

AISB 2008 Convention

Communication, Interaction and Social

Intelligence
1st-4th April 2008

University of Aberdeen

Volume 11:
Proceedings of the

AISB 2008 Symposium on Swarm Intelligence
Algorithms and Applications

Published by

The Society for the Study of
Artificial Intelligence and
Simulation of Behaviour

http://www.aisb.org.uk/convention/aisb08/

ISBN 1 902956 70 2

Contents

The AISB’08 Convention . ii

Frank Guerin & Wamberto Vasconcelos

Symposium Preface . iii

Aladdin Ayesh

Visualizing Bacteria Quorum Sensing . 1

Maria Schwarz, Daniela Romano & Marian Gheorghe

Trained Particle Swarm Optimization for Ad-Hoc Collaborative Computing Networks . 7

Shahin Gheitanchi, Falah Ali & Elias Stipidis

Controller-Agent based approach for Solving Distributed Constraint Problem . 12

Sami Al-Maqari & Habib Abdularb

Introducing Bar Systems: A Class of Swarm Intelligence Optimization Algorithms . 18

Esteve del Acebo & Josep Lluis de la Rosa

A Comparison between GAs and PSO in Training ANN to Model the TE Chemical Process Reactor 24

Malik Braik, Alaa Sheta & Amani Arieqat

Real Time Movement Cooredination Technique Based on Flocking Behaviour for Multiple Mobile Robots System . . . 31

Ghada AlHudhud & Aladdin Ayesh

Aqua Swarms: Design and Implementation of Water Surface AUV . 38

Mustafa Ozkan Daglioz & Aladdin Ayesh

Ant Colony Optimisation for Large-Scale Water Distribution Network Optimisation . 44

Laura Baker, Ed Keedwell & Mark Randall-Smith

Estimation of Hidden Markov Models Parameters using Differential Evolution . 51

Ângela A. R. Sá, Adriano O. Andrade, Alcimar B. Soares & Slawomir J. Nasuto

Exploration vs. Exploitation in Differential Evolution . 57

Ângela A. R. Sá, Adriano O. Andrade , Alcimar B. Soares & Slawomir J. Nasuto

Toward a Unified Framework for Swarm Based Image Analysis . 64

Walther Fledelius & Brian Mayoh

i

The AISB’08 Convention: Communication, Interaction and Social Intelligence

As the field of Artificial Intelligence matures, AI systems begin to take their place in human society as our helpers. Thus it

becomes essential for AI systems to have sophisticated social abilities, to communicate and interact. Some systems support

us in our activities, while others take on tasks on our behalf. For those systems directly supporting human activities,

advances in human-computer interaction become crucial. The bottleneck in such systems is often not the ability to find

and process information; the bottleneck is often the inability to have natural (human) communication between computer

and user. Clearly such AI research can benefit greatly from interaction with other disciplines such as linguistics and

psychology. For those systems to which we delegate tasks: they become our electronic counterparts, or agents, and they

need to communicate with the delegates of other humans (or organisations) to complete their tasks. Thus research on

the social abilities of agents becomes central, and to this end multi-agent systems have had to borrow concepts from

human societies. This interdisciplinary work borrows results from areas such as sociology and legal systems. An exciting

recent development is the use of AI techniques to support and shed new light on interactions in human social networks,

thus supporting effective collaboration in human societies. The research then has come full circle: techniques which

were inspired by human abilities, with the original aim of enhancing AI, are now being applied to enhance those human

abilities themselves. All of this underscores the importance of communication, interaction and social intelligence in current

Artificial Intelligence and Cognitive Science research.

In addition to providing a home for state-of-the-art research in specialist areas, the convention also aimed to provide

a fertile ground for new collaborations to be forged between complementary areas. Furthermore the 2008 Convention

encouraged contributions that were not directly related to the theme, notable examples being the symposia on “Swarm

Intelligence” and “Computing and Philosophy”.

The invited speakers were chosen to fit with the major themes being represented in the symposia, and also to give a

cross-disciplinary flavour to the event; thus speakers with Cognitive Science interests were chosen, rather than those with

purely Computer Science interests. Prof. Jon Oberlander represented the themes of affective language, and multimodal

communication; Prof. Rosaria Conte represented the themes of social interaction in agent systems, including behaviour

regulation and emergence; Prof. Justine Cassell represented the themes of multimodal communication and embodied

agents; Prof. Luciano Floridi represented the philosophical themes, in particular the impact of society. In addition there

were many renowned international speakers invited to the individual symposia and workshops. Finally the public lecture

was chosen to fit the broad theme of the convention – addressing the challenges of developing AI systems that could take

their place in human society (Prof. Aaron Sloman) and the possible implications for humanity (Prof. Luciano Floridi).

The organisers would like to thank the University of Aberdeen for supporting the event. Special thanks are also due to

the volunteers from Aberdeen University who did substantial additional local organising: Graeme Ritchie, Judith Masthoff,

Joey Lam, and the student volunteers. Our sincerest thanks also go out to the symposium chairs and committees, without

whose hard work and careful cooperation there could have been no Convention. Finally, and by no means least, we would

like to thank the authors of the contributed papers – we sincerely hope they get value from the event.

Frank Guerin & Wamberto Vasconcelos

ii

The AISB’08 Symposium on Swarm Intelligence Algorithms and Applications

The increasing complexity of the current world can be observed each day. Sustainable development for example consists

of economical and social systems management within natural environment. The understanding of the whole leads to what

we call territorial intelligence. This is an example of the interaction between living entities, e.g. humans, space and en-

vironmental elements, e.g. services. Within the space and governed by the elements, the living entities swarm leading to

formation of communities and patterns exhibiting complex system dynamics.

The way of modelling these complex systems is often based on interactive networks dealing with the interconnection

between all of the system components. The components themselves may be simple as separate individuals and exhibiting

uninteresting behavior. However, the connection and interaction of these components make the simple collective behav-

iors to emerge into a complex often difficult to mathematically model behavior. This complex behavior is the result of the

dynamics exhibited by the collective system.

Decision making in the emerging complex world of a collective need tools that are able to detect and manage emer-

gent organizations through these networks. Distributed Artificial Intelligence (DAI) is the adapted conceptual trend which

allows the proposal of some relevant solutions by relying on social and physical sciences models exhibited and observed

in nature (e.g. ant colonies, molecular crystallisation, etc.).

In this search and management of emerging organization, swarm intelligence algorithms proved to be popular and

effective methods to use. On the technological front, the increasing number of robotic systems, advances in nano technol-

ogy, and the sheer complexity of modern enterprise systems, especially those boosting high degree of autonomy, makes

the development of swarm intelligence timely and needed. These complex systems and the dynamics of a swarm collec-

tive can be easily related. At the same time, swarm intelligence algorithms require less computational powers than their

equivalence traditional complex system.

Until now, swarm intelligence is often algorithmic approach than theoretically analyzed. However, it proved success-

ful with a variety of applications such as optimization, image processing and simulation. Ant colony optimization and

Particle Swarm Optimization algorithms are most popular algorithms in their area. They often extend to be applied in

social simulation and image processing. Flocking algorithms are widely used in a variety of robot and reactive agent based

applications.

This symposium brings papers in a variety of application areas covering wide range of swarm intelligence algorithms.

Theoretical investigation is also represented although lightly.

Aladdin Ayesh

Programme Chair:
Aladdin Ayesh, De Montfort University, U.K.

Programme Committee:
Habib Abdulrab, INSA Rouen University, France

Eduard Babkin, Higher School of Economics, Russia

Cyrille Bertelle, University of Le Havre, France

Gérard H.E. Duchamp, University of Paris XIII, France

Laszlo Gulyas, Eotvos University, Budapest, Hungary

Alaa Sheta, Al-Balqa Applied University, Jordan

iii

Visualizing Bacteria Quorum Sensing

Maria Schwarz, Daniela Romano and Marian Gheorghe1

12
Abstract. Large populations of bacteria communicate by
sending into the environment some specific signalling
molecules. A bacterium will sense the population density by the
concentration of the signalling molecule. This process, known
as “quorum sensing”, is used in this paper to show the emergent
behaviour of a bacterium colony in various circumstances. The
biochemistry associated with quorum sensing has been modelled
and an agent based approach has been used to simulate the
behaviour of the colony. In addition, a 3-D environment has
been created to illustrate how the emergent behaviour occurs
within the colony as a result of local immediate real-time
interactions, while a data file is generated to visualise the
behaviour of the colony over time as a 2D graph.

1 INTRODUCTION

There are numerous ways in which members of various
communities communicate. Even simple organisms have
different ways to pass information among them. Quorum sensing
(QS) is one of these communication mechanisms, which has
been known since the end of the 1960s. A review of various
bacterium populations, the LuxR-LuxI family, and how they
communicate with each other is presented in [1].

Bacteria use QS to coordinate different behaviours. For example
the light emission in luminescent bacteria (the Vibrio fischeri or
Vibrio harveyi), division in Escherichia coli, or biofilm
formation in infective bacteria like Pseudomonas aeruginosa.
The most important role in QS is played by signalling molecules,
called autoinducers, which are produced by bacteria. These
autoinducers diffuse through the bacterium membrane into
environment. The accumulation of it in the environment takes
place if there is a high concentration of bacteria in that space. If
this occurs, a special gene will be activated and an increase in
signalling molecules production is observed [2]. Therefore the
behaviour of the bacteria change and the population density will
be controlled [1], [3].

The QS process is widely studied today due to its importance in
regulating the colony behaviour, but also as a computational
paradigm applied to investigate computer networks, artificial life
phenomena [4].

The QS mechanism represents one of the most important cell-to-
cell communication processes [4], which requires fine grain
knowledge of the complex (micro-)biological system involved
and the associated communication procedures in place. In this

1 Department of Computer Science, The University of Sheffield, Regent
Court, Portobello Street, Sheffield S1 4DP, UK
Email: shef@schwarz-maria.de,

{d.romano, m.gheorghe}@dcs.shef.ac.uk

respect various approaches have be employed, ranging from
mathematical models that address a global behaviour of the
community to different agent based methods that represent every
bacterium with its internal processes and local interactions
between the community members. The agents, representing
individuals in their environment, act in a totally autonomous
manner [5] and coordinate their behaviour based on special
rules. Thus, they interact with the other agents from their
neighbourhood.

In order to study the behaviour of these colonies or to investigate
certain properties of the computational paradigms associated
with, adequate modelling and simulation tools have been
provided. In the last few years improved computer technology
has paved the way to visualise this process without major
performance difficulties and it is possible to visualise a QS
behaviour-using species of bacteria in three dimensions.

There have been built various agent based tools and software
platforms. An example, which uses the agent-based method, is
the visualisation of the motion and behaviour of a flock of birds
[6]. Thereby each bird acts autonomously “to its local perception
of the dynamic environment, the laws of simulated physics that
rule its motion and a set of behaviours programmed into it by the
‘animator’” [6].

There are also open source environments allowing to create
agent-based models and to simulate them on various platforms.
NetLogo and SWARM are both agent-based modelling
environments suitable to specify, study and simulate complex
systems with a high number of agents [7], [8]. Regrettably, both
frameworks have a pretty elementary construction so that there is
no parallel processing available. This problem is addressed by
another agent based toolkit, called MASON, which is written in
java [9]. This modelling toolkit provides parallel processing,
which is controlled by a scheduler. Flexible Agent Modelling
Environment (FLAME, for short) has been developed by a team
of the University of Sheffield [10], and has a great flexibility in
its usage and has been extensively employed to model complex
biological and economical systems [10]. Every agent is
abstractly represented like a state machine, all the processes
occurring inside are specified in an XML format and they share a
common special memory component that allows agents to
communicate and store information [5].

The paper aims to uncover aspects related to the emergent
behaviour of a colony of Vibrio fischeri bacteria with respect to
various parameters, like cell density, amount of signals
produced, signal diffusion in the environment. The following
topics are covered. Section 2 gives a brief description of the
model used in the agent-based approach. In section 3 an
overview of the implementation of the agent model within
FLAME framework and the visualisation part are presented.
Section 4 presents the experiments concerning the simulation
and shows the results obtained and their significance for the

1

emergent behaviour. The last section evaluates the findings and
proposes updates to the existing approach.

2 THE CONCEPTUAL MODEL

Many species of bacteria regulate gene expression in response to
increasing cell population density. Bacteria produce and release
signalling molecules (called autoinducers) that accumulate in the
environment as the cell density increases. When a certain
threshold is achieved a signalling transduction cascade is
triggered and leads finally to a change in behaviour by
increasing the production of the signalling molecules and leading
to other individual changes. In Vibrio fischeri population a
protein called LuxI is responsible to synthesise an acylated
homoserine lactone signalling molecule (HSL, for short) [3]. The
HSL signalling molecule diffuses out of the bacterium, into the
environment, following a gradient concentration or it penetrates
in when the environment surrounding it has a higher
concentration of these molecules than the bacterium. If the
concentration of this autoinducer reaches a special threshold, and
therefore there are a high number of bacteria in a small space, a
protein called LuxR reacts with the autoinducers by producing a
complex, called LuxR-HSL. This complex is responsible for the
activation of the transcription of a specific gene and the
bacterium enters a new state, it becomes quorated and starts
emitting light [3].

The agent model consists of two agent types: bacterium-agent
and environment-agent. The bacterium-agent model is defined
according to the rules defined by Figure 1. Usually each
bacterium produces signalling molecules and proteins LuxR at a
low rate (rules r1 and r2, respectively). The signalling molecules
freely diffuse into the environment (r9) and both, signalling
molecules and proteins degrade in time (r10, r11). Due to the
low rate production of autoinducers, diffusion and degradation,
the number of signalling molecules in the bacterium is too low
and it will not start becoming quorated and producing light.

However, in specific circumstances when a certain threshold
is reached somewhere in a specific part of the environment, near
some bacteria, which only happens if a high number of bacteria
are in one small space, the signalling molecules will diffuse back
into those bacteria and increase more the concentration of
autoinducers within them, triggering the quoration mechanism
which leads eventually to producing light. This process is
described in our model by the production of the complex LuxR-
signal (r3), which in high concentration of the signalling
molecule will not decompose back into its components and will
next bind to a certain gene (r5) and will remain there and
increase the production of signalling molecule and protein LuxR
(r7, r8).

[]][:11

[]][:10

[]][:9

],[][:8

],[][:7

],[][:6

][],[:5

],[][:4

][],[:3

],[][:2

],[][:1

11

10

9

8

7

6

5

4

3

2

1

⎯→⎯

⎯→⎯

⎯→⎯

−−⎯→⎯−−

−−⎯→⎯−−

−⎯→⎯−−

−−⎯→⎯−

⎯→⎯−

−⎯→⎯

⎯→⎯

⎯→⎯

k

k

k

k

k

k

k

k

k

k

k

LuxRr

signalr

signalsignalr

LuxRsignalLuxRLuxBoxsignalLuxRLuxBoxr

signalsignalLuxRLuxBoxsignalLuxRLuxBoxr

signalLuxRLuxBoxsignalLuxRLuxBoxr

signalLuxRLuxBoxsignalLuxRLuxBoxr

signalLuxRsignalLuxRr

signalLuxRsignalLuxRr

LuxRLuxBoxLuxBoxr

signalLuxBoxLuxBoxr

Figure 1. Equations describing all chemical interactions [11]

The bacterium-agent described above contains five different
molecules that play an important role in producing the signalling
molecule. The process of production, diffusion, degradation,
combination of these chemical molecules is controlled by an
exact stochastic method developed according to Gillespie
algorithm [12]. Usually this algorithm iteratively selects the next
rule to be applied and computes the time for this to be
performed. In order to do this the current concentration of the
chemicals involved in a rule and the kinetic rate (k1 to k11, in
Figure 1) are considered.

Each environment field, modelled as an environment-agent,
contains a defined number of signalling molecules (at the
beginning zero). This number of signalling molecules is changed
by the movement of them according to the concentration
gradient.

3 IMPLEMENTATION

The general architecture of the implementation is given in Figure
2 and contains the agent-based system implementation and the
graphical interface part.

The upper part of Figure 2 refers to the agent framework
FLAME [13], [14] and the bottom part represents the user
interface to the system.

To implement FLAME we had to build a XMML Model, which
is written as an xml file. It defines all the agents, their status,
associated functions (activities) and their dependencies with
respect to messages sent between agents; messages owned by
each agent are defined. Additionally, a C-based file, where all
the functions and their features are set, needs to be provided.
This file depends on a xml model defining the structure of the
state machine. The initial state of the system must be defined
(for example how many agents are in the system, their initial
distribution, the initial concentrations of the chemicals present in
each bacterium etc.).

Instances of the bacterium-agents and of the environment-agent
are immersed into FLAME. Every bacterium-agent will run a
slightly modified version of Gillespie algorithm to select the next
rule to be used, adapted to match the requirements of the agent

2

framework. The initial concentration of the chemical molecules
of the bacterium-agents will depend on various experiments
made. The current Gillespie algorithm implementation computes
only the next rule to be applied. All the agents of the system are
able to send messages between them through a message board.

Thus the agents know independent of the other partners in the
whole system what goes on in their close environment.
Therefore every agent can behave irrespective of the size of the
system or the collective number of agents [13], [14]. The only
restriction is the dependency on the messages sent by agents in
their close neighbourhood.

Figure 2. Overview of the implementation architecture

Figure 3. Screenshot of the graphical user interface and the child
window of it

The Graphical User Interface (GUI), which is implemented with
the Microsoft Foundation Class Library, provides four different
functions. First it builds the 0.xml file which contains user
defined data. Then, the second function deals with FLAME
framework, which uses the initial xml file mentioned above, to
run requested simulations and generate various output results
into xml files. After running FLAME, the GUI executes the xml-
to-bin-converter – the third function. Thus, xml files are
converted to one single binary data file. This conversion helps
improving the performance of the three-dimensional graphics
process. The visualisation step, the last function, written in C++,
using OpenGL library, displays the incoming data and outcomes
of the simulation [15].

Figure 3 shows screen shots of the GUI. Firstly when the system
starts, the top window appears. Through this window it is
specified the species used in the simulation and visualisation
(currently Vibrio fischeri), and, optionally setting various initial
values, by pressing the “Enter Data” button. The “render scene”
button may be used to render output data. After introducing the
initial values requested by the current experiments a simulation
phase is performed by hitting the “run” button. If a graphical
output is requested then going back to the top window a new
graphical representation may be obtained for the last simulation.

4 EXPERIMENTS & RESULTS

The agent model presented relies on a set of chemical reactions
given by Figure 1.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11

0.002 0.002 0.009 0.001 0.01 0.002 0.25 0.2 0.01 0.03 0.02

Table 1. Used reaction rates

3

initial
concentration

activation after
step range

highest concentration of
signalling molecules r1 r2 r7 r8

(500, 20) 2235 - 3855 63 - 88 593 - 989 500 - 915 70 - 156 66 - 123

(1000, 20) 734 - 966 58 - 95 195 - 309 179 - 281 194 - 241 168 - 196

(5000, 100) 680 - 888 73 - 112 182 - 261 146 - 249 203 - 238 159 - 185

Table 3. Behaviour of a bacterium colony

According to this model each reaction specifies the reactants and
products as well as a kinetic rate. The values of these constants
used in the following experiments are provided in Table 1.

According to the model presentation, given in Section 2, each
bacterium produces signalling molecules and proteins at a basal
rate, given by reactions r1 and r2. In certain conditions, when the
concentration of the signalling molecule is high enough, in
certain parts of the environment, the bacteria in that area will
become quorated and instead of using the basal production rate
for the above mentioned chemicals will switch to another state
where reactions involving the use of the complex LuxR-signal,
r7 and r8, are used. In a number of experiments below we will
show how QS will emerge from local interactions when
environment conditions are appropriate. To simulate the process
of QS occurring within a bacterium colony, the right
concentration of various chemicals is necessary to be identified.
The concentration threshold is given by the amount of signalling
molecule.

Firstly we started with five bacteria, spread randomly in a
relatively big environment such as to avoid a high cell density
population in some parts of the space. The initial values of the
molecules are all zero except for LuxBox, which has the value
one. This experiment is repeated five times and each time, 20000
iterations were performed.

 Max signal Max protein r1 r2 r7 r8

RUN 1 4 4 5318 4651 0 0

RUN 2 4 6 5301 4698 0 0

RUN 3 4 4 5349 4660 0 0

RUN 4 3 4 5340 4613 0 0

RUN 5 4 4 5371 4608 0 0

Table 2. Five isolated bacteria for 20000 steps

From Table 2 it follows that only rules r1 and r2 are used over
20000 iterations in each of the five experiments and none of the
r7 or r8 is ever used. This shows all bacteria keep running the
non-quorated state, producing signalling molecules and proteins
at a basal rate. The maximum number of signalling molecule is 4
and of the protein is 6, across all experiments and iterations.
These experiments clearly show that when the cell density is
lower nothing happens even over a long period of time. This will
be also reinforced by the latter experiments reported in Table 3.
More than this, from Figure 4, it turns out that most of the time
these values are between 2 and 3 and very rarely they reach
values above 3.

Figure 4. Signalling molecules and proteins in one isolated

bacterium

From these experiments we have learned that if we consider 5 as
a threshold for the number of signalling molecules that might
trigger the QS, i.e., allowing rules r7 and r8 to be used, then this
is coherent with individual behaviour of bacteria acting in
isolation.

The second type of experiment we ran is with a colony with
some special distribution of bacteria in the environment and
different concentrations of the signalling molecule in the
environment. All these experiments are run with 9 bacteria and
5000 steps. Five of these nine bacteria are very close to each
other in one corner of the environment, whereas the other four
are far away from that area. So we can compare the behaviour of
the whole colony in these conditions and witness the occurrence
of the emergent behaviour with respect to cell-density. In this
colony we put into the bacterium that is in the middle of the
group of 5 cells different initial values for the signalling
molecule, so that this one, from the beginning, will be activated
and will produce enough signalling molecules into the
environment such as to saturate a certain part of it and to force
the neighbour bacteria to accept the surplus of signalling
chemicals. These initial values of the signalling molecule and
protein are listed in the first column of Table 3 as a pair (x,y); x
represents the number of signalling molecules and y the number
of proteins. Three different experiments are reported – see Table
3. The other columns in Table 3 refer to data collected from the
four bacteria surrounding the activated one and show when they
become activated, the highest concentration of the signalling
molecule and the number of times rules r1, r2, r7 and r8 are
used. The other four bacteria are never activated, they keep
producing the usual chemicals at a basal rate.

4

From Table 3 one can get that the activation step of the QS
mechanism is between 680 and 3855, depending on various
chemical concentrations of the above mentioned chemicals. The
use of rules r1, r2 on the one hand and r7, r8, on the other hand
refers to the two behaviour stages of the bacteria involved, non-
activation – only the first rules are used and activation – only the
last two are employed.

To illustrate the evolution in time of the colony and the
transformations occurring within the environment, in Figure 5, a
three dimensional visualisation framework is provided. In order
to keep the visualisation process as simple as possible, the agents
are shown as cubes depicted with different colours. These cubes
are not solid blocks, but only frames. Therewith it is easy to
view all the agents in the background. The colour of a
bacterium-cube is white for an inactivated bacterium and yellow
for an activated one. The environment-agents are grey at the
beginning of the simulation and when signalling molecules start
to appear they change to a dark green colour. With this colour-
change it is possible for the user to see the diffusion of the
signalling molecules and how do they accumulate in some parts
of the environment and then the gradual activation of various
bacteria.

In Figure 5 few visualisation screenshots are represented. The
first picture shows the initialised state of the simulation, when
only the central bacterium in the left-bottom group is active and
thereby yellow. The other bacteria are all white and they only
produce signalling molecules and proteins at a low rate.
Remember the active bacterium has quite a massive surplus of
signalling molecule which is released into the surrounding
environment and after a while will enter the bacteria nearby. The
second picture shows a snapshot of the time when the
environment around the central bacterium has plenty signalling
molecules and one of the other four bacteria from that part
becomes active, turns to yellow. The green parts around the
bacteria are the environment agents, which contain signalling
molecules. The brighter these cubes are, the more signalling
molecules are in these places.

Figure 5. Screenshots of an example experiment with 9 bacteria

In the last picture all the bottom-left bacteria are activated
whereas the other four remain inactivated and they will still be in
that state even after 20000 steps.

These experiments clearly show a high dependency of the QS
behaviour on the cell-density as well as a high stability with
respect to parameters considered in these experiments.

The work reported in this paper may be also considered as a
continuation of the investigation reported in [4] where QS
phenomena are presented with respect to environment changes.
This study represents a step forward by considering a broader
range of experiments, with a well-established set of internal rules
and fine-tuned parameters, within a stable range of values. The
experiments clearly show when emergent behaviour occurs and
how various rules and chemical concentrations contribute to this
process.

5

5 CONCLUSIONS

The paper presents an agent based approach to simulate the
behaviour of a bacterium colony with the aim of revealing some
emergent properties with respect to QS phenomenon. A
stochastic model based on Gillespie algorithm has been
implemented for the agents running within a flexible agent
platform, called FLAME. A graphical interface allowing to
adjust various parameters of the model and to visualise the
behaviour of the system is presented.

The current case study shows the potential of the approach to
reveal emergent behaviour of a set of agents as a consequence of
cell-density concentration in the environment and various ways
of producing specific signalling molecules.

The model and the software platform described in this paper may
be used to describe more complex systems and to identify
specific behaviour patterns. This is one of our future plans and
in order to make it achievable an intermediary step will be to
investigate mechanisms to speed up the execution time of the
simulator by migrating it on more efficient platforms, like
clusters or graphical cards.

REFERENCES
[1] W. C. Fuqua, S. C. Winans, and E. P. Greenberg. Quorum Sensing in

Bacteria: the LuxR-LuxI Family of Cell Density-Responsive
Transcriptional Regulators. In: Journal of Bacteriology 176: 269-275
(1994)

 [2] K. H. Nealson, T. Platt, and J. W. Hastings. Cellular Control of the
Synthesis and Activity of the Bacterial Luminescent System. In:
Journal of Bacteriology 104: 313-322 (1970)

[3] M. B. Miller and B. L. Bassler. Quorum Sensing in Bacteria. In:
Annu. Rev. Microbiol. 55:165-199 (2001)

 [4] N.Krasnogor, M. Gheorghe, G. Terrazas, S. Diggle, P. Williams, and
M. Camara. An Appealing Computational Mechanism Drawn from
Bacterial Quorum Sensing. In: Bulletin of the European Association
for Theoretical Computer Science. (2005)

[5] C. M. Macal and M. J. North. Introduction to Agent-based Modeling
and Simulation, In: Argonne National laboratory, MCS LANS
Informal Seminar. (2006) Available at http://www-
unix.mcs.anl.gov/~leyffer/listn/slides-

06/MacalNorth.pdf (access 07 th December 2007)
[6] C. W. Reynolds. Flocks, Herds, and Schools: A Distributed

Behavioral Model. In: Computer Graphics, 21: (4) 25-34. (1987)
[7] U. Wilensky. NetLogo. (1999)

http://ccl.northwestern.edu/netlogo/. Center for
Connected Learning and Computer-Based Modeling, Northwestern
University. Evanston. IL

[8] The Swarm Development Group Wiki.
http://www.swarm.org/wiki/Main_Page (access 7th December
2007)

[9] S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivian. MASON: A
New Multi-Agent Simulation Toolkit. In: Proceedings of the 2004
SwarmFest Workshop. (2005)

[10] Mike Holcombe, Simon Coakley and Rod Smallwood. A General
Framework for Agent-based Modelling of Complex Systems. In:
EURACE Working paper WP1.1 (2006)

[11] F. Bernardini, F.J. Romero-Campero, M. Gheorghe, and M.J. Pérez-
Jiménez. A Modeling Approach Based on P Systems with Bounded
Parallelism. In: Lecture Notes in Computer Science. Springer.
4261/2006. Berlin/ Heidelberg. 49-65. (2007)

[12] D. T. Gillespie. Exact Stochastic Simulation of Coupled Chemical
Reactions. In: The Journal of Physical Chemistry 81: (25) 2340-
2361. (1977)

[13] http://www.flame.co.uk (access 27th November 2007)
[14] https://trac.flame.ac.uk/wiki/ (access 29th November

2007)
[15] M. Woo et al. OpenGL Programming Guide. Third Edition.,

published by Addison-Wesley Longman, Amsterdam. Page 2 f.
(2000)

6

Trained Particle Swarm Optimization for Ad-Hoc
Collaborative Computing Networks

Shahin Gheitanchi, Falah Ali, Elias Stipidis

 Abstract. Distributed processing is an essential part of
collaborative computing techniques over ad-hoc networks. In this
paper, a generalized particle swarm optimization (PSO) model for
communication networks is introduced. A modified version of
PSO, called trained PSO (TPSO), consisting of distributed particles
that are adapted to reduce traffic and computational overhead of the
optimization process is proposed. The TPSO technique is used to
find the node with the highest processing load in an ad-hoc
collaborative computing system. The simulation results show that
the TPSO algorithm significantly reduces the traffic overhead,
computation complexity and convergence time of particles, in
comparison to the PSO.

1 INTRODUCTION

Deployment of wireless communication services based on
collaborative computing has recently been considered by
researchers in different areas [1-3]. Collaborative computing
requires ad-hoc networking and efficient distributed processing
techniques to perform complex tasks in a reasonable time.

Particle Swarm Optimization (PSO) [4] is a well known
pervasive optimization technique in artificial intelligence that is
based on behavior of social animals such as bees and birds. In the
PSO technique each individual member of social colony, like a
bird, is called a particle. For example, we observe PSO in a swarm
of birds in a field. Their goal is to find the location with the highest
density of food. Without any prior knowledge of the field, the birds
begin their search in random locations with random velocities.
Each bird can remember the locations that it has found more food,
and somehow knows the locations where the other birds found
large amount of food. Each bird has the choice to decide between
returning to the location where it had found the most food itself, or
exploring the location reported by others to have the most food, the
bird accelerates in both directions somewhere between the two
points depending on whether nostalgia or social influence
dominates its decision. Along the way, a bird might find a place
with more food than it had found previously. It would then head to
this new location as well as the location of the most food found by
the whole swarm. Occasionally, one bird may fly over a place with
more food than have been found by any other bird in the swarm.
The whole swarm would then head toward that location in
additional to their discovery. Soon, all or most of the birds gather
around the location where the highest density of food is there.

To increase the efficiently and performance of different OSI
layers [5], the PSO technique has been used in the literature for

various scenarios [6–10]. Most of PSO applications in
communications have been focused on clustering in ad-hoc
networks aiming to minimize energy consumption [6-8]. In [6] the
authors have applied PSO to cluster head selection and in [7] it has
been used for distance based clustering of wireless sensor
networks. Also in [8] the algorithm was used to optimize the cost
and coverage of clustering in mobile ad-hoc networks. Many other
applications for PSO in communications such as IP multicasting
and channel assignment have been mentioned in [9]. Utilizing the
PSO in ad-hoc networks increases flexibility, adaptation and
robustness. While being simple, it can also introduce enormous
traffic and computation overhead to the network and may lead to
long convergence time. The traffic overhead is the number of extra
packets needed to be transmitted over the network to accomplish
the optimization task. The computation complexity overhead is the
time (number of iterations) needed by a node to process the
particles gathered over it.

In this paper, we introduce a generalized PSO model for
communication networks. Then, based on the PSO model, we
propose trained PSO (TPSO) for ad-hoc networks as a new
technique to support collaborative computing networks. Using the
proposed models, we simulate PSO and TPSO techniques in an ad-
hoc network to find the node with the highest processing load.
Finally, we compare the traffic overhead, computation complexity
overhead and convergence time of the techniques.

2 GENERALIZED PSO MODEL

PSO system model consists of P number of particles and unique
particle IDs (PIDs) which are randomly distributed over the
problem solution space. The solution space, S, is the set of all
possible solutions for the optimization problem. Depending on the

problem, the solution space can have N number of dimensions,
NS

, where each dimension contains different number of elements.
Each particle is capable of measuring the suitability of solutions by

using the fitness function
1 2(, ,...,)nf s s s , where 0 n N< ≤

and
n Ns S∈ . All particles use unique and identical fitness

function to be able to assess the suitability of a solution. The

objective of the optimization is to find a set of �S S⊂ to
maximize the fitness function

�S = Argmax
1 2(, ,...,)nf s s s (1)

7

Each particle stores the value and location of the best solution
found so far, called the local best (LB). Also all particles are aware
of the value and location of the best solution found by all other
particles, called the global best (GB). Assuming synchronized
timing and unique speed among the particles, the optimization is
performed during Γ iterations. At each iteration the particles
compare the LB and the GB to choose a direction independently
based on the distance differences from current location to the GB
and to the LB locations. The distance between two locations,

1 1
1 2(,)s s and

2 2
1 2(,)s s , for N = 2 is given by

2 1 2 2 1 2
1 1 2 2() ()d s s s s= − + − (2)

Particles consider nostalgia, wn, and social influence, ws, for

deciding their directions. The weights, wn and ws, describe the
importance of nostalgia and social influence for particles, where wn
+ ws = 1. We define the following expression for deciding the
direction

LB if () 0
direction is

GB if () 0
n LB s GB

n LB s GB

w d w d

w d w d

− ≤�
�

− >�
 (3)

Where, for each particle, dLB is the distance from the current

location to the LB and dGB is the distance from the current location
to the GB. After specifying the direction the particle moves toward
the decided destination which is the location of the LB or the GB.
During the optimization process, the GB is updated when a
solution with higher fitness value is found by a particle. After Γ
iterations the particles gather (or converge) on the location with the
highest fitness value and the algorithm terminates which is referred
to as the termination criteria 1. When the particles converge, the
value of the GB is considered as the solution of the optimization
problem. To avoid infinite loop in cases of having more than one
GB value and also managing the execution time of the PSO
algorithm, we set a relatively large number as the maximum

iteration number, maxΓ in compare with elements of solution space.

When the process is stopped by reaching maxΓ , called termination

criteria 2, the GB with highest population of particles over it is
chosen as the solution for the optimization problem. Table 1 shows
the general PSO algorithm.

Table 1. The generalized PSO algorithm

1: Initialize and distribute particles
2: Loop while not (termination criteria 1 and 2)
3: For each particle:
4: If (LB > GB)
5: Replace GB and LB
6: Calculate LB
7: Decide the direction towards LB or GB
8: Move to new position
9: End of for
10: End of loop

3 TPSO FOR AD-HOC COLLABORATIVE
COMPUTING

Because of distributed nature of particles, the proposed PSO
model is suitable for efficient distributed processing with different
objectives. Figure 1 shows the distributed nodes of an ad-hoc
collaborative computing system. The movement of particles in an
ad-hoc network introduces high traffic and computation complexity
overhead. Also it may take a long time to converge. The traffic
overhead is caused by movement of particles and their related
information such as history of the LB. To reduce the overheads, we
introduce the TPSO technique. TPSO is an improved PSO
algorithm which the values of wn, ws and P are defined based on the
requirements of the system using a training system. The idea is to
adapt the particles behavior in order to benefit from the system
limitations such as limited number of routes that a particle can take
or the number of particles that can be over a single solution (node).
We assume a perfect training system is responsible for training the
particles of the PSO algorithm. As it will be shown in the
simulation results, training the particles reduces the traffic and
computational complexity overheads and also significant reduces
the convergence time.

Figure 1: Ad-hoc collaborative computing network model.

In the collaborative computing system we consider an ad-hoc

network consisting of randomly distributed nodes in a two-
dimension (N = 2), X-Y, landscape. The nodes in the network
support multi-connections to their neighboring nodes and are able
to transmit the data to the destination using shortest path routing
method. The solution space is equal to positions of nodes and is
stored in a sparse matrix as following

,

1 if a node exist in x X, y Y

0 else x yS
∈ ∈�

= �
�

 (4)

The distance is measured using eq. 2 and the number of particles

is less than the number of nodes. As it will be shown in the
simulation results, the number of particles in PSO contributes to
the convergence time of PSO algorithm but in TPSO the
convergence time does not significantly change by the number of

8

particles. However, low number of particles in the system may lead
to sub-optimal results.

At the beginning of the TPSO process, the particles are
randomly distributed among the nodes. In the network, the packets
move only through the single available route between each two
neighboring nodes. Since the solution space is equal to the position
of nodes, and is a sparse matrix, it is not expected to find any
solution between two neighboring nodes. Therefore, the movement
of particles between two neighboring nodes that is caused by
uncertainty between nostalgia and social influence will not lead to
finding of a new LB or GB value. By manual training, we force the
particles to always follow the social influence (choosing the GB as
the next destination) using the following configuration: ws = 1 , wn
= 0. This configuration will avoid redundant movements of the
particles between two neighboring nodes; hence it will reduce the
traffic and computation complexity overhead. Furthermore, as it
will be shown in the simulation results, the particles converge in a
constant number of iterations. This is because of constant
maximum distance between every two nodes, movement of all
particles towards an identical node and hopping from one node to
another in a single iteration.

Figure 2 shows the flowchart of the TPSO algorithm for an ad-
hoc collaborative computing network. The particles are
implemented on each node using an identical software agent, called
the particle process (PP). It is responsible to calculate, compare and
update the LB and the GB values as well as moving the particle
towards GB. The GB updates are done using a broadcast algorithm
in the network layer. Since the updating is performed occasionally,
we neglect the caused overheads. The PP of a node runs only when
at least one particle is over that node. Therefore, increasing number
of particles over a node will increase the computational complexity
overhead. Particles move between two nodes by using a flag,
carried by the data packets circulating in the network. The flag
indicates when to run a PP process in a node and also is used for
counting the PIDs over a node. Since particles move among the
nodes using the data packets, their movement and directions
depend on the availability of connection among the nodes.

In TPSO, all particles on a node have similar destination which
is the GB location or the next hop towards the GB location. To
further reduce the traffic over head and computation complexity on
a node, the particles are batched in single super particle which is
the aggregation of all the particles on the node but with a new PID
that is known to the PP processes. Then the super particle acts
similar to the normal particle in the network and at each node it is
treated as sum of particles when calculating the number of PIDs in
PP. Using super particles will gradually reduce the number of
particles in the system, P, as the TPSO process continues. The
TPSO terminates when one of the termination criteria, explained in
section 2, is met. Reducing the network traffic will reduce the
computation overhead on each node by requiring fewer packets to
be processed. Using the big-oh notation, we assume the
computation complexity of the PSO on a single node is in order of
O(g(Γ)) where g(Γ) is the complexity function for Γ iterations
on each node. The complexity will increase to O(Qg(Γ)) when Q
number of particles (Q < P) overlap on the node. In TPSO, since Q
and Γ are reduced by using the super particles, the PP will run

fewer times and computational complexity over a node will
decrease.

Figure 2: Flowchart of the TPSO algorithm for ad-hoc

collaborative computing network.

4 SIMULATION RESLUTS

In this section we consider an ad-hoc collaborative computing
network with 50 nodes in a 100 by 100 landscape and 30 particles
which are randomly distributed over the nodes. The nodes use
shortest path routing algorithms for transmitting packets between
the nodes. We simulate the proposed PSO and TPSO algorithms to
find the node with the highest processing load. The results can be
fed to different algorithms such as loading-based routing algorithm

9

[11]. The fitness function, f(x,y), is equal to the load of a node in
location of (x,y). The load of a node is a measure of number of
tasks (i.e. packets) that needs to be processed and we assume it
remains constant during the optimization process. The processing
load of a node in (x,y) with U number of task queues, is given by

, ,
1

(,)
U

x y u
u

f x y L
=

=� (5)

where Lx,y,u is the size of the u-th task queue. In Table 2 we
introduce the packets used in the system Assuming that each data
occupies only one byte, the size of packets for each packet type is
calculated. We do not consider the overhead caused by the routing
protocol of network layer.

Table 2.

PSO and TPSO packet sizes and description used in the
simulation.

Packet type
Packet
size in
TPSO

Packet
size in
PSO

Description

GB_Broadcast

2 2

For
broadcasting
the value and
location of the

GB.

P_Move 1 4

For moving the
particle from
one node to

another node.
For PSO it

contains PID,
LB location

and value and
destination

address. For
the TPSO it

only contains
PID.

Terminate 1 1

A unique
packet to
indicate

optimization
termination

Figure 3 shows a snapshot of the proposed TPSO algorithm. The

weights on each node represent the measure of processing load on
that node and the distributed circles on the nodes show the
particles. As the process progresses, the particles converge over the
node with the highest load. Based on the termination criteria
explained before, the algorithm broadcasts the found solution to the
other nodes when all particles have converged over a node or
maximum number of iterations has been reached.

(a)

(b)

Figure 3: Snap shot of TPSO in ad-hoc collaborative computing
network with 50 nodes and 30 particles showing particles a) before

convergence, b) after convergence.

Figure 4 shows the difference of the average traffic overhead
caused by P_Move packets of PSO and TPSO in the mentioned ad-
hoc network. The reduction of the traffic overhead is due to
carriage of less data from node to node. As a result of training all
the particles to always move towards the node with the GB value
and do not return to LB location. However the GB location may
change during the optimization process but at each interval all the
particles in the system are heading towards the same destination
which the current GB. As mentioned before, in TPSO, when there
is more than one particle over a node, they are considered as one
super particle. Since each super particle is treated similar to a
particle, using super particles will reduce number of packets
needed to be transmitted.

10

Figure 4: Comparison of PSO and TPSO traffic overheads for

different number of particles over 50 distributed nodes.

In figure 5 we compare the average convergence time for PSO

and TPSO based on our simulation results for different number of
particles. As explained in section 3, when using TPSO the particles
converge over the optimization solution with near constant number
of iteration in comparison to PSO.

Figure 5: Comparison of convergence speed for TPSO and
PSO techniques for different number of particles over 50

distributed nodes.

5 CONCLUSION

In this paper we introduced a generalized PSO algorithm for
communication networks. Using the introduced PSO model, we
proposed TPSO as an efficient optimization algorithm for ad-hoc
collaborative computing networks. The PSO and TPSO techniques
were simulated over distributed nodes to find the node with the

highest processing load. The simulation results show the
convergence time of TPSO is almost constant while the traffic and
computational complexity over a node is reduced in comparison to
PSO.

REFERENCES
[1] S. Konomi, S.Inoue, T. Kobayashi, M. Tsuchida, M. Kitsuregawa,

“Supporting Colocated Interactions using RFID and Social Network
Display,” IEEE Pervasive Computing, Jul.- Sep.2006.

[2] P. K. McKinley, C. Tang and A. P. Mani, “A Study of Adaptive Forward
Error Correction for Wireless Collaborative Computing,” IEEE
Transaction on parallel and distributed systems, Vol. 13, No. 9, Sep.
2002.

[3] C. Lai, W. Polak, “A Collaborative Approach to Stochastic Load
Balancing with Networked Queues of Autonomous Service Clusters,”
MobCops Workshop of the 2nd IEEE Collaborative Computing
Conference (CollaborateCom 2006), Atlanta, GA, USA, Nov. 2006.

[4] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in
Proc.IEEE Conf. Neural Networks IV, Piscataway, NJ, 1995.

[5] A. S. Tanenbaum, “Computer Networks,” Prentice Hall Ptr; 4 ed, 2002.
[6] Tillett, J. Rao, R. Sahin, F. , “Cluster-head identification in ad hoc

sensor networks using particle swarm optimization,” IEEE int. conf. on
Personal Wireless Communications Proc., 2002,pp. 201- 205.

[7] S.M. Guru, S.K. Halgamuge, S. Fernando, “Particle Swarm
Optimisers for Cluster formation in Wireless Sensor Networks,”
International conference on intelligent sensors, sensor networks and
information processing proc., 2005, pp. 219- 224.

[8] X. Wu, S. Lei, J. Yang, X. Hui, J. Cho, S. Lee, “Swarm Based Sensor
Deployment Optimization in Ad Hoc Sensor Networks,” Int. conf. on
embedded software and systems (ICESS), 2005.

[9] W. Ping, W. Guang-Zing, Z. Yang-Yang, “Particle Swarm Optimization
Approach of Solving Communication Optimization Problems,” Journal
of Northeastern University, Natural Science (China). Vol. 25, no. 10,
Oct. 2004, pp. 934-937.

[10] S. Gheitanchi, F. H. Ali, E. Stipidis, “Particle Swarm Optimization for
Resource Allocation in OFDMA,” IEEE DSP07 conference proceeding,
Jul. 2007, pp. 383-386.

[11] H. Hassanein, A. Zhou, “Routing With Load Balancing in Wireless Ad
hoc Networks”, Proc. of 4th ACM international workshop on modeling,
analysis and simulation of wireless and mobile systems, 2001.

11

Controller-Agent based approach for Solving
Distributed Constraint Problem

Sami AL-MAQTARI1 and Habib ABDULRAB 1

Abstract. The interesting domain of constraint programming
has been studied for years. Using Constraint Satisfaction
Problem in association with Multi-Agent System has emerged
the research in a new field known as Distributed Constraint
Satisfaction Problem (DCSP). Many algorithms are proposed to
solve DCSP. Inspired from ABT algorithm, we introduce in this
paper our algorithm for solving DCSP where we divide agents in
the system into two groups: Variables’ and Controller Agents,
which allow reformulating of different inter-agent
communication algorithm in our framework. This division
allows the separation between the constraints verification and
other functions of agents. The proposed algorithm is not only
capable of treating binary constraints; it can be used easily in
order to treat non-binary constraints. This facility gives also the
possibility of grouping constraints in order to form a set of quasi-
independent sub-problems. These sub-problems may be inter-
connected by some common variables. The instantiation of these
variables can be done by negotiation in order to separate the sub-
problems into totally independent ones.12

1 INTRODUCTION
Constraint Satisfaction Problem or CSP is a very interesting
paradigm for modeling in real life. A lot of real world problems
can be described and modeled as a set of variables where their
values are restricted by a set of constraints. Many methods and
techniques are already in use in order to treat this kind of
problems. Backtracking and arc-consistency and their
alternatives are already discussed over and over in literature [1,
2].

Mixing CSP with the autonomy of agents in a Multi-Agent
System emerges the birth of a sub-branch of CSP research
known as Distributed CSP or DCSP. Multiple methods are used
to solve a DCSP. Among them we find the Asynchronous
BackTracking (ABT) proposed by Yokoo and its alternative [3-
7] that we inspired our approach from.

This Approach is very adequate for modeling a specific kind
of problems like water usage in agricultural domain. In such
system constraints are suitable for modeling the ecosystem
equations. However, they cannot be used in order to model the
autonomous behavior of the different actors in the system (like
farmers and resource owner, etc.); where multi-agent systems are
more convenient.

We propose a new framework based on two kinds of agents:
Variables’ agents and Controller Agents. By defining these two
kinds of agents we separate between the treatment of constraints

1 LITIS Lab. – INSA of Rouen – France. Email: {sami.almaqtari,
abdulrab}@ insa-rouen.fr.

and the other functionalities of the agents in the system. Also, it
allows dividing a general constraint problem into multiple sub-
problems easier to be treated. This algorithm is firstly introduced
in our paper [8] for a proposed model intended to be used for
water agricultural usage management to be applied to the region
of Sadah in Yemen.

In the next sections we start by giving some basic definitions
then, we introduce our proposition for an alternative algorithm
for solving DCSPs.

2 Definitions
We start by giving some definitions of CSP and DCSP:

2.1 Constraint Satisfaction Problem (CSP)
Formally, a Constraint Satisfaction Problem (CSP) is a triple
(, ,)V D C where:

� 1{ , , }nV v v� � is a set of n variables,

� a corresponding set 1{ (), , ()}nD D v D v� � of n
domains from which each variable can take its values from,

� and 1{ , , }mC c c� � is a set of m constraints over the

values of the variables in V . Each constraint ()i ic C V� is

a logical predicate over subset of variables iV V� with an

arbitrary arity : (, ,)i a kk c v v� that maps the cartesian

product () ()a kD v D v� �� to {0,1} . As usually the

value 1 means that the value combination for , ,a kv v� is
allowed, and 0 otherwise.

A solution for a CSP is an assignment of values for each
variable in V such that all the constraints in C are satisfied.

Constraints involving only two variables are called binary

constraints [9]. A binary constraint between ix and jx
 can be

denoted as ijc
.

Although most of real world problems are represented by
non-binary constraints, most of them can be binarized using
techniques such that dual graph method and hidden variable
method [10]. Translating non-binary constraints into binary ones
allows processing the CSP using efficient techniques adapted
only for binary constraints. However, this translation normally
implies an increase in number of constraints.

12

2.2 Distributed Constraint Satisfaction Problem
(DCSP)
A Distributed Constraint Satisfaction Problem (DCSP) is a CSP
where the variables are distributed among Agents in a Multi-
Agent System (MAS). A DCSP can be formalized as a
combination of (, , , ,)V D C A � where:

� , ,V D C are the same as explained for a normal CSP,

� 1{ , , }pA a a� �
 is a set of p agents,

� and :V A� � is a function used to map each variable jv

to its owner agent ia .
Each variable belongs to only one agent,

i.e. 1 1,..., () ... ()k i kv v V v v� �� 	
 � � where iV V�

represents the subset of variables that belong to agent ia . These

subsets are distinct, i.e. 1 pV V �����
 and the union of all

subsets represents the set of all variables, i.e. 1 pV V V����
.

The distribution of variables among agents divides the
constraints set C into two subsets according to the variables
involved within the constraint. The first set is the intra-agent

constraints intraC that represent the constraints over the variables
owned by the same

agent 1 1{ () | () ... (), ,..., }intra i k k iC C V v v v v V� �� � � 	 .

The second set is the inter-agent constraints interC that
represent the constraints over the variables owned by two or
more agents. Obviously, these two subsets are distinct

intra interC C ��� and complementary intra interC C C�� .

The variables involved within inter-agent constraints interC

are denoted as interface variables interfaceV
. Assigning values to a

variable in a constraint that belongs to interC has a direct effect
on all the agents which have variables involved in the same
constraint. The interface variables should take values before the
rest of the variables in the system in order to satisfy the

constraints inside interC firstly. Then, the satisfaction of internal

constraints in intraC becomes an internal problem that can be
treated separately inside each agent independently of other
agents. If the agent cannot find a solution for its intra-agent
constraints, it fails and requests another value proposition for its
interface variables.

To simplify things, we will assume that there are no intra-

agent constraints, i.e. intraC �� . Therefore, all variables in V

are interface variables interfaceV V�
.

Many techniques are used to solve DCSPs. Mainly we
mention the Asynchronous Backtracking (ABT) algorithm that
was proposed by Yokoo [3, 11-13] and some of its alternatives
[4, 5]. In the following section we introduce another alternative
based on the concept of Controller Agent, which we propose, in
order to validate and test inter-agent constraints.

2.3 Over-constrained problem and constraint
relaxation
A CSP is called an over-constrained problem if no possible
combination exists that satisfies all constraints. In other words, at
least one constraint can not be satisfied. Solving such problem
implies neglecting some constraints in the system (constraint
relaxation [14]). This can be achieved by dividing constraints
according to some kind of preference levels [15]. Constraint
types may vary from hard to soft constraints according to their
importance. The hard ones represent the constraints that should
absolutely be satisfied while the soft constraints may be
neglected. In this case we search the optimal solution in trying to
maximize the number of satisfied soft constraints. We say that
no solution exists if we cannot satisfy all the hard constraints.

3 Controller Agent approach
Here we will explain how to extend the original DCSP-based
model of multi-agent cooperation. We will describe a structure
of DCSP based on the idea of dividing agents into two types:
Variables’ Agent and Controller Agent. Originally introduced in
our former works [8, 16], a Variables’ Agent is an agent who
possesses one or more variables from the set V and a subset of

intra-agent constraints from intraC , while the role of Controller
Agents is to encapsulate the inter-agents constraints. For short,
we will use the term VAgent as an abbreviation for Variables’
Agent and CAgent for Controller Agent.

CAgents take in charge the responsibility of verifying the
constraints satisfaction. In other words, from the beginning all
global constraints are distributed among an initial set of CAgents

1{ , , }qCA ca ca� �
 where 1 q m

 and m is the number of

inter-agent constraints. In the centralized form of DCSP all

constraints in interC are grouped inside one CAgent (1q �),
while in its simplest form each CAgent contains only one

constraint from interC (q m�).
Figure 1 shows a constraint network of a set of agent related

by binary constraints either directly (a) or via CAgent (b). As in
a formal constraint network, Figure 1 (a) shows some constraints
that represent relations directed from an agent (called proposing
agent) to another (called evaluating agent) according to a
predetermined order. The resolution is done by passing value
propositions according to the directions of arcs from proposing
agent to evaluating agent.

In our approach shown in Figure 1 (b), relations between
agents are represented by links directed from a VAgents to a
CAgents. These links indicate that the VAgent has at least one
variable that is involved in a constraint of the CAgent.

The CAgent supervises one or more constraints. This means
that we can group more than one constraint into Controller to
form a kind of local problem as shown in Figure 1 (b). The
propositions of values for variables are sent by VAgent to be
received and tested by CAgents. VAgents are given different
priority degrees (by default, their order of creation). Such
application of VAgents and CAgents facilitates seamless
combination of MAS and CSP.

Using the concept of VAgents and CAgents needs re-
formulating inter-agent communication algorithm in our

13

framework. In the next section we will illustrate how the
modification of well-known asynchronous backtracking
algorithm by Yokoo [3, 11] can be easily achieved. For
simplicity reasons, some limitations are made in this paper and
they are not an obligation: we will consider only the case where
a VAgent has one variable only. In the same manner, we will
treat the case where a CAgent contains one binary constraint
only. The proposed approach can be easily extended and applied
to other cases without these limitations as we will see later in
this paper.

���

����	
���	�

�
��	�

��
���������
��	�

���	
����
�
�
��	�

���

Figure 1 Constraint Network (a) without or (b) with
Controller Agent

3.1 Algorithms
As mentioned before, the proposed algorithm may be considered
as a modified version of the ABT algorithm of Yokoo[3, 4]. The
proposed algorithms of both types of agents are divided into two
stages:
� Domain reducing stage
This stage implies a preprocessing of variables’ domains. The
result is reduced domains by eliminating values that would be
surly refused from them. This is done as follows:

1. A VAgent sends information concerning the domain of
its variable to all linked CAgents. The message takes the
form of (variable, domain).

2. After receiving the domains of all variables involved in
its constraint, the CAgent use bound consistency
algorithm in order to reduce these domains to new ones
according to its local constraint(s). Then, the controller
sends these domains back to their VAgents.

3. Every VAgent receives the new domains sent by
CAgents and combines them (by the intersection of
received domains) in order to construct a new version of
its variable domain.

4. If any new version of a variable domain was empty then
we can say that this DCSP is an over-constrained
problem. In this case, the system signals a no-solution to
user (failure). Another solution can be investigated by
using constraints relaxation [14, 15], in which a VAgent
It returns to an older version of the domain and
reconstruct a new version after neglecting the domains
sent by the CAgent that represents the soft constraints
that the system may violate according to certain
constraint hierarchy [15]. On the other hand, if all
variables end with single-value domains then one
solution is found. Otherwise, the domain reducing stage
is repeated as long as we obtain a different new version
of a variable domain. When domain reducing is no longer
possible (no more change in variables’ domains); we can
proceed to the next stage.

� Value proposition and validation stage
In this stage VAgents make their propositions of values to
related CAgents to be tested. Value proposing can be considered
as a domain inform message in test mode. This proceeds as
follows:

5. From now on, every VAgent starts instantiating values
for its variable according to the new domains. It sends
this proposition to the related CAgents.

6. The CAgent chooses the value received from the VAgent
with the highest priorities. This value is considered as a
domain with a single value. CAgent uses bound
consistency algorithm as in the previous stage to reduce
other variables’ domains. These new domains are sent to
their VAgents to propagate domains change.

7. Like in the previous stage, if all variables end with
single-value domains then one solution is found.
Unlikely, if the result of this propagation was an empty
domain for any variable then the proposed value is
rejected and another value is requested. If no more value
can be proposed then system signals a no-solution
situation to user.

8. If the result of the domain propagation was some new
reduced domains with more than one value then steps 5-7
are repeated Recursively with the value proposed by the
VAgent that have the next priority.

3.2 Advantages and disadvantages
Main advantage of the system is the possibility of treating non-
binary constraints simply without need of modification. The
algorithm is still working for non-binary constraints in the same
manner. This allows avoiding the need for constraints translation
into binary ones. Extending the algorithm to cover non-binary
constraints will be explained later in this paper.

The possibility of treating non-binary constraints allows us to
gather constraints to create subsets of constraints where each

14

subset contains a group of constraints that could be related and
included inside one CAgent. Searching a solution for this group
represents a sub-problem of the general one. In one of its
extreme case, this grouping allows centralizing all the resolution
(in case where all constraints are included inside one CAgent). In
normal case, this allows dividing constraints into groups that are
related by some common variables. Giving value for these
variables separates these groups of constraints and forms a set of
sub-problems that are totally independent. Many methods [17,
18] are proposed in order to partition the problem to allows
processing it in parallel manner. These methods can be used with
our algorithm in order to assign each partition of the problem to
a CAgent.

A main disadvantage of the proposed algorithm is the
increase in agent number. In fact, using CAgent for each
constraint (mostly binary ones) may overload the system because
of the large total number of agents (the increase according to the
number of constraints). However, the benefits of grouping
constraints into subsets and putting each group inside a
controller can compensate the increase in number of agents. We
still have some improvement to do in order to increase the
performance of the algorithm. This performance can be
improved by taking in consideration some enhancements that
will be discussed later.

3.3 Algorithm Correctness
For any CSP we can encounter one of three cases: if it is an
over-constraint problem and then the solution does not exist.
Otherwise, one solution or more exist. Here, we will explain how
this approach can detect these cases.

As described in step 4 in the domain reduction stage of the
algorithm, the detection of an empty domain for any variable
means that this DCSP is over-constrained problem and no
solution exists. In the other side, if all variables after the domain
reduction stage have only one single value domains, then this
signifies that only one solution exists which is the combination
of all domain (single) values.

Otherwise, one or more solutions may exist. By considering
value proposing and validating stage of the algorithm, we
consider value proposing as domain informing with a single
value in test mode. We call it test mode because unlike domain
reduction stage here we can request backtracking.

To understand backtracking in our algorithm we can imagine
a situation where a VAgent V1 proposes a value for its variable.
This value is considered by the related CAgent C as a single-
value domain and would propagate to other related VAgents. If
another VAgent V2 ends with an empty domain for its variable
because of V1 proposal then it would report a backtrack signal to
the CAgent C. in this case, CAgent C will request another value
from VAgent V1 and VAgent V2 should retrieve its previous
variable domain before domain propagation.

The recursive nature of value proposing stage results always
either single-value domains for all variables which means that a
solution exists or an empty domain case which means that no
solution exists.

3.4 Example

Figure 2 domain sending

The following figures show an example of the proposed
algorithm. Three VAgents 1 2,A A and 3A having three variables

1 2,X X and 3X respectively. Each variable has its respective

domain. These agents are related to two CAgents 1C and 2C
which contain two constraints over the variables.

Figure 3 returning reduced domains

In Figure 2 the VAgents start sending information about the
domains of their variables to the CAgents. The CAgent
calculates the validity of these domains according to its
constraints. In Figure 3, the controller 1C cannot reduce the

domains of 1X and 3X . However, the controller 2C can

reduce the domain of 3X and send back the new domin.

Figure 4 propagation of domain change

15

In order to propagate the domain change in the agent 3A , it
will resend its domain to the related controllers as shown in
Figure 4. This propagation also informs the controllers about the
new domain of the variables.

Figure 5 continue domain reduction

The domain change propagation can cause another domain
change in another VAgent. In Figure 5, agent 1A receives
another proposition for its variable new domain. While this
propagation has no effect on the domain of the variable in agent

2A .

Figure 6 value proposing

Each VAgent receives the reduced domain and creates a new
domain by the intersection between the returned domains from

each controller. In Figure 3, Agent 3A has created the new

domain {1} {1, 2} {1}� � .

Figure 7 result of proposition validation

The domain reduction continues until we have stability in the
variables’ domain. The agents can start then proposing values for

their variables. In Figure 6, agents 1 2,A A and 3A propose 2, 2
and 1 as values for their variables. They send these propositions

to the related CAgents 1C and 2C for validation.
After validating the propositions, the CAgents send back the

result of either to be satisfied or not (Figure 7).

3.5 Algorithm extension
As we said earlier in this paper, for simplicity reasons we will
consider only the case where a VAgent has one variable only. In
the same manner, we will treat the case where a CAgent contains
one binary constraint only The extension of the proposed
algorithm to be used with VAgents that have more than one
variable is simple: If a VAgent iVA has a set of interface

variables that contains more than one variable 1{ , , }i ilv v�
where each variable is involved in an external constraint, the
agent should be related to all CAgents owning these constraints.
The agent iVA sends the domain of the variable ijv only to the
concerned controller(s) in order to avoid overloading
communication. The rest of the manipulation stays the same as
for an agent with one variable only.

Treating non-binary constraints is straight forward: the
CAgent containing non-binary constraint exchange all necessary
information with all VAgent having variables involved in its
constraint. The same thing applies when the controller contains
more than one constraint.

4 Framework implementation general structure
The general schema of the proposed framework is shown in
Figure 8. The intended architecture represents a layer between
the application and the layer of the real MAS and CSP platforms.
From the application view point, the system is composed directly
from the two principle types of agents: the CAgent and the
VAgent. The user can create the necessary VAgents according to
its problem definition. He also creates the constraints and
associates them to CAgents.

The system layer uses generic interfaces for both MAS and
CSP platforms. This allows the system to use any existed
platforms by implementing these interfaces. In the same time
this isolates the internal structure from the changes of choice of
platforms. An intermediate layer between the system and the real
MAS or CSP platform is necessary in order to separate the
structure of the system from that of the real MAS and CSP
platforms. This layer works as an adapter; it implements the
generic platforms in the system layer using the real platforms.
This implementation and its difficulty changes according to the
MAS and CSP platforms used for the realization of the final
system.

In our work we have chosen JADE [19] as a MAS platform.
JADE (Java Agent DEvelopment Framework) is a software
Framework compliant with the FIPA specifications and is fully
implemented in Java language. It simplifies the implementation
of multi-agent systems through a set of graphical tools that
supports the debugging and deployment phases. JADE is free
software developed and distributed by Telecom Italia Lab.

16

In which concern the CSP platform, we have chosen Choco.
Choco [20] is a library for constraint satisfaction problems
(CSP), constraint programming (CP) and explanation-based
constraint solving (e-CP). It is built on an event-based
propagation mechanism with backtrackable structures. It is an
open-source software implemented in java also. It permits the
use of multiple solvers for different problem separately. This
allows each CAgent to have its own solver.

Figure 8 general schema of the proposed system

Both types of agent use the generic MAS platform that
provides the base for constructing agents and manage the
communication between them. CAgents use the generic CSP
interface to have the capability of solving and validating
constraints.

5 Conclusion and perspective
In this paper, we have introduced our different approach
for the solution of Distributed Constraint Satisfaction
Problems in a MAS consisting of two architectural types
of agents: CAgents and VAgents. This approach allows
the separation between the treatment of constraints and the
other functionalities of the agents in the system. Also, it
allows dividing a general constraint problem into multiple
sub-problems easier to be treated.

Two aspects are investigated for enhancing the algorithm. We
have the intention of enhance the algorithm role of the CAgent in
two aspects: (a) by giving the CAgent the capacity of proposing
solutions to the VAgents. These resolutions are established by
negotiations with other CAgents, (b) by giving a preference level
to every constraint. This allows constraints relaxing and permits
CAgents to accept proposals which may not satisfy some weak
constraints. This can be useful in case of over-constraint
problems.

Another perspective is to guide the strategy of proposals of a
VAgent by an optimization function. This function is defined
according to the specific objectives to this agent.

References
[1] G. Ringwelski, "An Arc-Consistency Algorithm for Dynamic and

Distributed Constraint Satisfaction Problems."
[2] C. Fernandez, R. Bejar, B. Krishnamachari, C. Gomes, and B.

Selman, "Communication and Computation in Distributed CSP
Algorithms."

[3] M. Yokoo and K. Hirayama, "Algorithms for Distributed Constraint
Satisfaction: A Review," in Autonomous Agents and Multi-Agent
Systems, 2000, pp. 198-212.

[4] C. Bessiere, I. Brito, A. Maestre, and P. Meseguer, "The
Asynchronous Backtracking Family," LIRMM-CNRS, , Montpellier,
France March 2003 2003.

[5] C. Bessiere and I. Brito, "Asynchronous Backtracking without
Adding Links: A New Member in the ABT Family," 2005, pp. 7-24.

[6] M. Yokoo, "Asynchronous Weak-commitment Search for Solving
Distributed Constraint Satisfaction Problems," in International
Conference on Principles and Practice of Constraint Programming,
1995, pp. 88-102.

[7] C. Bessière, A. Maestre, and P. Meseguer, "Distributed Dynamic
Backtracking."

[8] S. Al-Maqtari, H. Abdulrab, and A. Nosary, "A Hybrid System for
Water Resources Management," in GIS third international conference
& exhibition, 2004.

[9] F. Bacchus, X. Chen, P. v. Beek, and T. Walsh, "Binary vs. Non-
Binary Constraints," 2002, pp. 1-37.

[10] F. Bacchus and P. v. Beek, "On the Conversion between Non-
Binary and Binary Constraint Satisfaction Problems," in Proceedings
of the 15th National Conference on Artificial Intelligence (AAAI-98)
and of the 10th Conference on Innovative Applications of Artificial
Intelligence (IAAI-98), 1998, pp. 311-318.

[11] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara, "The
Distributed Constraint Satisfaction Problem: Formalization and
Algorithms," in IEEE Transaction on Knowledge and Data
Engineering, 1998, pp. 673-685.

[12] M. Yokoo, T. Ishida, E. H. Durfee, and K. Kuwabara, "Distributed
Constraint Satisfaction for Formalizing Distributed Problem
Solving," in 12th IEEE International Conference on Distributed
Computing Systems, 1992, pp. 614-621.

[13] M. Yokoo, "Distributed Constraint Satisfaction Algorithm for
Complex Local Problems," in Third International Conference on
Multiagent Systems (ICMAS-98), 1998, pp. 372-379.

[14] R. Mailler and V. Lesser, "A Cooperative Mediation-Based Protocol
for Dynamic, Distributed Resource Allocation," in IEEE Transaction
on Systems, Man, and Cybernetics, Part C, Special Issue on Game-
theoretic Analysis and Stochastic Simulation of Negotiation Agents,
New York, 2004, pp. 438-445.

[15] H. Rudova, "Constraint Satisfaction with Preferences," in Faculty of
Informatics Brno - Czech Republic: Masaryk University, 2001.

[16] S. Al-Maqtari, H. Abdulrab, and A. Nosary, "Constraint
Programming and Multi-Agent System mixing approach for
agricultural Decision Support System," in Emergent Properties in
Natural and Artificial Dynamical Systems, 2006, pp. 199-213.

[17] P. Berlandier and B. Neveu, "Problem Partition and Solvers
Coordination in Distributed Constraint Satisfaction," in Workshop on
Parallel Processing in Articial Intelligence (PPAI-95), Montreal,
Canada, 1995.

[18] R. H. Bisseling, J. l. Byrka, and S. Cerav-Erbas, "Partitioning a Call
Graph."

[19] JADE: http://jade.tilab.com.
[20] Choco: http://choco.sourceforge.net/.

17

Introducing Bar Systems: A Class of Swarm Intelligence
Optimization Algorithms
Esteve del Acebo and Josep Lluis de la Rosa 1

Abstract. We present Bar Systems: a family of very simple al-

gorithms for different classes of complex optimization problems in

static and dynamic environments by means of reactive multi agent

systems. Bar Systems are in the same line as other Swarm Intelli-

gence algorithms; they are loosely inspired in the behavior a staff of

bartenders can show while serving drinks to a crowd of customers in

a bar or pub. We will see how Bar Systems can be applied to CONTS,

a NP-hard scheduling problem, and how they achieve much better re-

sults than other greedy algorithms in the ”nearest neighbor” style. We

will also prove this framework to be general enough to be applied to

other interesting optimization problems like generalized versions of

flexible Open-shop, Job-shop and Flow-shop problems.

1 INTRODUCTION

The origin of the term Swarm Intelligence, which so vast amount

of attention has drawn in the last years amongst the Artificial In-

telligence, Artificial Life and Distributed Problem Solving commu-

nities is to be found in the observation of social insect colonies. A

commonly accepted and used definition of it is: “the property of a

system whereby the collective behaviors of (unsophisticated) agents

interacting locally with their environment cause coherent functional

global patterns to emerge”. Doubtless, the paradigm of a Swarm In-

telligence system is an ant colony. In it, individual ants’ behavior is

controlled by a small set of very simple rules, but their interactions

(also very simple) with the environment allow them to solve com-

plex problems (such as finding the shortest path from one point to

another one). Ant colonies (and we could say the same about human

beings) are intelligent systems with great problem solving capabili-

ties, formed by a quantity of relatively independent and very simple

subsystems which do not show individual intelligence. It is the“many

dummies make a smart” phenomenon of emergent intelligence.

Swarm Intelligence problem solving techniques present several

advantages over more traditional ones. On one hand, they are cheap,

simple and robust; on the other hand, they provide a basis with which

it is possible to explore collective (or distributed) problem solving

without centralized control or the provision of a global model. Over

the last years they have been used in the resolution of a very hetero-

geneous class of problems: Two of the most successful Swarm In-

telligence techniques currently in use are Ant Colony Optimization

[5] and Particle Swarm Optimization [8]. Ant Colony Optimization

techniques, also known as Ant Systems, are based in ants’ forag-

ing behavior, and have been applied to problems ranging from deter-

mination of minimal paths in TSP-like problems to network traffic

1 Agents Research Lab. Institut d’Informtica i Aplicacions Universitat de
Girona, Spain, email: acebo@ima.udg.es peplluis@eia.udg.es

rerouting in busy telecommunications systems. Particle Swarm Opti-

mization techniques, inspired in the way a flock of birds or a school

of fish moves, are general global minimization techniques which deal

with problems in which a best solution can be represented as a point

or surface in an n-dimensional space. Other Swarm Intelligence ap-

plications include collective robotics , vehicle navigation, planetary

mapping, streamlining of assembly lines in factories, coordinated

robotic transport, banking data analysis and much more. The inter-

ested reader can find a lot of useful references about self-organization

and Swarm Intelligence theory and applications in [1], [7], [9], [2],

[6], and [3].

The class of systems we present in this paper, Bar Systems, are

reactive multi agent systems whose behavior is loosely inspired in

that of a staff of bartenders, and can be enclosed in the broader class

of Swarm Intelligence systems,

The paper is organized as follows: in the next section we will

present and formalize the concept of Bar System, in section 3 we

present the CONTS problem, a NP-hard scheduling problem for

multi agent systems which will serve us to test the performance of

Bar Systems. In sections 4 and 5 we will see how to solve the CONTS

using a Bar System and we will comment the results. Finally, in sec-

tion 6, we will draw some conclusions and we will discuss some

directions toward which future work can be directed.

2 BAR SYSTEMS

Anybody who has tried to get served a pint in a bar crowded with cus-

tomers will have had more than enough time to wonder with boredom

about the method used by waiters, if there is any, to decide which

customer to pay attention to at each time. Sometimes there is not

much point, to be served before, in having been waiting for long or in

yelling at the waiter. Details like the bar area where the customer is,

his/her sex, whether the waiter knows him/her or whether the waiter

likes the customer’s face determine to a high extent the way in which

orders are served.

Let us examine the situation from the bartenders’ point of view:

a heap of customers are ordering drinks at once, new ones arrive all

the time, and the bartenders have to do all they can to serve them.

Of course, they cannot do it in an random way; they have to try to

maximize some kind of utility function which will typically take into

account aspects such as average serving time, average serving cost or

average customer/boss satisfaction. They will have to pay attention,

then, to facts such as that some of them can prepare certain drinks

more quickly or better than others, that the order in which the drinks

are served influences the time or the total cost of serving them, and

that also moving from one place in the bar to another costs time. All

of this without forgetting, on one hand, that the order in which orders

18

take place has to be respected as much as possible and, on the other

hand, that they have to try to favor the best customers by giving them

special preferential attention and keeping them waiting for a shorter

time.

The problem is not at all trivial, (actually we will see that it can be

proved to be NP-hard), bartenders have to act in a highly dynamic,

asynchronous and time-critical environment, and no obvious greedy

strategy (such as serving first the best customer, serving first the near-

est customer or serving first the customer who has arrived first) gives

good results. Nevertheless, a staff of good bartenders usually can

manage to serve a lot of customers in such a way that the vast ma-

jority of them were, more or less, satisfied. The way they accomplish

the task seems to have little to do with any global planning or explicit

coordination mechanisms but, arguably, with trying to maximize, ev-

ery time they choose a customer to serve, some local utility function

which takes into account aspects like the importance of the customer,

the cost for the waiter of serving her/him and the time that he/she has

been waiting for service.

In the next section, we will try to give a general formalization of

this type of problem solving behaviors, which we call Bar Systems.

2.1 Definition
We will define a Bar System as a quadruple (E, T, A, F) where:

1. E is a (physical or virtual) environment. The state of the environ-

ment at each moment is determined by a set of state variables VE .

One of those variables is usually the time. We define S as the set of

all possible states of the environment E, that is, the set of all the

possible simultaneous instantiations of the set of state variables

VE .

2. T = {t1, t2, ..., tM} is a set of tasks to be accomplished by the

agents within the environment E. Each task ti has associated:

• pre(ti). A set of preconditions over VE which determine

whether the task ti can be done.

• imp(ti). A nonnegative real value which reflects the impor-

tance of the task ti.

• urg(ti). A function of VE which represents the urgency of task

ti in the current state of the environment E. It will be usually a

nondecreasing function of time.

3. A = {a1, a2, ..., aN} is a set of agents situated into the envi-

ronment E. Each agent ai can have different problem-dependent

properties (i.e. weight, speed, location, response time, maximum

load...). For each agent ai and each task tj , cost(ai, tj) reflects

the cost for agent ai to execute the task tj in the current state of

the environment. This cost can be divided in two parts: on one

hand, the cost for ai to make the environment fulfill the precondi-

tions of task ti (this can include the cost of stop doing his current

task) and, on the other hand, the cost for ai to actually execute tj .

If an agent ai is unable to adapt the environment to the precondi-

tions of the task tj or if it is unable to carry the task out by itself

then we define cost(ai, tj) as infinite.

4. F : S × A × T → � is the function which reflects the degree

to which agents are ”attracted” by tasks. Given a state s of the

environment, an agent ai and a task tj F (s, ai, tj) must be defined

in a way such that it increases with imp(tj) and urg(tj) and it

decreases with cost(ai, tj).

In Bar Systems, agents operate concurrently into the environment

in a asynchronous manner, eliminating, thus, the typical operation

cycles of other SI systems (Ant Systems, Particle Swarm Optimiza-

tion Systems, Cellular Automata. . .). The general individual behav-

ior of agents is given by the following algorithm:

REPEAT
Find the most attractive free task MAFT;
IF the agent is currently doing MAFT THEN

keep doing it;
ELSE

Stop doing the current task, if any;
IF pre(MAFT) hold THEN start doing MAFT
ELSE do some action to fulfill pre(MAFT);
ENDIF

ENDIF
UNTIL no tasks left;

The crucial step in the algorithm above is the choice of the task which

the agent has to execute for the next time step. In its simplest form,

it can consist in choosing the one which maximizes the attraction

function F . We will see in the next sections that it can also involve

some kind of negotiation between agents and even some kind of local

planning.

It is worth to stress the fact that the algorithm allows the agents to

respond in real time to changes in the environment like the appear-

ance of new urgent tasks or the temporal impossibility of fulfilling

the set of preconditions of a given task.

2.1.1 Inter-agent communication

Even if Bar Systems don’t require from the agents any communica-

tive skills, they are indispensable in order for the system to attain

the coordinated and self organized behavior typical of Swarm In-

telligence Systems. We can identify three main purposes to which

communication can serve in order to increase Bar Systems problem

solving capabilities:

• Conflict resolution and negotiation. The way we defined Bar Sys-

tems makes unavoidable the occurrence of conflicting situations in

which two or more agents choose the same task to carry out. Lack

of communication will lead to a waste of resources because of

several agents trying to fulfill the preconditions of the same task,

even if only one of them will finally carry it out. In such situations

it would be convenient to have some kind of negotiation method

which can be as simple as ”the first one which saw it goes for it”.

In the case study, in section 3, we will discuss a couple of more

elaborated negotiation strategies.

• Perception augmentation. In the case that agents have limited per-

ception capabilities (we refer to capability to perceive the tasks),

communication can allow an agent to transmit to the others infor-

mation about pending tasks they are not aware of. Let’s suppose

we want to do some kind of exploratory task in a vast terrain where

points of interest must be identified and explored by means of a

Bar System. It would be useful that agents had the ability to share

information about the points of interest which they have located

during their exploratory activity, this way agents would have ac-

cess to information about the location of points of interest which

lie beyond their perceptual capabilities.

• Learning. The attraction function f defined in section 2.1 does not

need to be fixed in advance. Agents can learn it through their own

activity and their communicative interactions with other agents.

For example, an agent can find out that a certain kind of task has a

high cost and communicate this fact to the other agents. Not only

19

that, agents can even learn from other agents the way of carrying

out new tasks.

On the other side, It is worth to differentiate two main classes of

inter-agent communicative processes:

• Direct. Agents establish direct communication with each other via

some channel and following some kind of consensuated protocol.

• Indirect. Agents communicate with each other through their ac-

tions, which cause changes in the environment. In the Bar Systems

framework, it can be seen as agents generating “communicative

tasks” which, when carried out by other agents, increase the infor-

mation they possess (about the environment, the task set . . .). This

is the case of Ant Systems, which, from this point of view, can be

seen as a particular case of Bar Systems.

2.1.2 Local planning

Although there is nothing like global planning in the way a set of

bartenders work, they have tricks that allow them to spare time and

effort. For example if two customers are asking for a pint and they

are close enough to each other in the bar, the bartender will usually

serve them at once. In a similar way, a taxi driver who is going to

pick up a passenger will surely take advantage of the opportunity if

he finds in his way a new passenger and he can transport him without

deviating too much from his original route. The inclusion of this sort

of very simple, problem-dependent, local planning techniques in the

choice of the tasks is not difficult and can be done through different

methods ranging from local search to the use of expert rules.

3 THE CONTS PROBLEM
A class of problems frequently found in ”real life” involves some

kind of scheduling in the transport of goods or people from one place

to another. The problem which we present as a framework for the

study of Bar Systems applicability and efficiency is inspired in the

problem which has to be solved by a group of loading robots in a

commercial harbor. The task of these robots is to transport the con-

tainers from their storage place to the docks where the corresponding

ships have to be loaded. Of course, this transport has to be done in

such a way that the containers arrive in time to be loaded and with

the lowest possible cost. Next we state a formalization (and simpli-

fication) of the problem, which we will call CONTS. Afterward we

are going to study its complexity and we will see how we can use a

Bar System to solve it efficiently.

3.1 Definition of the problem
Let C = {c1, c2, ..., cn} be a set of containers, let L =
{l1, l2, ..., lm} be a set of loading robots and let P = {(x, y) ∈
{0..MaxX} × {0..MaxY }} be a set of positions. Each container

ci has the following associated properties:

• p(ci) ∈ P . The position where the container lies.

• dest(ci) ∈ P . The position to which the container has to be car-

ried to.

• weight(ci) ∈ �+. The weight of the container.

• dline(ci) ∈ �+. The latest instant of time in which the container

can arrive to the dock in order to be loaded in time into the ship.

In order not to complicate the problem too much, we will assume that

all the containers have the same importance. There are also several

properties associated to each loading robot li:

• p(li) ∈ P . The place where the robot is at each instant.

• maxload(li) ∈ �+. The maximum weight the robot is able to

carry.

• maxdist(li) ∈ �+. The distance beyond which the robot can’t

”hear”. It allows us to model the perceptual limitations of the

robot.

• speed(li) ∈ �+. The speed at which the agent can move.

Robots can perform different actions, they can move toward any posi-

tion, load (if container and robot are in the same position) containers

which weigh less or the same as its maxload value and download

containers.

The problem consists in finding, if it exists, a sequence of actions

that allows the robots, departing from their initial positions, to trans-

port every container to its destination point, in such a way that no

container arrives after its deadline. In order to simplify the problem,

we will assume that the robots always move at the same speed, that

uploading and downloading operations are instantaneous and that

robots can only carry one container at a time.

3.2 Complexity of the CONTS problem
Of course, before trying to solve the problem we have to get an idea

of its complexity. Using an heuristic method might not make much

sense if there was some exact method of polynomial complexity. On

the contrary, if the problem was very complex, using heuristic meth-

ods which gave approximate solutions, like Bar Systems, would be

justified. The fact is that the problem is not at all trivial. The asso-

ciated state space is enormous (it is not only necessary to take into

account which containers each robot will move and in which order;

the solution of some instances of the problem implies moving some

containers to a different position from the one of delivery and leave

them there to return to take them later) and it is also extremely sensi-

tive to initial conditions, as most of NP-hard problems usually are. In

[4] an in-depth study of the problem can be found with a proof of it

to be at least as complex as a NP-hard problem. In general terms, the

proof reduces the Traveling Salesman Problem (TSP) to CONTS by

showing that every instance of the TSP problem is equivalent to an

instance of CONTS where there is a single robot and all the contain-

ers have the same deadline and have to be delivered in the same posi-

tion where they lie. We have also programmed an exhaustive search

method that finds optimal solutions, but, as expected, it can only deal

with extremely simple instances of the problem.

4 A BAR SYSTEM FOR SOLVING THE CONTS
PROBLEM

Once the option of solving the problem in an exact way in the gen-

eral case has been discarded, we now look at the possibility of using

an heuristic method like a Bar System. The idea on which we are

going to base it is very simple: to simulate an environment where the

containers ”shout” to the agents asking for somebody to take them to

their destination. The intensity of the shout of each container depends

on the remaining time before its deadline and the distance between

its position and the delivery position (it could also depend on the im-

portance of each container, but we must remember that the way we

defined the problem, they are all equally important). The robots hear

the calls of the containers diminished by the distance, so they go and

take the ones they hear better. In order to achieve this behavior in the

robots we will use a linear attraction function. Following the notation

introduced in section 2, we define, for all container c and for all robot

l, the attraction function F in the following way:

20

F (c, l) =

⎧⎪⎨
⎪⎩

−∞, if c has been delivered.
−∞, if c is being delivered for a

robot other than l.
K1 · urg(c)−K2 · cost(c, l), ow.

(1)

Where K1 and K2 are adjustable parameters. The urgency func-

tion urg(c) is defined as inversely proportional to the time which

remains to c’s deadline and takes into account the time required for

transporting the container to its destination point:

urg(c) = curtime +
d(p(c), dest(c))

meanspeed
− dline(c) (2)

Where d is the Euclidean distance, curtime is the current time and

meanspeed is an environmental constant which averages agents’

speeds. The cost function is defined as follows:

cost(c, l) =

⎧⎪⎨
⎪⎩

∞, if weight(c) ≥ maxload(l).
∞, if d(p(l), p(c)) ≥ maxdist(l).
d(p(l), p(c)) + d(p(c), dest(c))

speed(l)
, ow.

(3)

The election of this attraction function F is quite arbitrary. A non-

lineal function would probably better reflect the ”hearing” metaphor

we talked about before. In the same way, we could also have de-

fined a more sophisticated urgency function, non-linearly increasing

depending on the time to the containers’ deadline, for example. Bar

Systems are general enough to use any attraction, cost or urgency

functions. The question is finding, for each problem, the function

which will give the best results. Our choice of the attraction function

F is based in its simplicity, in spite of which, it has allowed us to

obtain very good results.

The behavior of the robots will be very simple and it will obey

the algorithm described in section 2.1. Each robot will choose a con-

tainer to go for and will go toward its position, will load it (if not

any other robot has arrived first) and will take it to the delivery point.

After that, it will repeat the cycle until no containers left to transport.

4.1 Inter-agent communication and local planning
for the CONTS problem

Aiming to the study of the utility of interagent communication, we

will investigate two different methods for the choice of the next con-

tainer to go for. If no communication between agents is allowed,

each agent will simply choose the one which maximizes the attrac-

tion function. On the other hand, if the possibility of communication

between agents is activated, each robot will ask to the others (per-

haps not all of them but only those which communication is feasible)

which containers they prefer and, in case of conflict (that is, another

robot preferring the same container), a small negotiation process will

start, the goal of which is to give preference to the agent who will be

able to carry faster the container to its delivery position. The agent

which finds itself in the situation where other agents have priority

over it to transport its favorite container will try with the next best

container, in order of preference according to its point of view, until

if finds one for which it will have more priority than any other agent.

It would be easy to devise more sophisticated negotiation processes

taking into account the second-best options of the agents in conflict

in such a way that one agent could resign carrying its preferred con-

tainer, even if it has the higher preference over it, whenever the pref-

erence difference between the best and the second- best containers

was small enough.

We have also implemented a very straightforward planning-like

strategy in our Bar System. Whenever a robot has a container to go

for, it looks if there exists another one such that it is possible to trans-

port it without deviating too much from its original way to the first

container position. If so, the agent transports it before resuming its

original way to the first container position.

5 RESULTS
In order to analyze the efficiency of our method and experiment

with different settings and parameter values, we have programmed

a graphical simulator for the problem. We have chosen an instance

of the problem with eighty containers randomly scattered on a

300 × 300 rectangular area with random delivery points and dead-

lines and four carrier robots, all of them with the same value for the

parameter maxdist and different speeds. We have done two main

sets of simulations experimenting with different values of the param-

eters K1 and K2. In the first set (figure 1) we don’t allow agents to

communicate or perform any local planning, whereas in the second

set (figure 2) communication and local planning are permitted.

Figure 1. Left: Total time needed by the system to deliver all the
containers for different values of the parameters K1 and K2 and for

different values of the parameter maxdist (top row maxdist = 300,
bottom row maxdist = 100). Right: Number of containers delivered before

their deadlines. Communication and local planning are deactivated.

We can see in figures 1 and 2 the results of the two sets of simu-

lations. Each row represents a series of 121 simulations (for values

of the K1 and K2 parameters ranging from 0 to 10 in increases of

1). The charts in the left columns show the time used to deliver all

the containers and the charts in the right columns show the number of

containers delivered before their deadlines. The two rows correspond

to different values (300 and 100) of the maxdist parameter.

We can draw several conclusions. On one hand, it is clear that,

for some values of the parameters K1 and K2, the system finds

much better solutions than those which can be obtained by using

nearest neighbor-like methods. We can observe the performance of

those methods in the top row of figure 1, when K1 = 0 the prefer-

ence function F depends only on the cost function and the systems

21

Figure 2. Left: Total time needed by the system to deliver all the
containers for different values of the parameters K1 and K2 and for

different values of the parameter maxdist (top row maxdist = 300,
bottom row maxdist = 100). Right: Number of containers delivered before

their deadlines. Communication and local planning are permitted.

behaves in the “nearest container” way. The results are a low total

delivery time and a considerable number of containers delivered af-

ter its deadline. The case K2 = 0 is even worse. The system follows

the “most urgent container” behavior, resulting in very long displace-

ments which cause a big total delivery time and ,consequently, a big

number of containers delivered with retard. It is worth to remark that

the improvement over those greedy methods achieved by our Bar

System for some values of the parameters K1 and K2 is not attained

in exchange of a greater complexity; in fact, the complexity of the

system, understood as the amount of work which each agent has to

do in order to decide the next container to go for, increases lineally

with the number of containers.

We can also observe how the quality of the solutions found de-

pends on the perceptual capabilities of the agents. When this capa-

bility is very limited (not shown in the figures), robots’ behavior is

too local, resembling somewhat like a mixture of“nearest container”

and random walk. On the other side, very good solutions are found

for certain values of the parameters K1 and K2 when the agents are

able to perceive the environment almost entirely (maxdist = 300).

This augmented perceptual ability implies, nevertheless, the possi-

bility of appearance of several phenomena which can affect system’s

efficiency, like, for instance, that it will be necessary to evaluate more

alternatives, that the probability of conflicts will increase and that,

depending on the values of the parameters, the system can arrive to

very bad solutions if the agents must perform long displacements.

Thus, a bit paradoxically, more perception power can yield poorer re-

sults. The most interesting case, from our point of view, is when the

agents have a perceptual capability between the two extreme points.

We have tested the case maxdist = 100 and we can see in the bot-

tom row of figure 1 how the system finds good solutions for most

values of the parameters K1 and K2. There are particularly, two big

zones in the parameters space where the solutions found are as good

as the ones obtained by the agents of the first row of the figure, which

have a perceptual power nine times greater.

In figure 2, we can see how the inter agent communication or ne-

gotiation and local planning can improve greatly, depending on the

values of the parameters, the quality of the solutions found. Clearly,

the importance of communication between agents increases with the

possibility of conflict, which is proportional to the agents’ percep-

tion power and decreases with the relative magnitude of the param-

eter K2 regarding K1.The more K2 grows regarding K1, the more

importance is given to the distance to the container in the calculation

of the preference function, the robots tend to prefer the nearest con-

tainers and the number of conflicts decrease, as well as the utility of

communication.

It is interesting to note that for some values of the parameters K1
and K2, communication and local planning capabilities does not im-

prove system’s results. This is probably due to the fact that the results

for those parameter values in the Bar System without communicative

or planning capabilities are near-optimal (all the containers delivered

in time). Nevertheless, it is clear that more work in this direction is

needed in order to clarify communication and local planning effects.

6 CONCLUSIONS AND FUTURE WORK
We have presented Bar Systems, a new class of reactive multi-agent

systems for distributed problem solving. They are loosely inspired in

the way a group of waiters work behind a bar. We have formalized

the definition and we have given the general algorithm which rules

the behavior of the individual agents. Several of the characteristics of

Bar Systems are:

• Simplicity. Agents in Bar Systems are simple. They share a sim-

ilar structure and operate in a decentralized manner in a similar

way optimizing a local function. Interactions between agents are

simple, too.

• Efficiency. Bar Systems have lineal complexity with respect to the

number of tasks.

• Robustness. Faults in individual agents do not decrease dramati-

cally the efficiency of the system. Moreover, Bar Systems’ prob-

lem solving capabilities increase steadily with the addition of new

agents.

• Responsiveness. Bar Systems respond easily to the occurrence of

unforeseen events as the appearance of new high priority tasks.

All those characteristics, jointly with the capability to seamless

integrate different more or less sophisticated negotiation and lo-

cal planning techniques, make Bar Systems very suitable to solve

problems in asynchronous, dynamical, partial information and time-

critical environments.

To check the efficiency and applicability of Bar Systems, we have

defined a NP-Hard problem called CONTS, based on the work which

a set of robots has to perform to transport a set of containers in time

to their destination. The Bar System used to solve it has proved to

give much better results than other greedy algorithms of the nearest

neighbor type and has established, in our opinion, the usefulness of

Bar Systems as a general framework for solving this type of real time

problems. We have also seen that communication amongst agents

and local planning allows improving the results greatly without in-

creasing the complexity of the system significantly.

Our work in Bar Systems is just starting and we are aware that

there are many aspects that require more study and testing. Some

of the directions in which it would doubtless be worth working and

which essentially refer to the nature of the attraction function F are:

• Study of more sophisticated negotiation strategies in case of con-

flict (two agents preferring the same task) and new local planning

operators and its impact in system’s performance.

22

• Study of Bar Systems’ performance in highly dynamical, time-

critical environments. We are currently considering its use in the

ROBOCUP and RESCUE environments.

• Study of the applicability of Bar Systems to other kinds of prob-

lems. At a first glance it could seem Bar Systems to be a bit too

restrictive with respect to the kind of problems which they can

tackle, It must be remarked, nevertheless, that its application is

not limited to problems involving the transportation of goods or

people (and we don’t mean it to be a narrow application field, it is

wide enough to contain problems ranging from service assignation

in cab companies to multi-agent autonomous terrain exploration),

they can also be useful in other problems which do not necessarily

involve physical movement of the agents or goods transportation,

such as resource allocation problems in the style of flexible Open-

Shop problems where the order in which a set of machines, in

a factory, for instance, has to perform a set of operations has to

be decided. In this type of problems, machines would correspond

to the robots in the CONTS problem, tasks would correspond to

containers transportations and the preconditions and postcondi-

tions for the tasks would correspond to the initial and destination

positions of the containers in the yard. Moreover, with an appro-

priate definition of the attraction function F , a Bar System can be

used for solving flexible Job-Shop problems, where there is a set

of independent jobs, each formed by a series of tasks which have

to be done in a specific order. In this kind of problems, for each

job there is at all times, at the most, just one feasible task, and it

would be sufficient to define the attraction functions in such a way

that all job’s not done tasks“transmit” their urgency to the feasi-

ble one. The same idea could be used in a more general setting,

where there would simply be any type of non-cyclical precedence

relations over the set of tasks. It can also be worth to study the

applicability of Bar Systems in competitive environments.

REFERENCES
[1] Holland O.E. Beckers, R. and Deneubourg J.L., From Local Actions to

Global Tasks: Stigmergy in Collective Robotics, 181–189, Artificial Life
IV, MIT Press, Cambridge, MA, 1994.

[2] E. Bonabeau, M. Dorigo, and G. Thraulaz, Swarm Intelligence. From
Natura to Artificial Systems, Oxford University Press, 1st edn., 1999.

[3] E. Bonabeau and G Thraulaz, ‘Swarm smarts’, Scientific American,
March 2000, 72–79, (2000).

[4] E. del Acebo, ‘Agents, sistemes multiagent i soluci distribuida de prob-
lemes’, Research Report. Institut d’Informatica i Aplicacions. Universi-
tat de Girona, (2005).

[5] M. Dorigo and T. Sttzle, Ant Colony Optimization, MIT Press, 2004.
[6] P. Engelbrecht A., Fundamentals in Computational Swarm Intelligence,

John Wiley and Sons, 2006.
[7] M. A. Lewis and G. A. Bekey, The Behavioral Self-Organization of

Nanorobots Using Local Rules, Proceedings of the 1992 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, 1992.

[8] K.E. Parsopoulos and M.N. Vrahatis, ‘Recent approaches to global op-
timization problems through particle swarm optimization’, Neural Com-
puting, 1 (2-3), 235–306, (2002).

[9] M. Resnick, Turtles, Termites and Traffic Jams, Explorations in Mas-
sively Parallel Microworlds, MIT Press, 1997.

23

A Comparison between GAs and PSO in Training ANN
to Model the TE Chemical Process Reactor

Malik Braik and Alaa Sheta and Amani Arieqat1

Abstract. In this paper, the adaptation of network weights using
Particle Swarm Optimization (PSO) was proposed as a mechanism
to improve the performance of Artificial Neural Network (ANN) in
modeling a chemical process. This is particularly useful for cases
involving changing operating conditions as well as highly nonlin-
ear processes. As a case study, a Tennessee Eastman (TE) chemi-
cal process reactor was considered. Four subsystems of the reactor
were considered. They are the reactor level, the reactor pressure,
the reactor cooling water temperature, and the reactor temperature.
PSO is proposed to allow automatic update of network weights to in-
crease the adaptability to dynamic environment. Comparisons were
also made to training the ANN using Genetic Algorithms (GAs). The
results obtained in this paper confirmed the potential of PSO-based
ANN model to successfully model the TE process. The results are
explored with a discussion using the Mean Square Error (MSE) and
Variance-Account-For (VAF) to illustrate the usability of the pro-
posed approach. Finally, conclusions and future works are derived.

1 Introduction

Over the years, the application of Artificial Neural Network (ANN)
in process industries has been growing in acceptance. Today, there
is a growing interest of using ANNs to assist building a reasonable
model structure for physical nonlinear systems [25]. ANNs have a
special capacity to approximate the dynamics of nonlinear systems
in many applications in a black box manner. An example of dynami-
cal nonlinear systems is a Tennessee Eastman (TE) chemical reactor
process [6]. Given sufficient input-output data, ANN is able to ap-
proximate any continuous function to arbitrary accuracy. In general,
the development of a good ANN model depends on several operators.
The first operator is related to the input-output data driven, where
model qualities are mostly influenced by the quality of data being
used. The second operator is concerning with the network architec-
ture. Different network architectures result in a different estimation
performance. The third operator is the model size and its complexity.
Where a small network may be not able to represent the real situ-
ation of the model estimation due to its limited capability, while a
large network may has noise in the training data and hence fail to
provide good generalization ability, and the last operator is related
to the quality of the process model, and is strongly dependent on the
network training. May be the last issue, is the most important among
all, since it is essentially an identification of model parameters that
fit with the given data. The work in this paper will focus on the last
issue.

1 Information Technology Department, Prince Abdullah Bin Ghazi Faculty of
Science and Information Technology, Al-Balqa Applied University, Jordan,
email:{m fjo,asheta2,amany arieqat}@yahoo.com

Until today, many researchers prefer of using gradient descent al-
gorithms such as Back-Propagation (BP) method. Some of the ad-
vantages of this gradient-based technique include its efficient imple-
mentations, good at fine-tuning, and faster convergence when com-
pared with other methods. However, these methods are subject to
problems involving local minima-since they are local search meth-
ods and when applied to complex nonlinear optimization problems,
may be sometimes result in unexpected performances. These gradi-
ent methods assess the error in the network’s decision as compared
to a supervisor, and propagate the error to the weights throughout the
network, so that, one of the main obstacles due to the fact that search-
ing of optimal weights is strongly dependent on initial weights, and
if they are located near local minima, the algorithm would be stuck
at a sub-optimal solution. So that, the conventional gradient search
method is susceptible to be converged at local optima. This is how-
ever not the case for Evolutionary Algorithms (EAs) since the ge-
netic search methods offer better chances to get to the global optima.
Furthermore, since EAs does not use gradient information, it is ad-
vantageous for problems where such information is unavailable or
very costly to obtain. These advantages make them more robust and
appealing than many other search algorithms [7].

Several different attempts have been proposed by various re-
searchers to propitiate this training problem. These include imposing
constraints on the search space, restarting training at many random
points, adjusting training parameters, and restructuring the ANN
structure [25]. One of the most promising techniques is by intro-
ducing adaptation of network training using (EAs) such as Particle
Swarm Optimization (PSO), and Genetic Algorithms (GAs). Unlike
BP, PSO is a global search algorithm based on the principle ”sur-
vival of fittest”. PSO is quite suitable for problems with many local
minima or problems where gradient information isn’t readily avail-
able, PSO avoid trapping in a local minima, because it is not based
on gradient information [1, 15].

PSO has been used to train neural networks, finds neural network
architectures, tunes network learning parameters, and optimizes net-
work weights. The global best or local best solution in PSO is only
reported to the other particles in a swarm. Therefore, evolution only
looks for the best solution and the swarm tends to converge to the
best solution quickly and efficiently, thus increasing the probability
of global convergence. In this way, the merging of EAs and ANN
will gain adaptability to dynamic environment and lead to signifi-
cantly better intelligent systems than relying on ANN, PSO, or GA
alone. In [20], Montana and Davis reported the successful applica-
tion of a GA to a relatively large ANN problem. They proved that
GA produce results superior than BP method. In [32], Yao and Liu
presented a new evolutionary algorithm, to evolve ANN architecture
and connection weights simultaneously. When tested on a number of

24

benchmark problems such as medical diagnosis problems, and credit
card assessment problems. In [34], Zuo and Wu used GA to deter-
mine the optimal feeding rate for a hybrid ANN model of a fermen-
tation system.

In other words, the developed models using ANN-EAs should be
more robust to dynamic nonlinear process system [33]. In this paper,
GAs-based ANN and PSO-based ANN are introduced for connection
weights in ANN modeling.

Following this introductory section, the rest of the paper is or-
ganized as follows: In Section II, a background of the case study
is presented. In section III: the preparatory works for ANN model
development such as sensitivity analysis, and model input selection
are reported. Subsequently, data collection and scaling procedure for
model development are described. Also, procedures of ANN model
development have been discussed. This is followed in section IV: by
discussion of PSO and GAs and the motivation to include evolution
in ANN modeling using EAs, also, the research methodologies in-
volved are described. In section V, The reported results are simulated
and discussed, and finally, the paper closes with some concluding
remarks and future research directions in Section VI.

2 Tennessee Eastman Chemical Process
Over the years, the processes involved in manufacture and produc-
tion of purified chemicals have become increasingly more complex.
Systems that were once controlled by operators based on the system
performance have been converted to automatic control, where a me-
chanical or electrical controller adjusts valves and pumps [4, 17, 29].
Engineers have learned that, to develop the control algorithms for
large complex systems, it is important to first create and test a model
of the system offline. There are two reasons to do this in chemical
plants, they are:

• Protecting humans and the environment from unsafe conditions.
• Shorten the design and analysis of the system [31].

2.1 Features of the TE Process
TE process, as presented by Downs and Vogel in [6], is based on
an actual system, with slight changes made to protect the identity
of the reactants and products. The system is a wellposed problem
for analysis and control design of a nonlinear, open-loop unstable
chemical process. The plant consists of five major operations: a two
phase reactor, a product condenser, a vapor/liquid separator, a recycle
compressor, and a product stripper. The nonlinear dynamics of the
plant are mainly due to the chemical reactions within the reactor. A
Nonlinear Predictive Control shown in Figure 1 was simulated [19].
The TE reactor process shown in this figure is borrowed from [3].

Downs and Vogel [6] proposed the following control objectives
for this system:

1. Maintain process variables at desired values.
2. Keep process operating conditions within equipment constraints.
3. Minimize variability of product rate and product quality during

disturbances.
4. Minimize movement of the gas valves which affect other pro-

cesses.
5. Recover quickly and smoothly from disturbances, production rate

changes, or product mix changes.

A suitable controller must be able to achieve at least these control
objectives.

TE Reactor

0 0
0 0

...........

...........

...............

.

......

. ..Gaseous
Feed

Product
Vapour

Minimization of

r−ŷ[ΣJ= CoolingWater

r
u

y

2 2
]uΔ[Σρ+]

Figure 1. The Simulated Predictive Control Principle

2.2 Inputs and Outputs of the TE System
Typically, any chemical system can be represented by a set of mathe-
matical equations that map the inputs and outputs of the system with
a set of state variables. The main set of equations for normal opera-
tion of the chemical processes is the dynamic of equations associated
with the reactions, unit operations, and flows of the system. The plant
model has 12 manipulated variables, 50 states, and 41 measurements
from different locations in the plant [12]. The 20 disturbance scenar-
ios can be turned on and off to test the robustness of the system. Of
the measured values, there are 22 values that monitored continuously.
The other 19 measured values are retrieved from gas chromatographs
(analyzers) that give information only at certain intervals. The three
analyzers give information about chemical components in the reac-
tor feed, the purge gas, and the product with sampling delays of 0.1
hour, 0.1 hour and 0.25 hour, respectively. The 50 states of the model
closely correspond to the actual plant operation that represents the
significant system dynamics. Fast dynamics, such as transmitter lags,
are modeled as straight gains because the effects of these transients
are minimal. The 12 manipulated variables in the TE process allow
the designer 12 degrees of freedom with 9 flow valves, 2 temperature
control valves, and control of the reactor agitation rate [12, 11].

3 Preparation for Model Development
Before the ANN model can be selected, some preparation stages
must be completed. These tasks included: data collection, model
structure selection. These preparations are necessary to provide
model development.

3.1 Data Collection and Description
Dataset for training and evaluating is collected from various oper-
ating conditions to measure different outputs of the TE reactor. A
total of 300 measurements were downloaded from [23]. The mea-
surements describe the behavior of the TE reactor and show how it
responds to various inputs. The dataset is split into two parts; the
training dataset which is used to train the NN model, whilst a testing
dataset is used to verify the accuracy of the trained NN model. The

25

training dataset consists of 50% of the total dataset with the testing
dataset consisting of the remaining 50%.

Since the model was built using time-series data, measurements at
past sampling time (t − 1) for input variables were also included as
model input. This was due to the fact that chemical process variables
were always auto-correlated. Perhaps, by including the delay mea-
surement as a model input for current estimation, the generalization
ability of a feedforward network would be improved, and hence, the
performance of the network in estimating the TE process would be
enhanced.

The TE reactor modeling problem is divided into four sub-
problems. They are: The reactor level, the reactor pressure, the re-
actor cooling water temperature, and the reactor temperature. Each
of the four sub-problems has four input variables [2, 29], they are:

• u1(k) stand for the flow to the reactor.
• u2(k) stand for the coolant valve position,
• u3(k) stand for the feed mole fraction, and
• the fourth input y(k−1) represents the past output variable value.

The output for each sub-problem is represented by y(k).

3.2 Data Scaling
Dataset is not normally used directly in process modeling of ANN.
This is due to the difference in magnitude of the process variables.
The data was scaled to a fixed range to prevent unnecessary domina-
tion of certain variables, and to prevent data with larger magnitude
from overriding the smaller and impede the premature learning pro-
cess. The choice of range depends on transfer function of the output
nodes in ANN. Typically, [0, 1] for sigmoid function and [−1, 1] for
hyperbolic tangent function. However, due to nonlinear transfer func-
tion has asymptotic limits; the range of dataset is always set slightly
less than the lower and upper limits. In this work, since the sigmoid
function is adopted, the data is normalized in the range of [0.1−0.9]
using the relation in equation 1:

vnorm
i =

0.8(vi − vmin
i)

(vmax
i − vmin

i)
(1)

where vi is the input variables i or the output variable to be scaled.
vmin

i and vmax
i are the smallest and the largest value of the data.

The choice of [0.1 − 0.9] was recommended based on the facts that
it eliminates some of the saturation region at both end of the sigmoid
function [9].

3.3 Model Structure Selection
Selecting a model structure from a set of candidate models is a diffi-
cult problem since the TE is a nonlinear process [22, 24]. Architec-
ture of ANN model includes type of network, number of input and
output neurons, transfer function, number of hidden layers as well
as number of hidden neurons. Normally, the input neurons and out-
put neurons are problem specific. In this work, Multi-Input Single-
Output (MISO) structure had been utilized to estimate the TE pro-
cess; hence, there will be only one output neuron. Since the model
was built using time-series data, measurements at past sampling time
(t − 1) for input variables were also included as model input. This
was due to the fact that chemical process variables were always auto-
correlated. In this way, the performance of the network in estimating
the TE process would be enhanced. Thus, together with current sam-
pling time for 3 input variables, there were 8 input neurons in the
input layer. In this work, the TE reactor has only one hidden layer

and 7 neurons in the hidden layer. It was utilized that an ANN with
one hidden layer was sufficient in performing process mapping. Only
one hidden layer with 7 neurons in the hidden layer was utilized in
this work as it had proved that an ANN with one hidden layer was
sufficient in performing process mapping arbitrarily [10]. From the
optimum network topology, it was shown that the ANN model does
not need a large number of hidden neurons. This revealed that the
estimation task was not too complicated.

Also, it was important that the transfer function possessed the
properties of continuity and differentiability. Commonly, log sigmoid
function was utilized in the hidden layer and the output generated had
a value between 0 and 1. However, the linear transfer function was
more suitable in output layer. The equations for the log and linear
transfer functions used in this work are shown in equations 2 and 3:

f(x) =
1

1 + exp(−x)
(2)

f(x) = x (3)

4 Genetic Algorithms (GAs)

GAs belongs to a class of population-based stochastic search algo-
rithm that is inspired from principles of natural evolution known as
Evolutionary Algorithms [5]. GA is based on the principle of ”sur-
vival of fittest”, as in the natural phenomena of genetic inheritance
and Darwinian strife for survival. GA operates on a population of
individuals which represent potential solutions to a given problem.
Imitating the biological principles in nature, a single individual of a
population usually is affected by other individuals in its environment.
Normally, the better an individual performs under these competitive
conditions, has a greater chance to survive and reproduce. This in
turn inherits the good parental genetic information. Hence, after sev-
eral generations, the bad individual will be eliminated and better in-
dividuals will be produced. In general, GA is applicable to a wide
range of optimization problems. Primarily, GA was designed to opti-
mally solve sequential decision processes more than to perform func-
tion optimization but over the years, it has been used widely in both
learning and optimization problems [30, 28]. There are two important
issues in searching strategies for optimization problems: exploiting
the best solution and exploring the search space [8, 27]. GA makes a
balance between the exploitation and exploration of the search space.
It allows the exploration of all solution space, which may reduce the
converging to a local minimum. The exploitation in the neighbor-
hood of possible solutions will perform as the high fittest solutions
to be developed. Basically, the performance of weights evolution us-
ing GA depended on the number of populations and generations. If
these parameters were set too low, the evolution may converge to
immature solution. However, the larger number of populations and
generations would require longer computation time for convergence
[26].

In general, GAs used four steps to obtain the optimum connection
weights of ANN:

step 1 Generate an initial population of random weights and the cor-
responding ANN was constructed with those weights.

step 2 ANN was evaluated using the population weights. This was
done by computing its training error and assigning it to a fitness
value according to how good the solutions are.

step 3 Parents for genetic manipulation were selected and a new
population of weights were created.

26

step i The best existing weights (reproduction) were copied.

step ii New weights were created by crossover and mutation operators.
step 4 The best population of weights that appeared in any gener-

ation was designated as the result of the performed GA, for the
weights evolved using GA, the number of generation was used to
stop the iteration.
In this work, 50 populations of weights were evolved for 50 gen-
erations. The performances in the validation sets were considered
in the acceptable level; this proved that this scheme was adequate
with a sufficient accuracy.

5 Particle Swarm Optimization (PSO)
PSO is a global optimization technique that has been developed by
Eberhart and Kennedy in 1995 [13, 14], the underlying motivation of
PSO algorithm was the social behavior observable in nature, such as
flocks of birds and schools of fish in order to guide swarms of parti-
cles towards the most promising regions of the search space. PSO ex-
hibits a good performance in finding solutions to static optimization
problems. It exploits a population of individuals to synchronously
probe promising regions of the search space. In this context, the pop-
ulation is called a swarm and the individuals (i.e. the search points)
are referred to as particles. Each particle in the swarm represents a
candidate solution to the optimization problem. In a PSO system,
each particle moves with an adaptable velocity through the search
space, adjusting its position in the search space according to own ex-
perience and that of neighboring particles, then it retains a memory
of the best position it ever encountered, a particle therefore makes
use of the best position encountered by itself and the best position
of neighbors to position itself towards the global minimum. The ef-
fect is that particles ”fly” towards the global minimum, while still
searching a wide area around the best solution [15, 21, 16]. The per-
formance of each particle (i.e. the ”closeness” of a particle to the
global minimum) is measured according to a predefined fitness func-
tion which is related to the problem being solved. For the purposes of
this research, a particle represents the weight vector of NNs, includ-
ing biases. The dimension of the search space is therefore the total
number of weights and biases.

The iterative approach of PSO can be described by the following
steps:

step 1 Initialize a population size, positions and velocities of agents,
and the number of weights and biases.

step 2 The current best fitness achieved by particle p is set as pbest.
The pbest with best value is set as gbest and this value is stored.

step 3 Evaluate the desired optimization fitness function fp for each
particle as the Mean Square Error (MSE) over a given data set.

step 4 Compare the evaluated fitness value fp of each particle with
its pbest value. If fp < pbest then pbest = fp and bestxp =
xp, xp is the current coordinates of particle p, and bestxp is the
coordinates corresponding to particle p’s best fitness so far.

step 5 The objective function value is calculated for new positions
of each particle. If a better position is achieved by an agent, pbest
value is replaced by the current value. As in Step 1, gbest value is
selected among pbest values. If the new gbest value is better than
previous gbest value, the gbest value is replaced by the current
gbest value and this value is stored. if fp < gbest then gbest = p,
where gbest is the particle having the overall best fitness over all
particles in the swarm.

step 6 Change the velocity and location of the particle according to
Equations 4 and 5, respectively [13, 18].

step 7 Fly each particle p according to Equation 5.
step 8 If the maximum number of a predetermined iterations

(epochs) is exceeded, then stop; otherwise Loop to step 3 until
convergence. In this work, 25 populations of weights were evolved
for 200 generations.

Vi = wVi−1 + acc ∗ rand() ∗ (bestxp − xp)

+ acc ∗ rand() ∗ (bestxgbest − xp) (4)

Where acc is the acceleration constant that controls how far particles
fly from one another, and rand returns a uniform random number
between 0 and 1.

xp = xpp + Vi (5)

Vi is the current velocity, Vi−1 is the previous velocity, xp is the
present location of the particle, xpp is the previous location of the
particle, and i is the particle index. In step 5 the coordinates bestxp
and bestxgbest are used to pull the particles towards the global mini-
mum.

5.1 Tuning Parameters for GAs and PSO
To develop an accurate process model using ANN, the training, and
validation processes are among the important steps. In the training
process, a set of input-output patterns is repeated to the ANN. From
that, weights of all the interconnections between neurons are adjusted
until the specified input yields the desired output. Through these ac-
tivities, the ANN learns the correct input-output response behavior.
The model training stage includes choosing a criterion of fit (MSE)
and an iterative search algorithm to find the network parameters that
minimizes the criterion. PSO as well as GAs are used in an effort
to formalize a systematic approach to training ANN, and to insure
creation of a valid model. They are used to perform global search
algorithms to update the weights and biases of neural network. The
combinations of control parameters used for running PSO and GAs
are shown in Table 1and Table 2 respectively:

Table 1. The Control Parameters used for Running PSO

Parameter Value
Number of population 50
Number of generations 2000
Learning factors 1.3
Inertia weights 0.6 and 0.9
Fitness MSE

Table 2. The Control Parameters used for Running GAs

Parameter Value
Number of population 50
Number of generations 2000
Crossover probability 0.9
Mutation probability 0.03
Selection function Ranking
Fitness MSE

For the validation process, the expected model is compared graph-
ically with the behavior of the target model.

27

6 Training and Validation Results

The performance of the proposed models in tracking the actual pro-
cess data during the training and validation testing stages of the re-
actor level is illustrated in Figures 2,3, respectively. The modeling
process of the reactor Level is shown as a sample, in overall, all es-
timator models display good performance in the training and valida-
tion sets indicating that the models developed are able to represent
the behavior of the TE process.

The final convergence value of the proposed models reached 0. It
can be seen from Figure 4 that the convergence process results in
smooth curves, with a rapid increase at the start that gradually slows
down. The experiments were implemented five times to ensure that
MSE converges to a minimum value. In the reactor level problem,
the MSE error converges to a value of 0.00034721 using PSO, and
to 0.00038193 using GAs, while in the reactor pressure problem, the
MSE converges to a value of 0.0001550 using PSO, and to 0.0001705
using GAs. In the other models, the MSE convergence value is nearly
0.

0 500 1000 1500 2000
0

0.005

0.01

0.015

0.02

0.025

Epochs

C
rit

er
io

n
of

 F
it

(M
S

E
)

0 500 1000 1500 2000
0

1

2

3

4

5
x 10−3

Epochs

C
rit

er
io

n
of

 F
it

(M
S

E
)

0 500 1000 1500 2000
0

1

2

3

4

5

6
x 10−6

Epochs

C
rit

er
io

n
of

 F
it

(M
S

E
)

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

3
x 10−7

Epochs

C
rit

er
io

n
of

 F
it

(M
S

E
)

PSO
GAs

PSO
GAs

PSO
GAs

PSO
GAs

Figure 4. Convergence Curves of TE sub-problems; upper left-Reactor
Level; upper right-Reactor Pressure; lower left-Reactor Cooling

Temperature; lower right-Reactor Temperature

6.1 Evaluation Criteria

The performance of the proposed approach is evaluated by measur-
ing the estimation accuracy. The estimation accuracy can be defined
as the difference between the actual and estimated values. The first
typical fitting criterion (MSE) is defined as in Equation 6:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (6)

where N is the total number of data, y is actual target value, and ŷ
its estimated target value.

Since the calculation started with random initial weights, each run
produced different results even though the network architecture was

maintained. Thus, in order to obtain an optimal solution, tedious ap-
proaches such as repeating runs for the same topology cannot be
avoided. The experiments are implemented many times to ensure that
MSE converges to a minimum value. It was found that the TE reactor
composition could be best estimated using a network with 7 hidden
neurons. Using this network topology, the training and validation er-
rors of the models developed based MSE are tabulated in Table 3.

Table 3. Training and Validation Results of The Estimator Models

problem Train-PSO Valid-PSO Train-GAs Valid-GAs
1 1.9321e-1 3.7736e-2 2.0820e-1 0.8226e-1
2 4.2778e-3 4.0076e-3 6.5994e-3 5.1018e-3
3 3.3147e-6 7.6189e-7 1.0179e-4 2.2881e-5
4 5.1391e-6 6.0090e-6 4.7434e-5 5.3340e-5

The second criterion fit, Variance-Account-For (VAF) is used to
test the ability of the proposed approach to model the TE reactor in
recall or testing phase, VAF is given in Equation 7.

V AF = 1− var(y − ŷ)

var(y)
× 100% (7)

where, y(t) is the actual system output, and ŷ(t) is the predicted
ANN output.

The results of modeling the TE reactor using ANN-PSO and
ANN-GAs based on the VAF criterion are computed and reported
in Table 4.

Table 4. VAF Values of the Proposed Models

Sub-problem ANNs-PSO ANNs-GAs
Reactor Level 90.9445 87.3228
Reactor Pressure 91.9994 89.8116
Reactor Cooling Temperature 99.7988 98.3863
Reactor Temperature 99.9944 99.7300

From the results shown in Tables 3, 4, when the comparison of
training and validation performances was made between ANN-PSO
and ANN-GAs model, ANN-PSO can perform better, meaning that
PSO is very effective in training the NNs, learned to successfully
navigate the course on the majority of test runs, and often reached
an optimal MSE. ANN-GAs is not effective in modeling TE process;
this is due to that population of weights for ANN-GA may not be able
to reach a global optimum when the evolution was simulated over the
same number of generations as with ANN-PSO model. The higher
number of generations may be used but this is not recommended due
to longer convergence time.

7 Conclusions and Future Work
This work has proposed an enhancement to neural network model.
Aiming to improve the model robustness, evolution in network con-
nection weights using EAs was explored. Based on the results ob-
tained in this study, the main conclusions of this paper are: ANN
is an efficient and effective empirical modeling tool for estimating
the chemical process variable by using other easily available process
measurements and the use of multilayer feedforward network with
delay values in model input variables are sufficient to give estima-
tion to any arbitrary accuracy. Also, this paper has taken advantage

28

0 50 100 150
70

72

74

76

78

80

Am
pl

itu
de

Time (Samples)

Observed Reactor Level Detection(Training)

Actual Output
Estimated Output

150 200 250 300
72

73

74

75

76

77

78

Am
pl

itu
de

Time (Samples)

Observed Reactor Level Detection(Validation)

Actual Output
Estimated Output

Figure 2. Observed Reactor Level: Training and Validation Performance of ANN-PSO Model

0 50 100 150
71

72

73

74

75

76

77

78

Am
pl

itu
de

Time (Samples)

Observed Reactor Level Detection(Training)

Actual Output
Estimated Output

150 200 250 300
72

73

74

75

76

77

78

Am
pl

itu
de

Time (Samples)

Observed Reactor Level Detection(Validation)

Actual Output
Estimated Output

Figure 3. Observed Reactor Level: Training and Validation Performance of ANN-GA Model

29

of flexibility EAs techniques by applying it to the problem of training
neural networks. In particular the global optimization method PSO
is employed to provide a sense of the directivities of optimization
the weights and biases of neural networks, and seek a good start-
ing weight vector for subsequent neural networks learning algorithm.
The preliminary results give a positive indication of the potential of-
fered by EAs; this ensures the ability to effectively train the neural
networks using the optimization techniques. In addition, PSO offered
an increased level of adaptability of neural networks and is more
preferable as the optimal solution searching to model a TE reactor
problem than GAs. Despite the encouraging finding was obtained,
there are still several further works to be considered. These include:
The inclusion of adaptive feature using EAs to improve model ro-
bustness can be extended to evolution of a network architecture,
which is typically number of hidden nodes as well as number of hid-
den layers; also the evolution of network architecture requires new
set of connection weights.

Acknowledgements
Authors would like to acknowledge the financial support of Al-Balqa
Applied University, Al-Salt, Jordan.

REFERENCES
[1] Hussein A. Abbass, Ruhul Sarker, and Charles Newton, ‘PDE: A

Pareto-frontier Differential Evolution Approach for Multi-objective
Optimization Problems’, in Proceedings of the Congress on Evolution-
ary Computation 2001 (CEC’2001), volume 2, pp. 971–978, Piscat-
away, New Jersey, (May 2001). IEEE Service Center.

[2] Heba Al-Hiary and Alaa Sheta, ‘A new neural networks model for in-
dustrial processes’, in 4th International Multiconference on Computer
Science and Information Technology CSIT, volume 2, pp. 189–198,
(2006).

[3] I.Paul Barton and S.Wade Martinsen, ‘Eqaution-oriented simulator
training’, in Proceedings of the American Control Conference, Albu-
querque, New Mexico, pp. 2960–2965, (1997).

[4] N. Bhat and T. J. McAvoy, ‘Use of neural nets for dynamic modelling
and control of chemical process systems’, Computers & Chemical En-
gineering, 14(4), 573–583, (1990).

[5] M. Choenauer and Z. Michalewicz, ‘Evolutionary computation control
and cybernetics’, Proceedings of the IEEE, 26(3), 307–338, (1997).

[6] J. J. Downs and E. F. Vogel, ‘A plant-wide industrial process control
problem’, Computers Chemical Engineering, 17, 245–255, (1993).

[7] D.B. Fogel, ‘Ean introduction to simulated evolutionary optimization’,
IEEE Transactions on Neural Networks, 5(1), 3–14, (1994).

[8] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design,
United States of America: John Wiley & Son, Inc., 1997.

[9] M.H. Hassoun, Fundamentals of Artificial Neural Networks, MIT
Press, Cambridge, MA., 1995.

[10] K. J. Hornik, D. Stinchcombe, and H. White, ‘Multilayer feedforward
networks are universal approximators’, Neural Networks, 2(5), 359–
366, (1989).

[11] J.C. Hoskins and D. M. Himmelblau, ‘Artificial neural network models
of knowledge representation in chemical engineering’, Computers &
Chemical Engineering, 12(9), 881–890, (1988).

[12] T. Jockenhovel, L. T. Biegler, and A. Wachter, ‘Dynamic optimization
of the tennessee eastman process using the opt-control centre’, in Pro-
ceedings of the IEEE, (2003).

[13] J. Kennedy and R. C. Eberhart, ‘Particle swarm optimization’, Proceed-
ings of IEEE International Conference on Neural Networks (Perth, Aus-
tralia), IEEE Service Center, Piscataway, NJ, 5(3), 1942–1948, (1995).

[14] J. Kennedy, R. C. Eberhart, and Y.Shi, Swarm Intelligence, Morgan
Kaufmann Publishers, San Francisco, 2001.

[15] R. Kiran, S. R. Jetti, and G. K. Venayagamoorthy, ‘Online training
of generalized neuron with particle swarm optimization’, in Interna-
tional Joint Conference on Neural Networks, IJCNN 06, Vancouver,
BC, Canada, pp. 5088– 5095. Institute of Electrical and Electronics
Engineers, (2006).

[16] N. Kwok, D. Liu, and K. Tan, ‘An empirical study on the setting of con-
trol coefficient in particle swarm optimization’, in Proceedings of IEEE
Congress on Evolutionary Computation (CEC 2006), Vancouver, BC,
Canada, pp. 3165–3172, Vancouver, BC, Canada, (16-21 July 2006).
IEEE Press.

[17] Ungar L.H., E. J. Hartman, J. D. Keeler, and G. M. Martin, ‘Process
modeling and control using neural networks’, AIChE Symposium Se-
ries, 92, 57–67, (1990).

[18] Jiann-IIorng Lin and Ting-Yu Cheng, ‘Dynamic clustering using sup-
port vector learning with particle swarm optimization’, in Proceedings
of the 18th International Conference on Systems Engineering, pp. 218–
223, (2005).

[19] M.Norgaard, O.Ravn, Poulsen, and L.K.Hansen, Neural Networks for
Modelling and Control of Dynamic Systems, Springer, London, 2000.

[20] D. Montana and L. Davis, ‘Training feedforward neural networks us-
ing genetic algorithms’, in Proceedings of Eleventh International Joint
Conference on Artificial Intelligence, pp. 762–767, (1989).

[21] T.J. Richer and T.M. Blackwell, ‘When is a swarm necessary?’, in Pro-
ceedings of the 2006 IEEE Congress on Evolutionary Computation,
eds., Gary G. Yen, Simon M. Lucas, Gary Fogel, Graham Kendall,
Ralf Salomon, Byoung-Tak Zhang, Carlos A. Coello Coello, and
Thomas Philip Runarsson, pp. 1469–1476, Vancouver, BC, Canada,
(16-21 July 2006). IEEE Press.

[22] N. L. Ricker, ‘Nonlinear model predictive control of the tennessee east-
man challenge process’, Computers and Chemical Engineering, 19(9),
961–981, (1995).

[23] N. L. Ricker, ‘Nonlinear modeling and state estimation of the tennessee
eastman challenge process’, Computers and Chemical Engineering,
19(9), 983–1005, (1995).

[24] N. L. Ricker, ‘Optimal steady state operation of the tennessee eastman
challenge process’, Computers and Chemical Engineering, 19(9), 949–
959, (1995).

[25] R.S. Sexton, R.E. Dorsey, and N.A. Sikander, ‘Simultaneous optimiza-
tion of neural network function and architecture algorithm’, in Decision
Support Systems, pp. 1034–1047. IEEE, (2002).

[26] A. Sheta and K. Eghneem, ‘Training artificial neural networks using
genetic algorithms to predict the price of the general index for amman
stock exchange’, in Midwest Artificial Intelligence and Cognitive Sci-
ence Conference, DePaul University, Chicago, IL, USA, volume 92, pp.
7–13, (2007).

[27] A. Sheta, H. Turabieh, and P.Vasant, ‘Hybrid optimization genetic algo-
rithms (HOGA) with interactive evolution to solve constraint optimiza-
tion problems’, International Journal of Computational Science, 1(4),
395–406, (2007).

[28] Alaa Sheta and H. Turabieh, ‘A comparison between genetic algorithms
and sequential quadratic programming in solving constrained optimiza-
tion problems’, ICGST Internatioanl Journal on Artificial Intelligence
and Machine Learning (AIML), 6(1), 67–74, (2006).

[29] Alaa F. Sheta, Modeling the Tennessee Eastman Chemical Reactor
Using Fuzzy Logic, volume 181, ISE Book Series on Fuzzy System
Engineering-Theory and Practice, published by Nova Science, 2005.

[30] Chen Wah Sit, Application of Artificial Neural Network-Genetic Algo-
rithm In Inferential Estimation And Control of A Distilation Column,
Ph.D. dissertation, Universiti Teknologi Malaysia, 2005.

[31] John C. Sozio, Intelligent Parameter Adaptation for Chemical Pro-
cesses, Ph.D. dissertation, Electrical Engineering Department, Virginia
Polytechnic Institute, 1999.

[32] X. Yao, ‘Global optimization by evolutionary algorithms’, in Proceed-
ings of the 2nd AIZU International Symposium on Parallel Algorithms
/ Architecture Synthesis, pp. 282–291, (1997).

[33] X. Yao. Evolving artificial neural networks, 1999.
[34] K. Zuo and W.T. Wu, ‘Semi-realtime optimization and control of a fed-

batch fermentation system’, in Computers & Chemical Engineering,
volume 24, pp. 1105–1109, (2000).

30

Real Time Movement Cooredination Technique Based on
Flocking Behaviour for Multiple Mobile Robots System

Ghada AlHudhud1 and Aladdin Ayesh 2

Abstract. The emergent behaviour of a multiagent system depends

on the component agents and how they interact. A critical part of

interaction between agents is communication. This paper presents

a multi-agent communication model for physical moving agents,

robots. The scope of the paper emphasises the interaction relation-

ships between individual components in multi-agents system that re-

sults in economical and social emergent behaviour. The proposed

theory of communication integrates animal intelligence technique

together with a cognitive intelligence one. This results in a local co-

ordination of movements, and global task coordination. Accordingly,

agents are designed to locally communicate with other agents in or-

der to coordinate their movements via a set of flocking rules. A flock-

ing algorithm is used because it satisfies a major objective, i.e. it has a

real time response to local environmental changes and minimises the

cost of path planning. A higher level communication mechanism is

implemented for task distribution that is carried out via a blackboard-

like conversation with a ground based controller.

1 Introduction
Recently, multi-agent systems have been considered an efficient tool

for modelling the system intelligence and the corresponding emer-

gent behaviour. This is because they possess common features; i.e.

intelligence, autonomy, interaction through communication and co-

operation. In addition, the recent advances in theories of agents and

multi-agent systems (MASs) are currently contributing to diverse

domains. An example of these domains is the multiple mobile robot

systems (MMRSs) domain, which exemplifies the main features of

the multi-agent systems.

MMRS are in particular extensively studied for carrying out

tasks that reduce human presence in certain or dangerous tasks, in-

crease productivity, and reduce the time cost; e.g. surface planetary

exploration, cleaning toxic wastes, or deep sea diving tasks. In these

tasks, work can be performed more efficiently and reliably using sev-

eral co-operative robots [6]. Modelling systems of multiple mobile

robots can be carried out as a physical MAS model. Physical MAS
models are particularly useful for systems that are composed of little

robots moving in an environment and at the same time communicat-

ing with a higher layer agent; who can be considered as a ground

based controller GBC. In this respect, agent’s acts are classified into

two categories: physical acts and communicative acts. The agent’s

physical acts requires movement co-ordination and the communica-

tive acts require a central communication with controller.

A good co-operation requires sufficient communication. There-

fore, it is essential to specify the level of communication required

1 Al-Ahliya Amman University, Jordan, email ghudhoud@ammanu.edu.jo
2 De Montfort University,UK, email: aayesh@dmu.ac.uk

depending on the purpose of communication and the level of intel-

ligence these communicating entities possess; e.g. movement action

or information exchange action.

Specifying the level of intelligence a physical agent, robot, pos-

sesses is also important. Levels of intelligence could vary depending

on whether it is the intelligence of the individuals that is required in

the system or it is the system intelligence. Currently, these levels of

intelligence are widely studied in the field of communication within

Multi-Agent Systems (MASs) [5]. However, modelling a MAS re-

quires that each individual agent must possess a high level of an in-

teraction mechanism which when implemented generates global in-

telligent behaviour (good examples are presented in [11] and [12]).

Methods to generate global behaviours from many local be-

haviours have been applied to a varied sets of fields. An example is

presented by Reynolds in [13] as a mathematical simulation of flock-

ing behaviour. The flocking algorithm was first introduced by [13] as

a technique that mimics the movements of bird flocks and related

types of coordinated group motion. A set of flocking behavioural

rules are described in details in [1], [2], [3] and [16]. Another exam-

ple is presented by London [9] that introduced a new MAS model

of price dynamics by considering some simplified cases to model

the complexity and criticality in financial time series. Schlecht and

Joseph also presented an example in [14], that implemented emergent

behaviour techniques for modelling mission planning for unmanned

air vehicles.

To sum up, the paper proposes a communication model that ex-

ploits the flocking algorithm as a movement co-ordination. The flock-

ing algorithm is proposed to mimic the motion of a large group of

animals. The action co-ordination concept exploits the blackboard

communication technique, i.e. communication is performed by pass-

ing messages from a ground based controller GBC to agents for task

allocation, and from agents to GBC in order to report status and find-

ings. All tasks are distributed within a hierarchal order via a ground

based controller.

2 Related Work

Despite the possible benefits of multiplicity, some problems are now

introduced, for example path planning for a group of mobile robots.

A cleaning task, presented in [10], and complex path planning pre-

sented in [8], requires either robots to have a pre-defined path plan to

cover the unoccupied areas in a specified environment or an accurate

map for the environment. For relatively small scaled systems, this

has been shown to be feasible, whilst it is impractical to pre-specify

the paths for a large number of agents or a dynamically changeable

environment with moving agents.

An adaptive movement technique is required to co-ordinate move-

31

ments of a large group in a dynamic environment. An example of

a system that uses an adaptable motion co-ordination technique is

presented by Tang in [15], where an A∗ path planning algorithm

is used for searching an obstacle free path with the least cost for

the agents from a starting point to the goal point but still expen-

sive for the necessity to recalculate the navigation path. Considering

the scenario where task assignment via a communication solution is

to be added, methods, an example is presented in [4] and [7], ad-

dressed a lack of interactive task allocation algorithms and consid-

ered computationally intensive. The communication solution must

measure the amount of communication required in order to control

the agents’ actions, whether these are movements or transmitting or

receiving information. In addition, the way these agents communi-

cate must be adaptable to the changes in the environment in which

they are situated. Therefore, in order to overcome the above high-

lighted problems, a communication model is proposed that discards

pre-specification and uses a mobile coordination and communication

techniques and results in a swarming behaviour that exhibits suitable

response actions while the agent is in motion.

3 New MAS Communication Model
Regarding the movement co-ordination, the flocking algorithm is

used for local communication. This includes the identities of the

sender and recipient, positions, and orientation. Hence, it considers

the agents sensors as the only source of its knowledge. The flock-

ing behaviour can be achieved by applying three rules: alignment,

cohesion, and collision avoidance. Each rule, also considered as a

subsystem, produces a suggestion for the interaction. These sugges-

tions are simply: a centroid3 agent’s heading, a correction angle an

agent needs to modify its direction, and finally a weighting value to

determine the importance of this rule.

Three enhancements are proposed in order to address the list of

problems with the conventional implementation of these rules. First,

a local perception zone is used (that imitates the perception zone an

animal may have in reality) rather than the conventional global one.

This results in localising all computations so that only local agents

are considered. The range of an agent’s sensor controls the level of

locality for an agent so that it can only interact with nearby agents.

Therefore, the parameters for the perception zones are illustrated in

table 1. The second enhancement is in the way an agent prioritises

Table 1: Perception zone for the three flocking rules

Interaction Rule Perception Zone
Sd FOV

Alignment Rule 10 units 360 degrees
Cohesion Rule 10 units 360degrees

Collision Avoidance Rule 7 units 36 degrees

its actions. Within the previous systems, the final decision is often

made by giving the priority to the collision avoidance rule, i.e. if any

object appears in the perception field, all the weights for the other

rules will be reset until the agent avoids the object. According to the

proposed new protocol, all the weights are considered regardless of

the existence of any obstacle.

The third enhancement is the use of dynamically computed and

distributed weights and rules. These weights are computed and dy-

namically updated each time an agent updates its sensory data. The

3 A centroid, in some cases, is an average spatial position for the positions of
a set of agents. The centroid also can be the distance to a single agent, in
other cases.

relations between the weights and the centroids are empirically de-

fined in tables ?? and 3. The conventional implementation of the

flocking systems specifies homogeneous rules and weights in a way

that all the agents use the same rules with the same weights. This

results in global centroids and orientation.

According to the above enhancements, the proposed new three

flocking rules are described as follows:

• Alignment Rule Rα This rule is also known as a velocity match-

ing rule as each agent Ai searches for the nearest neighbour from

the same team Aj and tries to align its velocity vector with the

velocity vector of this neighbour. The sensory data is filtered for

this rule to pick only the nearest friend, a detected neighbour from

the same team. The nearest neighbour is another agent that falls

within a 360 degrees field of view and exists within a range equal

to the agents sensor range. The sensor range and the field of view

defines the perception zone for this rule.

The alignment rule results in a velocity vector an agent should

follow to modify its current direction in order to align with this

neighbour, if found. For agent Ai, this vector composes a cen-

troid CRα
Ai

and a correction angle θRα
Ai

. The centroid of this rule

is considered as the distance to agent Aj positioned at PAj , (see

equation 1). The correction angle is computed as the difference

between the current heading ΨAi of agent Ai and the heading an-

gle αAj of the nearest friend Aj , (see equation 2).

CRα
Ai

= PAj − PAi (1)

θRα
Ai

= ΨAi − αAj (2)

This rule is implemented by the common flocking systems and

this proposal adopts the same rule but with different weighting

strategy. The weighting value wRα
Ai

is dynamically updated and is

computed as a reciprocal of the centroid magnitude. The weight-

ing value is used to adjust the strength of the alignment force. The

outputs from this rule < CRα
Ai

, θRα
Ai

, wRα
Ai

> are stored in the in-

ternal blackboard and used to partially modify the agents current

velocity.

• Cohesion Rule Rβ

The cohesion rule acts as a binding force. It reinforces each agent

to orient its velocity vector towards the centroid of the team mem-

bers that fall in the field of view of this rule (360 degrees) and

exist within a range equal to the agents sensor range. For an agent

Ai, located at corresponding positions PAi , the centroid C
Rβ

Ai
of

this rule is computed as the distance to the average of the posi-

tions of the m detected Ajs located at position PAj s. The agent

Ai computes the distance to the centroid C
Rβ

Ai
and a correction

angle θRβ .

C
Rβ

Ai
=

1

m

m∑
j=1

(PAi − PAi) (3)

θ
Rβ

Ai
= ΨAi − βAj (4)

Similar to the alignment rule, a weighting value w
Rβ

Ai
is used to

adjust the strength of the cohesive force. The weight value was

empirically set according to the experiments described in section

4. The outputs from this rule < C
Rβ

Ai
, θ

Rβ

Ai
, w

Rβ

Ai
> are also stored

in the internal blackboard.

• Collision Avoidance Rule Rγ

This rule prevents an agent from colliding with other objects and

agents in the environment. It also helps avoid overcrowding. An

32

agent uses the sensory data to specify whether it is safe to continue

The perception zone of this rule differs from those of the align-

ment and cohesion rules. The range used for the collision avoid-

ance is less than that used in both aligning and cohesion rules, the

advantage of this being to avoid overcrowding only within a local

area. In addition, an agents field of view for this rule is 36 degrees;

starting from 18 degrees to the right and extending 18 degrees to

the left of the agents velocity vector.

For an agent Ai, located at position PAi , the centroid C
Rγ

Ai
of

this rule is computed as the vector to the detected object. Similar

to the previously described rules, a correction angle θ
Rγ

Ai
is set

depending on the distance to the detected agent. Also, a weighting

value w
Rγ

Ai
is used to give the priority to this rule over the other

rules.

A higher level of communication between agents and hu-

man controller is performed through message exchange through a

blackboard-like communication. All agents including the GBC-

agent are able to read/write messages from/to this global blackboard.

This is a significant part of the communication with the world, as the

agent gains partial-global knowledge by communicating and nego-

tiating with a GBC. This blackboard-like communication is imple-

mented as a fourth rule in addition to the three flocking rules. Since

the flocking rules are used to coordinate motion, the fourth rule is

used to coordinate tasks and governs the global interaction with the

GBC for task distribution.

Practically, this is done as follows: at the beginning of performing

any specified task: the GBC issues a team task in the form of a target

location for a set of agents. Each agent Ai in the team computes

the expected distance Disttar
Ai

to a target (tar) positioned at (Ptar)

according to,

Disttar
Ai

= ‖Posstart
Ai

− Ptar‖ (5)

where ‖Posstart
Ai

− Ptar‖ is the Euclidean distance to the target.

Next, an agent computes the number N of time intervals of length τ
the agent needs to reach the target position depending on its speed

Δx according to,

N =
Disttar

Ai

Δx
(6)

Each agent has a counter C that counts the number of time inter-

vals elapsed since the agent started the task and compares it to the

expected N . Also, for each time interval τ , an agent estimates the

remaining distance, with respect to its current position Poscurrent
Ai

,

to the target which represents the centroid CRBB
Ai

of the blackboard

rule.

CRBB
Ai

= Ptar − Poscurrent
Ai

(7)

Similar to the local interaction rules, a weighting value wRBB
Ai

is used

to control the strength of this fourth rule. During all these stages the

agent can regularly report its status via the external-blackboard to the

GBC.

For each agent, and from each rule. the four rules produce four

different suggestions an agent needs to consider when deciding the

next action. Each suggestion is comprised of a centroid, a correction

angle, and a weight. The information corresponding to each sugges-

tion is stored in the internal blackboard. The strength of each sugges-

tion is determined by the weights associated with each rule. These

weights are computed and dynamically updated each time an agent

updates its sensory data and /or recieves new task from the GBC.

The relations between the weights and the centroids are empirically

defined in tables ?? and 3.

Each suggestion represents a desired velocity demand. Hence, the

new velocity vector is vector summed according to the following

equations:

Xτ
Ai

=
∑

k

w
Rk
Ai

C
Rk
Ai

cos
(
θ

Rk
Ai

)
(8)

Υτ
Ai

=
∑

k

w
Rk
Ai

C
Rk
Ai

sin
(
θ

Rk
Ai

)
(9)

From equation5 ,6, The new heading angle ζAi is calculated and is

used to modify the agent’s velocity and alter its motion in a suitable

manner.:

ζAi = arctan
(
Υτ

Ai
, Xτ

Ai

)
(10)

4 Analysing Emergent Behaviour:
Experimentation Results

This section tests, with the aid of visual evaluation. For this, a 3D

simulation environment is being implemented in order to test how

the interaction weights can be adjusted to help maximizing the cov-

erage area by a group of agents, detecting the complexity in the envi-

ronment depending on the information sent by a group of swarming

agents.

4.1 Simulating the Communication Model
In order to simulate the communications between agents within a

MAS model to mimic a real world, it is essential that the represen-

tation of these agents and their actions have a high level of realism.

Simulating a MAS model, as a geometrical physical model implies

that we have had to represent the environment and the agents with

geometrical shapes. The agent’s sensor is simulated as a fixed line

segment at a defined angle centred at the agent’s location but starting

just outside of the agents physical space, see figure 1. The length of

the line segment determines the laser sensor range. The sensor can

rotate 360 degrees quantized into 18 degree intervals and therefore

it detects one of 20 different locations at each time interval (τ).

Figure 1: The simulated robot with laser sensor.

4.2 Controlling Interaction Weights
This section tests, with the aid of visual evaluation, how the user

can adjust the interaction weights to help accelerating the agents’

progress? For this purpose, controlling the interaction weights is car-

ried out by running the Local Communication Model (LC−Model),

33

explained in section 3. As explained in section 3, the weights associ-

ated with the flocking rules are dynamically computed at each time

interval τ depending on the rule’s centroid and on the attitudes of

each rule; these are the perception zone for this rule and the filtering

strategy.

Table 2: Conventional Calculations of interaction weights

Alignment Rule Condition wRα
Ai

Centroide < seperation distance CRα
Ai

< Sd 1/CRα
Ai

Centroide > seperation distance CRα
Ai

> Sd 1

Cohesion Rule Condition w
Rβ

Ai

Centroide < seperation distance C
Rβ

Ai
< Sd 1/CRα

Ai

Centroide > seperation distance C
Rβ

Ai
> Sd 1

Collision Avoidance Rule Condition w
Rγ

Ai

Centroide < seperation distance C
Rγ

Ai
< Sd 1

Centroide > seperation distance C
Rγ

Ai
> Sd 1

Figure 2: The interaction weights over the first 200 frames. The cohesion
weight dominates the interaction weights whenever the avoidance weight is

zero. The unmodified cohesion weight values are shown in table ??.

Originally, the flocking system is implemented here with the

weights computed in a conventional way, see table ??. Since the col-

lision avoidance weight is given precedence over other weights, as it

is the most important interaction rule, the visual tests involved the in-

fluence of the cohesion weight (w
Rβ

Ai
) on the progress of the agents.

The visual simulation has been useful at this stage in assessing and

evaluating the extent to which varying the cohesion weight allows the

agents in the same team to move as a unit. According to the visual

evaluation, it was found that the cohesion weight slows the agents

progress, due to the high influence of the cohesion force. In addition,

it causes overcrowding in the surrounding area which is used as an

indicator for examining the strength of this binding force.

Consider the situation where an agent detects a large number of

nearby agents, then each of these agents modifies its velocity to move

towards the cohesion centroid. If one or more of these agents de-

tects a wall and at the same time some of the other agents within

the avoidance zone, it may become trapped. In this trap situation, a

neighbour of this agent (who may not detect the same objects) will

be influenced by the trapped agent. In the same manner, the remain-

ing agents will be influenced by the trapped agents as a result of a

high cohesion weight. This can become worse if this set of agents is

assigned a task to reach a specified target. Considering this scenario,

the trapped agent continuously checks its capabilities of perform-

ing this task. Accordingly, the trapped agent may discard his com-

mitment regarding completing the task. The other agents who detect

the trapped agent will be influenced by the trapped agent which can

still significantly slow their progress. This leads to a longer expected

completion time, or even prevents the influenced agents from com-

pleting the task.

In this respect, a main goal of analysing the interaction weights

then is to adjust the cohesion weight in order to avoid these impacts

of a high cohesion weights without loosing the benefits of the sup-

portive role of this weight in the team performance. Therefore, the

start point was to test the conventional implementation of the weights

in flocking algorithms, and the values are shown in table ??, for the

alignment wRα
Ai

and cohesion weight w
Rβ

Ai
. For this implementation,

the cohesion weight is computed as the inverse of the distance to the

cohesion centroid (C
Rβ

Ai
) if the C

Rβ

Ai
falls within the avoidance range,

otherwise it set equal to one. This implies that the cohesion force

is mostly inversely proportional to the distance to the centroid. The

weight becomes bigger very quickly as the centroid position falls out-

side the avoidance range (Sd) whilst it does not become very small

within the avoidance range. In order to numerically assess the dom-

Table 3: The proposed interaction weights.

Alignment Rule Condition wRα
Ai

Centroide < seperation distance CRα
Ai

< Sd 1/CRα
Ai

Centroide > seperation distance CRα
Ai

> Sd 1

Cohesion Rule Condition w
Rβ

Ai

Centroide < seperation distance C
Rβ

Ai
< Sd 1/(C

Rβ

Ai
)2

Centroide > seperation distance C
Rβ

Ai
> Sd 1/C

Rβ

Ai

Collision Avoidance Rule Condition w
Rγ

Ai

Centroide < seperation distance C
Rγ

Ai
< Sd 1

Centroide > seperation distance C
Rγ

Ai
> Sd 1

Collision Avoidance Rule Condition w
Rγ

Ai

Carry on with the task N < expected time 1
Discard the atsk N > expected time 0

inance of the cohesion weight in situations where the agents do not

detect any avoidance cases, the three flocking rules were used. Ac-

cordingly, these interaction weights are shown in figure 2. The bar

graph shows the weights that control the strength of the interaction

forces, according to the values shown in table ??, on an agent over the

first 200 frames of the simulation. Points of high cohesion weight, in

figure 2, implies that an agent will be highly influenced by the nearby

agents, and via monitoring the trap problem can be observed.

4.3 Coverage Areas

An attempt is made to explore the influence of the flocking emergent

behaviour on the covered area around the target. These two issues

34

Figure 3: The interaction weights over the first 200 frames, with the
cohesion weight modified according to the values shown in (table 3).

can be especially useful when the agents are to perform a search or

sweeping task. This is carried out by viewing two values, the posi-

tions of the agents during movements and the area these agents cover

after arriving at a specified target. Therefore, the experiment aims

at running the model with a set of five agents forming one team,

the four communication rules are switched on. After launching the

model, these agents are issued a team command that informs them

of the target location. On arrival, agents within a team will cover a

wider area around the target position. This prevents the agents from

overcrowding the target location and they are shown to appear to

circle the target. Figure 4a, shows all the positions of the set of 5
agents running the local-global communication model over a period

of time; note that agents swarmed about the location. The region of

the covered area is computed as the number of occupied cells in the

grid, each cell represents (25 cm × 25 cm). This implies that as the

number of occupied cells is 17, the agents cover 1.0625 m2 dur-

ing the last 6 frames. Comparing these results with those resulting

from running the same number of agents communicate via the global

communication rule only, figure 4b, the number of occupied cells

is 9 cells covering only 0.5625 m2. This indicates that the coverage

area by the flocking agents is about double that covered by individual

agents.

Running the four communication rules implies that all the agents

are committed to move within a team to reach the target location. On

arrival, as the first agent moves forward the team centroid, which af-

fects the cohesive force, also moves forward. Accordingly, the other

agents who detect this agent also consider this team centroid in each

calculation which implies they are pulling each other forward and at

the same time towards the target location. These local interactions

lead to the progress of the team centroid which in turn leads to the

movement of the detected team members as rolling around the target

location. Implementing the communication with the forth rule only,

agents do not detect team mates in the neighbourhood hence agents

intend to reach the target and only check for collisions. Therefore,

these agents, on arrival, are either trying to avoid each other or look-

ing towards the target which leads to a reduced possibility of cover-

(a) Local-Global Communication

(b) Global Communication

Figure 4: The flocking behaviour, running the four communication
rules, supports maximising the coverage area.

ing a larger area.

4.4 Detecting Locations of Complexity within the
Environment

A novel aspect of the numerical analysis of the interaction weights,

was the ability by analysing the cohesion weights to extract ideas

about the structure of the environment. This implies how the GBC
can draw a rough idea about the locations of complexity by com-

paring the cohesion weights with the results of analysing teams x, y
positions in terms of their means and standard deviations. Consider

the communication with a higher level controller GBC, who could

physically exist in a different location. The experiment is designed

to run the simulation by launching a set of five agents in the simu-

lated environment shown in figure 6 from a start point, at the front of

the screen. Assigning a team task, to reach the target position shown

in top left in the same figure. The numerical outcomes of the experi-

ment consist of all the cohesion weights, and the (x, y) positions over

a 500 frames.

The graph shown in figure 5, shows the distribution of the cohe-

sion weight along the frames. The low values of cohesion weight

indicates a large distance to the cohesion centroid. A small cohesion

weight may represent those agents which are moving away from each

other in an attempt to avoid an obstacle. This also may imply that the

detected agents are not close to each other, in order to avoid one or

35

Figure 5: The distribution of the cohesion weights for each frame.

Figure 6: The Virtual Lab; simulated environment.

more obstacles, and may be splitting up, depending on their positions

from the obstacle. The high values of the cohesion weights implies

a reduced distance to the cohesion centroid, which indicates that the

detected agents are close to each other. The graph in figure 5 can be

considered as a way to extract locations of difficulties encountered

in the environment. In addition, the test showed that the x, y posi-

tions can be fruitfully analysed together with the distribution of the

cohesion weights to give a more explicit structure of the environ-

ment. Therefore, the x, y positions , sent by the agents to the GBC,

are used to plot the deviations from the mean positions. During each

frame, the mean positions of the agents and how far individually they

are from the mean is calculated.

The graph in figure 7a shows the deviation of the agents’ posi-

tions from the mean, for the task used to analyse these cohesion

weights above. The deviation follows five different routes and shows

the times of the obstacles encountered, as high deviations, and the

times of open areas as low deviations. For example, the time encoun-

tered and locations of the four rows of chairs shown in figure 6, can

be extracted. This also can be useful in assessing the agents ability

to autonomously organise themselves by maintaining their positions

with respect to their neighbours in order to act as a team on their way

towards the target which supports the survivability aspect in the long

term tasks. This level of autonomy is currently a highly demanded in

robotic applications.

Since, the mean of the positions is sensitive to the change in the

positions of the agents, the average distance from the mean location,

standard deviation, is plotted in figure 7b. The standard deviation

also indicates the locations of complexity as the high values show

that these agents are not close to the mean position whilst the small

values indicate the wide areas with no obstacles. Adding the infor-

(a) The deviation of the agents positions from the mean

(b) The average standard deviation for the same group

Figure 7: The flocking behaviour, running the four communication
rules.

mation from both graphs 7b and 5 together shows that the low devia-

tions in the former graph are represented as high weights in the later

one, whilst the high deviations are represented as low weights in the

graph. To conclude, the GBC can analyse the cohesion weights and

can draw out an abstract picture of the environment by integrating the

ideas from both graph 7b and graph 5, defining an explicit structure

of the environment and the locations of complexity.

5 Conclusion
The work presented in this paper describes a multi-agents commu-

nication model that serves well in controlling a multiple mobile co-

operative robots system. The key form of co-operation is interaction.

The communication model considers local movement co-ordination

with nearby agents provided with animal-like intelligence. This tech-

nique provides economic computations for the movements of the

multiple moving agents as agents only have a local view, local goals

and knowledge. The global communication is carried out through

blackboard-like procedure, where agents sends and receive informa-

tion form and to the GBC via this blackboard. This prevents the

disorder results when agents no longer possess a global view of the

36

entire organization to which it belongs. A main advantage of setting

the cooperation into this form is as follows, one hand agents cooper-

ate to produce overall coordination and organization using a flocking

behavior which resolves some of the conflicts that arises from the

local interaction during the movement.

Implementing the flocking algorithm has been shown to be helpful

when trying to control the motion of about 20 − 30 moving objects

which can be perceived as an organisation not a collection of individ-

ually moving agents. This is because it mimics the nature of a large

organisation, examples are birds or herds of animals. However, in

real life where a higher level agent, controller, tries to assign a task

for this large group a concern is how to keep this controller in the

loop.

ACKNOWLEDGEMENTS

Thanks to Dr. Martin Turner, University of Manchester/UK, for his

support and co-operation; his comments helped improving the effi-

ciency of the simulations performed. We would also thank Mr. How-

ell Istance, Head of De Montfort Virtual Environment Center/UK, for

offering the chance to implement the system in the 3D environment.

REFERENCES
[1] G. Al-Hudhud, A. Ayesh, Martin Turner, and H. Istance, ‘Simulation

and visualisation of a scalable real time multiple robot system’, in Pro-
ceedings of the conference of Theory and Practice of Computer Graph-
ics, TP.CG05, University of Kent, Canterbury UK., (June 2005). Euro-
graphics Association.

[2] Ghada Al-Hudhud, Aladdin Ayesh, Howell Istance, and Martin Turner,
‘Agents negotiation & communication within a real time cooperative
multi-agent system’, in Proceedings of the 5th International Confer-
ence on Recent Advances in Soft Computing, pp. 611–617, Nottingham,
United Kingdom, (December 16-18 2004). Nottingham Trent Univer-
sity. ISBN 1-84233-110-8.

[3] Ghada Al-Hudhud, Aladdin Ayesh, and Martin Turner, ‘Speech act
and blackboard negotiation based communication protocol for real time
multi-agent systems’, in Proceedings of the UK Workshop on Compu-
tational Intelligence UKCI-2004, pp. 112-120, Loughborough, United
Kingdom, (September 6-8 2004). Loughborough University. ISBN 1-
874152-11-X.

[4] R. Arthur, B. John, T. Micheal, and H. Jonathan, ‘Co-ordination and
control of multiple UAVs’, in AIAA Paper, pp. 45-88. Guidance Navi-
gation and Control Conference, (2002).

[5] J. Ferber, Multi-Agent System and Distributed Artificial Intelligence,
Addison-Wesley, 2002.

[6] R. Grabowski, E. Serment, and P. Khosla, ‘An army of small robots’,
Scientific American, http://www.sciam.com, (November 2003).

[7] T. Kam, T. Gregory, Z. Wayne, and T. Ann, ‘A multiagent operator in-
terface for unmanned air vehicles’, in Proceedings of the 18th Digital
Avionics Systems Conference, pp. 6.A.4.1–6.A.4.8, (October 1999).

[8] J. Latombe, Robot Motion Planning, Kluwer Academic Publishers,
1991.

[9] M. London, Complexity and criticality in financial time series, PhD.
dissertation, De Montfort University, 2003.

[10] C. Luo, S. Yang, and D. Stacey, ‘Real time path planning with dead-
loock avoidance of multiple cleaning robots’, in IEEE International
conference on Robotics and Automation, (September 2003). Ti-
wan,Thaibi.

[11] M. Mataric, ‘Designing emergent behaviours: from local interactions
to collective intelligence’, in From Animals to Animates 2, Proceedings
of the Second International Conference on Simulation of Adaptive ‘Be-
haviour, (1994).

[12] M. J. Mataric, ‘Learning to behave socially’, in From Animals to An-
imates 3, Proceedings of the third International Conference on Sim-
ulation of Adaptive ‘Behaviour, Brighton,D. Cliff, P. Husbands,J. -A.
Meyer and S. W. Wilson (Ed), (1992).

[13] C. Reynolds, ‘Flocks, herds and schools: A distributed behavioral
model’, in SIGGRAPH ’87, volume 21, pp. 25- 34, (July 1987).

[14] J. Schlecht. Mission planning for unmanned air vehicles using emer-
gent behavior techniques, April 2001. Web Document available at
http://www.cs.ndsu.nodak.edu/j̃oschlec/papers/uav emergent.pdf.

[15] W. Tang, T. Wan, and S. Patel, ‘Real-time crowd movement on large
scale terrains’, in Theory and Practice of Computer Graphics. IEEE
Computer Society, (3-5 June 2003). ISBN 0-7695-1942-3.

[16] M.J. Turner, R. Richardson, A. Le Blanc, P. Kuchar, A. Ayesh, and
G. Al Hudhud, ‘Roboviz a collaborative user and robot environment
network testbed’, in Interim Report for CompuSteer Workshop. Com-
puSteer Workshop, (15th Sep 2006).

37

Aqua Swarms: Design and Implementation of Water
Surface AUV

Mustafa Ozkan Daglioz and Aladdin Ayesh 1

Abstract. Autonomous marine vehicles are remarkably useful for

tasks such as shallow water surveying, environmental data collect-

ing and military operations such as surveillance and weapon deliv-

ery. Because of the necessity for autonomous marine vehicles and

the challenges they impose, they have gained a widespread interest

among the research groups around the world. This paper presents

a water surface autonomous unmanned vehicle which moves from

a starting point to any desired destination while avoiding obstacles.

Unlike many water surface unmanned vehicles this robots relies on

oars for its mobility. This gives a greater control and precision in ma-

noeuvrability while keeping the size of the robot as small as possible.

This paper presents the hardware and software design and implemen-

tation of a dual-oar water surface autonomous vehicle. Comprehen-

sive experimentation was conducted and results of the experiments

are presented.

1 INTRODUCTION

The work presented here is to build a water surface autonomous un-

manned vehicle (Aquabot) that uses two oars for its mobility. The

main reason and a requirement is that the robot has great manoeu-

vrability and precise control. This Aquabot has been built using Lego

Mindstorms Robotic Invention Kit. This robotic kit allows fast proto-

typing and flexibility in the robot structure. To present an alternative

solution to traditional propelling methods used in autonomous ma-

rine vehicles, oars have been used to propel the Aquabot. The design

presented here focuses on the performance, cost, environment, size

and weight. The result is a blue print for a building block that can

use to build and develop water swarms that are able to navigate in

small spaces with restricted resources, i.e. light, maneuverability di-

mensions, etc.

The navigation and control system is designed to be a safe, ef-

fective and precise navigation system. To operate the Aquabot au-

tonomously, software has been developed using Not Quite C (NQC)

language, which is a language for programming a RCX microcon-

troller which control the movement of the Aquabot according to the

signals received from light sensors fixed at the front of the robot (fig-

ure 1). The effect of the stimuli received through the light sensor lead

to the deployment of one or both of the ora mechanisms.

The paper starts with a background section reviewing some of the

Aqua and water surface robots developed and/or being researched.

We then present the hardware design of our robot and show how it

meets the requirement for small but efficient water surface unmanned

vehicle. Software design follows. Details of experiments conducted

and their results are then presented to conclude.

1 De Montfort University, email: aayesh@dmu.ac.uk

2 BACKGROUND

Autonomous surface vehicles (ASV) are often used in marine tasks

where the use of large maned ships is either impractical or dangerous

such as the case in shallow water surveying, environmental data col-

lecting, coordinating with autonomous underwater vehicles and mil-

itary operations such as surveillance and weapon delivery. The vari-

ety of applications and the interesting technological challenges that

building aqua robots imposes, led to an increased interest among re-

search groups in developing marine robots often by multidiciplinary

groups of marine researchers, mechatronics, and mobile robots.

ARTEMIS [1] was the first ASV developed by MIT. The vehicle

was too small for open sea applications and it had some performance

problems. In order to solve performance problems and increase the

size, a catamaran hull was selected for ACES [1], which was the

second ASV developed by MIT. Some changes were made to the

hull, propulsion systems and power. After these modifications the

ASV was renamed Autocad [2]. In 2004, four ASV named SCOUT

[3] were developed by MIT. The vehicles consist of polyethylene

kayaks equipped with lead acid batteries, communication systems

and single board computer.

The MESSIN project [4], which was sponsored by the German

Federal Ministry of Education Research and Technology, has been

carried out from 1998 to 2000 to develop and test the ASV Measuring

Dolphin for high accuracy positioning and measuring devices carry-

ing in shallow water. In the period 1997-2000, the Instituto Superior

Technico of Lisbon developed Delfim [5] [6] to develop an ASV for

establishing a fast direct acoustic communication link between the

AUV and a support vehicle. Lisbon IST is also developing Caravela

[6] in addition to Delfim. Cavela is a long range autonomous research

vessel, for testing advanced concepts in vehicle/mission control and

radar based obstacle avoidance and demonstrating technologies for

the marine science community [7].

Charlie, an autonomous catamaran, developed in 2002-2004 by

CNR-ISSIA. Charlie initially designed for supporting sensors and

samplers for the study of the sea-air interface in Antarctica, where it

was exploited in 2004 [8]. In 2005, original steering system was up-

graded and the vehicle is currently used for testing of mission control,

navigation and guidance algorithms and for evaluating the possibility

of using this technology for civil harbour protection in the presence

of marine traffic [7]. University of Plymouth, UK, is developing an

ASV named Springer for tracing pollutants. The unmanned Springer

will be around 3m long and 1.5m high [9].

In all of these projects, issues of hardware and software design

were identified often leading to a revision in the design, e.g. [1]. The

dynamics of water surface, shape of the robot, and the emerging re-

sponses of the interaction of the different forces make hardware de-

sign an important issue. The hardware design impact on the software,

38

which has to respond to the sensors in use. The software and hard-

ware of the Aquabot proposed here have been designed considering

the problems highlighted by the reviewed projects and in response to

requirements of this project.

The main hardware problems that ASVs have can roughly be gath-

ered under three title; buoyancy, size and weight. Projects mentioned

here have different hull shapes and propulsion methods in order to

solve these three problems. We studied the drawbacks of previous

designs and reflected proposed solution in our design. Many ASVs

reviewed here have a very complicated software to control and oper-

ate the hardware. Due to the limited capacity of the software platform

of the Aquabot, complicated navigation methods of the projects were

simplified using swarm technology and thus a simple but efficient re-

active controller was implemented.

3 HARDWARE DESIGN
3.1 Design Considerations
Hardware design is probably the most important part of designing

an Aquabot. Without proper hardware design, the Aquabot cannot

float on the water or perform necessary actions to reach the desti-

nation point. The Aquabot has been designed to meet these 5 re-

quirements; cost, performance, environment, size and weight. The

design explained here gives the Aquabot precise and efficient propul-

sion ability. Since the Aquabot has been designed considering overall

weight and size, it does not need much power to propel itself. This

is also important because RCX microcontroller, which is the power

source of Aquabot, uses 6 AA size batteries as a power source.

Another important consideration is buoyancy. With this design,

Aquabot has an equal distribution of weight, which provides well

balanced buoyancy. At the end, a small, lightweight and yet efficient

Aquabot has been designed.

The working of the Aquabot can be summarised as follows; when

Aquabot is running, to detect the location of the destination point,

it waits for the signal from the destination point. Aquabot has been

adjusted to measure the distance between the source of the signal

and itself. The best way of sending signals from the destination point

is to use a laser pointer. Therefore Aquabot measures the intensity

of the laser that has been sent from the destination point and using

that information Aquabot calculates the distance between the desti-

nation point and itself. After detecting the location of the destination

point, Aquabot starts moving towards it. Software has been designed

to keep the Aquabot away from obstacles. When Aquabot hits an

obstacle, it moves around the obstacle and keeps going to the desti-

nation point.

3.2 Mechanical Structure
The Mechanical structure of Aquabot consists of 5 parts. These are;

the hull, oars, oar mechanism, obstacle sensing mechanism and mi-

crocontroller. These 5 parts have been designed individually, then

fixed together to form the Aquabot. Every one of these 5 parts has its

own design considerations. These considerations and detailed me-

chanical design of each part will be explained individually in this

section. Design of the hull will be explained first, then the other parts

will be explained.

The hull is the body of the Aquabot, and selecting an appropriate

hull form is important in terms of stability, capacity of payload trans-

port and floatability. A catamaran design has been selected as a hull

form in this piece of work. This is because waterplane area between

two hulls reduces rolling motions and increases displacement. Since

catamarans consists of two hulls, failure of one hull does not end up

in a complete loss of buoyancy. To build a catamaran hull, two model

ship hulls have been used. Two hulls fixed to each other with 2 cm.

space between them. The hull can be seen in the figure 1.

3.3 Oar Mechanism
The oar is the part of the Aquabot that steers, accelerates and stops

the boat. Four factors have been taken into consideration while de-

signing oars. These are weight, size, strength and stiffness. To meet

these factors, plastic material has been used to build oars. In terms of

making more efficient oars, the blades of oars have been curved. With

this design, 94 percent of the oar surface touches water. Therefore

the oars transfer enough power from motors to the water to propel

Aquabot. The Oars can be seen in figure 1.

The oar mechanism is the mechanism that moves the oar in ver-

tical and horizontal directions. In other words it is the main mech-

anism that drives the Aquabot. It provides power and transfers the

power to the oars. Aquabot has one oar mechanism for each oar.

Mainly, the oar mechanism consists of two motors, two gears, two

bars, one oarlock and one touch sensor. To move the oars horizon-

tally, a slide mechanism has been used. The body of oar mechanism

has been attached to a ring, and the ring has been attached to two

bars. Both ends of the bars have been fixed to the hull. Therefore the

body of oar mechanism can slide in a horizontal direction. One mo-

tor and one gear have been used to slide the body of the mechanism.

To move oars vertically, the gear mechanism has been used. A Long

black beam has been used to connect the oar to the gear. The idea

behind the gear mechanism is this; every half cycle of the gear, the

black beam will move up or down, therefore the oar will move up

or down. To limit the movement in vertical direction, 1 Degree Of

Freedom (DOF) joint has been used. To stop the motor at the end of

every half cycle, a touch sensor has been used. To propel Aquabot,

vertical and horizontal motions of the oar mechanism are performed

in order. This mechanism can be seen in figure 1.

Each oar mechanism has been placed on each hull. To propel

Aquabot straight forward, two oars must move simultaneously. To

achieve this aim, two oar mechanisms have been connected to each

other using two beams. The obstacle sensing mechanism has been

placed in front of the Aquabot. The RCX microcontroller has been

fixed to the middle of the hull in terms of balance. One light sensor

has been fixed on top of the RCX microcontroller. This light sensor

has been used for navigation. Connection cables between the micro-

controller and the motors or sensors have been fixed to the hull. The

oars have been fixed to the hull using the oarlock, which lets the oar

rotate around. Dimensions of the Aquabot; Width = 21 cm.(without

oars), Length = 38 cm, Depth = 11 cm. (4,5 cm of 11 cm. is under

water.)

3.4 Sensing and Control
The obstacle sensing mechanism is a specially designed mechanism

that is used to sense the obstacles in front of the Aquabot. The ob-

stacle sensing mechanism consists of 3 main parts. These are; touch

sensor, spring and bar. Two bars have been connected to the front

bumper. The bars have been fixed to the hull with help of two springs.

The touch sensor has been placed near the other end of the bars. Ev-

ery time Aquabot hits an obstacle, the front bumper pushes the two

bars, the two bars push the touch sensor and with the help of springs

the two bars and the front bumper go back to its former position.

With help of this mechanism, every time Aquabot hits an obstacle,

39

the touch sensor sends a signal to the microcontroller. This mecha-

nism can be seen in figure 1.

Figure 1. Aquabot: dual-oars water surface swarm robot

RCX microcontroller is the essential part of the Aquabot. RCX

microcontroller contains three sensor inputs, three actuator outputs,

an IR transceiver, Serial I/O (input/output), ADC (analog digital con-

verter), 8 bit CPU at 16 MHz and Hitachi H8 microcontroller with

32 kilobytes of RAM (4 kilobytes of which is used for interrupt vec-

tors and other low level data.) User programs are stored in 16kb of

internal ROM and 32kb of static RAM. An ADC (Analog to Digital

Converter) lets the RCX read sensor inputs, and special driver chips

makes controlling motors and electrical devices possible. As an user

interface, microcontroller has four user buttons, LCD display and an

internal speaker. Microcontroller is the heaviest part of the Aquabot.

Because of this reason, it was essential to find an appropriate place to

fix it. After some calculations, microcontroller has been fixed to the

3 cm away from the middle point of the Aquabot. Therefore, micro-

controller does not relocate the centre of gravity of the Aquabot and

Aquabot does not lose its balance.

4 SOFTWARE DESIGN
Navigation has always been a difficult task in robotics. Autonomous

navigation means that a vehicle can move to a desired destination

without a user interference. To design a good autonomous navigation

system, every bit of information should be collected from all avail-

able sources. In this piece of work, these sources are the sensors. At

this point, there is a limitation on the number and types of sensors

that can be used with the RCX microcontroller. There are only three

sensor inputs on the RCX microprocessor. Two sensor inputs have

been used to control the oar mechanisms. Therefore only one sensor

has been used to navigate the Aquabot.

The software has been programmed using Not Quite C (NQC).

A NQC program is composed of code blocks and global variables.

There are three distinct types of code blocks: tasks, inline functions,

and subroutines. Each type of code block has its own unique features

and restrictions, but they all share a common structure. Tasks can be

run simultaneously. Because of this advantage, most of the program

has been composed of tasks. The main task is started whenever the

program is run. Other tasks can be started from inside the main task.

Two tasks have been written to control the vertical motion of each

oar. Since the two oars have been connected to each other, one task

has been written to control the horizontal motion of the two oars.

Propulsion of the Aquabot is done by running these tasks continu-

ously. Another task has been used to detect obstacles. This task is

run simultaneously with the main task when the program starts. As

it was mentioned earlier, the main task waits for the signal from the

destination point to detect the location of said destination point. After

this signal, Aquabot starts moving. If Aquabot does not receive a sig-

nal for 60 seconds, it turns around to wait for a signal from another

direction.

Navigation system approaches can roughly be divided into two

groups, absolute positioning and relative positioning [10]. Absolute

positioning is when the robot uses landmarks to determine its posi-

tion. Since landmarks can not be placed on water, the only solution

for the Aquabot is to use relative positioning. Relative positioning

does not require landmarks. In relative positioning, Aquabot com-

putes its position from the staring point. This is done by counting

strokes that Aquabot takes. To count strokes, the program assigns

a variable which equals zero at the beginning. Every time Aquabot

takes a stroke, the program adds one to the variable, if Aquabot

goes back because of an obstacle, the program subtracts one. With

one stroke, Aquabot moves 45 cm away. Using this information, the

program converts the distance to number of strokes. Therefore the

program knows how many strokes that Aquabot has to take in or-

der to reach the point of destination. When the stroke counter vari-

able equals the number of strokes that Aquabot has to take, Aquabot

knows that it is at the destination point and stops.

To avoid obstacles, the program does the following; four vari-

ables have been used for four directions. These directions are; North,

South, East and West. The program assumes that Aquabot always

starts to move northward. When Aquabot starts moving, the pro-

gram assigns a number of strokes that it has to take in order to reach

the point of destination to the north variable. Therefore the program

knows that Aquabot has to go to the north to reach the destination

point. Aquabot starts going north until it reaches the destination or

hits an obstacle. When Aquabot hits an obstacle, the program assigns

two more strokes to every variable of every direction. Therefore,

Aquabot knows that it has to go two strokes south, then two strokes

east, then two strokes north and then two strokes to the west to avoid

obstacles. With the help of this algorithm, Aquabot moves around

the obstacle. After avoiding the obstacle, Aquabot keeps going to the

point of destination. To monitor which direction Aquabot is going

in, another variable has been used. Every time Aquabot turns right

the program adds one to the variable, or subtracts one if it turns left.

Therefore the program always monitors to which direction Aquabot

moves. The program repeats the same set of sequences every time

Aquabot hits an obstacle. Therefore, Aquabot can avoid very com-

plicated obstacles.

The flowchart of the navigation controller can be found in figure

2. To keep flowchart simple, each task is represented by a square.

Therefore simultaneous run of the tasks can be seen clearly.

40

Figure 2. Flowchart of the navigation controller

5 EXPERIMENTS

5.1 Experiment Settings

The first group of experiments has been done to test the obstacle

avoidance system. To test this system, four different obstacles have

been used with different start and destination points. Schematic rep-

resentations of these experiments can be found in figure 3. In the first

experiment a small simple obstacle has been used. As it can be seen

in figure 3, Aquabot followed the route that has been indicated with

black line. When Aquabot hit the obstacle, it went back then moved

around the obstacle and reached the destination point. In terms of

avoiding obstacle, the first experiment was successful. In the second

experiment, more complicated obstacle have been used. Because of

the size of the obstacle, Aquabot hit the obstacle three times, but it

managed to manoeuvre around the obstacle and reach its destination

point. A bigger obstacle has been used in the third experiment. As

can be seen on the figure 3, Aquabot hit the obstacle four times. But

in the end, the experiment was successful; Aquabot reached its desti-

nation point. The fourth experiment has been done to find the answer

of the question of what happens if the destination point has been sur-

rounded by obstacles. As can be seen in figure 3, this experiment was

also successful, the program managed to lead Aquabot to its destina-

tion even though the destination point has been surrounded.

The second group of experiments have been done to determine the

range of the signal receiving system. Experiments show that the pro-

gram successfully receives signals in the range of 50 cm to 7 m. As

has been mentioned in previous sections, the light sensor has been

used to receive signals. The light sensor measures the intensity of

light and according to intensity, it sends a value to the RCX micro-

controller. Even if there is no signal from destination point, the light

sensor measures the intensity of daylight. Because of this, the RCX

microcontroller cannot receive signals from a distance greater than

1,5 m in very bright daylight. In average daylight it can receive sig-

nals up to 3 m. And it works best in dark environments, it can receive

signals from 7 m.

5.2 Experiment Results

Aquabot has shown good performance in most of the experiments.

Aquabot has successfully received signals from the destination point,

accurately measured the distance between the destination point and

itself, propelled itself with oars, avoided obstacles and successfully

reached the destination point. These experiments show that the aims

mentioned previous sections were accomplished.

Figure 3. Experiment Settings

The summary of the results of the four experiments that can be

seen in figure 3, can be seen in table 1. These results show that the

length of the route followed by Aquabot changes depending on the

area of the obstacle. In addition to the area of the obstacle and the

length of the course, the number of hits occurred during experiments

and the distance between start and destination point are also men-

tioned in the said table.

Two pictures taken during experiments can be seen in figure 4 and

5. In figure 4, Aquabot is approaching the obstacle. Figure 5 was

taken seconds after the first picture while Aquabot avoiding obstacle.

The full length video of one of the experiments is uploaded on

41

Table 1. Summary of the Experiments

No. of Exp. � � � �

1 0.5 m 0.92 m 81 cm2 1
2 0.82 m 3.03 m 486 cm2 3
3 0.64 m 2.74 m 1134 cm2 4
4 0.28 m 3.10 m 972 cm2 4

� Distance � Course Length � Obstacle Area � Hits Occurred

Figure 4. Still Picture from Experiment

youtube 2. In this video, behaviour of the Aquabot during obstacle

avoiding experiment can be observed. An obstacle smaller than the

obstacles used in four experiments has been used in the video. De-

spite of small obstacle, this video demonstrates a good example in

terms of navigation and obstacle avoidance.

Figure 5. Another Picture from Experiment

6 CONCLUSION
The above experiments have proven the reliability and successful

working of the Aquabot. The first lesson that can be learned from

the work described above is that with Lego Mindstorm Robotic In-

vention Kit, efficiently working robots can be built. It was easy to

build hardware part of the Aquabot with Lego parts, but on the other

hand this easiness brought some limitations with it. For example, be-

cause of the location of the obstacle sensing mechanism, the front

part of the hull of Aquabot hits the obstacle. Otherwise Aquabot can

not detect obstacles. In experiments it was observed that when one

of the oars of the Aquabot hit the obstacle, Aquabot loses its bal-

ance. This limitation can be eliminated using another design for the

obstacle avoidance mechanism.

Another limitation of the Aquabot happened because of the Lego

light sensor. The range of the Aquabot depends on the daylight. Since

the components that we can use are limited with Lego parts, it is very

hard to eliminate this limitation. A more sensitive light sensor could

be used in the Aquabot, but there is not another light sensor in the

Lego Mindstorm kit.

Another limitation happened because of the lack of the relative

positioning. In relative positioning, Aquabot computes its position

from the staring point. The program assumes that if Aquabot takes

one stroke, it goes 45 cm away from the start point. In experiments

it was seen that depending on the flow rate and direction of the flow,

2 The link of the video is; http://www.youtube.com/watch?v=1PJGxYXFMsM

42

this length was changed. Experiments also show that if something

disturbs Aquabot and makes it move without control of the program,

Aquabot can not find the destination point. This problem could be

solved using a PID controller. To implement this controller, more

than three sensors must be used, which is quite impossible because

the RCX microcontroller only has three sensor inputs and all of them

were used to control the oars or to receive signals.

All limitations mentioned in this paper occurred because of the

available hardware. But even with these limitations, experiments

showed that the aims of the work were accomplished.

With help of IR transceiver and sensors, Aquabot can easily com-

municate with other robots around. This communication could help

the Aquabot to gather any necessary information required to success-

fully accomplish missions. This advantage of the Aquabot is very im-

portant in terms of extended swarm robotics employing direct com-

munication mechanisms as part of their swarm algorithm. The water

surface AUV implemented here has been designed to operate as an

autonomous entity individually or in collective producing a complete

random swarming behavior. However, the same technical specifica-

tions provided in this paper, with adjustment to software implementa-

tion, can enable this AUV to work with other robots in a goal-directed

fashion.

7 REFERENCES

[1] Manley, J. (1997) Development of the autonomous surface craft

ACES. Proc. of Oceans97, vol. 2, pp. 827 - 832.

[2] Manley, J., Marsh, A., Cornforth, W., Wiseman, C. (2000) Evolu-

tion of the autonomous surface craft AutoCat. in Proc. of Oceans00,

vol.1, pp. 403 - 408.

[3] Curcio, J., Leonard, J., Patrikalakis, A. SCOUT - A low cost au-

tonomous surface platform for research in cooperative autonomy.

[4] Majohr, J., Buch, T. (2006) Advances in unmanned marine vehi-

cles. IEE Control Series, ch. Modelling, simulation and control of an

autonomous surface marine vehicle for surveying applications Mea-

suring Dolphin MESSIN, pp. 329 - 352.

[5] Pascoal, A., Silvestre, C., Oliveira, P. (2006)Advances in un-

manned marine vehicles. IEE Control Series, ch. Vehicle and mission

control of single and multiple autonomous marine robots, pp. 353 -

386.

[6] Pascoal, A. (2000) Robotic ocean vehicles for marine science

applications: the european asimov project. in Proc. of Oceans 2000.

[7] Caccia, M. (2006) Autonomous Surface Craft: Prototypes And

Basic Research Issues. Control and Automation. MED ’06. 14th

Mediterranean Conference. pp. 1 – 6.

[8] Caccia, M., Bono, R., Bruzzone, G., Spirandelli, E., Veruggio,

G., Stortini, A., Capodaglio, G., (2005) Sampling sea surface with

SESAMO. IEEE Robotics and Automation Magazine. vol. 12. no. 3.

pp. 95 - 105.

[9] www.plymouth.ac.uk/pages/view.asp?page=9007.

[10] Horn, M. (2005) Developing safety-security critical systems: A

prototype LEGO Mindstorm Detection System. Norwegian Univer-

sity of Science and Technology, Software Engineering Depth Study.

[11] Breivik, M., Fossen, T.I. (2004) Path Following For Marine Sur-

face Vessels. Mts/Ieee Techno-Ocean ’04, 4. pp. 2282 - 2289.

[12] Encarnacao, P., Pascoal, A. (2001) Combined Trajectory Track-

ing And Path Following: An Application To The Coordinated Con-

trol Of Autonomous Marine Craft. Decision and Control. Proceed-

ings of the 40th IEEE Conference, 1. pp. 964 - 969.

[13] Naeem, W., Xu, T., Sutton, R., Chudley, J. (2006) Design Of

An Unmanned Catamaran With Pollutant Tracking And Surveying

Capabilities. UKACC Control. Mini Symposia. pp. 99 – 113.

[14] Martin, F. G. (1995) The Art Of Lego Design. The Robotics

Practitioner: The Journal for Robot Builders, 1 (2).

[15] K.A.Hawick, K., A., James, H., A. (2002) Simulating Swarm

Behaviour of Robots. Technical Note.DHPC-118, Submitted to

IASTED Conference on Applied Modelling and Simulation.

[16] Mondada, F., Pettinaro, G., C., Guignard, A. (2004) Swarm-Bot:

A New Distributed Robotic Concept. Autonomous Robots. Vol. 17.

No. 2-3. pp. 193 – 221.

43

Ant Colony Optimisation for Large-Scale Water
Distribution Network Optimisation

Laura Baker1, Ed Keedwell1, Mark Randall-Smith2

Abstract. In this paper we show that ant colony optimisation
(ACO) can be successfully applied to large-scale water
distribution network optimisation problems. In addition, a new
ACO algorithm ERMMAS is proposed and is tested on this
problem. A water distribution network taken from industry is
optimised by a number of ACO systems and a well-tuned GA.
The results indicate that although there are not large-scale
efficiency savings to be made, ACO is capable of finding results
of equal or better optimality than a comparable GA.12

1 INTRODUCTION
Water distribution networks (WDN) serve to transport clean

water from treatment works to individual customers and usually
represent a significant capital investment in the development of
the urban environment. The problem of designing a WDN to
optimally meet performance criteria, such as delivering
sufficient water pressure for high rise buildings and fire fighting;
whilst minimising cost criteria, such as the cost of material,
excavation, frequency of maintenance is known to be NP hard. A
large variety of computational algorithms have been devised for
this task which include well known techniques in operational
research such as linear, dynamic and integer programming. In
recent years however, a variety of nature-inspired and meta-
heuristic algorithms such as genetic algorithms, simulated
annealing and tabu search have been widely investigated as
useful research tools for WDN design. Amongst these meta-
heuristic algorithms, genetic algorithms (GAs) has proved to be
one of the most popular with the application of GAs to WDN
optimisation tracing back to the mid-nineties (Dandy et al., 1996;
Savic and Walters, 1997). Whilst GAs have provided good
solutions to water distribution optimisation problems for some
time, the steady increase in the complexity of the network
information being kept by the water companies means that GAs
are no longer always suitable. This is in part due to the long
running times incurred by the algorithm due and in particular,
the high number of objective function evaluations required by
evolutionary techniques. An increasing number of elements in
the network and more detailed 24-hour simulation studies has
seen the complexity of a single network simulation increase
massively. Therefore, researchers are constantly looking for
techniques which might deliver GA-class results, but with fewer
objective function calculations. In this paper we investigate the
application of a swarm intelligent approach to the problem of

1 School of Engineering, Computing and Mathematics, University of
Exeter, Harrison Building, North Park Road, Exeter, UK, EX4 4QF
Email: {lb281, E.C.Keedwell}@ex.ac.uk
2 Mouchel, Priory Court, Poulton, Cirencester, Glocs, UK GL7 5JB
Email: mark.randall-smith@mouchel.com.

water distribution network optimisation. We describe the
application of three ant colony systems to a large-scale water
distribution network taken from industry and compare it with a
well-tuned GA, with mixed results. The remainder of this section
discusses water distribution network optimisation and previous
research into using ant colonies for this purpose.

Water Distribution Networks
WDNs are part of the water supply system, comprising of
number of interconnected elements such as pipes, nodes, pumps,
valves, and reservoirs of varying shapes and sizes. The nodes
represent combined points of water demand (e.g. housing or
industrial estates) on the system. The purpose of the network is
to deliver water to the demand nodes from the water treatment
works, reservoir, or other source throughout the day and under
varying demand conditions. The demands on a WDN fluctuate
throughout the day. Peak demands occur when people prepare to
leave for work at around 7am until 9am and when industrial
organisations begin work for the day. It is important that
demands on the network at peak times are satisfied. However,
WDNs are costly to construct, maintain and operate hence the
need for the optimal design of WDNs, where least cost can be
balanced with required water pressure levels.

There are many options to be considered when optimising a
WDN, but in most case, an existing network is already in place
making it difficult to attempt major structural change in the
existing design. Changing the position of the network elements
is considered a major structural change and would be very costly
and therefore many studies are restricted to the rehabilitation of
components within the network. This is achieved by replacing
existing components which no longer meet the demands placed
on the system with more suitable infrastructure. However, as this
is a large capital investment, the water companies inevitably
want these modifications to last for long time periods, typically
50-100 years. Therefore rehabilitation studies investigate
changes such as replacing pipes, pumps and tanks with different
sizes/specification of the same element can have a large effect on
the performance of the network.

44

Attempting to find the optimum design for a WDN by hand is an
arduous task, but engineers have done this in the past. AI
techniques (e.g. the GA) make developing a proposed solution
much quicker and easier although it can be difficult to align with
engineering expectations. To perform an exhaustive search is
implausible even with a small network which is demonstrated
by a simple example known as the New York Tunnels network
(Schaake and Lai, 1969) shown in Figure 1.

 The optimisation algorithm must determine the pipe diameters
of the ‘new’ pipes which represent expansions to the existing
system. The algorithm has 16 possible commercial diameters to
select from and there are 21 pipes to size, each with a potential
effect on the other sizes in the network. Therefore, even in this
small network there are 1621 or 1.93*1025 possible combinations
of diameters to select from. This gives an indication of the
problem complexity faced by the optimisation algorithm even
for small problems.

The Example Network
The water distribution network used in this study is a real
network taken from industry and represents the entire network
for a large North American city. The attributes of the network
taken from a hydraulic simulator are shown below:

Table 1 - Element counts of the example network

Element Number
Number of Junctions 543
Number of Reservoirs 4
Number of Tanks 26
Number of Pipes 686
Number of Pumps 32
Number of Valves 39

Although not all of these elements will be subject to
optimisation, the complexity involved with this network is
clearly much greater than the simple network given above.

In this study, two different problems setups are considered,
ranging from highly complex involving all elements of the
network to smaller problems which only consider the pipe sizes
required in the optimisation of the WDN.

The largest of the problems consists of some 161 decision
variables which includes pipe sizes, pump and valve settings and
a variety of tank expansion sizes. This variability in the number
of decision variables makes the complexity a little more difficult
to determine, but the number of options for the algorithms to
consider is in the region of 6 *1082 for this largest problem.

Ant Colony Optimisation Approaches to WDN Optimisation
Ant colony optimisation (ACO) has been successfully applied to
a wide range of optimisation problems (Dorigo and Di Caro) and
has also been shown to perform very competitively for the
optimisation of a WDN (Zecchin et al. 2003). Therefore,
existing research shows that ACO and its variants could prove to
be a suitable long term alternative to a GA.
According to Simpson et al (2003), ACO can be an appealing
alternative to GA for the design of optimal WDNs. In this study
ACO was applied to two benchmark WDN optimisation
problems and in both scenarios ACO outperformed a GA in
terms of computational efficiency and ability to find near global
optimal solutions. Additionally Zecchin at al (2007) compared
five variations of ACO for the purposes of water distribution
network optimisation. The implementations in this study
included one basic/standard implementation, an elitist ant
system, an elitist-rank ant system (ERAS) and a max-min ant
system (MMAS). The results showed that MMAS and ERAS
outperformed all other algorithms that have been applied to the
same four case studies. The four non standard implementations
of ACO are ‘current state-of-the-art ACO algorithms that have
been applied successfully to variety of combinatorial
optimisation problems’ (Zecchin et al. 2007). They indicate that
the consistently good performance of both ERAS and MMAS
makes them stand out from the all other ACO algorithms. It is
shown that ERAS is more efficient than MMAS for smaller case
studies where as MMAS outperformed ERAS for larger case
studies.

Figure 1 - Schematic of the New York Tunnels
network. A single reservoir at the top feeds
demand nodes located around New York via a set
of duplicated pipes.

Therefore this paper investigates the application of ant colony
optimisation to a real-world network taken from industry. The
network is far larger than the New York Tunnels example and
had previously been optimised using a GA which took several
days to complete. The investigation will enable us to determine
whether ant colony optimisation can be used to optimise the
vastly increased search spaces associated with industrial water
distribution networks.

2 METHOD
Infrastructure
The standard method for utilising GAs in WDN optimisation is
to couple the GA with a hydraulic simulator such as the one used
in this study, Epanet (Rossman, 1999). The GA generates a
chromosome representing a candidate solution which is then

45

evaluated in the normal way using the objective function. The
objective function calls the DLL and simulates the solution in
the Epanet and returns a number of computed results. The
function then converts these results into fitness and penalty
values and returns an overall fitness to the GA which can then
proceed with algorithm.
In this study, we adopted a similar strategy whereby all of the
calculations necessary for determining the objective function
values were completed within a separate DLL, incorporating the
hydraulic solver. The ant colony or any other optimisation
algorithm simply passes the DLL the candidate solution and the
DLL returns a single value indicating the fitness of that solution.
By utilising this information-hiding method, the algorithm can
be substituted quite easily with minimal recoding required.

Problem Setup
As described in the introduction, a number of different problems
were considered in the study to determine the effect of changes
in problem complexity on the algorithms involved. However,
this only effects the decisions made by the algorithm. The
objective function remained the same for all runs and was as
follows:

Cost+G(PenaltyCost)

The G term is to balance the difference in magnitude between
the two costs. The cost calculations are quite complex, but
effectively each element that the algorithm selects to enhance the
network has a known attached cost and these are simply summed
together to give the total cost.
The penalty cost relates to the constraints placed on the network
and therefore takes into account the following constraints:

� Required Head Constraints: All nodes in the network
require a certain pressure ‘head’ to maintain service to
customers. This constraint computes the difference
between the actual pressure in the node and the required.
If the pressure is too low, then the solution is penalised
proportionately

� Tank Level Constraints: The solution is penalised if a
tank drops below a pre-determined threshold or
‘overspills’. Additionally, the tank must return to a
certain percentage of its original level over 24 hours.

� Velocity Constraints: The solution is penalised if the
velocity of the water passing through the pipes is too
high (leading to an increased likelihood of leakage) or
too low (leading to poor water quality).

These constraints are multiplied by constants to increase or
decrease their importance to the algorithm and summed together
to give the total penalty cost.
The setting of the constants for the objective functions is a non-
trivial problem in itself, and the settings used in this study were
the result of extensive experimentation with the GA. They were
kept constant for both algorithms throughout this study.

Problem Setups
This study includes four problem setups they are as follows:

Setup 1 – considers 161 variables including pipes, pumps, tanks
and valves. This is the largest problem and has around 1082
possible combinations
Setup 2 – similar to setup 1, but considers only pipe sizing and
therefore 121 variables and a complexity in the region of 1071.

ACO Methods
 Basic Ant System
BAS calculates the probability of selecting a particular path at
any given decision point according to the level of pheromone on
that path and (optionally) some local heuristic values.
The calculated probability is then used in a probability
proportionate roulette wheel which selects a path. The roulette
wheel reinforces good solutions as the option with the highest
probability of being selected has proportionately more chance of
being selected on the wheel. The element of randomness
involved in a roulette wheel encourages exploration and can help
avoid stagnation. For more detail information on BAS readers
are directed towards Dorigo (1996).

Max-Min Ant System
The MMAS was first proposed by Stützle and Hoos as a variant
of the basic ant system. It has also been shown to be an
attractive alternative to the GA (Bullenheimer et al, 1997).
MMAS follows the same procedure for selecting a path as is
described for BAS. MMAS differs to the basic ant system in the
way in which the pheromone trails are updated. In MMAS
pheromone is only added to one solution per iteration, where a
combination of updating the iteration best solution (Sib) and the
global best solution (Sgb) is utilised. A slight variation of the
MMAS proposed in Stützle and Hoos (2000) is implemented.
The difference occurs in the combination of updating the
iterations Sib and Sgb. Similar ratios to Stützle and Hoos are
used in this implementation but the change from using Sib to Sgb
is marked by a percentage of the number of iterations opposed to
actual values. In this implementation for the first 10% of
iterations only the Sib is updated, from 10% to 30% update Sgb
once per 6 iterations, from 30% to 70% update Sgb once per 4
iterations, from 70% update Sgb once per 3 iterations. Using the
percentage of iterations as a ratio marker opposed to actual
values allows the number of iterations to vary.

Elitist-Rank Max-min Ant System
ERMMAS is a new technique that incorporates elements from
MMAS and elements from the elitist rank ant system (ERAS)
(Bullenheimer et al, 1997). ERMMAS uses dynamic pheromone
limits as described for MMAS and an elitist rank update scheme
as used in ERAS. Once per iteration ERMMAS awards rank
proportionate pheromone to the elite ant’s solutions. The focus
in ERMMAS shifts from iteration best update to global best
update in the same way as MMAS. ERMMAS updates e
iteration-elite solutions (Sie) and e global-elite solutions (Sge).
ERMMAS offers more efficiency in the use of fitness
evaluations than MMAS by updating e trails opposed to 1 trail
per iteration. Two different solutions can be virtually identical
in cost and penalty cost but comprise very different components.
In this scenario MMAS will only reward the solution with the
lowest cost ignoring the solution that is virtually as fit. The
solution that is not rewarded may however lead to better quality
solutions than the solution with the higher fitness. ERMMAS

46

would reward both solutions and thus has a higher probability
than MMAS of finding a solution with lower cost and penalty
cost.

The pheromone addition equation for ERMMAS is:

Where R = the rank of the solution; dividing the pheromone

addition by the rank ensures that only the solution that is ranked
as number 1 will receive the full amount of pheromone. The
number of elitist ants e is calculated as a 10th of the population
size.

3 RESULTS
Determining Parameter Settings
As with many algorithms, ACO relies on a number of parameter
settings being correctly set for the algorithm to function well. In
this study, the pheromone decay and population size parameters
were experimented with to determine reasonable settings for
these. However, the hydraulic solver requires some 0.6 seconds
to complete a network evaluation, so these experiments were
conducted with only 250 iterations of the ACO algorithms.

Pheremone Decay
The optimum value for the pheromone decay parameter � for the
standard ant system is previously been shown to be 0.8 (Simpson
et al. in 2003) over several case studies. Therefore, this is used as
a starting point for experiments performed on BAS. Six
experiments are performed with the � from 0.7 through to 0.95.
These experiments showed that for this case study BAS performs
best with � = 0.85.
Stützle and Hoos (200) showed that with MMAS the lower the �
the quicker convergence occurs but with a higher likelihood of
being in a local maximum and found � = 0.98 to be optimum for
the traveling salesman problem. The example WDN problem is
significantly larger than the travelling sales man problem used in
that study and therefore due to the size of the problems at hand it
was decided to set � = 0.99 to ensure the slowest convergence
possible by applying minimum decay at each iteration. Later
experiments were conducted to analyse the effect on the quality
of solutions provided when varying �.

Population Size
A large population size is not very efficient with respect to the
number fitness evaluations as a lot of fitness evaluations are
conducted before the trails are updated and used. Several
experiments were performed with BAS to test the effect of
altering the population size. Four experiments were performed
with the population sizes 10, 50, 100 and 1000. It was observed
from these experiments that over a given number of fitness
evaluations the difference caused by using different population
sizes narrows to virtually nothing. A population size of 100
provided solutions with slightly lower cost and penalty cost than
all other populations sizes tested however the difference is
marginal. For all further experiments with BAS a population size
of 100 is used.

A population size of 100 is used in experiments with MMAS
however given that MMAS only adds pheromone to one solution
per iteration this means that 99 fitness evaluations are not
utilised. Experiments have been performed to test the efficiency
of using a population size of 60 compared to 100. The results
showed that on every occasion a population size of 100 found a
final solution with lower cost and penalty cost than a population
size of 60 found.

Optimisation Results

Setup 1
Figure 3 plots the total cost of the global best solution f(Sgb) for
BAS, MMAS and the GA each time a new global best solution
Sgb is found. MMAS initially requires more fitness evaluations
than BAS to reach a certain level of fitness. The evolution in
BAS tails off at around 80 000 fitness evaluations where a new
global best solution is not found from this point forward.

0 0.5 1 1.5 2 2.5 3

x 105

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

3,500,000,000

Fitness Evaulations

C
os

t

Project File 1: Global Best Cost

BAS
MMAS
GA

Figure 2 Fitness of the Global Best Solution for BAS,
MMAS and the GA on Setup 1
In Figure 2 MMAS and BAS are both run for 300 000 fitness
evaluations. MMAS continues to evolve the quality of solutions
until over 200 000 fitness evaluations and shows evidence of
further improvement. On the final iteration performed by
MMAS the difference between the fitness of the iterations best
solution f(Sib) and the mean average fitness of solutions f(�)
was 921,083,790. The difference between the f(�) and f(Sib)
indicates that further improvement on the quality of solutions
could be achieved given more fitness evaluations as close f(�)
and f(Sib) values indicate that stagnation is occurring. Whereas
the greater the difference between f(�) and f(Sib) the more
exploration is being conducted. MMAS appears to be the
algorithm of choice here as it has achieved a much fitter solution
than BAS. BAS both improves the quality of solutions slower
than the GA and provides a less fit final solution and therefore is
poorer in both respects. MMAS has achieved a fitter final
solution than the GA but requires more fitness evaluations than
the GA.

Up to approximately 50,000 fitness evaluations the GA improves
the quality of solutions more quickly than MMAS. From 50,000
fitness evaluations onwards the GA sees little to no improvement
while MMAS continues to improve the quality of solutions,
eventually providing a fitter solution than the GA.

47

Table 2 shows the average and best final solution fitnesses and
produced by BAS and MMAS for Project File 1. Table 1 shows
that MMAS has produced the solution with the lowest f. f for
the best solution from MMAS is approximately 1,000,000 less
than f for the best solution from the GA and 20,000,000 less than
the best solution from BAS. On average MMAS provides a
fitter final solution than the GA does for setup 1.
Bas does not perform very well on Project File 1 in terms of
ability at finding near optimum solutions. BAS prematurely
converges at a local maximum on each of the three runs
performed. This is attributed to the non-exclusive approach to
pheromone addition causing excessive build of pheromone on
particular trails.

Table 2 - Final results for all three algorithms on Setup
1

Method BAS MMAS GA
Average 69617655 673481044
Best 695982293 672193950 673622800
Fitness Evals 81000 234600 100332

The fitness evaluations row in Table 2 displays the amount of
fitness evaluations required by each algorithm to find the best
solution.

Setup 2

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

5,000,000,000

10,000,000,000

15,000,000,000

20,000,000,000

25,000,000,000

Fitness Evaluations

C
os

t

Project File 2: Global Best Cost

MMAS
GA
BAS

Figure 3 - Fitness of the best solution for BAS, MMAS
and the GA using Setup 2
Figure 3 shows a trace of the three algorithms on problem setup
2. As can be seen BAS improves the quality of solutions quicker
than MMAS initially but ultimately fails to find a fitter solution
than either of the other algroithms. However, BAS sees slower
improvement in the fitness of solutions than the GA and results
in a less fit final solution. MMAS displays the slowest initial
improvement in quality of solutions but proceeds to find the
fittest solution overall.

Table 3 shows that MMAS has produced the solution with the
lowest fitness but required more fitness evaluations than the GA
to achieve this.

Table 3 - Average and best results for all algorithms on
Setup 2

 BAS MMAS GA

Average 706176556 500905643
Best 696982293 382092863 448147077
Fitness
Evals

25100 34000 30106

Table 3 shows that the solution with the lowest fitness produced
by BAS is nearly 300,000,000 higher than the GA. The
performance by BAS is significantly worse than the GA and
MMAS on these problems and the was made decision not to
include BAS in the following experiments due to the consistently
poor performance of BAS over Setup 1 and 2.

Accelerating ACO
It has been shown that MMAS is capable of finding solutions
with lower fitness than the GA. The focus, therefore, is now on
the number of fitness evaluations required. MMAS will be
encouraged to converge quicker in the following short
experiments by adjusting �. Stützle and Hoos (200) showed that
a higher � value leads to slower convergence and greater chance
of finding a near optimum solution therefore, in the following
experiments the effect of altering � was be examined. It is
expected that lowering the value of � will initially show quicker
improvement in the quality of solutions but will lead to less fit
final solutions. These experiments are performed using setup 1
and run for 5000 fitness evaluations.
ERMMAS is included to replace BAS in the following
experiments. Figure 4 displays the results of the �-value
experiments for MMAS and shows that a value of 0.75 for �
encourages the fastest convergence and a value of 0.99 results in
the slowest convergence as expected. These results therefore
confirm those found by Stutzle and Hoos (2000).

0 1000 2000 3000 4000 5000
500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

3,500,000,000

4,000,000,000

4,500,000,000
Project File 1: MMAS and GA Forced Convergence

Fitness Evaluations

C
os

t

MMAS: P = 0.7
MMAS: P = 0.75
MMAS: P = 0.8
MMAS: P = 0.85
MMAS: P = 0.9
MMAS: P = 0.95
MMAS: P = 0.99
GA

Figure 4 - Comparison of fitness traces for MMAS
with varying p-values and the GA for Setup 1.

With � = 0.75 MMAS improves the quality of solutions quicker
than the GA for the first 400 fitness evaluation and the last 1500
iterations resulting in a fitter solution being found by MMAS. In
fact the performance of MMAS with this setting is very close to
that of the GA and for many parts of the curve, is better.

48

0 1000 2000 3000 4000 5000
500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

3,000,000,000

3,500,000,000

4,000,000,000

4,500,000,000
Project File 1: ERMMAS and GA Forced Convergence

Fitness Evaluations

C
os

t

ERRMAS: P = 0.7
ERRMAS: P = 0.75
ERRMAS: P = 0.8
ERRMAS: P = 0.85
ERRMAS: P = 0.9
ERRMAS: P = 0.95
ERRMAS: P = 0.99
GA

Figure 5 - Comparison of fitness traces for ERMMAS
with varying p-values and the GA for Setup 1.
Figure 5 shows that a � value of 0.7 has achieved the quickest
convergence leading to the fittest solution found by ERMMAS.
However, ERMMAS sees significantly slower improvement in
the quality of solutions than the GA until around 3500
evaluations. The difference in speed at which the quality of
solutions is improved is large when using lower � values such as
0.7 or 0.75 compared to � = 0.99 for MMAS and ERMMAS.

Table 4 - Comparison of best solution fitnesses all
algorithms over 5000 evaluations on Setup 1

Table 4 displays � and � for MMAS and ERMMAS when using
problem Setup 1 and a variety a values for the �. Table 4 shows
that for MMAS a � value of 0.9 results in the fittest solution for
all the algorithms. Whereas for ERMMAS, a � value of 0.7
provided the lowest cost solutions in this shorter timeframe.

4 CONCLUSIONS
In this study we have shown that ACO techniques can be used as
effective competitor approaches to genetic algorithms in this
important problem domain. The MMAS and ERMMAS ACO
algorithms have shown the capability to discover more optimal
results that the GA over long-term optimisation runs. This was
to a certain extent unexpected as the objective of the study was
to show that ACO algorithms could improve on the speed of
convergence of the GA, whereas in most cases this wasn’t
shown. The latter experiments have also shown that the
pheromone evaporation rate is crucial to the optimal functioning

of the ant system. This is not surprising, but it does highlight the
importance of a correctly setup algorithm when dealing with
problems of this complexity.

Therefore, while the anticipated computational savings from
using ACO did not materialise, some improved results were
achieved. There are potentially a variety of reasons why this is
the case, including the possibility that the extremely large and
rugged search space associated with these problems had a part to
play in the slow convergence. It should also be remembered that
in the above experiments, the ACO approaches are competing
with the best of a number of well-tuned GA runs on the same
problem, so the fact that ACO on occasion improves on that
result is to its credit. Through this and previous work, it is
perhaps becoming apparent that an incremental improvement in
WDN optimisation can be achieved through the use of swarm-
intelligence based techniques.

An additional advantage to the ACO approach is that it can be
more transparent in its decision making that the genetic
algorithm. By visualising the pheromone table on the map of
possible options, a variety of statistics about the most popular
choices for certain components could be generated. Although
this has not been investigated in this study, our industrial
partners have indicated that this could be a valuable tool in
elucidating the decisions being made by the algorithm and
therefore increasing confidence in the results.

REFERENCES
� MMAS ERMMAS GA

0.7 712382054 694421933

0.75 689732784 694555138

0.8 707236067 703178145

0.85 704312270 704279302

0.9 694350970 743975498

0.95 758040529 906065510

0.99 1294801273 1058531197

695426474

[1] Bullnheimer. B., Hartl. R.F., Strauss. C. (1999). A new rank based
version of the ant system — a computational study, Central European
J. Oper. Res. Econom. 7. pp. 25–38

[2] Beasley. J. E., Chu't'. E C. (1997). A Genetic Algorithm For The
Generalised Assignment Problem. Computers Ops Res. Vol. 24, No.
1, Elsevier Science Ltd, pp. 17-23

[3] Dorigo. M., Maniezzo. V., Colorni. A. (1996). The ant system:
optimization by a colony of cooperating ants. IEEE Trans. Syst. Man
Cybern., 26, pp. 29–42

[4] Dorigo. M., Gambardella. L. (1997). Ant colonies for the traveling
salesman problem. BioSystems, 43, pp. 73–81

[5] Dorigo. M., Di Caro. G. (1999). The ant colony optimization
metaheuristic. New ideas in optimization. Glover, eds., McGraw-Hill,
London, pp. 11–32

[6] Simpson. A. R., Maier. H. R., Foong. W. K., Phang. K. Y. Seah. H.
Y., Tan, C. L. (2001). Selection of parameters for ant colony
optimization applied to the optimal design of water distribution
systems. Proc., Int. Congress on Modelling and Simulation,
Canberra, Australia, pp. 1931–1936

[7] Simpson. A. R.., Maier. H. R., Foong. W. K., Phang. K. Y., Seah. H.
Y., Tan. C. L. Zecchin. A.C. (2003). Ant Colony Optimization for
Design of Water Distribution Systems. Journal of Water Resources
Planning and Management, Vol. 129, No. 3, May 1

[8] Stützle. T., Hoos. H.H. (2000). MAX–MIN Ant System. Future
Generation Computer Systems 16, Elsevier , pp. 889–914 able 3:
Forced convergence - Project File 1 varying �

[9] Zecchin. A.C., Maier. H.R.., Simpson. A.R., Roberts. A.J. Berrisford.
M.J., Leonard. M. (2003). Max-Min Ant System Applied to Water
Distribution System Optimisation. In D.A. Post, editor, Proceedings
MODSIM 2003: International Congress on Modelling and
Simulation, Townsville, Queensland, Australia, July 14–17. pp 795–
800

[10] Zecchin. A.C., Maier. H.R.., Simpson. A.R., Leonard. M., Nixon.
J.B. (2007). Ant Colony Optimization Applied to Water Distribution
System Design: Comparative Study of Five Algorithms. Journal of

49

Water Resources Planning and Management, Vol. 133, No. 1,
January 1

[11] Dandy, G. C., Simpson, A. R., and Murphy, L. J. (1996). An
improved genetic algorithm for pipe network optimisation. Water
Resour. Res., 32(2), 449–458.

[12] Savic, D. A., and Walters, G. A. (1997). ‘Genetic algorithms for the
least-cost design of water distribution networks. J. Water Resour.
Plng. and Mgmt., ASCE, 123(2), 67–77.

[13] Rossman, L. A. (1999). Computer models/ EPANET. Water
Distribution Systems Handbook. Mays, L. W. ed., McGraw-Hill,
New York.

50

Estimation of Hidden Markov Models Parameters using
Differential Evolution

Ângela A. R. Sá1, Adriano O. Andrade 1, Alcimar B. Soares 1

and Slawomir J. Nasuto 2

Abstract. Hidden Markov Models (HMMs) have been
successfully applied to different modelling and classification
problems from different areas over the recent years. Ann
important step in using HMMs is the initialisation of the
parameters of the model as the subsequent learning of HMM’s
parameters will be dependent on these values. This initialisation
should take into account the knowledge about the addressed
problem and also optimisation techniques to estimate the best
initial parameters given a cost function, and consequently, to
estimate the best log-likelihood. This paper proposes the
initialisation of Hidden Markov Models parameters using the
optimisation algorithm Differential Evolution with the aim to
obtain the best log-likelihood.

1 INTRODUCTION
Mathematical models are very useful tools for processing and
understanding random signals [1, 2]. Hidden Markov Models
(HMMs) are statistical models, which have been successfully
applied to areas such as speech analysis and biomedical signal
processing [1]. An HMM is considered to be an extension of
Markov models which models the dynamics of hidden states
each of which produces a value of an observable [3].

Although HMMs have been applied in practice, a frequent
problem that researchers have to face is that of selecting or
estimating initial values for the parameters of the model [4]. It is
well known that improperly initialized models lead to inaccurate
estimates of the HMM parameters which may be detrimental in
subsequent application of the HMM [5].

A number of strategies have been developed to initialize the
main parameters of HMMs, such as the application of clustering
algorithms (e.g., k-means clustering)[6, 7], Gaussian Mixture
Models [6-10], and the use of random values [4, 5, 11-13].
Within the maximum likelihood framework the best
initialization leads to the highest likelihood of the data [14].

However, there is not a common consensus concerning the
use of any criterion to select the technique to be used. There is

1 Biomedical Engineering Laboratory, Faculty of Electrical Engineering,
Federal University of Uberlandia, Brazil

2 Cybernetics, School of Systems Engineering, University of Reading,
Reading, United Kingdom

 no any guarantee that the main parameters initialized to theses
strategies will be best one, i.e., that the parameters will be
optimized and, consequently, the model will have the highest
likelihood.

 Therefore, in this work we propose an alternative solution for
initialization of the parameters of HMMs. This solution employs
Differential Evolution (DE), which is a global optimization
algorithm. The standard Differential Evolution (DE) algorithm,
belonging to the family of Evolutionary Algorithms, was
described by Storn and Price [15, 16]. It is based on evolution of
a population of individuals, which encode potential solutions to
the problem and traverse the fitness landscape by means of
genetic operators that are supposed to bias their evolution
towards better solutions. DE is a relatively new optimisation
technique compared with other more established Evolutionary
Algorithms, such as Genetic Algorithms, Evolutionary Strategy,
and Genetic Programming.

The use of DE in the initialisation of HMM parameters
alleviates the problems faced by the local techniques, that are
usually used for initialisation, and leads to an improved
estimation of the maximum log-likelihood parameters.

2 DEFINITION OF THE SET OF
PARAMETERS OF HMMs

An HMM is a statistical data analysis method employing
probability measures to model sequential data represented by a
sequence of observations [17]. Rabiner [11] also defines an
HMM as “a doubly embedded stochastic process with an
underlying process that is not observable (i.e., it is hidden), but
can only be observed through another set of stochastic processes
that produce the sequence of observations”.

A standard HMM has the following parameters [4]:

N = number of states;
s = {S1, S2,...,SN} – set of (hidden) states;
M = number of symbols;
v = {v1,v2,..., vM} - set of observations, which may be scalars

or vectors;
� = [�1, �2, �3,…,�N] – set of initial probability distribution of

starting in state Si at t = 1;
o = [O1,O2,...OT]; Oi 	 V; � i; the observed sequence

51

T = length of the observation sequence (total number of clock
times);

t = clock time; t 	 (1,2,3,…,T);
A = matrix of transition probabilities aij for moving from state

Si to state Sj in one time step;
B = {bj(k)} observation probabilities (bj(k)) of observing

symbol Vk while being in state Sj.

HMM parameters are often collectively referred to as
� �BA,,�� � . With this set of parameters, it is possible to

generate a series of observations, and given the above
parameters one can compute the likelihood, � ��oL , of such
series by taking the product of the individual probabilities of
moving from one state to the next and producing the
observations ot, t = 1,…, T (ot 	 V) in those states [3].
However, it is a challenging task to initialize HMM parameters,
and a proper initialization is essential [4].

3 OPTIMIZATION OF HMM PARAMETERS
WITH DIFFERENTIAL EVOLUTION

DE is an optimisation algorithm that creates new candidate
solutions by combining the parent individual and several other
individuals of the same population. DE is characterized by steps
of Genetic Algorithms, referred to as mutation, crossover and
selection.

 During the initialisation of the algorithm, a population of NP
vectors, where NP is the number of vectors, each of dimension D
(which is the number of decision variables in the optimisation
problem), is randomly generated over the feasible search space.
Therefore, the population of DE consists of NP D-dimensional
parameter vectors xi,G, where NPi ,...,2,1� , for each generation
G.
 In the mutation step, a difference between two randomly
selected vectors from the population is calculated. This
difference is multiplied by a fixed weighting factor, F, and it is
added to a third randomly selected vector from the population,
generating the mutant vector, v [15, 16, 18].

After mutation, the crossover is performed between the vector
(x) and the mutant vector (v) (Figure 1), using the scheme in (1)
to yield the trial vector u. The crossover probability is
determined by the crossover constant (CR), and its purpose is to
bring in diversity into the original population [19].

Figure 1. Illustration of the crossover process for D=4.

��

�
�
�

�
�

�
Gji

Gji
Gji X

V
U

,

1,
1, (1)

In (1), randb(j) is the jth evaluation of a uniform random
number generator with outcome 	 [0,1]. Rnbr(i) is a randomly
chosen index 	 1,2,…,D, which ensures that ui,G+1 gets at least
one parameter from vi,G+1 [15].

In the last step, called selection, the new vectors (u) replace
their predecessors if they are closer to the global optimum.

The result of DE algorithm will be the best member of the
population, i.e., the member of the population with the most
optimal value of the cost function.

 There are two main parameters of HMM that can be optimised
using the DE algorithm: the matrices A and B. These matrices
will be optimised until they assume the greatest value, i.e., until
that the matrices A and B generate the best log-likelihood.

In order to optimise the HMM, the first step is to generate a
sequence of observations (o) from HMM parameters, so that we
can estimate their expected log-likelihood. The second step is to
apply the DE algorithm to optimise the matrices A and B, and
consequently, to search for the best model that generates the
sequence (o). Note that these parameters (i.e., A and B matrices)
could have a physical meaning, for instance, they could
represent an underlying process responsible for the generation of
biological signals.

 As result of the application of the DE algorithm the matrices A
and B are globally optimised.

4 EXPERIMENTAL PROTOCOL

In order to assess the optimization algorithms, a Hidden Markov
process was generated through the HMM Matlab toolbox as
illustrated by the following command line:

[O,states]=hmmgenerate(T,A
original

,B
original

)

where o is a vector of observations, states is a vector with the
state of each observation, T is the total number of observations
(O1, O2, …, OT), Aoriginal is the transition probability matrix and
Boriginal is the observation probability matrix. Note that when
applying HMMs one is interested in obtaining the actual
parameters (Aoriginal, Boriginal) that define the rules for data
generation.

The genetic operations of mutation and crossover in DE
require the transformations of matrices Aorigninal and Boriginal into a
one-dimensional vector ab, according to (2), (3) and (4).

� �NN

NNNN

N

original aaaa
aaa

aaa
A ,...,,......... 1211

21

11211
��

�
�
�

�

�

�
�
�

�

�
� (2)

if (randb(j)
 CR) or j = rnbr(i)if (randb(j) > CR) or j � rnbr(i)

if (randb(j)
 CR or j = rnbr(i)

52

� �NM

NMNN

M

original bbbb

bbb

bbb

B ,...,,
.........
.........

1211

21

11211

��

�
�
�
�
�

�

�

�
�
�
�
�

�

�

� (3)

� �NMNN bbbaaaab ,...,,,,...,, 12111211� (4)

 The parameters of the DE algorithm were defined as follows:
D = length of the vector ab, CR = 0.8 (crossover constant), F =
0.8 and NP = 100 (number of members of the population), with a
fixed number of 1000 generations (iterations) and 1000
simulations.

 Two types of HMM models were considered in the analysis:
- An HMM model with two states (N=2) and two
symbols (M=2);
- An HMM model with three states (N=3) and four
symbols (M= 4).

To evaluate the results, for each type of model, we calculated
the data log-likelihood using the parameters estimated by the
best member of the population and also considering the average
over all members of the population.

 In order to compare the results obtained with different
strategies for parameter estimation, it was generated a graphic
that presents the mean of the log-likelihood of the model given
the parameters A and B. Six distinct strategies were considered
for the estimation of the parameters A and B. They are described
as follows:

1) Original matrix
The matrices A and B were set to Aoriginal and
Boriginal respectively. Note that these are the actual
parameters employed for generation of the
sequence of observations;

2) Original matrix + BW
The model was initialised with the matrices A and
B set to Aoriginal and Boriginal respectively, and then
optimised by using the Baum-Welch algorithm
(BW);

3) Random
The matrices A and B were initialised at random.

4) Random + BW
The matrices A and B were initialised at random
and then optimised by means of the BW
algorithm;

5) DE
The matrices A and B were optimised by the DE
algorithm;

6) DE + BW.
The matrices A and B were optimised by DE and
then optimised by BW;

The log-likelihood of the model given the input sequence o
was estimated through the Matlab toolbox as depicted below.

[log_likelihood]=hmmdecode(A,B,o)

The confidence interval for the mean of the likelihood was
calculated by using the technique Bootstrap.

5 RESULTS

5.1. HMM model with two states (N=2) and two symbols (M=2)

 In this case, it was generated a Hidden Markov process model
with two states (N=2) and two symbols (M=2); generated
through the HMM Matlab toolbox, as described in the previous
section. The vector of observations o was generated with T
equals to 100. The same observations data o was used for every
6 distinct strategies described in experimental protocol.

 Figure 2 presents the log-likelihood of the data for the 6
distinct strategies of model estimation described in section 4. In
the case of DE and DE+BW, the mean, over 1000 simulations, of
the log-likelihood of the best member of the population is
presented,. The vertical bars represent the confidence interval for
the mean.

Figure 2. Log-likelihood of the data given the estimated model for 6
strategies of estimating the parameters A and B. In the case of the DE
algorithm A and B were selected as the best member of the population.
The horizontal bars are the upper and lower confidence interval for the

mean.

 Figure 3 presents for comparison the results obtained for DE
and DE+BW, averaged over all members of the final population
(all methods averaged over 1000 simulations). The vertical bars
represent the confidence interval for the mean.

53

Figure 3 Log-likelihood of the data given the estimated model for 6
strategies of estimating the parameters A and B. In the case of the DE
algorithm, the matrices A and B were considered as the average of all

members of the population. The horizontal bars are the upper and lower
confidence interval for the mean.

5.2. HMM model with three states (N=3) and four symbols
(M=4)

In this case, it was generated a Hidden Markov process model
with three states (N=3) and four symbols (M=4); generated
through the HMM Matlab toolbox, as described in the previous
section. The vector of observations o was generated with T
equals to 100. The same observations data o was used for every
6 distinct strategies described in experimental protocol.

 Figure 4 presents the log-likelihood of the data for the 6
estimiation strategies. In the case of DE and DE+BW, the mean,
over 1000 simulations, of the log-likelihood of the best member
of the population is presented.. The vertical bars represent the
confidence interval for the mean.

Figure 4. Log-likelihood of the data given the estimated model for 6
strategies of estimating the parameters A and B.. In the case of the DE A

and B were selected as the best member of the population. The
horizontal bars are the upper and lower confidence interval for the mean.

 In Figure 5, the results for DE and DE+BW, represent the mean
(over 1000 simulations) of the log-likelihood of the average over
all members of the population. The vertical bars represent the
confidence interval for the
mean.

Figure 5. Log-likelihood of the data given the estimated model for 6
strategies of estimating the parameters A and B.. In the case of the DE,
the matrices A and B were considered as the average of all members of
the population. The horizontal bars are the upper and lower confidence

interval for the mean.

6 DISCUSSION

From the results presented in section 5, it is possible to compare
the behaviour of the 6 distinct strategies for initialisation of the
HMM parameters, as described in section 4.

 In all cases analysed, the log-likelihood of the Original Matrix
was lower than all the other optimisation strategies (Original
Matrix + BW, DE and DE+BW). This occurs because the
matrices Aoriginal and Boriginal generated the sequence o, however
it does not mean that these matrices are the best ones to generate
this sequence, i.e., they are only close to the optimal one. As
small is the Euclidian Distance between the estimated matrices
and the ”best” matrices, given a sequence of observables (o),
larger will be the log-likelihood of the estimated matrices to the
sequence o. So, if an optimisation algorithm is applied to these
matrices, it is possible to find the best solution suitable and,
consequently, they will have a larger log-likelihood. Note that
when there is a smaller number of states and symbols, the
optimisation Original+BW obtains a larger log-likelihood.

 In the case of the strategy Random, in all simulations it had
the lowest log-likelihood. This is explained by the fact that the
matrices generated in this strategy are random, and its
probability of generating the sequence o is small and,
consequently, its log-likelihood is always the lowest. But if the
BW algorithm is applied to this strategy (i.e., Random+BW), it
can obtain a log-likelihood larger than the Original Matrix and
as good as the other optimisation strategies.

54

 It is possible to verify that the initialisation of HMM
parameters with DE works as good as the other optimisation
strategies when we have a lower number of states (N) and
symbols (M). However, when we have a larger number of states
and symbols, the behaviour of DE algorithm can be improved if
it is optimised by BW algorithm (DE+BW).

 In DE algorithm, the log-likelihood of the best member of the
population showed to be always larger than the log-likelihood
estimated of the average of all population. However, when the
DE is optimised by BW (DE+BW) the result of the log-
likelihood is as good as the other optimisation strategies
(Original + BW and Random + BW), even considering the best
member or the average of the population.

 It is already known that the optimisation of the parameters of
HMM is a multimodal problem, i.e., it has many local maxima
and many local minima. If during the optimisation the
parameters get stuck in a local optimum this implies that the
model will not have the highest log-likelihood that it could have.
When we use a standard approach of optimisation, such as Baum
Welch that is a local technique, we will always have the risk of
the HMM parameters get stuck in a local optimum. Therefore,
according the results depicted above, an interesting alternative to
avoid this possible undesirable behaviour of a local optmiser is
the use of the global optimiser Differential Evolution.

7 CONCLUSIONS
This paper proposes the use of DE algorithm in the initialisation
of HMM parameters. The improperly initialized models lead to
inaccurate estimates of the HMM parameters [5].

 According to results discussed in section 6, it is possible to
conclude that DE algorithm improves the initialisation of the
model. When the DE algorithm is compared to the random
initialisation optimised, in general, they present a similarity in
their results.

 It is import to remark that the optimisation of the parameters of
HMM is a multimodal problem. Therefore, we have to be aware
to avoid that the parameters get stuck in a local optimum and,
consequently, to get the highest log-likelihood from its
parameters. According to results presented in section 5, the use
of the global optmiser DE algorithm, can be important to help
the optimisation of HMM parameters do not get stuck in a local
optimum and to obtain its best values.

 Therefore, the optimisation method proposed in this paper can
be aggregated to the different types of strategies that can be
successfully utilized to initialize HMM models.

REFERENCES

1. Cohen, A., Hidden Markov models in biomedical
signal processing. 20th Annual International
Conference of the IEEE engineering in medicine and
biology society, 1998. 3.

2. Laverty, W.H., M.J. Miket, and I.W. Kelly, Simulation
of hidden Markov Models with Excel. The Statistician,
2002. 51: p. 31-40.

3. Visser, I., M.E.J. Rijamakers, and P.C.M. Molenaar,
Confidence intervals for hidden markov model
parameters. British Journal of Mathematical and
Statistical Psychology, 2000. 53: p. 317-327.

4. Rabiner, L.R., A tutorial on hidden markov models and
selected applications in speech recognition. IEEE,
1989. 77: p. 257-286.

5. Nathan, K., A. Senior, and J. Subrahmonia.
Initialization of hidden markov models for
unconstrained on line handwriting recognition. in
Acoustics, Speech, and Signal Processing. 1996.
Atlanta.

6. Panuccio, A., M. Bicego, and V. Murino, A hidden
markov model based approach to sequential data
clustering, in Structural, Syntactic and statistical
pattern recognition, T. Caelli and A. Amin, Editors.
2002, Springer. p. 734-742.

7. Jung, K.C., S.M. Yoon, and H.J. Kim, Continuous
HMM applied to quantization of on line Korean
character spaces. Pattern Recognition Letters, 2000.
21: p. 303-310.

8. Nefian, A.V. and M.H. Hayes. Face detection and
recognition using hidden markov models. in
International Conference on Image Processing. 1998.

9. Reyes-Gomez, M.J. and D.P.W. Elli. Selection,
parameter estimation and discriminative training of
hidden markov models for generic acoustic modeling.
in International conference on multimedia and expo.
2003.

10. Kim, D.K. and N.S. Kim, Maximum a posteriori
adaptation of HMM parameters based on speaker
space projection. Speech Communication, 2004. 42: p.
59-73.

11. Rabiner, L.R. and B.H. Juang, An introduction to
hidden markov models. IEEE ASSP Magazine, 1986:
p. 4-16.

12. Smyth, P., Clustering Sequences with Hidden Markov
Models, in Advances in Neural Information Processing
Systems, M.C. Mozer, Editor. 1997, MIT Press.

13. Davis, R.I.A. and B.C. Lovell, Comparing and
evaluating HMM ensemble training algorithms using
train and test condition number criteria. Pattern Anal
Applic, 2003. 6: p. 327-336.

14. Seidemann, E., et al., Simultaneously recorded single
units in the frontal cortex go through sequences of
discrete and states in monkeys performing a delayed
localization task. The Journal of Neuroscience, 1996.
2(16): p. 752-768.

15. Price, K.V., R.M. Storn, and J.A. Lampinen,
Differential Evolution - A Practical Approach to
Global Optimization. 2005: Springer. 538.

16. Storn, R. and K. Price, Differential Evolution - A
Simple and Efficient Heuristic for Global Optimization
over Continuous Spaces. Journal of Global
Optimization, 1997. 11: p. 341-359.

17. Mohamed, M.A. and P. Gader, Generalized Hidden
Markov Models - Part I: Theoretical Frameworks.

55

IEEE Transactions on fuzzy systems, 2000. 8: p. 67-
81.

18. Li, X. Efficient Differential Evolution using Speciation
for Multimodal Function Optmization. in Conference
on Genetic and Evolutionary Computation. 2005.
Washington DC.

19. Roger, L.S., M.S. Tan, and G.P. Rangaiah, Global
Optimization of Benchmark and Phase Equilibrium
Problems Using Differential Evolution. 2006, National
University of Singapore: Singapore.

56

Exploration vs. Exploitation in Differential Evolution
Ângela A. R. Sá1, Adriano O. Andrade 1, Alcimar B. Soares 1

and Slawomir J. Nasuto 2

Abstract. Differential Evolution (DE) is a tool for efficient
optimisation, and it belongs to the class of evolutionary
algorithms, which include Evolution Strategies and Genetic
Algorithms. DE algorithms work well when the population
covers the entire search space, and they have shown to be
effective on a large range of classical optimisation problems.
However, an undesirable behaviour was detected when all the
members of the population are in a basin of attraction of a local
optimum (local minimum or local maximum), because in this
situation the population cannot escape from it. This paper
proposes a modification of the standard mechanisms in DE
algorithm in order to change the exploration vs. exploitation
balance to improve its behaviour.

1 INTRODUCTION
The standard Differential Evolution (DE) algorithm, belonging
to the family of Evolutionary Algorithms, was described by
Storn and Price [1, 2]. It is based on evolution of a population of
individuals, which encode potential solutions to the problem and
traverse the fitness landscape by means of genetic operators that
are supposed to bias their evolution towards better solutions. DE
is a relatively new optimisation technique compared with other
more established Evolutionary Algorithms, such as Genetic
Algorithms, Evolutionary Strategy, and Genetic Programming
[3].

DE is an optimisation algorithm that creates new candidate
solutions by combining the parent individual and several other
individuals of the same population. A candidate replaces the
parent only if it has better fitness [3, 4]. DE uses genetic
operators, referred to as mutation, crossover and selection. The
role of the genetic operators is to ensure that there is sufficient
pressure to obtain even better solutions from good ones
(exploitation) and to cover sufficiently the solution space to
maximise the probability of discovering the global optimum
(exploration).

During the initialisation of the algorithm, a population of NP
vectors, where NP is the number of vectors, each of dimension D

1 Biomedical Engineering Laboratory, Faculty of Electrical Engineering,
Federal University of Uberlandia, Brazil

2 Cybernetics, School of Systems Engineering, University of Reading,
Reading, United Kingdom

(Which is the number of decision variables in the optimisation
problem), is randomly generated over the feasible search space.

Therefore, the population of DE consists of NP D-
dimensional parameter vectors Gi,X , where NPi ,...,2,1� , for
each generation G.

In the mutation step, a difference between two randomly
selected vectors from the population is calculated. This
difference is multiplied by a fixed weighting factor, F, and it is
added to a third randomly selected vector from the population,
generating the mutant vector, V [1-3].

After mutation, the crossover is performed between the vector
(X) and the mutant vector (V) (Figure 1), using the scheme in (1)
to yield the trial vector U. The crossover probability is
determined by the crossover constant (CR), and its purpose is to
bring in diversity into the original population [5].

Figure 1. Illustration of the crossover process for D=4.

��

�
�
�

�
�

�
Gji

Gji
Gji X

V
U

,

1,
1, (1)

if (randb(j)
 CR or j = rnbr(i)

if (randb(j) > CR or j � rnbr(i)

57

In (1), randb(j) is the jth evaluation of a uniform random number
generator with outcome 	 [0,1]. Rnbr(i) is a randomly chosen
index 	 1,2,…,D, which ensures that Ui,G+1 gets at least one
parameter from Vi,G+1 [1].

There are different variants that can be used in mutation and
crossover, and they are referred to as DE/x/y/z, where x specifies
the vector to be mutated which currently can be “rand” (a
randomly chosen population vector) or “best” (vector of the
lowest cost from the current population); y is the number of
difference vectors used and z denotes the crossover scheme [2].

In the last step, called selection, the new vectors � �U replace
their predecessors if they are closer to the target vector.

DE has shown to be effective on a large range of classical
optimisation problems, and it showed to be more efficient than
techniques such as Simulated Annealing and Genetic Algorithms
[4, 5]. However, its capability of finding the global optimum is
very sensitive to the choice of the control variable F and CR [6].
Consistently with related studies [3, 5, 6], the paper highlights an
undesirable behaviour of the algorithm, i.e., the DE does not find
the global optimum (value to reach - VTR) when 100% of the
population is trapped in a basin of attraction of a local optimum.

2 THE BEHAVIOUR OF THE STANDARD
DIFFERENTIAL EVOLUTION

In order to verify the behaviour of standard DE algorithm, the
Rastrigin’s function defined in (2), representing multimodal
optimisation problem, was selected as the cost function. As
Figure 2 shows, Rastrigin´s function has many local minima and
maxima, making it difficult to find the global optimum.
Consequently, it is a very good function to test the behaviour of
DE algorithm.

� � � � � � � �� �yxyxyxf �� 2cos2cos1020, 22 ������ (2)

Figure 2. The Rastrigin’s Function employed to assess the
modification in DE algorithm.

We considered the Rastrigin function on the search domain
Dom={(x,y): 55

� x and 55

� y }. The Rastrigin´s

Function has in Dom the global minimum at � � � �0,0, �yx , with
0),(�� yxfVTR ; and it also has four global maxima at

� � � �55.4,5.4, �yx , � � � �55.4,5.4, ��yx , � � � �55.4,5.4, ��yx and
� � � �55.4,5.4, ���yx , with 46.80),(�� yxfVTR . Henceforth,
global minimization and maximization of the Rastrigin function
respectively represent different levels of difficulty for swarm
intelligence algorithms due to non-uniqueness of the global
optima in the latter. We will report results of both cases.

The parameters of the DE were defined as follows: D = 2,
CR = 0.8 (cross over constant), F = 0.8 and NP = 100 (number
of members of population), with a fixed number of 1000
generations (iterations) and 1000 simulations, each one with a
different data set.

 The strategy used in the mutation and crossover, i.e., the
variants of creation of a candidate, was the DE/rand to best/1,
because according to previous simulations, it is this strategy that
resulted in a larger number of members that found the global
optimum [5, 6].

2.1 Strategy for data analysis

In order to verify the performance of the optimisation of DE
algorithm, we executed it for each case, i.e., minimization and
maximization.

 The results were obtained through three types of analysis that
are described as follows:

1) Estimate of the average number of members of the
population, over 1000 simulations, which reached a pre-defined
neighbourhood of the VTR defined in terms of the maximal
accepted difference between VTR and the population members
cost values. The confidence interval for the mean of the
frequency by using the technique Bootstrap [7-9] was also
estimated.

2) Contour plot that shows the initial distribution of the
population before and after optimisation.

3) For each neighbourhood the average number of occurrence
of member of the population, over 1000 simulations, is estimated
as a function of the number of iterations.

2.2 Minimization

Minimisation is the simpler case of optimisation due to the
uniqueness of the global optimum and is discussed first.
Figure 3 shows a typical result of a simulation using the
standard DE algorithm. In the top, the initial distribution of
the population (in red) is shown; all members of the
population are trapped in the local optimum. The VTR is
indicated in the figure. After optimisation, the members of the
population did not escape from the local optimum as depicted
in Figure 3 (bottom).

58

Figure 3. (Top) Initial distribution of the population. (Bottom)
Final distribution of the population, after running the standard DE

algorithm. The arrows in the figure indicate the VTR, the initial and
final distribution of the population.

Figure 4 presents the results of applying the standard DE
algorithm. The average number of members of the population
that reached the VTR was zero for all investigated
neighbourhoods. This means that the algorithm was not capable
of moving the population to the VTR, as can be visualized by the
typical case shown in Figure 4.

Figure 4. Estimate of the average number of the members of the
population, over 1000 simulations, which reached the VTR. These

results were obtained from the standard DE algorithm.

 These results illustrate the limitation of the standard DE
genetic operators which do not create sufficient diversity within
the population in order to explore other regions of the search
space beyond the basin of attraction of the local optimum.
The more difficult case of global optimisation (due to non-
uniqueness of the global maxima of the Rastrigin function) are
considered in the next section.

2.3 Maximization

 Figure 5 shows a typical result of a simulation using the
standard DE algorithm. In the top, the initial distribution of the
population (in red) is shown; all members of the population are
trapped in the local optimum. The VTR is indicated in the figure.
After optimisation the members of the population did not escape
from the local optimum as depicted in Figure 5 (bottom).

Figure 5. (Top) Initial distribution of the population. (Bottom)
Final distribution of the population, after running the standard DE

algorithm. The arrows in the figure indicate the VTR, the initial and
final distribution of the population.

Figure 6 presents the results of applying the standard DE
algorithm. The average number of members of the population
that reached the VTR was zero for all investigated
neighbourhoods. This means that the algorithm was not
capable of moving the population to the VTR, as can be
visualized by the typical case shown in Figure 6.

Figure 6. Estimate of the average number of the members of the
population, over 1000 simulations, which reached the VTR. These

results were obtained from the standard DE algorithm.

 As expected, also in this case the standard genetic operators do
not result in sufficient exploration of the search space. Bias
towards exploitation still results in entrapment in the local
optimum.

3 PROPOSED SOLUTION
In order to improve the balance between the exploration and
exploitation in DE algorithm we propose a modification of the
selection used in DE. The aim of the modification is to restore
balance between exploration and exploitation affording
increased probability of escaping basin of attraction of local
optima.

In the standard DE algorithm, the selection of the new
population is made by using a determinist condition, i.e., usually,
in the DE algorithm, the selection is made by choosing the
member (X or V) that is the nearest to the VTR [5]. Because the

59

mutation and crossover are well suited to support efficient
exploitation we feel that relaxing this greedy selection scheme
will address the identified problem without detrimental effects
for the exploitation. We propose to relax the deterministic
selection to maintain the population diversity and consequently
to allow escape from basin of attraction of local optima. The
diversity will reduce the selection pressure which will alleviate
the problem caused by greediness of the other operators in cases
when most (or all) of the population members are trapped in
specific regions of the search space.

A proposed solution is to introduce a probabilistic selection of
the new member of the population, in order to induce the
population diversity. We define the probability of selection of
the population members in terms of their cost function. Hence
the probability of selecting X is defined in (3) and the
probability of V in (4).

� �
� � � �KVfKXf

KXfXP
���

�
�

)()(
)()((3)

)(1)(XPVP �� (4)

The probability of selecting X is an increasing function of the
cost function evaluated at X. The constant, K, in (3) is added in
order to guarantee that P(X) is greater that zero. The value of K
will depend on the cost function employed in the algorithm.

 The probabilistic selection proposed above still maintains
some pressure on the population to move towards more optimal
solutions but nevertheless allows for greater diversity by
admitting sub optimal choices, which are needed to shift the
population across the boundaries of the basins of attraction of
local optima. The implementation of the probabilistic selection is
straightforward by sampling a random number, c, from a
uniform distribution on a unit interval and comparing with the
probability of selecting X. The minor modifications needed for
the case of minimization and maximization respectively are
highlighted below.

� Minimization - We have to choose the member of
the population with the lowest value of the cost
function. The pseudo-code shown in Figure 7
illustrates this process.

Figure 7. The probabilistic selection stage of the DE for
minimization.

� Maximization - We have to choose the member of
the population with the highest value of the cost
function. The pseudo-code shown in Figure 8
illustrates this process.

Figure 8. The probabilistic selection stage of the DE for
maximization.

The original code of DE was obtained from [10], with the
original code written by Rainer Storn and Kenneth Price [1, 2],
and the modification described above was incorporated on it.

5 RESULTS

In order to test the modifications proposed in the DE algorithm,
the same experimental protocol, described in section 2, was
used. The results presented below the behaviour of the modified
DE on global minimization of the Rastrigin function. The more
difficult case (due to non-uniqueness of global optima) of global
maximization of this function is discussed subsequently.

5.1 Minimization

Figure 9 shows a typical result of a simulation using the
DE algorithm with probabilistic selection. In the top, the
initial distribution of the population (in red) is shown; all
members of the population are trapped in the local optimum.
The VTR is indicated in the figure. After optimisation the
members of the population escaped from the local optimum as
depicted in Figure 9 (bottom).

Figure 9. (Top) Initial distribution of the population. (Bottom)
Final distribution of the population, after running the DE algorithm
with probabilistic selection. The arrows in the figure indicate the

VTR, the initial and final distribution of the population.

If (P(V) < c)
 then U = V;
 else U = X;

If (P(V) > c)
 then U = V;
 else U = X;

60

Figure 10 presents the estimate of the concentration of the
DE population around the VTR. The vertical bars represent
the confidence interval for the mean. The average number of
members of the population that reached the VTR was zero for
neighbourhoods equals to 99.5% and it was larger than zero
for the others. This means that the algorithm is capable of
moving the population to a region closer to the VTR.

Figure 10. Estimate of the average number of the members of the
population, over 1000 simulations, which reached the VTR for the DE

with probabilistic selection.

Figure 11 presents the comparison between the
average number of members that reached the neighbourhood
99% of VTR as a function of time (iterations), for by DE with
standard and probabilistic selection. It thus visualises the
convergence of the populations towards the VTR during
evolution of both algorithms.

Figure 11. Average size of the population of members reaching the
neighbourhood 99% of VTR, as a function of time (iterations).

Figure 12 presents the comparison between the
average number of members that reached the neighbourhood
98% of VTR as a function of time (iterations), by DE with
standard and probabilistic selection.

Figure 12. Average size of the population of members reaching the
neighbourhood 98% of VTR, as a function of time (iterations).

Figure 13 presents the comparison between the
average number of members that reached the neighbourhood
97% of VTR as a function of time (iterations), by DE with
standard and probabilistic selection.

Figure 13. Average size of the population of members
reaching the neighbourhood 97% of VTR, as a function of time

(iterations).

5.2 Maximization

Figure 14 shows a typical result of a simulation using the DE
algorithm with probabilistic selection. In the top, the initial
distribution of the population (in red) is shown; all members of
the population are trapped in the local optimum. The VTR is
indicated in the figure. After optimisation the members of the
population escaped from the local optimum as depicted in Figure
14 (bottom).

61

Figure 14. (Top) Initial distribution of the population. (Bottom)
Final distribution of the population, after running the DE algorithm
with probabilistic selection. The arrows in the figure indicate the

VTR, the initial and final distribution of the population.

 Figure 15 presents the estimate of the concentration of the
DE population around the VTR. The vertical bars represent
the confidence interval for the mean. The average number of
members of the population that reached the VTR was zero for
neighbourhoods equals to 99.5% and it was larger than zero
for the others. This means that the algorithm is capable of
moving the population to a region closer to the VTR.

Figure 15. Estimate of the average number of the members of the
population, over 1000 simulations, which reached the VTR for the DE

with probabilistic selection.

Figure 16 presents the comparison between the
average number of members that reached the neighbourhood
99% of VTR as a function of time (iterations), for by DE with
standard and probabilistic selection. It thus visualises the
convergence of the populations towards the VTR during
evolution of both algorithms.

Figure 16. Average size of the population of members
reaching the neighbourhood 99% of VTR, as a function of time

(iterations).

Figure 17 presents the comparison between the
average number of members that reached the neighbourhood
98% of VTR as a function of time (iterations), by DE with
standard and probabilistic selection.

Figure 17. Average size of the population of members
reaching the neighbourhood 98% of VTR, as a function of time

(iterations).

Figure 18 presents the comparison between the
average number of members that reached the neighbourhood
97% of VTR as a function of time (iterations), by DE with

62

standard and probabilistic selection.

Figure 18. Average size of the population of members
reaching the neighbourhood 97% of VTR, as a function of time

(iterations).

6 DISCUSSION

The results reported in this paper indicate that alterations of the
DE selection step improve the optimisation process.

 The introduced changes affect the exploration vs. exploitation
balance maintained by the DE population. Local exploitation
afforded to by standard mutation and crossover combined with
the less greedy probabilistic selection allowing for occasional
sub optimal choices led to an improved diversity of the
population which allowed the modified DE to escape from initial
local optima.

 In the case of minimization, some members of the modified
DE population reached a neighbourhood of the global minimum.
It is important to note that all member of the population escaped
from the initial local optimum in which they were trapped. The
standard DE did not allow the population to escape from the
local optimum in the same case.

 Similar contrasting behaviour of the two algorithms was
observed in the case of maximization. It is important to note that
the Rastringin´s Function (Figure 2) has four global maxima and
the standard DE algorithm failed to locate them. In contrast the
modified DE was able to successfully locate one global
optimum.

7 CONCLUSIONS

This paper proposes an extension of the standard DE algorithm
with the aim of improving its maintenance of population
diversity by restoring more balance between exploration and
exploitation of the search space. The modification proposed
showed to be successful in avoiding entrapment in local optima.

 The modification proposed is important because in
multimodal optimization problems even swarm intelligence
algorithms have difficulty with escaping the local optima. The
probability of success afforded by the modified DE showed to be
higher than for the standard algorithm.

 According to Rainer and Price [2], little is known about DE
behavior in real world applications. This work contributes to the
investigation of DE behaviour and the modification proposed in
the algorithm can be very useful in many real world optimisation
problems.

REFERENCES

1. Price, K.V., R.M. Storn, and J.A. Lampinen,
Differential Evolution - A Practical Approach to
Global Optimization. 2005: Springer. 538.

2. Storn, R. and K. Price, Differential Evolution - A
Simple and Efficient Heuristic for Global Optimization
over Continuous Spaces. Journal of Global
Optimization, 1997. 11: p. 341-359.

3. Li, X. Efficient Differential Evolution using Speciation
for Multimodal Function Optmization. in Conference
on Genetic and Evolutionary Computation. 2005.
Washington DC.

4. Robic, T. and B. Filipic, DEMO: Differential
Evolution for Multiobjective. 2005, Jozef Stefan
Institute: Slovenia. p. 520-533.

5. Roger, L.S., M.S. Tan, and G.P. Rangaiah, Global
Optimization of Benchmark and Phase Equilibrium
Problems Using Differential Evolution. 2006, National
University of Singapore: Singapore.

6. Gamperle, R., S.D. Müller, and P. Koumoutsakos, A
Parameter Study for Differntial Evolution. 2006, Swiss
Federal Institute of Technology Zürich: Zürich.

7. Zoubir, A.M. and D.R. Iskander, Bootstrap Matlab
Toolbox. Software Reference Manual, 1998.

8. Johnson, R.W., An introduction to the bootstrap.
Teaching Statistics, 2001. 23(2): p. 49-54.

9. Zoubir, A.M. and B. Boashash, The bootstrap and its
application in signal processing. IEEE signal
processing magazine, 1998: p. 57-76.

10. Differential Evolution. [cited 2006; Available from:
http://www.icsi.berkeley.edu/~storn/code.html.

63

Toward a Unified Framework for
Swarm Based Image Analysis

Walther Fledelius1 and Brian Mayoh2

Abstract. Swarm based image analysis is a discipline, in which em-

phasis is on developing swarms with different rules and interactions

for obtaining a specific emergent behavior, which may be used in an

image analysis context. As the swarm process and results are readily

visible, swarm based image analysis is an excellent discipline for ob-

taining a greater understanding of swarm theory. Currently there is

no common way of implementing swarm algorithms for image anal-

ysis. This is unfortunate as the emergent behavior is highly sensitive

to implementation details, as illustrated here by examples. In order

to learn more about the behavior of swarms and share results, such

a unified framework is proposed here. Although the focus will be

on image analysis, the framework could serve as a basis for a more

general swarm algorithm framework.

1 Introduction

Ant Colony Optimization (ACO) and Particle Swarm Optimization

(PSO), are both examples of successful application of swarms to op-

timization problems. Both have also been adapted and applied to

image analysis, see [8] and [7] respectively. Another way of using

swarms for image analysis that has been described is, like ACO and

PSO, based on the emergence that agents exhibit when they are given

simple rules to interact with each other and the environment. But un-

like ACO and PSO these algorithms focus on constructing rules and

interactions to produce new emergences that can be used for image

analysis. The objective was best formulated by Ramos: ”The main

goal is to achieve a global perception of one image as the emergent

sum of local perceptions of the whole colony.” [9]. In these types

of algorithms, the image is the agents digital habitat in which they

move around and interact directly with image pixels at their location,

as well as other nearby agents. There is currently no common frame-

work for releasing the swarms in the digital habitat as is the case with

ACO and PSO for graphs and solution spaces respectively. In the

book Swarm Intelligence: From Natural to Artificial Systems, Eric

Bonabeau et. al., suggests the creation of a catalog of behaviors that

can be achieved by agents interacting by simple rules [2]. It is also

noted that this would be an enormous task. But if a unified framework

for agents in digital image habitats were established, it would be pos-

sible to incrementally build up such a knowledge base. A framework

would help share experiences and results from new swarm designs,

as well as provide a better understanding of swarm behavior. Another

important motivation is that the emergence exhibited by the agents is

very sensitive to the actual implementation details, as illustrated here

1 Dept. of Ophthalmology, Aarhus University Hospital, Aarhus Denmark,
email: walther@akhphd.au.dk

2 Computer Science Department, Aarhus University, Aarhus, Denmark,
email: brian@daimi.au.dk

by two examples. Without a unified framework much time and effort

would have to go in to describing the swarms in great detail to avoid

ambiguous descriptions.

Figure 1. The left and right column show the paths from two different
implementations of the same swarm after 100, 200 and 10000 iterations.

2 Swarms in a digital habitat
An important feature of swarm based image analysis, is that an algo-

rithm can be formulated by a set of behavioral rules, without stringent

mathematical definitions, thus potentially making it accessible to a

64

larger audience. This method of formulating an algorithm by a rule

set can however be deceptively simple, since the emergent behavior

is very sensitive to the actual implementation details. The description

of an algorithm should besides rules contain detailed information on

how internal parameters and motion parameters are updated, as well

as when they are updated and in what order. Figure 1 and 2 illustrate

how simple swarms descriptions can produce very different emergent

behaviors, if details of the implementation is missing or ambiguous.

2.1 Example 1
Figure 1 show two sets of paths, each of eight birds initially placed

around the edge of the image, with an initial leftward direction. The

birds abide to the following rules:

”The birds fly with a random weight of 10% while they move

toward the middle of the two nearest birds with a weight of

20%. The speed is constant at 0.5% of the image width”

The only difference between the birds in the left and right column, is

that in the right column the birds are all updated before they all move,

and in the left column each bird is moved immediately after it is up-

dated. If these birds were used in a search algorithm, this difference

in implementation would lead to two very different emergent search

strategies. In the left column, two flocks are formed that constantly

move without ever remaining in the same region, thus searching a

large area sparsely. In the right column, one, two or three flocks are

formed, which spend time searching a small area thoroughly. They

will suddenly dart off to a new region where they again search that

area thoroughly. The difference in the implementations become evi-

dent when the distance between agents is close to the their speed i.e.

step length. Without the fixed step length the agents positions would

collapse in to a single point in space. Agents placed closely around

this point, will have preferred directions that are all different from

each other, but through almost the same point. When all agents are

moved at the same time, they will all move toward the point, and be-

yond it whereafter their preferred direction changes 180 degrees. It

appears as if the agents swarm around a single point. When agents

are moved one at a time, the direction of the first agents move, will

influence the preferred direction of the next agent, thereby making it

possible for the agents to agree on a common direction.

2.2 Example 2
Figure 2 show another example where a flock of 100 birds are used

to enhance an image of keratocytes from the human cornea. The ker-

atocytes can be seen as small bright areas in the input image, figure

2A. The birds abide to the following rules:

”The birds fly with a random weight of 25%, while they main-

tain a running average of the pixel values they encounter. The

running average is updated with 25%, and the speed is con-

stant at 0.5% of the image width. If a birds running average is

higher than the average of the five neighboring birds, the bird

deposits nesting material in another image by counting up the

pixel value.”

The images B,C and D in figure 2, show the generated image of

nesting material by three different implementations of the swarm de-

scription (image histograms have been equalized). The difference in

implementation between B and C, is that in C the birds leave in a ran-

dom direction after putting down nesting material, whereas in B they

Figure 2. Image A is an image of keratocytes from a human cornea.
Images B,C and D show the results of filtering image A with three different

implementations of the same swarm description.

continue in the same direction. A bird in the middle of a large bright

area, can become trapped if it constantly changes direction, wheres a

bird that does not, will always pass through it. The algorithm that

changes the birds direction, will therefore deposit relatively more

nesting material in the large bright areas. Both interpretations of the

algorithm are valid. Biologically there is no reason for a bird to take

off in the same direction it landed. However in an actual implementa-

tion, one would specifically have to clear the direction and implement

a random function in order for the bird to leave in a random direc-

tion. It leaves the risk of this information to be assumed implicitly

if the algorithm does not change direction of the birds, resulting in

an ambiguous algorithm definition. The difference in implementation

between B and the D, is that if the birds use the rule of putting down

nesting material in D, they are not moved in that iteration. A bird

putting down nesting material on a bright pixel will therefore read

same pixel again in the next iteration because it did not move. This

means it can only leave if the five neighboring birds have an average

higher than its own current running average. A great number of birds

will therefore remain nesting on the same bright pixel, preventing

themselves and others from putting down as much nesting material

in other places.

2.3 Reproducibility
The two examples were designed to be as simple as possible, while

still illustrating that perhaps seemingly insignificant details of the

implementation, can have great influence on the resulting emergent

behavior. It is obvious that the results of more complex swarms such

as those that have been described in the literature could be very

hard to reproduce. Reproducibility is essential in order to learn more

about the behavior of swarms, and to share experiences between re-

searchers. A unified framework for deploying agents in digital image

habitats will help increase the reproducibility of emergent swarm be-

havior.

65

3 Framework

The proposed framework consist of a description of the habitat in

which the agents live, as well as a description of the agents. The

description of an agent contains information on which type of in-

formation an agent can remember, and which states it can assume.

Each state, will have a corresponding rule set that affects how agents

and habitat are updated. It will also contain a description of an ar-

biter to handle global decisions and an algorithm structure to bind all

the components together in a swarm algorithm. The components are

described in the following.

3.1 Digital habitat

The main digital habitat in which the agents live, is the input image

to be processed. The agents move around in the habitat, where they

can read from, or write to it according to the rule sets. Overlaid the

main habitat, there can be a number of equal size parallel habitats,

for the agents to interact with. The agents interact with the pixels at

their current position, or with the pixels within a predefined action

radius from their current position. The parallel habitats can be differ-

ent color components, different modalities of medical images or the

resulting output image. The input data can also be a 3D volume as in

[4] where MR scans are processed, only voxels are used instead of

pixels. The image can either be an image representing a real world

object, or it can be a preprocessed image as in [5], where the pixel

values represent gradient directions of the original image. The use of

a parallel habitat can be seen in [10] where an additional habitat is

used to keep track of areas segmented by the agents, and [1] illus-

trate the use of an action radius to limit the area where prey pixels

are searched. The agents can interact with other agents through stig-

mergy by changing the habitat as in [9] where agents are depositing

pheromones in a parallel habitat, which influences other agents to

deposit more in those regions building up a map of the input image.

In [3] a colony of spiders uses stigmergy to construct webs for image

segmentation.

3.2 Agents

The agents can interpret the habitat as being continuous or discrete.

The agent has three motion related parameters, position �p, direction
�d and speed s. In the discrete case, position is typically constrained

to pixels, and direction limited to eight values corresponding to ver-

tical, horizontal and diagonal directions. An agent can be in one of a

set of states, with each state having its own rule set. Sub populations

can be handled by using different states. An agent also has a number

of memory cells, where each cell can remember any type of informa-

tion. Motion parameters, states and memory cells are updated by the

rule set. The agents interact with other agents, within a predefined

action radius. An agent can obtain information from another agent,

and/or change the state of the other agents. In [4] the bloodhound

agents communicate to obtain information on direction of track, and

in [5] agents can challenge each other whereby the loosing agent

changes population affiliation. In [1] a color bank of previously seen

pixel values are stored, and in [6] a history of parents are stored. In

[10] the scouts can be in one of two states where they respectively do

a random search, and label pixels. Similarly [6] uses states to shift

between a searching and a reproducing state.

3.3 Rule-set
The agents behaviors are defined by a set of rules. The rule sets are

categorized by five types: Initial, internal, state, motion and habitat.

• Initial rules are rules that are performed the first time an agent is

updated after a state change.

• Internal rules update the memory cells of the agent.

• State rules can change the state of the agent.

• Motion rules can change the position, direction and speed of the

agent.

• Habitat rules can change the habitat at the agents current posi-

tion, as well as neighboring agents.

The rules are categorized to ensure an unambiguous order of execu-

tion according to the swarm algorithm. If there are more rules of the

same type, they should be executed in order of definition. The update

the rules perform may be based on habitat, neighboring agents and

own parameters.

In the continuous case, the motion rules for changing direction

should specify a weight and a unit vector for the desired direction.

The speed of the agent is updated like any other memory cell. The

agents direction and position is updated in the n’th dimension by a

number of rules as:

d′
n = dn(1.0−w1+w2+. . .+wk)+d1nw1+d2nw2+. . .+dknwk

p′
n = pn + d′

ns

In previous implementations internal-, state-, motion- and habitat-

changes, have not always all been defined by rules, rather by other

types of definitions. However by forcing all updates into rules, the

risk of ambiguous definitions is minimized.

3.4 Arbiter
The arbiter handles all global calculations and parameters, such as

random reproduction, death and pheromone evaporation. Real world

agents do not have access to global information and calculations,

however it can be necessary in a given real world application. By

explicitly assigning the task to an arbiter, global and local informa-

tion become clearly separated. Pheromones and evaporation is used

in [9], and a global centroid of a swarm is calculated and used in [1].

3.5 Algorithm
The algorithm outlines the order in which the swarm and habitat are

updated, see pseudo code.

After swarms and habitat have been initialized, all agents are updated

once in each iteration, until the termination criteria is met. If an agent

has just changed state, the initial rules are performed first, followed

by the internal rules. State changing rules are performed until one

causes a state change, or there are no more state changing rules. If

the agent did not change state, motion and habitat rules are performed

on the agent. All agents that did not change state are then moved in

their potentially new direction. After all agents have been updated,

the arbiter performs global calculations and interactions. Rules of

the same type are applied in the order they are described.

66

INIT (habitats and agents)
REPEAT
FOR (all agents)
apply initial rules
apply internal rules
apply state changing rules
IF (no state change)
apply motion rules
apply habitat rules
END IF
END FOR
FOR (all non state changing agents)
move
END FOR
arbiter: update global and

population parameters
UNTIL (termination criteria met)

4 Framework definition example
The following example illustrate how the bloodhound algorithm of

[4] may be described in the proposed framework. Besides the de-

scription, there should also be defined values for the constants c1-9,

as well as detailed information of the functions executed by the al-

gorithm The constants are not transferred from the original article,

as the original swarm algorithm definition does not follow the new

framework.

MEMORY CELLS

q = Quality of current position
d = Distance to nearest stationary hound
t = Iterations remaining stationary
f = Is in front of nearest stationary hound
b = Is behind stationary hound

STATE1: MOVING

Internal rules:
q = evaluateCurrentPosition()
d = findDistanceToNearestStationaryHound()
f = isInFrontOfNearestStationaryHound()

State changing rules:
if (q>c1 and d>c2) then State2
if (q>c1 and d<c3 and f) then State2

Motion rules:
alignDirectionWithNearestStationary(c4%)
moveTowardPointInFrontOfNearestStationary(c5%)
changeDirectionRandomly(c6%)

STATE2: STATIONARY

Initial rules:
assumeDirectionOfImage()
drawInOutputImage()

Internal rules:
b = isAStationaryHoundInFront()
t = updateTimeRemainingStationary()

State changing rules:
if (b) then State1
if (t>c7) then State1

ARBITER

Move hounds with more than 15 neighbors to a
random location

CONSTANTS

Speed = c8
Action radius = c9

5 Conclusion

A new framework for swarm based image analysis has been pro-

posed, which will help provide a solid foundation for exploring

swarms in the future. It provides unambiguous swarm algorithm def-

initions, which will help share experiences among researchers, and

increase the reproducibility of emergent behaviors. The framework

is based on a brief review of how swarms have previously been ap-

plied, while attempting to encapsulate all the ideas presented in those

works.

ACKNOWLEDGEMENTS

The study was supported in part by generous donations from: The

Danish Eye Research Foundation and The Danish Association for

Prevention of Eye Diseases and Blindness.

REFERENCES

[1] Luis Antón-Canalı́s, Elena Sánchez-Nielsen, and Mario Hernández-
Tejera, ‘Swarmtrack: A particle swarm approach to visual tracking’,
VISAPP’06, Setúbal, Portugal, 2, (2 2006).

[2] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, Swarm intelligence:
from natural to artificial systems, Oxford University Press, Inc., New
York, NY, USA, 1999.

[3] Christine Bourjotand, Vincent Chevrier, and Vincent Thomas, ‘A new
swarm mechanism based on social spiders colonies: from web weaving
to region detection’, Web Intelligence and Agent System, 1(1), 47–64,
(1 2003).

[4] Walther Fledelius and Brian H. Mayoh, ‘A swarm based approach to
medical image analysis’, in AIA’06: Proceedings of the 24th IASTED
international conference on Artificial intelligence and applications, pp.
150–155, Anaheim, CA, USA, (2006). ACTA Press.

[5] Chad George and James Wolfer, ‘A swarm intelligence approach to
counting stacked symmetric objects’, in AIA’06: Proceedings of the
24th IASTED international conference on Artificial intelligence and ap-
plications, pp. 125–130, Anaheim, CA, USA, (2006). ACTA Press.

[6] Jiming Liu, Yuan Y. Tang, and Y. C. Cao, ‘An evolutionary autonomous
agents approach to image feature extraction’, IEEE Trans. on Evolu-
tionary Computation, 1(2), 141–158, (1997).

[7] Omran M., Salman A., and Engelbrecht A. P., ‘Image classification us-
ing particle swarm optimization’, Proceedings of the 4th Asia-Pacific
Conference on Simulated Evolution and Learning 2002 (SEAL 2002),
Singapore, 370–374, (2002).

[8] Alice R. Malisia and Hamid R. Tizhoosh, ‘Image thresholding using ant
colony optimization’, in CRV ’06: Proceedings of the The 3rd Canadian
Conference on Computer and Robot Vision (CRV’06), p. 26, Washing-
ton, DC, USA, (2006). IEEE Computer Society.

67

[9] V. Ramos and F. Almeida, ‘Artificial ant colonies in digital image habi-
tats - a mass behaviour effect study on pattern recognition’, Proc. of
ANTS’2000 - 2 na Int. Workshop on Ant Algorithms (From Ant Colonies
to Artificial Ants), 113–116, (2000).

[10] C.E. White, G.A. Tagliarini, and S Narayan, ‘An algorithm for swarm-
based color image segmentation’, in IEEE SouthEast Conf., Greens-
boro, North Carolina, USA, IEEE Press, pp. 84–89, (2004).

68

