
predicative (the collection of statements used to describe the desired
scene). For MYCROFT, debugging is making the procedural description
produce a graphical result that satisfies the set of predicates
describing intent. Thus, debugging here 1s a process that mediates
between different representatinns of the same object.

2. Flowchart of the System

The organization of the monitor system is illustrated in figure 6.
Input to MYCROFT consists of the user's programs and a model of the
intended outcome. For the graphics world, the model is a conjunction
of geometric predicates describing important properties of the
intended picture. MYCROFT then analyzes the program, building both a
Cartesian annotation of the picture that is actually drawn and a plan
explaining the relationship between the program and model. (Any or
all of the plan can be supplied directly by the user, thereby
simplifying MYCROFT's task.)

The next step is for the system to interpret the program's
performance in terms of the model and produce a description of the
discrepancies. These discrepancies are expressed as a list of the
violated model statements. The task is then for the debugger to
repair each violation. The final output is an edited turtle program
(with copious commentary) which satisfies the model. (Occasionally,
the plan that MYCROFT hypothesizes requires implausible repairs--for
example, major deletions of user code--resulting in the debugger
asking the plan-finder for a new plan.)

The remainder of this paper introduces MYCROFT by describing the
debugging of NAPOLEON (figure 2) and discussing some important ideas
about the nature of plans. For a discussion of the other modules
shown in the flowchart, see [Goldstein 1974].

3. Picture Models

To judge the success of a program, MYCROFT requires as input from
the user a description of intent. A declarative language has been
designed to define picture models. These models specify important
properties of the desired final outcome without indicating the details
of the drawing process. The primitives of the model language are
geometric predicates for such properties as connectivity, relative
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position, length znd location. The following models are typical of
those that the user might provide to describe figure 1.

MODEL MAN

M1l PARTS HEAD BODY ARMS LEGS

M2 EQUITRI HEAD

M3 LINE BODY

M4 V ARMS, V LEGS

M5 CONNECTED HEAD BODY, COMNECTED BODY ARMS, COMNECTED BODY LEGS
M6 BELOW LEGS ARMS, BELOW ARMS HEAD

END

MODEL V

M1 PARTS L1 L2

M2 LINE L1, LINE L2

M3 CONNECTED L1 LZ (VIA ENDPOINTS)
END

MODEL EQUITRI

M1 PARTS (SIDE 3) (ROTATION 3)

M2 FOR-EACH SIDE (= (LENGTH SIDE) 100)

M3 FOR-EACH ROTATION (= (DEGREES ROTATION) 120)
M4 RING CONNECTED SIDE

END

The MAN and V models are underdetermined: they do not describe,
for example, the actual size ot the pictures. The user has latitude
in his description of intent because MYCROFT is designed only to debug
programs that are almost correct. Therefore, not only the model, but
also the picture drawn by the program and the definition of the
procedure provide clues to the purpose of the program.

4. The NAPOLEON Example

MYCROFT is designed to repair a simpie class of procedures called
Fixed-Instruction Programs. These are procedures in which the
primitives are restricted to constant inputs. Sub-procedures are-
allowed; however, no conditionals, variables, recursions or iterations
are permitted. Given below are the three programs which drew figure
2--NAPOLEON, VEE, and TRICORN. The "<{-" commentary is calied the pian
and was generated by MYCROFT to tink the picture models--MAN, V and
EQUITRI--to the programs.

TO NAPOLEON {- (accomplish man)

10 VEE <~ (accomplish legs)

20 FORWARD 100 <- (accomplish (piece 1 body))
30 VEE <- (insert arms body)

40 FORWARD 100 ¢~ (accomplish (piece 2 body))
50 LEFT 90 - (setup heading (for head))
60 TRICORN <~ (accompiish head)

END
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TC VEE <~ (accomplish v)

10 RIGHT 45 - (setup heading for 11)

20 BACK 100 <{- (accompiish 11)

30 FORWARD 100 - (retrace 11)

40 LEFT 90 <~ (setup hesading for 12)

50 BACK 100 - {accomplish 12)

60 FORWARD 100 <~ (retrace 12)

END

TO TRICORN <~ (accomplish equitri)

10 FORWARD 50 {- (accomplish (piece 1 (side 1)))
20 RIGHT 90 ¢~ (accomplish (rotation 1))

30 FORWARD 100 <~ (accomplish (side 2))

40 RIGHT 90 <~ (accomplish (rotation 2))

50 FORWARD 100 <~ (accomplish (side 3))

60 RIGHT 90 <~ (accomplish (rotation 3))

70 FORWARD 50 <~ (accomplish (piece 2 (side 1)))
END

The turtle command FORWARD moves the turtle in the direction that
it is currently pointed: RIGHT rotates the turtle clockwise around its
axis. A complete description of LLOGO can be found in [Abelson 1974],
but is not needed here.

A Cartesian representation of the picture is generated by an
annotator that describes the performance of turtle programs. The plan
is used to bind sub-pictures to model parts. This allows MYCROFT to
interpret programs with respect to their models and produce lists of
violated model statements. MYCROFT produces the following 1ist of
discrepancies for NAPOLEON:

(NOT (LINE BODY)) ;The body is not a line.

(NOT (BELOW LEGS ARMS)) ;The legs are not below the arms.

(NOT (BELOW ARMS HEAD)) ;The arms are not below the head.

(NOT (EQUITRI TRICORN)) ;The head is not an equilateral
triangle.

MYCROFT is able to correct these bugs and achieve the intended picture
using both planning and debugging knowledge.

5. Plans

This section introduces a vocabulary for talking about the
structure of a procedure which is useful for understanding both the
design and debugging of programs. A main-step is defined as the code

required to achieve a particular sub-goal {sub-picture). A

interface between main-steps. Thus, from this point of view, a
program is understood as a sequence of main-steps and preparatory-
steps. A similar point of view is found in [Sussman 1973]. The plan
consists of the purposes linking main- and preparatory-steps to the
model: in the turtle world, the purpose of main-steps is to accomplish
(draw)} parts of the model; and the purpose of preparatory-steps is to
properly setup or cleanup the turtie state between main-sieps or,
perhaps, to retrace over some previous vector.
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A modular main-step is a sequence of contiguous code intended to
accomplish a particular goal. This is as opposed to an interrupted
main-step whose code is scattered in pieces throughout the program.

In NAPOLEON, the main-steps for the legs, arms and head are modular;
however, the code for the body is interrupted by the insertion of the
code for arms. The utility of making this distinction is that modular
main-steps can often be debugged in private (i.e. by being run
independentiy of the remeinder of the procedure) while interrupted
main-steps commonly Tail becauss of unforseen interactions with the
interleaved code associated with other steps of the plan.

Linearity is an important design sirategy for creating programs.
It has two stages. The first is to break the task into independent
sub-goals and design solutions (main-steps) for each. The second is
then to combine these main-steps into a single procedure by
concatenating them into some sequence, adding (where necessary)
preparatory-steps to provide proper interfacing. The virtue of this
approach is that it divides the probiem into manageable sub-problems.
A disadvantage is that occasionally there may be constraints on the
design of some main-step which are not recognized when that step is
designed independently of the remainder of the problem. Another
disadvantage is that linear design can fail to recognize opportunities
for sub-routinizing a segment of code useful for accomplishing more
than one main-step. A linear plan will be defined as a plan
consisting only of modular main-steps and preparatory steps: a non-
linear plan may include interrupted main-steps.

6. Linear Debugging

Linearity is a powerful concept for debugging as well as for
designing programs. MYCROFT pursues the following linear approach to
correcting turtie programs: the debugger's first goal is to fix each
main-step independently so that the code satisfies all intended
properties of the model part being accomplished. Following this, the
main-steps are treated as inviolate and relations between model parts
are fixed by debugging preparatory-steps. This is not the only
debugging technique available to the system, but it is a valuable one
because it embodies important heuristics (1) concerning the order in
which violations should be repaired and (2) for selecting the repair-
point (location in the program) at which the edit for each violation
should be attempted.

Following this linear approach, MYCROFT repairs the crooked body
and the open head of NAPOLEON before correcting the BELOW relations.
Repairing these parts is done on the basis of knowledge described in
the next two sections. Let us assume for the remainder of this
section that these property repairs have been made--NAPOLEON appears
as in figure 7--and concentrate on the debugging of the violated
relations.

Treating main-steps as inviolate and fixing relations by modifying
setup steps limits the repair of (BELOW LEGS ARMS) to three possible
repair-points: (1) before the legs as statement 5, (2) before the
first piece of the body as statement 15 and (3) before accomplishing
the arms as statement 25. MYCROFT understands enough about causality
to know that there is no point in considering edits following the
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NAPOLEON with statement 15

NAPOLEON with parts corrected as RIGHT 135
FIGURE 7 FIGURE 8

execution of statement 30 to affect the arms or legs. The exact
changes to be made are determined by imperative semantics for the
model primitives. This is procedural knowledge that generates, for a
given predicate and location in the program, some possible edits that
would make true the violated predicate. MYCROFT generally considers
alternative strategies for correcting a given violation: it prefers
those edits which produce the most beneficial side effects, make
minimal changes to the user's code or most closely satisfy the
abstract form of the plan.

For BELOW, the imperative semantics direct DEBUG to place the legs
below the arms by adding rotations at the setup steps. More drastic
modifications to the user's code are possible such as the addition of
position setups which alter the topology of the picture; however,
MYCROFT tries to be gentle to the turtle program (using the heuristic
that the user's code is probably aimost correct) and considers larger
changes to the program only if the simpler edits do not succeed. The
first setup Tocation considered is the one immediately prior to
accomplishing the arms. Inserting a rotation as statement 25,
however, does not correct the violation and is therefore rejected.

The next possible edit point is as statement 15. Here, the addition
of RIGHT 135 makes the legs PARTLY-BELOW the arms and produces

figure 8. This edit is possible but is not preferred both because the
legs and arms now overlap and because the legs are not COMPLETELY~
BELOW the arms. MYCROFT is cautious, being primarily a repairman
rather than a designer, and is reluctant to introduce new connections
not described in the model. Also, given a choice, MYCROFT prefers the
most constrained meaning of the model predicate. If the user had
intended figure 8, then one would expect the modal description to
include additional declarations such as (CONNECTED LEGS ARMS) and
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(PARTLY-BELOW LEGS ARMS).

Adding RIGHT 90 as statement 5 achieves (COMPLETELY-BELOW LEGS
ARMS) and the NAPOLEON program now produces the intended picture
(figure 1). This correction has beneficial side effects in also
estabiishing the proper relationship between the head and arms,
confirming for MYCROFT that the edit is reasonable, since a particular
underlying cause is often responsible for many bugs. Thus the result
of (DEBUG (BELOW LEGS ARMS)) is:

5 RIGHT 90 <~ (setup heading such-that (below legs arms)
(below arms head))
(assume (= (entry heading) 270))

The assume comment records the entry state with respect to which
the edit was made. If the program is run at a future time in a new
environment, then debugging is simplified. The cause of a BELOW
violation w11l now immediately be seen to be an incorrect assumption,
and the corresponding repair is obvious -- insert code to satisfy the
entry requirements described by the assumption. This illustrates the
existence of levels of commentary between the model and the program,
each layer being more specific, but aiso more closely tied to the
particular code and runtime environment of the program.

Linear debugging greatly raestricts the possibilities that must be
considered to repair a violation. It is often successful and
constitutes a powerful first attack on the probiem of finding the
proper edit; however, it is not infallible. Non-linear bugs due to
unexpected interactions between main-steps would not be ‘caught by this
technique. '

Figure 9 illustrates a non-linear bug. (INSIDE MOUTH HEAD) is

O O

-

0
FIGURE 9

violated but it cannot be repaired by adjusting the interface between
these two parts (indicated in figure 9 by the dotted 1ine OP) since
the mouth is longer than the diameter of the head. The imperative
semantics for fixing INSIDE recognize this. Consequently, MYCROFT
resorts to the non-linear technique of modifying main-steps to repair
a relation between parts. The imperative semantics suggest changing
the size of one of the parts because this transformation does not
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affact the shape of the part and consequently will probably not
introduce new violations in properties describing the part. Advice is
required from the user to know whether shrinking the mouth is to be
preferred to expanding the head. Two more non-linear debugging
techniques are discussed in the next two sections: one is based upon
knowing the abstract form of plans, and the othar uses domain-
dependent theorems about global effects.

7. Insertions

In programming, an interrupt is a break in normal processing for
the purpose of servicing a surprise. Interrupts represent an
important type of plan: they are a necessary problem solving strategy
when a process must deal with unpredictable events. Typical
situations where interrupts prove useful include servicing a dynamic
display, and arbitrating the conflicting demands of a time sharing
system. 1In the real world, biological creatures must use an interrupt
style of processing to deal with dangers of their environment such as
predators.

A very simple type of interrupt is one in which the program
associated with the interrupt is performed for its side effects and is
state-transparent, i.e. the machine is restored to its pre-interrupt
state before ordinary processing is resumed. As a result, the main
process never notices the interruption. In the turtle world, an
analogous type of organization is that of an inserted main-step
(insertion). It naturally arises when the turtle, while accomplishing
one part of a model (the interrupted main-step), assumes an
appropriate entry state for another part (the insertion). An obvious
planning strategy is to insert a sub-procedure at such a point in the
execution of the interrupted-step. Often, the insertion will be
state-transparent: for turtles, this is achieved by restoring the
heading, position and pen state. The insertion of the arms into the
body by statement 30 of NAPOLEON is an example of a position- and pen-
but not heading- transparent insertion.

Insertions do not share all of the properties of interrupts. For
example, the insertion always occurs at a fixed point in the program
rather than at some arbitrary and unpredictable point in time. Nor
does the insertion alter the state of the main process as happens in
an error handler. However, if one focusses on the planning process by
which the user's code was written, then the insertion as an
intervention in accomplishing a main-step does have the flavor of an
interrupt.

The FINDPLAN module aids the debugger in a second way beyond just
the generation of the plan. This is through the creation of caveat
comments to warn the debugger of suspicious code that fails to satisfy -
expectations based on the abstract form of the plan. In particular,
if FINDPLAN observes an insertion that is not transparent, then the
following caveat is generated:

30 VEE <- (caveat findplan (not (rotation-transparent insert))).

The non-transparent insertion may have been intentional, e.g. the
preparation for the next piece of the interrupted main-step may have
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been placed within the insertion. The user's program may have
prepared Tor the next main-sisp within the inssrtion. Hence, FINDPLAN
does not immediately attempt %o correct the anomalous code., Only if
subsequent debugging of some model wiolation confirms the caveat is
the code corrected. There will often be many possible corrections for
a particuliar model viglation. The caveat 15 used to increass ths
plausibility of those edits that eliminate FINDPLAN's complaint. In
this way, the abstract form of the plan heips to guide the debugging.

For NAPOLEON, analysis of (MNOT (LINE BODY)) lsads MYCROFT to
consider (1) adding & rotation as statement 35 to align the second
piece of the body with the first or (2) placing this rotation into VEE
as the final statement. Ordinarily, linear debugging would prevent
the latter as it does not respect the inviclability of main-steps.
However, it is chosen here bgcause of the corroborating complaint of
FINDPLAN. The underlying cesuse of the bug is a main-step error (non-
transparent insertion) rather than a preparatory-step failure. Thus,
(DEBUG (LINE BODY)) produces:

70 RIGHT 45 <- (setup heading such-that (transparent vee))

8. Geometric Knowledge

Linearity, preparation and interrupts are general problem-solving
strategies for organizing goals into programs. However, it is
important to remember that domain-dependent knowledge must be
available to a debugging system. The system must know the semantics
of the primitives if it is to describe their effects.

The debugger must also have access to domain-dependent information
to repair main-steps in which the sub-parts must satisfy certain
global relationships. For example, TRICORN has the bug that the
trianglie is not closed. Each main-step independently achieves a side
but the sides do not have the proper global relationship. Debugping
is simplified by the explicit statement in the model that:

(FOR-EACH ROTATION (= (DEGREES ROTATION) 120)).

But suppose the model imposed no constraints on the rotations. Then
the design of the rotations would have to be deduced from such
geometric knowledge as the fact that N equal vectors form a regular
polygon if each rotation equals 360/N degrees.

The pieces of an interrupted-step such as the first side of
TRICORN are not always separated by a state-transparent insert. (This
would be a local interruption.) Instead, it is possible that more
global knowledge is needed to understand the properties of the
intervening code which justifies the expectation that the pieces will
properly fit together. In TRICORN, the second piece (drawn by
statement 70) must be collinear with the first (drawn by statement
10). The global property of the code which justifies this is that
equal sides and 120 degree rotations results in closure. Thus,
debugging violations of globaily interrupted-steps requires domain-
dependent knowledge.
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9. Conclusions

The design of MYCROFT required an investigation of fundamantal
problem solving issues including description, simplification,
linearity, planning, debugging and annotation. MYCROFT, however, is
only a first step in understanding these ideas. Further investigation
of more complex programs, and of the semantics of different problem
domains is necessary. It is also essential to analyze additional
planning concepts such as ordering, repetition and recursion as well
as the corresponding debugging techniques. Ultimately, such research
will surely clarify the learning process in both men and machines by
providing an understanding of how they correct their own procedures.
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Abstract

A program that infers and codes the LISP function "naturally"
intended by a single input-output pair (sample computation) is
described. The program uses a knowledge of LISP programming
and an extended LISP system to develop and test hypotheses
.about the function. The program is written in POPCORN, a POP2
implementation of many of the ideas embedded in CONNIVER.
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Automatic Induction of LISP Functions

Steven Hardy#*

The task of Automatic Programming is to make it easier to use
computers. Initial developments were languages, such as FORTRAN,
which make it possible to specify a numerical algorithm without all
the details of its implementation. Within the language, though, it

is necessary to specify, precisely, the algorithm.

Recent work has centred on the extent to which the specification
of the algorithm itself can be made unnecessary. Thus we have two
major problems - firstly, how to describe the problem solved by a

program and secondly, given such a description, how to generate, auto-

matically, a program solution, Feldman discusses this, at length, in
his paper "Automatic Programming' Eﬂ, as does Baltzer in his review
of the topic [l].

A popular approach has been to specify the problem with an input/
output predicate, usually relying on a resolution based theorem prover
to construct a proof that implicitly contains the necessary program [}6].
This approach has a number of drawbacks. Existing theorem provers are
not very powerful and this limits the size of problem that can be tackled.
Further, it seems as difficult, and presumably as error prone, to .
describe a program - especially one that will involve iteration - in
predicate calculus as to actually code it. Also, as has been pointed
out by several recent writers [7, 8 and 1@], any intelligent proof
system needs to employ knowledge not only in the form of axioms defining
the problem domain, but also in the form of "control" statements embody-
ing one's understanding of how such proofs might well be achieved. This
has led to the development of the ideas embedded in languages such as
PLANNER [8] and CONNIVER [12 and 15].

Another approach relies on debugging an existing program to
achieve the wanted effect - which might be a LOGO drawing [5] or some

action in the BLOCKS world used in Winograd's program [14 and 17].

*The work reported here was carried out under the support of the Science
Research Council.

I should like to thank the members of the Computing Centre for their
advice and guidance. Special thanks go to Mike Brady whose constant
help has been invaluable.




Alternatively we could base an automatic programming system on
a capacity for inductive generalization. Despite the fact that there
are infinitely many functional extensions of the input-output pair
("iopair"):

(A B C D) =>= ((A) (B) (C) (D)) (1)

there is only ome function that would be regarded by LISP programmers
as the "obviously" intended one, viz:

(A B ~-- 2) =>= ((A)(B) --- (Z))

I have written a program, called GAP (Generalizing Automatic
Programmer) which attempts to model the LISP programmer to this extent.
When presented with iopair (1) GAP produces:

(LAMBDA  (X)
(COND ((ATOM X) NIL)
(T (CONS (LIST (CAR X)) (SELF (CDR X))))))

If presented with, say,
(ABCD) & (EFGH)=>=(AEBFCGDH)
it produces:

(LAMBDA (X1 X2)
(COND ((OR (ATOM X1)(ATOM X2)) NIL)
(T (CONS (CAR X1)
(CONS (CAR X2)
(SELF (CDR X1) (CDR X2))))))).

GAP is written in POPCORN [ﬁ], an extension of POP2 [5] that
provides many of the features of CONNIVER [12 and 15]. The program
contains a number of heuristic routines which embody knowledge about
various possible formats for LISP functions. GAP looks for features
('cues') of the input, output and the relationship between them.
These are used to activate the appropriate heuristic routine. This
nakes a hypothesis about the basic format of the function, which GAP
attempts to verify, and complete, using an extended LISP system.
Whilst doing this, GAP can discover new cues which can either affect

the current hypothesis or be used to generate new hypotheses.

The routines to notice cues and take the necessary action are
stored in the POPCORN data base, indexed by situations to which they
are applicable. This makes it possible to add new routines without

having to alter the rest of the program. It can be seen that the
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detailed flow of control will be very dependent on which cues are

noticed and in what order they are noted.

The complete program occupies less than 30k words on a PDP-10.
It takes three or four seconds of CPU time for each of the above

examples,

In section two I show GAP at work on a few simple examples;
in section three there is a fuller discussion of the LISP system.
Ia conclusion I point out some shortcomings of the program and

describe the direction of my current work.

Section Two = GAP at work

When given the iopair (A B C D) =>= ((A) (B) (C) (D)) the cue
that GAP notices is that the length of the output is proportional to
the length of an input -~ in fact equal to the only input's. This is
often the case with simple CDR-loop functions - which are those recur-
sively written LISP programs whose recursion line has the form f(cdr(2)).
Such programs embody an essentially iterative process [ll], and are one

of the most commonly occurring types of LISP function,

Because of this GAP hypothesises that the function is recursive,

with the basic body:
(CONS <form x> (SELF (CDR X)))

GAP divides functions into various types; a simple composition of CARs
znd CDRs is of type PARTOF, for example. <form x> denotes an expression
that is an application of a function of type FORM to x. Type FORM
functions are the whole range of GAP and are those functions where the
output is formed directly out of the input, without special reference

o any particular atoms.

To validate its hypothesis GAP tries to make the above body
evaluate to ((A) (B) (C) (D)) when » is (A B C D). It realises that
<ferm x> nust evaluate to (4) and sets itself the subsidiary problem
(5 2 C D) =>= (A), which it solves by a call on the POPIORN data base
e&nc nence a possible recursive call of GAP. It uses the function it

zets to decide that <form x> can be replaced by (LIST (CAR X)),




i

taving done this GAP works out that the body would 'explain’
the output if (SELF NIL) evaluated te BIL. GCAP also knows that most
recursive functions stop befors they would have caused an error - in
ctner words the recursion line of a function needs some 'minimum!
value of the inputs which should be checked for in some appropriate
test. In this case x must be & pair, as it has a CAR and a2 CDR, and

so an appropriate test is (ATON X). GAP extends its hypothesis to:

(COND ((ATOM X)<partof =>)
(T (COnS (LIST (CAR X)) (SELF (CDR X)}))})

GAP now usez the fact that this must evaluate to NIL when ¥ is
UIL to replace <partcf x> by NIL. HNotice GAP has a double check on

the point at which the function stops recursing.

If we had given GAP the iopair
(A 3 C D) =>= ((A) (B) (C) (D) (B) (C) (D) (C) (D) (D))

then the cue noted would have been that the length of the output is
proportional to N * (N+1)/2, where N is the length of some input. This
can nappen if a CDR-loop function has another CDR-loop function as a
subroutine., So GAP splits off the first four elements of the output
and finds an expression to produce them before proceeding to 'solve'

the iopair in a similar way to the previous example.

GAP has a little trick when given functions with more than one
input. It looks at the output, element by element, in terms of which

input it came from. Thus, if given the iopair:
(ABCD) & ""=>=(ABQBCQCDQ)

GAP looks at the list (X1 X1 X2 X1 X1 X2 X1 X1 X2). It is trivial to
recognize the repeated - X1 X1 X2 - in this list and so GAP decides to
investigate the body:

ATPEND (LIST <form xl1><form x1><form x2>)

(SELF <partof xl><partof x2>))

T

ne LIS? system, using the matcher, realises that (LIST <form xl>
<form xi><form »2>) rnust evaluate to (A B Q) and can thercfore be

replaced by (LIST (CAR X1)(CAR (CDR X1)) X2).
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wnilst processing the recursive call of SELF, all the LISP system

knows of Xi and X2 is that they are parts of, respectively, (A B8 C L)

ELl

nd Q. It soon finds that (CAR X1) is B though and so it knows X1 is
(5.UNKNOWH). This can only be the CDR of (A B C D) and so <partof xl1>
is replaced by (CDR X1). Similarly <partof x2> is replaced by X2.

The function is now nearing completion. An appropriate test - in
tnls case (OR (ATOM X1) (ATOM (CDR X1))) - is put in and after final

polishing up GAP produces:

(LAMBDA (X1 X2)
(COND ((OR (ATOM X1) (ATOM (CDR X1))) NIL)
(T (CONS (CAR X1)
(CONS (CAR (CDR X1))
(CONS X2 (SELF (CDR X1) X2))))))).

The method just described (looking for repeated patternms in an
'origin list') is a homomorphic mapping of the problem, to create a new
problem with a smaller search space, which can be solved to provide a
pian for the solution of the main problem. This is a common method of

solving problems and several researchers have used it, notably [3],
i\o] and [\3:].

This method can be extended if it is unsuccessful, by regarding
zultiple occurrences of the same origin as a single occurrence. The
modified origin list for the iopair

(ABCD)g "Q"==(ABCDQBCDQCDQDAQ)
is (X1 X2 X1 X2 X1 X2 X1 X2) and the repeated - X1 X2 - suggests the

recursion line:-

(APPEND (APPEND <form Xl><form X2>)
(SELF <partof X1l><partof X2>))

which can te expanded to a complete function in the way already described.

The cues described above all assume that atoms from the front

T

the inputs come at the front of the output. Therefore, when we

O

ive GAP the Zlopair

(3]

(A2 CD) & "" =>=(DQCQBQAQ

it splits the output into the segment (D Q) and (C QB QA Q) -

«hich leads to an incorrect racursion line hypothesis. When the
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method discovers it has made a wrong hypothesis it tries tc find out

if it should have split from the back rather than the front of the
output. It does this by replacing the atoms in the two initial sep-
ments (in this case (D Q) and (C Q B Q A Q)) by numbers representing
which element of an input they came from - and so has (4 #) and
(3¢82¢1@). The 'average atom' in the first of these is 2 (= (4+§)/2)
but this is greater than the average for the second segment 1 (=

(3+2+2+@+1+@)/6). If the second segment is due to a recursive call
of the function it ought to have a higher averége. As this is not so,
GAP tries splitting from the back and tries the hypothesis

(APPEND (SELF <partof xl><partof x2>) -
(LIST <form xl><form x2>)).

Some cues used by GAP recognise immediately that the output is
being built up from the back. Suppose a function recurs on the CDR of
some input, and otherwise only references the CAR of that input. If
this is so, it might be possible to split the output into three segments -
the inner one, due to the recursive call of the function, containing no
atoms from the CAR of the relevant input and the outer segments containing

none from the CDR., This method splits the output of the iopair

(ABCD)=>=(ABCDDCBA)
into (A), (B C DD C B) and {A), and hence suggests the recursion line:-
(APPEND (LIST (CAR X1))
(SELF (CDR X1))
(LIST (CAR X1))).

The principle of guessing which atoms will be in the three seg-
rments of the output is extended by another cue. This counts the times

the atoms from a particular input occur in the output. For example,
(RhBCDEF)=>=(ABBCDDETFTF)

h2s an atom count list (1 2 1 2 1 2) - meaning A occurred once, B

occurred twice and so on,

The repeated -1 2~ in this list suggests splitting the output
into three segments - the outer ones containing one A and two B's, the
inner one containing one C, two D's, one E and two F's. This splits
the output into (A B B), (CD DEF F) and ( ). The length of -1 2-
in two - and this suggests a function recursing on the CDDR of its

Input.
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Thus the method suggests the recursion line

(APPEND (LIST (CAR X1) (CAR (CDPR X1)}))

(SELF (CDR (CDR X1))))

POPCORN allows GAP to work in a backtracking mode if it gets
a problem it can't solve in any other way. GAP considers a hypothesis
that could be represented by a body something like:

(APPEND <form inputs> (SELF <partof inputs>)).

<form inputs> is allowed to evaluate to successively larger segments
from the front of the output until the whole expression can be made
consistent with the output. We know that <form input> is unlikely to
evaluate to, say, NIL - but it is not possible to tell the LISP system
facts like this. So the way GAP actually investigates this altermative
is a little messier than described. A comprehensive actor system, like

that described by Hewitt [9] would probably make this easier.

Section Three - The Program's Knowledge of LISP

GAP has a powerful LISP system to analyse expressions. One part

performs simple optimisations, for example:
((LAMBDA (W X)(CAR W)) Y 2) is replaced by (CAR Y)
(APPEND (LIST X) Y) is replaced by (CONS X Y).

This simplifies the task of keeping expressions in a reasonably effi-

cient, natural format.

A second part is a conventional LISP evaluator - except that it
has a capability for partial evaluation of expressions whose values
are not completely defined., If all we know of Y is that it is an atom,

and we know nothing of X then

(CONS X Y) evaluates to (UNKNOWN.SOMCATOM)
(CoNZ ((AT2M X) 1) (T 2)) evaluates to UNINOWN

(2oN2 ((ATGY Y) 1) (T 2)) evaluates to 1.

A Final, nore complex, part uses the result of evaluating an

expressicn to deduce things about the expression itself and about

what the valuz of things on the alist must be. It takes as arpument

a, possibly incomplete, alist, an expression and what one wants the
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expression to evaluate to, It returns a list of alists that are
consistent with the inputs. If given, for example, a null alist,

the expression (APPEND X Y) aad the result (& B) it returns:-
(((X.KIL) (Y.(& B)))

((x.(a)) (¥.{B)))
((X.(A B))(Y.NIL)))

If told that X is a pair, by giving it the initial alist
((X. (UNKNOWI . UNKNOWN))) then it does not, of course, return the
possibility with X equal to NIL.

1f there are no consistent alists, for example (LIST X Y) to
evaluate to (A B C), then it returns NIL,

It also completes expressions, If given a null alist, the
expression (APPEND X <partof x>) and the result (A B CD B C D)

then one possibility it returns is:

((X.(ABCD)) (<partof x>. (CDR X)))

It calls on the POPCORN data base - and hence the whole GAP

program - for the solution of any functions it needs.

The control structure of POPCORN is such that it need not
generate its alternatives all at once - it does this by returning a
tag that allows the computation of alternatives to continue if nece-
ssary. lowever, as the routine works by backtracking it is best
avoided when expected to try a lot of alternatives - processing a

CONS is far simpler than processing an APPEND.

Conclusion

At present GAP assumes that atoms in the input of an iopair
given to it are universally quantified over all S-expressions. Thus
it takes no note of the identity of particular atoms, nor of tle fact
that they are atoms. Thus tne iopair

(& AB (X Y)) =>= ((a) (A) (B) ((X Y)))

describes the same function as

(A B C D) =>= ((A) (B) (C) (D))
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This means that because it doesn't understand the concepts

involved, GAP could not possibly build functions like:-

ner g8 ((AWW) (B.X) (C.Y) (D.2)) =>= "y" (Assoc)
((aB) ((¢) D) ((E))) =>= (ABCDE) (Flatten)
(ABCD) S (CDEF)=>=(ABCDETF) (Union)

At present I am studying, and trying to implement, ways of
solving some of these kind of problems, GAP will need to decide what
type of function a particular iopair describes. The range of types
GAP can cover is, at present, so small that GAP need only decide whether
to hypothesize that a function is recursive - described as type RECUR -
or a simple composition of CARs CONSs and APPENDs - described as type
BUILD.

Some progress can be made by enriching the information content
of an iopair by using ellipsis. In this way, one can more precisely
describe a function by an iopair since the ellipsis mechanism is, in
fact, an abbreviation for an infinity of iopairs., Thus the automatic
programming problem remains, but the inductive generalisation is less

Gifficult. We can use the mechanism to disambiguate an iopair. The

function described by:
(A B C D) =>= ((AB) (CD))
night include either of the following iopairs:

(ABCDETF)=>=((AB) (CD) (EF))
(RABCDETF)=>=((ABC) (DEF))

This ambiguity is removed by the description:

(AB---Y2)=>x ((&4 B) -—- (Y 2))

Ellipsis can be given a useful meaning that requires no 'intelli-
gence' to unpick. Suppose we say that ellipses in the output of an
iopair coms from a recursive call of the function applied to the
eilipses in tie input. Using this definition we can see that the
Soilowing tairs of icpairs describe the same function ~ but the iopair

witn eilizsis is unamziguous:-

(4 ==-) 8& (£ --=) =>= (A £ ---)

(A5 CD)ez (LFGUL)=>x (ALEBT CGDH),
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(& ~==) &8 "Q" zrz (A ) —=-)
ne same as

(A3 CD)ea"=>=(AQBQC

(& ===) =>= (A --- A)
the same as

(ABCD)=>=(ABCDDCBA),

(AB---)=>=(ABB ---)
the same as

(ABCDEF)=>=(AEBCDDETTF),

(A ===) =>= (=== A)
the same as

(ABCD)=>>=(DCBA).

Functions can be described to GAP in this language, and the
relevant code of GAP is ‘quite small and very fast. This isn't very
surprising as we nave reduced ellipsis to an unambiguous syntactic

cevice.

As I try to understand what is needed to build an automatic
crogramming system, several facts become increasingly clear. A
srogram will need a mixed description - a single iopair is woefully
inadequate - and the program should be interactive - in part to
complete its own internal description of a problem. This is, of

course, to be expected - the same is true of people.

For these reasons I feel GAP will be difficult to extend unless
It can include the person for whom the function is being written in
its <iscussion of a problem. This means that GAP's internal descrip-
zion of a problem must be understandable by reople. Much of ry effort
2een, and will continue to be, devotad to this end. If this is so,

to give CAP hints without a detailed knowladge of its
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Some Problems and Non-Problems in Representation Theory

Patrick J. Hayes

0. Introduction

The purpose of this paper is to give a brief survey of some general
issues and problems in representing knowledge in AI programs. This
general area I will call representation theory, following John McCarthy.
Its boundaries are, like those of all interesting subjects, not crisply
defined, It merges in one direction with programming language design,
in another with philosophical logic, in another with epistemology, in
another with robotics. Nevertheless, it is an increasingly important
aspect of AI work, Since my main concern here is to draw attention to
problems which seem to me to be difficult, and issues which seem to be
important, this paper should be read as an appeal for help rather than
a statement of achievements (and comments, criticisms and suggestions
are welcome),

Inevitably, to believe that some issues are important, and some
problems difficult, is to believe that others aren't. At the end of the
paper 1 draw attention to some specific points of disagreement with
other authors. It may be helpful, however, to point out immediately that
my goals here are not philosophical, but technical. Some commentators
on an earlier draft seemed to take it as an essay in philosophical analysis
in the modern Oxford style. My aim rather is to substitute, for informal
and apparently endless philosophical discussion, the precision of mathe-
matics. (This aim is not achieved in this paper, I hasten to add, but is
I hope brought nearer.) To emphasise this, I will, when introducing a
technical woerd intended (ultimately) to have a precise meaning, underline
it.

1. Semantics

There are many ways known of systematically representing knowledge
in a sufficiently precise notation that it can be used in, or by, a compu-
ter program. I will refer generally to such a systematic representational
method as a scheme. It is not a very good word, but one cannot say
'language' as that begs an important question (see section 2). Examples
of schemes include logical calculi, some programming languages, the
systematic use of data structures to depict a world (e.g. as in the early
Shaxey's use of an array as a room-map), musical notation, map making
conventions, circuit diagrams, 'JCM Schemas', 'Conceptual Dependency'
notation, 'Semantic Templates' (all in [?f}), etc, A configuration is
a particular expression in a scheme: an assertion, a p;géram, a data
structure, a score, a map, etc. Thus one might, formally, define a scheme
to be a set of configurations.

All of these examples are formal in the sense that the question,
«4hether a particular arrangement of marks is a well-formed configuration,
always has e definite answer: there is a definite notion of well-formedness.
Hany ways which humans have of conveying meaning will not be allowed as
schemes, for they fail this criterion: drawings, phctographs, poems,
conversational English, musical perfermances, TV pictures, etc. In brief,
I wish to draw a distinction between (formal) schemes, in which knowledge
can be stored and used by a program, and on the other hand, (informal)
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scenes or perceptual situations requiring the deployment of knowledge
for their successful interprestation,

I am aware of several philosophical problems in analysing this
distinction further. As a rough-and-ready guide, schemes can be recog-
nised by the fact that one can construct ill-formed 'configurations'.
There is no such thing as an ill-formed photograph. MNatural language
is & borderline case, as are accurate line drawings of pelyhedra.

Schemes are usually intended as vehicles for conveying meanings
about some ‘werld' or environment. In order to be clear about this
important topic, a scheme must have an associated semantic theory. A
semantic theory is an account of the way or ways in which particular
configurations of the scheme correspond to (i,e. have as their meanings),
particular arpangements in the external world, i.e. the subject matter
about which the scheme is intended to represent knowledge. Some of the
schemes referred to above have very precise semantic theories, others have
none (and seem to rejoice in this lack: see section 7 below), others
(music, maps, circuit diagrams) have informal semantic theories which
can be made precise by the approach outlined in section 2 below.

It is not at all fashionable in AI at present to give semantics for
new representational schemes, and this is, I believe, a regrettable source
of confusion and misunderstanding. Now, one cannot prove such an opinion,
of course, One can point to other fields where syntactic confusion and
proliferation of ad-hoc formalisms has been or is being replaced by the
development of semantic insights: notably, philosophical logic and the
design of programming languages. One can point to the way in which, in
AI itself, elementary semantic ideas have been re-invented by various
authors over the years (especially the Frege/Tarski notion of individuals
and relations between them, which crops up with remarkable regularity

y s ]). And one can point to several important questions which simply
cannot be answered without a semantic theory. Of these, the most urgent
concern the equivalence or otherwise of different formalisms. Is there a
difference in meaning between a conjunction of atomic predicate-calculus
assertions and the corresponding semantic network? Is there anything which
can be expressed in the notation of Merlin [16 which cannot be expressed
in a logical notation? The answer to both these questions is yes, in fact:
but without a semantic theory the questions cannot even be precisely formu-
lated. Finally, discussion in the AI literature, on, for example, the
different roles of deductive, inductive and analogical reasoning and the
relative merits or demerits (either technical or philosophical) of various
formalisms, is often ill-informed or at best vague due to a lack of a
clear model theory for the systems under discussion.

Nothing so far has been an argument for any particular sort of
semantic theory: for example, some kinds of 'intensional', ‘operational!’,
'meaning-intentional' or 'procedural' semantics, may eventually enable the
meanings of configurations in a scheme to be rigorously defined. However,
as a matter of fact, the only mathematically precise account which I have
seen of how a scheme can talk of entities outside of the computer, is the
Tarskian model theory for first-order logic (but see section 2 below)., I
Selieve there are important reasons for going beyond this semantics, but
many of the arguments in the AI literature against the use of predicate
logic as a scheme are based or misunderstandings of one kind or another,
especially the assumption that the use of predicate calculus necessarily
involves the use of a general-puppose theorem-proving program, (See section
7 for more discussion.) To defend first-order logic is unfashionable:
however, I do want to emphasise that it is the semantics of predicate logic
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which I wish to preserve. I have no brief for the usual syntax: networks,
for example, can be used as a syntactic device for expressins predicate
calculus facts. GSome other authors advocate_ rather the use of predicate
calculus syntax either without semantics {19, or with an alien semantics
imported from computational thecry [é]. This is throwing out the baby
and keeping the bathwater.

To insist on a semantic theory is not, of course, to insist that
the expressions comprising a program's beliefs are accurate, i.e. that
what they express about the world is in fact the case. (This common mis-
understanding may be caused by the phrase "truth-recursion", which leads
people to think that metamathematics guarantegs infallibility.) Without
a semantics, one cannot even say precisely what is being claimed about the
vorld: that is the point.

It is important to emphasise that to regard a formalism ‘'simply' as a
programming language: that is, a way of getting the machine to do what one
wants, is to adopt a rather different point of view towards it. (Unless,
that is, the semantics of the scheme are concerned with machines and what
they do,) For example, many people argue that PLANNER is to be regarded
'simply' as a programming language which provides useful facilities for
the sorts of programming one finds oneself involved in when writing AI
programs. Much of the force of the criticism in E?i] for example, is from
this position, While this is a perfectly respectable point of view, it is
different from the one which regards PLANNER as a scheme which refers to
external worlds of, say, blocks, It is even different from the idea that
PLANNER is a scheme which refers to problem-solving processes or the like.
For the 'programming language' view encourages the user (for example), if
he needs a new semantically primitive notion, like negation, to encode it
- that is, to implement it - in PLANNER in some way. In terms of schemes
this is a change of scheme, since the semantics have been enriched.

To put it extremely: the only difference, in this view, between
(say) CONNIVER and (say) FORTRAN, is user convenience: for one could
implement the one in the other, (I have heard precisely this view forcibly
maintained by professional systems programmers). Hewitt characterises the
essence of PLANNER in terms of schemas E}J‘ While this syntactic approach
works up to a point, the relationships between programming languages are,
I feel, greatly clarified by giving them natural semantics. The trivial
universality which FORTRAN possesses can then be eliminated by the require-
ment that in embedding one language in another there is a corresponding
embedding of the meanings of programs. "Implemented in", as a relation
between languages, then ceases to be an embedding since the meaning of
(say) THCONSE does not correspond to the meaning of the rather large piece
of (say) FORTRAN which would be in the implementation (actually, several
pleces scattered about the program but related by context,) The former
has to do, presumably, with goals and facts and such things: the latter,
probably, with arithmetic relationships between numbers which represent
list structures in some way.

In saying all this, cne must admit that there is much force in the
position that it is too early in Al to settle on particular schemes with
fixed semantics, According tc this view, AI programs should be implemented
using all possible programming skill and ingenuity and we snould leave to
the future the (perhaps rather arid) task of tidying~up., Huch very good
A1 work has Leen done from this standpoint, and will probablv continue to
be done, I do not wish to give the impression of arguing against pragmatic
expediency in writing advanced programs., 3ut I do feel that it {s not too
early to investigate schemes with organised semantics, both on general
grounds of schelarliness and because [ believe that such schemes are
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ultimately easier to use in programming.

2. Linguistic and direct representations

Several authors have drawn attention to a distinction between repre-
sentations consisting of a description in some language and representations
which are in some sense more direct models or pictures of the things repre-
sented, I first met this distinction in [1], and it has been more
recently emphasised by Sloman {22]. It seems tc be clearly important but
I have met with surprising difficulty in trying tc make the distinction
precise.

One problem is to suitably define what is meant by a descriptive
language, for we must not beg the question by being too restrictive in
our definitions of language. Thus Sloman's emphasis on what he calls
analogical representations is really a plea for the consideration of a
wider class of languages than those in which the only semantic primitive
is the application of a function to arguments (Sloman's term is 'Fregean'
languages, like predicate calculus and PLANNER. Some authors seem to have
interpreted Sloman as arguing against the use of descriptive representations
[3], but this is a misunderstanding.)

Another problem is that a representation which appears to be a direct
model at one level of analysis, may, upon enquiring further, be itself
represented in a descriptive fashion, so that it becomes impossible to
describe the overall representation as purely either one or the other.

For example, a room may be directly represented by a 2-dimensional array

of values which denote the occupants of various positions in the room: but
this array may itself be implemented by the programming system as a list of
triplets <i,j,a[},j]>, i,e. by a sort of description. It seems essential,
therefore, to use a notion of level of representation in attempting to make
the distinction precise,

Third, any representation must also be a direct representation of
something., For, the pattern of marks which is a configuration of the
scheme, can convey meaning only by virtue of the fact that its parts are
physically arranged in some definite way. This physical arrangement has
to be a direct representation of (at least) the way in which meanings of
some configurations are compounded into meanings of larger configurations.

Fourthly, the notion of direct representation seems to depend upon
some similarity between the medium in which the representation is embedded,
and the thing represented, Thus a map of a room is a direct representation
of the spatial relationships (in the horizontal place) in the room, by
virtue of the similarity between the 2-dimensional plane of the paper and
the 2-dimensional plane of the floor of the room. The paper is a direct
homomorph of the room: they are the same sort of structure (2-D Euclidean
space), admitting the same sorts of operations (sliding, rotation, measure-
ment), but the map is a simplification of the reality, in the sense that
certain properties present in reality (colour, exact shapes, etc.) and
certain relations (the third dimension, comparisons of value) are missing
in the map. Another example is an ordered vector of items in a core
store: here the medium is the address structure of the store, which is
similar to the integers in respect of its ordering relationships, but not
(for example) in respect of its cardinality (stores are finite).

Putting all this together, one arrives at the following general
position. There are things called media in which one can construct certain
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configurations of marks or symbols: that is, arrangements of marks in
wnich relations exhibited directly in the medium hold between the marks.

A language is defined (syntactically) by a set of 'primitive' symbols

and a set of grammatical rules which define new configurations in terms

of old ones. One gets the usual ideas of parsing. (It could be mathe-
matically interesting to see how much of formal language theory can be
generalised to this setting from the conventional 'string' case of 1-
dimensional media. One can certainly define context-free, and context-
sensitive grammars, but I am not so sure about finite-state, for example.)
A model for such a language is provided by a set of entities acting as
meanings of the primitive symbols; and, for each grammatical rule, a
semantic rule which defines the meaning of the configuration in terms of
the meanings of its parts. (One needs variables and variable-binding
expressions also, so this account needs elaboration and qualification,

but space does not permit a full discussion,) This, so far, is the usual
Tarskian idea of a truth-recursion, generalised to this more general notion
of language. But now, we also insist that each medium-defined relation
used in constructing configurations corresponds to a similar relation in
the meanings, and that the representation is a structural homomorph of

the reality with respect to these relations. That is, the meanings of
configurations must exist in a space which is similar to the represen-
ting medium, and the syntactic relations which are displayed directly by
the symbol-configurations of the language, must mirror semantic relations
of the corresponding kind. The directness of a direct representation lies
in the nature of the relationship between the configurations and the reality
they represent (it is a relation of homomorphism rather than denotation).
A scheme is not direct because of any syntactic features (such as being 2-
dimensional) of its schemes, or because of any special qualities (such as
being continuous) of the worlds it describes.

It is possible to give formal grammars for simple maps, to emphasise
how this account fits the facts, along the lines of Rosenfeld's isotonic
grammars Ds . To emphasise again: map-making conventions are, in this
view, a language, of which the maps are expressions. The relationship of
these expressions to reality is that the primitive symbols denote features
of a terrain in a way defined by the map key, and the positional relation-
ships between symbols directly display corresponding relationships between
the denoted features.

In electrical circuit diagrams, lines joining symbols denoting
components directly denote, in their topological structure this time, the
electrical connectivities in the actual circuit. Another example is
provided by the simple narrative convention. In "He got up. He got
dressed. He went out. He walked to the shop ... ", we understand a time-
sequence which is directly denoted by the ordering of the (timeless)
separate propositions. This convention is also used in programming
languages and cartoon strips, with the same sort of semantics. A final
example is provided by networks. A network is a configuration which is a
relational structure, Web grammars are the appropriate parsing device.
The most obvious way of giving this a semantics is by declaring that a
model is any relational structure into whicn the network can ke hcmomor-
phically embedded. According to this semantics, a network has the same
meaning as tne conjunction of predicate calculus atoms corresponding to
the arcs of the network. (It is a straightforward exercise in system
programming to convert a list of such &omic assertions intc a network,
represented in the core-store medium by using 'addresses' as the direct
analog of 'is connected to', for efficient retrieval,) As we will see,
however, one can give a rather different semantics to networks, which makes
them more expressive in an important way.
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4 more complete and rigorous account of this wilil be published
elsewners. The major problem is to find a general precise characteri-
saticr of what is meaznt by "medium™ and "similar'. I am currently working
on an algebraic account (in wnich a medium is a category), but it is not
yet altogether satisfactory. <{(Suggestions are welcome.)

The importance of all this, apart from the intrinsic interest of the
subject, seems to me to lie ip three points. (1) It shows that direct
representations are not incompatible with linguistic representations, and
can be given a precise model theory along Tarskien lines (which supports
Sloman's view in [2Z]). (2) It suggests ways in which efficient deductive
systems may be generalised from work in computational logic, (3) The
notion of '"medium' captures tne idea of levels of representation mentioned
earlier, For a medium may not be physically drectly present, but may
itself be represented by configurations in some quite other medium, as in
the array example, Or again, consider a simulation language like SIMULA.

This provides a medium consisting of processes and events and certain
relations between them., This medium, taken in its own terms, gives a
direct representation of time which is often extremely useful. But if one
goes deeper, time is represented in a quite indirect way involving numerical
descriptions and long chains of inference. This 'looking-deeper' means
not treating SIMULA as a medium to be used to represent, but rather as a
Teality which is itself represented in some medium (say, FORTRAN or
assembly language). The choice of primitive relationships defines both
the medium and the level at which analysis will cease,

This shows, incidentally, that Sloman's arguments for the utility
of analogical representations, based on the idea that they are somehow
more efficient in use than Fregean representations, are fallacious., For
an analogical representation may be embedded in a medium which is itself
represented in a Fregean way in some other medium. Any discussion of
efficiency must take into account the computational properties of the
medium,

3. Exhaustiveness and plasticity

An important fact about schemes with Tarskian semantics is that a
configuration in such.a scheme is, in general, a partial description of
the environment. It constrains the form of a satisfying world, but does
not (in general) uniquely determine one. And even if it does uniquely
determine a world (is categorical, in the technical term), this fact can
only be determined by metamathematical analysis: there is no sense in
which one can say in the scheme itself, "this is a complete description"

Yow this means that one has the opportunity of adding information
ad 1lib, further specifying the world. (Hence the idea of conjunction
arises very naturally). The process of adding information ecan be arrested
only by the whole configuration becoming inconsistent, i.e. making an
assertion about the world which is so strong that no such world exists.
Different schemes will have different particular notions of consistency,
sut this general outline follows from the abstract properties of the
satisfaction relationship between configurations and worlds, This ability
to accept new pieces of information and to gradually accumulate knowledge
piecemeal is one of the most valuable aspects of Tarskian schemes. Thus,
the idea of a 'knowledge base' of separate pieces of information, to which
new pieces can be added freely without a need,in particular, to pay attention
to control flow or other organisational matters, is very familiar and
important,




This possibility of adding information is one aspect of a scheme's
lasticity, i.e. the ease with which changes can be made to configurations
in the scheme. Plasticity is essential for nontrivial learning, and for
any system working on limited information in an uncertain world.

However, there are times when one does want to be able to make a
claim of exhaustiveness in a representation. For example, we might want
to represent that all the relations of a certain kind, between the entities
represented in the configuration, are also represented in the configuration;
or, that all the facts about some entity, which are in some sense relevant
to some problem or task, are present in the configuration.

One important example of the need for this sort of assumption is the
well-known frame problem. Consider a traditional description of the
monkey-bananas problem, in natural English. How do you know there isn't
a rope from the box, over two pulleys, and down to the bananas (so that as
you move the box, the bananas ascend out of reach)?® Well, we assume that
the simple description has given us all the relevant information to do with
causal chains in the situation: we assume it is an exhaustive account of
the machinery of the room. Much of the difficulty of the frame problem
lies in the impossibility of expressing this assumption in the predicate
calculus. (Using the causal-connection theory developed in Eq , we could
say there was no causal connection between the box and the bananas; but
that is not strictly true: the monkey can throw one at the other, for
example. In any case it is unsatisfactory as a general solution.)

(Parenthetically, I would like to take this opportunity of suggesting
that we should stop talking about the frame problem. There are, it is
now clear, several independent difficulties bound up in the normal formu-
lation. One was just noted; another is the lack of a good representation
of the way in which causal chains follow trajectories determined by mecha-
nisms in the environment; another is the heuristic problem of organising
inferences involving causality. The presence of state-variables in the
language is not part of the problem, as some authors seem to have believedJ

Another, rather different, example of a claim of exhaustiveness is
provided by the sort of analogy reasoning epitomised by Evan's well-known
program, and formalised in the Merlin system Db]. This is normally
regarded as essentially non-deductive reasoning, but it can be regarded
as deductive reasoning from some rather strong hypotheses. Thus, suppose
we decide that a certain collection of properties of an individual, taken
together, constitutes an exhaustive description of it, from a certain
'point of view', For example, we might say that a man was a mammal with
a nose and feet. What could this mean? Well, it might mean that certain
facts about men can be established by the use of these pronrerties only:
that is, an essentially proof-theoretic assertion. Now, with this meaning,
if we replace the properties in the description with others (of the same
'type', in some sense: e.g. with corresponding sort structures in a multi-
sorted logic), then corresponding facts can be established relative to
the altermative properties. Thus, in the example of [16], if a pig is a
mammal with a snout and trotters, then we can regard a pig as a man with
a snout for a nose and trotters for feet, The existence of the 'analogy'
follows from the (presumed) sufficiency of the list of properties., It
follows deductively from the claims expressed in the putatively exhaustive
descriptionsof men and pigs.

*This example due to Alan Newell
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This account of analogy (which is related to Kling's ideas)
suggests natural explanation of {for example) the breakdown of an
analogy {(the claim of exhaustiveness fails: e.g. some property of men
needs other hypotneses than those of noses and feet), and naturally
relates ‘analogical! and 'deductive' reasoning.

low, there is a way in wnich a direct representation can be .
considered to be exhaustive, by a slight alteration to the semantic
rules. We may insist that the medium-defined relations of a configura-
tion completely mirror the corresponding relations in the reality: that
is, that a medium-defined relation holds between subconfigurations if
and only if the corresponding relation holds in the world between the
entities denoted by the subconfigurations. Let us call such a represen-
tation, strongly direct.

For example, a map is strongly direct in this sense: all the 2-
dimensional spatial relationships which hold between tewns, rivers, etc.
also hold in the map between the symbols denoting them. (They are also,
often, exhaustive in a stronger sense; that all the entities (towns,
rivers) present in the reality are denoted by symbols in the map. Thus
we say, of a map with a river missing, that it is wrong, not just incom-
plete. It misleads us because we assume that if a river isn't marked,
it isn't tnere.)

An example of a direct representation which isn't strongly direct
is provided by networks: a relation may well not be displayed in the
graph, However, we can also use networks as a strongly direct represen-
tation, if we consider the medium to be the algebra of relational
structures with a given signature. Thus we would insist that either all
or none of the instances of a certain relation are displayed in the network.
A family tree is a strongly direct representation in this sense, relative
to the relationships 'child of' and 'married', With this semantics,
(which can be specified algebraically) a network is no longer equivalent
in meaning to the simple conjunction of the atomic facts represented in it.
(If we call this conjunction C, it is equivalent to C with the added rule:
if CH~@ then 1@, for any atom @ in the appropriate vocabulary.) Winston's
use of networks to describe concepts [ié seems to be closer to this
latter semantics than to the former one, for example.

In unpublished work at Stanford, Arthur Thomas is developing a
different approach to combining exhaustiveness with a Tarskian semantics,
based on Hintikka's 'model sets'.

Strongly direct representations are less plastic than direct/Tarskian
representations, in that information cannot be accumulated piecemeal in
them. To add information to a strongly direct representation is to alter
the information expressed by it. Alterations, as opposed to mere additions,
raise problems of their own, ‘

The trouble with alterations is that the information being altered
may have been used earlier as a premis in a deduction of some kind., Thus,
other pieces of information which obtain their support in some sense, from
the altered information, are now endangered, and should probably be re-
examined. This seems to require the system to keep an explicit record of
aow it formed its beliefs: a aistory of its own thinking. And this seems
pronibitively expensive (of either space or time: one could recompute
rather than store), due to exponential factors in the amount of information
required,




Under some circumstances, it may be possible to re-evaluate &
pelief on criteris independent from its original derivation, as for
example in adjusting the fit of lines to a gray-level picture (this
observation due to Aaron Sloman), but in general I do not think cne
can avoid the problem.

This dilemma seems insoluble. There must be a clever series of
compromises which steer us between its horns, but I don't know of any
work in this direction.

More far-reaching alterations to a representation which one can
envisage include changes to the basic cntology, to the sorts of entity
to which it refers. The introduction of substances intc a scheme
oriented towards describing individuals is such a change, for example
(see section 6 ), Minsky and Papert Ilﬁ] give another rather simpler
example: the change from a two-place relation of support between objects
to a support relation between an object and a collection of objects,
needed to describe e.g. an archway or a table. As they remark, this
alteration seems to require a complete rebuilding of all knowledge about
support, for the actual logical grammar of the assertions has changed.
However, in this and similar cases one can see the general outlines of
how it might be done, The fundamental step is to introduce the new notion
of support as a new primitive idea (this is the really 'creative' act),
and then define the old notion in terms of the new one, i.e. regard the
old concept henceforth as an abbreviation for its definition in terms of
the new one. In the example, support (a,b) would be defined as
support (a,{b}). This preserves the old theory of support as a special
case of a new, more general, theory (which is yet to be defined). There
is, however, a strong constraint on the new theory, viz. that it'explains'
meddmmw.TM&SMQMMSMtanthy%RMunﬂneﬂa?
ments of the old theory must be derivable (in the new theory).

This corresponds to the idea that the alteration is somehow a
refinement of, or an improvement upon, the former representation. A
similar change, but in which the new concept completely replaced the
older concept, which was rejected as wrong or unusable, could not be
handled this way.

This whole issue of plasticity in representation is important not
only for learning, but also for everyday program development reasons, and
for debugging. For we must be able to modify and improve the representations
of knowledge in the programs we write, and this is often far from easy.

4, Evidential Reasoning

There is a continual need, especially in percepticn, to represent
information concerned with one belief being evidence for another. It
seems clear that one needs to make reasonings concerning such matters
explicit so that they can be properly related to other reasonings, and
can be adjusted in the light cf experience (see section 3). The problem
is how to adequately express the notion of cne knowledge-fragment (or
collection of fragmentsi being 'good evidence' for another.

There seem to be several notions of good evidence, but all can be
put intc a common framework: A is gocd evidence for B (under assumption
Th, say) if the conjunction (A & not B) is somehow unlikly or implausible
Tor: if this follows from Th)., Thus, for example, if A entails B then A
is ve£¥ good evidence for B, for then (A & not B) is impossible. 1In
Guzman's work [2] back-to~back 'T's are good evidence for occlusion of
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one body by another, since the former without the latter is an unlikely
coincidence. In a worid where lines of bricks were cemmon, batk-to back
'Tis would be weaker evidence since the conjunction of such an observation
with ¢he hypothesis of a single occluded bedy would be lass implausible:
the possibility of a line of bricks being occluded would be an alternative
explanation of the evidence.

This sort of observation suggests an account of ‘'plausible’ as
follows: {A & not B) is implamsible if B entails A (occluded body entails
back-to-back 'Tis) and no other B of the suitable sort {e.g. no other
hypothesiz about physical arramgements of bodies) entails A, If there
are several such explanations of A then A is evidence that one of them
holds, but it doesn't distinguish which one. This decision has to be made
on some other basis, for exampie by the use of Baye <theorem in a
probabilistic scheme, or by choosing the simplest hypothesis or the one most
compatible with other entrenched beliefs.

An important problem is how to discover the collection of possible
or likely explanations. (This point was emphasised to me by Aaron Sloman).
How many ways can back-to-back 'T's arise? I can think of three; and am
pretty convinced there aren't any more; but I have no idea where that
conviction comes from, or how I would prove it. The 'theory' of lighting
and perspective which is welded into Waltz's program has this nice
exhaustive character, expressed in effect as a collection of explicit
disjunctions. This works up to a point, but how could a program derive these
lists from a description of, for example, the lighting conditions and
geometry of the scene?

Involving the background theory of lighting, etc., in this way is
not just of academic interest. A vision system which could make hypotheses
about the lighting conditions, the sorts of reflectivity in the scene, etc.
would find it necessary to be explicit about the role of such assumptions
in interpreting pictorial phenomena. Thus we might have: if there is
strong unidirectional lighting then shadows have sharp edges and are dark;
so if this is the cormer of a shadow then it will have a dark interior:

Th > (B=>A); from which we may use corners with sharp edges and dark
interiors as evidence for shadows. Reasonings like this will be essential
in any system with the ability to percieve a range of scenes. (Similar
remarks apply to other perceptual situations, e.g. understanding speech,
handwriting, children's stories.)

5. Control

A system which makes inferences to generate new facts must control
its inference-making capabilities in some way. This control itself requires
the storing and using, by the system, of information about the deductive
process. That is: the system must represent and use knowledge about its
own deductive behaviour.

In conventional programming languages this information is sometimes
represented implicitly in, for example, the ordering of statements in the
body of a program (which is a strongly direct representation of the time-
order of control flow, provided jumps are forbidden) and sometimes
explicitly in, for example, the correspondence in names which relates
procedure calls to their corresponding procedure bodies. In PLANNER-like
languages, the latter representation breaks down since 'procedures’ are
called not by name but by pattern matching, and is replaced by the more
flexible device of advice lists. The ordering information is still
represented implicitly, however,
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How, this metadeductive information needs to be made explicit and
separated from the factual information represented in the scheme, for
reasons of semantic clarity, plasticity and deductive power. For example,
the residue of PLAKNER upon separating out contrcl information is a logic
which resembles intuitionist predicate calculus . FResults like this
are important: they give us an inkling of how a semantic theory might be
put together. (Unfortunately, intuitionist logic itself has-a rather
murky semantics.) The control information which can be represented in
PLANNER is prather limited, as the CONNIVER authors emphasise [23]. Their
solution, to give the user access to the implementation primitives of
PLANNER, is however, something of a retrograde step {what are CONNIVER's
semantics?), although pragmatically useful and important in the short term.
A better soclution is to give the user access to a meaningful set of
primitive control abilities in an explicit representational scheme
concerned with deductive control. This is the basic idea of the GOLUX
project now underway at Essex DI].

The problem is to find a good set of control primitives., What is
control? One answer to this is to pick on a fixed mechanism (the inter-
preter) associated with the language, and to relate control to this
mechanism in, more or less, the way an order code relates to an actual
computer. But this tends to be inflexible and arbitrary. The GOLUX
answer is that control is a description of the behaviour of the interpreter.
The exact nature of the interpreter is not defined, only that it constructs
proofs according to some predefined structural rules. The descriptions in
control assertions constrain its behaviour more or less tightly. It is,

I believe, important that control information be represented in a scheme
compatible with the scheme used for 'factual' information, so that control
can be involved in inferences, added to, and changed.

Control primitives in GOLUX include predicates on, and relations
between, partly constructed proofs in the search space; descriptions of
collections of assertions; and primitives which describe temporal relations
between events such as the achievement of a goal (e.g. the construction of
a proof). The major source of difficulty is the tension between the

ressive power of these primitives and their implementability: it is
important that they be sufficiently simple that their truth can be rapidly
tested against the actual state.

GOLUX is based on recent ideas in computational logic []0,/23.
Other authors have also recently emphasised that computational logic pro-
vides a powerful theoretical framework for problem-solving and computational
processes []4,23,!1], although we are not in complete agreement as to which
is the best framework.

A common area of difficulty both here and in evidential reasoning is

to get a good notion of a 'theory': an organised body of knowledge about
some subject-area.

€. Substances, Parts and Assemblies

Every representational scheme known to me is based ultimately, like
predicate calculus, on the idea of separate individual entities and
relations between them,

But our introspective world-picture also has quite different 'stuff®,
viz. substances: water, clay, snow, steel, wood, Linguistically, these
are meanings of mass terms. Substances are fundamentally very different
frem individuals, and I know of no scheme which seems capable of satisfac~
torily handling them., I became aware of this problem from reading
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We often speak 23 though substances were individuals having
properties and relations one to another and to more conventional
individuals: steel is dense, blood is thicker than water, his head is
made of wood. The relation "made of" seems particularly important.
But appearances are deceptive,

Does 'water is wet' mean the same as 'all samples of water are
wet'? I think it does: we certainly want to be able to infer from
'water is wet', that 'this sample of water is wet'. This suggests at
first sight that we should treat pieces of stuff as individuals, which
seems fairly acceptable. But these individuals are also rather strange,
especially for fluids., If you put together two pieces of water you get
one piece, not two: we have to speak of guantity (of stuff) before we
can use arithmetic. (It is significant that, as Piaget has shown,
children properly understand the concept of quantity cnly at quite a late
stage of development.) Moreover, we should distinguish properties which
a piece of stuff has by virtue of its being a piece (size, shape}, from
those which it has by virtue of its being made of stuff (density, hardness,
rigidity): for the former, but not the latter, can be easily altered by
physical manipulations. It really seems that we cannot get away from
substances no matter how hard we try.

Let me emphasise that this problem is not a by-product of a nomin-
list philosophical position, I have no objections to platonic, abstract,
non-physical individuals. That's not the difficulty. The difficulty is
*individuals' which appear and disappear, or merge one with another, at
the slightest provocation: for they play havoc with the model theory.

This seems to me to be one of the most difficult problems in repre-
sentation theory at present. The only way I can imagine handling
substances is by regarding each substance as a (special sort of) indivi-
dual, to which such properties as hardness, density, etc. are attributed.
These individuals can be regarded as platonic ideals, or alternatively as
the physical totality of all samples of the substance: you can take your
nominalism or leave it. We have the nafve axiom

Stuff(x) & madeof(y,x) & z(x). > z(y)
(e.g. : a lump of hard stuff is hard).

which transmits properties from substances to pieces of them, (Care is
needed: steel ships float, for example; a fact which often amazes young
children,) Notice this axiom is first-order (in a sugared syntax).
Quantity is now a function from (pieces)X(stuff) to some scale of measure-
ment, so we can express conservation of quantity through some physical
alteration Q by:

quantity(piece,stuff) = quantity(Q(piece),stuff),

And so on. This works up tc a point, but seems to me to be essentially
unsatisfactory.

There is a close analogy between being made of a substance, and being
made up of a number of parts. And a corresponding analogy between quantity
(of stuff) and number (of parts)., Sand and piles of small pebbles are
intermediate cases: and we often treat an assembly of individuals as a
fluid, e.g. as in "traffic flow", The major difference seems to be that
different scales of measurement are used in common-sense reasoning (but
not in physics, where quantity is number of atoms), as the "paradox of the
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heap" shows, This runs as folleows: a heap with cne stone in it is small.
If you add just one stone to a small heap, it's still a small heap.

Hence by mathematical induction all heaps are small. The ‘paradox' comes
by switching from the informal quantity scaleof 'small-large’ to the
precise number scale. Induction is not valid in the former, which (for
example) exhibits hysteresis,

Things are often made up of parts joined or related in some way.
Obvious examples are physical objects made of pieces glued or assembled
together: cups, cars, steam engines, animals, But there are others: processes
made up of subprocesses; time-intervals made up of times, The idea of
organised collections of entities being regarded themselves as entities
permeates our thinking,

Now this fact strikes at the root of an 'individual-based' ontology
in the same sort of way that substances do. The only way of handling
collections is to count both the collection and its parts as individuals,
related by some sort of made of or has-as-part relation, But then these
assembled individuals behave in odd ways: they sometimes merge (two heaps
make one heap) like pieces of stuff: sometimes they can be disassembled,
cease to exist for a time and then perhaps be reassembled: is it the same
individual? (Our intuition says: yes, in most cases).

Modal logicians now have very elegant semantic theories which can
accommodate such odd behaviour in individuals, But these allow an
pattern of vanishing, reappearing and changing properties. The point is
to find a way of representing the fact that composite individuals have
this special way of vanishing (being taken apart), and to distinguish, for
example, those composites which cannot be reassembled (animals, cups) from
those that can (cars, steam engines): and to do all this in a framework
which assumes that things, by and large, don't just vanish and reappear
spontaneously., Composites are thus a different sort of individual, in a
very deep sense,

A related issue is how to state criteria upon which we reify a
collection into a composite individual. Physical compactness is sometimes
sufficient (a heap), but not always necessary (the wiring system of a house),
for example, Of course, one does not expect a single general answer, but
I do not know of any reasonable answers at all, even for special cases.

I have already remarked on the similarities between being made of
(stuff) and being made up of (parts). Is this anything more than a facile
analogy? Is there some common framework in which the fundamental ontologi-
cal notion, rather than existence, is space-occupancy? It might be useful
to strive for a representation which allowed the simultaneous expression
in different schemes of both 'existence' and 'space-occupancy'. (The
schemes would, 1 believe, have to be essentially different.) Indeed, in
a crude way one can see how it might be done directly by "arrays of facts":
the array subscripts give one access via spatial relationships to the local
presence of objects, which also partake of relationships (represented by
a network, say) between themselves and other, non-space-filling, indivi-
duals (such as colours)., Decomposability is indicated in the array alsc
by 'break lines' which separate the space into regions: different sorts
of connection could be fairly easily handled (glued, detachable ...).

But this is very crude and has several crucial drawbacks (notably plasticity:
imagine moving an object through the space, preserving its shape.)
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7. Some non-isaues

t.1L  Irrelsvant classifications

#uch heat is generated by disputes based on classificetioms which
do not correspond with the facts, or which at least have outlived their
usefulness. Tow such are the “generality vs. supertise” debate and the
more recent "procedures ve, assertions” debate. Both of these arise from
a revulsion against & particular early naive idea about how to organise
intelligent programs, which ene could (perhaps unfalrly) call the general
problem-solver fallacy. (Seymour Papert calls it, the blinding white
light theory, }

This was the sarly insistence that probiem-solving methods had to
be wrapped up in black boxes called problem-solvers, whose {only} input
was a problem and whose (only) cutput a solution. Problem-solvers were
supposed to be &s powerful amd as general as possible, One had not %o
"cheat® by "giving" the problem~sclver the solution in any sense, e.g.
by reprogramming it or cleverly coding the problem in some way (this is
made explicit in [7 ), Unfortunately, of course, this collection of
rules means that there is ne way of getting subject-matter-dependent
knowledge into the black box; for it cannot be there a priori (violates
generality), and it cannot be put into the problem (cheating), and there
aren't any other inputs. This is a caricature, but not much of a carica-
ture, Much work in automatic theoremeproving was done with the implicit
idea that the theorem~provers were to be regarded as problem-solvers in
this sense (c.f. the widely felt 'need' for adequate criteria of relative
efficiency of theorem-provers: "my problem-solver is more powerful than
yours". (See [2,10] for a fuller discussion).

The MIT school have now succeeded admirably in destroying this idea,
but unfortunately have gotten it confused with some others. Surely we
need both generality and expertise: the fallacy is not the amphasis on
generality, but the insistence upon the black box and the "no cheating"
rules. The general mechanisms of means-end analysis, heuristic search
and computational logic should not be rejected, but rather incorporated
into more flexible systems, rather than wrapped up in closed ‘prohlem-
solving subroutines! or 'methods' or whatever. Thus, to reject conventional
uniform theorem-proving systems because they work with assertional rather
than 'procedural' languages, is to miss the point. (Whether a language is
considered to be a programming language et not, is largely a matter of
taste, in any case. LISP can be regarded as (an incomplete) higher-order
predicate calculus, or as a first-order applied predicate calculus:
predicate calculus can be regarded as a programming language, although by
itself not a very good one.) The force of the MIT criticism of computa-
tional logic is directed against the 'problem-solver' view and its conse-
quences, especially the lack of any accessible and manipulable {programmable)
control stucture in conventional theorem-proving systems. The GOLUX system
referred to earlier is an attempt to fill this lack directly with an
especially devised control language.

A more recent attack on conventional theorem-procving [jzl is that
it is too concerned with "machine oriented" logic, and not encugh with
“human oriented" logic. I confess to being guite unable to understand
what this could possibly mean.

7.2 Semantics

Some authors, usually concerned with comprehension of natural language,
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use ‘semantic' as a vague term roughly synonymous with 'to do with
maenings®, whers this means the same as ‘not to do with grammars®.
This follows a long and honourable tradition in linguistics (c.f. the
use of such terms as "semantic markers" and the idea that linguistic
deep structure is semanties).

I wish to emphasise however that this is not the same usage as
that adopted here and in formal logic. And it Is, I believe, very
misleading., It militates against an understanding of the fundamental
point that the meanings of linguistic expressions are ultimately to be
found in extra-linguistic entities: chairs, people, emotions, fluids.....

As a recent example, Wilks' "semantic units" EWH are syntactic
objects in a scheme: nowhere does he tackle the difficult and vital
problem of describing exactly what sorts of extra-linguistic entities
his "semantic units" refer to. It is easy to say: we must have substances
and things and ... ; but what are these? There does seem to be the
beginnings of some sort of sketchy semantic theory behind Wilks' formulae
(actions have agents which are animate, etc.), but it is not articulated:
and if it were, all the problems I have discussed would promptly appear.
Similar remarks apply to Schank's work [20], and others.

I am not arguing that natural language should be given an exten-
sional semantics. I distinguish sharply between a natural language,
which is an informal and probably not even completely defined means of
communication in the real world (is "Eh?" a sentence? Eh?), and a
formal deductive scheme for representing knowledge. (It has been suggested
to me that the distinction may be related to Sassure's distinction between
Langue and Parole, but I have not investigated this.) I suspect that
those who deny the usefulness of extensional semantics would also deny
the validity of this distinction. That is probably a perfectly respectable
philosophical position: but I submit that it is bad engineering.

7.3 Fuzziness and Wooliness

Several authors have recently suggested that more exotic logics,
especially 'fuzzy logic', are necessary in order to capture the essentially
imprecise nature of human deduction, While agreeing that we have to look
beyond first-order logic, I find the usual arguments advanced for the use
of fuzzy logic most unconvincing.

Introspection does not suggest to me that intuitive reasonings are
essentially imprecise; still less that they are precise in terms of a
real-valued truth-value in the unit interval (which is what fuzzy logic
would have us accept). Even ignoring introspection, fuzzy logic does not
seem very useful, for where do all those numbers come from? (This is
McCarthy's point.)

The typical example brought forward to illustrate the need for fuzzy
lcgic concerns the everyday use of such words as 'large', 'small', 'old',
'expensive'. Now it seems to me that, when I say a heap is small, I mean
just that. If asked, "Is what you say true?", I will correctly answer
"yes", and become impatient with the protagonist, These are precise
words but they refer to vague measuring scales. As remarked earlier, for
example, the scale 'small-large' exhibits a different topology from the
integers or from real intervals: it is more like a tolerance space [?7
and it may have hysteresis (an intermediate heap will be considered small
if it began as small and grew, and considered large if it began as large
and shrank), and it may have gaps ki it, The point however is, that wve
should keep the vagueness of the scale localised into it, rather than
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letting it infect the whols laferential system. This ensbles different
'fuzzy' weasuring scales to ssexist, which is important. We should
investigate what soris of messurement scales are useful for varicus
purposes.

The most drastic alteration to the actual logic which seems to be
needed to handle words like this is to move from a 2-valued to a 3I-valued
logic, and it is not absclutely clear that even this small step is really
necessary. .

The view expressed here is different from the one I held some years
ago, I have become more respectful, since then, of the unexplored
possibilities of predicate lsgic.
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" PROGRAMS THAT WRITE PROGRAMS AND KNOW WHAT THEY ARE DOING.

John Knapman, Bicnice Research Laboratory, School of Artificisl
Intelligence, University of Bdinburgh.

Abstract

The concept of run~time structure, expounded by Stansfield(l), is
explored in the light of its use in a computer program currently being
developed that is to acquire a natural lanmguage. Special facilities
have been proVided for programs to modify and extend themselves by
interacting with a record of their behaviour and experience.

Descriptive Terms

Run-time structure, comtrol structure, list programming, procedural
representation, language acquisition.

* * * * ® * * * *

1. Before the programming system is described; a brief outline will be
given of the application for which it is being used. The program is to
acquire a natural language through the medium of a teletypewriter. It
begins with no vocabulary and, on encountering an unfamiliar werd,
synthesises its meaning by examining the situation in which it is found
and comstructing a sub—program. For instance, the word asterisk is
taught by making the program print an asterisk (by enclosing the
instruction in square parentheses) and then supplying the word.

: [PRINT("*%)]

*

: ASTERISK

In this dialogue, lines entered by the human tutor are preceded by a colon;
the others are printed by the program.

As a result of the above sequence, a sub-program is written (the text
appears in section 4 below) and, in future, it will be executed whenever
the word "asterisk" is read, whether alone or as part of a sentence. The
effect of running the sub-program depends on the context. The word
"print" causes "asterisk" to be interpreted in the imperative sense.

It is taught thus.

: PRINT AN ASTERISK [(PRINT(**%)]
*

The teaching of "and", "a" and "you" will not be described here.
Instead, numbers will be introduced since they involve an interesting new
principle.

: PRINT AN ASTERISK AND AN ASTERISK

: TWO ASTERISKS

In the first line, the sub—program for print will itself carry out
the interpretation of "an asterisk"”. The main program will then set in /
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/in motion the phrase "and an asterisk. In the last line, "two" is a
new word and, after "asterisks" (taken as synonymous with "asterisk")
has been run (it compares the instructions that caused two asterisks to
be printed this time with the original single instruction), "two"
becomes associated with the asterisk left over.

At this stage the command to print two asterisks would be obeyed
correctly but the following incorrect result would also occur.

: PRINT TWO DOTS

¥

A gecond example is necessary to derive the proper meaning.

: PRINT A DOT AND A DOT

: TWO DOTS

A comparison takes place within "two" and out of the conflict between the
given and the expected, its meaning is induced. It takes on the function
of duplicating the object that follows it. Higher numbers are similar.

More details will be given below after an explanation of the
programming system. The working of the following example is also
presented there. The word "did" is introduced to the program in a
question.

: PRINT AN ASTERISK

*

: DID YOU PRINT AN ASTERISK [PRINT('Y®);PRINTC'E');PRINT(’S®)]
YES

"Did" now means: '"Examine the record of the immediate past to see
whether the action performed there matches the meaning of the rest of the
sentence following 'did'". The meaning of "did" can be extended to
reply "no" when the two do not match.

: PRINT A COMMA

: DID YOU PRINT A DOT [PRINT('N*);PRINT('0")]
NC

As presently implemented, the program can also learn to answer
questions like: "What did you print?" and "How many dots did you print?".
It can associate the numerals with strings of appropriate length (e.g. 3
with '£££'), and be taught to perform addition on them. It is hoped to
extend these numerical capabilities and to explore other concepts, such
as that of time and of language as an activity in its own right.

The /
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/The application program will serve to illustrate some of the uses
to which the programming system can be put. The system will be
described by first showirng how it fits into the historical development
of programming. Then its wnique attributes will be presented.

% & & * * * * *® *

2. "Programs that know what they are doing" is a quotation from
Stansfield (1) revealing the philosophy behind his programming ayatem
PROCESS 1. To have "programs that write programs" is not a new idea.
LISP was invented by McCarthy et al (2) with the express purpose (as
stated in the last paragraph of the introduction to the manual) of
permitting programs to act on programs. Programs in LISP are stored
with each instruction contzining an explicit pointer to the next (i.e. in
a list) so that changes are convenient to make. An equally important
fact about LISP is its functioning as an interpreter; programs are not
converted to another form for execution. This makes it possible for a
program in temporarily interrupted execution to be modified by another
program, or even to modify itself without interruption. Such facilities
are presented below in section 3,

A convenience provided by most programming languages is the
procedure - also known as the sub-program, sub-routine or function. 1In
FORTRAN and similar systems the flow of control through a number of
functions follows a hierarchical discipline. Dissatisfaction with the
rigidity of this kind of control structure has led to the development of
back-tracking (3) and generalized jumps (4). A formulation of
generalized jumps independent of a goal formalism is found in (5). The
intuitive advantages of procedures (functions, etc.) are retained while
some of the flexibility of machine-level programming is restored.

As well as providing such flexibility, Stansfield (1) had the idea
of making available to the program a representation of the control
structure, known as the run~time structure. Now a procedure may inspect
a record of which procedures were previously invoked and are possibly
awaiting a result. The procedure might send a result directly to the
one expecting it, bypassing the intervening hierarchy, or indeed take any
action at all, after obtaining this information. By sending a result,
of course, control is also transferred to the procedure receiving that
result. However, the run-time structure representing the execution of
the lower level procedure is still available and can be stored for a
restart at a possible time in the future. The execution of a procedure
is a process (hence the name PROCESS 1) and the run—time structure that
has been furnished at the time of transfer of control represents a
suspended process. There can be any number of suspended processes saved
by a program. In additiom, there is always one procedure actually being
executed. The execution of this procedure is known as the current
process and it too possesses a run—time structure available for imspection
and modification at any time.

The format of a run—time structure is that it contains one record
for each invocation of a procedure. This means that if a procedure is
called several times, as in recursion, there will be one record (an
"activation record") for eack call. If, however, a process that
suspends itself is later restarted, the same activation record will be
employed again. The record points to the next inmstruction to be
executed in the text of the procedure. These records are chained
together on the run-time structure starting with the most recent
activation in the process that the structure represents and linking back
to the earliest.
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4 system of levels is introduced and is used here to make these
chains of receords more manageable. Stansfield describes a method of
level numbering which I call "sbsclute". I have implemented PROCESS 1.3
(6) incorporating absolute and relative levels and the discussion below
refers to the latter, since they are the ones used in this application.

4 procedure can be started by being either called or run. If it is
called, its zctivation record sppears in the run—time structure on the
same level az its predecessor; if it is run, a new level is made.

As an exsmple consider the anmalysis of the sentence: 'Print two dots
and a comma”. Two or three procedures are involved in the interpretation
of each word, including at least one that is unique to the word in
question. By the use of run and call, each word’'s processing can be
confined tc a separate level, making possible the kind of communication
between words that will be ocutlined when the examples of "did" and "two"
are explained.

ANALYSE \ 4
\‘iht\

and 3
two \\§> 2
\\izzs Tgi;m 1

Fig. 1 Flow of control in interpreting a sentence.

The levels make it matural to draw the diagram of fig. 1 in which
they are numbered from the point of view of the procedures involved in
“dots" or in "comma". Each downward arrow represents & run to a new
level. Within each level the processing for the word involves calling
appropriate procedures. If the syntax of the word demands the
interpretation of the following word or phrase before processing can be
completed, the procedure for the word will itself contain the necessary
run instruction to bring that about. The verb "print" requires an
object and so it runs the interpretation of the mext phrase. The number
"two" also requires an object on which to perform its duplication function.
"Dots", on the other hand, has no such requirement and returns control
back to "two". It may pass control back to any of the levels by means of
the operation '"rise" (a generalization of "return” in many programming
languages) followed by a number: RRISE 1 will return to the dictionary
procedure (known as FIND) that called '"dots" on the same level, RRISE 2
will return to "two", RRISE 3 to "print" and RRISE 4 to ANALYSE. The
numbers are relative to the current process: after RRISE 2 to "two"
another RRISE 2 goes to "print". In fig. 1 each upward arrow represents
RRISE 2. The total structure that you see never exists at any instant,
although it could be reconstructed automatically. The first branch is
built and destroyed, followed by the second, as the words are being
interpreted.

An interesting property of fig. 1 is that not only does it represent the
flow of control through the preocess of interpretationm but it corresponds
to the syntactic structure of the sentence. It can be viewed as a
parsing tree. According to Halliday (7), grammar imposes a second
dimension on the linear succession of elements that is the substance of
language and it does this by a process of segmentation into units.
Syntax exhibits the shape of the process of comprehension; it is one
aspect of that single process.
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Winograd (8) was able tc demonstrate the enormous power and
flexibility gained by his program having a procedure representing the
meaning of each word. His strong arguments for the close interaction
of syntax and semantics carry great conviction and he used the best
programming tools available at that time, i.e. back—tracking,
MICRO-PLANNER (9) and PROGRAMMAR (10) to assist that endeavour. But
his program still possesses & separable syntactic component.

With the concept of rum=~time structure, it has been possible in the
examples considered to incprporate both the syntactic and semantic
aspects of processing for a word into one procedure and the learning
process is greatly simplified by the consequent uniformity as compared
with a program which has a distinct syntactic component. Learning is
further facilitated because in a run—time structure the procedure that
performs the synthesis for a new word has available a representation of
the whole activity in progress, including linguistic activity. The
method has intuitive appeal because, for one thing, the program will
answer a grammatically ill-formed question such as: "What did you printed"
which most English speakers would understand. (YPrinted a dot" would not
be interpreted as a command, however).

* * * * * * * * *

3. Another substantial advance made by high level programming languages
is the convention of naming areas of storage, which are then known as
variables, rather than numbering them. In a procedure, the programmer
declares the names of variables to be used in that procedure. When it
is executed, space for the variables declared is provided in the
activation record and whenever a value is assigned to a variable the
value is put into that space. This kind of variable is local. 1If a
name is mentioned without being declared then it refers to the variable
of another precedure and is termed mon-local. The rule for determining
to which activation record a mon-local variable refers in an ambiguous
case is the binding conventiomn. Dynamic binding has been found the most
suitable when procedures are manipulated as objects. To quote Burstall
et al (11): "It allows functions (i.e. precedures) to be produced as the
results of other functions which is quite impractical with the ALGOL 60
way of handling non-locals. This adds greatly to the power of the
language". This point of view has been borne out in the application
program. The procedures for "what" and "how many" include parts

adapted from the synthesisimg routines. After inclusion their non-local
variables automatically refer to the new environment without the need for
any textual modification. 1Im this respect PROCESS 1.5 differs completely
from PROCESS 1. Dynamic binding is used in LISP and POP-2 (11). A
fuller treatment of this matter (the frame problem) and its extension to
processes as manipulable objects is givem in (6).

A record on the run-time structure in PROCESS 1.5 contains all the

information relevant to performing a process. There is provision for
programs to access and modify, by name, the value of any variable in any
process.

The primitive is VALUE. As an example, the following will
initiate a process by running the function FUN which leads to a rise back
from a subordinate process. The run-time structure for that process is
supplied by the system in a global variable CONTINUE. The value of X
and A will be assigned to Y and B in the subordinate process which will
then be resumed.
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RRUNS FUN; VALUE(CONTINUE, [X Al)->VALUE(CONTINUE,[Y BI);
RRUNS CONTINUE;

Thus these objects constitute a highly structured presentation of
the entire state of the machine, since the records also provide access
to the text of the procedures whose execution they governm. It only
remains to describe the form of their text and to present the facilities
for them to generate and manipulate one another. These are new and
experimental facilities and do not appear in the earlier documentation
for the system.

The textual format of a procedure is a sequence of instructions
separated by semicolons. For example:

RRUNS COMPARAND FINDASSOCS;
CALL CHECKASSIGN: ASSIGN DIFFUN1;

As implemented, PROCESS 1.5 will, in addition, accept statements in
an extended POP-2 notation and convert them to the above form. In fact,
the programs for this application are written in a hybrid language. 1In
the basic form (illustrated above) each instruction begins with an
operation (the operations are CALL, RRUNS, RRISE, ASSIGN, NOOP, GOTO,
RUNS and RISE) followed by variable names or actual data. For every
operation except GOTO and ASSIGN, items in the instruction are placed on
a push—-down stack. An assignment removes items from the stack and
places them into the variables specified. In the case of RISE and RRISE,
the last entry on the stack is taken to be the level to which return is
made. For CALL, RRUNS and RUNS, the last entry refers to the procedure
to be invoked. RUNS and RISE perform as in PROCESS 1; RRUNS carries
out the "run" function outlined in section 2. The performance of RRISE
is also set out there. CALL initiates a procedure on the current level.

If we prefix C~ or NC- on to any of these they become conditional
on the outcome of the preceding instruction. For instance, altering
CALL CHECKASSIGN to CCALL CHECKASSIGN would cause the procedure to be
called only if the result from FINDASSOCS was TRUE. Similarly, NCCALL
would mean call only if the result was FALSE. This was devised so that
choices would automatically leave a clear indication on the run-time
structure of the fact that they arose and of which branch was taken. It
was also designed for convenience in making changes to the text
consequent upon the outcome of the conditional. Such amendments are
essential in this application because a procedure will normally be
generated from onme situation and the ability to make later modifications
in the light of new but related experience is of paramount importance.

As a matter of fact, in the present program all the data are
procedures except in the first stage of input from the teletypewriter
and that is soon converted to procedural form. As a result, the only
source of conditionals is the comparing of two procedures. (Comparing
two run—time structures reduces to a series of comparisons between the
procedures to which they refer directly or indirectly).

The program for comparing two procedures is called DIFFERENCE. It
will examine the first procedure to see if it contains the second and it
will return the result TRUE or FALSE, accordingly. In the TRUE case,
it will also yield the difference between them in the form of two more
procedures which will be the extra parts of the first procedure
preceding and following the common portion. There is a special case
of DIFFERENCE known as PEMPTY which simply ascertains whether a /
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/a procedure contains any text at all. Such & check is ususlly
necessary at the end of & series of DIFFERENCE operations during which a
procedure has been broken down.

Building procedures up also demands special facilities, as
procedures are scmewhat cumbersome objects to manipulate (mostly because
of the use of varisbles). As with any progremming system, they can be
typed in by the user but the object here is to allow programs to write
them as well. To start a new procedure, a skeleton is first created by
a call to INITPROC, which places the skeleton in a standard global
variable and makes it available to be assigned to a variasble. Additions
can then be made to it using a program called ADD. An example appears
below. Text is supplied by programs in the intermal PROCESS 1.5 form
or in the extended POP-2 form or a mixture of the two. (It is written
in square parentheses [ ] denoting a POP-2 list). Two procedures can
also be joined to produce a third.

Another use for the program ADD is to insert text into the middle
or at the beginning of a procedure. There is a method for positioning
a pointer to a particular imstruction or part of an instruction before
adding or, alternatively, deleting text. The pointers are set up by
means of the function EDIT. After writing EDIT(ACTION); the procedure
ACTION may be modified by means of various search and delete commands as
well as by use of ADD. There is special provision for doing this in
conjunction with the run—time structure when a procedure has been
executed. If we write EDPOSITION(PFINDRET(1)); then the procedure
that invoked the current one will be prepared for modification with the
pointers positioned at the place in the text where the call was made.
For instance, if a DIFFERENCE test yields an unexpected result and
causes another procedure to be called, the instructions related to the
test (and the values of variables) can be inspected and changed. In
fact, this is the normal way in this application by which procedures
representing the meanings of words are extended after their initial

synthesis. Carroll (12) remarks that the development of a word in
child language is far more complex and interesting a process than its
initial acquisition. This is my justification for seeking a method of

procedural modification that interacts with the record of a process in
the run-time structure.

* * * * * * * * *

4. Two illustrations will be given of these methods at work. The
first involves learning the word "two" and the second is the ''mo" reply
to questions beginning: ''Did you print". The teaching situations were

outlined above and the first to be considered is "two asterisks'.

The text of the procedure (slightly simplified) for the word
"asterisks" is given below. You will recall that the procedure to be
invoked appears at the end of a CALL instruction.

CALL MAKEASTERISK;

CALL REFERENCE RESULT DIFFERENCE; NCCALL XRESOLVE;
ASSIGN DIFF1 DIFF2;

CALL DIFF1 PEMPTY; NCCALL EXRESOLVE;

CALL DIFF2 PEMPTY; NCCALL EXRESOLVE;
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This procedure was synthesised in an earlier situation, as was
MAKEASTERISK, which consists of the following:

CALL INITPROC; ASSIGN RESULT;

CALL {CALL "*"PRINT] ADD;

The processing for this word is to generate a procedure for printing
an asterisk and to compare that procedure (stored in RESULT) with the
REFERENCE which, by default, has previously been set to the preceding
action in the dialogue (i.e. the printing of two asterisks). After the
comparison, checks are made to ensure there is nothing left over. Each
test is followed by a call to a resolving routine conditional upon the
failure of that test.

In the "two asterisks’” situation, where "two" is an unknown word,
processing commences with a procedure known as SYNTHESISE with the
objective of ascertaining the meaning of the new word. It causes the
word "asterisks" to be interpreted and the code presented above is
executed, resulting in a call to EXRESOLVE because DIFF1 has been left
with the second asterisk. The run—-time structure is illustrated in
fig. 2, where FIND is the procedure that locates the meaning of a word.
EXRESOLVE is able to extract the contents of DIFF1 from the "asterisks"
procedure at level 1 and, detecting the presence of SYNTHESISE at level
2, passes it the information.

FIND-> SYNTHESISE
IND-> "asterisks'" -> EXRESOLVE 1

Fig. 2 Run-time structure for "two asterisks'". The downward arrow
indicates RRUNS, the upward one RRISE 2, and the horizontal
arrows CALL.

After the first example, SYNTHESISE generates a procedure as the
meaning of "two". It is like the one for "asterisks' shown above,
except that MAKEASTERISK is replaced by a procedure that runs the
imperative interpretation of the following word before adding its own
asterisk printing instruction on to RESULT. The imperative is forced
by setting the point of reference to a null value. (Local variables
named REFERENCE are used to eliminate interference of contexts).

When in the second situation two dots are encountered, the
assumption that "two" just means an asterisk in particular circumstances
is violated and the program must seek a different explanation. In terms
of code, that means that the DIFFERENCE comparison in "two' failed to
match a procedure for printing two dots with one for an asterisk and a
dot. Consequently XRESOLVE was called with the task of finding a match
for the alien procedure and it has a number of sources from which to do
this. These include that part of the sentence preceding the word in
question, the word or phrase immediately following, further segments of
a long sentence and actions indicated by the tutor. In the present case,
the imperative interpretation of the following word does yield a match
(in the sense of a successful DIFFERENCE operation) and recursion within
XRESOLVE disposes of the remainder from this comparison. Notice that
XRESOLVE is also involved in the process of imperative interpretation:
if REFERENCE is null it cannot perform its matching operations and
issues RRISE 2, leaving the action in the global variable RESULT.
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XRESOLVE now synthesises & new procedure, again like "asterisks",
vherein the equivalent of MAKEASTERISK is a2 run of the imperative
interpretation of the following word and duplication of the result.
HRESOLVE concludes by insertimg a call to the nmew procedurs in place of
the call to XRESOLVE in the original version of "two". (The run—time
structure identifies the location of the instruction to be modified).
“Two" will now behave correctly, using the original portion when
examining asterisks and the new portion in other contexts, including the
imperative.

The second illustration involves learning and extending the word
"did", which has a somewhat more elaborate procedure than "asterisks"
but still contains DIFFERENCE tests, the main one being a comparison
between the point of referenmce (the past action) and the interpretation
of the rest of the sentence. In the "no" situation the result of the
test is negative and a call to XRESOLVE takes place.

In fact, none of the remedies described yields a match. The
intended meaning is, after all, that the program should answer 'no"
when this particular comparison fails. Thus XRESOLVE is once more
required to replace the call to itself. An instruction is substituted
in "did" that will generate a procedure to print "no" when the comparison
fails between the point of reference and the result of the following
clause.

That concludes the examples, which have been intended to illustrate
how the run-time structure presents a record of the behaviour of a
program in a way that is usefully related to the actual procedures that
give rise to that behaviour. This usefulness has two aspects. One is
that a procedure has access to the context in which it is acting. The
other is that the right kind of information is available for a program
to expand and develop itself.
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DEFINING SOME PRIMITIVES FOR A COMPUTATIONAL MODEL OF
VISUAL MOTION PERCEPTION

C Lamontagne
Bionics Research Laboratory, School of Artificial Intelligence,
University of Edinburgh.

Abstract. Primitive computational concepts, expressed in terms of
neural nets, are created as a basis for a medel of visual motion
perception. These primitives are explicitly derived within the context
of a complete visual system.

1. Introduction

Our current goal is to produce a working model of visual motion
perception, and to use this specific concern as an alley into visual
perception as a whole. The main idea is to approach the problem on very
broad grounds, keeping our motion perception "sub-system" open in the
context of a complete visual system.

We want our model to be a computational one, that is we want it to
be expressed in terms of explicit computations which are detailed enough
to be simulated on some computer or built into hardware. In building
the model we want to use to the fullest possible extent the observations
provided by Physiology and Psychology as basis for induction, and the
general principles of computation offered by Computational Sciences as
basis for deduction. We want our model's achievements to be at a human
level of sophistication and its computational strategies to be as
efficient as possible. It is important to realise that we do not claim
that our model will necessarily be a model of human visual perception,
not any more than we claim that it will necessarily be a model of a
computationally optimum visual system, but we do claim that the model will
be perfectly suitable, at any stage of its construction, as a hypothetical
statement about how the human system could work or about how the optimum
system could work. In fact the model has already shown its power as a
source of hypotheses for Experimental Psychology by providing, at a very
early stage of development, quite a strong theoretical framework for the
prediction of a whole family of new visual phenomena which constitute a
complete experimental paradigm for a part of the human visual system (1),

Now to represent computations, that is to talk about our model, we
needed to choose a language. As primary language, i.e. the language
which is used to express the model itself, we chose the language of neural
nets; the reasons behind this choice are that first we consider neural
nets as very suitable tools for "visual thinking" (i.e. they are easy to
manipulate in one's head), and that secondly (and most importantly) we
consider them as very suitable tools for talking about parallel prcocessing
as well as for talking about serial processing. As secondary language,
i.e. the language of simulation for the neural nets, we chose POP-2 (for
purely accidental reasons), but only a very small part of the model as it
stands /

(1) See Lamontagne, C., 1973, "A new experimental paradigm for the
investigation of the secondary system of human visual motion
perception", Perception, 2, 167-180.
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/staends at present has been simulated; most of it is still only
expressed in terms of the primary language, that is neural nets. This
brings us to talk briefly about the stage which our model has reached,
and to outline which part of it will be described in this paper.

After two and a half years of work along the lines sketched in the
above paragraphs we have got to the stage where the model can detect tem
different types of motiom, and track objects involved in translatory
motion relative to its retina. All ten types of motion are essentially
interpreted as two-dimensional ones but we are in the process of
developing a learning scheme to raise the level of interpretation to three
dimensions. The two restrictions imposed on the system from the very
beginning of the research are still holding; the model has a single eye
(i.e. we are developing a monocular system), and the eye's retina is
homogeneous (i.e. there is no duality in its receptors' structure). A
most important point is that as it stands now the model is highly
homogeneous, being almost entirely built out of similar atomic processing
structures, or primitives, combined and re-combined in all sorts of ways
in order to reach the desired computational specificity; furthermore
the planned extemsion of the model into the three-dimensionality involves
using these same primitives as building blocks. The present paper will
be exclusively devoted to the detailed description of these primitives,
and this will be done in the explicit context of a complete visual system.

2. Preliminaries.
2.1 Input device: structurally detected features

We should start by choosing as our input device a single homogereous
two—dimensional array of receptors sensitive to different light
intensities, where a signal fired by any receptor would qualitatively
represent a specific position (by construction, or structure, of the
retina) and would quantitatively represent a specific intensity. This
input device would allow us to work directly on "real world" visual
stimuli.

We will however adopt a slightly modified version of input device
which is in every point similar to the one we just described but for the
fact that it will not detect different intensities, being restricted to
"all-or-none' responses to light intensities; moreover we will restrict
the valid input stimuli to the class of bright line drawings on dark
backgrounds. This modification is far from being as drastic as it might
seem; we see it as equivalent to brimgingthe different intensities
detected by the original input device down to 1's and 0's according to
whether or not they reach a certain difference threshold when compared
with their immediate neighbours. This computation would in fact bring
out the contrasting elements in the picture, and this is exactly what we
are doing by restricting the input stimuli to line drawings and bringing
the intensity discrimination to an "all-or-none" mode. Since the
problem of going from our simplified version of the input device to the
originally desired one is well defined and since cur simplified version
is easier to handle in the process of building the visual system, we
decided that we could wait until more important questions have been
tackled before lifting the "line drawings' ccnstraint on the input device.
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/So let us go zhead with the simplified version of the input device,
calling “primitive array” or "retina” its array of receptors, and calling
"primitive objects"” the informational entities created by the specific
retinal positions detected at this level. It should be stresgsed here
that since our inmput device reascts in an all-or—none manner to light
intensities falling on its different receptors {or positions) we are left
with the very general piece of information 'there is light", which is of
little help when we are figuring out the physical comstraints around us,
and the more helpful although rather primitive information about where
this light falls on our retima. The important point to nectice here is
that however primitive this basic information might seem, it is potentially
very rich in the sense that the detected feature "retinal position' has
a repertoire of values (i.e. '"retinal position" is a multi-valued
feature), each receptor on the retina representing one "value" of this
feature. By combining these values in different ways we can get at new
features with their own sets of values which can themselves be combined
into still higher level features with their own sets of values, and sc on.
We therefore conmsider the main task of any visual system as being one of
deriving features by grouping and re-grouping values of other features
under some criterion or other, and consequently we consider the task of
defining a visual system as being one of finding the adequate criteria
under which the grouping should occur, i.e. under which new features
should be derived.

2.2 What is meant by "motion": main types of derivable features

We can see two main types of strategy for deriving new features:
analysing the values of a feature as they stand in one given moment, or
as they stand in successive moments. On. this basis we will make the
distinction between two types of derivable features: frozen features
which are derived from different values of some feature detected in one
processing moment, and running features which are derived from different
values of some feature detected in successive processing moments.

For instance let us consider the case where a straight line covering
nine retinal receptors is used as stimulus and is actually projected on
to the retina at moment 1. Then at this moment 1 we have nine receptors
firing together, specifying nine different retinal positions. Since
these retinal positions are directly provided (or detected) by the input
device within but a single moment we say that retinal position is a
frozen feature. Now we go on to say that any higher level feature
derived from some or all of those retinal positions alone (i.e. the
retinal positions worked out in a single moment) will itself be a frozen
feature. For instance finding out that the "occupied" positions on the
retina are adjacent, in a straight line, in a given orientation, and that
there are nine of them éreates as many new frozen features.

Now if on the other hand we concentrate on analysing values of
features detected through successive moments we can derive a rather
different type of feature. For instance let us consider the case where
we have the same straight line as before (with orientation X, and size 9)
projected on to the retina at moment 1 but where, at moment O (i.e. the
moment just before moment 1), we had the line in a different orientation
and with a different size (let us say orientation Y and size 6). We can
then say a few more things about our line at moment 1, for instance we
can say that (orientation) X and (size) 9 are values of features which
the /

92




C. Lamontagne

/the line possesses at moment 1 after not possessing them the moment
before, and similarly we can say that (orientation) Y and (size) 6 are
values of features which the line does not possess at moment 1 after
possessing them the moment before. Furthermore we can go on deriving
more features by relating the actual values which have undergone "death"
or "birth" from moment O to moment 1, deriving new multi-valued features
which can themselves be analysed through time. The main point here is
that all these new features are essentially derived by comparing values
of features as they "flow" through successive moments, and this is why
we group all these features under the general label "running feature'.
We expect it to be clear by now that computing running features is what
motion perception is all about, and that it is our criterion for defining
the boundaries of motion detection as a specific ability within the
context of a complete visual system.

3. Primitive and quasi-primitive running features

In the case of frozen features it is easy to grasp the fact that
retinal position is a primitive feature in the sense that it is just about
the most basic piece of information detected by the system, and that it
serves as a basis for deriving all other frozen features detected by the
system. The question which we are asking now is: can we find a primitive
running feature which constitutes the basis for deriving any other runming
feature? ’

The most primitive running feature which we found seems to fit quite
well the concept of a primitive feature, although it must be appreciated
that a running feature, since it necessarily rests on the temporal
analysis of the values of some other feature, cannot be considered as
being "completely" primitive. Our primitive running feature however rests
on a frozen feature which is even more primitive than retinal position,
although any detected value of retinal position necessarily specifies it,
and this frozen feature is the existence state of some value of some
feature. This rather trivial feature (i.e. existence state) has two
possible values: 1 or O (existing or not existing). Since the value of
this feature is directly available at any moment from the signal that
represents any value of any other feature, we did not bother to talk about
its detection as a separate frozen feature; but now it turns out that
considering existence states is necessary in order to compute the primitive
running feature which we are looking for. This desired primitive running
feature will in fact characterize the type of change of existence state
for any value of any feature from moment to moment, and we will call it
the "transistence state" ("transistence' meaning "existence through time')
of the value considered.

In order to understand what all this means in concrete terms we must
first realize that any ''motion' involves some change in the values of
some feature - e.g. a translation involves changes in values of the
feature "position', a rotation involves changes in values of the feature
"orientation', an expansion (or a contraction) involves changes in values
of the feature "size'", and an acceleration (or a deceleration) involves
changes in the values of the feature ''speed’. It follows that in order
to analyse any motion the lowest level essential task is to keep track of
what happens to each possible value of the feature concerned so that at
every moment we are aware of which values come to existence and which
values lose it. This is where we need transistence states.
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As we said hefore, the sxistence state of any value of some festure
at any moment is either 1 or 0, and is directly available from the signal
that represents the value itself.  The transistence state of a value is
then worked out by pairing the existence state of this value at any
moment with its existence state the moment before; we therefore have four
possible transistence states: O-0 or the "still absent” state, O-1 or
the "on" state, 1-0 or the "off" state, and 1-1 or the "still present”
state.

In the case of a single-valued feature (e.g. straightness of a line,
coneavity or convexity, connectedness, ‘'squareness’, etc...etc...), the
single value's transistence state has a “global” significance which in
fact makes motion impossible within the feature itszelf (i.e. "sguareness"”
cannot possibly move); but in the case of a multi-valued feature (e.g.
position) the transistence state of each value only has a "local"
significance. This local character of transistence states in the context
of multi-valued features opens up a door for further running (and frozen)
feature computing. What we mean by "local character" of transistence
states is that they only refer to particular values, and that they do not
convey any information about what is happening 'globally" (through time)
in the "pool" of values which belong to the feature concerned. Such
global events can only be grasped by grouping the different values in the
"pool" under transistence states as criteria. This is in fact the way
to get at motion itself, by comparing "off" values with "on" values ("off"
and "on" being the criteria for comparing such and such values) and
deriving from this comparison what we will call the two quasi-primitive
running features: direction and speed (or type of change in value and
rate of change in value). It is indeed the case that when some motion
occurs different values of the feature involved succeed each other, that
is one value goes "off" and another one goes "on" and diréction and speed
can only be derived by comparing the values which behave in this way.

For instance if we consider the feature "orientation" with values
ranging from 1 to 180, a motion within this feature (i.e. a rotation)
could be something like this: at moment 1 orientation 45 turns "off"
and orientation 46 turns ''on'", at moment 2 orientation 46 turns "off"
and orientation 47 turns "on'", at moment 3 orientation 47 turns "off"
and orientation 48 turns "on", etc...etc.. Computing motion in such a
case consists in identifying which value goes "off" and which value goes
"on" and in deriving from them the fact that nothing has "globally"
disappeared or appeared but that "something' has moved clockwise at a
rate of one unit of resolution per unit of time.

Now to combine the actual values going "off" and "on" in order to get
at direction and speed one needs to consider quite closely the actual
feature involved, because there is no reason to believe that the same
number and the same type of possible directions will have to be dealt with
whatever feature happens to be considered, no more than we have reason to
believe that the requirements for working out the rate of change will be
uniform for all. We will not discuss the details of this just now, but
will restrict the present discussion to acknowledging the completely
general principles of velocity detection and then concentrate on finding
precise computational tools to suit them.

The general principles of velocity detection (or of quasi-primitive
running features computation) are on the one hand the analysis of the
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/type of difference (or "qualitative” difference} between "off" and “on"
values of some given feature, and on the other hand the analysis of the
emount of difference (or “quantitative" difference) between the same
{"off" and "om") values. The former type of analysis yields direction
and the latter type yields speed.

4, Computational concepts to deal with the primitive and the
quasi-primitive running features

What we want to do in this section is describe effective decision
procedures which will act as precise computational concepts to represent
the deriving of the primitive and the quasi-primitive running features.

We want these computational concepts to be simple enough to allow us to
use them with complete control over their significance as we proceed from
the embrionic state which our visual system is in at the moment up to the
most sophisticated level which we wish the system to reach; and we want
these concepts to be precise enough to allow us to build (explicitly in
hardware or implicitly through simulation) actual systems which will carry
out the type of computation which the concepts are meant to cover.

4,1 Computing the primitive rumning feature (or transistence state):
ChU's .

From what we have said in section 3, detecting the transistence state
of some value of some feature involves a procedure which takes as input
the existence state (either 1 or 0) of the value at some given moment, and,
by pairing this existence state with the one detected the moment before,
produces as output one of the four possible transistence states. An
effective procedure which does just this is expressed by the network shown
in Fig. 1.
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Fig. 2 shows a precise situvation where the network sctually computes
transistence states: at mowent 1 the value which this particular network
happens to be set on is absent, i.e. its existence state is 0 (and there
is no signal already rupning in the network}; at moment 2 the value is
present (it turms "on"); at moment 3 the value is present again (it
remains “stilil"), and at moment 4 the velue is absent (it turns "off").

tapuT= 4. inpiT= 4 ~
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We can see from this example that each possible matching (of the
input at one moment with the input at the moment before) is represented by
a specific outcome in the network:- O-1 (the "on" state) is specified by a
signal in the upper output line, 1-1 (the "still present" ptate) by a
signal in the middle output line, 1-0 (the "off" state) by a signal in the
lower output line, and 0-0 (the "still absent" state) by "none of these
signals". Obviously one and only one of these possibilities is activated
at any moment. The computation is achieved by using a delay loop to keep
in the network the input received the moment before (memory requirement),
and by a combination of activating and inhibiting signals controlled by
thresholds at particular junction points to carry out the matching process
and generate the specific output. This procedure is precise enough to be
actualized in electronic hardware or simulated on a digital computer
(using for instance straightforward Boolean functions) and is simple enough
to be grasped in a single "glimpse" whenever needed. We will hereafter
refer to it as the Change Detection Unit (CDU).

Before turning to the precise characterization of computing direction
and speed, the quasi-primitive running features, we feel that we should
make the following remarks concerning the CDU.

First we want to stress the fact that since the CDU is designed to
compute the transistence state of particular values of a given feature, if
we want to keep an eye on every possible value of the feature then we have
the choice between considering ome single CDU as a "sub-routine" which is
called to compute the transistence state of each value as the system
exhaustively /
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/exhaustively goes from one to the next, or considering an individual CDU
for each posgible value, thereby making parallel processing possible.

The simplicity of the CDU allowed us to choose the much more satisfying
parallel setup, which means that if the feature considered has W possible
different values there will exist N differemt CDU's, each specifically
linked to one particular value.

Secondly we want to emphasise the general purpose character of the
CDU. We tried to convey this characteristic by saying that the CDU
could compute the tzansistence state of any detected value of any detected
feature, including of course transistence states themselves as detected
values of a detected feature. Right now it might be obvious that the
nature of the feature whose values are analysed through time interferes in
no way with the analysis as such; but later on, when we start talking
mostly about particular cases, it might happen that the general purpose
character of the CDU drowns in the specificity of the context, and this
could create undesirable misunderstandings.

And thirdly we want to make it clear that we do not propose the CDU
as an anatomical unit that will be found in actual nervous systems. The
network which we are proposing is exclusively intended to be a conceptual
tool to tackle the problem of motion perception. In other words any
resemblance with any existing natural anatomical network is a pure
coincidence.

4.2 Computing the quasi-primitive running features (or direction and
speed): VDU's

We saw in section 3 that the detection of speed and direction of
motion is achieved by comparing the actual values which go "off'" and "on"
from moment to moment. What we want to discuss in this section is a
precise scheme to carry out explicitly this comparison process.

Since some transistence states (namely "off" and "on" states) are
needed as criteria for choosing the relevant values for comparison, we
clearly want to use the output from the CDU's as a starting point.
Knowing which values ought to be compared we then want to carry out a
comparison which will yield the type of difference (or direction of
motion) and the amount of difference (or speed of motion) between the
values. What we therefore propose is a network where "off" signals
originating from our value-specific CDU's (remember that we decided to
link a CDU to every value of each detected feature) will "travel" along
lines projecting in all possible directions through every feature's pool
of value-specific CDU's in search for "on" signals which will in fact be
made to 'cross" the'travelling off" lines at points which are specific
to the respective values which they characterize; the "off" signals will
keep track of the distance travelled by adding 1 to their quantitative
content every time they meet an intersection with "on" lines where there
is no "on" signal. So when an "off" signal meets an "on" signal at one
of these intersections a velocity signal is triggered, the distance
travelled by the "off" signal along the particular line specifying the
speed of motion (i.e. the amount of difference between the "off" value
and the "on" value), and the actual line which led the "off" signal to
the "on" signal specifying the direction of motion (i.e. the type of
difference between the "off" value and the "on" value).
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/Such a scheme cbviously reguires a careful arvangement of the (DU's
within every feature’s poel of values, CDU's having to be set in a highly
ordered way in order to allow the "off" signals to "spread ocut” in an
adequate way. Let us then see in more concrete terms how all this is
achieved. Fig. 3 shows what the network would look like for a single
direction and from a single CPU's point of view (i.e. only one CDU's "off"
signal can travel along the line inm search for an "on").
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Fig. 4 shows an example of how this Velocity Detection Unit (¥DU)
would work for the case of an "off" signal computed by the first CDU and
an "on" signal computed by the fifth CDU.
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By choosing a particular feature, let us say "orientation”, and
following it through the network let us now try to-clarify how this
network leads the system to compute speed and direction efficiently and
fast. 1In the case of orientation let us remind ourselves that we have a
CDU to represent each particular orientation (i.e. each value of the
feature orientation) which can be detected. All these CDU's are ordered
in a single line, as in figures 3 and 4; the order according to which
they are set should make the distance between any two of them correspond
to the difference in amount between the values which they specify. In
this way we make it possible to derive speed by computing the actual
distance between the "off" value and the "on" value over a unit of time.
Now as far as the direction of motion is concerned we have to realise
first that in the case of orientation there are only two possible
directions: clockwise and anti-clockwise (this is in fact the reason why
we decided to put the CDU's along a single line); these two directions
can be accounted for by having two "travelling off" lines linked to our
line of CDU's, one going from left to right and the other one going from
right to left. 1In fact what we would really need is a ring of CDU's
linked to two circular "travelling off" lines, but there is no need to go
into that for the moment since the general idea can be grasped quite
adequately from considering a "straight line" network. Fig. 5 shows how
the system would work for two CDU's only, an "off" signal being detected
at 5 and an "on" signal at 10 .

.. @rc...
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We will call VDU (Velocity Detention Unit) of a given feature the
"travelling off" lines setup for this feature. We hope that it is now
clear that VDU's can vary quite a lot from one multi-valued feature to
another. For instance, since a much greater number of directions of
motion have to be accounted for, the VDU required by the feature "position
on the retina" will be very different from the one we just saw for

orientation. Thinking about other possible multi-valued features like
size or even speed and direction themselves should bring enough evidence
to convince anyone of the need fer different types of VDU's. However we/
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/we want to stress that the gemeral computing principles of a VDU as
discussed in the above paragresphs remain completely gemeral whatever
feature they happen to be applied to. Another impertant point about VDU's
is that their relative complexity does not allcow them to process many
velocities at the same time; a much too complex control system would be
required to make this possible. In fact each VDU will be allowed to work
on one velocity only at a time, but we will have many VDU's working in
parallel, each one computing velocity for its particular multi-valued
feature.

What comes out of all this is that every multi-valued feature for
which we want to compute motion will have to be given its own set of CDU's
(the number of CDU's in the set depending on the number of different values
the particular feature allows) and its own VDU (the number and the lay-out
of'"travelling off" lines depending on the particular feature). 1In order
to underline the unity inherent to this "pairing" of a set of CDU's with a
particular VDU whenever we decide to compute motion for some multi-valued
feature, we found a single label to cover it: Motion Detection Unit (MDU).
An MDU therefore is this two-storey network (CDU's over VDU) which we stick
under the set of values of each multi-valued feature for which we want to
compute motion.

5. Conclusion: a glimpse at the rest of the story

Reaching the level of MDU's was the final step in defining primitives
for motion perception. However we are very well aware of the fact that
the power of any system:rests as much on the way primitives are used as it
rests on the primitives themselves. This is why we want to conclude this
paper by at least hinting at how the simple primitives which we just
described will be used to create a powerful visual system.

We said in section 2.1 that for us the task of defining a visual
system is one of finding the adequate criteria for grouping different
values of different features into new values of new features. Since these
criteria are always themselves abstracted from values of features we can
say that values can be used either as criterion for grouping or as element
for grouping. In the context of a whole visual system this means for
instance that frozen features can be derived by using some value(s) of a
running feature as grouping criterion ("frozen" meaning only that the
actual values grouped together are all detected within the same processing
moment) . For example, a set of positions could be analysed as a line
using as criterion for choosing these particular positions the fact that
they are all moving in an identical way. This gives an idea of how
running features can get entangled in matters other than straightforward
motion detection, and of how intertwined frozen and running features can
become. But there is more to it; even when we stick to our standard
MDU's we can get quite a lot done by applying them to the right multi-
valued features (by the way we hope it is clear that MDU's can be, and
will be, applied to running multi-valued features as well as to frozen
ones) . To realise this let us consider sticking an MDU to the set of
values specified by our primitive frozen feature '"retinal position';
this MDU would compute translation of 'dots" relative to the retina, but
would do it for one "dot" only at a time. If we want to see a line
(i.e. a set of "dots") rotating we could then provide our system with as
many MDU's as there are dots in the line, and relate their respective
outputs in a way which is specific to rotatioms. But much more simply /
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/simply we could go up ome level by computing a single frozen feature,
namely orientation, which could then be linked to a single MDU (the
general purpose character of CDU's and VDU's msking this perfectly
legitimate) which would then compute rotation without problem. If ome
now tries to generalise this type of strategy to much more complex types
of motions (going right up to three-dimensional motion) one can get a
feel for what can be achieved by putting such simple structures as MDU's
in the right places.

Finding the adequate features for wunning feature computing, and
discussing their relevance as criteria for deriving other types of
required features constitute our two main preoccupations for the last
eighteen months or so, but we won't go any deeper into this for the
moment, the scope of the present paper having already been outranged
sufficiently.
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ABSTRACT

An experimental system for automatically generating certain simple kinds of programs
is described. The programs constructed are expressed in a subset of ALGOL
containing assignments, function calls, conditional statements, while loops, and non-
recursive procedure calls. The system has been used to generate programs for
symbolic manipulation, robot control, every day planning, and computing arithmetical
functions. This system has previously been described in [Buchanan and Luckham
1974] The present report focuses on the generation of conditional statements and
describes applications to mechanical assembly and symbolic manipulation problems.
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1. INTRODUCTION

A potentially useful area of application for automatic program generation Is the class
of problem domeins in which the solutions usually have the form of programs or plans
containing alternative paths for processing various cases but very little looping
structure or recursion. Let us say that the main complexily in the planning is the
contingency or conditional branch, although some loops may occur. Such problem
domains include scheduling (travel itineries, office procedures) medical diagnosis, and
machinery repair procedures. Certainly, the problem of automatically generating
simple contingency plans correctly is important, and it is not an entirely
straightforward business.

In this paper we describe some methods for constructing contingency programs that
have been implemented in our system [Buchanan ‘and Luckham 1974] We give
examples within some possible areas of application, of the sort of conditional branching
procedures that are generated by the system. In addition, example 1 dealing with the
generation of assembly and repair procedures for very simple machinery, seems to
present a potentially practical context requiring much further research into such
questions as differentiating the functions of various kinds of knowledge, and
developing languages for describing those functions. The present system provides an
experimental tool for such research.

The system requires as input a programming environment (called a FRAME) consisting
mainly of primitive procedures and rules of composition (i.e., programming methods). A
programming environment is defined using a declarative language, the FRAME language.
The rules of inference, axioms and other logical facts expressed in this language are
translated into a backtrack problem reduction system augmented by special search
procedures. This system, which does most of the searching, recursively applies to a
given goal the primitives and rules of the programming environment to generate
subgoals whose solution will imply a solution to the goal. The basis of the Frame
language is a free variable first order logic in which statements may have one of three
truth values (TRUE, FALSE, or UNDETERMINED).

When the system has generated a program satisfying the given input-output
conditions, the user may incrementally extend the program by asking for another
program which takes the output conditions of the first program as its input conditions.
He can choose to have the solution program optimized according to some simple
criteria, or generalized and placed on a library of non-primitive procedures. If the
program contains conditional branches calling other procedures, he can choose to have
those secondary procedures constructed. Figure | shows the main components of the
system and how they interact. The system is implemented in LISP using primitives and
backtracking facilities of Micro-Planner [Hewitt 1971, Sussman and Winograd 1972}

The forms of the definitions of the elements of the programming enviornment, i.e.
primitive procedures and rules of composition, correspond to axioms and rules of
inference in a logic of programs currently used to define the semantics of the
programming language PASCAL [Hoare 1969, Hoare and Wirth 1972; see alsc lgarashi,
London, Luckham 1973] The contents of these definitions vary with the actual
environment. Problems to be solved are stated as pairs of conditions, the initial input
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condition and the goal oulput condition which may be regerded es the input-oulput
assertions of formules in the logic of programs. The consiruction of o solution program
may therefore be viewed as & search for & proof in the logic of programs that the
generated program satisfies the given input-output assarlions. Under certain sufficient
conditions this approsch snables us {o prove thet ihe system will construct zorrect
programs.

In the remainder of this section the logical basis and the formalism used to describe

the programming environment will be summarized.
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1.1 LOGIC OF PROGRAMS
We review briefly the elements of an inference system for proving properties of
programs [Hosre 1969} Further details may be found in [Igarashi, London, Luckham
1973}
NOTATION: X,y:2,U,v,W..variables,

f.g.h..  functions,

[ functional terms,

G,P,QR,S,.. Boolean expressions (essentially
formulas of first order logic with standard functions and predicates
for equality, numbers, lists and other data types),

ABC,.. programs and program parts in our
Algol-like plan language,

p,a, procedure names,

o, B, substitutions of terms for variables, also
denoted by (<x«t>).

P(t) denotes the result of réplacing x by t everywhere in
P(x).

«f8 denotes the COMPOSITION of ec'and £; Exf8 =(Ec¢)f for all
expressions E

STATEMENTS of the logic are of three kinds.
(i) Boolean expressions, (henceforth often called ASSERTIONS)

(i) statements of the form P{A}Q where P,Q are Boolean expressions and A is a
program or program part. )

P{A}Q means "if P is true of the input state and A halts (or halts normally in the case
that A contains a GO TO to a label not in A) then Q is true of the output state®.

(iii) Procedure declarations, p PROC K where p is a procedure name and K is a program
(the body of p).

A RULE OF INFERENCE is a transformation rule from the conjunction of a set of
statements (premisses, say Hj ,..H, ) to a statement (conclusion, say K) of kind (ii).

Such rules are denoted by
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The concept of PROOF In the logic of programs is defined in the usual way as @
seguence of statements ihat are sither exioms or oblained from pravious members of
the sequence by e rule. A proof seguence Is 2 proof of its end statement.

NOTATION: We use H |- K to densle thet K cen be proved by assuming H H | K
denotes the same thing for first crder logic. Problems for the program generator fo

solve are denoted by P{¥}( QuUFoR denotes thal R is e first order consaguence of Q
arkl the the axioms of F.

The logical rules used in the system are:

R1. Rule of Consequence: P>QQ{AJR P{A}Q,Q=R

P{AR P{A)JR
R2. Rule of Concatenation: P{A}Q,Q{BIR

R3. Rule of Invariance: if P{A}Q and IuFoP then HAIP
where I'=QA{R:ReIN-{QUF2-R)}
R4. Change of Variables: P(x){A(x)}Q(x)
Py Aly)IQ(Y)
RS. Conditional:  PAQ{A]R, PA-Q{B]R

P{IF Q THEN A ELSE BJR

R6. Undetermined Values: if I'{?}G cannot be solved and
~(PuF>-G) then G is UNDETERMINED in T’

R7. Primitive Procedures: The rule defining p is an axiom of the form P{p}Q.

R8. Iterative Rules: An iterative rule definition containing the Boolean
expressions P(basis},Q{loop invariant),R(iteration step goal),L(control test)
and G(rule goal) is = rule of inference of form:

P,I-QQALETIR, R{??JQv-L

P{WHILE L DO %??)G
where the free variables of R occur in Q and 7? is restricted to be a sequence
of assignment statemsants.

R9. Definitions: A definition of G in terms of P is a logical
equivalence |-PsG.

R10. Axioms: A axiom P is » logical axiom [-P.
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In the definition of & Frame F provided by the user; instances of rules R7-R10 may be
given whereas rules R1-R6 are built into the program construction system. A problem
is represented as the formula I{?}G, where 1 is en input assertion or initial stete and G
is an output assertion or goal and the objective is to genorato s solution program for ?
that transforms 1 into G using the rules of F.

The above summary does not include system rules for conditional assignments used in
constructing loops, nor the strongest form of the rule of invariance [Buchanan snd
Luckham 1974}

1.2 FRAME LANGUAGE
The Frame language consists of the foliowing elements:

1.2.1 ASSERTIONS: Boolean expressions are used as conditions in rules, axiorﬁs and
problem representations.

1.2.2 INPUT CONDITIONS: In specifying a problem I{?}G, the input condition (initial
state) I is given by a conjunction of literals.

1.2.3 AXIOMS: Axioms are stated in either of the forms P>Q or P, where P and Q are
assertions. They hold in all states and are used to complete a given state description
by deduction of other elements of a state from those given.

1.2.4 RULES: There are three types of rules: primitive procedures, definitions, and
iterative rules.

(a) A primitive procedure is specified by a name, an argument list, and its pre and post
- conditions, i.e.
P {f(x; ,.,Xx )}Q where P and Q are assertions in

which xj,..,%x are free, and f is the procedure name.
The variables are -formal parameters of the procedure. They may be "bound” by
substitution of actual parameters when the procedure is applied to a state.

When a primitive procedure is defined it may be declared to be an ASSUMPTION. If it
is used in a successful program construction, then the user is informed and is given the
opportunity to carry out a structured program development of this non-primitive
operation. This is described in [Buchanan and Luckham 1974}

(b) A definitional rule is of the form RaS where R and S are assertions. The relation, S,
is given as the post-condition of the rule. The meaning of a definition is that
whenever it is desired that S be true it is equivalent to establish the truth of R. A
definition is often used to shorten assertions in rules by defining a single relation as
equivalent to an often used condition,

(c) Iterative rules specify conditions that if satisfied justify the assembly of a "while”

Ioop to achieve the associated goal. They are instances of the iterative rule R8, and
#r defined by giving:
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(i) A name, e.g. TLOCP, (without parameters).
(ii) A basis condition B,
(iii) A loop invariant condition Q that spscifies relations that
must be true in the state prior to each iteration.
(iv) An iteration step condition R that specifies the goals to be
achieved during an execution of the loop body.
(v) An iterative goal G, the condition considered achievable by
- the iterative process.
(vi) A loop control test and an output assertion may be specifed.

1.2.5 SPECIAL AXIOMS: After the rules and initial state have been defined the system
requests the foliowing information for each predicate symbol P that has been
mentioned.

a) "Is P a function of the state?” The intent of this classification is to
separate those relations whose truth value may be affected by a state
transformation, i.e., a FLUENT relation, from those whose truth value is
constant over all achievable worlds, i.e., NON-FLUENT relations such as
*ROBOT(X)", "INTEGER(Y)".

b) "Is knowledge represented using P partial?® A partial relation may have
truth values TRUE, FALSE, or UNDETERMINED. Partial relations may be used
to represent incomplete knowledge of the world which may cause conditional
statements to be generated as explained in Section 2. A relation may be
declared UNCERTAIN which implies an absence of knowledge about it so that
it is assigned a truth value of undetermined a priori. If P is not PARTIAL it
is TOTAL and can only have truth values of either true or false. Thus rule
R6 applies to partial predicates only.

c) "Does P have a uniqueness property in certain argument positions?” A
“yes" answer indicates that P cannot be true for two sequences of argument
values that differ only at one of those positions that are unique. The unique
positions are given using the notation, (X1,2X3,s,..Xn), for example, io
designate the second and fourth argument positions. For each unique
argument position in relation P(al,..,an), an axiom is "built-in" from which a
contradiction may be established with P(bl,..bn) that differs in a unique
position and matches elsewhere. For example the statement, "an object can
only be in one place at one time",is expressed by, AT(X1,2). If we add, "and
only one object can be at any place”, then we use AT(z,2).

Conditional statements are generated when the problem solver encounters states in
which it cannot determine the truth value of its current subgoal. This can happen
either in situations where the rule of undetermined values applies or when the
outcome of a primitive procedure is uncertain. In the next sections the system
methods for constructing conditionals will be described, examples given and program
correctness considered.
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2. CONDITIONAL STATEMENTS

As previously mentioned, relations involving pertial predicates may have truth values
of TRUE, FALSE, or UNDETERMINED, whereas all other relations must be sither TRUE or
FALSE. Durlng progrem generation, knowledge may be incomplete, for example
properties of the value currently held by 2 program variable, eg. C{Y)AZEROR(Y),
mey not be known, or it probably would nol be known whether or not e traffic light
would be gresn when a robot vehicle approached an intersection while following 2
generated procedure. However it is assumed that when the program is executed there
will be a recursive test yielding TRUE or FALSE for all conditions.

2.1 UNDETERMINED VALUES. During the generation of a program, uncertainty may
arise when s pre~condition for the spplication of a rule is UNDETERMINED with respect
to the current state. The implementation of the rule R6 is described by the following
definitions.

DEFINITION. A literal | is UNDETERMINED in a state § if the following conditions hold:
(i} pred(l) is partial,

end (i} | cannot be achieved from §,

and (iit) ~ cannot be proved in 8.

Condition (ii) means that ! is not true in $ nor can S be transformed into a stste in
which | is true. If condition (if) is true and ~l is true in § then | must retain & truth
value of FALSE and the precondition subgoal | must fail. Failure to find < in §
establishes a truth value of UNDETERMINED for | with respect to . This definition
applies to fluent and nonfluent literals but since the truth value of 2 "nonfluent” cennot
be changed by 2 state transformation, for them, it is sufficlent to use only the logicsal
axioms in deciding condition (ii).

For the more general case in which the uncertainty may be a disjunction of literals we
have the definition,

DEFINITION A disjunction of literals {I;}m is UNDETERMINED in & state S if at least
one literal is UNDETERMINED and no literal can be achieved from S.

2.2 CONDITIONAL STATEMENTS: When a pre-condition P is UNDETERMINED in 2 state §,
a conditional branch is inserted in the solution program. If P is a single literal |, then
program generation may continue either along the path in which | is assumed {0 be
TRUE and in which future goals are sttempted with respect to stale S A {I}, or along
the path in which ~f is assumed to be TRUE using state S a{-l}. The system conventicn
has been io generate a call to a yel ungenerated procedure for the latter case. The
tasks of generating such contingency programs are placed in a2 stack for later
attention. The structure and use of this steck is described in Section 2.5. Program
generation continues, by convention, along the path using state § a{l}. This path is
referred to as the “trunk” progrem of the tree of conlingency programs generated
while attempting to achieve the main goal.

The path selection at prasent is rather ad hoc since no assignments of probability ere
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made at the points of uncertainly and no path is considered more liksly to be
successful in general.

n
If en undetermined disjunctive precondition {I; };=; occurs in which literals {i;};=; msn,
are UNDETERMINED in G, then a nested conditione! statement of the following form wiil
be generated:

if 4y then

if 42 then

if ~ then py
glse Pe"1

else p;
else pg

where each p; is a call to a program to achieve a selected goal G from state §; = S A
{li :i=j+1 & i<m } A {-l; : 1sisj} } and pg is the trunk program segment which satisfies
SAli{pe ]G and forms the eise-statement in the main-clause of the conditional. Each
member of the set of triples {(p; , S;,G):1sjsm} is placed in the stack of contingencies
and program generation continues for pg The assumed literal,l;, is removed from the
state following the generation of the ELSE clause in the trunk program. This is the
point in the trunk program where the contingency programs rejoin and the assumption
| is not valid for all computation paths leading there.

2.3 SELECTION OF CONTINGENCY GOAL: The goal G to be achieved by the contingency
programs is selected from the set of goals in the subgoal tree that are giobal to the
undetermined precondition. Let us refer to the set of goals which are below G in the
subgoal tree, as the SCOPE of G.

The particular G chosen and its associated scope affect the length of pg , duplication
among contingency programs, degree of difficulty in generating contingency programs
and validity of their use. If the structure of the trunk program is to remain fixed
during contingency program generation then the choice of G cannot be deferred. The
block structure of our program language imposes the restriction that for any
conditionals in pg , a contingency goal G’ must not have a greater scope than G There
is also the problem that if G is not fully instantiated then inconsistent instantiations
may occur in different contingency programs which must validly rejoin the main
program following the ELSE clause. The present system selects the least global fully
instantiated goal thereby satisfying the block nesting constraint and minimizing the
scope while avoiding the problem of handling deferred instantiation. This selection
process is always effective in the present system since the top level goal is fully
instantiated (i.e. all of its variables occur in the initial state).
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2.4 REJOIN CONDITIONS When a contingency program is generated its output state
must satisfy certain conditions, hereafter called the rejoin condition, for return of
control to the trunk program o be correct. Consider the case of an undetermined goal
L in state S and e contingency goal G in Figure 8 . Let A and B be program segments
that satisfy S A L{A}G and S A -L[B)G snd let C be the rest of the trunk program.

¥
Q___"?___, .
\LYES

A‘.

l(

c

Figure 2

Let R be the total output state of B, ie. S A -L { B } Rwhere R>G. Let Q be a
sufficient input assertion computed for C. Then the REJOIN CONDITIONS for p(B) is, R
> Q. A contingency program is said to have SIDE EFFECTS when its execution results
in state changes in addition to the achievement of G. The difficulty in satisfying a
rejoin condition occurs when B has had side effects resuiting in an output state from
which Q cannot be proven. The implication for program correctness of satisfying
rejoin conditions is obvious.

25 SUBPROBLEM STACK OF CONTINGENCIES The task of generating a conlfingency
procedure is specified by the quadruple:

(<procname> <state> <goal> <rejoincond>)
where,

<procname> is the name of the yet ungenerated procedure that must

satisfy <state>{<procname>}<goal> A <rejoincond>.

At the point in the planning when the uncertainty is encountered, the first three
elements of the quadruple are placed in a stack as explained previously. The rejoin
conditions are not known at this time since it involves the input assertion for the trunk
procedure segment foliowing the point where control returns from the contingency
plan to the trunk plan. After this segment is generated, the rejoin condition is
computed and stored as the fourth element of the quadruple.
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When planning has been compleled for some frunk procedurs, if the contingency steck
is not empty then conlingency pleaning may be dons by removing e guadruple from
the list and posing this as » progrem generation tssk The slale of the syslem is
initislized to the specified contingency state snd the subgosling system is given <goal>
as its main goal. I il is successful in achieving 2 slale In which the main gosl is true
then a test is made to see if the rejoin condition is true in thel stale. I it is then the
procedure declaration is adjoined to s trunk program. I the condition is false then
the system sliows the user two aiternatives, Le.

(i) Mark the call io the program as an error exit in the trunk program, or (i) "Fit" the
program o the trunk program by posing currently unlrue rejoln condillons as goels
and constructing 2 new progrem segment that achieves them and sppending it lo ths
and of the contingency program,

This process of generating 2 trunk procedurs which may creste new contingency tasks
then generating contingency procedures as direcled by the user may continue until all
contingencies have been processed and the siack is exhausted.

2.6 COMPUTATION OF INPUT/OUTPUT ASSERTIONS. In Section 1 primitive procedures
were viewed as Frame rules of the form P{p}Q, where P and  are the pre snd
postconditions for p. The conditions P and () may also be viewed as the minimal input
and cutput assertions for p , that must be satisfied by the actus! parameters of p.

For any generated program segmeni A, the input asserlion I, is compuled ss the
conjunction of all literals, |, from 2 siste thal were wused in achieving subgosls
encountered during the generation of A and did not ocour in thet state as & result of &
postcondition of a procedure whose generstion in A precsded the addition of  io I, .
The output assertion O, is the comiunclion of literals added to & siste during the
generation of A that are true in the final state.

The computation of input/foutput assertions for programs consisting of compositions of
primitive procedures is straightforward as described above, however the uncertainty
as to which path computation will follow in 2 program containing conditional statemenis
complicates these assertions. The input/output asserlions in this case must be
computed incrementally as each contingency program is generated.

In the conditional statement shown in Figure 2, suppose we know the minimal input and
output assertions for A and B, say P{A}Q and R{B}S. then the input and output
assertions for the conditional statement are

(LAP)vV (-L AR)if L then Aeise BIQVv S.

To reduce computation, We use the simpler sufficient conditions, PAR, for input
assertions.

The conditional statement may be correctly executed in any stale in which P A R is
true. There doesn’t appear to be a simplifying approximation for output assertions
unless on the assumption of no side effects in the contingency program B, i.e. QuS, we
take Q as the output assertion.
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It can be shown by induction that if the computation of input/output assertions is
correct for atomic program construcls, ie. primitive procedures and while statements
then using the the composition rule, the computation of input/outputl assertions for
generated programs is correct.

2.7 UNCERTAIN PRIMITIVE PROCEDURES A primitive procedure g defined by P{q}Q has
an uncertain outcome if Q is a disjunction. In the present system, disjunctive post-
conditions uss the exclusive OR connective, "¢". This allows us to define frame
procedures that have an intended result but may be unreliable. It is assumed that
exactly ons of the pessible outcomes will be true in the output state and that none of
them are true in the input state. At the point where an uncertain operator is applied,
the problem solver has no knowledge of what the outcome will be and a conditional
statement must be generated. Let Q be the disjunction of literals {l; };=; . The first
outcome |; is considered fo be the normal resuft of executing q. Following the
inclusion of q in the program in state S, a conditional statement of the following form is
generated.
if-1p Alz2 A~lz3 ALAST, then p2

else if ~lj A-lp Alz A~ly ALA-L, then p3

else if -1} A-lp AuA-l,y Al thenp,

else pn 3

where each p;, 2 < j < n,is a call to a program to achieve |; from state S, =S U {I; }
Uf-h:iAdj&1lsisn}

The contingency states will correspond to the n ways of assigning exactly cne literal
true and the remaining literals false.

2.8 CORRECTNESS Conditional statements will be correctly generated if the system
methods are an accurate implementation of the conditional rule, RS, presented in
Section 1. Referring to Figure 2 in section 2.4, if we let S be the output state of C
then by construction and by verifying the rejoin conditions we have,

(1) IAL{AJGAQ,

(2) 1A-L{B]JGAR,

(3) QiCls,

(4) |- R > Q, (rejoin condition verification)

and the correctness proof may then be completed as foliows,
(5) IA-L{B}GAQ (24 cnsequence Rule)
(6) I{if L then A else B}G A Q, (15,Cunditional Rule)
(7) Hif L then A =ise BC}S, (3,6,Composition Ruie).

It should be noted, however, that if conditional statements occur in B then R may only
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be an approximation of the true output state resulting from executing B as discussed
in Section 2.6. Similarly Q may be only an approximation of the trus input assertion for
the remainder of the program. In these cases an incorrect program may result.

3. EXAMPLES
3.1 Assembly and Repair of a Model T Ford Water Pump.

The problem is to make a water pump given the various parts placed at locations on a
pallet. This task is actually accompiished by a mechanical hand controlled by programs
written in a specially developed Hand Language [R Bolles and R. Paul, 1973} Thers
are three major parts, a casing {or pump base), a gasket, and a top assembly, and
these must be fastened together by screws. The pallet may contain more than the
minimum quantity of parts. The frame consists of simple idealized Hand Language
operations and definitions of concepts dealing with the assembly world of the
mechanical hand, such as ALIGN, ASSEMBLY, POSITION, and FASTEN. There is a specific
order in which most of the building operations must take place; in particular, the
problem of lining up holes in the pump casing with holes in the gasket and top requires
the use of auxiliary tools called PINS. Pins must be placed in holes in the casing, and
other parts slipped over the pins, and then some free holes must be fastened (to
prevent slipping and misalignment) before the pins are finally removed . This assembly
order can be represented graphically, but is in fact encoded by the way definitions are
built up from other definitions in the frame. The reader will see the sequence in
PROC1 below.

The frame also contains a simple scheme of definitions dealing with diagnosing faults
and repairing them. At the top level, the concept DIAGNS is defined simply as an OR of
possible faults. If a new fault is discovered it can be added (by extending the
disjunction for DIAGNS). Each fault is defined as an OR of pairs of the form
CAUSENAFIXn, where CAUSEn is the nth possible cause of the fault and FIXn is the
definition of what must be done to fix that cause. As more causes or repair
procedures are discovered they may be added. So the diagnostic definitions are easily
extended to encompass new situations. A repair procedure for CAUSEn is the positive
branch on the test "is CAUSEn true® of the complete program to achieve the goal
“diagnose the fault®. It will be generated as the nth contingency plan, PROCN;the user
may choose to have it generated before any other sub-procedures, if for example he
believes CAUSEn to be the problem. The generation of repair procedures involves
repeatedly dismantling the pump and rebuilding it, and is a good test of the updating
algorithms of the system (implementation of R3).

Definitions of concepts such as ASSEMBLY, ALIGNMENT, FAULT, CAUSE, REMEDY in this
example are, to say the least, unsatisfactory. Intuitively, these are “general” concepts,
where we might, with a little good will, interpret "general” to mean that more accurate
definitions of these concepts ought to be part of FRAMES for assembling a wide
variety of different machinery. In other words, we should be able to put our words
into other worlds! The definitions given here are clearly not general enough. This is
not a fault of the system but of our lack of analysis of the concepts. The definitions
here are directly functional in the sense that the bodies of the definitions state exactly
what to do with the parts of the water pump instead of how to reason or deduce what
to do. The example is in the nature of a feasibility study.
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RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION FLUENT PARTIAL UNIQUENESS
AT{X,Y) “Xis at ¥* ~ TRUE  FALSE AT(X,5)
=(X,Y) "X is equal to Y" FALSE  FALSE FALSE
ISPIN(X) "X is a pin” FALSE  FALSE FALSE
ISHOLE(X) "X is a hole” FALSE  FALSE FALSE
IN(X,Y) "Xis in Y" TRUE FALSE IN(X,*)
ISFDR(X) "X is the feeder” FALSE  FALSE FALSE
ISGASK(X) "X is a gasket” TRUE FALSE FALSE
ISCASE(X) "X is a casing” FALSE  FALSE FALSE
ALIGN(X,Y) “X is aligned with Y" TRUE FALSE FALSE
ISCREW(X) "X is a screw” FALSE  FALSE FALSE
FASTND(X,Y,2)  "K,Y,Z are rigidly fastened” TRUE FALSE FALSE
ISTOP(X) "X is a top unit" FALSE FALSE FALSE
EMPTY(X) "% is empty" TRUE FALSE FALSE
POSITN(X,Y,2) "X,Y,Z are correctly positioned”  TRUE FALSE FALSE
PINNED(X,Y,Z) "X,Y,Z are pinned together™ TRUE FALSE FALSE
UNPNNED(X,Y,Z) "X,Y,Z are unpinned” TRUE FALSE FALSE
MAKE(X) "X is to be made” TRUE FALSE FALSE
ISLOC(X) "X is a location on the pallet” FALSE  FALSE FALSE
ISPUMP(X) "X is a pump” FALSE  FALSE FALSE
ASSMBL(X,Y,Z)  "X,Y,Z are assembled” TRUE FALSE FALSE
UNDUN(X) “X is not rigidly fastened” - TRUE FALSE FALSE
DSMNTL(X) "X is disassembled” TRUE FALSE FALSE
LOOSE(X) "X is loose” TRUE TRUE FALSE
FAULT1(X) "X is a fault of type 1" TRUE FALSE FALSE
FIX1(X) "X is a remedy for fauitl” TRUE FALSE FALSE
FAULT2(X) "X is a fault of type 2° TRUE FALSE FALSE
FIX2(X) "X is a remedy for fault2” TRUE FALSE FALSE
BROKEN(X) "X is a broken part” TRUE TRUE FALSE
RJICT(X) “X is rejected” TRUE FALSE FALSE
ISNEW(X) "X is a new part” FALSE  FALSE FALSE
ISLEAK(X) "% is a leak"” TRUE FALSE FALSE
DILEAK(X) "X is a diagnostic for leaks” TRUE FALSE FALSE
DINFLW(X) "X is a diagnostic for bad pressure"TRUE FALSE FALSE

DIAGNS(X) "X is a fault diagnosis® TRUE FALSE FALSE
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PRIMITIVE PROCEDURE  PRE-CONDITIONS POST-CONDITIONS
move(X,Y) ISCASE(X) A AT(X,2) ATY)

“move X to Y*

pin{X,Y) ISPIN(GO A ISHOLE(Y) A EWW(Y) IN(X,Y) A -EMPTY(Y)
"put pin X in hole Y" A IN(X,PRPLCE)

putgsk(X,Y) ISGASKEX) A ISCASE(Y) A AT(X,Z) ALIGN(X,Y) A ~AT(X,Z)
“put gasket X on

casing Y"

putop(X,Y) ISTOP(X) A ISGASK(Y) A ISCASE(Z)  ALIGM(X,Z) A ~AT(X,V)

"align top assembly”

screwd(X,Y)
“put screw X into
hole Y”

unpin(X,Y)
"remove pin X from
hole Y"

unscrew(X,Y)
"remove screw X from
hole Y*

reject(X)
“reject gasket X”

remove(X,Y,Z)

“disassemble top of
gasket”

DEFINITIONS:

BODY OF DEFINITION

A ALIGNLY,Z) A AT(X,V)

ISFDR(W} A ISCREW(X) A ISHOLE(Y)
A EMPTY(Y) A AT(X W)

ISPINCX) A ISPPLC(V)
A REQUEST(INGX,Y))

ISCREW(X) A ISHOLE(Y)
A REQUEST(IN(X,Y)) A ISFDR(V}

ISGASKET(X)

(ISTOP(X) v ISGASK(X))
A REQUEST(ALIGN(X,Y)) A I1SLOC(Z)

INCX,Y) A =EMPTY(Y) A
~AT(X,W)

EMPTY(Y) A IN(X,V)

EMPTY(Y) A AT(LV) A
*‘MX)Y)

RICT(X) A ~ISGASK(X)

AT(X,2) A -ALIGN(X,Y)

RELATION DEFINED

PINNED(T1,G1,C1)AALIGN(G1,C1)AALIGN(T1,C1)

ISHOLE(H1)AISHOLE(H2)A~=(H1,H2)AISPIN(X 1)A
~=(X1,X2)AISPIN{X2)AIN(X2,H2)

ISHOLE(H1)AISHOLE(H2)AISHOLE(H3)A=~=(H1,H2,)A

~=(H2,H3)A~=(H3,H1)A

ISPIN(P1)AISPIN(P2)AREQUES T(IN(P1,H2))A

REQUEST(IN(P2,H3))A

ISCREW(S )AIN(S 1,HI)AEMPTY(H2)AEMPTY(H3) -
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ISHOLE(H1 )AISHOLE(H2)AISHOLE(H3)A~(H1 H2)A

~=(H2,H3)A~=(H3,H1)A

ISCREW(P1)AISCREW(P2)A-~=(P1,P2)AISCREW(P3)A

~=(P1,P3)A-=(P2,P3)AIN(P1 H1)A »
IN(P2,H2)AIN(P3,H3) FASTNID(T1,G1,C1)

ISCASE(C3)AISLOC(LOCIAAT(C3,LOCIAISGASK(G3)A ' :
ISTOP(T3)AASSMBL(T3,G3,C3) : MAKE(PUMP)

ISTOP(T2)AISGASK(G2)AISCASE(C2)A
POSITN(T2,G2,C2)AUNPNND(T2,G2,C2)A
FASTNIX(T2,G2,C2) ASSMBL(T2,G2,C2)

ISHOLE(H1)AISHOLE(H2)AISHOLE(H3)A~=(H1,H2)A
~=(H2,H3)A-~=(H3,H1 JAEMPTY(H1)AEMPTY(H2)A
EMPTY(H3) UNDUN(P)

ISPUMP(PUMP)AISGASK(G 1 )AISTOP(T 1)AISCASE(C1)A
REQUEST(ALIGN(G1,C1)AREQUEST(ALIGN{T1,C1))A

UNDUN(PUMP)AAT(CI,P3) DSMNTL(PUMP)
DILEAK(ZIWDINFLW(W1) DIAGNS(X1)
(FAULTLOYDAFIX L(Y D)V(FAULT2(Y 1)AFIX2(Y1)) DILEAK(Y1)
ISPUMP(P1)ALOOSE(P1)AISLEAK(Y1) FAULT1(Y1)
ISTOP(T1)AISGASK(G1 )AISCASE(CAISPUMPP1)A v
UNDUN(P1)AFASTND(T1,G1,C1) FIX1(Y1)
REQUEST(ALIGN(G1,C1))ABROKEN(G1)AISLEAK(Y1) FAULT2(Y1)

ISPUMP(P 1)AREQUEST(ALIGN(G1,C1))ADSMNTL(P1)A
ISGASK(G2)A~=(G1,G2)ARJCT(G1)AMAKE(P1) FIx2(Y1)

INITIAL STATE:

ISGASK(GSKT 1)AAT(GSKT 1,P1)AISLEAK(LEAK)AISNEW(NEWGSK)AISLOC(P1)A
ISLOC(P2)AISCASE(CASE)AISGASK(GSKT2)AISTOP(TOP)AISLOCILOC)A
1SHOLE(HOLE 1 )AISHOLE(HOLE2)AISHOLE(HOLE)AAT(CASE,P1)AAT(GSKT2,P2)A
ISPPLC(PNPLCE)AAT(TOP,P3)AISPIN(PINI )AISPIN(PINZ)AIN(PINI PNPLCE)A
IN(PIN2,PNPLCE)AISCREW(SCREW 1 JAISCREW(SCREW2)AISCREW(SCREW3)A
AT(SCREW1,FEEDER)AAT(SCREW2,FEEDER)AAT(SCREWS,FEEDER)AEMPTY(HOLEL)A
EMPTY(HOLE2)AEMPTY(HOLES)A ISFDR(FEEDERAISPUMP(PUMP)

THE_GCAL__ (MAKE PUMP)_JS_ATTAINABLE_BY_ THE_FOLLOWING __PROGRAM:
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PROC! (PUMP)
BEGIN
MOVE(CASE LOC)
PIN(PIN2 HOLE3);
PIN(PIN1 HOLE2);
PUTGSK(GSKT2 CASE);
PUTTOP(TOP GSKT2)
SCREWD(SCREW3 HOLEL)
UNPIN(PIN2 HOLE3);
UNPIN(PIN1 HOLE2)
SCREWD{SCREW2 HOLE3);
SCREWD(SCREW1 HOLE2);
END

56 ___RULES__ENTERED
21 ___RULES__SUCCESSFUL

REMARKS:

The order in which some operations
are done is crucial; the order
structure is encoded by layered
definitions. Thus it doesn’t

matter which pins go in which holes,
but it is crucial that one hole is
fastened before the pins are removed.

THE_GOAL __ (DIAGNS LEAK)__IS_ATTAINABLE_BY._THE__FOLLOWING__PROGRAM:

PROC2 (LEAK)
COMMENT
PROC3 ATTEMPTS_TO_ACHIEVE_(DIAGNS LEAK);
BEGIN
MOVE(CASE LOC)
PIN(PIN2 HOLE3);
PIN(PIN1 HOLE2);
PUTGSK(GSKT2 CASE);
PUTTOP(TOP GSKT2);
SCREWD(SCREWS3 HOLEL);
UNPIN(PIN2 HOLE3);
UNPIN(PIN1 HOLE2);
SCREWD(SCREW2 HOLE3);
SCREWD(SCREW1 HOLE2);
IF ~LOOSE(PUMP) THEN
PROC3(LEAK) ~
ELSE
BEGIN
UNSCRW(SCREW2 HOLE3);
UNSCRW(SCREW1 HOLE2);
UNSCRW(SCREWS3 HOLE1);
SCREWD(SCREW3 HOLE3)
SCREWD(SCREW2 HOLE2);
SCREWD(SCREW1 HOLE1);
END
END
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leak is posed from a
state in which the pump
has been made. PROC2
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case that the gasket is
loose.
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14 __RULES_ENTERED
14 __ RULES_ SUCCESSFUL

THE_GOAL_ (DIAGNS LEAK)_IS_ATTAINABLE,_BY ;THE_FOLLOWING_PROGRAM:

PROC3 (LEAK)
COMMENT
PRCCA ATTEMPTS__TO. _ACHIEVE_( (DIAGNS LEAK);

REMARKS:
PROC3 repairs the

BEGIN

IF ~BROKEN(GSKT2) THEN
PROCA(LEAK)

ELSE
BEGIN
UNSCRW(SCREWS3 HOLE1);

leaky pump in the
event that the
gasket Is broken.
It is the first
contingency plan

i
i
|
|
|
|
|
| co
| in this example.
UNSCRW(SCREW1 HOLE2); | :
UNSCRW(SCREW2 HOLE3); |
. REMOVE(TOP CASE); |
REMOVE(GSKT2 CASE); |
REJECT(GSKT2); : I
MOVE(CASE P1); : -
PIN(PIN1 HOLE1); |
PIN(PIN2 HOLE2); j
PUTGSK(GSKT1 CASE); |
PUTTOP(TOP GSKT1); ]
SCREWD(SCREW1 HOLE3); |
UNPIM(PINI HOLEL); - |
UNPIN(PIN2 HOLE2); |
SCREWD(SCREW2 HOLE1); |
SCREWD(SCREW3 HOLE2); |
END |
END i

73 ___RULES_ENTERED
35 ___RULES__SUCCESSFUL
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3.2 A Simple Translator from Infix o Polish Notation

This example illustrates the genmsration of conditional branches within lcops in a
program to convert sirings of symbols in infix form into sirings in polish form, le.
"(X+Y#2)" converts to "KYZ2+". This is @ common symbol manipulation task in a compiler.
The example shows how the system cen be used fo progrem in & structured “lop
down" manner.

A fully parenthesized, syntactically correct infix expression of a specified length is
given as input and on output a result stack S contains the Polish string. A working
stack R is used during the translation. We may consider the basic data structures
{stacks)i.e. variables, constructorsfe.g. push) and selectors (e.g. pop)),and the primitive
operators as given. Then,in this caseithe user proceeded in.the foliowing steps.

(1)First the actions of the top level of the program were described by declarative
statements (i.e. the definitions of RECOGNIZED and PROCESSYM in terms of basic
concepts such as "X is a2 left parenthesis”, and intermediate concepts such as “pop -
operators from stack X and push them onto stack Y*.

(2) Then at the second level, Rules - in this case iterative rules -~ were given for
writing loops that implement the intermediate concepts. In doing this,the user specitied
the major characteristics of a loop and left the system with the details of deciding
whether to write such a loop,and if so, with the choice of local variables,the actual
operations in the loop body and their order(in so far as that was not specified } and
with looking after the updating of the local variables. Thus in order to write the top
level ioop, TSLOOP, to achieve TSL(T,UV), the user must have “"thought out® an
invariant relation betwesn the elements manipulated by the ioop body and what the
goals of the loop body were (in this case one of the goals is a top level concept,
RECOGNIZED(X,Y,Z)). The system, if it uses this rule in constructing the output, will
construct a loop body including update assignments, and assemble it into a WHILE
statement. Similary, in this example the user has supplied iterative rules for POPOPS
and POPHOPS.

The output program consists of a main program, i.e. PROCI, containing a compound
conditional statement which splits up the cases for processing as a function of the
input symbol. Each allowable input symbol must be either of type variable, operator,
left parenthesis, or right parenthesis. The main program processes the case in which
the input symbol is an operator and generates calls to contingency programs, PROC3,
PROC4, & PROCS, to be generated for the other three alternatives. The procedure
calls PROC2, PROCS6, & PROC7 result in error exits.

The various parts of the Frame definition will be given below followed by the
generated programs.
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RELATIONS USED IN THE FRAME DEFINITION:

RELATION INTERPRETATION UNIQUENESS

C(X,Y) “Contents of X is Y" ' C(X#)
INTEGER(X) "X is an integer” FALSE
VAR(X) "X is a variable” FALSE
LP(X) "X is a left paren” FALSE
RP(X) "X is & right paren” FALSE
OP(X) "X is an operator” . FALSE

ISVAR(X) "X is a program var- FALSE
iable”

NEXTSYM(X) “A value for X is FALSE
input”

RECOGNIZED(X,Y,Z) "Symbol X is recog- FALSE
nized wrt stacks Y & Z"

PROCESSYM(X) "Symbol X is i FALSE
processed” )

>(X,Y) “X is greater than FALSE
Yl

<(X,Y) "X is less than Y* FALSE

POLISH(X) "X contains a Polish FALSE
sequence”

POLTSL(X,Y,2) "Translate an infix FALSE
string x symbols
long to Polish
using stacks
Y and 2"

=(X,Y) "X is equal to Y FALSE

PUSHED(X,Y) "X is pushed onto Y FALSE
POPPED(X) "X is popped"” 2 FALSE
TOPPED(X,Y,Z) “The top symbol of 3 TOPPED(X,Y,s)
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stack Y of size
Z is assigned to X"

POPOPS(X,Y) "Pop operators from TRUE FALSE FALSE
X and push onto Y"
POPHOPS(X,Y,Z)  "Pop operators from TRUE FALSE FALSE
Y that have greater .
priority than X and
push onto Z"
STACKSIZE(X,Y) "Size of stack X is TRUE FALSE STACKSIZE(X,)
Y-
STACK(X) "X is a stack” FALSE FALSE FALSE
EMPTY(X) "Stack X is empty" FALSE TRUE FALSE

ITERATIVE RULES:

NAME: TSLOOP

BASIS: NEWVAR(X,Y) A C(X,0)

INVARIANT: C(X,W) A INTEGER(W) A STACK(V) A STACK(U) A ISVAR(Y)
ITERATION STEP: C(X,(ADD1 W)) A NEXTSYM(Y) A RECOGNIZED(Y,U,V)

CONTROL TEST: >(%,T) :

OUTPUT ASSERTION: POLISH(V)

GOAL: POLTSL(T,U,V)

NAME: RLOOP

BASIS: NEWVAR(X) A STACKSIZE(U,Z) A TOPPED(X,U,2)

INVARIANT: C(X,Y) A =(Y,(TOP U)) A STACK(U) A STACK(V) A STACKSIZE(UW)
ITERATION STEP: PUSHED(X,V) A POPPED(U) A TOPPED(X,U,W)

CONTROL TEST: -OP(X)

OUTPUT ASSERTION: POPOPS(U,V)

GOAL: POPOPS(U,V)

NAME: oLoopP

BASIS: NEWVAR(X) A STACKSIZE(U,T) A TOPPED(X,U,T)

INVARIANT: C(X,Y) A =(Y,(TOP U)) A STACK(U) A STACK(Y) A STACKSIZE(U,W)

ITERATION STEP:
CONTROL TEST:
OUTPUT ASSERTION:
GOAL:

PUSHED(X,V) A POPPED(U) A TOPPED(X,U,W)
-OP(X) v <((PRICRITY XXPRIORITY Z))
POPHOPS(Z,U,V)

POPHOPS(Z,U,V)
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PRIMITIVE PROCEDURE ‘ PRE-CONDITIONS
push(X,Y) ISVAR(X) A STACK(Y) PUSHED(X,Y)

A STACKSIZE(Y,2) A STACKSIZE(X,(SUB1 Y))
"Push symbol X
onto stack Y
pop(X) STACK(X) A STACKSIZE(X,Y) POPPED(X)
“Pop stack X" : A STACKSIZE(X,(SUBL Y))
getnext(X) ISVAR(X) NEXTSYM(X)
"Get next symbol”
«(X,Y) ISVAR(X) CX,")
"Assign Y to X"
top(X,Y) ISVAR(X) A STACK(Y) TOPPEDXX,Y,Z)
"Put top of stack _ A STACKSIZE(Y,Z) A CX,(TOP Y))
Y in X"
DEFINITIONS:
BODY OF DEFINITION RELATION DEFINED
(VAR(X) v LP(X) v RP(X) v OP(X)) A PROCESSYM(X,Y,Z) RECOGNIZED(X,Y,Z)
VAR(X) A PUSHED(X,Z) PROCESSYM(X,Y,Z)
LP(X) A PUSHED(X,Y)  PROCESSYM(X,Y,Z)
RP(X) A POPOPS(Y,Z) A POPPELXY) PROCESSYM(X,Y,Z)
OP(X) A POPHOPS(X,Y,Z) A PUSHED(X,Y) PROCESSYM(X,Y,Z)
=(X,0) v INTEGER((SUB! X)) INTEGER(X)

INITIAL STATE:

STACK(S) A STACK(R) A STACKSIZE(S,]) A STACKSIZE(R,J)

ALGEBRAIC SIMPLIFICATION: (SUB1(ADD1 X)) » X
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PROCI (NR S)
ISVAR(KE BISVAR(X2}ISVARXBESTACK(S)STACK(RY,
COMMENT
INPUT-.CONDITIONS:
STACKSIZE(R JIASTACKSIZE(S I}
OUTPUT:CONDITIONS:
POLISH(S);
COMMENT .
PROC6 ATTEMPTS:TO:ACHIEVE: (POPPED R)
PROCS ATTEMPTS:TO:ACHIEVE: (PROCESS X2 R 5)
PROC4 ATTEMPTS:TO:ACHIEVE: {(PROCESS X2 R S)
PROC3 ATTEMPTS:TO:ACHIEVE: (PROCESS X2 R S)
PROC2 ATTEMPTS:TO:ACHIEVE: (PROCESS X2 R S) ;
BEGIN
X1 « 0;
WHILE -=>(X1 N) DO
BEGIN -
Z1 « (X1+1)
GETNEXT(X2)
IF ~OP(X2) THEN
IF -RP(X2) THEN
IF -VAR(X2) THEN
IF -LP(X2) THEN
PROC2(X2 R S) -
ELSE PROC3(X2 R S)
ELSE PROC4(X2 R S)
ELSE PROC5(X2 R S)
ELSE
BEGIN
TOP(X3 R);
WHILE OP(X3) A ~<((PRIORITY X3XPRIORITYX2)) DO
BEGIN
PUSH(X2 S)
IF EMPTY(R) THEN
PROC6(R)
ELSE
BEGIN
POP(R);

PROC3 (X2 R S)
ISVAR(X2);STACK(R);
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COMMENT

INPUT:CONDITIONS:

STACKSIZE(R 1)

OUTPUT:CONDITIONS:

STACKSIZE(R (ADD1 I))APUSHED(X2 R);
BEGIN
PUSH(X2 R}
END

PROCA (X2 R S)
ISVAR(X2)STACK(S);
COMMENT
INPUT:CONDITIONS:
STACKSIZE(S I)
OUTPUT:CONDITIONS:
STACKSIZE(S (ADD1 I)APUSHED(X2 S)
BEGIN
PUSH(X2 S);
END

PROC5 (X2 R )
ISVAR(X4);STACK(S);STACK(R);
COMMENT
INPUT:CONDITIONS:
STACKSIZE(R JASTACKSIZE(S I)
OUTPUT:CONDITIONS:
POPOPS(R S)
COMMENT
PROC7 ATTEMPTS:TO:ACHIEVE: (POPPED R) ;
BEGIN
TOP(X4 R)
WHILE OP(X4) DO
BEGIN
PUSH(X4 S}
IF EMPTY(R) THEN
PROC7(R)
ELSE
BEGIN
POP(R);
END
TOP(X4 R)
-END
IF EMPTY(R) THEN
PROCS(R)
ELSE
BEGIN
POP(R);
END
END
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USING MODELS TO SEE
Alan K. Hackworth

University of Susgex®

Abstract

Scene analysis programs offer the hope of providing a more adequate
account of human competence in interpreting line drawings as polyhedra
than do the current psychological theories, This thesis has several
aspects, The aspect concentrated on here is that those programs have
explored a variety of methods of incorporating a priori kmowledge of
objects through the use of models., After outlining the range of models
used and sketching some psychological theories, the various proposals are
cantrasted. 7This discussion leads to two new proposals for exploiting

model information that involve elaborations of an existing program, POLY.

1. Introduction,

In one of its many roles, artificial intelligence is cast as the
vanguard of an army of psychologists who seek a new paradigm for cognitive
and perceptual prbcesses. Despite several clarion calls to this effect
(M insky and Papert, 1972; Clowes, 1972; Sutherland, 1973) AI may well be
a vanguard without an army. This paper attempts to show that a small part
of the scouted territory is ripe for capture.

The interpretation of line drawings as polyhedral scenes has been the
focus of most attempts to build Al vision systems. As it is a natural human
task, several psychologists have also studied it. In sketching and contrasting
various resultant theories, we will concentrate on how they represent the
a priori knowledge of the objects that exist in the world. Of necessity,
other essential themes such as non-model knowledge of the world ( for example,
support and the picture~formation process itself) or the use of picture cues
to access the models are slighted.

Sections 2 and 3 of the paper sketch the use of models in several Al
ard human visiocn proposals., Section 4 briefly contrasts them using a few

examples. SoRe of the wealnesses exposed lead to two proposals in section 5.

2a liodels in Machine Vision.

Roberts (1965) used the three simple models of Fig.,1. These can be

expanded along each of their coordinate axes. Compound objects are created

*Now at Department of Computer Science,
University of British Columhia,
Vancouver 8, B,C, (Canada.
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Figure 1. Roberts' simple object models

by abutting simple ones. Falk's (1972) recent state-of-the-art scene
analysis system expected its visual woirld to be composed of instances of

the nine polyhedral prototypes of specified dimensions shown in Fig.2.

Fiqure 2, Talk's »bject prototypes
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The size-specificity of the protcotypes was exploited by the object
recognition phase of the progras in its use of the actual heights of
the blocks and the lengths of their base edges.

At the other end of the size and shape specificity spectra for
models are the edge-labelling procedures, Theze originated in Guzman's
SEE (1968) which produces surface groupings corresponding to objects.

Huffman (1971) and Clowes (1971) developed a procedure that relies on four
prototype corners: the trihedral corners in which the object occupies 1,

3, 5 or 7 'octants'; the corners have no further shape-specificity. The
corner models are accessed by the shape of the picture junctions. For each
of four picture junction classes (L, FORK, ARROW, T), there is a list of
possible corner/viewpoint configurations. These lists are used to label the
edges depicted as convex or concave. The convex category is subdivided into
three according to the viewpoint: either both surfaces depicted at the

edge belong to it or the surface on the right, which does, is partially
occluding the one on the left which doesn't or vice versa.

It has been shown (Mackworth, 1974) that SEE implicitly uses a single
prototype corner: the one in which the object occupies only one 'octant!;
whereas, Waltz (1972) has expanded the range of corner prototypes far beyond
those of Huffman-Clowes.

The model information embedded in POLY (Mackworth, 1973) is minimal,
confined as it is to a requirement that surfaces be planar and edges be
occluding or connect (non-occluding); however, there is a marked preference
for cornect edges. With this apparatus somewhat augmented, POLY interacts
with a representation called the gradient configuration (originally suggested by
Huffman ( 1971))to produce a labelled interpretation. (The gradient of an edge is
vector in a 2D gradient space whose direction is that of the corresponding
picture line. Its length is the tangent of the angle between the edge and the
picture plane. The gradient of a surface is in the direction of steepest
descent in the surface away from the picture plane; the magnitude of the
gradient is the tangent of the dihedral angle between the surface and the
picture plane,) The final gradient configuration needs only the origin and
scale of the gradient space defined before it represents the absolute
orientations of the object surfaces, (POLY assumes orthographic projection;

see (Mackworth, 1974) for the perspective case,)

3. Sowe Psychological Theories,

Attempts to provide psychological theories of the interpretation of line
drawings have not usually provided an algorithm by which interpretation may
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procead though, wesumably, the nsual monsoular depth cues are thoughi
to be relevant, Rather, asuch theories cenn to aasume the existence af such
an algorithm and concentrate un the tension set up between the 3D { scena)
and 2D (picture) organizations, Xopfermann {163n) held that the impression
of tridimensionaiity varies with the degree to which the szcens organization
is simpler thsn that of the plcture, In extending that theory Hochberg and
Brooks ( 1960) provided a quantified weasure of simplicity as the sum of the
number of linee, the mumber of angles and the number of angles differing in
magnitude. Attneave and Frost {1968) presented a similar theory in which
the competition between the &cene and the picture is resolved by figural
simplicity criteria,

Finally Hochberg (1968) almost anticipated the Huffman-Clowes
algorithm as he demonstrated, with an ingenious experiment, that junctions

act as 'local depth cues'.

4, Some Examples,

The discussion of this section uses, as examples, the two pictures in

Fig. 3, which the reader should look at without reading further., The usual

(a) (b)

Figure 3, Two examples
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(b)

Figure *, A rectangular object and its gradient space configuration

are superizposed at each position, This obscures the fact that the

configuration is intricately connected: each pair of surfaces meeting in

a connect edge is joined by a line perpendicular to the picture line showing
that edge. Neither the position of the origin nor the size of the triangle

is yet specified but note that E and A are ordered in the gradient
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corfiguration just as they are mcross thelr common adge in tlw pioture so
that edge is convex whereas the releative positicns of B and C are reversed
in the picture and gradient spaces so that odge 1-2 is concave; howvaver,
as the actual values of the gradients are not determined, we &till cammot
say that cormer [ is closer than 2,

At any correr such as corner 1 in Fig, 6(a) there are three edges
(which may not all be visiblidg., Each pair of edges defines a surface at
that corner. Each edge is normal to the surface dsfined by the other two.
Since the direction of the gradient vector is the dirsction in the picture
in which the normal appears to point, the direction of the gradient of each
surface at the corner is given by the edge thet does not belong tc it. Thus
gradient A must be in the direction of picture line 2-1. Since the vector
difference between gradients B and C is required to be perpendicular to
picture line 2-1, the origin must be on a perpendicular dropped from gradient A
to the opposite side of the gradient triangle. Hence the origin must be at
0 shown in Fjg. 5(b). The scale is immediately determined by the requirement
that the product of the magnitudes of the gradient of A and the gradient of
edge 1-2, G1_2, must be unity. Now that the orientations of all the surfaces
and edges are defined it is ar obvious consequence that corner 2 is further
from the picture plane than corner 1; that is shown by the fact that Gl-
points up to the left (not down to the right),

2

542 Using prototype surfaces,

The idea of using specific prototypes is attractive but as suggested in
Section 4 complete polyhedral prototypes are, in a sense, too momolithic. Imn
this section we show how the use of prototype surfaces can be iiategrated
directly into the POLY interpretation process.

Consider Falk's list of nine prototype objects. They have in all
Tifty-four separate faces; yet those faces have only fourteen distinct polygonal
shapes. The size-specificity of these shapes will be dropped for the sake of
this argument although it could be retained. Dropping size-specificity (so
that a 1 x 2 rectangle represents itself and the 2 x 4 rectangle etc.) leaves
a total of twelve distinct surface shapes,

First, a geometrical fact must be stated (Mackworth, 1974). Suppose one
is given the true shape of a surface in the form of a polygon { where the
dimensions may be uniformly scaled up or down by a factor, k), the projected
shape of that surface and three or more pairs of non-collinear points on the

tre and projected shapes that correspond. From this information it is easy to
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compute whether the true shape could produce the projected shape and, 1f
it does, the value of k and the gradient of the surface.

For each picture region, by considering the topologically identical
surfaces, a set of possible surfaces each with a corresponding k and gradient
could be computed. If that set is empty then the region depicts a partially
occluded surface.

This is now a labelling situation comparable to the corner labelling
algorithms of Huffman, Clowes and Waltz. In those algorithms each junction
has associated with it a set of possible corners; the aim of the
interpretation is to discover a unique corner corresponding to each junction.
Here, besides labelling each edge, the aim is to assign a unique surface to
each region., Agreement between the interpretations of adjacent regions is
necessary if the edge is taken to be connect. The agreement takes two
distinct forms. First, the POLY coherence rules must be satisfied and
second, model-based coherence rules must be used. Such model-based rules
would, at the lowest level, be of the form: Are there two such surfaces
meeting at an edge in the set of prototypes? If so, do those surfaces meet
at this dihedral angle? Do they agree on the scale factor? Higher levels
would also be required: Are there three such surfaces meeting at a corner?

Procedurally, this approach need not be implemented in a depth or breadth-
first fashion, It is amenable to the two-stage Waltz search procedure which
would first weed out the lists of possible surfaces (Jjust as Waltz weeded
the lists of possible corners) based on consideration of the mutual inter-
pretation of each pair of adjacent regions and only then try to build complete
coherent interpretations.

6o Conclusion,

World knowledge of the type incorporated as models in scene analysis
prograns is an essential feature of any psychological theory that attempts to
explain human competence in interpreting line drawings as polyhedra, Further-
more, in those programs that knowledge is used in a procedural fashion; they
demonstrate, at the very least, how a scene interpretation can be achieved.

The discussion of Section 4 has pointed out some of the wavs in which the
available range of models is deficient for purposes of psychological explanation,
The two proposals of Section 5 are designed to provide mechanisms that reflect
particular human competence in this task domain.
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A theory of evaluetive commente in chess,

by

Donald lichie

Abstraci

Classical game theory partitions the set of legal chess
positions into only three evaluative categories: won, drawun
and lost. Yet chess players employ a wide variety of
evaluative terms, distingsuishing (for example) a "drawn"
from a "balanced" position, a "decisive" from a "slight"

advantage, and a2 "blunder" from a "mistake".

As an extension of the classical theory, a model of
fallible play is developed. Using this, two quantities can
in principle be associated with each position, its "game-
theoretic value" 2nd its "expected utility™. A function of
these two variables can be found which yields interpretations

of many evaluative terms used by chess commentators.
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A theory of evaluzative commenis in chess

Introduction

The game tree of chess contains about 1046 positions (Good,
1968) 2 substantial proportion of which are terminal. The rules
of the game assign a value to every terminal position, +1, O or
-1 according as the position is won, drawn or -lost for White.
These values can be backed up the game tree using the minimax
rule, so that in principle every position can be given a value,
including the initial position. This last is known as "the value
of the game", and is widely conjectured to be O for chess. If
this conjecture is correct, and if both sides play faultlessly,
i.e. only execute value-preserving moves (it follows from the
"back-up" method of assigning values that there is at least one
such move available from every non-terminal position), then the
game must end in 2 draw. A frﬁgment of a hypothetical game tree
igs depicted in Figure 1. In Figure 2 the method of attaching

game-theoretic values to positions is illustrated.

An evaluation function could in principle map board positions
into a2 larger set of values, making it possible to express a
distinction between positions which are "marginally" won and posi-
tions which are "overwhelmingly" or "obviously" won, or between
drawn positions in which White, or Black, "has the edge" and
drawn positions wh?ch are hequally balanced", and so forth. Two
circumstances suggest that a useful purpose might be served by

multi-valued functions.

(i) Chess Masters and commentators have developed a rich

descriptive language for the expresﬁion of such distinc-

tions.

(ii) Computer chess programs emplox{a:iti—valued functions
for evaluating terminal positions, not of the game tree
which is too large, but of the lookahead tree. Values
backed up according ito the minimax rule are used to
select the next move. It would be nice to have a
theory/
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theory which zllowed uz to aszign some definite inter-

pretation to mach volues.

There is thus 2 primz facie need for a2 sirenger theory of
position-~evaluation. This paper discusses chess, but the treatment
is general zndé covers all fwo-person zero-sum games of perfect

information without chance moves.

Reouirements of a theory

A good theory should explicate 2 wide variety of commentators®
concepis. The following is a2 representative list. Where a con-

ventional symbol is available it precedes the verbal comment.

(1) A dead draw (nothing that either player can do can avert
2 draw).

(2) A complicated position.
(3) =, a balanced position.
(4) %, White has a slight advantage.
(5) %, White has 2 clear advantage.
(6) +-, White has a decisive advantage.
(7) A certain win for White.
(8) A difficult position for White.
(9) & losing move.
(10) An inaccurate move: White weakens his position. -
(11) White strengthens his position.
(12) 2, a mistake.
(13) 2?2, a blunder.
(14) ¢, a strong move.
(15) t't, a very strong or brilliani move.
(16) t?, a brilliant but unsound move,
(17) Best move.
(18) (1), best move in difficult circumstances.
(19) A safe move.
(20) Wnhite should press home his 2&vantage.
(21) Black should play for time.

Mai
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Hain features of the theory

The game-theoretic model pre-supposes perfect play, whereas
in the real-life game of chess {whether human or computer) both
sides are susceptible to error. Our theory is based on this dis-
tinction, and presents the following main features:

(1) We follow I.J. Good (1968) and interpret the values of
terminal positions as utilities as though the game were
played for a unit stake. Values for pre-~terminal posi-

tions are then calculated as expected utilities. 1In

order to avoid confusion we shall refer to these through-
out as "expected utilities", never as "values", reserv-

ing the latter term for game-theoretic values.

(2) A model of imperfect but skilled play is developed.
Chess skill appears in this model as an adjustable
parameter running from 0 (random play) to 00 (perfect
play).

(3) In the new model %ihe classical game-theoretic treatment

appears as a special case.

The calculation of expected utilities

Congider a state, 843 from which transitions to successor
states Syy Sp 53, cess S, Can occur with respective probabilities
Pys Pps Pyy eeoe P,- Let us suppose that these successor states
have associated utilities Uy Upy Uy ceee u. Then the expected

utility associated with s, is ﬁ p;u;- It follows trivially

i=l
that if we interpret as utilities the values attached by the rules
of chess to the terminal positions then the values assigned to the
non~terminal positions by minimaxing can be interpreted as expected
utilities, In this special case the p's associated with those
arcs of the game tree which carry a change of game-theoretic value
are all O, Consequently the evaluation of :%a Pyus at each node

i=l

reduces to obtaining the min or the max of the successor-values

according/
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according as While or 3Black has the move. The above specification
is ambiguous in the case when two 2 more of the moves applicadble

to a given board posiiion ars value-preserving., He can either
select cne of these at random ard assign a probability of unity

to it and zero probabilities %o the rest, or we can divide the

unit probability equally anmong them. In the case of error-free
play calculation of expected utilities according to either procedure
leads to the same resuli. As the basis of a2 model of actual play
we shall adopt the gecond a2lternative, which ie illusirated in
Figure 2.

We now relax the game~theoretic condiiion that at each choice-
point on the tree there is probabiliiy 1 that a value-preserving
move ("sound" or "correct" move) is chosen, and we introduce the
possibility of error. 1In constructizg a model of error, we ex-
press the relative probabilities of mzking alternative moves from
a given position as a monotonic increasing function {decreasing
function for Black, since all utilities are expressed from White's
standpoint) of the expected utilities of the corresponding successor
positions. Thus the move leading to %the highest expected utility
will be chosen with highest probabiliiy (but not with probability 1
as in the game~theoretic, errcr-free, model), the move leading to
the next highest expected utility with next highest probabilitj,
and so on. We thus envisage an idealised player whose statistical
behaviour reflects the rank-ordering of the expected utilities of
chess positions. Using such a model it is again possible to label
2ll the nodes of the tree, working wpwards from the terminal nodes,

but by 2 procedure which differs frem the minimax method.

The notion of discernibility

In order to carry out some illusirative computations based
on this idea, we now choose an actuzl monotonic function. No
significance is claimed for the parfiicular choice, since the
points which we seek to establish are zuzalitative rather than
quantitati&e. Certain ideas must, Zowever, be reflected in
any such function. A central ome iz that of discernibility. We

conceive the player as standing upozx = given node of the game-~tree

and/
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and looling touvards its successors., These are labelled with their
expected utilitics; but the labels are not fully disceraible to
him. Discernibility is directly related to the strength of the
player (the labels are fully discernible %o an infinitely strong
player) and inversely related to the number of moves separating
the node from the end of the game: next-move mates and stelemates
are fully discernible even to the beginner, but next-move expectied
utilities obtained by backing up are less so., Reflecting these
considerations; we shall define the discernibility from a board

state sy of the expected utility of a given successor state s, as:

di=Me)) ™ W

where M is the merit of the player in kilo-points of the U,S. Chess
Federation scale, so that 0€1!, and r  is the number of moves that
the value associated with 85 has been backed up. The symbol
denotes an arbitrarily small quantity introduced to avoid the
expression becoming infinite for rj = 0. »

Qhe expected utilities themselves are real numbers lying in the
range from -1 through 0 to +1. They are'interpreted as being in
logarithmic measure, to base d. Using this base, we take the anti-
logarithms of the expected utilities associated with the n successors

of a given position as giving the relative probabilities with which

.a player of merit M who has reached s, selects the corresponding

moves, Thus; for the transition So=? sj,

u.

psoc a7 : (2)
Normalising these so as to obtain actual probabilities, pl, Ppy eees

n

Pn, the expected utility of a position is evaluated as 55; piul,
where uy is the expected utility of the position generated by the
i-th member of the set of available moves. Starting at the terminzal
positions, this gives 2 method for assigning expected utilities to
successively hisher levels of the game tree until every position has
‘been labelled,

A samnple comnutation

Consider the terminal fragment of game-tree shown in Figure 1.
We shall illustrate step by step the calculation of expected wtilities

80 75 to label every node in the diagram, Tirst we make assumptions
for
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Wz very lou. Let us sei I, = 9.2 and U, = 1.4: Uhite iz o
e -
a

ad Black 2 weak tournament player, In our molcl
I = 0 implies random play. The noiation u(s) denotes the expected

utility of position s.

H4: A11 successors have the same value, +1. u(H4) = +1.
HS: There is only one successor, so the move-probability is unity.

u(HS) = +1.

Gl: Unique successor. u(Gl) = 0.
§2: EBouivalued successors. u(Gz) = -1,
G3: BSquivalued successors. u(G3) = +1,
F9: Trom (2) we have
Tove to G1: d° = 1 = relative probability.

Yove to G2: r = 1, so, from (1), d = 1.212 = 8.915. Rel. prob.
1/8.915 = 0.1121.

Yove to G3: r =2, so d = 1.27'5 = 3.925 = rel. prob.
Normalized probabilities: G, 0.1985

GZ 0.0222
Gy 0.7792
u(F9) = 0.1985 x 0 + 0.0222 x -1 + 0.7792 x +1 = +0.757
El: Equivalued successors. u(El) = -1,
E2: r =0. u(E,) = -1, and similarly for u(E3) and u(E4).
E5: Unigue successor. u(Z_) = 0.757.
D9: love to Bl: r=1. d 2 1.2'2.° Rel. prob. = 1/8.915 = 0.112,

Similarly for moves to E2, E3, and EA'
Move to B6: Rel, prob., = 1, and similarly for move to &_.
ove t0 B5: T = 4. d = 1.272D. 2,604. Rel. prob. = 2.0640.

0.025

0.025

0.025

0.025

0.457

0.222

0.222

1.001
u(Dg) = 0.457 x 0.757 - 0.100 = 0.246

c1:/ -

Normalised probabilitiess

b‘lt‘it’-ﬂt‘-ﬁt’ll‘)k}ij
n

~_ 0N B Ww




¢l: r = 0. u(Cl) = -1, and similarly fer u(cz), u(Cs) and u(Cﬁ).

€5: Unicue successor. u(Cg) = 0.246. '

C6: Douwivelued successors. u(Cé) = 0, and similarly; for u(CY)
ané u(CS).

Bl: love 4o Cl: r=1. d=1.22, Rel. prob. = 1/8.915 = 0.112

ané similerly ior moves to CE’ 03, anﬂ.c4.

Tove t0 C5: r = 6. d = 1.2%°7 . 2.272. Rel. prob. = 1.2240.
Normalised probabilities: 0.06703

0.06703

0.06703

0.06703

0.73130

1.00002
u(By) = 0.7319 x 0.246 - 0.2681 = -0,088.
) = 0.
: llove 40 Bl: r=17.4d= 2.42'286. Rel.prob. = 1.391.
love to B2: Rel. prob. = do =1,
Normelised probabilitiess B1 0,582

32 0.218

u(A)= 0.582 x -0.088 + 0.418 x 0 = -0.051.

c
C
c
c
c

W oA W N

B2: Equivalued successors. u(B

In Figure 3 the iree of Figure 1 is shown with expected
utilities, calculated 2s above, attached to the nodes. The
expected utility of the root node, A, turns out to be one
twentieth of 2 unit in Black'!s favour, - a "slight plus" for
Black. The analysis of Black's "plus" is worth pursuing, for
it illustrates certain fundamental concepts to which our theory
is directed, in particular the idea that a losinz move (in the
game-theoretic sense of a transition for White to value -1 or for
Black to value +1) can also be the "best" move against a fallible

opponent.

lote that Blaclk can secure a certain draw by moving to

32. Note also that the move to Bl is 2 losing move in the
gane-theoretic sensc, for Yhite can then win by the sequence

Bl-) 05439—)35—b:--9'3-, 25 shown by the heavy line in Fig. 2.

Yet the c-pected utilii-r of ihe move, -0.088, is marginzlly betier for

Black then that of the "correct" move (expected utilitiy = 0), and our
model of Blaclk, poscessed of a weak tournament player's discernment,

shows/ T
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shows a 5& preference for the move. The statistical adventage
arises, as can be secn by inspecting the dicgram, from the fact
that play is switched into 2 subiree where the error-prone Yhite
has numercus opportunities for error presented to him. He has

to find the needle of sound play in a haystack of hazards. In such
2 situation we sometimes say that Black sets "traps" for his
opponernt. If the aesthetic features of the move to B, appeal to
the ccmmentator, he may even use the annotation "!?", which we take
to mean "brilliant but unsound™. A sufficient increase in the
strength of White could give cause to remove the "1!" or even to
convert it into a second "?". To illustrate this point we have
re-calculated the entire diagram after setting My = Mg = 1.4, shown
in Figure 4. Here the move to Bl does not appear as "best", nor
even as a mistake, but as a blunder, and correspondingly our model

of Black shows 2 preference of approximately 40:1 for B,.

Returning to the list of specimen evaluative comments intro-
duced earlier, we can now derive explications for them. Wherever
possible, an explication is expressed in terms of two functions of
a board position, namely its gamé-theoretic value v and its expected
utility u. Where a move, rather than a position, is described, we
use the notation Ay amd Au to denote the changes in the correspond-
ing quantities effected by the move. We denote by 8, the position
from which the move is made and by 32 the position which it generates.
Some items of the original list have for completeness been differ-
entiated into sub-concepts. Some of these would never appear in a
chess book although under assumptions of very low playing strength
they are generated by our model. Case 2 of () is an example of
this: a "decisive advantage" of this kind would arise, for example,

in the initial position if Bobby Fischer gave Queen odds to a

beginner.
Comnent Explication

(1) A& dead draw. v=0a3andu-=0.

(2) 8 is complicated. the first few levels
of the tree rooted
in B have high
branching ratios.

(3) =, 8 is balanced. v =0zand u=0.

Case 1:/

1u6



Commant

Explication

(4)

(5)
(6)

(7
(8)

(9

(20)

(11)
(12)

(13)
(14)

(15)
(16)
(a7)
(18)

(19)

(20)/

Coge 1: § is lifeless
Case 2: 3B has high tension
f, White has a slight advantage.

%, White has a clear advantage {good
winning chances).

+=, White has a decisive advantage.

Case 1s White has excellent winning
chances.

Case 2: Although White!s game is
theoretically lost, he is
almost bound to win.

Cage 33 An easy win for White.

A certain win for White.

8 is difficult.

Case 1: White needs accuracy to
secure the draw.

Case 2: White needs accuracy to
secure the win.

Case 3: Although theoretically won,

White's position is so
difficult for him that he
should offer a draw.

A losing move,

An inaccuracy:
position.

White's move weakens his

White's move strengthens his position
?, a mistake.

??, a blunder.

{, a strong move.

11, a very strong or brilliant move.
1?, a brilliant but unsound move.

Best move.

(1), best move in difficult circumstances.

3

A safe move.

1%

var(vy) T 0) - see
var(v,)>> 0 ext

v=0gand u>0.
v = 0 and udd 0.
u =4l

v =0 and u™ 41,

v = -1 2and u = +1.

v = +1 and u ¥ 41,

v =4+12and u = +1.

v u.

v = 0 and u<k 0.

v = +1 and 04 u«kl.
v = +1 2nd u<0.
v(8,) ='~1 and

v(S]);_-l .

Av = 0 and Bu 40.

Av =0and Au>O0.

AV = =1 and’
not (Au<<0).

Av <0 and Au<<0.

AHv=02andAud0
and 31 is difficult.

Av a0 and Aud0.
Av<0 and Aud> 0.
Au is max.

Au is mex and
31 ig difficult.

Av = 0 and
8, is lifeless.




Comment

{20) "White should precs home his advaniags." The rationale
for trying to shorten the zame when ehead can be under—
stood by noting in Figure 3 how the advaniage decays as
we move backwards from the terminal positions. In Pigure
5 White, in moving from B, , has been given an additional
option in the form of a ~ move to C s from vhich Black
is forced to move directly to F (siéﬁaped arc in Fig. 5).
Game~theoretically the choice begween moving to C. and
moving to C 1 is egually balanced since they are”both
"won" positidiis for White. But the expected utilities,
+0.246 against +0,757, tell the true story, that if he
incurs needless delay in a won position, especially if

it is a complicated position (high branching ratio of
immediately depcndent tree), he rmultiplies his chances

of error. Our model selects the move to C with 1.7
times the frequency of 05, with a correspogd}ng increase

of u(B;) (see Figz. 5).
(21) "Black should play for time" is the complementary advice
: one should give to the other player in the foregoing

gituation. If our hypothetical node C 1 had a second

branch leading to D shown as a brokeg' line in Fig.5),

then Black should prefer it to F9- .

We exhibit systematically in Table 1 various combinations of

.¥ and u, entering in each case the evaluative comment which seems

most appropriate.
"Pension"

The minimax value of s can be regarded as in some sense
summarising the values of the terminal nodes of the itree rooted
in s. More obviously, the expected utility of s, which has the
forn of a weighted mean, constitutes a summary of a different kind
of this same set of quantities. It seems natural to-proceed to
statistics of higher order, i.e. from representative values and
means to variances., Might swuch second-moment statistics also
possess recognisable meaning in terms of the chess commentator's
vogabulary?

I.J. Good (lgg. gii.) discusscs a property of chess positions
which he calls "agitation". He defines it by considering how
sharply the estimated utility of a position is changed by investing

a further unit of work in deepening the forward analysis. This

quantity/




quaentity will necessarily be posi%tively related to ithe variance

of the disiribuiion of u-values over the dependent sub-tree, and
hence to the measurs which we develop below for the "tension" of

; position. The former British Champion, C.H.0'D. Alexander, uses
this term in an introductory chapter to "Fischer v. Spassky »
Reykjavik 19727, He urites (see Pigure 6) v

"Let me illustrate {a little crudely) this question of
tension by comparing two openings:

A. (Givoco Pianissimo) 1. P-K4, P-K4; 2. Kt-KB3, Kt-QB3;
3. B-B4, B-B4; 4. P-Q3, P-Q3; 5. Kt-B3, Kt-B3.

B. (Oruenfeld Defence: sgee the Siegen game Spassky v.

Fischer) 1. P-Q4, Kt-KB3; 2. P-QB4, P-KKt3; 3. Kt-QB3, P-Q4;
4. P x P, Kt xP; 5. P-K4, Kt x K¥t; 6. P x Kt, B-Ki2;

7. B-QB4, P-QB4. The moves in example A are perfectly correct -
but after five moves the game is as dead as mutton; it is too
simple, too balanced, and is almost certain to lead to an early
and dull draw. The moves in example B are objectiively no better -
but the position is full of tension; White has a powerful Pawn
centre but Black can exert pressure on it and, if he survives
-the middle game, may stand better in the ending - the players
are already committed to a difficult and complex struggle in
which a draw is not very likely."

;
A simple way of capturing the spirit of Alexander's definition
within the framework of our theory is to use the weighted mean

sguare of the teuinal values of the tree rooted in 3, i.e.

vo-r ("e) = Pe "ez
teT

where T is the set of terminal positions and P, is the probability
of arriving at the i-th member of this set starting at 8. A value
of unity corresponds to maximal tension and 2 zero value to minimal
tension (the latter can only be attained by a "dead draw"). The
tension of the root node of Figure 3 is estimated by this method
aslm Referring to comment no.(3) above we assign this

root node to Case 2 rather than to Case § of the category "balanced".
Note that although "iension" is calculated from game-theoretic
values, vy» use is made of the ut's in the calculation of the

probabilities/
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probabilities, pi, and hence the measure iz affected by variation
of the merit porenmecters 31‘{ and I-EB, Ac moon as we posinlate
sreater playing streprth on the part of Yhite some of the tenasion
of the position is reduced. The tension of node 4 in FTigure 4

is only .024 refleciing the fact that the Black ie almost certain
to steer play into the "dezd dreau®™ sub-irese. t

Tote that é'l' Pt’ftz is ecual simply to the probability
of a non~drawvn outcome. But we have preferred to formulaie the
erpression explicitly as a variance, since in realistic cases
game-theoretic values are not likely to be available, or caleculable

in practice. The approximating formula 2, Ptutz may then prove
. kel

useful, where the ut's have been assigned by some evaluation
function (or by human intuition) to the members of u s the set
of states on the lookahead horizon.




Concluding remarks

Qur object has been to extend the sirict game~theoreiic model
of chess, vhich assigns o board positions only three wvalues: +1,
0 and -1. A good model should do justice to the profusion of chess
commentators' evaluations. Specimen evaluaiive comments have been
displayed 2s bench-marks against which the exiended theory may be
assessed, We have illustrated with worked examples a simple model
based on the notions of utility and statistical expectation. Our
model finds no particular difficulty in explicating the specimen
evaluative comments. It also reduces to the game-theoretic model

in the special case of perfect play.

Chess programs might benefit from using such a model, rather
than the minimax model. The point could be tested experimentally.
Another worth-while study would be to explore parts of a non-trivial
sub-game of chess of which virtually complete game-theoretic ‘
knowledge exists (as in S. Tan's (1974) program for K + B versus
K + P end-games) in search of illustrative tree fragments to Treplace
our concocted examples., The numerical explicéation of concepts could
then be used to make the pfogram print out its own commentis on
sample_ end-game play. These could be compared with the intuitions
‘of experienced players.
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w o= O U s =] % o= 41 w o=

s is virtuzlly 5 is a s is Hhite hac er-
impossible ceriain win impossible. cellent Jrov-
vl (because of the for Black. ing chances.
N unlikelihood -
34 €
that u should be Black neec
identically m:ﬁ“ aey o
zero). make sure of
his win.
s is a certain s is s is s is 2
draw (M deow ") impossibdle. impossible. balanced
. position.
v=0
s is virtually 8 is s is a Black hzs ex-—
impossible impossible. certain win cellent drau-
(because of the for White. ing chances.
v =+l unlikelihood White needs
that u should be accuracy to
identically 7
make sure of
zero). o
his win.
1 2 3 4
Table 1. Evaluative commenis on positions (comments cn moves are not

shown here) corresponding to various combinaiions of game-—
theoretic value, v, and expected utility, u.
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=Ll ~1<<u<g +1>>uz0C ~l<u<<0 +1>u>>0
An easy win Black has 2 Blach has a  Black neeéds Blaclt has Black has a2
for 3lack theoretical mildly extreme ac- 2 clear thecretical
{decisive win but is éifficult curacy to advantage. win but is
adventage). almost bound win, make sure likely to
to lcse. of his win lose.
(a very aif-
) ficult win
for Black).
Black has ex- Yhite has Black has Yhite hes Black has White has
cellent win- excellent a2 slight a slight good win- good winning
ning chances. winning advantage. advantage. ning chances, chances.
White needs chances. White needs Black needs lThite needs  Black needs
great accu— Black needs  care to care to accuracy to  accuracy to
racy to make great accu-  make sure maxe sure of make sure of make sure of
sure of the racy to of the the draw. the draw. the drav.
draw, make sure draw,
of the draw.

White has a An easy win White needs White has White has a White has
theoretical for White. extreme ac- a mildly theoretical a clear
win but is (decisive curacy to difficult win but is advantage.
almost bound advantage). make sure of win, likely to
to lose. his win (a lose.

very diffi-

cult win for

White).

5 6 7 8 9 10
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Figure 5.

A nodified version of Fizure 3 in
+wthich 2 zeir node, C5.1, has been
added leading to F) (t:e broken
lire represents a hynothetical
delaying nmove for 3lacl, see text).
Althouzh without ceffect on the same-
theoretic values of zocdes lying
a2bove it in the iree, iniernolziion
of thig short-cut ontion tips the
talance of expected utilities, so
thet 2t the root tlhie move to 32
btecones "vest".
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Figure 6.

Two chess positions illustrating the
concept of "iension" (from Alexander,
1972). The upper position has low
tension, and the lower has high
tension (see text).
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Introduction.

Those of us who work on neural nets can hardly fail to
be aware that many workers in other branches of artificial
intelligence tend to regard such models as uninteresting, on
two counts - They have very limited capabilities and, even if
one were built which performed a complex task, it would not
be clear how it did so. The present paper proposes a model
of the structure of cerebral cortex which it is believed
removes both of these objections. In addition the model
retains one of the most important characteristics of earlier
neural nets - it learns to do whatever it does.

The current lack of interest in neural nets is largely a
reaction against the extravagant claims made about the
potential of passive hierarchical networks (Fig 1) such as
the Perception by some workers in this area. Such networks
do perform certain tasks very well and furthermore they will
learn to perform them. Other work has developed these
capabilities to the maximum without claiming that they
provided a complete model of the whole of perception (Uttley,
1,2). Minsky and Papert have pointed out the limitations
inherent in all systems of this type (Minsky and Papert 3).
If we wish to build models capable of more complex behaviour
we must therefore either abandon neural nets altogether or
else find some system more powerful than a passive hierarchy.
Most workers chose the former course. I opted for the
latter, partly because the former means abandoning the
learning capabilities of neural networks but also because it
seems reasonable to believe that the neurone is the function-
al sub-unit on which the brain is based.

Measuring Computational Power.

One way of deciding what the computational limitations
of a device are is to demonstrate its equivalence to a
specific class of automata. For example, one might prove a
device is equivalent to a Turing machine and is thus able to
perform any computation that any machine can. Alternatively
one could demonstrate directly that certain classes of com-
putation are outside the capabilities of the device. Both
methods put rigorous limits on the range of things that can
be done. Unfortunately they tell us very little about how
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easily these things are done. Even the most persuasive of
computer salesmen would have to buy many rounds before he
could sell a machine as "capable of anything" on the grounds
that it is equivalent to a Turing machine. He is much more
likely to try and show that his machine is better than an
existing machine whose ‘power' is known to his potential
customer. Similarly one almost always discusses the 'power'’
of a programming language by comparing its features with
those of other languages. I propose to extend this idea and
discuss neural nets in terms of what they have in common with
programming languages. Certain difficulties will arise
because neural nets operate in parallel while the programming
languages considered operate sequentially. Nevertheless I
think the comparison will be useful.

Neural Nets Compared With Other Programming Languages.

The instructions in the assembler language of any com-
puter may conveniently be classified into three principal
categories

l. Information-moving instructions

2. Transformational instructions

3. Control transfer instructioens.

Suppose we were to try and write a program in such a language
without using any of the instructions in category 3. This
means we would not be allowed any form of jumping. Control
would always pass to the next instruction in sequence. This
is just the situation we find in the passive hierarchical
neural net if we liken the computation of each layer to
categories 1 and 2. Incoming patterns are processed by each
layer in turn. There is no facilit¥ enabling control to be
transferred elsewhere. We do not usually apply the term
computer to a machine so limited. Indeed Babbage is
credited with the invention of the computer largely because
he appreciated the necessity of control transfer instructions
and so introduced what we call a conditional jump. This
means that control need not simply pass to the next instruc-
tion but may be transferred elsewhere depending on the
outcome of a particular test. It would seem reasonable if
we are to build more powerful neural nets to look for a way
to introduce such conditional branching.
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Control Transfer In A Neural Net.

A conditicnal branch instruction tests a specified
predicate then transfers control to one place if it is true
and to another if it is false. Our neural equivalent must
incorporate these essential features. Since two distinct
outputs will be required it will consist of at least two
neurones. It will also require at least two inputs, one
which transfers control to it and one which transmits the
appropriate predicate. Such a unit is shown in Fig. 2.

The neurone labelled 'Do cell’' output has a threshold
level such that it acts as an 'and' gate on its inputs from
the 'Try cell' and the predicate. The 'Do cell' output
powerfully inhibits the 'Try cell'. If the predicate is
true then control is transferred along output 1. If on the

other hand it is false then control is transferred along
output 2. The reasons for choosing this particular two-
state structure will be demonstrated below. The whole is
referred to as a 'Try-Do' unit.

It is unlikely that a programmer will be satisfied with
the straightforward conditional branching capabilities. He
will probably wish to write sub-routines. This means he will
want not only to transfer control to another piece of the
program but also to transfer it back again to the calling
point when that piece has been executed. How would it be
possible to incorporate such procedure calling facilities
into the neural net?

Consider what happens to the Try-Do unit if the
predicate is initially false but later becomes true. Control
will then be transferred from output 2 to output 1. Thus if
in some way the predicate indicated that the relevant 'pro-
cedure' had been completed the 'Try-Do' unit would provide a
convenient procedure calling facility.

Some Examples Of Control Transfer Motor Control Networks

To demonstrate the power of the system we shall consider

Try-Do units located in motor cortex. Output 1 of each unit

will result in the animal performing a specific action.

In the first examples we shall consider a new born
baby's behaviour at the breast (Piaget 4). Fig. 3A
illustrates a single unit which exhibits a baby's behaviour
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immediately after birth. It also introduces the graphical
symbol for a Try-Do unit. The action caused by an output
from the Do cell is sucking. The predicate which must be
true before it can be done is the simple tactile sense of the
nipple in the mouth. The unit is activated by the infant's
hunger drive. There is no second output so if the nipple is
absent the child has no way to remedy this.

The next example (Fig 3B) provides a solution. We have
added another Try-Do unit which controls the action crying.
In this case the child will cry in the absence of the nipple
so that his mother may remedy this. It may incidentally
appear that he will cry briefly anyway. However if try
cells require the temporal summation of several input signals
before they fire this will not occur. Notice that we
transfer control to the crying unit if the nipple is absent
and return control to the sucking unit when it is presented.

Fig. 3C illustrates another possible alternative. Here
we introduce two Try-Do units controlling head movements to
right and left. If the baby is at the breast but the nipple
absent then he will call both head moving procedures but only
the appropriate one will result in an action. Of course if
the baby is not at the breast he must resort to crying again
(Fig 3D).

A Try-Do unit may thus be viewed as a procedure. This
procedure is called either by a basic drive or by one or more
other Try-Do units. It can itself call one or more other
units and also initiate a specific action. Obviously vastly
more complex pieces of behaviour could be programmed in such
a way. Another way of looking at such devices is to view
them as machines which traverse directed graphs of sub-goals
to reach a particular goal state i.e. a reduced basic drive.
The directed graphs of examples 3A - 3D are all cycle free.
Fig. 4 shows a network which attempts to cope with the "Hole-
in the bucket" dilemma. The directed sub-goal graph of this
is a cycle which can only be traversed if one of the goals is
already satisfied. The network in Fig. 4 will do nothing if
this is not so. As soon as it is it will execute Jjust those
actions needed to mend the bucket.

Since the examples shown have included diverging and
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converging paths as well as a cycle we can clearly build a
machine which will traverse any particular directed graph of
subgoals. Notice incidentally that no actions are performed
until a path has been found. In fact provided we have
enough paper one can very easily build a Turing machine out
of Try-Do units.

Try-Do Units In Perception.

So far we have considered the Try-Do unit as a
functional unit of motor cortex. The cerebral neocortex
however has a suggestive structural uniformity which leads us
to the possibility that the same functional sub-unit might
find equal application in sensory and cognitive processing.
Lashley (11) has argued that the problem of serial order is
central to the understanding of complex behaviour. In
recent years psychologists have come to view perception not
as a passive response taking its organisation from the
external stimuli but as an active constructive and inferential
process (e.g. Neisser (7), Bartlett (8)). A full discussion
of the structural and functional evidence for Try-Do units
will be found in Scott (9).

These facts suggest that it might be fruitful to apply
the Try-Do units to perceptual tasks. To do this we add an
additional cell which indicates if the Do output has just
fired (Fig 5). This was not necessary in the examples of
motor control because the consequences of an action on the
world served such a role. (Nevertheless such additional
cells may be useful in motor cortex to provide smoothly
integrated movements). Fig. © shows a network for finding
right angles of a certain orientation. learly such a
procedure could be called by several higher procedures whch
found for example squares or right-angled triangles. Notice
that the procedure has one input and one output. We could
conceptually replace it with any procedure which finds right
angles. Thus although the network to recognise a complex
object might involve a great number of units it will always
be possible to reduce it to relatively simple functional com-
ponents which we may regard as procedures performing specific
tasks.
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Learning In Try-Do Networks.

Learning has gone out of fashion in A.T. In the first
decade or so, the ghost of Lady Lovelace haunted all those
whose programs only did what the programmer told them to so
that learning was considered a measure of intelligence. In
these days of metrication we use a new yardstick - how far
the machine exploits knowledge of the world. With few
exceptions A.I. workers seem to have shelved the learning
issue. It is a problem to be tackled later.

My conviction is that you cannot fully understand how we
do something until you understand how we come to do it.
Neural nets models have often exploited the mechanism of
varying synaptic weight in order to alter the net's structure
as a consequence of experience. The procedural nets
described above retain this feature in the following way.

A machine consists of a set of sensory predicate cells,
a set of drives and a set of Try-Do units associated with
specific actions. The pathways coupling Try and Do units
are fixed. The others are adaptive and fall into two groups.
The first consists of paths from all the drives to all the
Try cells and paths from all the Try cells to all the other Try
cells. These are the pathways along which control is trans-
ferred to sub-goal seeking procedures. The weight of such a
pathway is made proportional to the Shannon mutual informa-
tion between performance of the action and reduction of the
drive. Thus in Fig. 3B the path between Try Suck and Try
Cry is rewarded because crying results in nipple presentation
whch switches the Suck unit into state 'Do' and the output
from 'Try Suck' is thus reduced. The other group of
adaptive ,pathways are those from all the senses to all the Do
cells. These are rewarded when a reduction in the input to
the Try-Do unit correlates with activity in the Sense - Do
pathway. Detailed discussion of the learning equations
appears in Scott (9).

In this way a device whose behaviour is initially random
gradually programs itself into a network of neural procedures.
Implementation.

Both fixed and adaptive pathway versions of several Try-
Do networks have been demonstrated by simulation in Algol 68
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on an ICL 1904 computer (Scott (9)).
¥urther Comparison With Programming Languages.

We now return to the comparison of neural nets with
programming languages. The level we have brought neural
nets up to is that of an assembler code with subroutine call
facilities. There is still a long way to go before the
exalted heights of Planner or Algol 68 and yet in certain
ways we may be further on.

Many of the advances in programming languages since
assembler code can be placed into two categories. The
first, usually termed 'syntactic sugar', consists of more
natural syntax in which to write pro