

AISB 2008 Convention
Communication, Interaction and Social

Intelligence
1st-4th April 2008

University of Aberdeen

Volume 4 :
Proceedings of the

AISB 2008 Symposium on Behaviour Regulation in
Multi-agent Systems

Published by
The Society for the Study of

Artificial Intelligence and
Simulation of Behaviour

http://www.aisb.org.uk/convention/aisb08/

ISBN 1 902956 64 8

Contents

The AISB’08 Convention . ii
Frank Guerin & Wamberto Vasconcelos

Symposium Preface . iii
Nir Oren & Michael Luck

Modelling MAS with Finite Analytic Stochastic Processes . 1
Luke Dickens, Krysia Broda & Alessandra Russo

Automated Mechanism Design Using Process Algebra . 8
Emmanuel M. Tadjouddine

Using Recency and Relevance to Assess Trust and Reputation . 13
Sarah N. Lim Choi Keung & Nathan Griffiths

Modelling and Administration of Contract-Based Systems . 19
Simon Miles, Nir Oren, Mike Luck, Sanjay Modgil, Noura Faci, Camden Holt & Gary Vickers

Cooperation through Tags and Context Awareness . 25
Nathan Griffiths

An Argumentation-based Computational Model of Trust for Negotiation . 31
Maxime Morge

Handling Mitigating Circumstances for Electronic Contracts . 37
Simon Miles, Paul Groth & Michael Luck

Automated Requirements-Driven Definition of Norms for the Regulation of Behavior in Multi-Agent Systems 43
Martin Kollingbaum, Ivan Jureta, Wamberto Vasconcelos, Katia Sycara

Intelligent Contracting Agents Language . 49
Sofia Panagiotidi, Javier Vazquez-Salceda, Sergio Alvarez-Napagao, Sandra Ortega-Martorell, Steven Willmott, Roberto
Confalonieri & Patrick Storms

Argumentation for Normative Reasoning . 55
Nir Oren, Michael Luck & Timothy Norman

i

The AISB’08 Convention: Communication, Interaction and Social Intelligence

As the field of Artificial Intelligence matures, AI systems begin to take their place in human society as our helpers. Thus it
becomes essential for AI systems to have sophisticated social abilities, to communicate and interact. Some systems support
us in our activities, while others take on tasks on our behalf. For those systems directly supporting human activities,
advances in human-computer interaction become crucial. The bottleneck in such systems is often not the ability to find
and process information; the bottleneck is often the inability to have natural (human) communication between computer
and user. Clearly such AI research can benefit greatly from interaction with other disciplines such as linguistics and
psychology. For those systems to which we delegate tasks: they become our electronic counterparts, or agents, and they
need to communicate with the delegates of other humans (or organisations) to complete their tasks. Thus research on
the social abilities of agents becomes central, and to this end multi-agent systems have had to borrow concepts from
human societies. This interdisciplinary work borrows results from areas such as sociology and legal systems. An exciting
recent development is the use of AI techniques to support and shed new light on interactions in human social networks,
thus supporting effective collaboration in human societies. The research then has come full circle: techniques which
were inspired by human abilities, with the original aim of enhancing AI, are now being applied to enhance those human
abilities themselves. All of this underscores the importance of communication, interaction and social intelligence in current
Artificial Intelligence and Cognitive Science research.

In addition to providing a home for state-of-the-art research in specialist areas, the convention also aimed to provide
a fertile ground for new collaborations to be forged between complementary areas. Furthermore the 2008 Convention
encouraged contributions that were not directly related to the theme, notable examples being the symposia on “Swarm
Intelligence” and “Computing and Philosophy”.

The invited speakers were chosen to fit with the major themes being represented in the symposia, and also to give a
cross-disciplinary flavour to the event; thus speakers with Cognitive Science interests were chosen, rather than those with
purely Computer Science interests. Prof. Jon Oberlander represented the themes of affective language, and multimodal
communication; Prof. Rosaria Conte represented the themes of social interaction in agent systems, including behaviour
regulation and emergence; Prof. Justine Cassell represented the themes of multimodal communication and embodied
agents; Prof. Luciano Floridi represented the philosophical themes, in particular the impact of society. In addition there
were many renowned international speakers invited to the individual symposia and workshops. Finally the public lecture
was chosen to fit the broad theme of the convention – addressing the challenges of developing AI systems that could take
their place in human society (Prof. Aaron Sloman) and the possible implications for humanity (Prof. Luciano Floridi).

The organisers would like to thank the University of Aberdeen for supporting the event. Special thanks are also due to
the volunteers from Aberdeen University who did substantial additional local organising: Graeme Ritchie, Judith Masthoff,
Joey Lam, and the student volunteers. Our sincerest thanks also go out to the symposium chairs and committees, without
whose hard work and careful cooperation there could have been no Convention. Finally, and by no means least, we would
like to thank the authors of the contributed papers – we sincerely hope they get value from the event.

Frank Guerin & Wamberto Vasconcelos

ii

The AISB’08 Symposium on Behaviour Regulation in Multi-Agent Systems

Multi-agent systems are a powerful problem solving paradigm, attacking a problem via the interactions of many discrete
components. The interactions between agents provide the approach’s strength, but they also pose a great challenge: de-
tecting and preventing undesirable behaviour (and interactions between agents) is difficult. While the formal specification
of allowable agent behaviour is possible, unintended effects and purposefully malicious agents mean that other approaches
to regulating the behaviour of agents are needed.

Techniques such as trust and reputation mechanisms and offline and online mechanism design (examples of which
are social laws and machine interpretable contracts respectively) are able to regulate agent behaviour while allowing the
agent to remain autonomous. While powerful, these techniques — and others — are still being refined, and many issues —
including detecting and handling conflicting requirements, representation of permissible activities, and ways of monitoring
and enforcing behaviour — remain. This symposium concerns itself with the theories, methodologies and computational
issues related to regulating agent behaviour in multi-agent systems.

Out of the 17 papers submitted to the workshop, 10 papers were accepted for inclusion, an acceptance rate of 59%.
Each paper was reviewed by at least three members of the programme committee. Paper presentations are limited to 20
minutes, with 10 minutes for questions. The workshop program also includes an invited talk by Javier Vázquez-Salceda
(Universitat Politécnica de Catalunya), and a round table at the end of the day.

As can be seen by the breadth and scope of the submitted papers, behaviour regulation is a vibrant area of research.
We hope that this will be the first of many successful symposia on the topic.

Of course, none of this would have been possible without the efforts of the BRMAS Programme Committee members
in reviewing submitted papers, the authors in having submitted their work, and the participants for attending the sympo-
sium. Most importantly, perhaps, the organisers of the AISB convention as a whole must be recognised for dealing with
all the other organisational aspects of the symposium and allowing us to focus on the technical issues.

Nir Oren and Michael Luck
BRMAS Organizers, King’s College London, U.K.

Programme Chairs:
Nir Oren & Michael Luck (King’s College London, UK)

Programme Committee:
Alexander Artikis (National Centre for Scientific Research, Greece)
Nathan Griffiths (University of Warwick)
Martin Kollingbaum (Carnegie Mellon University)
Alessio Lomuscio (Imperial College London)
Michael Luck (King’s College London)
Simon Miles (King’s College London)
Timothy J. Norman (University of Aberdeen)
Nir Oren (King’s College London)
Sarvapali D. Ramchurn (University of Southampton)
Monika Solanki (Imperial College London)
Luke Teacy (University of Southampton)
Wamberto Vasconcelos (University of Aberdeen)
Javier Vazquez (Universitat Politecnica de Catalunya)

iii

Modelling MAS with Finite Analytic Stochastic Processes
Luke Dickens, Krysia Broda and Alessandra Russo1

Abstract. The Multi-Agent paradigm is becoming increasingly pop-
ular as a way of capturing complex control processes with stochastic
properties. Many existing modelling tools are not flexible enough
for these purposes, possibly because many of the modelling frame-
works available inherit their structure from single agent frameworks.
This paper proposes a new family of modelling frameworks called
FASP, which is based on state encapsulation and powerful enough
to capture multi-agent domains. It identifies how the FASP is more
flexible, and describes systems more naturally than other approaches,
demonstrating this with a number of robot football (soccer) formula-
tions. This is important because more natural descriptions give more
control when designing the tasks, against which a group of agents’
collective behaviour is evaluated and regulated.

1 Introduction

Modelling stochastic processes is a time consuming and complicated
task that involves many issues of concern. Among these, some that
may appear high on most modellers’ list are highlighted below. What
type of language to use for building the model is often among the first
decisions to make. Models are often finite state but they represent
real-life continuous domains, so approximations are needed. A com-
mon problem is deciding what approximations to make: it is often
difficult to determine how drastically a model will suffer in terms of
results from making choice A rather than choice B; moreover if the
language is restrictive or arcane it can hamper further. Furthermore,
the modeller may wish to relate small problems to more complex
tasks, especially if they want to partially solve or learn solutions on
the simpler systems, and then import them to larger and more com-
plicated ones2. A related issue is one of tuning — a system may have
some parameters which are hard to anticipate; instead experimenta-
tion and incremental changes might be needed, so a language which
supports natural representations with tunable features is desirable.
Additionally, it is preferable to have as many analytic and learning
tools available as is realistically possible. This means that the mod-
elling framework should either support these directly or allow models
to be transformed into frameworks which support them. Finally, sin-
gle agent control paradigms may not be sufficient, nor may single real
valued measures for evaluation; the modern experimenter may want
more flexibility; potentially using multiple non-cooperative, isolated,
agents each with a number of orthogonal constraints.

This paper highlights some of the issues above, and aims to ad-
dress them by proposing a family of modelling frameworks known as
Finite Analytic Stochastic Processes (FASP). We will demonstrate:
how the multi-agent scenarios alluded to above can be described

1 Imperial College London, South Kensington Campus, UK, email:
luke.dickens@imperial.ac.uk

2 This step-wise training is sometimes called shaping, and is an active area of
research, see [7, 14, 22]

within this family; the naturally descriptive nature of the representa-
tions thus produced; and which real world applications might benefit.
We highlight some of the features of this family by examining an of-
ten visited problem domain in the literature, that of robot soccer3. To
do this, we introduce a relatively simple problem domain first devel-
oped by Littman [16]. We will show how this can be rewritten in the
FASP framework in a number of ways, with each one giving more
flexibility to re-tune in order to examine certain implicit choices of
Littman. Then we will examine some other more recent robot soccer
models from the related literature, which extend and add more in-
terest to Littman’s original formulation. We will show that these can
also be represented by the FASP family, and will show how our more
flexible framework can be exploited here. Ultimately, we generate a
tunable turn-based non-cooperative solution, which can be scaled up
to finer granularity of pitch size and a greater number of players with
simultaneous team and independent objectives.

We finish with a discussion of the added value provided by the
FASP languages, who might benefit from them, and some of the new
challenges this presents to the reinforcement learning community
(amongst others). The guiding principle here is that richer domains
and evaluation – provided by better modelling tools, allows us to reg-
ulate agent and group behaviour in more subtle ways. It is expected
that advanced learning techniques will be required to develop strate-
gies concordant with these more sophisticated demands. This paper
is a stepping stone on that longer journey.

2 Preliminaries
This section introduces the concept of Stochastic Map and Function,
and uses them to construct a modelling framework for stochastic
processes. Initially, we formalise a way of probabilistically mapping
from one finite set to another.

Definition 1 (Stochastic Map) A stochastic map m, from finite in-
dependent set X to finite dependent set Y , maps all elements in X
probabilistically to elements in Y , i.e. m : X Ñ PDpY q, where
PDpY q is the set of all probability distributions over Y . The set
of all such maps is ΣpX Ñ Y q; notationally the undecided prob-
abilistic outcome of m given x is mpxq and the following shorthand
is defined Pr pmpxq � yq � mpy|xq. Two such maps, m1,m2 P
ΣpX Ñ Y q, identical for each such conditional probability, i.e.
p@x, yq pm1py|xq� m2py|xqq, are said to be equal, i.e. m1� m2.

The stochastic map is a generalisation of the functional map, see
[8]. Another method for generating outcomes probabilistically is the
stochastic function, and relies on the concept of probability density
function (PDF). For readers unfamiliar with the PDF, a good defini-
tion can be found in [19].

3 Or as we like to call it outside the US and Australia, robot football

1

Definition 2 (Stochastic Function) A stochastic function f from fi-
nite independent set X to the set of real numbers R, maps all el-
ements in X probabilistically to the real numbers, i.e. f : X Ñ
PDFpRq. The set of all such functions is ΦpX Ñ Rq; notationally
fpxq � Fx, where Fxpyq is the PDFpRqq associated with x and
belonging to f ; fpxq is also used to represent the undecided prob-
abilistic outcome of Fx — it should be clear from the context which
meaning is intended; the probability that this outcome lies between
two bounds α1, α2 P R, α1 α2, is denoted by rfpxqsα2

α1
. Two

functions, f, g P ΦpXÑRq, identical for every PDF mapping, i.e.
p@x, α1, α2qprfpxqs

α2
α1
�rgpxqsα2

α1
q, are said to be equal, i.e. f �g;

if the two functions are inversely equal for each PDF mapping, i.e.
p@x, α1, α2qprfpxqs

α2
α1

� rgpxqs�α1
�α2

q, then the stochastic functions
are said to be inversely equal, i.e. f��g.

Armed with these two stochastic generators, we can formalise the
Finite Analytic Stochastic Process (FASP), an agent oriented mod-
elling framework.

Definition 3 (FASP) A FASP is defined by the tuple
pS,A,O, t, ω, F, i,Πq, where the parameters are as follows;
S is the finite state space; A is the finite action space; O is
the finite observation space; t P ΣpS � A Ñ Sq is the tran-
sition function that defines the actions’ effects on the system;
ω P ΣpSÑOq is the observation function that generates observa-
tions; F � tf1, f2, . . . , fNu is the set of measure functions, where
for each i, f i P ΦpSÑRq generates a real valued measure signal,
f in, at each time-step, n; i P ΣpHÑSq is the initialisation function
that defines the initial system state; and Π is the set of all control
policies available.

Broadly similar to MDP style constructions, it can be used to build
models representing agent interactions with some environmental sys-
tem, in discrete time-steps. The FASP allows an observation func-
tion, which probabilistically generates an observation in each state,
and multiple measure signals — analogous to the MDP’s reward sig-
nal, which generate a measure signal at each state. One important
feature of the FASP is that it generates observations and measures
from state information alone. There is no in-built interpretation of
the measure functions, their meaning and any preferred constraints
on their output are left to be imposed by the modeller.

Care needs to be taken when interpreting the measure signals, and
setting the desired output. These can be considered separate reward
functions for separate agents - see section Section 3, or conflicting
constraints on the same agent. A FASP does not have a natively im-
plied solution (or even set of solutions): there can be multiple poli-
cies that satisfy an experimenters constraints; or there may be none
— this is a by-product of the FASP’s flexibility.

Fortunately, small problems (those that are analytically soluble)
can be solved in two steps, first by finding the policy dependent state
occupancy probabilities, and then solving the expected output from
the measure functions. This means that measure function interpreta-
tion can be imposed late and/or different possibilities can be explored
without having to resolve the state probabilities again, [8].

If we confine ourselves to a purely reactive policy space, i.e. where
action choices are based solely on the most recent observation, hence
Π � ΣpOÑAq, and a policy, π P Π is fixed, then the dynamics of
this system resolves into a set of state to state transition probabilities,
called the Full State Transition Function.

Definition 4 (FASP Full State Transition Function) The FASP
M � pS,A,O, t, ω, F, i,Πq, with Π � ΣpO Ñ Aq,has full state

transition (FST) function τM : Π Ñ ΣpS Ñ Sq, where for π P Π,
τM pπq � τπM (written τπ when M is clear), and, @s, s1 P S,

τπM ps
1|sq �

¸
oPO

¸
aPA

ωpo|sqπpa|oqtps1|s, aq

It is the FST function that concisely defines the policy depen-
dent stochastic dynamics of the system, each fixed policy identify-
ing a Markov Chain, and together giving a policy labelled family
of Markov Chains. A more detailed examination of FASPs (includ-
ing the Multi-Agent derivatives appearing later in this paper) can be
found in [8].

3 Multi-Agent Settings
This section shows how the FASP framework can be naturally ex-
tended to multi-agent settings. We distinguish two domains; models
with simultaneous joint observations and subsequent actions by syn-
chronised agents, and asynchronous agents forced to take turns, ob-
serving and acting on the environment. To model the first situation,
we define the action space as being a tuple of action spaces — each
part specific to one agent, similarly the observation space is a tuple of
agent observation spaces. At every time-step, the system generates a
joint observation, delivers the relevant parts to each agent, then com-
bines their subsequent action choices into a joint action which then
acts on the system. Any process described as a FASP constrained in
such a way is referred to as a Synchronous Multi-Agent (SMA)FASP.

Definition 5 (Synchronous Multi-Agent FASP) A Synchronous
multi-agent FASP (SMAFASP), is a FASP, with the set of enumerated
agents, G, and the added constraints that; the action space A, is
a Cartesian product of action subspaces, Ag , for each g P G, i.e.
A �

�
gPG

Ag; the observation space O, is a Cartesian product of
observation subspaces, Og , for each g P G, i.e. O �

�
gPG

Og;
and the policy space, Π, can be rewritten as a Cartesian product of
sub-policy spaces, Πg , one for each agent g, i.e. Π �

�
gPG

Πg ,
where Πg generates agent specific actions from Ag , using previous
such actions from Ag and observations from Og .

To see how a full policy space might be partitioned into agent spe-
cific sub-policy spaces, consider a FASP with purely reactive poli-
cies; any constrained policy π P Π p� ΣpOÑAqq, can be rewrit-
ten as a vector of sub-policies π � pπ1, π2, . . . , π|G|q, where for
each g P G, Πg � ΣpOg Ñ Agq. Given some vector observa-
tion oi P O, ~oi � po1i , o

2
i , . . . , o

|G|
i q, and vector action ~aj P A,

aj � pa1
j , a

2
j , . . . , a

|G|
j q, the following is true,

πp~aj |~oiq �
¹
gPG

πgpagj |o
g
i q

In all other respects ~oi and ~aj behave as an observation and an
action in a FASP. The FST function depends on the joint policy, oth-
erwise it is exactly as for the FASP. Note that the above example is
simply for illustrative purposes, definition 5 does not restrict itself to
purely reactive policies. Many POMDP style multi-agent examples
in the literature could be formulated as Synchronous Multi-Agent
FASPs (and hence as FASPs), such as those found in [6, 12, 13, 20],
although the formulation is more flexible, especially compared to
frameworks that only allow a single reward shared amongst agents,
as used in [20].

2

In real world scenarios with multiple rational decision makers, the
likelihood that each decision maker chooses actions in step with ev-
ery other, or even as often as every other, is small. Therefore it is nat-
ural to consider an extension to the FASP framework to allow each
agent to act independently, yielding an Asynchronous Multi-Agent
Finite Stochastic Process (AMAFASP). Here agents’ actions affect
the system as in the FASP, but any pair of action choices by two dif-
ferent agents are strictly non-simultaneous, each action is either be-
fore or after every other. This process description relies on the FASPs
state encapsulated nature, i.e. all state information is accessible to all
agents, via the state description.

Definition 6 (AMAFASP) An AMAFASP is the tuple
pS,G,A,O, t, ω, F, i, u,Πq, where the parameters are as fol-
lows; S is the state space; tGug1, g2, . . . , g|G| is the set of agents;
A �

�
gPG

Ag is the action set, a disjoint union of agent specific
action spaces; O �

�
gPG

Og is the observation set, a disjoint
union of agent specific observation spaces; t P ΣpS �A Ñ Sq
is the transition function and is the union function t �

�
gPG

tg ,
where for each agent g, the agent specific transition function
tg P ΣppS�AgqÑSq defines the effect of each agent’s actions on
the system state; ω P ΣpSÑOq is the observation function and is
the union function ω �

�
gPG

ωg , where ωg P ΣpSÑOgq is used
to generate an observation for agent g; tF uf1, f2, . . . , fN is the
set of measure functions; i P ΣpHÑSq is the initialisation function
as in the FASP; u P ΣpS Ñ Gq is the turn taking function; and
Π �

�
gPG

Πg is the combined policy space as in the SMAFASP.

A formal definition of the union map and union function used here,
can be found in [8], for simplicity these objects can be thought of as
a collection of independent stochastic maps or functions.

As with the FASP and SMAFASP, if we consider only reactive
policies, i.e. Πg � ΣpOg ÑAgq for each g, it is possible to deter-
mine the probability of any state-to-state transition as a function of
the joint policy, and hence write full state transition function.

Definition 7 (AMAFASP Full State Transition) An AMAFASP,
M , with Πg � ΣpOgÑAgq for each g, has associated with it a full
state transition function τM , given by,

τπM ps
1|sq �

¸
gPG

¸
ogPOg

¸
agPAg

upg|sqωgpog|sqπgpag|ogq tgps1|s, agq

To our knowledge, there are no similar frameworks which model
asynchronous agent actions within stochastic state dependent envi-
ronments. This may be because without state encapsulation it would
not be at all as straightforward. A discussion of the potential ben-
efits of turn-taking appears in Appendix A. From this point on, the
umbrella term FASP covers FASPs, SMAFASPs and AMAFASPs.

The multi-agent FASPs defined above allow for the full range of
cooperation or competition between agents, dependent on our inter-
pretation of the measure signals. This includes general-sum games,
as well as allowing hard and soft requirements to be combined sep-
arately for each agent, or applied to groups. Our paper focuses on
problems where each agent, g, is associated with a single measure
signal, fgn at each time-step n. Without further loss of generality,
these measure signals are treated as rewards, rgn � fgn , and each
agent g is assumed to prefer higher values for rgn over lower ones4.

4 It would be simple to consider cost signals rather than rewards by inverting
the signs

For readability we present the general-sum case first, and incremen-
tally simplify.

The general-sum scenario considers agents that are following un-
related agendas, and hence rewards are independently generated.

Definition 8 (General-Sum Scenario) A FASP is general-sum, if
for each agent g there is a measure function fg P ΦpSÑ Rq, and
at each time-step n with the system in state sn, g’s reward signal
rgn � fgn , where each fgn is an outcome of fgpsnq, for all g. An
agent’s measure function is sometimes also called its reward func-
tion, in this scenario.

Another popular scenario, especially when modelling competitive
games, is the zero-sum case, where the net reward across all agents
at each time-step is zero. Here, we generate a reward for all agents
and then subtract the average.

Definition 9 (Zero-Sum Scenario) A FASP is zero-sum, if for each
agent g there is a measure function fg P ΦpS Ñ Rq, and at each
time-step n with the system in state sn, g’s reward signal rgn � fgn �
f̄n, where each fgn is an outcome of fgpsnq and f̄n �

°
h
fhn
L
|G|.

With deterministic rewards, the zero-sum case can be achieved
with one less measure than there are agents, the final agent’s mea-
sure is determined by the constraint that rewards sum to 1 (see [4]).
For probabilistic measures with more than two agents, there are sub-
tle effects on the distribution of rewards, so to avoid this we generate
rewards independently.

If agents are grouped together, and within these groups always
rewarded identically, then the groups are referred to as teams, and
the scenario is called a team scenario.

Definition 10 (Team Scenario) A FASP is in a team scenario, if the
set of agents G is partitioned into some set of sets tGju, so G ��
j
Gj , and for each j, there is a team measure function f j . At some

time-step n in state sn, each j’s team reward rjn � f jn, where f jn is
an outcome of f jpsnq, and for all g P Gj , rgn � rjn.

The team scenario above is general-sum, but can be adapted
to a zero-sum team scenario in the obvious way. Other scenario’s
are possible, but we restrict ourselves to these. It might be worth
noting that the team scenario with one team (modelling fully co-
operative agents) and the two-team zero-sum scenario, are those
most often examined in the associated multi-agent literature, most
likely because they can be achieved with a single measure func-
tion and are thus relatively similar to the single agent POMDP, see
[1, 9, 10, 11, 15, 16, 18, 23, 24, 25].

4 Examples
This section introduces the soccer example originally proposed in
[16], and revisited in [2, 3, 5, 20, 24]. We illustrate both the trans-
parency of the modelling mechanisms and ultimately the descriptive
power this gives us in the context of problems which attempt to recre-
ate some properties of a real system. The example is first formulated
below as it appears in Littman’s paper [16], and then recreated in two
different ways.

Formulation 1 (Littman’s adversarial MDP soccer) An early
model of MDP style multi-agent learning and referred to as soccer,
the game is played on a 4 � 5 board of squares, with two agents
(one of whom is holding the ball) and is zero-sum, see Fig. 1. Each

3

Figure 1. The MDP adversarial soccer example from [16].

agent is located at some grid reference, and chooses to move in one
of the four cardinal points of the compass (N, S, E and W) or the
H(old) action at every time-step. Two agents cannot occupy the same
square. The state space, SL1, is of size 20� 19 � 380, and the joint
action space, AL1 is a cartesian product of the two agents action
spaces, AAL1�A

B
L1, and is of size 5 � 5 � 25. A game starts with

agents in a random position in their own halves. The outcome for
some joint action is generated by determining the outcome of each
agent’s action separately, in a random order, and is deterministic
otherwise. An agent moves when unobstructed and does not when
obstructed. If the agent with the ball tries to move into a square
occupied by the other agent, then the ball changes hands. If the
agent with the ball moves into the goal, then the game is restarted
and the scoring agent gains a reward of �1 (the opposing agent
getting �1).

Therefore, other than the random turn ordering the game mechan-
ics are deterministic.

(a) (b)

Figure 2. If agent A chooses to go East and agent B chooses to go South
when diagonally adjacent as shown, the outcome will be non-deterministic
depending on which agent’s move is calculated first. In the original Littman

version this was achieved by resolving agent specific actions in a random
order, fig. (a). In the SMAFASP version this is translated into a flat transition

function with probabilities on arcs (square brackets), fig. (b).

The Littman soccer game can be recreated as a SMAFASP, with
very little work. We add a couple more states for the reward function,
add a trivial observation function, and flatten the turn-taking into the
transition function.

Formulation 2 (The SMAFASP soccer formulation) The
SMAFASP formulation of the soccer game, is formed as fol-
lows: the state space SL2 � SL1 � s�A � s�B , where s�g is the state
immediately after g scores a goal; the action space AL2 � AL1;
the observation space OL2 � SL2; the observation function is the
identity mapping; and the measure/reward function for agent A,
fA P ΦpSL2ÑRq is as follows,

fAps�Aq � 1, fAps�Bq � �1, and fApsq � 0 for all other s P S.

Agent B’s reward function is simply the inverse, i.e. fBpsq �
�fApsq, for all s.

To define the transition function we need first to imagine that
Littman’s set of transitions were written as agent specific transition
functions, tgL1 P ΣpSL1�AL1 Ñ SL1q for each agent g — al-
though this is not explicitly possible within the framework he uses,
his description suggests he did indeed do this. The new transition
function, tL2 P ΣpSL2�AL2ÑSL2q, would then be defined, for all
sn, sn�1 P SL1, aAn P AAL2, aBn P ABL2, in the following way,

tL2psn�1|sn, pa
A
n , a

B
n qq

�
1

2
.
¸
sPSL1

�
tAL1ps|sn, a

A
n q.t

B
L1psn�1|s, a

B
n q

�tBL1ps|sn, a
B
n q.t

A
L1psn�1|s, a

A
n q

.

The transition probabilities involving the two new states, s�A and s�B ,
would be handled in the expected way.

The turn-taking is absorbed so that the random order of actions
within a turn is implicit within the probabilities of the transition func-
tion, see Fig. 2(b), rather than as before being a product of the implicit
ordering of agent actions, as in Fig. 2(a).

It is possible to reconstruct Littman’s game in a more flexible way.
To see how, it is instructive to first examine what Littman’s motives
may have been in constructing this problem, which may require some
supposition on our part. Littman’s example is of particular interest to
the multi-agent community, in that there is no independently opti-
mal policy for either agent; instead each policy’s value is dependent
on the opponent’s policy — therefore each agent is seeking a pol-
icy referred to as the best response to the other agent’s policy. Each
agent is further limited by Littman’s random order mechanism, see
Fig. 2(a), which means that while one agent is each turn choosing
an action based on current state information, in effect the second
agent to act is basing its action choice on state information that is
one time-step off current; and because this ordering is random, nei-
ther agent can really rely on the current state information. Littman
doesn’t have much control over this turn-taking, and as can be seen
from the SMAFASP formulation, the properties of this turn-taking
choice can be incorporated into the transition function probabilities
(see Fig. 2 (b)). Different properties would lead to different probabil-
ities, and would constitute a slightly different system with possibly
different solutions.

However, consider for example, that an agent is close to their own
goal defending an attack. Its behaviour depends to some degree on
where it expects to see its attacker next: the defender may wish to
wait at one of these positions to ambush the other agent. The range
of these positions is dependent on how many turns the attacker might
take between these observations, which is in turn dependent on the
turn-taking built into the system. For ease of reading, we introduce
an intermediate AMAFASP formulation. The individual agent action
spaces are as in the SMAFASP, as is the observation space, but the
new state information is enriched with the positional states of the
previous time-step, which in turn can be used to generate the obser-
vations for agents.

Formulation 3 (The first AMAFASP soccer formulation) This
AMAFASP formulation of the soccer game, ML3, is formed as
follows: the new state space SL3 � SL2 � SL2, so a new state
at some time-step n, is given by the tuple psn, sn�1q, where
sn�1, sn P SL2 and records the current and most recent positional
states; there are two action space, one for each agent, AAL3 � AAL2

and AAL3 � AAL2; and two identical agent specific observation

4

spaces, OAL3 � OBL3 � OL2; the new agent specific transition
functions, tgL3 P ΣpSL3 � AgL3 Ñ SL3q, are defined, for all
sn�1, sn, s

1
n, sn�1 P SL2, agn P A

g
L3, in the following way:

tgL3ppsn�1, s
1
nq|psn, sn�1q, a

g
nq �

"
tgL1psn�1|sn, a

g
nq iff s1n � sn,

0 otherwise.

where tgL1 represents agent g’s deterministic action effects in
Littman’s example, as in Formulation 2. The goal states, s�A and s�B ,
are dealt with as expected.

Recalling that OL3 � SL2, the observation function, ωgL3 P
ΣpSL3 ÑOL3q, is generated, for all psn�1, snq P SL3, on P OgL3,
and g P tA,Bu, in the following way,

ωgL3pon|psn, sn�1qq �

"
1 iff sn�1 � on,
0 otherwise.

The reward function is straightforward and left to the reader.
Finally, we construct the turn-taking function uL3 P ΣpSL3 Ñ

tA,Buq, which simply generates either agent in an unbiased way
at each time-step. The turn taking function is defined, for all
psn, sn�1q P SL3, as

uL3pA|psn, sn�1qq � uL3pB|psn, sn�1qq � 1{ 2.

This does not fully replicate the Littman example, but satisfies the
formulation in spirit in that agents are acting on potentially stale po-
sitional information, as well as dealing with an unpredictable oppo-
nent. In one sense, it better models hardware robots playing football,
since all agents observe slightly out of date positional information,
rather than a mix of some and not others. Both this and the Littman
example do, however, share the distinction between turn ordering and
game dynamics typified by Fig. 2 (a), what is more, this is now ex-
plicitly modelled by the turn-taking function.

To fully recreate the mix of stale and fresh observations seen in
Littman’s example along with the constrained turn-taking, we need
for the state to include turn relevant information. This can be done
with a tri-bit of information included with the other state information,
to differentiate between; the start of a Littman time-step, when either
agent could act next; when agent A has just acted in this time-step
– and it must be B next; and vice versa when A must act next; we
shall label these situations with l0, lB and lA respectively. This has
the knock on effect that in l0 labelled states the observation function
is as Formulation 2; in lA and lB labelled states the stale observation
is used – as in Formulation 3. Otherwise Formulation 4 is very much
like formulation Formulation 3.

Formulation 4 (The second AMAFASP soccer formulation) This
AMAFASP formulation of the soccer game, ML4, is formed as
follows: there is a set of turn labels, L � tl0, lA, lBu; the state
space is a three way Cartesian product, SL4 � SL2 �SL2 �L,
where the parts can be thought of as current-positional-state,
previous-positional-state and turn-label respectively; the action
spaces and observation spaces are as before, i.e. AgL4 � AgL3,
OgL4 � OgL3, for each agent g; the transition and reward functions
are straightforward and are omitted for brevity; the observation
and turn taking functions are defined, for all psn, sn�1, lnq P SL4,
on P O

g
L4 and all agents g, in the following way,

ωgL4pon|psn, sn�1, lnqq �

#
1 if sn � on and ln � l0,
1 if sn�1 � on and ln � ug,
0 otherwise.

and

uL4pgn|psn, sn�1, lnqq �

1
2

if gn � g and ln � l0,
1 if gn � g and ln � ug,
0 otherwise

The above formulation recreates Littman’s example precisely, and
instead of the opaque turn-taking mechanism hidden in the textual
description of the problem, it is transparently and explicitly modelled
as part of the turn-taking function.

So the Littman example can be recreated as a SMAFASP or
AMAFASP, but more interestingly both AMAFASP formulations,
3 and 4, can be tuned or extended to yield new, equally valid, for-
mulations. What is more, the intuitive construction means that these
choices can be interpreted more easily.

Consider Formulation 3; the turn-taking function u can be defined
to give different turn-taking probabilities at different states. For in-
stance, if an agent is next to its own goal, we could increase its prob-
ability of acting (over the other agent being chosen) to reflect a de-
fender behaving more fiercely when a loss is anticipated. Alterna-
tively, if an agent’s position has not changed since the last round, but
the other’s has then the first agent could be more likely to act (pos-
sible as two steps of positional data are stored); giving an advantage
to the H(old) action, but otherwise encouraging a loose alternating
agent mechanism.

While Formulation 4 recreates the Littman example, it again can
be adjusted to allow different choices to the turn taking mechanism;
in particular it is now possible to enforce strictly alternating agents.
This would be done by flipping from state label lA to lB or vice versa,
at each step transition, and otherwise keeping things very much as
before. It is important to note that many specific models built in this
way, can be recreated by implicit encoding of probabilities within
existing frameworks, but it is difficult to see how the experimenter
would interpret the group of models as being members of a family of
related systems.

4.1 Flexible Behaviour Regulation

If we increase the number of players in our game, we can consider
increasing the number of measure functions for a finer degree of
control over desired behaviour. With just 2 agents competing in the
Littman problem, it is difficult to see how to interpret any extra sig-
nals, and adding agents will increase the state space and hence the
policy size radically. So, before we address this aspect of the FASP
formalisms, it is useful to examine a more recent derivative soccer
game, namely Peshkin et al.’s partially observable identical payoff
stochastic game (POIPSG) version [20], which is more amenable to
scaling up.

Figure 3. The POIPSG cooperative soccer example from [20].

5

Peshkin et al.’s example is illustrated in Fig. 3. There are two team-
mates, V1 and V2, and an opponent O, each agent has partial observ-
ability and can only see if the 4 horizontally and vertically adjacent
squares are occupied, or not. Also, players V1 and V2 have an extra
pass action when in possession of the ball. Otherwise the game is
very much like Littman’s with joint actions being resolved for indi-
vidual agents in some random order at each time-step. Contrary to
expectations, the opponent is not modelled as a learning agent and
does not receive a reward; instead the two teammates share a reward
and learn to optimise team behaviour versus a static opponent policy;
for more details see [20].

As with its progenitor, the Peshkin example could be simply re-
worked as a SMAFASP in much the same way as in Formulation 2.
Recreating it as an AMAFASP is also reasonably straightforward; as
before, the trick of including the previous step’s positional state in
an AMAFASP state representation, allows us to generate stale ob-
servations – which are now also partial. As this is relatively similar
to the Littman adaptions, the details are omitted. The focus here in-
stead, is to show that, in the context of Peshkin’s example, a zero-
or general-sum adaption with more agents, could have some utility.
Firstly, agent O could receive the opposite reward as the shared re-
ward of V1 and V2, this could be done without introducing another
measure function, merely reinterpreting Peshkin’s reward function;
now, the opponent could learn to optimise against the cooperative
team. More interestingly, the players V1 and V2 could be encour-
aged to learn different roles by rewarding V1 (say) more when the
team scores a goal and penalising V2 more when the team concedes
one, all this requires is a measure function for each agent and a zero-
sum correction. Further, we can add a second opponent (giving say
O1 and O2), either rewarding them equally or encouraging different
roles as with V1 and V2. In this way we could explore the value of
different reward structures by competing the teams. If more agents
were added, even up to 11 players a side, and a much larger grid, the
AMAFASP framework supports a much richer landscape of rewards
and penalties, which can encourage individual roles within the team,
while still differentiating between good and bad team collaborations.

5 Discussion

In this paper, we have examined a new family of frameworks —
the FASP, geared towards modelling stochastic processes, for one
or many agents. We focus, on the multi-agent aspects of this family,
and show how a variety of different game scenario’s can be explored
within this context. Further, we have highlighted the difference be-
tween synchronous and asynchronous actions within the multi-agent
paradigm, and shown how these choices are explicit within the FASP
frameworks. As a package, this delivers what we consider to be a
much broader tool-set for regulating behaviour within cooperative,
non-cooperative and competitive problems. This is in sharp contrast
to the more traditional pre-programmed expert systems approaches,
that attempt to prescribe agent intentions and interactions.

The overarching motivation for our approach is to provide the
modeller with transparent mechanisms, roughly this means that all
the pertinent mechanisms are defined explicitly within the model.
There are two such mechanisms that are visited repeatedly in this
paper, these are multiple measures and turn-taking, but they are not
the only such mechanisms. In fact, the FASP borrows from the MDP,
and POMDP, frameworks a few (arguably) transparent mechanisms.
The transition function is a good example, and the observation and
reward functions as they are defined in the POMDP have a degree of
transparency; we argue that strict state encapsulation improves upon

this though. The general agent-environment relationship is the same
as the POMDP, meaning existing analytic and learning tools can still
be applied where appropriate5. Moreover, techniques for shaping and
incremental learning developed for related single agent frameworks
[14, 22] and multi-agent frameworks [7] can also be applied without
radical changes.

Other ideas for good transparent mechanisms exist in the litera-
ture, and the FASP family would benefit by incorporating the best
of them. For instance, modelling extraneous actions/events can re-
duce the required size of a model, by allowing us to approximate
portions of an overall system, without trying to explicitly recreate
the entire system. Imagine a FASP with a external event function
X P ΣpSÑSq, which specifies how an open system might change
from time-step to time-step, a similar extraneous event function can
be found in [21]. This transition might occur between the observation
and action outcomes, incorporating staleness into the observations
as with our examples in Section 4. More interestingly, this func-
tion could be part of an AMAFASP, and be treated analogously to
the action of a null agent; this would allow the turn-taking function
to manage how rarely/often an extraneous events occurred. Another
candidate for transparent mechanism, can be found in [4], where they
simulate a broken actuator by separating intended action from ac-
tual action with what amounts to a stochastic map between the two.
We would encourage modellers to incorporate such mechanisms as
needed.

There are other clear directions for future work, the tools outlined
in this paper enable a variety of multi-agent problems, with choice of
measures for evaluation, but it leaves out how these measures might
be used to solve or learn desirable solutions. The terms general- and
zero-sum are not used accidentally, the similarities with traditional
game theory are obvious, but the differences are more subtle. The
extensive form game in the game theoretic sense, as described in
[17], enforces that a game has a beginning and an end, only rewards
at the end of a game run, players (agents) do not forget any steps in
their game; and seeks to address the behaviour of intelligent play-
ers who have full access to the game’s properties. While this can
be defended as appropriate for human players, our paradigm allows
for an ongoing game of synthetic agents with potentially highly re-
stricted memory capabilities and zero prior knowledge of the game
to be played; and rewards are calculated at every step. In fact, if we
were to combine the AMAFASP with extraneous actions, it would
constitute a generalisation of the extensive form game, as described
in [17], but we omit the proof here.

It is sufficient to say that the FASP family demands a different so-
lution approach than the extensive form game, and certainly a differ-
ent approach than the easily understood reward-maximisation/cost-
minimisation required by single-agent and cooperative MDP style
problems. Some preliminary research has been done with respect to
such systems, [4, 11, 26], we envisage this as being an active area
of research in the next few years, and hope that the FASP tool-set
facilitates that study.

REFERENCES
[1] Daniel S. Bernstein, Shlomo Zilberstein, and Neil Immerman, ‘The

complexity of decentralized control of markov decision processes’, in
Proceedings of the 16th Annual Conference on Uncertainty in Artificial

5 Tools for evaluating the expected long term reward in a POMDPs, can be
used without change within a FASP except that multiple measure signals
could be evaluated simultaneously. Maximisation procedures are still pos-
sible too, but care needs to be taken with what is maximised and where
multiple agents are maximising different measures independently [4, 26].

6

Intelligence (UAI-00), pp. 32–37, San Francisco, CA, (2000). Morgan
Kaufmann.

[2] Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, and Anna H. Reali Costa,
‘Heuristic selection of actions in multiagent reinforcement learning’, in
IJCAI, ed., Manuela M. Veloso, pp. 690–695, (2007).

[3] Michael Bowling, Rune Jensen, and Manuela Veloso, ‘A formalization
of equilibria for multiagent planning’, in Proceedings of the AAAI-2002
Workshop on Multiagent Planning, (August 2002).

[4] Michael Bowling and Manuela Veloso, ‘Existence of Multiagent Equi-
libria with Limited Agents’, Journal of Artificial Intelligence Research
22, (2004). Submitted in October.

[5] Michael H. Bowling, Rune M. Jensen, and Manuela M. Veloso, ‘Mul-
tiagent planning in the presence of multiple goals’, in Planning in In-
telligent Systems: Aspects, Motivations and Methods, John Wiley and
Sons, Inc., (2005).

[6] Michael H. Bowling and Manuela M. Veloso, ‘Simultaneous adversar-
ial multi-robot learning’, in IJCAI, eds., Georg Gottlob and Toby Walsh,
pp. 699–704. Morgan Kaufmann, (2003).

[7] Olivier Buffet, Alain Dutech, and François Charpillet, ‘Shaping multi-
agent systems with gradient reinforcement learning’, Autonomous
Agents and Multi-Agent Systems, 15(2), 197–220, (2007).

[8] Luke Dickens, Krysia Broda, and Alessandra Russo, ‘Transparent Mod-
elling of Finite Stochastic Processes for Multiple Agents’, Technical
Report 2008/2, Imperial College London, (January 2008).

[9] Alain Dutech, Olivier Buffet, and Francois Charpillet, ‘Multi-agent sys-
tems by incremental gradient reinforcement learning’, in IJCAI, pp.
833–838, (2001).

[10] Jerzy Filar and Koos Vrieze, Competitive Markov decision processes,
Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[11] P. Gmytrasiewicz and P. Doshi. A framework for sequential planning
in multi-agent settings, 2004.

[12] Amy Greenwald and Keith Hall, ‘Correlated q-learning’, in AAAI
Spring Symposium Workshop on Collaborative Learning Agents,
(2002).

[13] Junling Hu and Michael P. Wellman, ‘Multiagent reinforcement learn-
ing: theoretical framework and an algorithm’, in Proc. 15th Interna-
tional Conf. on Machine Learning, pp. 242–250. Morgan Kaufmann,
San Francisco, CA, (1998).

[14] Adam Daniel Laud, Theory and Application of Reward Shaping in
Reinforcement Learning, Ph.D. dissertation, University of Illinois at
Urbana-Champaign, 2004. Advisor: Gerald DeJong.

[15] Martin Lauer and Martin Riedmiller, ‘An algorithm for distributed re-
inforcement learning in cooperative multi-agent systems’, in Proc. 17th
International Conf. on Machine Learning, pp. 535–542. Morgan Kauf-
mann, San Francisco, CA, (2000).

[16] Michael L. Littman, ‘Markov games as a framework for multi-agent
reinforcement learning’, in Proceedings of the 11th International Con-
ference on Machine Learning (ML-94), pp. 157–163, New Brunswick,
NJ, (1994). Morgan Kaufmann.

[17] Roger B. Myerson, Game Theory: Analysis of Conflict, Harvard Uni-
versity Press, September 1997.

[18] Fans Oliehoek and Arnoud Visser, ‘A Hierarchical Model for Decen-
tralized Fighting of Large Scale Urban Fires’, in Proceedings of the
Fifth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), eds., P. Stone and G. Weiss, Hakodate, Japan, (May
2006).

[19] A. Papoulis, Probability, Random Variables, and Stochastic Processes,
McGraw Hill, 3rd edn., 1991.

[20] Leonid Peshkin, Kee-Eung Kim, Nicolas Meuleau, and Leslie P. Kael-
bling, ‘Learning to cooperate via policy search’, in Sixteenth Confer-
ence on Uncertainty in Artificial Intelligence, pp. 307–314, San Fran-
cisco, CA, (2000). Morgan Kaufmann.

[21] Bharaneedharan Rathnasabapathy and Piotr Gmytrasiewicz. Formaliz-
ing multi-agent pomdp’s in the context of network routing.

[22] Mark B. Ring, ‘Child: A first step towards continual learning’, Machine
Learning, 28, 77–104, (May 1997).

[23] Yoav Shoham, Rob Powers, and Trond Grenager, ‘If multi-agent learn-
ing is the answer, what is the question?’, Artif. Intell., 171(7), 365–377,
(2007).

[24] William T. B. Uther and Manuela M. Veloso, ‘Adversarial rein-
forcement learning.’, Technical report, Computer Science Department,
Carnegie Mellon University, (April 1997).

[25] Erfu Yang and Dongbing Gu, ‘Multiagent reinforcement learning for
multi-robot systems: A survey’, Technical report, University of Essex,

(2003).
[26] Martin Zinkevich, Amy Greenwald, and Michael Littman, ‘Cyclic

Equilibria in Markov Games’, in Advances in Neural Information Pro-
cessing Systems 18, 1641–1648, MIT Press, Cambridge, MA, (2005).

A The Benefits of Turn-Taking
Modelling with turn-taking is not only more natural in some cases, in
certain cases it allows for a more concise representation of a system.
Consider a system with 2 agents,A andB, and 9 positional states (in
a 3�3 grid), where agents cannot occupy the same location (so there
are 9 � 8 � 72 states), and movement actions are in the 4 cardinal
directions for each agent.

Let us first consider how this might be formulated without explicit
turn taking. Imagine, this is our prior-state,

s1 �

Imagine also that agent A chooses action E(ast), agent B chooses
action S(outh) — making joint action E, S¡, and that these actions
will be resolved in a random order. This results in one of three post-
action states, with the following probabilities;

Pr

�
s1 �

���� s � , a � E,S¡

� α1,

Pr

�
s1 �

���� s � , a � E, S¡

� β1,

and

Pr

�
s1 �

���� s � , a � E,S¡

� γ1,

where α1 � β1 � γ1 � 1.
Let’s assume that they are transparently modelled by agents

A and B, whose actions fail with the following probabilities;
Pr pA’s action failsq � p and Pr pB’s action failsq � q, acting in
some order, where Pr pA is firstq � r, and such that agents cannot
move into an already occupied square. We can use these values to
determine the flattened probabilities as α1 � p1�pq pr � qp1�rqq,
β1 � pq, and γ1 � p1�qq ppr � p1�rqq. α1, β1 and γ1 are not
independent, they represent only 2 independent variables, but are fed
into by p, q and r, which are independent. It may seem that α1, β1

and γ1 model the situation more concisely, since any one combina-
tion of α1, β1 and γ1 could correspond to many different choices for
p, q and r. However, this isn’t the whole story. Consider instead the
prior-state s2, where

s2 � ,

and the combined action S,E ¡. Treated naively the possible
outcomes might all be specified with separate probabilities (say α2,
β2 and γ2) as before. However, the modeller can, with transparent
mechanisms, choose to exploit underlying symmetries of the system.
If, as is quite natural, the turn ordering probabilities are independent
of position, then there need be no extra parameters specified for this
situation, the original p, q and r are already sufficient to define the
transition probabilities here too.

7

Automated Mechanism Design Using Process Algebra
Emmanuel M. Tadjouddine1

Abstract. This paper shows how process algebra can be used to au-
tomatically generate verifiable mechanisms for multi-agent systems
wherein agents need to trust the system. We make the link between
games and process models and then present an iterative algorithm
allowing us to generate mechanisms as computer programs imple-
menting given systems’ requirements, which are expressed as con-
straints and desirable properties such as incentive compatibility. This
methodology can be used to deploy for example agent mediated e-
commerce systems.

1 Introduction

As game theory is used to model and analyze multi-agent systems
composed of selfish but rational agents, there is a need to tailor game
rules according to given parameters of the underlying system. This
is known asAutomated Mechanism Design(AMD) [3, 23, 24]. For
example, in agent mediated e-commerce, software agents may be en-
gaged in financial transactions in which auction rules may be chosen
to suit the features of the participants. It is not obvious to provide
a mechanism that induces certain behaviour of the agents in such
a scenario. For example, how do we prevent agents from colluding
bearing in mind it is even difficult to detect collusion between the
agents in the system. We therefore restrict ourselves to models of ra-
tionality and behaviour given by equilibrium concepts that are well
studied in game theory mechanism design.

There are at least two ways of designing mechanisms automati-
cally. First, we can rely on well-known hand-coded mechanisms to
find new ones that satisfy the given system objectives and constraints
by solving an optimization problem [3, 15, 23, 24]. Second, we can
generate automatically verifiable mechanisms as computer programs
in a logical framework.

This preliminary work adopts the latter approach and makes the
following contributions:

• it relies on van Benthem’s work presented in [22] and makes the
connections between mechanism design and process algebra [9]
by describing game mechanisms as process models in the modal
µ-calculus [8]. This connection permits us to choose a process
algebra language, e.g., Promela [7] and to automate the generation
of verifiable game mechanisms given some desirable properties of
the system.

• it presents an iterative algorithm that generates Promela programs
representing mechanisms whose properties can be verified by the
SPIN model checker [7] and illustrates the approach using a cake
cutting protocol and a single item auction mechanism.

We stress on the importance of producing verifiable mechanisms by
AMD since in a setting where agents are self-motivated, claimed

1 Department of Computing Science, King’s College, University of Ab-
erdeen, Aberdeen AB24 3UE, Scotland, Email: etadjoud@csd.abdn.ac.uk

mechanism properties must be checked by the participants in order
to avoid cheating and to ensure trust in the system.

The remainder of this paper is organized as follows. Section 2
presents a brief introduction to mechanism design. Section 3 de-
scribes game mechanisms in a logical game calculus, provides a
method in order to decide in two mechanisms are the same, and jus-
tifies the use of Promela as a process algebra language for describing
games. Section 4 presents an iterative algorithm to generate Promela
programs representing game mechanisms from a set of requirements
i.e., the mechanism’s objectives and constraints. Section 5 discusses
the related work and Section 6 concludes.

2 Mechanism Design

Mechanism design, see for example [12, 11] aims to find a decision
procedure that determines the outcome for a game according to some
desired objective. An objective may beincentive compatibility(no
agent can benefit from lying provided all other agents are truthful)
or strategy-proofness(no agent can benefit from lying regardless of
what its opponents do). In this section, we present two classes of
mechanism we intend to study. The first concerns games withcom-
plete information(players’ utility functions are common knowledge)
and for the case of dynamic games we assumeperfect information
(each player knows the history of the game thus far), the second is
related to auction design using the class of direct revelation mecha-
nisms, see for example [11] for details.

Definition 1 A mechanism design problem forn player games of
complete and perfect information is defined by

• a finite setO of outcomes,
• an utility functionu associating each allowed outcomeo ∈ O to

a n-vector of real numbersu(o),
• a desirable property of the mechanism, e.g., total utility maximiza-

tion or incentive compatibility.

The aim is to find a function that selects outcomes for which the de-
sired property is satisfied.

An example of such a mechanism is the cake cutting protocol
wherein we need to share a cake between, say two agents. The proto-
col consists in asking one agent to cut the cake and let the other pick
up its share first. This forces the first acting agent to cut the cake in
equal pieces.

Definition 2 A direct revelation mechanism design problem forn
agents is described by

• a finite setO of outcomes,
• n types or valuation functionsvi(o ∈ O), i = 1 . . . n, private to

the agents,

8

• n quasi-linear utility functionsui(o) = vi(o) − pi whereinpi

depends on the course of play for agenti.

The objective is to find (i) a functionf , which, given a vectorv of
declared valuations, returns an outcomef(v) ∈ O and (ii) a pay-
ment functionp(v) = (p1(v), . . . , pn(v)) such that reporting its
true valuation is a dominant strategy.

An example of such a mechanism is the well-known Vickrey auction
and more generally the class of VCG mechanisms, see [11]. For the
purpose of generating game mechanisms for a given logical property,
we need a closer look at the connections between games, logic, and
computer programs.

3 Games: Actions, Outcomes, Utilities and
Equilibria

We first confined ourselves to games of complete and perfect infor-
mation. Such games can be represented inextensive formas follows.

Definition 3 The extensive form representation of a game with per-
fect and complete information is a tuple(T, P, (Ai)i∈P ,
turni∈P , movei∈P , end, (ui)i∈P) wherein

• T is a tree composed of an initial node, intermediate or decision
nodes, and final nodes with no successors and edges labelled by
players’ actions,

• P is the set of players in the game,
• (turni)i∈P is a function which marks playeri’s turn,
• (movei)i∈P represents the set of actions or outgoing transitions

for each playeri at each decision node,
• end is a mark for final nodes,
• (ui)i∈P are the utilities of the players at the final nodes of the tree

T .

Consider a simple game with two playersA andB having the set of
actions{a1, a2} and{b1, b2} respectively as described by Figure 1.
Clearly, playerB has a strategy forcing the outcome associated with

Figure 1. A two player game

sA

sB sB

s
u
1 s

u
2 s

u
3 s

u
4

φ φ

�
��	

@
@@R

�
���

A
AAU

�
���

A
AAU

a1 a2

b1 b2 b1 b2

the utility vectorsu1 or u3. This can be viewed as a partial transition
relation for players’ turns by using conditionals of the form:

if A plays this, thenB should play that.

Thus, the two players interact using strategies involving basic moves
and tests for conditions. More generally, a strategy is a plan of ac-
tions; it is viewed as a computer program describing alternative se-
quence of actions that are taken at decision nodes for each player. A
sequence of actions can be chosen so as to attain a certain outcome of
the game. Each outcome is associated with a value (utility) and each
player strives for maximal utility by means of competition or cooper-
ation. In the case of non-cooperative games, the foundational result

due to Nash [10] proves the existence of a mixed strategyNash equi-
librium, which describes a strategy profile by which no player has an
incentive to deviate from it provided all its opponents stick to it. In
general, the players have preferences, beliefs, or expectations about
the game play and different equilibrium concepts can be found in
the literature, see for example [2]. In short, a game is viewed as be-
ing composed of basic moves, relational operations such as choice,
composition, and conditionals, and utilities involving real number
arithmetic.

3.1 A Logical Game Calculus

The above description of a game can be carried out using modal
µ−calculus, a modal logic with fixed points introduced in [8]. Start-
ing with the basic moves, theturn function and theendmark, we can
add modal operators such as composition, choice, iteration, or test.
Observe that the turn function describes the way players take turns in
the game and can be concurrent allowing us for example to describe
simultaneous moves in the game. For a given actiona and a property
φ, the modal operator[a]φ means the execution ofa will necessarily
makeφ hold and< a > φ means the execution ofa will possibly
makeφ hold. Obviously, we can have a set of actions in lieu of a
single one in the above modal formulae.

Consider for example the game of Figure 1 whereinφ is a logical
formula involving the players’ utilities at the designated end points.
Whatever the action of playerA, playerB has a clear strategy to
make propertyφ holds. In modal logic, this is expressed by the for-
mula, wherein∪ represents the choice operator.

[a1 ∪ a2] < b1 ∪ b2 > φ

We can also define awinning strategyfor a playeri using a recursive
predicatewini. At the terminal nodeswinA indicates playerA wins
the game. At any other node, it indicatesA has an action which will
eventually make him the winner. This gives a recursive definition of
the winning strategy. With recursion comes the question of termina-
tion. However, the modalµ-calculus provides us with a fixed point
iteration as follows. For a given propositional variablep and a for-
mulaΦ, the expressionµp.Φ represents the least fixed point of the
function that maps the set of states wherep is true to the set of states
whereΦ is true. The existence of this least fixed point is ensured by
the Knaster-Tarski fixed point theorem [21] providedp occurs posi-
tively in Φ.

The winning strategy can then be expressed as follows:

µwinA.(end∧ winA) ∨ (turnA∧ < a1 ∪ a2 > winA)
∨ (turnB ∧ [b1 ∪ b2]winA)

Notice that in any finite game, there is a player that has a winning
strategy. If for example the strategy profile(a1, b2) is a Nash equi-
librium, then we have the following formula:

end∧ (turnB ∧ [b2](u
2

A ≥ u4

A)) ∧ (turnA ∧ [a1](u
2

B ≥ u1

B)),

meaning that playerA [B] gets a higher utility by playinga1 [b2]
providedB [A] sticks tob2 [a1]. This logic permits us to reason on
the interactions between players, their strategies as well as the game
outcomes. Following [1], we can add atomic propositions at all end
nodes similar toφ encoding preferences or expectations about the
course of the game. This is important in mechanism design wherein
we are given a desirable property about the course of the game or
an objective function to optimize (e.g., social welfare maximisation)
and strive to design the game rules so as to achieve those outcomes.
At this level of description, a natural question is when are two mech-
anisms the same?

9

3.2 Game Mechanism Equivalence

In automated mechanism design, we may be interested in finding out
if a newly created game mechanism is the same as a popular one. This
is possible if we can compare two given game mechanisms. Because
a game is made of processes (composed of basic moves, communi-
cation commands such as send or receive a message, relational op-
erations such as choice, composition, iterations or conditionals), we
need to compare processes. There is already a large body of literature
on equivalences of two processes. Generally speaking, two processes
are viewed to be equivalent if an external observer interacting with
them cannot distinguish them. This is calledbisimulation[22].

Let us consider the well-known examples in Figure 2 representing
two simple one-player games. If we just care about inputs/outputs the

Figure 2. Two examples of one-player games not observationally
equivalent

sA

s s

�
�

�
���

A
A
A
AAU

a1 a2

a) First example

≁

sA

s

s

s

�
�

�
���

Q
QQs

?

a1

τ

a2

sA

s

s s

?
�

��	
@

@@R

α

a1 a2

b) Second example

≁

sA

s

s s

s

�
��+

Q
QQs

? ?

a1

αα

a2

two games are the same. Because in mechanism design, the designer
strives to give incentives to the players to behave in a desirable way,
we need to have a closer look at the internals of the processes leading
to the outcomes. We can consider the execution trace. The two games
in Figure 2 a) do not have the same execution trace since in the right
hand game, the player makes a moveτ to reach a position where
it can only performs actiona2. They cannot be equivalent. In Fig-
ure 2 b), the two games have the same execution trace{α.a1, α.a2}.
They are the same under trace equivalence. However, the two games
display different behaviour. In the left hand game of Figure 2 b), af-
ter the moveα, the player is in a position to perform actiona1 or
a2 whereas in the right hand side, the moveα takes the player to a
position where it can only performsa1 or a2 exclusively. The no-
tion of trace equivalence can be refined so as to account for these
internal differences giving rise to the notion of bisimulation. Clearly
these two examples display one-player games that are not bisimular.
Following [22], we have adopted the stronger notion of bisimulation
to define game mechanism equivalence. This can be justified by the
fact that we are interested in studying behaviour in a given system. To
this end, we need to pay a closer look to the internals of the system
in lieu of viewing it as a black box whereby what is important is to
ensure the same inputs lead to the same outputs in order to compare
two mechanisms.

Considering a game as a bunch of concurrent and communicating
processes in a competition or cooperation mode, the question is to
find the game rules given a desirable property of the system. For that
purpose, a game is generated as a computer program by an iterative

procedure in a process modelling language or process algebra so that,
at each iteration, the required property can be model checked.

3.3 Process Algebra

Process Algebras (PAs) are mathematical models for concurrent
and communicating processes. There are various PAs among them
the CCS [9] or Promela [7]. These languages are commonly com-
posed of simple constructs, compositional and operational seman-
tics, behavioural reasoning and observational equivalence. Although,
a more generic framework for automatically generating verifiable
mechanisms requires dealing with the beliefs of agents (typically in
Bayesian games) and therefore the use of astochasticPA [6], the
algebra chosen in this paper is Promela [7]. We justify this choice
by the fact that Promela is expressive enough for the presentation of
our approach and the existence of a well established model checker,
SPIN [7] to verify certain properties of the obtained mechanism.

Promela programs are composed of independent and parallel pro-
cesses communicating through named channels. A process can send
or receive a messagee trough a channelc by performing actions[c!e]
or [c?e] respectively. A process’s body is a sequence of operations
that can be declarations of typed constants or variables or statements
(assignments, conditionals, loops, etc.) made of expressions that ma-
nipulate basic algebra terms, see [7] for more details.

The Promela process algebra has a well-defined semantics indi-
cating how processes are executed from the inputs to the outputs in
the form of transition system model. This semantics usingstructural
operational semanticsrules is detailed in [25]. Structural operational
semantics rules present a formal way of defining semantics for PAs
and other kind of operational semantics. Our aim is to generate well-
defined semantics Promela programs representing game mechanisms
for a given property of the system.

4 Automatic Generation of Games

This section presents an algorithm to generate Promela programs
representing game mechanisms from a set of requirements i.e., the
mechanism’s objectives and constraints.

4.1 Mechanism Requirements

Mechanism requirements are given as a set ofdeclarative statements.
A declarative statement describes an identifier (variable or constant)
along with its definition, its type, its IO (input or output) status, and
its calculation condition.

For simplicity reasons, we use achooseS command, similar to that
of [14], which can be modelled in Promela as a non-deterministic
choice over the values in the setS. Table 1 gives an example of such
requirements. One can see for example that the variablefp is an
input that is used in the test conditions anda1, a2 represent actions
taken by the two players. An action is simply a random choice over
the set of integers from0 to 10. Obviously, these requirements mimic
constructs of a programming language. However, there is no need
to specify the order in which the definitions must be executed; the
control logic is left out of the requirements.

Given the requirements of Table 1, we aim to generate the mecha-
nism so that the strategy profile(a1=5, a2=5) is a Nash equilibrium
by determining the parametersc1, c2 used in the calculation of the
utilities u1, u2 of both players.

10

Table 1. Requirements for a design of a game with complete and perfect
information

Identifier Definition Condition Type IO
fp bit IN
a1 choose{0..10} byte
a2 choose{0..10} byte
u1 10 + c1a1 fp = 0 int OUT
u2 10 + c2a2 fp = 1 int OUT
u1 10 − u2 ¬(fp = 0) int OUT
u2 10 − u1 ¬(fp = 1) int OUT

Table 2 represents a set of requirements for the design of an auc-
tion protocol wherein two agents value an item for sale atv1 andv2

and bid the numbersb1 andb2 respectively. The numbersb1, b2 are
chosen in the integer interval(0, 10). The two agents must pay a price
p1 andp2 given in some parameterised form to get the item with as-
sociated utilitiesu1 andu2. The aim is to find the model parameters
c11, c12, c21, andc22 so that the strategy profile(b1=v1, b2=v2) is a
dominant strategy equilibrium for both agents.

Table 2. Requirements for a single item auction

Identifier Definition Condition Type IO
v1 byte IN
v2 byte IN
b1 choose{0..10} byte
b2 choose{0..10} byte
p1 c11b1 + c12b2 int
p2 c21b1 + c22b2 int
u1 v1 − p1 b1 ≥ b2 int OUT
u2 v2 − p2 ¬(b1 ≥ b2) int OUT
u1 0 ¬(b1 ≥ b2) int OUT
u2 0 b1 ≥ b2 int OUT

The first question is how to generate a Promela program given the
mechanism requirements? This can be carried out using the follow-
ing procedure:

1. each declarative statement of the requirements is translated to a
Promela instruction.

2. we then construct the data dependency graph between the Promela
instructions by analyzing the chain of definitions of the variables
and their uses.

3. we find a valid control-flow of the resulting Promela code. It is
reasonable to assume that each variable is assigned only once to
avoid the case of a variable being overwritten. In this case, the
Promela instructions must be reordered so that data dependencies
are respected. Namely, we must ensure that no variable is used
before being defined. For example, given the requirements in Ta-
ble 2, the definition of the pricep1 must be executed before that
of the utility u1.

This procedure will enable us to generate a Promela code that has a
well-defined semantics and that represents a game mechanism. Fig-
ure 3 and Figure 4 show two codes generated from the requirements
of Table 1 and Table 2 in which the non Promelainput command
is used for clarity.

The second question is how to choose the parameters speci-
fied in the generated code so that the desired properties are sat-
isfied? Notice that the parameter valuesc1=c2= − 1 give a so-
lution to the cake cutting protocol design. The valuesc11=c22=0
and c12=c21=1 give the Vickrey auction mechanism. The values
c11=c22=c12=c21=1/2 give the modified Vickrey auction, which
is better in terms of expected revenue for the auctioneer [2]. These
parameters can be determined by an iterative procedure.

Figure 3. Mechanism generation for two agents: Cake cutting

input(fp);
if
:: (fp==1) ->

a1 = choose in 0..10;
u1 = 10+c1*a1;
u2 = 10-u1;

:: (fp==2) ->
a2 = choose in 0..10;
u2 = 10+c2*a2;
u1 = 10-u2;

:: else -> skip;
fi;

Figure 4. Mechanism generation for two agents: Single item auction

input(v1); input(v2);
b1 = choose in 0..10;
b2 = choose in 0..10;
if
:: (b1 >= b2) ->

p1 = c11*b1+c12*b2;
u1 = v1 - p1;
u2 = 0;

:: else ->
p2 = c21*b1+c22*b2;
u2 = v2 - p2;
u1 = 0;

fi;

4.2 An Iterative Algorithm

To generate a mechanism from a set of requirements, we generate
a computer code that has a well-defined semantics by the following
iterative algorithm:

1. Generate a program that respects the definition-use chains in the
Promela language as described in Section 4.1,

2. Choose random values for the model parameters,
3. Verify the required property for the obtained mechanism using the

language associated model checker,
4. If the property is not satisfied, use a local search method to find

new improved model parameters,
5. Repeat Step 2-4 until the property is satisfied or a maximum num-

ber of iterations is reached.

By construction, this algorithm always terminates and when it con-
verges, the resulting mechanism satisfies the objective of the system.
When the process is stopped because of attaining a maximum num-
ber of iterations, the obtained mechanism may be near enough to sat-
isfying the system’s objective. The choice of the Promela language is
guided by the ability to use the SPIN model checker. This allows us
to generate mechanisms that are guaranteed to satisfy the system re-
quirements at convergence. However, using a model checker to verify
desirable properties for multi-agent systems can lead to state space
explosion for large models. To avoid this, we can use abstraction
techniques, see for example [13, 19, 20]. A property-preserving ab-
straction map can be found so as to transform a detailed concrete
domain into a less complex one; rewrite and check the property in
the abstract model and deduce its validity in the concrete domain.
Finding such an abstraction map is not straightforward, see for ex-
ample [19].

Although this approach allows us to generate mechanisms guar-
anteed to have specified desirable properties, there is the scalability
problem (how to deal with deal with large-scale models) due to the
facts that:

• certain mechanisms may require large number of parameters,
• model checkers may suffer from state-space explosion,
• property preserving abstractions are hard to invent.

Nonetheless, this is a promising approach that deserves further in-
vestigation.

11

5 Related Work

We can only mention some items of the relevant literature. AMD, see
for example [3], is a young topic motivated by the need to provide
tailored computationally efficient mechanisms given the objectives
and constraints of a system. An incremental approach to designing
strategy-proof mechanisms is investigated in [4] and a framework for
multistage mechanism design is discussed in [17]. In [23, 24], a gen-
eral AMD framework is discussed. It relies on existing hand-coded
mechanisms (e.g., Vickrey auction) to improve the desired objective
of the mechanism by an iterative process. In [15], the focus is on
improving the pricing rules for an auction mechanism by using evo-
lutionary algorithms. To some extent, these automated mechanisms
make some assumptions on the rules of the game and try to fit the ob-
jective and constraints by solving an optimization problem. In here,
we aim to generate the entire function encoding the game rules and
utilities so that we can verify the requirements of the system are sat-
isfied.

Automated mechanisms using process algebra have been devel-
oped elsewhere, e.g., music composition [16] or software code gen-
eration given its requirements [5]. Our work builds on that of [22] in
which extensive games are analyzed as process models using modal
logic and bisimulation [22] and extends it to generating mechanisms
using an approach similar to that of [5]. Moreover, a research project
looking for a logical framework to specify and verify social choice
mechanisms is described in [26]. In here, we use a process alge-
bra language to automatically generate verifiable game mechanisms.
Techniques for verifying game-theoretic properties of mechanisms
are explored in [14, 18] but we adopted the SPIN model checking
approach [7] for this study. The use of SPIN in verifying game equi-
libria is also explored in [19, 20].

6 Concluding Remarks

In this preliminary work, we have used van Benthem’s description
of games as process models to make the connection between mecha-
nism design and process algebra. This allows us to choose a process
algebra language and to automate the production of game mecha-
nisms viewed as computer programs given some desirable proper-
ties. In particular, we present a novel algorithm based on this logical
framework in order to generate verifiable mechanisms given the ob-
jective and constraints of the system. Our logical approach uses an
iterative algorithm, which is computationally expensive and therefore
requires some restrictions on the space search for the choice of pa-
rameters in order to make it feasible. However it can provide us with
the entire game mechanism without assumptions on the game rules.
On the other hand the numerical optimisation approach [15, 23, 24]
can improve the social welfare by solving a fairly large optimisation
problem but it assumes the rules of the game.

Future work includes studying the convergence of our algorithm,
possibly identifying a class of mechanisms for which the conver-
gence is guaranteed, extending this approach to Bayesian games, and
finally applying it to real-life scenarios involving automated mecha-
nism design such as e-commerce systems.

ACKNOWLEDGEMENTS

The author is grateful to Dr Frank Guerin for helpful discussions on
game theory and logics. He thanks the reviewers for helpful com-
ments in an early version of this paper. He also acknowledges fund-
ing from the UK EPSRC under grant EP/D02949X/1.

REFERENCES
[1] P. Battigalli and G. Bonanno, ‘Synchronic information, knowledge and

common knowledge in extensive games’,Research in Economics, 53,
77–99, (1999).

[2] Ken Binmore,Fun and Games, A text on Game Theory, D.C. Heath and
Company, 1992.

[3] Vincent Conitzer and Tuomas Sandholm, ‘Automated mechanism de-
sign for a self-interested designer’, inEC’03, pp. 232–233. ACM Press,
(2003).

[4] Vincent Conitzer and Tuomas Sandholm, ‘Incremental mechanism de-
sign’, in IJCAI, pp. 1251–1256, (2007).

[5] Hamido Fujita, Mohamed Mejri, and B́echir Ktari, ‘A process algebra
to formalize the lyee methodology’,Knowl.-Based Syst,17(5-6), 263–
281, (2004).

[6] Peter G. Harrison and B. Strulo, ‘Spades - a process algebra for discrete
event simulation’,J. Log. Comput.,10(1), 3–42, (2000).

[7] Gerard J. Holzmann,The SPIN Model checker: Primer and Reference
Manual, Addison, Boston, USA, 2004.

[8] D. Kozen, ‘Results on the propositional mu-calculus’,Theoretical
Computer Science,27, 333–354, (1983).

[9] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[10] John Nash, ‘Noncooperative games’,Annals of Mathematics, 54, 289–

295, (1951).
[11] Noam Nisan and Amir Ronen, ‘Computationally feasible vcg mecha-

nisms’,JAIR,29, 19–47, (2007).
[12] D. C. Parkes, ‘Auction design with costly preference elicitation’,Annals

of Mathematics and AI,44, 269–302, (2004).
[13] Corina S. Pasareanu, Matthew B. Dwyer, and Willem Visser, ‘Finding

feasible abstract counter-examples’,Soft. Tools for Tech. Transfer, 5(1),
34–48, (2003).

[14] Marc Pauly, ‘Programming and verifying subgame-perfect mecha-
nisms’,J. Log. Comput.,15(3), 295–316, (2005).

[15] Steve Phelps, Peter McBurney, Simon Parsons, and Elizabeth Sklar,
‘Applying genetic programming to economic mechanism design: evolv-
ing a pricing rule for a continuous double auction’, inAAMAS, pp.
1096–1097, (2003).

[16] Brian J. Ross, ‘A process algebra for stochastic music composition’, in
International Computer Music Conference, ICMC 1995, pp. 448–451,
(1995).

[17] Tuomas Sandholm, Vincent Conitzer, and Craig Boutilier, ‘Automated
design of multistage mechanisms’, inIJCAI, pp. 1500–1506, (2007).

[18] Emmanuel M. Tadjouddine and Frank Guerin, ‘Verifying dominant
strategy equilibria in auctions.’, inCEEMAS’07, volume 4696, pp. 288–
297, Leipzig, Germany, (Sep. 2007). LNAI, Springer.

[19] Emmanuel M. Tadjouddine, Frank Guerin, and Wamberto Vasconcelos,
‘Abstracting and model-checking strategy-proofness for auction mech-
anisms’, inDALT, (2008). accepted.

[20] Emmanuel M. Tadjouddine, Frank Guerin, and Wamberto Vasconce-
los, ‘Abstractions for model checking game-theoretic properties in auc-
tions’, in AAMAS, (2008). accepted.

[21] Alfred Tarski, ‘A lattice-theoretic fixed point theorem and its applica-
tions’, Pacific J Math,5, 285–309, (1955).

[22] Johan van Benthem, ‘Extensive games as process models.’,Journal of
Logic, Language and Information,11(3), 289–313, (2002).

[23] Yevgeniy Vorobeychik, Christopher Kiekintveld, and Michael P. Well-
man, ‘Empirical mechanism design: methods, with application to a
supply-chain scenario’, inEC’06, pp. 306–315, New York, NY, USA,
(2006). ACM Press.

[24] Yevgeniy Vorobeychik, Daniel M. Reeves, and Michael P. Wellman,
‘Automated mechanism design in infinite games of incomplete infor-
mation: Framework and applications’, (2007).

[25] Carsten Weise, ‘An incremental formal semantics for Promela’, inPro-
ceedings of the 3rd International SPIN Workshop, (1997).

[26] Michael Wooldridge, Thomas̊Agotnes, Paul E. Dunne, and Wiebe
van der Hoek, ‘Logic for automated mechanism design - a progress
report’, inAAAI, pp. 9–17. AAAI Press, (2007).

12

Using Recency and Relevance to Assess Trust and
Reputation

Sarah N. Lim Choi Keung and Nathan Griffiths 1

Abstract.
In multi-agent systems, agents must typically interact with others

to achieve their goals. Since agents are assumed to be self-interested,
it is important to choose reliable interaction partners to maximise the
likelihood of success. Sub-standard and failed interactions can result
from a poor selection. Effective partner selection requires informa-
tion about how agents behave in varying situations, and such infor-
mation can be obtained from others in the form of recommendations
as well as through direct experience. In open and dynamic environ-
ments, agents face quick and unforeseen changes to the behaviour
of others and the population itself. This paper presents a trust and
reputation model which allows agents to adapt quickly to changes in
their environment. Our approach combines components from several
existing models to determine trust using direct experiences and rec-
ommendations from others. We build upon previous models by con-
sidering the multi-dimensionality of trust, recency of information,
and dynamic selection of recommendation providers. Specifically,
we take a multi-dimensional approach for evaluating both direct in-
teractions and recommendations. Recommendation sharing includes
information about the recency and nature of interactions, which al-
lows an evaluator to assess relevance, and to select recommenders
themselves based on trust.

1 Introduction

Trust and reputation have been widely used to attempt to solve some
of the issues linked with the uncertainty of interaction. Trust is used
to assess the level of risk associated with cooperating with other
agents; it is an estimate of how likely another agent is to fulfil its
commitments [4, 6, 11]. Trust can be derived from direct interactions
between agents and from reputation. Reputation is built from infor-
mation received from third parties about an agent’s behaviour. Based
on the reputation information received, agents can make informed
decisions about whether or not to interact with others [3].

In a dynamic environment, agents can change behaviour quickly
and this must be identified by the agents relying on them, especially
if they become less trustworthy in particular aspects of their ser-
vice. For trust and reputation to be effective in guiding decisions,
they must be sensitive to dynamic environments. Therefore, agents
should adapt quickly to changes in their environment by selecting
appropriate interaction partners and recommenders. In this respect,
multi-dimensional trust and reputation allows the original informa-
tion to be maintained for each service characteristic, such as time-
liness and cost, instead of a single aggregated value. Moreover, the
sharing of interaction summaries among agents maintains the rich-
ness of opinions on a per-characteristic basis and reduces subjec-
1 University of Warwick, UK, email: {slck, nathan}@dcs.warwick.ac.uk

tivity. When agents only share calculated trust values, they can be
subjectively interpreted in different ways since the evaluator has cal-
culated trust based on its own priorities. Several existing approaches
already make use of these aspects, none addresses all of these is-
sues. In this paper we present a model that integrates and extends
components from existing approaches to include richer information
in decision making and information sharing. The main contributions
of our model are: (i) to use the recency of interactions when select-
ing interaction partners and witnesses, since information can become
outdated in dynamic domains, (ii) to ensure that recommendations
are accurate and relevant and that they contribute appropriately to
the evaluation of reputation, and (iii) to use a richer format of in-
formation sharing to reduce subjectivity (including the recency of
interactions and the level of witness experience).

2 Related Work

Many trust and reputation models have been developed to support
agents in soliciting interaction partners. In this section we introduce
some of the relevant related work. Marsh’s formalism of trust is the
basis for many computation approaches, including ours. ReGreT and
FIRE are two of the most widely known approaches, while MDT-R
and Ntropi introduce features that we build upon in our approach.

2.1 Marsh’s Formalism

Marsh’s formalism for direct interactions among agents [11], divides
trust into basic trust, general trust and situational trust. Basic trust
represents an agent’s own trusting disposition, derived from its past
experiences. An agent’s general trust in another depicts how reliable
the other is considered, irrespective of the situation. Situational trust
is that placed in another agent in a specific situation.

Our model uses these three views of trust when we consider di-
rect trust from direct agent interactions. An agent has an initial trust
in another agent when it first starts interacting and has had no pre-
vious interactions. This is analogous to Marsh’s basic trust. Situa-
tional trust is used to express an evaluator’s trust in a target about
a particular task. If the evaluator has interacted with the target but
not for the specific task, then general trust is used. General trust is
the average trust value calculated from interactions in different situ-
ations with the target. Marsh’s approach does not take into account
reputation and only models trustworthiness from direct experience.
This limits the information available for trust evaluation, especially
in cases where there are insufficient or no direct interactions. Our
model complements direct trust with witness reputation to achieve
greater accuracy when predicting agent behaviour. Additionally, we
extend Marsh’s view by including multi-dimensionality and agent
confidence based on the MDT-R model [6] (described below).

13

2.2 ReGreT

ReGreT is a modular trust and reputation model that combines three
dimensions of information to assess reputation: individual, social
and ontological dimensions [12, 13]. The individual dimension re-
lates to direct trust resulting from the outcomes of direct interactions
between the evaluator and the target. The social dimension comple-
ments this by incorporating information on the experiences of other
members of the evaluator’s group with the target. There are three
aspects to the social dimension: the evaluator’s experience with its
own group, the experience of members of its group with the target,
and the view of the evaluator’s group regarding the group that the
target belongs to. To determine the social dimension of reputation,
an evaluator may use three information sources: witness reputation
calculated using information gathered from other agents; neighbour-
hood reputation based on the social relations between agents; and
system reputation which is based on knowledge of the target agent’s
role. Finally, the ontological dimension considers how the various
aspects associated with reputation can be combined. For example,
the ontological dimension can define how the reputation of being a
good seller relates to a reputation for providing a quality product, a
reputation for timeliness, and a reputation for appropriate charging.

ReGreT relies heavily on knowledge of the social structure of the
system, in terms of the groups to which agents belong, and the roles
that they play. It also relies on knowing the ontological structure of
reputation in the domain to define how different aspects of reputa-
tion relate to each other. The ReGreT model itself does not consider
how agents can build knowledge of the social structure of their envi-
ronment, but assumes that such information is available for a given
domain. In open and dynamic domains such information may not be
easily available, and may quickly become outdated as agents leave
and join. Additionally, the ontological structure of reputation may
not be easily available, and furthermore it may change over time as
an agent’s preferences change about what is important in an interac-
tion. Although the social structure and reputation ontologies are not
necessarily fixed in ReGreT, the sophistication of the model makes it
hard to deal with any changes. Our approach uses reputation informa-
tion provided by others in a similar manner to ReGreT, but without
requiring knowledge of the social structure of the system or an ontol-
ogy of reputation aspects, and so we use witness reputation but not
neighbourhood or system reputation. In place of knowing the social
structure we use the trust of witnesses and an estimation of the accu-
racy and relevance of their information, and instead of an ontology
we use a weighted product model to combine reputation aspects.

2.3 FIRE

FIRE [9, 10] is a modular approach that integrates up to four types
of trust and reputation from different information sources, according
to availability. Interaction trust results from past direct interactions,
and adopts the mechanism used in ReGreT’s individual dimension of
considering the outcomes of direct interactions between the evaluator
and the target. Role-based trust uses social and role-based relation-
ships between agents to assess trust, for example the power relation-
ships between agents that might influence trust. Witness reputation
is built from reports of witnesses about the target agent’s behaviour.
Finally, certified reputation is based on rating references from third-
parties that are provided to the evaluator by the target agent itself.
An extension to FIRE [8] handles possible inaccurate reports from
recommending agents by introducing a credibility model.

The modular approach to trust and reputation in FIRE caters for

a wide range of situations that can arise in multi-agent systems. In
some situations not all components of FIRE can be used, because
the required information may not be available. For example, in dy-
namic open systems it is likely that role-based trust will be of limited
use, since roles are likely to be weakly defined and changeable. Simi-
larly, the use of certified reputation is dependent on the existence of a
suitable security mechanism, such as a public-key infrastructure [9].
In open and dynamic domains, as considered in this paper, the in-
teraction trust and witness reputation components of FIRE are the
most appropriate. As in ReGreT, FIRE enables an evaluator to rate
its direct interactions with the target agent according to a number of
terms, such as price and delivery date. Trust can then be calculated
within these terms, for example an estimate of trust in terms of de-
livery date can be determined by extracting all available information
about delivery dates from the history of interactions. Our approach
extends this model, by providing a mechanism in which overall trust
is defined as a combination of the various aspects of previous in-
teractions, such that at run-time an agent can combine information
about the various aspects according to their current relative impor-
tance. In FIRE, witness selection is done by maintaining a list of
acquaintances according to their likelihood of providing the required
information. FIRE does not consider how this is done, but assumes
an application specific method exists [10]. In this paper, we build
upon the interaction and witness reputation components of FIRE to
use trust as an estimator for the provision of recommendations, re-
moving the need for an application specific mechanism.

2.4 Ntropi

Abdul-Rahman and Hailes [1, 2] propose a trust and reputation
model in which trust and the outcome of experiences are represented
in levels. For instance, the labels for the trust level scale are ‘Very
Trustworthy’, ‘Trustworthy’, ‘Moderate’, ‘Untrustworthy’, and ‘Very
Untrustworthy’ [1]. The model uses direct trust and reputation, as
well as recommender trust to assess witness credibility, in comput-
ing a final trust degree for a target. Ntropi models two types of trust:
situational trust and basic trust.

This model represents trust by classifying it into five levels, or
strata. The disadvantage is that the trust values are coarse-grained,
thereby losing both sensitivity and accuracy. Although comparisons
are easier, the update of values is more complex than using continu-
ous values [5]. In our approach, trust is stored as continuous values
for increased accuracy, both for an evaluator’s usage and for informa-
tion sharing. We use direct trust and recommender trust in a similar
way to Ntropi, however, we take a multi-dimensional view of trust
and reputation that preserves much of the original meaning of the in-
formation gathered. In our model, the selection of witnesses is based
on two factors: the accuracy and the relevance of recommendations.
This is influenced by how Ntropi uses trust in the context of recom-
mendation [1]. Our model incorporates these factors differently to
Ntropi due to the difference in the representation of trust values.

2.5 MDT-R

MDT-R [6] is a mechanism of multi-dimensional trust and recom-
mendations. Agents model the trustworthiness of others according
to various criteria, such as cost, timeliness or success, depending on
which criteria the agent considers important. Agents use their own
direct experience of interacting with others, as well as recommenda-
tions. Distinguishing trust and recommendations for individual char-
acteristics is valuable in identifying the service characteristics in

14

which the providing agents perform well, or less well. Trust informa-
tion in multiple dimensions helps to maintain the original interaction
data. Trust values are represented numerically in this approach due
to the benefits of accuracy and the ease of comparison and update of
values. However, MDT-R stratifies trust into levels (à la Ntropi) for
ease of comparison. The sharing of information among agents often
suffers from subjectivity, due to differences in interpretation. MDT-
R deals with this by sharing summaries of relevant past interactions,
instead of explicit values for trust.

3 Model Description

Our model is broadly based on MDT-R and adopts the multi-
dimensionality of trust and recommendations, as well as the shar-
ing of interaction summaries. We extend MDT-R by including in-
formation on recency and the experience of witnesses when sharing
interaction summaries. This allows an evaluator to more accurately
select witnesses, and thereby providers, as it further reduces the sub-
jectivity of interpretation. Our model also considers the relevance of
recommendations to better select recommenders and to assign them
appropriate weights when calculating reputation.

3.1 Sources of Trust

As we have seen above, many different sources of information can
be used to assess trust. Such sources must be available, relevant and
accurate enough to be useful in selecting interaction partners. We
view trust from direct interactions and recommendations from third
parties as the two most important sources of information, since they
are typically available with sufficient relevance and accuracy.

Direct interactions are an evaluator’s main source of information
about a target, and can be used to assess trust. This type of trust is
called direct trust. The second information source is recommenda-
tions from third parties. We assume that witnesses give information
about a target only if they have interacted with it. We do not currently
consider indirect recommendations due to the added complexity of
subjective opinions along a chain of witnesses. Trust from third party
information is referred to as witness reputation. The term is adopted
from FIRE [10] and refers to the same concept, but the way we build
the reputation is different from FIRE, due to our use of multiple di-
mensions.

Our approach integrates these two types of information in different
situations. Witness reputation is especially used when the evaluator
has insufficient information from direct experience about a target to
make an evaluation. Thus, in the event of insufficient information, the
two information sources are combined to increase accuracy. In this
paper, we do not consider collusion among agents, where a group of
agents cooperate for their mutual benefit but impacting on others in
the environment as a result. Any inaccuracies in recommendations
arise due to differing circumstances, variations in behaviour of the
target towards different witnesses, or malicious witness (giving false
information). We will consider collusion in future work, as we aim to
first ensure that the basic components of our model are efficiently im-
proving agent interaction in a dynamic environment. We also assume
that witnesses freely provide recommendations when requested.

3.2 Direct Trust

Trust information is captured in multiple dimensions, as in MDT-
R [5, 6]. The separation into several dimensions enables informa-
tion about specific service characteristics to be preserved. The sub-

jectivity of trust, especially from recommendations, is an obsta-
cle to making full use of the information obtained from witnesses.
Sharing multi-dimensional trust information within interaction sum-
maries [6], instead of calculated trust values decreases subjectivity.
The dimensions correspond to the necessary characteristics that de-
fine a service. Any number of dimensions can be used, but for the
purpose of illustration in this paper, we consider that an evaluator α

models trust in target β along four dimensions [6]:

• success (T s
αβ): the likelihood that β will successfully execute the

task,
• timeliness (T t

αβ): the likelihood that the task will be performed no
later than expected by α,

• cost (T c
αβ): the likelihood that the cost of performing the task will

not be more than expected, and
• quality (T q

αβ): the likelihood that the quality of the task performed
by β will be met.

These trust values are derived from the past interactions of α and
β. The evaluator stores information about each interaction in which
β has performed a task on its behalf. Information about each inter-
action includes the service characteristics offered by β, as well as
the actual values obtained on completion. The derived trust values
refer to a specific task and so this is a type of situational trust. A
successful interaction is one where β delivers results, irrespective of
whether the other three characteristics were met. Meanwhile, a posi-
tive interaction with respect to the dimensions of timeliness, cost and
quality refers to β performing as expected or better. Trust values are
calculated when the evaluator needs to make a decision about whom
to interact with. The range of the trust values in each dimension is
[−1, +1], where −1 means complete distrust and +1 means com-
plete trust. The evaluator stores a history of past interactions with
each provider for each task type. We denote the set of interactions
in the history about provider β for the task type K as HI βK . The
size of the history corresponds to the number of interactions that the
evaluator deems relevant. In future work, evaluators should be able
to change the size of the history on a per-target basis to enable agents
to store only the required information to assess trust.

The situational trust value ST d
αβK is a function of the history of

interactions with target β:

ST
d
αβK =

Id+
αβK − Id−

αβK

Id+
αβK + Id−

αβK

(1)

where Id+
αβK is the number of positive interactions agent α has expe-

rienced with target β, of task type K in dimension d, and Id−
αβK is

the number of negative interactions.
The evaluator also stores the general trust of each provider it has

interacted with and applies regardless of the service provided. Gen-
eral trust is used to assess the overall trustworthiness of an agent. It
is useful when the evaluator does not have situational trust for a tar-
get for a specific task, as it gives an idea of how the target is likely
to perform. The general trust GTαβ of evaluator α for target β is
calculated as an average of the situational trust values in the success
dimension:

GTαβ =

∑allK

k=1
ST s

αβK

allK
(2)

where allK is the size of the set of task types. We use only the
success dimension to simplify calculation, since completing a task
successfully has overriding priority when obtaining an agent’s over-
all trustworthiness. If there are no previous interactions with β, then

15

general trust is equal to α’s disposition, referred to as α’s initial trust,
denoted as initialTα.

MDT-R models confidence and trust decay as two important no-
tions agents should consider when using past experience for trust
assessment. In our model, confidence refers to the number of inter-
actions between an evaluator and a target agent, and is calculated for
each dimension, since not all dimensions are relevant in different in-
teractions. Cd

β denotes the confidence level in the trust assessment of
the target β for dimension d. Trust decay occurs when trust values
become outdated due to lack of fresh interactions. The decay func-
tion (Equation 3) reduces the trust value according to how outdated
the trust values are. A weight ωHIβK

is assigned to an interaction ac-
cording to recency; the more recent the interaction, the more weight
it has, since more recent interactions give a more accurate reflection.
The weight is based on the time since the interaction occurred and
the frequency of interaction with β for the task type K. With fewer
recent interactions, trust decays towards the initial trust value.

decay(ST
d
αβK) = f(ST

d
αβK , initialTα, ωHIβK

) (3)

As proposed in MDT-R, trust values in our model are stratified
at the time of comparison. When using numerical values, there is
a risk of considering even insignificant differences in values to be
important, and stratifying trust reduces this risk. Stratified trust is
only used for comparisons and is not communicated to others. In
our model, the number of strata used can be specified to allow for
different levels of sensitivity. For example, if the number of strata is
10, trust values in the range [0.8, 1] are taken to be the same. Thus,
when two agents β and γ are being compared by situational trust in
the success dimension, if ST s

αβK = 0.85 and ST s
αγK = 0.95, both

agents are taken to have similar trust values. A larger number of strata
ensures a smoother transition between different strata, especially at
the boundary between positive and negative trust [7].

3.3 Witness Reputation

Witness reputation is the trust of a target as communicated by third
parties. The reputation of a target is sought when the evaluator has
insufficient information to make a decision about whether to coop-
erate. A lack of information may occur for several reasons. For ex-
ample, consider an evaluator α who wants to consider agent β for
interaction, to perform a task K1. In the first case, suppose α has
never interacted with β and thus has no experience of β’s behaviour.
Alternatively, suppose α has previously interacted with β but for a
different task K2. Another case is when α has had too few interac-
tions with β, or they are too outdated. In all these cases, α can ask
the opinions of others who have interacted with β, in order to get a
more accurate assessment of β’s trustworthiness.

When an evaluator requires recommendations for an agent, it must
decide which agents to ask. Such agents might have different kinds
of experience with the target, and their opinions might not be use-
ful to the evaluator. To decide who to ask, the evaluator uses rec-
ommendation trust, which estimates the accuracy and relevance of
a witness’ recommendation for the evaluator’s purposes. Accuracy
measures the similarity between the evaluator’s own experience and
the witness’ opinion. Meanwhile, relevance relates to the usefulness
of the recommendation, based on the recency of the interactions, the
experience of the witness, and on how trustworthy the witness is in
giving recommendations. We use recommendation trust rather than
asking for recommendations about the reputation of a witness be-
cause the evaluator’s past experience are more relevant for its deci-
sion making.

FIRE considers whether the witness has sufficient information
about the target to give an opinion and its credibility [8]. Although
this enables the evaluator to identify the accuracy of the recommen-
dation by comparing it with its own experience, the relevance of a
witness’ trust information for the evaluator’s purposes is not taken
into account. In MDT-R, an agent selects witnesses by considering
its most trusted interaction partners. However, it does not select wit-
nesses based on the relevance of recommendations and there is no
validation of whether the witness has given accurate information.
The uncertainty lies in the possible difference in behaviour of the tar-
get towards different evaluators. Ntropi considers two factors when
dealing with recommendations: (i) the closeness of the witness’ rec-
ommendation and the evaluator’s own judgement about the target,
and (ii) the reliability of the witness in giving accurate opinions over
time.

Our approach to reputation is influenced by Ntropi’s consideration
of accuracy and relevance when selecting witnesses. The relevance of
recommendations is calculated by taking into account their recency,
the experience of the witness, as well as the evaluator’s recommen-
dation trust and confidence in the witness. The accuracy of opinions
is considered for interactions that have taken place following positive
recommendations. The evaluator compares the outcome of the inter-
action with the recommendation previously obtained to assess how
accurate it was. Recommendation trust is updated for each agent that
has given recommendations. Initially, witnesses have a recommen-
dation trust value equal to their general trust. This is later updated if
the evaluator interacts with the recommended provider.

Witnesses provide recommendations to the evaluator in the form
of interaction summaries for a specific task type where available. The
summaries contain information such as the number of interactions
the recommendation is based on, the recency of these interactions,
and the proportion of positive and negative interactions in each trust
dimension. The witness provides its general trust in the target if it
does not have situational trust information. The use of interaction
summaries is similar to that in MDT-R with the additional sharing
of information about recency and experience, which can improve the
evaluator’s adaptation to changes in the behaviour of target agents.
The evaluator combines the different recommendations by applying
weights according to how relevant the witness’ experience is, com-
pared to the evaluator’s. The weight ωWRRiβ

is the weight of the
witness reputation relevance WRR of witness i in providing a rec-
ommendation for target β.

Thus, the witness reputation WR of target β’s task type K in the
dimension d is a function of the opinions received from witnesses
and their respective weights:

WR
d
αβK =

ε
∑

i=γ

Id+
iβK − Id−

iβK

Id+
iβK + Id−

iβK

× ωWRRiβ

(4)

where γ to ε are the set of selected witnesses for target β. Id+
iβK is

the number of interactions between witness i and target β about ser-
vice type K, for which β has met expectations for the dimension d.
Id−

iβK is the number where expectations are not met. The weight of
a recommendation is dependent on the witness’ experience and its
relevance. The relevance of witness i’s recommendation about target
β is calculated as:

WRRiβK =

(

tcurr − tmedian(HIβK)

tcurr

)

+
maxWI

totalWI

+ RT
i
α + ωC

RTi
α

(5)

16

where tcurr denotes the current time and tmedian(HIβK) is the
recorded time of the median interaction as provided by the witness i

for interaction with target β about task K. The inclusion of time in
the calculation indicates the recency of the interactions on which the
recommendation is based. The maximum number of interactions that
the witnesses have used when giving recommendations is maxWI ,
and totalWI is the total number of interactions actually used in that
recommendation. The confidence of the evaluator α in its recommen-
dation trust in the witness i is denoted as RT i

α and the confidence
weight ωC

RTi
α

shows the amount of influence this recommendation
has compared to others.

The evaluator collects information about the witness from direct
interactions and from previous recommendations the witness has pro-
vided. We do not assess the reliability of witnesses by collecting in-
formation from other agents because of the subjectivity of evaluating
a witness’ ability to provide recommendations to different agents.

3.4 Aggregation of Trust Sources

The evaluator α makes use of direct trust and witness reputation
when assessing the trustworthiness of several potential providers for
a task, and selects the best provider. The performance value of each
provider is calculated as in MDT-R [6], with some changes to cater
for the additional information when evaluating witness reputation.

The performance value for each potential provider is calculated as:

PV (β) =

n
∏

i=1

(fβi
)µi (6)

where there are n factors and fβi
is the value for agent β in terms of

the i′th factor and µi is the weighting given to the i′th factor in the
selection of the agent’s preferences. To assess trust using only direct
trust, the values are stratified and the performance value is:

PV (β) = (max c + 1 − βc)
µc

× β
µq
q

× stratify(ST
s
αβK)µts

× stratify(ST
t
αβK)µtt

× stratify(ST
c
αβK)µtc

× stratify(ST
q

αβK)µtq (7)

where βc and βq are β’s advertised cost and quality respectively,
max c is the maximum advertised cost of the agents being consid-
ered, µc and µq are the weightings given to the advertised cost and
quality, and µts, µtt, µtc, µtq are the weightings for the trust dimen-
sions of success, timeliness, cost and quality respectively.

The calculation of the performance value, considering both direct
trust and witness reputation is as follows:

PV (β) = (max c + 1 − βc)
µc

× (βq)
µq

×stratify(ST
s
αβK)µts

× stratify(ST
c
αβK)µtc

×stratify(ST
t
αβK)µtt

× stratify(ST
q

αβK)µtq

×stratify(WR
s
αβK)µrs

× stratify(WR
c
αβK)µrc

×stratify(WR
t
αβK)µrt

× stratify(WR
q

αβK)µrq(8)

where WRd
αβK is the witness reputation for target β in the dimen-

sion d, and µrs, µrc, µrt, µr are the weightings for the witness rep-
utation in the dimensions of success, timeliness, cost and quality re-
spectively. (Note that the weights µi must sum to 1.)

4 Experimental Results

To validate our approach we have built a simulation environment,
and have obtained a number of initial experimental results. Although

more experimentation is required, our initial results are promising
and demonstrate how trust and reputation can be used to facilitate
more effective partner selection.

4.1 Effects of Size of Interaction History

We have investigated how our model behaves when agents change
behaviour dynamically. Using a population of 50 agents we observe
specific agent interactions. Half of the agents are malicious, and do
not always complete the tasks. The remaining agents can be dishon-
est, and for instance, may charge more than advertised. We have sim-
ulated agent interactions over 1500 cycles, where one cycle allows
every agent to have part of its tasks performed and to carry out tasks
for others. We select one provider for a specific type of task and
observe the evaluator’s assessment of trust and performance of that
provider.

The evaluator uses a history of interactions for each provider task
type to predict that provider’s likely future behaviour. We observe
how the size of the history window affects the evaluator’s decision
making when others’ behaviour changes. Tables 1 and 2 show the
average number of cycles the evaluator takes to reach the updated
behaviour of the target agent.

Table 1. Reliable to unreliable
Size Average Duration

5 58.2
10 145.4
20 162.2
30 348.0

Table 2. Unreliable to reliable
Size Average Duration

5 395.8
10 425.6
20 757.2
30 831.0

Tables 1 and 2 show that it takes longer for the evaluator to notice
a change in provider behaviour with larger interaction window sizes.
From these results, we expect that fewer failures will occur when
the window size is smaller. In experiments where provider behaviour
oscillates between good and bad , we also found that for smaller win-
dow sizes, the evaluator reacts faster to changes. Figure 1 shows the
proportion of failed tasks for each window size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

3020105

F
ai

lu
re

 R
at

io

Window Size

Oscillating
One change

Figure 1. Failure ratio where provider behaviour oscillates between good
and bad, compared to one change from good to bad

A malicious provider can however exploit an evaluator’s small
window to fail some interactions, while keeping the number of suc-
cessful ones high enough for the evaluator to predict high reliability
for that provider. We have set up an experiment where the malicious
provider fails an interaction with the evaluator every 6 interactions.
For window sizes 5, 10 and 20, the failure ratios are similar at around
0.16, while for the larger window size 30, we observe a slight de-
crease in failure of around 3%. Compared to Figure 1, smaller win-

17

dow sizes are not beneficial in recognising some behaviour changes.
Hence, the evaluator needs to find the right balance between adapta-
tion speed and guarding against such malicious behaviour.

4.2 Comparison of Evaluation Mechanisms

We have compared the effectiveness of using trust, and trust with
reputation, against using single service characteristics in a number
of settings. Again, we use a population of 50 agents, half of which
are malicious. The simulation ran for 500 cycles with individual task
execution taking several cycles, depending on execution speed and
task duration. The set of agents offers the same task types over the
simulation runs, but agent behaviour varies in terms of honesty.

The experiments are set up to observe the performance of evalua-
tor a1. Agent a1 has a set of tasks to be performed and there are sev-
eral alternative providers. We look at three evaluation mechanisms
that a1 might use to assess providers: cost, trust and trust with rep-
utation. We consider the number of tasks generated that have been
successful, unsuccessful or incomplete. These are presented as a ra-
tio of the total number of a1’s tasks. If the evaluator adds a new task
type later in the simulation, it will have no previous interactions for
this task and so will ask for recommendations.

Figures 2 and 3 show representative results for the distribution of
task performance, where new task types are introduced during the
simulation. The ratio of success (Success), execution failure (Failed-
U), declined tasks (Failed-D) and any remaining tasks (Remaining)
is shown. The evaluation mechanisms are denoted as C, T and TR for
cost, trust and trust with reputation respectively. The results are af-
fected firstly by the nature of the population, with more honest pop-
ulations giving higher success rates, as expect. In the case of Fig-
ure 2 the evaluator was situated in a more cooperative environment.
The results also show that using trust or trust and reputation improve
the success rate compared to using the service characteristics (in this
case, cost). In cooperative environments there is a small improve-
ment, while in less honest populations the improvement is more sig-
nificant (Figure 3). Our results also show that depending on the en-
vironment, trust or trust and reputation may give the best result. We
are conducting ongoing experiments to identify the conditions that
determine which method is best.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C T TR

Success

Failed-U

Failed-D

Remaining

Figure 2. Population set 1

 0.5

 0.6

 0.7

 0.8

 0.9

 1

C T TR

Success

Failed-U

Failed-D

Remaining

Figure 3. Population set 2

5 Conclusions and Future Work

From our experiments we observe that using trust and trust with rep-
utation to select providers gives better results in most cases, than us-
ing service characteristics only. In some situations, the use of trust
together with reputation is an improvement over the use of trust
only. However, further experimentation is required to determine the
circumstances in which the improvement is significant. The ability
to recognise different situations can help an agent to better decide
which evaluation mechanism to use for the maximum benefits. We
have also considered how our model performs when agents change
behaviour. Our aim is to enable an evaluator to quickly identify be-
haviour changes and adapt its strategy to maintain a high success rate.
A smaller interaction window size enables the evaluator to reassess
trust quickly. However, in certain cases, malicious agents can exploit
this by periodically failing. The development of our model, and our
initial results, highlight many questions that must be answered for
effective use of trust and reputation. One important question is how
to balance the potentially conflicting features that an evaluator needs,
such as the compromise between the speed of adaptivity to behaviour
changes and guarding against malicious behaviour. Future work will
consider how agents can achieve this balance, and will investigate
the circumstances under which trust or trust and reputation should be
used.

REFERENCES
[1] A. Abdul-Rahman. A Framework for Decentralised Trust Reasoning.

PhD thesis, Department of Computer Science, University College Lon-
don, UK, 2005.

[2] A. Abdul-Rahman and S. Hailes. Supporting trust in virtual commu-
nities. In Proceedings of the 33rd Hawaii International Conference on
System Sciences (HICSS 2000), page 6007. IEEE Computer Society,
2000.

[3] V. Buskens. Social networks and the effect of reputation on coopera-
tion. ISCORE Paper No. 42, Utrecht University, 1998.

[4] D. Gambetta, editor. Trust: Making and Breaking of Cooperative Rela-
tions. Department of Sociology, University of Oxford, 2000.

[5] N. Griffiths. Task delegation using experience-based multi-dimensional
trust. In Proceedings of the 4th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2005), pages 489–
496, New York, NY, USA, 2005. ACM Press.

[6] N. Griffiths. Enhancing peer-to-peer collaboration using trust. Inter-
national Journal of Expert systems with Applications, 31(4):849–858,
2006.

[7] N. Griffiths. A fuzzy approach to reasoning with trust, distrust and
insufficient trust. In Cooperative Information Agents X, volume 4149 of
Lecture Notes in Computer Science, pages 360–374. Springer-Verlag,
2006.

[8] T. D. Huyhn. Trust and Reputation in Open Multi-Agent Systems. PhD
thesis, Electronics and Computer Science, University of Southampton,
June 2006.

[9] T. D. Huynh, N. R. Jennings, and N. Shadbolt. Developing an inte-
grated trust and reputation model for open multi-agent systems. In Pro-
ceedings of the 7th International Workshop on Trust in Agent Societies,
pages 65–74, New York, USA, 2004.

[10] T. D. Huynh, N. R. Jennings, and N. Shadbolt. An integrated trust and
reputation model for open multi-agent systems. Journal of Autonomous
Agents and Multi-Agent Systems, 13(2):119–154, 2006.

[11] S. Marsh. Formalising trust as a computational concept. PhD thesis,
Department of Computer Science, University of Stirling, 1994.

[12] J. Sabater and C. Sierra. REGRET: reputation in gregarious societies.
In Proceedings of the Fifth International Conference on Autonomous
Agents, Montreal, Canada, 2002. ACM Press.

[13] J. Sabater and C. Sierra. Social ReGreT, a reputation model based on
social relations. ACM SIGecom Exchanges, 3(1):44–56, 2002.

18

Modelling and Administration of Contract-Based
Systems

Simon Miles and Nir Oren and Michael Luck and Sanjay Modgil and Nora Faci 1

Camden Holt and Gary Vickers2

Abstract. Mirroring the paper versions exchanged between busi-
nesses today, electronic contracts offer the possibility of dynamic,
automatic creation and enforcement of restrictions and compulsions
on agent behaviour that are designed to ensure business objectives
are met. However, where there are many contracts within a particular
application, it can be difficult to determine whether the system can
reliably fulfill them all; computer-parsable electronic contracts may
allow such verification to be automated. In this paper, we describe
a conceptual framework and architecture specification in which nor-
mative business contracts can be electronically represented, verified,
established, renewed, etc. In particular, we aim to allow systems con-
taining multiple contracts to be checked for conflicts and violations
of business objectives. We illustrate the framework and architecture
with an aerospace example.

1 Introduction
It has often been argued that agents interacting in a common sys-
tem, society or environment need to be suitably constrained in order
to avoid and solve conflicts, make agreements, reduce complexity,
and in general to achieve a desirable social order (e.g. [4, 5]). For
many, this role is fulfilled by norms, which represent what ought to
be done by a set of agents. Views of norms differ, and include fixed
laws that must never be violated as well as more flexible social guides
that merely seek to bias behaviour in different ways. Yet the obliga-
tions, prohibitions and permissions that may affect agent behaviour
in a normative system can also be documented and communicated
between agents in the form of contracts. Electronic contracts, mir-
roring the paper versions exchanged between businesses today, of-
fer the possibility of dynamic, automatic creation and enforcement
of such restrictions and compulsions on agent behaviour. However,
where there are many contracts within a particular application, it can
be difficult to determine whether the system can reliably fulfill them
all; computer-parsable electronic contracts may allow such verifica-
tion to be automated.

There are two pre-requisites to realistically applying an electronic
contracting approach in real-world domains. First, to exploit elec-
tronic contracts, a well-defined conceptual framework for contract-
based systems, to which the application entities can be mapped, is
needed. Second, to support the management of contracts through all
stages of the contract life-cycle, we need to specify the functionality
required of a contract management architecture that would underly
any such system, leading to ready-made implementations for partic-
ular deployments of that architecture.

1 King’s College London, UK, email: simon.miles@kcl.ac.uk
2 Lost Wax, UK

The CONTRACT project3 aims to do just this. Funded by the
European Commission as part of its 6th Framework Program, the
project seeks to develop frameworks, components and tools that
“make it possible to model, build, verify and monitor distributed
electronic business systems on the basis of dynamically generated,
cross-organisational contracts which underpin formal descriptions
of the expected behaviours of individual services and the system
as a whole.” In this context, this paper documents the CONTRACT

project’s work on both of the pre-requisites identified above. The
aims and vision of the project are described in full elsewhere [18].
More specifically, the technical contributions described in this paper
are: the specification of a model for describing contract-based sys-
tems; the specification of an architecture for managing such systems;
and the mapping of an aerospace application to those models.

Our approach takes a distinct approach in several respects. First,
its development is explicitly driven by a range of use cases provided
by a diverse set of small and large businesses. One consequence of
this diversity is that our approach must account for different practices
and possibilities in each stage of the lifecycle of a contract-based sys-
tem. It is therefore defined in terms of abstract process types, to be
instantiated in different ways for different circumstances. We pro-
vide a non-exhaustive set of options for instantiating these process
types, and technologies to support these processes. A more specific
requirement addressed by our approach is in managing not just ful-
filment or violation of contractual obligations, but also other states
of the system with regard to those obligations, such as being in dan-
ger of violation, being expected to easily fulfil an obligation, and
application-specific states.

In the next section, we provide an overview of the overall struc-
ture, introducing the conceptual framework and applying it to a run-
ning example. Then, in Section 3, we discuss how the contractual
obligations imply critical states of the system that we may wish to
detect and react to in order to effectively manage the system. In Sec-
tion 4, we describe the architecture: the process types that are re-
quired to manage contract-based systems and components that can
support such processes. We disuss related work in Section 5 and con-
clude with future work in Section 6.

2 CONTRACT Framework and Architecture
The models and procedures comprising the CONTRACT framework
and architecture are shown in Figure 1. The primary component of
this is the framework itself, depicted at the top of the figure, which
is the conceptual structure used to describe a contract-based system,
including the contracts and the agents to which they apply.
3 www.ist-contract.org

19

Framework
(applied to application)

Critical
application
states

Verification
mechanisms

Contract
administration
processes

Agent
architecture
component
interfaces

Contract
administration

roles

Contract
documents

Technology-specific deployment

Supporting
Methodology

Architecture

Figure 1. The overall structure of the CONTRACT architecture and
framework

From the framework specification of a given application, other im-
portant information is derived. First, understanding the contractual
obligations of agents allows us to specify the critical states that an
application may reach. A critical state of a contract-based system
with regard to an obligation essentially indicates whether the obli-
gation is fulfilled or fulfillable, e.g. achieved, failed, in danger, etc.
This is discussed in detail in Section 3. A state-based description,
along with the deontic and epistemic implications of the specified
contracts, can then be used to verify a system either off-line or at
run-time [12] (though we do not discuss this further here).

The framework specification is used to determine suitable pro-
cesses for adminstration of the electronic contracts through their life-
times, including establishment, updating, termination, renewal, and
so on. Such processes may also include observation of the system, so
that contractual obligations can be enforced or otherwise effectively
managed, and these processes depend on the critical states identified
above. Once suitable administration processes are identified, we can
also specify the roles that agents play within them, the components
that should be part of agents to allow them to manage their contracts,
and the contract documents themselves. Such process types and roles
are described in Section 4.

2.1 A Contract-Based System Framework
We first specify a conceptual framework by which contract-based
systems can be described. This framework provides a clear indication
of how particular applications can exploit contracts and how they
must be supported in managing them. By being abstract and generic,
such a framework may also be used to translate contract data from
one concrete format to another.

Contracts document obligations, permissions and prohibitions
(collectively clauses) on agents and are agreed by those agents. Sim-
ply, obligations are statements that agents should do something and
prohibitions are statement that they should not. Since agents are au-
tonomous, external control can only be specified through normative
structures such as contracts. Thus, permissions are defined as excep-
tions to prohibitions: if something was not prohibited, it is not mean-
ingful for a permission to be granted.

The agents obliged, permitted and prohibited in a contract are par-
ties to that contract, which specifies contract roles, played by agents

within it. Each clause in a contract applies to roles, to which agents
are assigned, and each agent can hold multiple contracts with the
same or different parties. Finally, a contract proposal is one that has
not yet been agreed. These concepts are summarised in Table 1.

Concept Definition
Role A named part that can be played by an agent in a system.
Obligation A statement that an agent playing a given role should do some-

thing.
Prohibition A statement that an agent playing a given role should not do

something.
Permission An exception to a prohibition for an agent playing a given role

under given circumstances.
Clause An obligation, prohibition or permission.
Assignment A statement that an agent should play a given role.
Proposal A document containing a set of clauses and assignments,

where every role referred to which each clause applies has been
assigned to an agent.

Contract A proposal to which all assigned agents have agreed.

Table 1. The primary concepts in the CONTRACT framework

2.2 Aerospace Use Case

To test and illustrate the efficacy of our approach, we adopt an en-
gineering application, based on the aerospace aftercare market, tar-
geted by Lost Wax’s agent-based Aerogility platform [1], and used
as a running example through the paper.

The application concerns the continued maintenance of aircraft en-
gines over their lifetime. In this domain, an engine manufacturer is
contractually obliged to ensure operators’ aircraft have working en-
gines. For an engine to be working, it should not be overdue for reg-
ular servicing or left waiting to be fixed after a fault is discovered.
An aircraft’s engine can be replaced when it lands at some location
if there is a suitable spare engine present at that location. As well
as replacing engines to ensure continued operation of the aircraft, an
engine manufacturer will service the engines it has removed, so that
the serviced engine can be added back into circulation (the “engine
pool”) and used to replace other engines.

In addition to long-term contracts between engine manufacturers
and operators, we consider short-term contracts regarding particular
instances of servicing engines. These sit in the context of long-term
contracts but, by being specified explicitly, allow the parties to use
and commit to resources more flexibly. In a long-term contract be-
tween an aircraft operator and an engine manufacturer, the manufac-
turer agrees to service the operator’s aircraft to some overall spec-
ified standard over the duration of the contract. Such a contract is
provided in Table 2, using the framework concepts. Here, the oper-
ator specifies a preferred time within which the manufacturer must
service an aircraft, and the manufacturer is obliged to meet this in
90% of cases. If the manufacturer does not meet short-term contract
requirements (see below), penalties are deducted from the long-term
payment the operator is obliged to make. The operator is obliged to
provide adequate engine data so that the manufacturer can fulfil their
servicing obligations. Finally, the operator may have demands on the
provenance of an engine: operator A may be happy to re-use engines
previously used by operators B or C but not those used by D.

In this context, a short-term contract concerns the servicing of a
particular aircraft at a particular time (see Table 3). It is again be-
tween two parties: the aircraft operator and the engine manufacturer.
In this case, the manufacturer has more specific obligations: that they
must either service an aircraft in the preferred timescale or pay a
penalty, and that they must service it within a maximum period. The
limitations on provenance apply in the particular short-term servicing
as they do in the long-term aftercare.

20

Roles Manufacturer, Operator
Obligations O1 Manufacturer agrees to servicing contracts requested by

operator during aftercare contract period.
O2 Manufacturer services engines within the preferred time
specified by the servicing contracts in at least 90% of cases.
O3 Operator pays for servicing of engines, minus any penal-
ties.
O4 Operator must supply engine health data to the manufac-
turer in an adequate time to allow problems requiring unsched-
uled maintenance to be detected.

Prohibitions P1 Manufacturer is prohibited from supplying engine parts
previously used by other operators not on an approved list (if
one is given) or on a disapproved list (if one is given).

Permissions R1 Manufacturer is allowed to supply engine parts previously
used by other operators on an approved list (if one is given).

Table 2. Long-term aftercare contract

Roles Manufacturer, Operator
Obligations O5 Manufacturer services aircraft in preferred time, or pays

penalty (taken out of aftercare contract payment from opera-
tor).
O6 Manufacturer services engine in maximum time.

Prohibitions P2 Manufacturer is prohibited from supplying engine parts
previously used by other operators not on an approved list (if
one is given) or on a disapproved list (if one is given).

Permissions R2 Manufacturer is allowed to supply engine parts previously
used by other operators on an approved list (if one is given).
R3 Operator is allowed to take a penalty from the manufacturer
if an aircraft is left on the ground for longer than the preferred
time agreed.

Table 3. Short-term servicing contract

Such formal documents of agreements are important, especially
when there are multiple agreements and when these agreements can
interact, because they can reveal critical points of potential or actual
conflict. If it is possible to examine such contracts, and determine
where these critical points lie, so that they may be monitored for vio-
lations, or even modified to avoid the potential for violation. In what
follows, these aims inform the elaboration of our architecture. For
example, a short-term conflict between two servicing contracts in the
aerospace domain occurs when a manufacturer is obliged to service
two operators’ aircraft at the same time, but can only service one due
to a lack of resources. Long-term conflicts are also present, as in a
conflict between a servicing contract and an aftercare contract arising
when a manufacturer must choose between servicing one operator’s
aircraft within the maximum time limit and servicing another opera-
tor’s aircraft within the preferred time, where the manufacturer is in
danger of not having serviced the latter operator’s aircraft within the
preferred time limit for 90% of cases.

3 Critical States of Contract-Based Systems

By identifying the critical states of the system with respect to given
contractual obligations, indicating whether the obligation is fulfilled
or fulfillable, it is then easier to determine which of these needs to be
checked for and acted upon to ensure that the system performs well.
A state-based description can also be used as a basis for verifying
whether the system will always result in a desirable state.

3.1 Obligation States

Each obligation implies a set of states for the system with regard to
that obligation. In part, these can be specified independently of the
application. For example, we classify obligations into three types:

• An obligation to achieve some state G, e.g. to pay some amount
to another agent.

• An obligation to maintain some state H , e.g. to keep an aircraft in
working order.

• An obligation to behave in some way, where that behaviour is to
fulfil obligation O(X) whenever event E(X) occurs, e.g. when
aircraft X requires servicing, to service X in an acceptable time.

For an achievement obligation, there are three significant states:
Pre-achievement, Succeeded and Failed. Each of these has particu-
lar properties with regard to the goal state G, as shown in Table 4
(top). In Pre-achievement, the goal state is achievable but not yet
achieved; in Succeeded, the system is in the goal state; and in Failed,
the goal state is no longer achievable. Similarly, a maintenance obli-
gation implies three significant states, as shown in Table 5 (top). In
the Maintained state, the system is in the goal state; in Succeeded,
the system can no longer leave the goal state; in Failed, the system
has left the goal state. Finally, the significant states of a behaviour
obligation depend on the obligation, O, triggered in reaction to each
event, but it has some states of its own as shown in the top of Table 6.
In the Pre-trigger state, the triggering event has not yet occurred; in
the Reaction Active state, an event has occurred but the obligation it
has triggered into taking force has not yet reached a Succeeded or
Failed state; in Reaction Failed, that reaction obligation has reached
a Failed state, and so the behaviour obligation as a whole has failed;
in Reaction Succeeded state, the particular reaction obligation has
succeeded; and in Succeeded, no more applicable events can ever oc-
cur and so the behaviour obligation as a whole has succeeded. All
obligations also imply a state, Cancelled, when the obligation no
longer holds.

State Properties
Pre-achievement Not G

G achievable
Agent obliged to achieve G

Succeeded G
Failed G unachievable

Agent obliged to achieve G
Cancelled No agent obliged to achieve G
Sub-State Additional Properties
Initial
Danger G in danger of becoming unachievable
Likely Success G’ achieved, where G’ is a significant subset of G

Table 4. Basic states (top) and sample pre-achievement sub-states
(bottom) of an achievement obligation

State Properties
Maintained H

Not H achievable
Agent obliged to maintain H

Succeeded Not H unachievable
Failed Not H

Agent obliged to maintain H
Cancelled No agent obliged to maintain H
Sub-State Additional Properties
Initial
Danger Not H in danger of becoming true

Table 5. Basic states (top) and sample maintained sub-states (bottom) of a
maintenance obligation

3.2 Significant Sub-States
In addition to the application-independent system states above, ap-
plications often refer to significant sub-states part-way between an

21

obligation coming into force and its success or failure. Examples of
these are shown in the bottom portion of Tables 4, 5 and 6. For ex-
ample, an application may need to detect whether an obligation is
in danger of violation and so allocate more resources to ensure that
it is fulfilled instead, implying a Danger critical state of the system
with regard to that obligation as shown in Table 4 (bottom). On the
other hand, if an obligation is being fulfilled unexpectedly easily, an
application may take advantage of this by transferring resources be-
ing used in support of this obligation to other tasks, e.g. the Likely
Complete critical state shown in Table 6.

State Properties
Pre-trigger No new E(X) has occurred

Agent obliged to achieve G(X), maintain G(X) or behave in
way B(X) on every E(X)

Reaction
Active

E(a) occurred

As Pre-achievement, Maintenance or Pre-trigger state for
G(a)/B(a)
Agent obliged to achieve G(X), maintain G(X) or behave in
way B(X) on every E(X)

Reaction
Failed

E(a) occurred

As respective Failure state for reaction G(a) or B(a)
Agent obliged to achieve G(X), maintain G(X) or behave in
way B(X) on every E(X)

Reaction
Succeeded

E(a) occurred

As respective Succeeded state for reaction G(a) or B(a)
Agent obliged to achieve G(X), maintain G(X) or behave in
way B(X) on every E(X)

Succeeded E(X) can never occur again
Cancelled No agent obliged to achieve G(X), maintain G(X) or behave in

way B(X) on every E(X)
Sub-State Additional Properties
Initial
Imminent E(X) is likely to occur imminently
Likely
Complete

E(X) is unlikely to occur again

Table 6. Basic states (top) and sample pre-trigger sub-states (bottom) of a
behaviour obligation

3.3 Example

As an example, in Table 7, we enumerate critical states for an
achievement obligation, indexed O2, in the long-term aftercare con-
tract of Table 2. It is an achievement obligation as it describes an
eventual state of the system in which a state has been achieved, i.e.
90% of servicing cases were performed in the preferred time period.
When the contract first comes into force, i.e. the system time is within
the contract period, the state Pre-achievement: Initial holds. In this
state, insufficient cases have been performed to determine whether
success is likely. After 5% of cases are performed, the system will be
in either Pre-achievement: Satisfactory or Pre-achievement: Danger
states, and may vary between them over the contract period. Pre-
achievement: Satisfactory holds where over 5% of cases are per-
formed within the preferred time, while Pre-achievement: Danger
holds where between 5% and 10% of cases exceeded that time. The
value of taking account of these two states is that transfer of re-
sources between fulfilment of different obligations can be triggered
by changes of state. Eventually, the system will reach either Suc-
ceeded state, where the contract period is exceeded and over 90% of
cases were performed on time, or Failure state, where over 10% have
exceeded the preferred time. The choice of the appropriate sub-states
(Pre-achievement: Satisfactory and Pre-achievement: Danger in this
case) is entirely application dependent: considering more states al-
lows finer control as appropriate, but may also add overheads.

Pre-
achievement:
Initial

Less than (estimated) 5% of servicing cases performed and
within contract period

Pre-
achievement:
Satisfac-
tory

Over 5% of cases performed, less than 5% exceeded preferred
time and within contract period

Pre-
achievement:
Danger

Between 5% and 10% of cases exceeded preferred time and
within contract period

Succeeded Less than 10% of cases exceeded preferred time and beyond
contract period

Failed More than 10% of cases exceeded preferred time

Table 7. States of aftercare contract obligation O2

4 Architecture of Contract-Based Systems
Aside from modelling contract-based systems using the CONTRACT

framework, we also address the issue of administration: how to man-
age the processes involved in creating, maintaining, acting on and
otherwise processing contracts and contract proposals. We identify
four key process types in the contract life-cycle.

Establishment brings about the existence of the contract.
Maintenance and Update ensures a contract’s integrity over time.
Fulfilment brings about the fulfilment of obligations while observ-

ing its prohibitions.
Termination or Renewal end the normative force of the contract,

or renew it to apply for a longer period.

Each of these process types can be instantiated in different ways,
depending on the application and its deployment. The choice dictates
the roles agents must play to fulfil the administration duties implied.
Below, we examine each process type in turn.

4.1 Establishment
There are many potential ways to establish a contract, varying in
complexity. To give an illustration, we present two below.
Full Proposal Establishment Process Here, one party, the pro-
poser, creates a full proposal, excluding some assignments of roles
to agents, and signs it. It then uses a registry to discover agents that
may fulfil the unassigned contract roles. For each unassigned role in
turn, it offers the proposal to an agent, a potential party it is satisfied
can assume that role. If the party is willing, it signs the proposal and
returns it. When the last role is filled, a contract is established
Template Discovery Establishment Process Alternatively, a pro-
cess may be used in which an agent discovers a contract template
that may be instantiated in a way that fulfils its goals. This implies
the use of a template repository, where templates can be stored. Such
templates may have some assigned roles; that is, they may describe
services for which a provider is willing to negotiate terms.

4.2 Maintenance and Update
The continued existence and integrity of a contract after establish-
ment is important in reliable systems. As with establishment, there
are multiple ways in which this can be achieved, and the functional-
ity that needs to be provided depends on the particular contract and
application.
Contract Store Maintenance Process Here, contract parties use a
contract store to maintain and control access to contracts. The store
is obliged only to allow agents to change the contract when all parties
send a signed agreement of the change to be made.

22

All Party Signature Maintenance Process In this process, integrity
is preserved by the contract being signed by all parties in a way that
prevents editing without detection; for example, digital signatures
based on reliable certificates. The signed document includes the con-
tract itself, and an indication of whether it is a revision of a previous
version. Each party should check the signatures of the contract before
accepting it as binding.

4.3 Fulfilment
For every contractual obligation and prohibition, there are certain
processes that can be performed to help ensure they are fulfilled.
As with the processes above, these imply particular administrative
roles that must be played by agents. The administrative roles carry
with them obligations, prohibitions and permissions, which may be
documented in the same contract as the one that is the target of ad-
ministration, or another contract. The processes below often refer to
particular system states with regard to obligations: these are the states
specified in Section 3.
Observation of Fulfilment Process An observer observes state
changes to determine whether contractual obligations are being ful-
filled. It can notify other agents when an obligation is being violated
or in danger of violation4. An observer X is in an obligation pattern
of the following form:

X is obliged to observe for critical state S of contract clause
C, and notify registered listeners when it occurs.

Management of Fulfilment Process A manager is an agent that
acts when an obligation is not being fulfilled, is in danger of not
being fulfilled or a prohibition is breached. It knows about the prob-
lem by (conceptually at least) registering to listen to the notifications
from an observer. Manager is a role, and one agent may play the role
of both manager and observer. The nature of the action taken by a
manager may vary considerably. In highly automated and strict ap-
plications, an automatic penalty may be applied to a party. In other
cases, a management agent may be a human who decides how to
resolve the problem. Alternatively, a manager may merely provide
analysis of problems over the long term, so that a report can be pre-
sented detailing which obligations were violated. A manager X is in
an obligation pattern of the following form:

X is obliged, whenever the system reaches a critical state S of
contract clause C, to perform action A.

Note that we avoid the sometimes used term, enforcer, because en-
forcement implies action either in the case of failure or in the case of
likely failure, and often sanctions or financial penalties. In the appli-
cations we are considering, likely success is also a good state to act
upon, e.g. to reallocate resources used for the successful obligation,
and actions may take softer forms, e.g. notified humans renegotiate
the contract, so the more generic term, manager, is used.

An example of an observer’s obligation in the aerospace appli-
cation is shown in Table 8 (top), and of a manager’s obligation in
Table 8 (bottom). The observer, Checker, is obliged to check that a
Danger state has not been reached for the number of suitable engines
available at a given location, and the manager, Enforcer, listens to
observations on this state and rectifies the situation when it occurs.
4 Note that we do not use another term sometimes appearing in the literature,

monitor, because it is also often used to refer to quantitative infrastructure-
level measurements of system metrics: in the case of many business appli-
cations, observation is of discrete high-level states.

Roles Checker, Manufacturer, Operator
Obligations Checker monitors the number of engines available to the man-

ufacturer at a given location that are suitable for a given oper-
ator, and notifies registered agents if it falls below a minimum
quantity.

Roles Enforcer, Checker
Obligations Enforcer, on hearing from checker that the number of suitable

engines at a location has fallen below a minimum level, trans-
ports a suitable engine from another location.

Table 8. Engine supply checking contract (top) and Engine supply
enforcement contract (bottom)

4.4 Termination and Renewal
Termination of a contract means that the obligations and other
clauses contained within it no longer have any force. A contract may
be terminated in several ways: (i) it may terminate naturally if the
system reaches a state in which none of its clauses apply, e.g. a con-
tract’s period of life expires or all obligations have been met; (ii) it
may terminate by design if the contract has an explicit statement that
the contract is terminated when a particular event occurs (e.g. if one
party fails to meet an obligation, the contract is terminated and all
others are released from their obligations); or (iii) it may terminate
by agreement, if parties agree that the contract should no longer hold,
and update it accordingly (in line with the process chosen for the
Maintenance and Update type above). Renewal of a contract means
that a contract that would have imminently terminated naturally is
updated so that termination is no longer imminent (again depending
on the Maintenance and Update process type above).

4.5 Administrative Roles and Components
The processes above all require the fulfilment of particular adminis-
trative roles, e.g. contract store, registry, observer, manager. For some
of these components, we can provide generic implementations. For
example, a contract store, based solely on contract documents and
having nothing to do with the application itself, is easy to imple-
ment generically. Others, such as managers, need to have application-
specific instantiations, as dealing with a contractual obligation not
being fulfilled varies greatly between applications. Specifying the
components further is largely a technology-dependent issue out of
scope of this paper.

5 Related Work
There has been much previous work on various aspects of contract-
based system modelling, enactment and administration, and our ap-
proach is intended to build on and be compatible with other ideas
presented elsewhere. For example, there are many approaches to ne-
gotiation which may be used in the establishment of contracts [13],
and the administration of contracts can integrate with other useful be-
haviour, such as observation of fulfilment and violation of obligations
potentially feeding into a longer-term assessment of agents [7]. Work
on multi-party contracts [19] adopt modelling techniques specifically
designed to enable detection of parties responsible for contract viola-
tion, but do not use normative concepts to regulate agent behaviour,
or model other contract administration processes.

In addition, the wider domains of normative systems and agree-
ment in service-oriented architectures informs our work. Concepts
such as norms specifying patterns of behaviour for agents, contract
clauses as concrete representations of dynamic norms, management
or enforcement of norms itself being a norm, are all already estab-
lished in the literature [6, 7, 15, 8].

23

However, the approach in this paper is distinct in that it is con-
cerned with the development of practical system deployments for
business scenarios. In particular, business systems operate in the con-
text of wider organisational and inter-organisational processes, so
that commitments, providing assurance over the actions of others as-
sumes great importance. While potentially less flexible over the short
term, explicit contracts provide just such commitments and are there-
fore more appropriate for business systems than more flexible, less
predictable ad hoc approaches [9, 17].

We also believe our system to be more widely applicable than
some other approaches. By classifying processes into types with dif-
ferent instantiations, the architecture can be incorporated into a wider
range of application domains and deployments than fixed protocols
would allow. In addition, we describe how administrative functions,
such as storing or updating a contract, can be achieved. This con-
trasts with specifications such as WS-Agreement and Web Services
Service Level Agreement, where the specifications cover only part of
the necessary administration [2, 16]. Abstract architectures for elec-
tronic contracting, and associated case studies, have been described
elsewhere; most notably in the work of Grefen et.al [10, 3]. How-
ever, accommodation of deontic specifications in order to regulate
agent behaviour is not modelled in this work. Our approach aims for
broad observation and management of obligations and prohibitions,
so as to verify whether they are being achieved, prevent failure when
in danger of violation and take advantage of success when obliga-
tions are being easily met. Some existing work does consider system
states with regard to contract clauses [14], but none, to our knowl-
edge, classifies obligations and the critical states they imply as we
have done in this paper, a necessary pre-requisite to observing and
managing obligation fulfilment in accordance with a particular ap-
plication.

Others have raised the issue that observers and managers have,
themselves, to be observed and managed [11]. Here, by modelling
observers and managers as agents, we allow for the same contract
framework to apply to them. However, this clearly has its limits and
at some point trust between agents must be explicitly modelled in the
system, a topic to be addressed in future work.

6 Conclusions and Future Work

In this paper, we have presented the CONTRACT conceptual frame-
work and architecture, and shown how they apply to aircraft af-
tercare. By creating a technology-dependent implementation along
these lines, an application can take advantage of the reliable coordi-
nation provided by electronic contracts. The CONTRACT project aims
to allow multi-agent systems to be verified on the basis of their con-
tracts, building on work by Lomuscio et al. on deontic interpreted
systems [12]. While this verification is beyond the scope of this pa-
per, it places a requirement on our framework that the properties of
the target system are identified and isolatable, and a requirement on
the architecture that such information can be captured in order to
pass to a verification mechanism. Perhaps equally importantly, we
also aim for an open source implementation built on Web Services
technologies, requiring the architecture to be compatible with such
an objective. Finally, taking a very practical standpoint, we intend to
construct a methodology to guide development of applications that
use electronic contracts through the process from conceptual frame-
work to deployment. To ensure wide applicability, this will be ap-
plied to CONTRACT’s other test applications in insurance settlement,
software provisioning and certification testing.
Acknowledgement: The CONTRACT project is co-funded by the Eu-

ropean Commission under the 6th Framework Programme for RTD
with project number FP6-034418. Notwithstanding this fact, this pa-
per and its content reflects only the authors’ views. The European
Commission is not responsible for its contents, nor liable for the pos-
sible effects of any use of the information contained therein.

REFERENCES
[1] Aerogility. http://www.aerogility.com/, 2007.
[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, Jim

Pruyne, J. Rofrano an S. Tuecke, and M. Xu, ‘Web services agreement
specification (ws-agreement)’, Technical report, Global Grid Forum,
(2004).

[3] S. Angelov and P. Grefen, ‘A case study on electronic contracting in
on-line advertising - status and prospects’, in ; Network-Centric Col-
laboration and Supporting Frameworks - Proceedings 7th IFIP Work-
ing Conference on Virtual Enterprises, pp. 419–428, (2006).

[4] R. Conte and C. Castelfranchi, ‘Norms as mental objects. From norma-
tive beliefs to normative goals’, in MAAMAW93, pp. 186–196, (1993).

[5] R. Conte, R. Falcone, and G. Sartor, ‘Agents and norms: How to fill the
gap?’, Artificial Intelligence and Law, 7, 1–15, (1999).

[6] C. Dellarocas, ‘Contractual agent societies: Negotiated shared context
and social control in open multi-agent systems’, in Workshop on Norms
and Institutions in Multi-Agent Systems, 4th International Conference
on Multi-Agent Systems, Barcelona, Spain, (June 2000).

[7] F. Duran, V. Torres da Silva, and C. J. P. de Lucena, ‘Using testimonies
to enforce the behaviour of agents’, in AAMAS’07 Workshop on Coor-
dination, Organization, Institutions and Norms in agent systems, eds.,
Jaime Sichman and Sascha Ossowski, pp. 25–36, (2007).

[8] Andrés Garcı́a-Camino, ‘Ignoring, forcing and expecting concurrent
events in electronic institutions’, in Coordination, Organization, Insti-
tutions and Norms in agent systems (COIN@AAMAS’07). Co-held in
Sixth International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, Honolulu, Hawai’i, USA, (May 2007).

[9] M. Ghijsen, W. Jansweijer, and R. Wielinga, ‘Towards a framework
for agent coordination and reorganization, agentcore’, in AAMAS’07
Workshop on Coordination, Organization, Institutions and Norms in
agent systems, eds., J. Sichman and S. Ossowski, pp. 13–24, (2007).

[10] P. Grefen and S. Angelov, ‘On τ , µ, π and ε-contracting’, in Proceed-
ings CAiSE Workshop on Web Services, e-Business, and the Semantic
Web, pp. 68–77, (2002).

[11] Andrew J. I. Jones and Marek J. Sergot, Deontic Logic in Computer Sci-
ence: Normative System Specification, chapter On the Characterisation
of Law and Computer Systems: The Normative Systems Perspective,
275–307, John Wiley & Sons, 1993.

[12] A. Lomuscio and M. Sergot, ‘Deontic interpreted systems’, Studia Log-
ica, 75, (2003).

[13] H. Lopes Cardoso and E. Oliveira, ‘Using and evaluating adaptive
agents for electronic commerce negotiation’, in Proceedings of the In-
ternational Joint Conference, 7th Ibero-American Conference on AI:
Advances in Artificial Intelligence, volume 1952 of Lecture Notes In
Computer Science, pp. 96–105, (2000).

[14] H. Lopes Cardoso and E. Oliveira, ‘A contract model for electronic
institutions’, in AAMAS’07 Workshop on Coordination, Organization,
Institutions and Norms in agent systems, eds., J. Sichman and S. Os-
sowski, pp. 73–84, (2007).

[15] F. Lopez y Lopez, M. Luck, and M. d’Inverno, ‘A normative framework
for agent-based systems’, Computational and Mathematical Organiza-
tion Theory, 12(2–3), 227–250, (2005).

[16] H. Ludwig, A. Keller, A. Dan, R. P. King, and R. Franck, ‘Web service
level agreement (wsla), language specification’, Technical report, IBM
Corporation, (January 2003).

[17] E. Muntaner-Perich, J. Lluis de la Rosa, and R. Esteva, ‘Towards a for-
malisation of dynamic electronic institutions’, in AAMAS’07 Workshop
on Coordination, Organization, Institutions and Norms in agent system,
eds., J. Sichman and S. Ossowski, pp. 61–72, (2007).

[18] S. Willmott, M. Dehn, M. Luck, M. Pechoucek, A. Lomuscio,
J. Vazquez, and J. Dale, ‘Contract based approaches to robust, ver-
ifyable cross-organisational web services applications’, Technical re-
port, Universitat Politcnica de Catalunya, (2007).

[19] Lai Xu, ‘A multi-party contract model’, ACM SIGecom Exchanges,
5(1), 13–23, (2004).

24

Cooperation through Tags and Context Awareness
Nathan Griffiths 1

Abstract. In recent years a range of techniques such as trust, rep-
utation and social norms have been used to support cooperation. At-
tention has tended to focus on situations where a degree of reci-
procity, either direct or indirect, exists between agents, and existing
techniques typically rely on such reciprocity to engender coopera-
tive behaviour. Increasingly, environments are emerging where large
numbers of agents interact without ongoing repeat interactions, in
which there is little or no reciprocity. In this paper, we propose a
mechanism to support cooperation without requiring reciprocity. Our
approach supplements tag-based cooperation with an assessment of
neighbourhood context to cope with cheaters. Using a simple peer-
to-peer scenario we show how cooperative behaviour is favoured, and
the effect of cheating agents is reduced.

1 Introduction

A range of techniques including trust, reputation and social norms
have been used to establish and maintain cooperation in multi-agent
systems. Many successful approaches have been developed for a
number of environments. However, the increased use of large dis-
tributed systems such as peer-to-peer (P2P) networks, and the emer-
gence of ubiquitous computing environments, mean that enabling
and maintaining cooperation remains an important question. Such
environments typically contain a large number of agents that must
cooperate, but the environment characteristics are such that repeat
interactions between agents may be rare. Many of the common
approaches for supporting cooperation in multi-agent systems, al-
though helpful, are not a complete solution, since little may be known
about potential interaction partners and there is a relatively low like-
lihood of any subsequent interactions with the same partner. In this
paper we propose a mechanism, that combines ideas from biology
and the social sciences, to support cooperation in such environments.
Our approach is an extension of the tag-based mechanism proposed
by Riolo, Cohen and Axelrod (RCA) [14]. The approach we propose
in this paper is related to that we describe in [6], in which an alterna-
tive extension to RCA’s approach is considered.

Most existing approaches to cooperation are based on reciprocity,
namely the notion that repeated encounters imply that any altruistic
or selfish act performed by an agent may eventually be returned by
the recipient. Direct reciprocity is the simplest, and most common,
approach where two agents have repeat interactions in which there is
the opportunity to “cooperate” or “defect”. The iterated “prisoner’s
dilemma” is a quintessential example of such a setting. In large scale
systems, such as P2P networks, interactions between a given pair
of agents are infrequent and often single-shot, and so there is mini-
mal direct reciprocity present. An alternative is indirect reciprocity,
where a third party is involved in repeat interactions. Agents are un-
likely to have direct repeat interactions, but are likely to interact with
1 University of Warwick, UK, email: nathan@dcs.warwick.ac.uk

others whose behaviour with third parties they have previously ob-
served. Nowak and Sigmund characterise direct reciprocity through
the principle of “You scratch my back, and I’ll scratch yours”. Sim-
ilarly, indirect reciprocity is characterised as “You scratch my back,
and I’ll scratch someone else’s” or “I scratch your back and someone
else will scratch mine” [11]. In some circumstances, however, even
indirect reciprocity might be limited, and we may need to enable co-
operation without reliance on reciprocity of any form, for example if
there is no memory of past encounters [14].

Trust and reputation are the most common approaches to support-
ing cooperation in multi-agent systems [9, 12, 13]. However, such
techniques are based on the notion of reciprocity and so are of limited
use in situations where reciprocity is lacking. In this paper we extend
RCA’s tag-based mechanism [14], to provide a model for establish-
ing and maintaining cooperation that does not assume reciprocity,
and is suitable for situations where repeat interactions are rare. In
the following section we introduce the theoretical approaches upon
which our model is based, along with the promising initial results
obtained by others. The model itself is introduced in Section 3. Our
experimental setting, in the form of a simple P2P system, and se-
lected experimental results are discussed in Section 4, and Section 5
concludes the paper.

2 Related Work

Indirect reciprocity is not an novel idea: biologists and social sci-
entists have long considered cooperation in environments where the
individuals concerned may not directly meet again, but where co-
operative strategies are favoured [1, 3, 10]. Furthermore, theoretical
models of cooperation exist that do not require any reciprocity, but
instead are based on the recognition of cultural artifacts, such as the
“green beard effect” and “kin” recognition [2, 4]. Promising results
have recently been obtained using “tags” [8] as cultural artifacts to
enable cooperation without reciprocity [14], which in has in turn led
to a technique to improve cooperation in P2P networks [7]. Existing
work on tags, however, has given only limited consideration to the
existence of “cheaters” in the population, and it is this issue that we
address in this paper.

Riolo, Cohen and Axelrod describe a tag-based approach to coop-
eration in which an agent’s decision to cooperate is based on whether
an arbitrary “tag” associated with it is sufficiently similar to that asso-
ciated with the potential recipient [14]. RCA illustrate their approach
using a simple “donation scenario” in which each agent is chosen to
act as a potential donor with a number of neighbours. If the agent
donates it incurs a cost c and the recipient receives a benefit b, oth-
erwise both agents receive nothing (it is assumed that b > c). RCA
use parameter values of b = 1 and c = 0.1. (These values are in turn
adopted from Nowak and Sigmund, and the addition of a cost of 0.1
is to avoid negative payoffs [10].)

25

In RCA’s model each agent i is initially randomly assigned a tag
τi and a tolerance level Ti with a uniform distribution from [0, 1]. An
agent A will donate to a potential recipient B if B’s tag is within A’s
tolerance threshold TA, namely |τA−τB | ≤ TA. Thus, agents with a
high tolerance will donate to others with a wide range of tags, while
those with a low tolerance only donate to others with very similar
tags [14]. RCA have performed simulations in which each agent acts
as a potential donor in P interaction parings, after which the popu-
lation of agents is reproduced in proportion to their relative scores.
Each offspring’s tag and tolerance is subject to a potential mutation,
such that with some small probability a new (randomly selected) tag
is received or the tolerance is mutated by the addition of Gaussian
noise (with mean 0 and a small standard deviation). RCA found that
a high cooperation rate can be achieved with this simple model, in
which no reciprocity is required. Their results show oscillations in
which a cooperative population is established, only to be invaded by
a mutant whose tag is similar (and so receives donations) but with
low tolerance (and so does not donate). Such mutants initially do
well and take over the population, lowering the overall rate of coop-
eration. Eventually, the mutant tag becomes the most common and
cooperation again becomes the norm [14].

RCA’s approach is an effective mechanism for achieving coop-
eration without relying on reciprocity, but their model relies on an
assumption that no cheaters are present in the population. A cheat-
ing agent is one that accepts donations, but will not donate to others,
even if the “rules” of the system dictate that it should. Thus, a cheater
in RCA’s scenario would accept donations, but never donate to oth-
ers regardless of tag similarity. We assume that cheaters follow the
usual rules of reproduction in terms of offspring characteristics (e.g.
tag and tolerance), but that their offspring will also be cheaters.

Hales and Edmonds (HE) apply RCA’s approach in the context of
a P2P network, with two important changes [7]. The first change is
to adopt RCA’s “learning interpretation” of the reproduction phase,
such that each agent compares itself to another and adopts the other’s
tag and tolerance if the other’s score is higher (again subject to po-
tential mutations) [14]. The second change is that HE interpret a tag
as an agent’s set of neighbours in the P2P network. Thus, adopting
another agent’s tag is equivalent to re-wiring the P2P network such
the other agent’s connections are adopted [7]. Again, there is a small
probability of mutation, which is interpreted as replacing a randomly
selected neighbour with another node in the network. Simulations
performed by HE have shown this approach to be very promising in
situations where agents are able to re-wire the network, and in which
there are no cheaters. In this paper, motivated by HE’s promising re-
sults, we focus on achieving cooperation in the presence of cheaters,
without permitting agents to re-wire their network neighbourhoods.
Our approach is based on RCA’s model, and HE’s application of
it (minus re-wiring), supplemented by a mechanism to cope with
cheaters.

3 Extending Tags through Context Assessment

In this paper we use a P2P network as an illustrative scenario, and
although we intend our approach to be fairly generic, our discus-
sion will focus on a P2P setting. We consider a network of nodes, or
agents, in which each agent has a fixed number n of connections to
neighbours. The network topology is assumed to be fixed, and we do
not permit agents to re-wire their network connections. Furthermore,
unlike RCA and HE we assume that a proportion of the population
will be cheaters, meaning that they will take all the benefits offered to
them but will always refuse to act cooperatively towards others. For

simplicity, we adopt the “donation scenario” used by RCA, along
with their parameter values of b = 1 and c = 0.1 for the recipient
benefit and donor cost respectively. It should be noted that although
this is an artificial scenario, it could be extended in the manner of
HE to more realistic P2P applications such as file sharing [7]. In
HE’s approach a node’s tag is interpreted as being its specific set of
neighbours, and tolerance measures the similarity between these sets.
Other interpretations are possible, since a tag is simply a discernible
attribute or trait. Thus, in a P2P setting a tag might also correspond to
service characteristics as well as network properties (as in HE’s ap-
proach). For example, tags could be interpreted as the set of services
offered by a node, or the set of users of a particular node.

Our approach is founded upon RCA’s tag-based technique, but we
incorporate a simple mechanism to combat cheaters in which agents
assess their current context, in terms of their neighbours’ donation
behaviour, as part of the decision to donate. Each agent i is initially
assigned an arbitrary tag τi and tolerance Ti with uniform distribu-
tion from [0, 1]2. As in RCA’s model, an agent A will donate to a
potential recipient B if B’s tag is within a certain threshold of its
own. To demonstrate the impact of cheaters, initially suppose that
this threshold corresponds to A’s tolerance (as per RCA’s model),
meaning that if |τA − τB | ≤ TA then A will donate to B. Later,
we will expand this definition to include A’s assessment of its cur-
rent context. RCA’s learning interpretation of reproduction is adopted
(i.e. that used by HE) such that after a fixed number P of interaction
pairings an agent compares itself to another selected at random. If
the other agent is more successful than itself then the other’s de-
tails (its tag and tolerance) are copied, meaning that the other agent
reproduces, otherwise no change is made. If the parent agent is a
cheater, then its offspring will also be a cheater, regardless of its other
characteristics. After reproduction there is a potential mutation of the
offspring’s tag and tolerance, with probabilities mτ and mT respec-
tively. In the reproduction stage it is the tag and tolerance values that
are copied, and not the network neighbourhood. Each offspring has
the same set of neighbours as the node that initiated the reproduc-
tion (i.e. the node that compared itself with another). Since we are
using RCA’s learning interpretation of reproduction this means that
the network topology remains static for all generations, and it is the
tag and tolerance values that are “learnt”.

In common with RCA we find that a relatively stable donation rate
(i.e. cooperation) over a large number of generations is established
for appropriate parameters, provided that cheaters are not introduced
into the population. Figure 1 shows the dynamics of the donation
rate for a configuration that mirrors RCA’s setting. Specifically, we
use the parameter values mτ = mT = 0.01 and P = 3. Note
that in our P2P setting an agent has a restricted set of neighbours
(in this case n = 49 where the network size N = 100) whereas in
RCA’s approach an agent has all others in the population as “neigh-
bours” in this sense. Our values differ from those used by RCA in
that the probability of tag mutation and tolerance mutation are lower
(RCA use mτ = mT = 0.1). Using these parameters the form of
our results matches those obtained by RCA in [14]. If we use RCA’s
parameter values for mτ and mT we get a significantly lower dona-
tion rate than in their simulations. The reasons for this are unclear,
and require future investigation. However, Edmonds and Hales no-
tice similar differences from RCA’s results, and suggest that bias in
reproducing agents with equal scores and automatic donation to “tag

2 More strictly we allow tolerance to have a lower bound of−10
−6 to address

Roberts and Sherratt’s concerns that RCA’s approach forces agents with
identical tags to always cooperate [15]. The results discussed in this paper
permit this small negative tolerance.

26

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
on

at
io

n
ra

te

Generations

Figure 1. Donation rate with no cheaters using RCA’s approach.

clones” in RCA’s simulation are potential contributory causes [5].
Figure 1 shows that RCA’s model (parameter values aside) allows

cooperation to be established in the absence of cheaters. Unfortu-
nately, when cheaters are introduced cooperation soon disappears.
Figure 2 shows the effect of creating a population where a proportion
of agents act as cheaters, who accept donations from others but never
donate (regardless of tag similarity). Where there are no cheaters (the
upper dotted line) cooperation is established as before. Introducing
5% of the population as cheaters reduces the donation rate (the solid
line) and allowing 10% of agents to be cheaters (the dashed line)
leads to minimal cooperation (with under 10% of interactions being
cooperative). Without modification, therefore, RCA’s approach soon
fails to provide cooperation in the presence of cheaters, with even
relatively small proportions of cheaters significantly reducing the av-
erage donate rate. Note that Figures 1 and 2 show a single simulation
run to illustrate the evolution of the system. The results presented
later in this paper are based on an average across multiple runs.

To cope with the presence of cheaters we extend RCA’s approach
such that the decision to donate is related to the context in which
an agent is situated, in addition to its tolerance. Each agent has a
fixed set of n connections to its neighbours, and we assume that these
neighbours are able to observe the agent’s donation behaviour. This
observation assumption is realistic in many real-world settings. For
example, in a file sharing system nodes can observe whether other
nodes’ downloads have completed, or in a communication network
nodes can detect whether packets have been forwarded. Using the
observations of its neighbours’ donation behaviour, an agent is able
to assess the context in which it is situated, with respect to how coop-
erative its neighbours are (i.e. how often they donate). Agents have a
fixed length memory, in which they records the last l donation inter-
actions observed for each of their neighbours. Where the neighbour
donated to another agent a value of +1 is recorded, and where it re-
fused to donate a value of 0 is recorded. The memory operates as a
FIFO queue, such that new entries are appended until the maximum
capacity of l is reached, at which point the oldest entry is removed
from the head of the queue to allow the new entry to be appended.
Based on the set of observations across all neighbours an agent can
estimate the current context. Note that this memory is fairly sparse,
since the number of interactions is relatively small compared to the
number of agents, and so the overhead incurred is fairly small.

In order to assess its current context an agent considers each of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
on

at
io

n
ra

te

Generations

No cheaters
5% cheaters

10% cheaters

Figure 2. The effect of cheaters on donation rate with RCA’s approach.

its neighbours in turn, and taking them together builds an assessment
of how cooperative its context is (in terms of donations). The contri-
bution to the context cn of neighbour n is simply the proportion of
observed interactions in which the neighbour donated, given by:

cn =

{
∑ln

j=1
oj

n

ln
if ln > 0

0 otherwise
(1)

where oj
n represents the j’th observation of n (i.e. +1 for a dona-

tion and 0 for a refusal, as defined above), and ln is the number of
observations of n’s donation behaviour (ln < l). By considering the
donation behaviour of each of its n neighbours, an agent can assess
its current context CA as follows:

CA =

∑n

i=1
cn

n
(2)

An agent can now consider its context when deciding whether or
not to donate. Our assumption is that an agent is more likely to do-
nate if in a cooperative context. This is related to the notion of in-
direct reciprocity in that agents “expect” that by donating they are
likely to receive a donation from some other (observing) agent in the
future. However, because the number of interactions is small com-
pared to the number of agents, this is a weak notion of indirect reci-
procity. Specifically, we do not assume that a donor will have directly
observed a recipient’s past behaviour, but only that donors are able
to make a general assessment of their current context. The notion of
context is incorporated into the model by adapting the decision to do-
nate, such that both tolerance and context are considered. To ensure
that an agent has sufficient observations on which to base its assess-
ment we introduce a minimum observations threshold σ. If the total
number of observations exceeds σ then context is incorporated into
the donation decision, otherwise RCA’s standard approach is used.
Thus, if

∑n

i=1
ln ≥ σ then context is incorporated into the donation

decision, while if
∑n

i=1
ln < σ tolerance alone is used as per RCA’s

approach. Assuming that there are sufficient observations, then an
agent A will donate to B if:

|τA − τB | ≤ (1 − γ).TA + γ.CA (3)

where TA is A’s tolerance and CA its assessment of the current con-
text. The parameter γ allows us to tune the model. A value of γ = 0

27

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0
 10

 20
 30

 40
 50 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

donation rate

cheater %

tuning

donation rate

Figure 3. Donation rate using “standard” reproduction.

means that the model is identical to RCA’s approach, while a value
of γ = 1 implies that the decision to donate is based solely on the
agent’s assessment of its context, with tolerance having no bearing.
Values between 0 and 1 allow both tolerance and context to influence
the donation decision.

Our approach differs from typical approaches to achieving coop-
eration through trust and reputation, since there is less reliance on the
existence of specific observations. Trust and reputation mechanisms
typically assume that, taken together, a group of agents will have suf-
ficient information about an individual’s past behaviour to estimate
its reputation [9, 13]. Such information is not guaranteed in a P2P set-
ting, and so we use a general assessment of an agent’s context, rather
than attempting to assess an individual’s cooperative nature. Our ex-
perimental results show that using this approach we can still achieve
a significant improvement in cooperation. (Although certainly, if suf-
ficient information was available to use a more standard reputation
mechanism, then it would be likely to perform better.)

The second area in which we consider an alternative to RCA’s ap-
proach is with respect to reproduction. In RCA’s model, after a cer-
tain number of interactions an agent will compare itself to another
at random. If the other agent is more successful then its tag and tol-
erance values are copied (subject to minor mutations), i.e. the suc-
cessful agent reproduces. In addition to replacing tolerance in the
decision to donate by a combination of tolerance and context, we
also consider using context for reproduction. If on comparison with
another agent the other is more successful, its tag is copied, as is its
assessment of its context. For the resulting offspring, the decision to
donate becomes a consideration of a combination of its current con-
text and its parent’s context. Thus, offspring A will donate to B if:

|τA − τB| ≤ (1 − ϑ).Cparent(A) + ϑ.CA (4)

where Cparent(A) refers to A’s parent’s assessment of its context (at
time of reproduction), and ϑ is a tuning parameter that allows us to
determine the influence of the current and parent’s context assess-
ments. If ϑ is 1 then only the current context assessment is con-
sidered, while a value of 0 means that only the parent’s context is
considered. Note that the parent’s context is only considered by its
immediate children, since any subsequent children only inherit the
current assessment of context from their parents, which is indepen-
dent from the grandparent’s context assessment.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0
 10

 20
 30

 40
 50 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

donation rate

cheater %

tuning

donation rate

Figure 4. Donation rate using “context-based” reproduction.

4 Results and Discussion

We have performed a number of simulations to investigate the effec-
tiveness of our model, the influence of the tuning parameters (γ and
ϑ), and the alternative reproduction mechanisms. Our simulations are
built using the PeerSim P2P simulator3. We have experimented with
various networks sizes, neighbourhood sizes and parameter values.
Our simulations typically ran for 1500 generations, although longer
simulations have been undertaken to check for long term stability.
In this section we discuss the main findings based on our results. In
the previous section, Figures 1 and 2 show how the donation rate
evolves and oscillates over generations in a single simulation run. In
this section, however, we average the donation rate over the whole
simulation (1500 generations), and further take an average over 10
runs of the simulation. This allows us to compare donation rates for
different configurations, without having to consider the inherent os-
cillations that the tag-based approach produces.

The initial tag and tolerance assigned to an agent in the simu-
lation results presented here are randomly selected uniformly from
[0, 1]. We have also followed RCA and explored high initial tolerance
(T = 0.5) and low initial tolerance (T = 0.005) settings. Our results
mirror those found by RCA in that other than for short transients the
end results are not substantially different from using a random initial
tolerance [14].

The main characteristics that determine the donation rate in our
model are the tuning parameters γ and ϑ for the ‘standard’ reproduc-
tion and ‘context-based’ reproduction approaches respectively. Fig-
ures 3 and 4 show how the donation rate is affected by the propor-
tion of cheaters for standard reproduction and context-based repro-
duction, for varying values of the tuning parameters. The results are
based on a network size N = 100 with each agent having n = 49
neighbours, a minimum observation threshold of σ = 3, and a his-
tory window size of l = 5. The standard deviation of the donation
rate in all settings shown in these results is fairly low (below 0.05),
showing that the donation rate achieved is fairly consistent.

As expected, higher proportions of cheaters significantly reduce
the donation rate achieved using both reproduction approaches. Fig-
ure 3 allows us to compare the effectiveness of using context in the
donation decision in comparison to RCA’s approach. Where the tun-

3 http://peersim.sourceforge.net/

28

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50

D
on

at
io

n
ra

te

Cheater %

standard repro, tuning = 0 (i.e. RCA’s approach)
standard repro, tuning = 1

context repro, tuning = 0
context repro, tuning = 1

Figure 5. Donation rate for the tuning parameter extremes of both
reproduction methods.

ing parameter γ is set to 0 our model is identical to RCA’s, and as the
proportion of cheaters rises from 0% to 50% the donation rate drops
from around 0.35 to 0.15. It is clear from Figure 3 that increasing
the influence of context in the donation decision, by increasing the
tuning parameter γ, improves the donation rate. This improvement is
most significant at low cheater proportions, but remains even at high
cheater rates. Comparing Figure 4 and Figure 3 we note that using
context-based reproduction also gives an improvement over RCA’s
unmodified approach. Again, the improvement is most pronounced
at low to medium cheater proportions (below 40%). However, for
high proportions of cheaters (50%) using context-based reproduction
actually gives a worse performance than RCA’s mechanism regard-
less of the tuning parameter ϑ. This effect can be better observed
if we consider the donation rate for standard reproduction versus
context-based reproduction for the extremes of the tuning parame-
ters, as shown in Figure 5.

It is clear from Figure 5 that we can improve on the donation rate
achieved by RCA’s unmodified approach (standard reproduction with
γ = 0), shown by the solid line, for all settings of cheater propor-
tion. The best results are obtained using our modification for consid-
ering context in the donation decision rather than tolerance (tuning
parameter γ = 1), but using RCA’s standard reproduction method,
shown by the upper dashed line. Context-based reproduction focus-
ing on the parent’s context (ϑ = 0), the short-dashed line, instead
of standard reproduction gives a slight reduction in performance for
less than 20% cheaters, a very small increase for 20–40%, and a very
signifcant decrease (much worse than RCA) for above 40% cheaters.
Context-based reproduction where the current context is considered
rather than the parent’s context, shown as the dotted line in Figure 5,
performs better than RCA, but worse than our other configurations,
for cheater rates of around 0–25%. For rates above 25% it performs
worse than all the other approaches.

From the results presented so far we can conclude that our mod-
ification to include context in the donation decision does give a sig-
nificant improvement over RCA’s approach. Using context-based re-
production focusing on the parent’s context gives little advantage in
low–medium cheater proportions (for ϑ = 0) and performs worse
than standard reproduction for high cheater proportions (or where
the current context is emphasised with ϑ = 1).

The effect of different history window sizes (l) on the donation
rate is given in Figure 6. Note that for these results the number of

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

D
on

at
io

n
ra

te

History size

standard repro
context repro

Figure 6. Donation rate for varying history window sizes.

pairings between reproduction cycles P was increased accordingly.
It can be seen that above a window size of 5 the effect of window
size on donation rate is minimal for both reproduction methods (both
tuning parameters are set to 1). There is a very small increase in dona-
tion rate when larger histories are considered, but the improvement is
negligible. Furthermore, the memory overhead of maintaining longer
observation histories for each neighbour is likely to outweigh the
small improvement in donations for most settings. For window sizes
below 5 the donation rate is reduced, significantly so below a his-
tory window of 3 interactions. Where a small window size is used
the context-based reproduction method gives slightly improved per-
formance.

We also consider the effect of an agent’s neighbourhood size on
the donation rate. Figure 7 shows the donation rate for both repro-
duction methods (with tuning parameters γ = ϑ = 1) in a popula-
tion of 10% cheaters. Neighbourhood size is shown as the percentage
of the total nodes in the network N that are in an agent’s neighbour-
hood, i.e. n/N × 100. In this case the network size was restricted to
100 for efficiency of simulation, but we have obtained selected corre-
sponding results for larger networks of up to 2500 nodes (the current
practical limit of our simulator’s capabilities). It is clear that regard-
less of network size, using standard reproduction with context in the
donation decision again outperforms the use of context in both the
donation decision and reproduction. Higher donation rates are gener-
ally achieved for larger neighbourhood sizes. For the standard repro-
duction approach donation rate improves with neighbourhood size
up to 60% (i.e. an agent has 60% of the network as neighbours), after
which there is a slight decline in performance. It should be noted,
however, that large neighbourhoods (e.g. above 40%) are likely to be
impractical in most real-world systems, due to the large numbers of
agents involved, and so the results for below 40% are the most rel-
evant to real-world applications. For the context-based reproduction
approach we also see a significant increase in donation rate as the
neighbourhood is initially expanded. This increase is again reduced
for medium to large neighbourhoods, resulting in a slight decline for
very large sizes. Figure 7 also shows the standard deviation of the
runs used to obtain the donation rates. For the standard reproduction
approach the standard deviation is fairly low and consistent (around
0.05). However, using context-based reproduction gives an inconsis-
tent standard deviation (in the range of 0.05–0.2), illustrating the in-
stability of this approach in comparison to standard reproduction.

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100

D
on

at
io

n
ra

te

Neighbourhood size %

standard repro donation rate
context repro donation rate

standard repro stddev
context repro stddev

Figure 7. Donation rate for varying neighbourhood sizes.

5 Conclusions

In this paper we have described a mechanism for establishing coop-
eration amongst agents without a reliance on reciprocity. Building
on RCA’s tag-based approach we have shown how incorporating an
assessment of an agent’s current context into the donation decision
improves the donation rate. Context assessment is dependent on the
extent of the interaction history recorded and on the neighbourhood
size. Our results show that the history window size has minimal im-
pact on donation rate, while increasing neighbourhood size does in-
crease donation rate (at least for practical neighbourhood sizes below
approximately 40%). We also considered an alternative to RCA’s re-
production method, in which a parent’s context was inherited by its
offspring and subsequently used in donation decisions. Our results
demonstrate that this alternative reproduction method was not gener-
ally effective. Overall, our simulations show that augmenting RCA’s
approach with context assessment for the donation decision is suc-
cessful, and gives a significant increase in cooperation (of over 30%
in some settings), but that RCA’s standard method for reproduction
is the most effective.

There are several areas of ongoing work. Primarily, we aim to ex-
plore a more sophisticated mechanism for assessing context, and to
consider alternative methods for enabling offspring to use their par-
ent’s context assessment in the donation decision. Our aim is to in-
vestigate whether the donation rate can be further improved, without
relying on reciprocity. Further in the future we will explore incor-
porating a simple trust model to exploit the limited reciprocity that
exists, even in the kind of large scale environment we consider. Fi-
nally, we aim to simulate our approach in a more realistic P2P setting,
such as the file-sharing example used by HE [7].

REFERENCES
[1] R. D. Alexander, The Biology of Moral Systems, Aldine de Gruyter,

1987.
[2] P. D. Allison, ‘The cultural evolution of beneficent norms’, Social

Forces, 71(2), 279–301, (1992).
[3] R. Boyd and P. J. Richerson, ‘The evolution of indirect reciprocity’,

Social Networks, 11, 213–236, (1989).
[4] R. Dawkins, The Selfish Gene, Oxford University Press, 1976.
[5] B. Edmonds and D. Hales, ‘Replication, replication and replication —

some hard lessons from model alignment’, Journal of Artificial Soci-
eties and Social Simulation, 6(4), (2003).

[6] N. Griffiths, ‘Tags and image scoring for robust cooperation’, in
Proceedings of the Seventh International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-08), (2008, to appear).

[7] D. Hales and B. Edmonds, ‘Applying a socially inspired technique
(tags) to improve cooperation in P2P networks’, IEEE Transactions on
Systems, Man, and Cybernetics, Part A, 35(3), 385–395, (2005).

[8] J. H. Holland, Hidden order: How adaptation builds complexity,
Addison-Wesley, 1995.

[9] A. Jøsang, R. Ismail, and C. Boyd, ‘A survey of trust and reputation
systems for online service provision’, Decision Support Systems, 43(2),
618–644, (2007).

[10] M.A. Nowak and K. Sigmund, ‘Evolution of indirect reciprocity by im-
age scoring’, Nature, 393, 573–577, (1998).

[11] M.A. Nowak and K. Sigmund, ‘Evolution of indirect reciprocity’, Na-
ture, 437, 1291–1298, (2005).

[12] S. D. Ramchurn, D. Huynh, and N. R. Jennings, ‘Trust in multi-agent
systems’, Knowledge Engineering Review, 19(1), 1–25, (2004).

[13] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara, ‘Reputation
systems’, Communications of the ACM, 43(12), 45–48, (2000).

[14] R. Riolo, M. Cohen, and R. Axelrod, ‘Evolution of cooperation without
reciprocity’, Nature, 414, 441–443, (2001).

[15] G. Roberts and T. N. Sherratt, ‘Does similarity breed cooperation?’,
Nature, 418, 499–500, (2002).

30

An Argumentation-based Computational Model of Trust
for Negotiation

Maxime Morge1

Abstract. The fact that open multiagent systems are vulnerable
with respect to malicious agents poses a great challenge: the detec-
tion and the prevention of undesirable behaviours. That is the reason
why techniques such as trust and reputation mechanisms have been
proposed. In this paper, we explore the cognitive science background
which captures the notions of trust, reputation and confidence to pro-
vide a computational trust mechanism applied to negotiations within
artificial societies. For this purpose, we formalize here these notions
and we apply to them a particular argumentation technology for al-
lowing agents to initiate, evaluate, reason, decide, and propagate rep-
utation values.

1 Introduction

In the last decades, multiagent systems have been proposed as a new
paradigm of computation based on cooperation and autonomy. The
decentralization and the openess are main characteristics of these
systems. There is no central point of control and new agents can en-
ter/leave the system during the execution. Therefore, these systems
are vulnerable with respect to malicious agents. This fact poses a
great challenge: the detection and the prevention of undesirable be-
haviours. That is the reason why techniques such as trust and reputa-
tion mechanisms have been proposed.

In this paper, we explore the cognitive science background which
captures the notions of trust, reputation, and confidence to provide
computational trust mechanisms applied to negotiations within arti-
ficial societies. For this purpose, we formalize here these notions and
we apply to them the argumentation technology proposed in [6] for
allowing agents to initiate, evaluate, reason, decide, and propagate
reputation values.

The paper is organised as follows. In Section 2, we introduce the
walk-through example to motivate our approach. Section 3 presents
the background of our proposal. We focus on the notion of interper-
sonal confidence and we characterize it. Section 4 introduces a con-
ceptual framework for analyzing the decision problem related to the
confident behaviour of agents. Section 5 presents our computational
Argumentation Framework (AF) for decision making. Section 7 out-
lines the social interaction amongst agents. This interaction is illus-
trated by an example of information-seeking dialogue to propagate
reputation values. The paper is summarised in section 8 where we
also discuss related and future work.

2 Walk-through example

In order to illustrate our model, we consider an e-procurement sce-
nario where two different types of agents, referred to below as A-type

1 Universit́a di Pisa, Italy, email: morg@di.unipi.it

and B-type agents, negotiate a service. We consider here a specific
case where A-type agents look for a serviceS. The A-type agents
requestingS areAl andAlice; the B-type agents providingS are
Bob andBarbara. Carla is a C-type agent which is an exter-
nal and neutral observer. A-type agents are responsible for selecting
B-type agents. A possible contract may concerns the concrete ser-
vice S(c) and may be betweenAl andBob. Al’s goal consists of
finding and agreeing to a serviceS provided by a B-type agent. Ac-
cording to its preferences and constraints, the undermining of the
quality specified in the contract is preferred than the overcharge of
the price specified in the contract. Taking into account its goal and
preferences/constraints,Al needs to solve a decision-making prob-
lem where the decisions amount to a service and a provider for that
service. On the other hand, the goal of the providerBob consists
of agreeing to provide a service. According toBob’s preferences
and constraints, the seller must pay the service he buys. Taking into
account its goal and preferences/constraints,Bob needs to solve a
decision-making problem where the decisions amount to a service
and a client for that service. The two decision making processes take
place in a dynamic setting, whereby information about other agents,
the services they require/provide and the characteristics of these ser-
vices is obtained incrementally within the dialogues. The outcome of
this process may be the contract obligingBob to deliver on time the
service toAl.

Within our computational model of trust for negotiation, the rea-
soning of each agent is supported by argumentation. In the remainder
of this paper, we will focus on the reasoning ofAl. In the concrete
use case,Al, as a requester, uses argumentation for collecting infor-
mation on the providers. For instance,Al can askCarla its opinion
aboutBob and can ask to justify it (by providing an argument for it).
Al, as a requester, uses argumentation for deciding which provider
it selects taking into account its preferences/constraints and possibly
the inconsistency of information it has gathered. Moreover, through
argumentation, the participants provide an interactive and intelligi-
ble explanation of their choices. For instance,Al can argue that the
selection ofBob is justified since the latter will not overcharge the
price. Thus, agents can use argumentation for reasoning about trust
for negotiating.

3 Reputation model

Cognitive science provides a pertinent and well-grounded back-
ground for developing computational models of trust. In this section,
we focus on the notion of interpersonal confidence. We characterize
it in order to provide a reasoning tool.

According to the Merriam-Webmester, the confidence is the “ faith
or belief that one will act in a right, proper, or effective way”. In

31

the literature, this notion is defined in many different ways by psy-
chologists, sociologists, economists. We restrict ourself here on the
interpersonal confidence, which is the confidence of an agent about
another agent in accordance with the information the first one has
about the interactions of the second one with other agents. Consider-
ing the interpersonal confidence, [7] distinguishes the beliefs about
the confidence that we calledreputation, the reasoning with these
beliefs, and the confident behaviour which is deduced. Considering a
reputation, [7] distinguishes atarget, i.e. the agent which is observed
and evaluated, theobserversi.e. the agents which observe the target,
and theevaluator, i.e. the agent which evaluates and benefits of the
reputation. Actually, we consider here the case where the observation
of the target can be done by several agents, possiblypropagated(i.e.
communicated) to the evaluator.

Let us consider the properties of the reasoning over reputation that
we will consider in this paper. The reputation issubjective, since it
depends on the beliefs of the evaluator. The reputation isuncertain,
since agents needs to accept information with reserve. The reputa-
tion is multidimensional, since it depends on the competences, the
honesty, the foreseeability, the integrity, and the good will of the tar-
get. The reputation isdynamic, since it depends on the interactions of
the target with other agents. The reputation isdefeasible, since it can
be challenged or reinstantiated in the light of new information not
previously available. In this paper, we consider that the reputation is
qualitativeand not quantitative, since an evaluator can trust more a
target than another one but there is no unit to measure reputation.

Amongst the computational model of trust and reputation, [7] dis-
tinguishes:

• the decision tools, i.e. which compute the reputation values and
the confident behaviour;

• theevaluation tools, i.e. decision tools with a revision mechanism
to update the reputation values in the light of new information;

• thereasoning tools, i.e. evaluation tools with a propagation mech-
anism to communicate reputation values;

Obviously, we want to provide here a reasoning tool.

4 Decision analysis

Our methodology is to decompose the complex problem related to
the confident behaviour of agents into elements that can be ana-
lyzed and can be brought together to create an overall representation.
We use hereinfluence diagramswhich are simple graphical repre-
sentations of decision problems [3] including the decisions to make
amongst the possible courses of action (calleddecision nodes, rep-
resented by squares), the value of the specific outcomes that could
result (calledvalue nodes,represented by rectangles with rounded
corners), and the uncertain events which are relevant information for
decision making (calledchance nodes, represented by ovals). In or-
der to show the relationship amongst these elements, nodes are put
together in a graph connected by arrows, calledarcs. We call a node
at the beginning of an arc apredecessorand one at the end of an
arc asuccessor. The nodes are connected by arcs where predecessors
are independent and affect successors. Influence diagrams which are
properly constructed have no cycles. In order to capture multi-criteria
decision making, it is convenient to include additional nodes (called
abstract value nodes, represented by double line) that aggregate re-
sults from predecessor nodes. While aconcrete valueis specified
for every possible combination of decisions and events that feed into
this node, an abstract value is specified for every possible combina-
tion of values that feed into this node, and so the multiple attributes

are represented with a hierarchy of values where the top, abstract
values aggregate the lower, concrete values. We assume that influ-
ence diagrams are provided by users via a GUI which allows them to
communicate user-specific preferences.

We consider here the decision problem related to the confident
behaviour ofAl (cf Fig. 1). Throughout the paper we adopt the
following convention: variables are in italics and constants are in
typescript font. The evaluation of the contract (contract) de-
pends on the selection of the proposal from the providerx about
the servicey. This top main value is is split into abstract val-
ues, the provision of the service (provision) and the provider
(reputation). The evaluation of the service depends on its cost
(cost) and its quality (qos). The evaluation of these criteria de-
pends on the agent knowledge, namely the information about the
services provided by the interlocutors (e.g.price andwarranty).
The evaluation of the partners depends on its reliability (e.g. compe-
tences or honesty) to deliver the service with the same quality (re-
spectively price) as specified in the contract, denotedrqos (respec-
tively rcost). The evaluation of the provider is influenced by its
expected behaviour (will(x, do)) which depends on the testimoni-
als about it previous behaviour,Test(tid, x, done). Each testimo-
nial tid can be provided by a neutral (type(tid,neutral)) or
a concurrent agent (type(tid,concurrent)). The interaction of
the testimonialtid can be direct (int(tid,direct)) or observed
(int(tid,observed)). Moreover, the testimonial can be more or
less recent,time(tid, t). The user represented by the agentAl also
provides, through the GUI, her preferences and constraints. For in-
stance, the undermining of the quality specified in the contract is pre-
ferred than the overcharge of the price specified in the contract. Since
concurrent agent can hide or lie, we prefer testimonials from neutral
agents. In this way, we consider sociological information about the
roles of agents. Even if witness information is usually the most abun-
dant, direct experience is the most reliable source of information.

contract

reputation provision

rcost rqos cost qos

Proposal(x, y)

price(y)warranty(y)will(x, do)

Test(tid, x, done)

type(tid, tp)

int(tid, i)

time(tid, t)

Figure 1. Influence diagram for the confident behaviour.

5 Argumentation framework

According to the approach of defeasible argumentation of [4], argu-
ments are reasons supporting claims which can be defeated2 by other
arguments.

Definition 1 (AF) An argumentation frameworkis a pair AF =
〈A, defeats 〉whereA is a finite set of arguments anddefeats

2 The defeat relation is called attack in [4].

32

is a binary relation overA. We say that a setS of arguments defeats
an argumenta if a is defeated by at least one argument inS.

[4] also analysis when a set of arguments is collectively justified.

Definition 2 (Semantics) A set of argumentsS ⊆ A is:

• conflict-freeiff ∀a,b ∈ S it is not the case thata defeatsb;
• admissibleiff S is conflict-free andS defeats every argumenta

such thata defeats some arguments inS.

For simplicity, we restrict ourself to admissible semantics.

5.1 Decision framework

Since we want to instantiate ourAF for our example, we need to
specify a particular framework capturing the decision problem.

Definition 3 (Decision framework) A decision frameworkis a tu-
pleD = 〈L,Asm, I , T ,P〉, where:

• L is theobject languagewhich captures the statements about the
decision problem;

• Asm, is a set of sentences inL which are taken for granted, called
assumptions;

• I is theincompatibility relation, i.e. a binary relation over atomic
formulas which is asymmetric. It captures the mutual exclusion
between the statements;

• T is thetheorywhich gathers the statements;
• P ⊆ T ×T is a (partial or total) preorder overT , called theprior-

ity relation, which captures the uncertainty of beliefs, the priority
amongst goals, and the expected utilities of the decisions.

In the object languageL, we distinguish six disjoint components:

• a set ofabstract goals(resp.concrete goals), i.e. some proposi-
tional symbols which capture the abstract values (resp. concrete
values) that could result;

• a set ofdecisions, i.e. some predicate symbols which capture the
decision nodes;

• a set ofalternatives, i.e. some constants symbols which capture
the mutually exclusive actions for each decision;

• a set ofbeliefs, i.e. some predicate symbols which capture the
chance nodes;

• thenamesof rules inT which are unique.

In L, we consider strong negation (classical negation) and weak
negation (negation as failure). A strong literal is an atomic first-order
formula, possible preceded by strong negation¬. A weak literal is a
literal of the form∼ L, whereL is a strong literal.

We explicitly distinguishassumable(respectivelynon-assumable)
literals which can (respectively cannot) be taken for granted, mean-
ing that they can or cannot be assumed to hold as long as there is no
evidence to the contrary. Decisions (e.g.Proposal(x, y) ∈ Asm)
as well as some beliefs (e.g.int(tid,observed) ∈ Asm) can be
taken for granted. In this way,D can capture incomplete knowledge.

The incompatibility relation captures the conflicts. We have
L I ¬L, ¬L I L, andL I ∼ L but we do not have∼ L I L. We
say that two sets of sentencesΦ1 andΦ2 are incompatible (Φ1 I Φ2)
iff there is at least one sentenceφ1 in Φ1 and one sentenceφ2 in Φ2

such asφ1 I φ2.
A theorygathers the statements about the decision problem.

Definition 4 (Theory) A theoryT is an extended logic program, i.e
a finite set of rulesR: L0 ← L1, . . . , Lj ,∼ Lj+1, . . . ,∼ Ln with
n ≥ 0, eachLi being a strong literal inL. The literalL0, called
theheadof the rule, is denotedhead(R). The finite set{L1, . . . ,∼
Ln}, called thebody of the rule, is denotedbody(R). The body
of a rule can be empty. In this case, the rule, called afact, is an
unconditional statement.R, called the uniquenameof the rule, is an
atomic formula ofL. All variables occurring in a rule are implicitly
universally quantified over the whole rule. A rule with variables is a
scheme standing for all its ground instances.

For simplicity, we will assume that the names of rules are neither
in the body nor in the head of the rules thus avoiding self-reference
problems. Considering a decision problem, we distinguish:

• goal rulesof the formR: G0 ← G1, . . . , Gn with n > 0. Each
Gi is a goal literal inL. The head of the rule is an abstract goal
(or its strong negation). According to this rule, the abstract goal is
promoted (or demoted) by the goal literals in the body;

• epistemic rulesof the formR: B0 ← B1, . . . , Bn with n ≥ 0.
EachBi is a belief literal ofL. According to this rule,B0 is true
if the conditionsB1, . . . , Bn are satisfied;

• decision rulesof the formR: G ← D(a), B1, . . . , Bn with n ≥
0. The head of the rule is a concrete goal (or its strong negation).
The body includes a decision literal (D(a) ∈ L) and a set of
belief literals possibly empty. According to this rule, the concrete
goal is promoted (or demoted) by the decisionD(a), provided that
conditionsB1, . . . , Bn are satisfied.

Due to our representation of decision problems, we assume that the
elements in the body of rules are independent, the decisions do not
influence the beliefs, and the decisions have no side effects.

In order to evaluate the previous statements, all relevant pieces of
information should be taken into account, such as the uncertainty of
knowledge, the priority between goals, or the expected utilities of the
decisions. In this work, we consider that all rules are potentially de-
feasible and that the priorities are extra-logical and domain-specific
features. We consider that thepriority P which is a reflexive and
transitive relation considering possibleex æquo.R1PR2 can be read
“R1 has priority overR2”. R1\PR2 can be read “R1 has no prior-
ity over R2”, either becauseR1 andR2 areex æquoor becauseR1

andR2 are not comparable. The priority over concurrent rules de-
pends on the nature of rules. Rules areconcurrentif their heads are
identical or incompatible. We define three priority relations:

• the priority overgoal rules comes from thepreferencesovers
goals. The priority of such rules corresponds to the relative im-
portance of the combination of (sub)goals in the body as far as
reaching the goal in the head is concerned;

• the priority overepistemic rulescomes from theuncertaintyof
knowledge. The prior the rule is, the more likely the rule holds;

• the priority overdecision rulescomes from theexpected utilityof
decisions. The priority of such rules corresponds to the expecta-
tion of the conditional decision in promoting/demoting the goal
literal.

In order to illustrate the previous notions, let us consider the goal
rules, the epistemic rules, and the decision rules of our example
which are represented in Tab. 1. According to the decision rules,
the goalrcost (respectivelyrqos) is reached if the partner does
not overcharge the price (respectively undermine the quality) of the
service,r31 (respectivelyr41). According to the goal rules, the un-
dermining of the quality specified in the contract is preferred than

33

the overcharge of the price specified in the contract. Indeed, achiev-
ing the goalsrcost andrqos are required to reachreputation
(cf r134). However, these constraints can be relaxed and the achieve-
ment ofrqos can be relaxed (r134Pr13). According to the epistemic
rules, the testimonials from neutral agents are preferred to the testi-
monials from concurrent agents (r1Pr′1) and the direct interactions
are more reliable than the observed interactions (r2Pr

′
2).

5.2 Arguments

Since we want that our AF not only suggests some actions but also
provides an intelligible explanation of them, we adopt here the tree-
like structure for arguments proposed in [10] and we extend it with
suppositions on the missing information.

Definition 5 (Argument) An argumentbuilt uponD is composed
by a conclusion, a top rule, some premises, some suppositions, and
some sentences. These elements are abbreviated by the correspond-
ing prefixes. An argumenta can be:

1. ahypothetical argumentbuilt upon an unconditional ground state-
ment. If L is an assumable literal (possibly its negation), then
the argument built upon a ground instance of this assumable
literal is defined as follows3: conc(a) = L, top(a) = θ,
premise(a) = ∅, supp(a) = {L}, sent(a) = {L}.
or

2. a built argumentbuilt upon a rule such that all the literals in the
body are the conclusion of arguments.

(a) If f is a fact inT (i.e. body(f) = ∅), then thetrivial argu-
menta built upon this fact is defined as follows:conc(a) =
head(f), top(a) = f , premise(a) = ∅, supp(a) = ∅,
sent(a) = {head(f)}.

(b) If r is a rule in T with body(r) = {L1, . . . , Lj ,∼
Lj+1, . . . ,∼ Ln} and there is a collection of argu-
ments {a1, . . . ,an} such that, for each strong literal
Li ∈ body(r), conc(ai) = Li with i ≤ j and for
each weak literal∼ Li ∈ body(r), conc(ai) =∼ Li

with i > j, we define thetree argumenta built upon the
rule r and the set{a1, . . . ,an} of arguments as follows:
conc(a) = head(r), top(a) = r, premise(a) =
body(r), supp(a)=∪a′∈{a1,...,an}supp(a′),
sent(a)=∪a′∈{a1,...,an}sent(a′)∪body(r)∪{head(r)}.
The set of arguments{a1, . . . ,an} are called the set ofsubar-
gumentsof a (denotedsbarg(a)).

The set of arguments built uponD is denotedA(D).

Notice that the subarguments of a tree argument concluding the weak
literals in the body of the top rule are hypothetical arguments. In-
deed, the conclusion of an hypothetical argument could be a strong
or a weak literal while the conclusion of a built argument is a strong
literal. As in [10], we consider composite arguments, calledtreear-
guments, and atomic arguments, calledtrivial arguments. Contrary
to other definitions of arguments (set of assumptions, set of rules),
our definition considers that the different premises can be challenged
and can be supported by subarguments. In this way, arguments are
intelligible explanations. Moreover, we considerhypotheticalargu-
ments which are built upon missing information or a decision. In this

3 θ denotes that no literal is required.

way, our framework allows to reason further by making suppositions
related to the unknown beliefs and over possible decisions.

In our example, the argumentb (respectivelya), Bob concludes
that Bob will (respectively not) overcharge the service if we sup-
pose that the interaction was observed. The tree argumentsa andb
are composed of four subarguments: one hypothetical argument con-
cluding that the interaction is observed and three trivial arguments
concluding the other premises.

6 Interactions

The interactions amongst arguments may come from their conflicts,
from their nature (hypothetical or built), and from the priority of
rules. We examine in turn these different sources of interaction.

Since their sentences are conflicting, the arguments interact with
one another. For this purpose, we define the following attack relation.

Definition 6 (Attack relation) Leta,b ∈ A(D) be two arguments.
a attacksb iff sent(a) I sent(b).

This relation encompasses both the direct (often calledrebuttal) at-
tack due to the incompatibility of the conclusions, and the indirect
(often calledundermining) attack, i.e. directed to a “subconclusion”.
According to this definition, if an argument attacks a subargument,
the whole argument is attacked.

Since arguments are more or less hypothetical, we define the size
of their suppositions.

Definition 7 (Supposition size) Let a ∈ A(D) be an argument.
Thesize of suppositionsfor a, denotedsuppsize(a), is the num-
ber of suppositions ofa: suppsize(a) = |supp(a)|.

The size of suppositions for an argument is the number of decision
literals and assumable belief literals in the sentences of the argument.

Since arguments have different natures (hypothetical or built) and
the top rules of built arguments are more or less strong, we define the
strength relation as follows.

Definition 8 (Strength relation) Let A1 be a hypothetical argu-
ment, andA2, A3 be two built arguments.

1. A2 is stronger thanA1 (denotedA2 P
A A1);

2. If (top(A2)Ptop(A3)) ∧ ¬(top(A3)Ptop(A2)), then
A2 P

A A3;
3. If (top(A2)\Ptop(A3)) ∧ (suppsize(A2) <

suppsize(A3)) , thenA2 P
A A3;

SinceP is a preorder onT , PA is a preorder onA(T). Since it is
preferable to consider fewer suppositions as possible, built arguments
are preferred to hypothetical arguments. Moreover, we want to take
into account the preferences captured by the priorities. That is the
reason why we consider that an argument is stronger than another
argument if the top rule of the first argument has a proper higher
priority than the top rule of the second argument, or if it is not the
case but the number of suppositions made in the first argument is
properly smaller than the number of suppositions made in the second
argument.

In order to adopt Dung’s seminal calculus of opposition, we define
the defeat relation.

Definition 9 (Defeat relation) Leta,b ∈ A(D) be two arguments.
a defeatsb iff: i) a attacks b; ii) ¬(b PA a).

34

T

r1(tid): will(x, do)← Test(tid, x, do),type(tid,neutral),int(tid, i),time(tid, t)
r2(tid): will(x, do)← Test(tid, x, do),type(tid, tp),int(tid,direct),time(tid, t)
r′

1(tid): will(x, do)← Test(tid, x, do),type(tid,concurrent),int(tid, i),time(tid, t)
r′

2(tid): will(x, do)← Test(tid, x, do),type(tid, tp),int(tid,observed),time(tid, t)
f1: Test(Carla1,Bob,¬overcharge)
f2: Test(Carla1,Bob,¬underquality)
f3: type(Carla1,neutral)
f4: time(Carla1, 1)
f5: Test(Alice1,Bob,overcharge)
f6: Test(Alice1,Bob,underquality)
f7: type(Alice1,concurrent)
f8: time(Alice1, 1)
f9: Test(Al1,Barbara,overcharge)
f10: Test(Al1,Barbara,¬underquality)
f11: type(Al1,neutral)
f12: int(Al1,direct)
f13: time(Al1, 3)
f14: Test(Carla2,Barbara,¬overcharge)
f15: Test(Carla2,Barbara,underquality)
f16: type(Carla2,neutral)
f17: time(Carla2, 2)
f18: price(d,high)
f19: warranty(d,low)
f20: price(c,low)
f21: warranty(c,high)
f22: price(e,low)
f23: warranty(e,low)
f24: price(f,high)
f25: warranty(f,high)

T

r012: contract← reputation,provision
r134: reputation← rcost,rqos
r256: provision← cost,qos
r01: contract← reputation
r13: reputation← rcost
r25: provision← cost
r02: contract← provision
r14: reputation← rqos
r26: provision← qos

T

r31 : rcost← Proposal(x, y),will(x,¬overcharge)
r41 : rqos← Proposal(x, y),will(x,underquality)
r51 : cost← Proposal(x, y),price(y,low)
r62 : qos← Proposal(x, y),warranty(y,high)
r52 : cost← Proposal(x, y),price(y,high)
r61 : qos← Proposal(x, y),warranty(y,low)

Table 1. The epistemic rules (at left), the goal rules (at upper right), and the decision rules (at lower right).

Let us consider our previous example. The argumentsa andb
attack each other. Since the top rules ofa is r1 and the top rule ofb
is r′1, a is stronger thanb, and soa defeatsb. If we consider now the
whole problem, there is an argument concluding thatcontract is
reached if we consider the serviceS(c) provided byBob due to the
provision of the service and the reputation of the potential suppliers.
This argument is in an admissible set, and so this proposal can be
adopted and justified byAl.

7 Social interaction

The social statements are exchanged during dialogues and notified in
thedialogical commitments. Our agent drives the interactions by the
adherence to protocols.

The computation of the reputation values, the confident behaviour,
the revision mechanism and the propagation mechanism are driven
according to the individual/social statements concerning the goals of
agents (their own goals and the goals of their interlocutors), the de-
cisions they make, the knowledge, and preferences over them. The
social statements are exchanged during dialogues and notified in
thedialogical commitmentswhich are internal data structures which
contain propositional/action social obligations involving the agent,
namely with the agent being either the debtor or the creditor. The
choice amongst actions is made according to the agent’s statements
and the preferences over them. The dialogical commitments ofAl
include commitments involvingAl: eitherAl is the creditor of the
commitment, for instance a commitment is added whenBob sug-
gests a concrete service; orAl is the debitor of the commitment, for
instance a commitment is added whenAl accepts it.

In this way, agents reasons and take decision about the proposals
and arguments which are exchanged during the dialogues in accor-
dance to the reputation values. For instance,Al can built an argument
concluding that its goal related to the cost of the service is reached if

the price of the concrete serviceS(c) is low. This argument is useful
for Al to justify its choice,S(c), in front ofBob.

Dialogue protocols are required to conduct the interaction. For this
purpose, the social reasoning uses a boot strap mechanism that ini-
tiates the required protocol, the role the agent will play in that pro-
tocol, and the other participants. The protocol engine determines the
appropriate message to be sent given those parameters. When there is
a decision to be made either between the choice of two locutions (e.g.
an accept or a challenge) to be sent or the instantiation of the content
of the locution (e.g. the definition of an assert), the protocol engine
uses a precondition mechanism to prompt the reasoning of the agent.
Upon the satisfaction of the precondition, the protocol engine sends
the locution. A similar mechanism is used for incoming messages. If
it is necessary to update the commitments of the agent, this can be
done with the post condition mechanism which operates in a similar
manner.

The agents utter messages to exchange goals, decisions, and
knowledge. The syntax of messages is in conformance with a com-
mon agent communication language. We assume that each message:
has an identifier,Mk; is uttered by a speaker (Sk); is addressed to
a hearer (Hk); responds to a message with identifier Rk; is charac-
terised by a speech act Ak composed of a locution and a content. The
locution is one of the following:question, assert, accept,
why, withdraw (see Table 2 below for examples). The content is a
triple consisting of: a goalGk, a decisionDk, and a knowledgeKk

4

Fig. 2 depicted our information-seeking protocol from the initiator
viewpoint with the help of a deterministic finite-state automaton. The
choice of locutions to send depends on the way the reasoning fulfills
preconditions. For example, the following rule dictates whether the
protocol engine sendsaccept, assert or why:

IF receive assert(G,D,K) from inter THEN {
update commit(interlocutor,[G,D,K]);
IF evaluate(G,D,K) THEN{

4 We will useθ to denote that no goal is given and∅ to denote that no knowl-
edge is provided.

35

send accept(G,D,K) to inter;
commit(me,[G,D,K]);}

ELSEIF send why(G,D,K) to inter;}

In this ruleme denotes the reasoning agent andinter denotes the
agent it dialogues with.evaluate(G,D,K) is a predicate which
evaluates if the goalG is supported by an admissible argument built
upon the decisionD and the knowledgeK. According to this rule,
the dialogical commitments are updated when a proposal is received.
If an admissible proposal have been suggested, then the speech act is
anaccept. Otherwise the speech act is awhy.

send question receive assert

receive assert

send why
evaluate

send accept receive withdraw

Figure 2. Information-seeking protocol for the initiator.

Tab. 2 shows the speech acts exchanged betweenAl andCarla
playing an information-seeking dialogue. The first move is forAl
to pose a question toCarla, M0. This locution seeks the expected
behaviourBob. This expected behaviour is good (cfM1) and argued
by the testimonial thatBob did not overcharge the price specified in
the contract in a previous interaction. Therefore,Al considerBob as
a trusted supplier and they can negotiate.

Mk Sk Hk Ak Rk

M0 Al Carla question(rcost,Proposal(Bob, y), θ
[will(Bob, do)])

M1 Carla Al assert(rcost,Proposal(Bob, y), M0

[will(Bob,¬overcharge)])
M2 Al Carla why(rcost,Proposal(Bob, y), M1

[will(Bob,¬overcharge)])
M3 Carla Al assert(rcost,Proposal(Bob, y), M2

[[Test(Carla1,Bob,¬overcharge),time(Carla1, 1)])
M4 Al Carla accept(rcost,Proposal(Bob, y), M3

[Test(Carla1,Bob,¬overcharge),time(Carla1, 1)])

Table 2. Information seeking dialogue

8 Conclusions

In this paper, we have proposed a computational model of trust for
negotiation. For this purpose, we have provided an AF for decision-
making to perform the reasoning of agents about the reputations. In
order to valid this approach, we use MARGO5.

As the computational model of trust proposed by [8], our model
uses the reputation values to guide the negotiation, The computa-
tional model of trust in [8] guides the negotiation by (i) choosing the
partners, (ii) devising the set of negotiable issues, and (iii) determin-
ing negotiation intervals. Our computational model of trust guides
the negotiation by collecting information on the partners and consid-
ering the trust issues to chooses one of the partners.

In order to compare our computational model of trust, we can
consider the analysis grid of [9]. The game theoretical approach is

5 http://margo.sourceforge.net

the predominant paradigm for the design of computational model of
trust. These models have given good results for simple scenarios but
the reduction of reputation to a risk probability in decision making is
too restrictive in scenarios as considered in the ARGUGRID6 project.
For this purpose, we have adopted a social and cognitive approach
where the mental states that leads to trust another agent as well as its
consequences and its propagations are essential. Our model takes into
account direct experiences (direct and observed interactions), witness
information (also called word-of-mouth), and sociological informa-
tion (the fact that the observer is a concurrent). However we do not
consider prejudice, i.e. the use of signs that identify the agent as a
member of a group. In this paper, we have considered the reputation
values as subjective (rather than global) and multi-context (i.e. mul-
tidimensional). Our model assumes that agents can hide or lie (level
2 in agent behaviour assumptions of [9]). Our model can consider
boolean information as well as continuous measures if we adopt the
extension of our AF for quantitative preferences [5]. The information
is composed rather than aggregates through a dialectical process.

We have used here the argumentation-based mechanism for deci-
sion making proposed in [6]. The framework of [1, 6] incorporates
abduction on missing information, while the frameworks of [2, 6]
can be applied to a multi-criteria decision making. To the best of
our knowledge, the framework of [6] is the only one integrating both
of these proprieties required by our application. Moreover, the other
existing frameworks do not come with a conceptual framework for
creating a model and a representation of decision problems. By rely-
ing on [6], the decision problem related to the confident behaviour is
firstly analyzed, and so treated.

ACKNOWLEDGEMENTS

This work is supported by the Sixth Framework IST programme of
the EC, under the 035200 ARGUGRID project. We would like to
thank the referees for their comments which helped improve this pa-
per.

REFERENCES
[1] A.K. and P. Moraitis, ‘Argumentative-based decision-making for au-

tonomous agents’, inProc. of AAMAS, pp. 883–890. ACM Press,
(2003).

[2] L. Amgoud, ‘A general argumentation framework for inference and de-
cision making’, inProc. of the 21st Conference on Uncertainty in Artif.
Intell., AUAI Press, pp. 26–33, (2005).

[3] R. T. Clemen,Making Hard Decisions, Duxbury. Press, 1996.
[4] P.M. Dung, ‘On the acceptability of arguments and its fundamental role

in nonmonotonic reasoning, logic programming and n-person games’,
Artif. Intell., 77(2), 321–357, (1995).

[5] Arguing about quantitative aspects of decisions, ed., M. Morge, AR-
GUGRID report, 2008.

[6] M. Morge, ‘The hedgehog and the fox. an argumentation-based deci-
sion support system’, inArgumentation in Multi-Agent Systems, volume
4946 ofLecture Notes in Artificial Intelligence, pp. 114–131. Springer-
Verlag, (2008).

[7] G. Muller, Utilisation de normes et de réputations pour d́etecter et
sanctionner les contradictions, Ph.D. dissertation, ENS Mines de Saint
Etienne, Decembre 2006.

[8] S.D. Ramchurn, N.R. Jennings, C. Sierra, and L. Godo, ‘Devising a
trust model for multi-agent interactions using confidence and repu-
tation’, Int. J. of Applied Artificial Intelligence,18(9-10), 833–852,
(2004).

[9] J. Sabater, ‘Review on computational trust and reputation models’,Ar-
tif. Intell. Review,24(1), 33–60, (2005).

[10] G. Vreeswijk, ‘Abstract argumentation systems’,Artif. Intell., 90(1-2),
225–279, (1997).

6 http://www.argugrid.eu

36

Handling Mitigating Circumstances for Electronic
Contracts

Simon Miles1 and Paul Groth2 and Michael Luck3

Abstract. Electronic contracts are a means of representing agreed
responsibilities and expected behaviour of autonomous agents acting
on behalf of businesses. They can be used to regulate behaviour by
providing negative consequences, penalties, where the responsibili-
ties and expectations are not met, i.e. the contract is violated. How-
ever, long-term business relationships require some flexibility in the
face of circumstances that do not conform to the assumptions of the
contract, that is, mitigating circumstances. In this paper, we describe
how contract parties can represent and enact policies on mitigating
circumstances. As part of this, we require records of what has oc-
curred within the system leading up to a violation: the provenance of
the violation. We therefore bring together contract-based and prove-
nance systems to solve the issue of mitigating circumstances.

1 Introduction

Commitments between business parties are generally regulated
through contracts. These documents allocate responsibility for par-
ticular outcomes, allow parties to know what to expect of each other
and provide a basis for redress should those responsibilities and ex-
pectations not be met. In many contexts, autonomous software agents
can be used to advantageously represent businesses’ interests in an
automated way, including preparing, agreeing on, reasoning over,
acting on and enforcing contracts in an electronic form. Much re-
search has been conducted on how best to instantiate contract-based
systems [2, 3, 10].

For the purposes of this paper, we consider a contract to be a set
of clauses, each of which states some responsibility of an agent. A
clause may state an obligation, a prohibition or a permission. The set
of agents to which clauses apply are called the contract parties. One
crucial aspect of an autonomous approach to electronic contracting
is the handling of violations of a contract clause, i.e. where the stated
responsibilities have not been fulfilled. There are different ways that
a violation could be dealt with. For example, most contract-based
systems will include a notion of payments, and so violations may
automatically incur financial penalties.

However, relationships in business are important and a company
that handled all violations of a contract clause equally could damage
its long-term relationships with partners. In situations in which unex-
pected circumstances have led a contract party to be unable to fulfil
their responsibilities, other parties may act more leniently than they

1 Department of Computer Science, King’s College London, UK, email: si-
mon.miles@kcl.ac.uk

2 Information Sciences Institute, University of Southern California, USA,
email: pgroth@isi.edu

3 Department of Computer Science, King’s College London, UK, email:
michael.luck@kcl.ac.uk

are contractually permitted to, to maintain the long-term business re-
lationship. Such circumstances are called mitigating circumstances.

In current electronic contracting approaches, mitigating circum-
stances are addressed (if at all) by passing the decision on how to
handle a violation up to a human. However, organisations often have
standard, if not publicised, policies for handling mitigating circum-
stances, and so automation is certainly possible. We would like to
extend contract-based systems to allow agents to autonomously con-
sider, and react appropriately to, mitigating circumstances.

A pre-requisite to providing this extended functionality is the abil-
ity to determine whether there were, or may have been, mitigating
circumstances for a violation, which requires reliable documentation
of what has occurred and how that caused the violation. It is only
through such documentation that mitigating circumstances will be
evident. The problem of obtaining the relevant documentation of a
violation’s causes is exacerbated by the fact that violations may only
be dealt with some time after they occurred, for instance where it is
only through the accumulation of multiple failures over time that a
contract clause is violated.

In this paper, we describe how recording and reasoning over the
causes of violations can help to better manage the behaviour of par-
ties in the system. This allows contracting parties to handle problems
more flexibly, and encourage better coordination. Specifically, the
technical contributions of this paper are as follows.

• An algorithm for handling mitigating circumstances in contract
violation based on technologies for electronic contracting and for
determining the provenance of violations, i.e. what caused them
to occur.

• A re-usable model for expressing mitigating cirumstance policies.
• Application of this algorithm and model to an aerospace scenario.

The rest of the paper is structured as follows. Section 2 describes
a motivating example application in the aerospace domain. Section 3
introduces our electronic contracting approach, and discusses the use
of provenance to determine the cause of violations. Section 4 then
details our algorithm, which is applied to the example application in
Section 5. We finish the paper with a discussion of related work in
Section 6 and conclusions in Section 7.

2 Example Scenario

Our example scenario is based on the aftercare market for aircraft
engines. It is an extended version of that considered by Lost Wax’s
Aerogility application [1].

37

2.1 Contract
In this scenario, aircraft operators (e.g. airlines) establish contracts
with engine manufacturers whereby the manufactures are obliged to
ensure the aircraft have engines in working order. To achieve this, an
engine manufacturer regularly removes an engine from an aicraft for
which it is responsible and replaces it with an already serviced en-
gine to allow the aircraft to continue flying. This replacement must be
performed in a timely fashion, so that the aircraft remains usable. As
well as regular servicing, the engine manufacturer must respond to
possible faults in an engine by similarly replacing it. Once removed,
an engine is serviced and then returned to the pool of engines avail-
able for swapping into other aircraft.

The core contract between aircraft operator and engine manufac-
turer specifies the following:

• An engine requires servicing after every X flights, as well as when
its health data indicates a possible fault.

• When an aircraft’s engine requires servicing, the engine manufac-
turer must remove the engine and replace it with a serviced one.

• The aircraft operator is permitted to penalise the engine manufac-
turer if an aircraft is left on the ground for more than Y hours due
to an engine not being available.

The core contract may be extended by extra constraints on the en-
gine manufacturer in particular cases.

• Engines are ultimately composed of parts supplied by parts manu-
facturers. An aircraft operator may constrain an engine manufac-
turer to only use parts from given named suppliers in engines used
in their aircraft.

• For best use of resources in fulfilling multiple contracts, an engine
manufacturer will often take and service an engine from one op-
erator’s aircraft and put it into the aircraft of another operator. In
some cases, one operator may not trust another. An operator may
therefore constrain an engine manufacturer never to put engines
into their aircraft that have been previously used by a particular
other operator’s aircraft.

2.2 Mitigating Circumstances
Where an aircraft has been grounded due to lack of working engine,
an aircraft operator will want to recoup their costs by penalising the
manufacturer. However, the two companies wish to retain a good
working relationship, and particular mitigating circumstances may
be considered. Whether the operator makes these circumstances clear
to the manufacturer in advance is a choice of the individual business.

In this scenario, we consider two mitigating circumstances.

Late Health Data A manufacturer is aware of a potential fault in an
engine through analysing the engine’s health data. This is recorded
in the aircraft, and so must be supplied by the operator. If supplied
late, the manufacturer is delayed in servicing the engine.

Part Supplier Late If an operator restricts the manufacturer as to
where it can source engine parts, and the required part manufac-
turer was late in supplying parts, then this can affect the manufac-
turer’s ability to provide a working engine on time.

2.3 Managing Violations
The way that violations of the contract are handled should depend on
circumstances. In the scenario, one or more of the following broad
actions can be performed by the aircraft operator given a violation
(e.g. aircraft remaining on the ground too long).

Full Penalty Operator deducts 30% from the monthly payment to
the engine manufacturer.

Reduced Penalty Operator sends a formal notice reprimanding the
manufacturer but acknowledging mitigating circumstances.

Reconsider Policy Operator starts reconsideration of its constrain-
ing policies in the contract.

The choice of a specific action is entirely based on the goals of
the business, and is out of scope of this paper. For convenience, we
assume that a reduced penalty will be the action taken in all subse-
quent examples. We now discuss the two primary technologies that
our algorithm for handling mitigating circumstances depends upon.

3 Contracts and Provenance
Our approach brings together two technologies, described in detail
below. The application is based on contract-based systems to sup-
port regulation of agents’ behaviour through explicit contracts agreed
between agents. The policies for mitigating circumstances use prove-
nance systems to record documentation on what occurs within a sys-
tem and use this to determine why a particular violation occurred.

3.1 Contract-Based Systems
A contract-based system is one in which agents agree to documents
which specify requirements (obligations and prohibitions) or permis-
sions on their behaviour. For our purposes, we define a contract to be
an assignment of clauses to agents that have agreed to fulfil them.

For agents, acting on behalf of multiple organisations, to set up
and rely on contracts for mutual benefit, we require a supporting in-
frastructure. This can be expressed in terms of agents playing admin-
istrative roles, such as for storing contracts to ensure access to them
and for preserving their integrity over their lifetime. It may also in-
clude monitor roles, which require the agents playing them to check
that clauses are being fulfilled and, where they are not, to notify the
enforcer of that contract clause, i.e. the agent responsible for han-
dling that clause’s violation.

Current work, such as that conducted in the CONTRACT project
[2], has begun to bring together existing technologies to specify
contract languages, frameworks for defining contract-based appli-
cations, administrative architectures containing those infrastructural
roles needed to manage the contracts and model checking techniques
for verifying that agents in an application are able to fulfil its con-
tractual responsibilities. In this paper, we assume the presence of a
contract language and administrative infrastructure. In general, we
will not refer to these further, as they are out of scope of the work.
However, the monitoring of the fulfilment of contract clauses is a vi-
tal part of understanding the context in which a violation occurs. For
explanatory purpose, we will assume a single agent playing a moni-
tor role for checking the fulfilment of all contract clauses. In reality,
it is often the case that many such agents need to exist for an appli-
cation, as monitoring may use and/or produce information private to
individual contract parties.

3.2 Provenance and Causation
As previously stated, reliable documentation is necessary in order to
determine whether the causes of a violation are sufficient to miti-
gate it. Thus, we need to be able to determine the provenance or the
what caused a particular event (e.g. violation) to occur as it did. In
the study of art, the provenance of an artwork can include the artist,

38

the materials used in creating it, the restoration done over time, the
different locations where it has been stored or exhibited and so on.
All of these ultimately caused the artwork to be as it is now. In prior
research, we studied provenance in the context of a wide range of sci-
ences [8]. Knowing the provenance of results is important in science
experiments for many purposes, e.g. peer reviewers determining if
an experiment was rigorous and sound, understanding where an er-
ror may have occurred which affected results, re-use of configuration
of successful experiments, etc.

With regard to the violation of a contract clause, causes can in-
clude the actions, or absence of actions, of the responsible party,
but may also include actions of other agents and occurrences more
widely within the application environment.

Determining the provenance of an occurrence therefore requires
data on its causes. As we often do not know in advance that some-
thing particular will occur, agents must record what occurs and
causal connections between occurrences around the time that they
happen. The documentation forms a causal graph, depicting where
A was caused by B, which was caused by C etc. Below, we will de-
note that A was caused by B (A is effect, B is cause) as A → B

In order to ensure the availability of such a causal graph for
our algorithm, we only consider applications that have be made
provenance-aware, which entails that most, if not all, software agents
are designed or adapted to record what they do and what caused them
to do it (messages received, their goals etc.) [9]. In a contract-based
environment, this includes both the contract parties and the infras-
tructure agents, such as the monitor. When it is not possible to record
the causal connections between occurrences, it is often possible to
infer that they exist from what has been recorded.

engineRequireService(E)

engineMakerNotification

swappedEngine(E, E2)

engineAvailable(E2)

engineAvailable(E)

partRequested(P)

partReceived(P)

replacedPart(E,P)

Figure 1. Provenance of an engine as a causal graph

To illustrate how provenance provides better understanding of an
occurrence, we describe the provenance of engine being made avail-
able after servicing in Figure 1. We begin at the top of the figure.
Originally, it is determined that an engine, E, requires service. This
occurrence causes the engine maker to be notified. The engine maker
then requests and receives a part, P . In parallel to the engine maker
being notified, another engine becomes available. Together the oc-
currences of a engine becoming available and the engine maker being
notified cause the engine, E, to be swapped out for engine E2. Once

engine E is taken out of the airplane, its defective part is replaced
with the part ordered by the engine maker. This replacement of parts
causes E to be made available once again for use in other aircraft.

4 Handling Mitigating Circumstances

In this section, we bring together the contract-based and provenance
technologies described above to give an algorithm for handling miti-
gating circumstances when a violation is detected. We summarise the
algorithm below, and then describe each step in more detail.

1. Violation Detection From checking the environment, monitor
determines a clause was violated, informs relevant enforcer.

2. Cause Determination The enforcer uses heuristics to infer pos-
sible undocumented causes of the violation.

3. Mitigating Circumstances The enforcer uses policies to deter-
mine, from the recorded and inferred causes of the violation,
whether there were mitigating circumstances.

4. Remedy If mitigating circumstances were found, then, again ac-
cording to its policy, the enforcer acts to remedy the situation and
ensure that violations are less likely to occur in future.

4.1 Violation Detection

In order to detect the violation, the monitor must observe its envi-
ronment on the basis of what is expected from fulfilling the contract
clause. When the violation occurs, it notifies the enforcer for that
clause. The enforcer is often a party to the contract, i.e. the agent that
gains from the clause’s fulfilment.

Being provenance-aware, the monitor records several pieces of
documentation about what it does: the clause-related observation of
the environment, the signalling of a violation, and the causal connec-
tion between the two (the former causes the latter).

4.2 Cause Determination

When a violation has occurred, the enforcer first checks whether
there are undocumented causes it can infer from the available doc-
umentation. This provides a more complete picture from which it
can then determine whether there were mitigating circumstances. In-
ference is achieved by applying inference rules.

An inference rule expresses a heuristic by which the enforcer de-
termines new causal connections from existing facts. Its antecedent
is an expression composed of parametrised predicates, its consequent
takes the form of causal graph edges between occurrences. The an-
tecedent’s predicates are facts from one of four sources:

Domain Knowledge Timeless knowledge about the domain avail-
able to the enforcer.

Contract Clauses Clauses of the contract that has been violated.
Contract Party Documentation Documentation recorded by the

contract parties of what they know to have occurred.
Monitor Documentation Documentation recorded by the monitor

of what it knows to have occurred.

The antecedent may also contain mathematical expressions resolving
to true or false based on the predicate variables, e.g. A > B. The
consequent of an inference rule contains a set of causal connections
between predicates from the antecedent (i.e. known occurrences).

An example of a whole rule is given below. In this rule, the an-
tecedent is a conjunction of two facts documented by agents in the

39

system and a relationship between them. The facts are that an en-
gine’s health data was received at time T1 and that the aicraft with
that engine was unserviced at time T2; the relationship expresses that
T2 was less than 10 hours after T1. The consequent of the rule, i.e.
that implied by any pattern of occurrences matching the former facts,
is that the fact that the engine was not serviced at T1 was caused by
the health data being received at T2. Whenever the documented facts
of a violation match the antecedent, the consequential causal connec-
tion will be added to the facts from which mitigating circumstances
will be assessed.

Antecedent
receivedHealthData(E, T1) ∧
unserviced(A, E, T2) ∧
T2 < T1 + 10

Consequent
unserviced(A, E, T2) → receivedHealthData(E, T1)

4.3 Mitigating Circumstances
Determination of mitigating circumstances is achieved by a policy
setting out where the causes of a violation suggest mitigating cir-
cumstances, and what action to take in each such case. Such a policy
could be included as part of a contract document, in which case other
parties may use it to reason about what they can get away with, or
may be private to the owning contract party, if they prefer to keep
the mitigating circumstances considerations secret. There are likely
to be several different kinds of mitigating circumstance, such as the
three given for the example in Section 2.2. For each kind, there will
be a pre-condition and a remedy.

The pre-condition is a causal graph between occurrences, in the
form of a tree with a violation occurrence as its root. All occurrences
in the tree can be parametrised with variables. As a whole, the pre-
condition graph acts as a template for chains of causes of a particu-
lar form leading to a violation. The template graph is then matched
against the documentation recorded and inferred. If they match, mit-
igating circumstances have been found, and the remedy enacted.

An example of a mitigating circumstances policy statement is
given below. The precondition is a tree of causal connections from
the violation of a clause concerning a particular aircraft. The precon-
dition is a template which can be matched against documented, or
inferred, facts. In this case, the violation must have been caused by
the aircraft’s engine not being serviced at a given time, which in turn
must have been caused by the engine health data being received at
a given time. If this pattern is found within the documentation, then
the pre-condition is matched, the policy applies, and the appropriate
action is taken: reduced penalty, in this case.

Precondition Remedy
violation(A) →

unserviced(A, E, T2) → Reduced Penalty

receivedHealthData(E, T1)

4.4 Remedy
For the purposes of this paper, we consider the remedy to be a sim-
ple action by the enforcer, such as reducing the penalty that would
otherwise be placed on the violating agent. In future work, we will
consider more sophisticated mechanisms, such as negotiating to ad-
just the contract to more realistically suit the working environment.

4.5 Algorithm for Handling Mitigating
Circumstances

The algorithm can be expressed in pseudo-code as follows.

• C: the set of contract clauses of which to detect violations
• R: the set of inference rules
• G: a graph (V, E) where vertexes represent occurrences and edges

causal relationships between them
• GKB : the union of the knowledge sources (domain, contract, con-

tract party, monitor)
• P : a mapping from violation types to sets of policies concerning

those types
• A: an array of actions to be taken indexed by a policy

• RETRIEVEVIOLATION() - retrieves a violation from the monitior
• RETRIEVEOBSERVATION(v) - retrieves the observation that

caused a violation
• CONSEQUENTOF(r) - retrieves the edge representing the conse-

quent of a rule
• APPLYRULE(r, G) - apply an inference rule, r to the graph G
• UNION(G1, G2) - perform a union between the two graphs (i.e.

combine there edges and vertexes)
• EXTRACTSUBGRAPH(v, G) - given a vertex extract the subgraph

beginning at that vertex
• TEMPLATEISOMORPHISM(G1, G2) - determine whether the two

graphs are isomorphic, implementations may define isomorphism
in terms of attributes associated with vertexes and edges

• EXECUTE(a) - execute a given action, a

VIOLATIONDETECTION(C)

1 if the monitor detects a violation of clause, cl ∈ C
2 then v ← RETRIEVEVIOLATION()
3 cv ← RETRIEVEOBSERVATION(v)
4 return new graph edge (v, cv)

CAUSEDETERMINATION(cv, R, GKB)

1 Gnew
KB = ∅

2 for each inference rule r ∈ R
3 do (e, c)← CONSEQUENTOF(r)
4 if e = cv

5 then G← APPLYRULE(r, GKB)
6 Gnew

KB ← UNION(Gnew
KB , G)

7 return Gnew
KB

MITIGATINGCIRCUMSTANCES(v, P, GKB)

1 for each policy p ∈ P [v]
2 Gcv ← EXTRACTSUBGRAPH(v, GKB)
3 if TEMPLATEISOMORPHISM(Gv, p)
4 then return p

REMEDY(p, A)

1 a← A[p]
2 EXECUTE(a)

5 Applying to the Example

In this section, we apply our algorithm to the scenario presented in
Section 2. We start by defining the facts that may be documented or

40

Predicate Description
Domain Knowledge

owns(A, O) Operator O owns aircraft A
Contract Clauses

constrainedPartSupplier(S, P) Contractual obligation to use supplier S for part P
disallowedPriorUse(O) Contractual prohibition from using engines previously used by operator O

Contract Party Documentation
engineAvailable(E) Engine E is serviced and available for use
partReceived(S, P, T) Manufacturer received part P from supplier S at time T
partRequested(S, P, T) Manufacturer requested part P from supplier S at time T
receivedHealthData(E, T) Manufacturer received health data about engine E at time T
replacedPart(E, P, T) Part P was replaced in engine E at time T
swappedEngine(A, E1, E2, T) Engine E1 was removed, engine E2 inserted into aircraft A at time T

Monitor Documentation
unserviced(A, E, T) Engine E of aircraft A requires but has not received servicing at time T
violation(A) Violation of the contractual obligation regarding servicing aircraft A

Table 1. Example knowledge predicates

inferred by an aircraft operator agent in the scenario. These are ex-
pressed using predicate logic and described in Table 1. Using state-
ments of this form, we can construct propositions about what is doc-
umented or believed at any one time.

We now describe two use cases in which there are mitigating cir-
cumstances that the aircraft operator, acting in the role of enforcer,
takes into account, matching those described in Section 2.2. In both
use cases below, the monitoring mechanism discovers that an engine
has not serviced at a given time, even though it contractually should
have been. In each case, a different mitigating circumstance has oc-
curred, and so a reduced penalty is applied. For each use case, we
show how the algorithm in the previous section is applied.

5.1 Late Health Data
The following operation of the contract parties is documented.

• The engine manufacturer, as part of its operation, re-
ceives the health data for an engine at a given time:
receivedHealthData(e, t1). This is the engine of an aircraft, a,
which has earlier been recorded as requiring servicing.

Violation Detection The monitor determines that an aircraft
requires servicing but has not been serviced at this moment:
unserviced(a, e, t2). It further determines that, contractually, it
should have been determined before now. It therefore, reports a viola-
tion: violation(a). The causal connection between these two occur-
rences is documented: violation(a) → unserviced(a, e, t2) .

Cause Determination The operator believes that the health data
should have been received at least 10 hours in advance for the man-
ufacturer to be able to complete the job in time. This belief implies
a causal connection between an engine not being serviced and that
engine’s health data being received late (the former was due to the
latter). The operator first infers the causal connection from the avail-
able data using the following inference rule.

Antecedent
receivedHealthData(E, T1)∧
unserviced(A, E, T2)∧
T2 < T1 + 10

Consequent
unserviced(A, E, T2) → receivedHealthData(E, T1)

Mitigating Circumstances From this, we then have a sequence
leading to a violation matching the pre-condition of the following
rule: receiving engine health data at a given time caused the engine
not to be serviced, which caused a violation.

Precondition Remedy
violation(A) →

unserviced(A, E, T2) → Reduced Penalty

receivedHealthData(E, T1)

5.2 Part Supplier Late

The following operation of the contract parties is documented.

• The contract constrains the manufacturer to use a
given part supplier for parts of a particular type:
constrainedPartSupplier(s, p).

• At some point, the manufacturer requires a part of this type and
orders it from the supplier: partRequested(s, p, t1).

• The supplier eventually provides the part:
partReceived(s, p, t2).

• The engine manufacturer is required to service an engine that
requires a part of the above type. When the part is avail-
able, the manufacturer puts the new part into the engine:
replacedPart(e2, p, t3).

• This repaired engine is later used to swap into an aircraft requiring
a service: swappedEngine(a, e1, e2, t4).

• A causal chain is recorded: the engine swap required the
replacement of the part, which required the part to be
received, which required the part to be requested from
the supplier, which was made to that supplier because of
the contract clause: swappedEngine(a, e1, e2, t4) →

replacedPart(e2, p, t3) → partReceived(s, p, t2) →

partRequested(s, p, t1) → constrainedPartSupplier(s, p)

Violation Detection The monitor determines that an aircraft
requires servicing but has not been serviced at this moment:
unserviced(a, e2, t5). It further determines that, contractually, it
should have been determined before now. It therefore, reports a viola-

41

tion: violation(a). The causal connection between these two occur-
rences is documented: violation(a) → unserviced(a, e2, t5) .

Cause Determination The operator believes that if the part sup-
plier supplied a part late, this can lead to problems servicing aircraft
(specifically, the part is supplied less than 48 hours beore servicing
is due). This belief expresses a causal connection between the engine
not being serviced and the part being received late. It first infers the
causal connection from available data using the following rule.

Antecedent
partReceived(S, P, T2)∧
swappedEngine(A, E1, E2, T4)∧
replacedPart(E2, P, T3)∧
unserviced(A, E2, T5)∧
T3 < T1 + 48

Consequent
unserviced(A, E2, T5) → partReceived(S, P, T2)

Mitigating Circumstances From this, we have a sequence lead-
ing to a violation matching the pre-condition of the rule below: a
constraint on the part supplier caused a supplier to be used in re-
questing a part which caused the part to be delivered at a particular
time (late) which caused the engine not to be serviced, which caused
a violation.

Precondition Remedy
violation(A) →

unserviced(A, E2, T5) →

partReceived(S, P, T2) → Reduced Penalty

partRequested(S, P, T1 →

constrainedPartSupplier(S, P)

6 Related Work
In recent work on normative systems and agreement in service-
oriented architectures, norms specifying patterns of behaviour for
agents, contract clauses as concrete representations of dynamic
norms, management or enforcement of norms itself being a norm,
are all already established in the literature [2, 3, 7, 10]. Such work
has focused on the infrastructure needed to support such systems and
handling of violations is often through the mechanism of immedi-
ately issuing contractually fixed penalties. There are notable excep-
tions, e.g. longer-term issues are considered by Duran et al. [4], who
examine how observation of fulfilment and violation of obligations
can feed into a longer-term assessment of agents through testimoni-
als.

There have been many recent approaches to the recording causal
documentation so that the provenance of occurrences can be deter-
mined. It is applicable to a wide range of applications [8], and has
particularly been considered in the context of workflow enactment,
i.e. automatically recording documentation as each step of a work-
flow is executed [5, 11]. In our own work we have examined how
provenance can be used to interpret and ask questions about the va-
lidity of experimental results [6].

7 Conclusions
When a contract clause between parties is violated, a single fixed
penalty is an inflexible way to manage the situation. In many real

world cases, the party permitted to enact the penalty may wish to
take into account mitigating circumstances, for the sake of the long-
term business relationship. Mitigating circumstances, and how to act
in case of them, can be expressed in a policy document, but in order
to judge circumstances against the policy we need a reliable record
of what led to the violation occurring.

In this paper, we have provided an algorithm, and accompany-
ing data structures, for evaluating whether violations were caused
by mitigating circumstances, and acting accordingly. This makes use
of a contract-based framework, by which we can define the contract
clauses, and provenance technology, by which agents can document
the causes of what occurs. In combination, this allows us to express
and enact mitigating circumstances policies. We have shown how this
applies in a concrete example in the aerospace domain.

This is preliminary work, which needs to be tested in practical
applications. Future work will concern the re-usability of (parts of)
mitigating cirumstances policies, and methodological guidelines for
constructing them, both aimed at easing the process of implementing
such policies in diverse applications.

ACKNOWLEDGEMENTS
This work was partly supported by the European CONTRACT IST
project [2]. We would also like to thank Lost Wax, and Camden Holt
in particular, for discussions on the aerospace use case.

REFERENCES
[1] Aerogility. http://www.aerogility.com/, 2007.
[2] IST CONTRACT project. http://www.ist-contract.org, 2007.
[3] Chrysanthos Dellarocas, ‘Contractual agent societies: Negotiated

shared context and social control in open multi-agent systems’, in Work-
shop on Norms and Institutions in Multi-Agent Systems, 4th Interna-
tional Conference on Multi-Agent Systems (Agents-2000), Barcelona,
Spain, (June 2000).

[4] Fernanda Duran, Viviane Torres da Silva, and Carlos J. P. de Lucena,
‘Using testimonies to enforce the behaviour of agents’, in AAMAS’07
Workshop on Coordination, Organization, Institutions and Norms in
agent systems (COIN), eds., Jaime Sichman and Sascha Ossowski, pp.
25–36, Honolulu, Hawai’i, (May 2007).

[5] Juliana Freire, Claudio T. Silva, Steven P. Callahan, Emanuele Santos,
Carlos E. Scheidegger, and Huy T. Vo, ‘Managing rapidly-evolving sci-
entific workflows’, in Proceedings of the International Provenance and
Annotation Workshop 2006 (IPAW 2006), Lecture Notes in Computer
Science. Springer, (2006). To appear.

[6] Paul T. Groth, The Origin of Data: Enabling the Determination of
Provenance in Multi-institutional Scientific Systems through the Docu-
mentation of Processes, Ph.D. dissertation, University of Southampton,
September 2007.

[7] Fabiola Lopez y Lopez, Michael Luck, and Mark d’Inverno, ‘A norma-
tive framework for agent-based systems’, Computational and Mathe-
matical Organization Theory, 12(2–3), 227–250, (2005).

[8] Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau, ‘The re-
quirements of using provenance in e-science experiments’, Journal of
Grid Computing, 5, 1–25, (2007).

[9] Simon Miles, Steve Munroe, Michael Luck, and Luc Moreau, ‘Mod-
elling the provenance of data in autonomous systems’, in Proceedings
of Autonomous Agents and Multi-Agent Systems 2007, pp. 243–250,
Honolulu, Hawai’i, (May 2007).

[10] Edward Muntaner-Perich, Josep Lluis de la Rosa, and Rosa Esteva, ‘To-
wards a formalisation of dynamic electronic institutions’, in AAMAS’07
Workshop on Coordination, Organization, Institutions and Norms in
agent systems (COIN), eds., Jaime Sichman and Sascha Ossowski, pp.
61–72, Honolulu, Hawai’i, (May 2007).

[11] Jun Zhao, Carole Goble, Robert Stevens, and Daniele Turi, ‘Mining tav-
erna’s semantic web of provenance’, Concurrency and Computation:
Practice and Experience, (2007).

42

Automated Requirements-Driven Definition of Norms
for the Regulation of Behavior in Multi-Agent Systems

Martin Kollingbaum 1 and Ivan J. Jureta 2 and Wamberto Vasconcelos 3 and Katia Sycara 4

Abstract. The engineering of heterogenous distributed systems is a
complex task. Traditional software engineering methods fail to ac-
count for new demands of flexibility and adaptability in the con-
struction of software systems. On the other hand, concepts of Vir-
tual Organizations and Electronic Institutions cater for the need of
open, heterogenous software environments, where agents may dy-
namically organize themselves into organizational structures, deter-
mined by roles, norms and contracts. Our work aims to facilitate the
engineering of heterogenous and distributed systems by providing
only a specification of the desired overall system behavior, expressed
as a set of norms, and rely on capabilities and properties of indi-
vidual agents that allow them to dynamically form the desired com-
plete software system. In particular, we present a framework, called
Requirement-driven Contracting (RdC), for automatically deriving
executable norms from requirements and associated relevant infor-
mation. RdC facilitates the governance of MAS by ensuring that all
requirements, along with runtime changes of requirements are ap-
propriately and automatically reflected in the norms regulating the
behavior of MAS.

1 INTRODUCTION

Specifying requirements is in general a difficult and critical task –
even more so for heterogenous systems, in which software devel-
oped, maintained, and operated by, and distributed across various
organizations should cooperate in order to achieve joint goals. The
perceived quality of the future system is determined by the fit be-
tween its behavior and the requirements. Moreover, such systems
are expected to continually operate and adapt to changes in highly
volatile environments. Changes lead to situations in which require-
ments (i) may not all be known before/during development, (ii) be-
come obsolete over the course of development, and (iii) vary at run-
time. Currently, established requirements and software engineering
processes are built with homogenous, closed systems in mind. Clas-
sical requirements and software engineering processes start from the
goals of the system, then identify and specify operations whose ex-
ecution satisfies the goals, and finally design and implement com-
ponents (agents) capable of executing the said operations. If require-
ments or environment conditions change, redesign and redeployment
occur – this usually takes long and is costly, often leading system
owners to miss opportunities for which they introduced the systems
in the first place.

1 The Robotics Institute, Carnegie Mellon University, email:
mkolling@cs.cmu.edu

2 PReCISE, University of Namur, Belgium, email: iju@info.fundp.ac.be
3 Dept. of Computing Science, University of Aberdeen, UK, email: wvascon-

celos@acm.org
4 The Robotics Institute, Carnegie Mellon University, email: ka-

tia@cs.cmu.edu

Addressing these problems requires a methodological shift from
the assembly of passive components towards systems that are based
on active autonomous entities. Research into multi-agent systems
(MASs) supports such a methodological shift, as it investigates the
creation of systems involving dynamic, heterogenous, distributed and
autonomous agents.

Virtual Organizations (VOs) and Electronic Institutions facilitate
the dynamic formation of agent-based systems by introducing an or-
ganizational structure into an agent community and prescribing cer-
tain “rules of engagement” or norms, to regulate the actions and in-
teractions of these agents. Agents may take on roles in such an orga-
nizational structure by signing contracts and thereby committing to
observe established behavioural standards, i.e., norms.

Norms, that is, obligations, permissions, and prohibitions are use-
ful abstractions for expressing rights and duties, and thereby regu-
lating the behavior of heterogenous agents that act on behalf and in
interest of their owners. Norms are critical for VOs, for they specify
the organizational structure: agents adopt roles within the VO, and
thereby the norms ascribed to the roles. By enabling agents to pro-
cess norm specifications, a separation of concerns occurs: agents are
not only described at an individual level, in terms of their capabili-
ties, but a separate specification is also introduced to describe, at a
social level, the compulsory, allowed, or forbidden behaviors. Norm-
governed VOs, therefore, are an attractive approach to the engineer-
ing of heterogenous systems in changing environments, as executable
normative specifications dynamically direct and tune the behavior of
heterogenous agents.

It is only if norms are appropriately defined that agents can fulfil
the purpose of the VO. As the VO’s purpose is defined by the re-
quirements of VO stakeholders (i.e., owners, users, etc.), norms are
appropriate only if they regulate the VO so that these requirements
are satisfied to the most desirable (and feasible) extent. Given, e.g.,
a requirement for a Banking application engineered on VO princi-
ples, that a Letter of Credit cannot be issued if there is no deposit,
norms must ensure that this is the case at runtime. Approaches to
the engineering of norm-governed MAS [11, 6, 10] focus on writing
norms, either using limited requirements conceptualizations or leav-
ing out requirements-level notions. Stakeholders, however, use richer
notions than norms to communicate requirements. Their statements
instead speak of VO goals in terms of functionality to provide and
quality to achieve, how to provide/achieve these, and what to comply
to (e.g., Sarbanes-Oxley Act). Stakeholders have preferences over
alternative functionalities and quality levels, and priorities over pref-
erences that cannot be jointly satisfied to the highest extent.

We therefore encounter two challenges if we are to further fa-
cilitate VO engineering: (a) provide a rich set of concepts for
representing requirements, and (b) automatically derive appropri-

43

ate norms from the requirements. We present a framework, called
Requirements-driven Contracting (RdC) that responds to both of
these challenges, by integrating rich requirements-level concepts,
a corresponding specification language, and algorithms for auto-
matically deriving norms from requirements-level information. RdC
thereby ensures that all requirements, along with runtime changes
thereof are appropriately and automatically reflected in the norms
regulating a VO. The RdC proceeds in three steps: (1) The VO en-
gineer elicits the stakeholders’ natural language statements about the
purpose of the system. According to the speech act in which each
statement is given, the VO engineer identifies requirements, domain
assumptions, preferences, and priorities (Sect.2). (2) Using a set of
templates and formal language constructs, the VO engineer writes the
environment specification (ES) to transform requirements into sys-
tem goals (Figure 2), domain assumptions into domain constraints,
and define preferences over goals and priorities over conflicting pref-
erences (Sect.3). (3) The VO engineer inputs the ES into RdC al-
gorithms (Figures 3 and 5) to obtain an executable specificatons of
norms that subsequently regulate the VO (Sect.4).

We consider these steps of the RdC process in detail in Sect.2–4.
Sect.5 overviews related work; Sect.6 outlines conclusions, limita-
tions, and directions for future work.

2 UNDERSTANDING REQUIREMENTS

Consider the transaction in which a Letter of Credit (LoC) is issued
by a banker agent for use by a customer agent to finance the acqui-
sition of goods from a supplier agent. The customer makes a deposit
with the bank, then receives an LoC. The banker informs the supplier
that an LoC has been issued to the customer, so that the customer
can provide the LoC to the supplier, who can subsequently transfer
the goods to the customer. To obtain the funds, the supplier sends the
LoC to the bank. To engineer the VO for this setting, the engineer first
elicits stakeholders’ statements in natural language about the process,
determines whether each of the statements is a requirement or oth-
erwise, subsequently produces a specification that is translated into
contracts comprising norms. In doing so, the engineer moves across
three levels of abstraction covered by RdC: the requirements, the ES,
and the contracts level. Figure 1 shows key useful RdC notions (only
those discussed herein) at each of these levels.

At Level 1, statements about the high-level requirements, which
the VO must satisfy, are elicited. A functional requirement, such
as “Issue an LoC”, will communicate what is desired or intended,
whereas a domain assumption will indicate what is already the case
[12], and is therefore an assertive or a declaration. A nonfunctional
requirement, such as “Quickly issue an LoC” places additional con-
straints on a functional requirement by communicating an attitude
thereon (through an expressive). Nonfunctional requirements typi-
cally involve gradable adjectives, such as quick, convenient, secure,
or useful, efficient, accurate, and so on. Expressives therefore com-
municate preferences in an indirect manner: asking for “quick” im-
plies that faster is preferred to slower. The same applies, e.g., for
security, efficiency, maintainability, usability, and so on. We make
the preference order explicit and thus order both nonfunctional and
functional requirements. Introducing preferences entails the need for
priorities, as often all preferences cannot be satisfied by the MAS.
When aiming to satisfy one preferred requirement affects negatively
the ability to satisfy some other requirement, we say that the involved
preferences are conflicting. In such a case, a priority is defined to in-
dicate which of the two preferences it is more important to satisfy.

We classify any requirement also as either compulsory or optional,
and either conditional or free. The MAS must satisfy compulsory re-

Contracts

Level 1
Statements
about high-

level
requirements

Directive
 conveys the

proposition that the
speaker wants to
see become true.

Commissive
states what the

speaker intends to
(do to) make a

proposition true.

Expressive
conveys the

speaker’s emotion/
attitude.

Level 2
Env. Spec.

Functional requirement is either
a directive or a commissive
speech act for which the VO

engineer can at any time verify
whether it is satisfied or not in the

environment.

A preference relation establishes an
order of preference between two or
more requirements. A statement of
preference is an expressive speech
act that communicates a preference

relation between two or more
requirements.

Given a functional requirement, the
corresponding functional goal is a
logical condition that restricts the

possible states of the system only to
those that satisfy the given requirement.

A preference in ES
establishes an order of
preference between two

or more goals in ES.

Level 3
Norms

RdC Algorithm in
Figure 6

RdC Algorithm in
Figure 10

...

...

...

...

Figure 1. Part of RdC notions.

quirements, while it will (hopefully, though not necessarily) satisfy
optional requirements. A requirement is conditional if it needs to
be satisfied only when some particular conditions hold; otherwise,
it is free. A domain assumption is either free or conditional, in the
same sense as a requirement can be conditional or free. All men-
tioned taxonomic dimensions are relevant as they affect how the re-
quirements and assumptions transform into norms (e.g., compulsory
requirements give obligations and sactions).

3 ENVIRONMENT SPECIFICATION

Given requirements, domain assumptions, preferences and priori-
ties, we proceed to manually write the corresponding ES. The ES
is divided into four parts. Functional ES specifies functional goals
that need to be achieved (including preferences thereon), plans that
should be followed, and domain constraints that must not be vio-
lated if the MAS is to satisfy functional requirements and domain
assumptions. Achieving some functional goals requires that roles co-
operate: we define dependencies between roles when the agent oc-
cupying a role can achieve a functional goal only if the agent oc-
cupying another role provides assistance. Nonfunctional ES define
measures on the VO for monitoring purposes; nonfunctional goals
define preferences over the values of these measures – if these values
are observed at runtime, nonfunctional requirements and preferences
thereon are satisfied. Priorities ES indicates priorities between con-
flicting preferences. Finally, Terminological ES specifies the domain
ontology relevant for the VO, so as to better delimit the meaning in-
tended for terms used throughout the ES, and subsequently carried
over to norms. The ES is written as a collection of templates, one
for each functional and nonfunctional goal (Figure 2), plan, domain
constraint, priority, and dependency. Preferences are defined through
the Preferences slot in templates (see, Figure 2; i.e., a preference
order over functional goals appears in the Preferences slot of each
of the goals in that preference order). Below, we discuss only func-
tional goals and preferences thereon. The entire RdC framework is
presented in the longer report [3].

44

3.1 Functional Goals

The compulsory and conditional functional requirement “Record a
deposit in electronic and paper form if the deposit is received and
approved” leads to the template in Figure 2. A unique identifier is
given to the goal in UID for cross-referencing in ES and any graphi-
cal representation thereof. Type states whether the goal is functional
or nonfunctional, compulsory (if the corresponding requirement is
compulsory) or optional (if the requirement is optional), and condi-
tional or free. Preferences gives the preference order in which the
given goal appears. Element on the left hand side of >> is preferred
to the one on the right. As usual, the >> relation is modeled as a
strict partial order. A goal can be refined, that is, we can identify
a set of goals (possibly easier to achieve) whose joint achievement
is equivalent to achieving the refined goal. Supergoals lists those
goals in whose refinement the given goal participates.

UID: Record deposit in el. & paper form
Type: Goal (Functional/Compulsory/Conditional)
Preferences: (Record deposit in electronic form only >> Record deposit

in el. & paper form)
Supergoals: none
BelongsTo: Role (Banker)
Source: Record a deposit in electronic and paper form if the deposit is

received and approved.
Source type: Requirement (Functional/Compulsory/Conditional)
Parameters: d: Deposit
Satisfy: eL : elLog, pL : paLog logs(eL, pL, d) ←

isPaperLog(pL, d), isElectronicLog(eL, d)
Conditions: received(d), approved(d)
Concepts: Deposit = (and Amount (> 0) (exists has-purpose Credit)

(all in-currency aset(USD,EUR)));
paLog = (and Log (all has-purpose TransactionRecord)
(all recorded-on Database));
elLog = (and Log (all has-purpose TransactionRecord)
(all recorded-on Paper))

Figure 2. Instantiated Template for a Funct. Goal.

BelongsTo identifies the role or dependency to which the goal is
associated. We then relate the goal to the requirement which it
specifies: Source identifies the requirement at RdC Level 1 and
SourceType indicates the classification of that requirement. Sat-
isfy indicates the logical conditions that must be brought about
in order to satisfy the goal’s Source requirement. Logical condi-
tions are written as Horn clauses. A general form of Horn clause is
a0 ∨ (¬a1) ∨ . . . ∨ (¬an), where each ai, i = 1, . . . , n is an atom.
We adopt here the standard notation: a0 ← a1, . . . , an; whereby a0

is true if a1, . . . , an are true. Since the problem of testing a set of
Horn clauses for satisfiability is known to have linear time solution
algorithms, the ES supports rather efficient inferences compared to
RE specification formalisms, which rely on variants of linear tempo-
ral first-order logic. For conditional goals, we write down in Con-
ditions the logical conditions that must hold for the agents to know
that the goal is to be achieved. Concepts lists the definitions of con-
cepts whose instances are referred to in the template. We use the ITL
(Information Terminological Lang. [7]) to define the domain ontol-
ogy; therein, conceptual knowledge about a given domain is defined
by a set of concepts and roles these concepts play in relationships, in
which they take part. Each term intended to define a concept C is a
conjunction of logical constraints, which are necessary for any object
to be an instance of C.

4 NORMATIVE SPECIFICATION

We show in this section that the ES can be directly mapped to and ex-
pressed with normative concepts investigated in VO and Electronic
Institutions research [5, 8]. Norms support the development of flexi-
ble as well as open VOs. Agents may join and leave VOs by adopt-

ing the normative standards of a VO via automated negotiation and
signing of contracts. The normative specification defines contracts,
whereby each contract is a set of norms. Norms explicitly specify
behavioral directives for agents. Obligations, permissions and prohi-
bitions of agents make requirements explicit at the normative level.
Normative specifications, therefore, ensure that agents act only in
ways that satisfy requirements and preferences, and are in accord
with domain assumptions and priorities.

We use an available normative model [4], which is based on the
notation outlined in [6]. We show how the ES relates to various gov-
ernance measures, including norms, contracts, and roles and how
they are derived from the ES. The building blocks of this notation
are first-order terms, that is, constants, variables and functions (ap-
plied to terms). According to the chosen model, agents form social or
organizational structures by taking on specific roles. These roles are
determined by a set of norms, that is: the obligations the agent has to
fulfill in the course of its actions and interactions with other agents,
its prohibitions and permissions. The role concept allows us to ab-
stract from individual agents and formulate patterns of behaviour that
agents may adopt and conform to, with contracts defining these roles
and the organizational structure of a VO. The set of norms Ω, de-
termining the normative state of a complete VO, is described in the
following way:

Definition 1. A global normative state Ω is a finite and possibly
empty set of norms.

Ω describes the current overall normative state. Norms that are
contained in this set are relevant to the agent – for example, an obli-
gation contained in Ω must be fulfilled. When it is fulfilled, it has
to be removed. Such a maintenance of the normative state has to be
accommodated in order to capture the fact that requirements from
the ES may be relevant to the overall system under specific circum-
stances only. A practical approach to the maintenance of a normative
state is outlined in [2]. As a simplification, we add so-called activa-
tion and expiration conditions to norm specifications in order to cap-
ture circumstances when norms will be added to or removed from
Ω.

In addition, the normative model we use introduces constraints.
With that, the actual influence of norms on the agent achieving spe-
cific states of affairs can be restricted. These constraints are defined
as follows:

Definition 2. A constraint γ is any construct of the form τ � τ ′,
where �∈ {=, �=,>,≥, <,≤}.

With that, we put forward following definition of norms:

Definition 3. A norm ω is a tuple 〈ν, td, A,E〉, where

• ν is any construct of the form Oτ1:τ2ϕ∧
∧n

i=0 γi (an obligation),
Pτ1:τ2ϕ∧

∧n
i=0 γi (a permission) or Fτ1:τ2ϕ∧

∧n
i=0 γi (a prohi-

bition), where
• τ1, τ2 are terms, with τ1 specifying a set of agents and τ2 specify-

ing a set of roles;
• ϕ is an atomic first-order formula, expressing the achievement of

a state of affairs;
• γi, 0 ≤ i ≤ n, are constraints restricting the domains of variables

occurring in ϕ;
• td is a time stamp recording the time of declaration of the norm;
• A =

∧n
j=0 ψ

′
j , 0 ≤ j ≤ n, is the activation condition comprising

a conjunction of first-order predicates
• E =

∧n
k=0 ψ

′′
k , 0 ≤ k ≤ n, is the expiration condition compris-

ing a conjunction of first-order predicates

45

In this formulation of norms, term τ1 identifies the agent(s) to
whom the norm is applicable. Term τ2 is the role (or set of roles)
of these agents. For example, Oτ1:τ2ϕ ∧

∧n
i=0 γi thus represents an

obligation on agent τ1 taking up role τ2 to bring about ϕ, subject to
constraints γi, 0 ≤ i ≤ n. The obligation activates (is added to Ω)
when

∧n
j=0 ψ

′
j holds, whereas the obligation deactivates (is removed

from Ω) when
∧n

k=0 ψ
′′
k holds (the same holds for permissions and

prohibitions). The γi’s express constraints on those variables occur-
ring in ϕ.
As pointed out earlier, the ES contains compulsory and optional
goals. In both cases, an agent must be motivated to act. In addition
to represent mandatory goals as obligations, means have to be put in
place to enforce the fulfilment of obligations. A traditional means of
enforcing law-abiding behavour in a social context is the specifica-
tion of sanctions, i.e., actions typically performed by an authorised
third party in case of norm violation. The purpose of sanctions is to
either keep individuals from violating their duties or to compensate
for an agent’s behaviour. It is important to understand that sanctions
are obligations for such an authorised party to act. As a consequence,
the introduction of norms and contracts also requires the introduc-
tion of specific organizational structures where the role of such an
authorised third party is established. Agents adopting such a role are
permitted and obliged to pursue the activities defined by sanctions.
In order to specify sanctions in a contract (or, in context of this pa-
per, to generate them from the ES), obligations have to be specified
for this specific authority role. Sanctions are then activated once a
state of affairs indicating a violation of obligations holds. We define
sanctions as follows:

Definition 4. The concept of a sanction amounts to an obligation
Oτ1:authϕ ∧

∧n
i=0 γi, assigned to a specific Authority role auth, ex-

pressing an obligation for an agent in this role to achieve the state of
affairs expressed by term ϕ.

We ensure within RdC algorithms that sanctions are defined to re-
act to violations of obligations, themselves derived from compulsory
goals. In order to capture optional goals (corresponding to optional
functional or nonfunctional requirements) with norms, we need the
concept of incentive. Intuitively, an incentive motivates the agent to
act in a certain way by indicating a reward for taking the desired ac-
tions. In our work, an incentive means that an agent will be motivated
and not sanctioned if it is not successful. In other words, instead of re-
warding, we do not sanction. Optional functional goals will therefore
amount to obligations, for which sanctions are not defined, whereas
compulsory functional goals will give rise to obligations with corre-
sponding sanctions.

4.1 RdC Algorithms

As the purpose of contracts is to ensure that agents in a VO be-
have according to stakeholders’ requirements and obey domain as-
sumptions, we derive the normative specification, that is, contracts
as sets of norms, using algorithms. The full framework contains al-
gorithms for converting all ES-level information into norms. Below,
we present two of them for transforming functional goals while ac-
counting for preferences and dependencies. First, we have a simple
definition for the contract concept:

Definition 5. A contract C is of the form

〈〈r1, {ωr1
1 , . . . , ωr1

m }〉, . . . , 〈rq, {ωrq

1 , . . . , ω
rq
p }〉〉

where each r is a role identifier, and each ω a norm.

For simplicity, we observe some notational conventions. Let FG be
a functional goal, and FG.UID be the value of the UID slot in the
template for FG (e.g., Figure 2). We refer to values in other template
slots in the same obvious way (e.g., FG.Satisfy for the value of the
Satisfy slot in the template for FG). Following earlier discussions,
we assume that the value of the Satisfy and Uphold attributes is of
the form a0 ← a1, . . . , an whereby n ≥ 1 and a0 can be empty.
Also let the value of Conditions slot wherever it appears in ES be
of the form b0 ← b1, . . . , bm whereby m ≥ 1 and b0 can be empty.
Recall that any ai, 0 ≤ i ≤ n and any bj , 0 ≤ j ≤ m is an atomic
first-order formula. Also, we write (·) for content of no interest in
the particular discussion or algorithm – e.g., if we write the norm
〈(·), (·),∧n

j=0 ψ
′
j , (·)〉, we are interested only in

∧n
j=0 ψ

′
j while the

content of the other elements can be any allowed by the norm defini-
tion.

4.1.1 Contracts from Functional Goals

In this section, we present the RdC algorithm, shown in Figure 3,
for deriving a contract from a functional goal. We illustrate the out-
put of the algorithm by converting the functional goal in Figure 2
into the contract shown in Figure 4. The algorithm proceeds as fol-
lows. Given the ES, we first select a functional goal that has not
yet been subjected to the algorithm in Figure 3. We consider only
primitive goals in the goal hierarchy. We generate as many obliga-
tions as needed to cover the Horn clause in the goal template’s Sat-
isfy slot, whereby each obligation deactivates as soon as it is real-
ized (i.e.,

∧r′′
k′′=0 ψ

′′
k′′ = ai). If the functional goal is conditional,

the activation condition for each obligation corresponds to the con-
dition for that functional goal (lines 3–8 in Figure 3). If the goal
is also compulsory, we create sanctions, that is obligations for the
authority role. Sanctions activate if the corresponding obligations
are not realized (9–11). If the goal is optional, we create no sanc-
tions (12–14). We then create a new contract (15–17), in which
the roles vary if the functional goal belongs to a role or a depen-
dency. The algorithm returns for each goal a set of norms accord-
ing to the type of the functional goal. Obligations and sanctions are
generated if the goal is compulsory, while no sanctions are created
if the goal is optional. Contracts are created and norms are dis-
tributed between the role being supervised and the authority (i.e.,
supervisor) role. The supervisor role (Authority) receives responsi-
bility for sanctions, while the supervised role receives obligations.
The algorithm terminates, as each of the for each loops goes through
finite sets and considers one element at a time. We have the con-
tract 〈〈Banker, {ω1, ω2}〉, 〈BankerAuth, {ωsanct

1 , ωsanct
2 }〉〉 on

the functional goal “Record deposit in electronic & paper form” with
norms and sanctions shown in Figure 4.
TheBankAuth is the role that acts as the authority for the Banker
role. The functional goal gives us two obligations for the Banker
role and the corresponding sanctions enforced by the BankAuth
role. Oa:BankAuthφ

′ and Oa:BankAuthφ
′′ are defined by the VO en-

gineer; these obligation determine how the sanction is applied in case
of violation.

4.1.2 Preferences over Contracts on Functional Goals

In this section, we present the RdC algorithm for adjusting norms
according to preferences, shown in Figure 5. Preferences establish
an order over requirements, and therefore over goals in the ES. The
preference order defined over functional goals corresponds to a pref-
erence order over contracts. We do not, however, carry over the very

46

Contract from Functional Goal
Input:One functional goal FG such that: (i) FG has not been transformed previously using this algorithm; (ii) there are no functional

goals in ES for which FG is the supergoal.
Output:One contract C including norms for ensuring that logical conditions of FG must or can be brought about.
begin
1 For each ai, 1 ≤ i ≤ n in FG.Satisfy do
2 Create obligation ωi = 〈Oa:rφ ∧ ∧r

k=1 γk, td,
∧r′

k′=0 ψ
′
k′ ,
∧r′′

k′′=0 ψ
′′
k′′〉 where φ = ai and

∧r′′
k′′=0 ψ

′′
k′′ = ai and td is

recorded automatically.
3 If FG.Type is Conditional then
4 For each bj , 1 ≤ j ≤ m do r′ = m and ψ′

k′ = bj
5 End If.
6 If FG.Type is Free then
7 every bj is empty and every ψ′

k′ remains unchanged.
8 End If.
9 If FG.Type is Compulsory then
10 Create sanction ωsanct

i = 〈Oa:authφ ∧
∧r

k=1 γk, td,
∧r′

k′=0 ψ
′
k′ ,
∧r′′

k′′=0 ψ
′′
k′′〉 where

∧r′
k′=0 ψ

′
k′ = ¬ai and

∧r′′
k′′=0 ψ

′
k′′ = ai, and the VO engineer is asked to provide Oa:authφ ∧

∧r
k=1 γj .

11 End If.
12 If FG.Type is Optional then
13 no sanctions are defined for FG.
14 End If.
15 Create contract CFG = 〈〈r1, {ωi|1 ≤ i ≤ n}〉, 〈r2, {ωsanct

i |1 ≤ i ≤ n}〉〉 where:
16 If FG.BelongsTo is Role then r1 is the name of that role and r2 is an authority role auth. End If.
17 If FG.BelongsTo is Dependency then r1 is the name of the depender role and r2 is an authority role auth. End If.
end

Figure 3. RdC Algorithm for Deriving a Contract from a Functional Goal.

ω1 =〈Oa:BankerisPaperLog(pL,d), (·), received(d)
∧ approved(d), isPaperLog(pL,d)〉

ω2 =〈Oa:BankerisElectronicLog(pL, d), (·), received(d)∧
approved(d), isElectronicLog(pL, d)〉

ωsanct
1 =〈Oa:BankAuthφ

′, (·),
¬isPaperLog(pL,d), isPaperLog(pL,d)〉

ωsanct
2 =〈Oa:BankAuthφ

′′, (·),
¬isElectronicLog(pL, d), isElectronicLog(pL, d)〉

Figure 4. Norms Obtained from the Functional Goal Given in Figure 2.

notion of preference order onto the normative specification. We in-
stead use an approach that does not involve extending the conceptu-
alizations at the normative level. Overall, we know that a preference
for a functional goal A over B means that honoring the contract on
A is more desirable than honoring the contract on B. In absence of
preference orders to establish relative desirability at the normative
level, we must rely on activation and expiration constraints in norms.
Namely, we can place activation constraints on norms of contract B
so that those norms are activated (i.e., agents go about honoring the
contract on B) only if the contract on A cannot be honored. Conse-
quently, we can constrain the activation of norms in B to cases when
norms in A cannot be honored. There is, however, no absolute crite-
rion for knowing whether a contract cannot be honored. We therefore
leave it to the VO engineer to choose a set of critical obligations in
the contract on A that, once violated, mean that the contract on A
cannot be honored, and that the contract on B is to be activated. In
summary, if we have a preference order A >> B >> C, then if the

contract obtained on A is not honored (i.e., critical obligations in the
contract on A are violated), we activate the contract on B, and if the
contract on B is not honored, we activate the contract on C. To acti-
vate the contract on B, we introduce additional activation constraints
to those already defined within the norms inB: if the additional con-
straints hold, the contract on A is not honored.

The algorithm in Figure 5 considers each preference pair in a pref-
erence order (line 1 in Figure 5). Given a pair of functional goals,
we take the more preferred functional goal FGl, and consider indi-
vidually each of the critical obligations appearing in the contract on
that goal. For each critical obligation (4–6), we have the violation
of the obligation’s φ as an additional activation condition to each of
the norms appearing in the contract on the less preferred goal FGl+1

(5). We also (6) add expiration conditions so that the contract on
the less preferred goal is not activated when the critical obligations
on the more preferred one are honored. By doing so, we ensure that
the contract on the less preferred goal will only be considered if all
critical obligations on the more preferred goal are violated. The al-
gorithm in Figure 5 ensures that the norms on each less preferred
options in the given preference order are activated only when norms
on more preferred options cannot be honored. The algorithm always
terminates as all of the for each loops move through finite sets, and
always process one element at a time.

5 RELATED WORK

Frameworks and methodologies for the engineering of multi-agent
systems [1, 11, 10] start from high-level goals of the system, then
identify operations to achieve these goals, and design components
that will perform the operations. They do not use the autonomy and
adaptability inherent in agents to facilitate the engineering and de-
velopment of MAS.

47

Preferences over Norms from Functional Goals
Input:One preference order (from ES and among functional goals) that has not been transformed previously using this algorithm. Assume

for simplicity that the order involves w goals, and is of the form FG1.UID >> FG2.UID >> FG3.UID >> . . . >> FGw.UID,
and that a “preference pair” from that order is FGl.UID >> FGl+1.UID, for 1 ≤ l ≤ w − 1.

Output:Per preference pair, a norm on each less preferred goal in the preference pair, updated with constraints ensuring that the norms in
the contract activate only if the norm on the more preferred goal cannot be honored.

begin
1 For each preference pair FGl.UID >> FGl+1.UID, 1 ≤ l ≤ w − 1 do
2 Choose a set of critical obligations in the contract on FGl;
3 For each critical obligation ωi = 〈Oa:rφ ∧∧r

k=1 γk, (·), (·), (·)〉 do
4 For each norm 〈(·), (·),∧r′

k′=0 ψ
′
k′ ,
∧r′′

k′′=0 ψ
′′
k′′〉 in the contract on FGl+1 do

5 Replace
∧r′

k′=0 ψ
′
k′ by ψ′

r′+1 ∧
∧r′

k′=0 ψ
′
k′ where ψ′

r′+1 = ¬φ;

6 Replace
∧r′′

k′′=0 ψ
′′
k′′ by ψ′′

r′′+1 ∧
∧r′′

k′′=0 ψ
′′
k′′ where ψ′′

r′′+1 = φ;
end

Figure 5. RdC Algorithm for Deriving Norms from a Preference Order over Functional Goals.

In our approach, the standard MAS engineering process is more
efficient since it needs to describe only the desired overall system
behavior and relies on the capabilities and properties of individual
agents to assemble complete software systems, negotiate their roles
therein, and operate according to the given normative specification.
Our approach therefore relies on the premise that functionality is
available in the form of individual autonomous agents, designed, de-
veloped, and maintained by, and distributed across many organiza-
tions (e.g., Google, Microsoft, etc.). The VO engineer therefore need
not specify and implement individual agents, but instead determine
how to regulate their interactions so that requirements are satisfied to
the most desirable extent.

Our work has been influenced by the Tropos methodology [1],
which features rich requirements models. Tropos does not, however,
integrate preferences, priorities, and norms. Precise specification in
RdC relies on a less expressive though computationally more attrac-
tive formalism. The role of a domain ontology is implicit in Tropos,
while it is explicit in RdC, again due to the focus on VO. Tropos
does not focus on governed MAS, but instead assumes that agents are
implemented according to the requirements. RdC automates some
activities that are manual in Tropos: given already designed agents,
RdC governs their behavior through the conversion of requirements
to norms.

6 CONCLUSIONS

We introduced Requirements-driven Contracting (RdC), which com-
bines research into rich requirements engineering conceptualizations
with research on norm-based specifications of multi-agent systems.
The framework allows the specification of rich requirements models
and the automatic derivation of executable normative specifications
that express the obligations, permissions, and prohibitions regulating
behaviors of agents participating in multi-agent systems.

Future work will address several points. First, automated resolu-
tion of conflicts between norms at our governance level is available
[9], where first-order term unification is employed to find out if and
how norms overlap in their influence. By integrating this work with
RdC, we will be able to address inconsistencies in an automated
manner at the lower, governance level. More work is necessary for
combining inconsistency detection and resolution at both the ES and
governance levels. Second, we rely on supervised interaction to en-
sure supervision of agent behavior; more elaborate role structures
can be obtained by introducing additional role relationships (e.g., if

an agent occupies one role, it cannot occupy some other). Third, ad-
ditional normative concepts, such as that of power and loyalty (i.e.,
matching between individual and MAS goals), must be studied. Cal-
culating loyalty would facilitate the allocation of resources for su-
pervision, so that, e.g., higher initial trust may be assigned to agents
with higher loyalty values.

REFERENCES
[1] Jaelson Castro, Manuel Kolp, and John Mylopoulos, ‘Towards

requirements-driven information systems engineering: the tropos
project’, Information Systems, 27(6), 365–389, (2002).

[2] Andrés Garcı́a-Camino, Juan-Antonio Rodrı́guez-Aguilar, Carles
Sierra, and Wamberto Vasconcelos, ‘A Rule-based Approach to Norm-
Oriented Programming of Electronic Institutions’, ACM SIGecom Ex-
changes, 5(5), 33–40, (January 2006).

[3] Ivan J. Jureta, Martin Kollingbaum, Stephane Faulkner, John
Mylopoulos, and Katia Sycara, ‘Requirements-driven contract-
ing for norm-governed multi-agent systems’, Technical report,
University of Namur, (October 2007; Also available online:
http://www.jureta.net/papers/RDC.pdf).

[4] Martin J. Kollingbaum, Wamberto W. Vasconcelos, Andrés Garcı́a-
Camino, and Timothy J. Norman, ‘Conflict Resolution in Norm-
Regulated Environments via Unification and Constraints’, in DALT,
(2007).

[5] T.J. Norman, A. Preece, S. Chalmers, N.R. Jennings, M. Luck, V.D.
Dang, T.D. Nguyen, V. Deora, J. Shao, W.A. Gray, and N.J. Fiddian,
‘Agent-based Formation of Virtual Organisations’, Knowledge Based
Systems, 17, 103–111, (2004).

[6] Olga Pacheco and José Carmo, ‘A role based model for the normative
specification of organized collective agency and agents interaction’, Au-
tonomous Agents and Multi-Agent Systems, 6(2), 145–184, (2003).

[7] Katia P. Sycara, Seth Widoff, Matthias Klusch, and Jianguo Lu, ‘Larks:
Dynamic matchmaking among heterogeneous software agents in cy-
berspace’, Autonomous Agents and Multi-Agent Systems, 5(2), 173–
203, (2002).

[8] W. Vasconcelos, ‘Norm Verification and Analysis in Electronic Insti-
tutions’, in AAMAS 2004 Workshop Declarative Agent Languages and
Technologies (DALT 2004), (2004).

[9] Wamberto Vasconcelos, Martin J. Kollingbaum, and Timothy J. Nor-
man, ‘Resolving conflict and inconsistency in norm-regulated virtual
organizations’, in Proceedings of AAMAS, (2007).

[10] Javier Vázquez-Salceda, Virginia Dignum, and Frank Dignum, ‘Orga-
nizing multiagent systems’, Autonomous Agents and Multi-Agent Sys-
tems, 11(3), 307–360, (2005).

[11] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge,
‘Developing multiagent systems: The gaia methodology’, ACM Trans.
Softw. Eng. Methodol., 12(3), 317–370, (2003).

[12] Pamela Zave and Michael Jackson, ‘Four dark corners of requirements
engineering’, ACM Trans. Softw. Eng. Methodol., 6(1), (1997).

48

Intelligent Contracting Agents Language
Sofia Panagiotidi 1 and Javier Vázquez-Salceda 1 and Sergio Álvarez-Napagao 1

and Sandra Ortega-Martorell 2 and Steven Willmott 1 and Roberto Confalonieri 1 and Patrick Storms 3

Abstract. This paper presents ongoing work in the definition
of a contracting language, which can be used not only to specify
agreed behaviour in service-oriented architectures but also for agent-
mediated systems. The contract clauses are based in deontic notions
such as obligations, permissions and prohibitions. The language not
only covers the contract document itself but several layers of com-
munication, including the messages and the protocols for contract
handling. An example of usage is presented.

1 Introduction

New generations of electronic business technologies promise signif-
icant advances in automation, interoperation and flexibility of busi-
ness systems. Current trends are focusing in the use of Service Ori-
ented Architectures (SOA) and Web services in particular as the tech-
nological choice for distributed business systems. Recently the com-
munity has shown interest in the creation of some form of (contrac-
tual) agreements as part of the specification of a distributed business
process. But current work is either too abstract (focusing in XML
representations capable to fully express human contracts) or too
concrete (focusing in the specification of service-level agreements
(SLAs) based in a few set of computer-observable parameters, also
called metrics [8]). Despite its expressivity power, abstract-human-
level approaches [3] cannot be used directly by a computational sys-
tem to monitor and control the terms of the contract between soft-
ware services at runtime, as this kind of contractual documents do
not define how activities are to be monitored. In the case of concrete,
service-level approaches [4, 8], monitoring is limited to the tracking
of the aforementioned metrics.

We propose a step further from SOA approaches, introducing so-
lutions coming from agent-oriented research. More concretely:

• The introduction of intentional semantics within the communica-
tion between services. This allows to properly compare between
actual and intended actor behaviour within a distributed scenario.

• The creation of a contractual language able to express a set of
intended behaviours the parties agree on by means of deontic-like
clauses.

• The introduction of behavioural control mechanisms, based on the
extraction of some higher-level concepts such as commitments,
obligations and violations, which can be derived thanks to some
intentional stance extracted from the communication semantics.

1 Universitat Politècnica de Catalunya, Spain, email: {panagiotidi, jvazquez,
salvarez, steve, confalonieri}@lsi.upc.edu

2 Centro de Estudios de Ingeniera de Sistemas, Ciudad Universitaria
José Antonio Echeverra, Ciudad de La Habana, Cuba, email: san-
dra@ceis.cujae.edu.cu

3 Y’All, Netherlands, email: patrick@yall.nl

By combining the three elements, it becomes possible to monitor
the behaviour of a set of actors by keeping track of the fulfilment
of the agreements between them rather than the analysis of the ex-
act individual messages exchanged. This paper focuses mainly in the
description of the contractual language, although some parts of the
service communication and behaviour monitoring will be also de-
scribed. The content is organized as follows. In the next section we
present an example introducing the domain problem while in sec-
tion 3 we describe the conceptual layers of our contracting language.
Section 4 analyses the important elements of the contract representa-
tion model. In the following section, it is explained how messaging
and communication is achieved between the contracting parties. In
section 6 we illustrate how the whole framework operates within a
realtime environment. We end this paper identifying some previous
work and discussing our conclusions on the presented work.

2 Example: Car Insurance Brokerage
In this paper we will use as example the agreements between several
parties in a car insurance scenario. In this scenario there are three
types of parties: insurance companies, repair companies, and an ex-
tra organization, Damage Secure, which acts as a broker between
the former, facilitating all businesses involved in dealing with car
damage claims for a number of insurance companies. The goal of
Damage Secure is to enhance the quality and efficiency of the total
damage claims handling process between consumers, damage repair
companies and insurance companies.

The example procedure is as follows: Given a claim of a client,
the insurance company delegates the task of finding the best repair
company to Damage Secure. The insurance company will state cer-
tain requirements for the repair job, e.g., the vicinity of the repair
company, the preferred method of repair (e.g. original parts or not),
price-range, repair time. Damage Secure will select the best available
repair company for the job. After the repair company receives the car
and consents to the repair, the two will commit to a short term con-
tract which specifies the details of the repairing procedure, including
the invoice etc. Then the repair company repairs the car and notifies
Damage Secure when is it complete. For every repair job, a surveyors
report has to be provided. Damage Secure will forward the invoice to
the insurance company. Provided there is no dispute over the quality
of the repair (in which case an expert is called to perform a qual-
ity assessment), the insurance company pays the repair company the
agreed price in the contract.

The focus of interest of this example is to show how the agree-
ments between insurance companies and repair companies are rep-
resented and to explain how this is useful to then check at runtime
whether those agreements (explicitly expressed as clauses in the con-
tract) are met when the actual repair takes place.

49

3 Layers/Elements of the Contracting Language
The contracting language separates concerns between different lay-
ers of communication:

1. The Domain Ontology Layer contains the domain ontology, pro-
viding ontological definitions of terms, predicates and actions (e.g.
car, workshop, repair), to ensure that the same definitions are used
by all parties and to avoid terminological misunderstanding.

2. The Contract Layer defines deontic statements about the parties’
obligations, permissions and prohibitions in terms of predicates
and actions defined in the previous layer (e.g. the workshop is
obliged to repair the car in 2 days). The definition of such deontic
statements is expressed as clauses in the contract.

3. The Message Content Layer defines the message content, allowing
agents to express statements about contracts (e.g. a contract being
active/inactive, fulfilled, complete/incomplete), actions related to
contracts (e.g accept, sign, cancel a contract) or expressions about
actions and events related to the clauses in a contract.

4. The Message Layer allows agents to express their attitudes about
the content of the message (e.g. an agent proposes to sign contract
C1, or an agent requests cancellation of a contract C2). Taking
Speech Act Theory as a basis, these attitudes are expressed by
means of a standard set of pre-defined performatives which (sim-
ilarly to FIPA ACL) are included as part of the message envelope.

5. The Interaction Protocol Layer, which pre-defines contract han-
dling protocols as sequences of messages. These protocols struc-
ture interaction by defining sets of acceptable sequences of mes-
sages which would fulfil the goal state of the protocol (e.g. a pro-
tocol for agreeing on contract termination).

6. The Context Layer describes the interaction context where con-
tractual parties will carry out the obligations, permissions and pro-
hibitions agreed in the contract.

Figure 1. General view of the Contracting Fremework

Apart from these horizontal layers, there is a vertical dimension
that appears at all layers: the ontological dimension. This dimension
defines all terms that are needed for each layer. In this approach there
are basically two types of ontologies:

• Domain ontologies: these define the terms, actions, predicates and
relationships needed for communication in a given domain. For
instance, in the case of a car insurance application, there will be
one or several ontologies defining terms such as car, insurance,
damage, actions such as repair and predicates such as repaired.

The domain ontologies are defined in the domain ontology layer,
but are also used in other layers such as the contract layer, the
message layer or the context layer.

• The Contractual Ontology: an ontology that predefines all the
terms, predicates and actions that are used by the framework, inde-
pendently of the application domain. This ontology defines terms
such as contract, party, obligation, action, commitment or viola-
tion, actions such as creating a contract, committing to a contract
and predicates such as fulfilled or cancelled.

More detailed information about the Contracting Language can be
found in [1]. We focus only in the main aspects in the next sections.

4 Contract representation
The Contract Data Model is an XML based representation suitable to
represent both fully defined contracts or contract templates(contracts
partially defined). It is based in the theoretical framework defined in
[9]. It is composed by a name, starting and ending dates and three
main parts: contextualisation, definitions and clauses. Figure 2 de-
picts this structure4.

Figure 2. Root elements of the Contract representation

The name of a contract has to be unique inside the context it is
being declared in (a contract is uniquely identified by a combina-
tion of the context namespace and the contract name). The starting
and ending dates of the contract express the valid time period of the
contract. Ending date is optional (contracts without end date are al-
lowed by leaving the ending date blank). The rest of the elements are
described in the following sections.

4.1 Definitions
The definitions part defines the parties of the contract, the roles they
play, some optional grouping of roles and the model of the domain.

Figure 3. Parties element in contract

4 The detailed semantics of the figures can be found in the Oxygen XML
User Manual, at http://www.oxygenxml.com/doc/oXygenUserGuide-
standalone.pdf, pages 91-92

50

4.1.1 Parties

The contract parties are the list of agents involved in the contract,
that is, the set of agents assigned to fulfil one or more clauses of the
contract. In the contracting language, the contract parties element has
for each agent its name, a reference to this agent and optionally a text
description about this agent (see Figure 3).

For instance the following is an extract of the parties definition in
the car insurance scenario.

<ContractParties>
<Agent AgentName="Feel Safe">
< AgentReference> feelsafe.com:8080/FS</AgentReference>
<AgentDescription>Car Insurances</AgentDescription>
</Agent>
<Agent AgentName="Damage Secure">
< AgentReference> damsec.org:8080/DS</AgentReference>
<AgentDescription>Service Broker</AgentDescription>
</Agent>
<Agent AgentName="Fast Fix">
< AgentReference> fastfix.com:8080/BR</AgentReference>
<AgentDescription>Bob’s Garage</AgentDescription>
</Agent>
</ContractParties>

4.1.2 Role Enactment List

The role enactment list element is used to assign roles to the agents
(parties). The definition of roles is not common in existing contract-
ing languages (such as WS-Agreement or WSLA), which tend to use
directly some kind of agent identifier to assign responsibilities. In
our approach roles are a very powerful mechanism that decouples the
definition of responsibilities from the specific agents that will have to
fulfill them. This decouplement allows to create contract templates
which fully specify, e.g., the obligations of a repair company or a
insurance company in an archetypal repair scenario without specify-
ing the exact agents enacting the roles. Such contract template can
be then instantiated several times by only specifying each time the
exact parties and the role-enactment relations.

Figure 4. Role enactment list element in contract

Figure 4 shows the structure of a Role-enactment list. In the car
insurance scenario, the assigned roles could be described as follows.

<RoleEnactmentList>
<RoleEnactmentElement

AgentName="Feel Safe" RoleName="Insurance Company"/>
<RoleEnactmentElement
AgentName="Damage Sescure" RoleName="Broker"/>

<RoleEnactmentElement
AgentName="Fast Fix" RoleName="Repair Company" />

</RoleEnactmentList>

4.1.3 Group List

The group list element is used to group agents that have different
roles into a group that might share some responsibilities. It can be
useful when there are clauses that should affect a subgroup of the
agents in the contract. Each group of the list has a name and the list
of agents that compose the group (see Figure 5).

There is always a predefined group called ALL, which groups all
agents in a contract. Also all roles implicitly create a group of all
agents that enact the same role. An example in the car repair scenario

Figure 5. Representation of the Group list element

would be the following: lets suppose that there are some specific reg-
ulations applying only to small-medium enterprises (SMEs), and that
only two of the parties are SMEs. This could be expressed as follows:

<GroupList>
<Group GroupName="Small-Medium Enterprises">
<AgentName>Damage Secure</AgentName>
<AgentName>Fast Fix</AgentName>

</Group>
</GroupList>

4.1.4 World Model

Within the contracting language, it must be ensured that all parties
have a shared understanding of the elements in the world that they
will refer to in their interactions and also of the characteristics of the
world itself. A representation of the different elements composing
the knowledge about the domain is depicted in Figure 6.

Figure 6. Representation of the world model element

4.2 Contextualisation
In the contracting language, contexts are implicitly created when a
contract becomes active (as we explain in section 6). They will ob-
tain elements from the contract, such as the world model, the domain
ontology, the descriptions of possible actions and processes within
the domain and the set of regulations to be applied within the organi-
zation being represented. Moreover, the context of a contract, called
interaction context, may be as well contained inside another inter-
action context and therefore inherit all its knowledge representation
elements and be constrained by its regulations. In this case, the Con-
textualisation part of the contract has to specify which is the parent
contract. If a contract is an instance of a contract template, this is
also specified in this part.

51

4.3 Clauses
Clauses express agreements between parties in the form of deontic
statements. In order to express the clauses we have adopted a varia-
tion of the norm representation defined in [2].

A clause (Figure 7) is structured in two parts: the conditions and
the deontic statement. There are three conditions, which have the
form of boolean expressions, that have to be evaluated at different
stages of the clause life cycle.

• Activating (or triggering) Condition: when this condition holds
true, the clause is considered to be activated. This condition can
also be referred to as precondition. If the boolean expression of
this condition includes a violated() predicate, the clause is consid-
ered to be a violation handler.

• Exploration (or maintenance) Condition: this is the invariant of the
deontic statement execution, which means that when the clause is
active and the statement is being enforced, the exploration condi-
tion has to hold always true. If this does not happen, a violated()
predicate will be raised. This condition can include temporal op-
erators before() and after() with allow to express temporal con-
straints and deadlines.

• End (or achievement) Condition: the clause is considered to be
inactive and successfully fulfilled if and only if the exploration
condition has always held true and the end condition holds true.

Figure 7. Representation of the clause element

The DeonticStatement is the central element of the clause. There
are three main fields in its structure: the deontic modality, the roles
involved and the object of the norm (Figure 8):

• Modality: this field indicates the deontic modality of the state-
ment, which can be either Obligation, Prohibition, or Permission.

• Who: contains the set of roles and groups of roles that will have
to fulfil the statement.

• What: this represents the object of the norm. This object can be
an action or a state. If it is an action, this action will have to be
executed in order to fulfil the norm. Otherwise, if it is a state,
the responsible actor(s), defined in the Who attribute, will have to
ensure that this state is accomplished as long as the exploration
condition holds true.

Clauses can be used in two ways:

• as standard clauses: they define what ought/ought not to be done.
For instance, a clause stating that a buyer should pay for a given
item within some time period.

• as violation handling clauses: they define what to do if stan-
dard clauses are violated) (i.e. The exploration condition does not
hold).

Figure 8. Representation of the deontic statement element

In the car insurance scenario, an example of a standard clause
would be ”The repair company is obliged to notify Damage Secure
before april 10 if the report of the repair is ready”’. Such clause can
be expressed in our language as follows:

<Clause ClauseID="NotifyRepairCompleted">
<ActivatingCondition>
<BooleanExpression>
exists(RepairReport, isRepaired(car12f3pw, R1))

</BooleanExpression>
</ActivatingCondition>
<EndCondition>
<BooleanExpression>
isSentRepairCompleted(car12f3pw,

RepairReport, "Damage Secure", R1)
</BooleanExpression>
</EndCondition>
<ExplorationCondition>
<BooleanExpression>

Before(2008-04-10T15:30:30+01:00)
</BooleanExpression>

</ExplorationCondition>
<DeonticStatement>
<Modality>
<OBLIGATION/>

</Modality>
<Who>
<One id="R1" enacting="Repair Company"/>

</Who>
<What>
<ActionExpression>
sendRepairCompleted(car12f3pw,

RepairReport, "Damage Secure", R1)
</ActionExpression>

</What>
</DeonticStatement>

</Clause>

This clause only activates when a report stating that the car is
repaired exists, and deactivates once the report is sent. The Explo-
rationCondition specifies in this case that the obligation should be
met before a given deadline. The DeonticStatement specifies that this
is an obligation related to one agent, R15, enacting the Repair Com-
pany role, and it consists of one action (sending the repair report).

4.4 Contractual Ontology (IST-Contract)
As mentioned in Section 3, the Contractual Ontology is the ontology
that predefines all the terms, predicates and actions that are used by
the framework, independently of the application domain. The pur-
pose of this is for a generic, non-application dependent information
to exist within the framework and be shared amongst the agents.

This ontology defines objects that represent primal entities exist-
ing within the framework, actions committed by an actor and predi-
cates which declare states and conditions of the system. Some of the
primal concepts that exist in the contractual ontology are:

5 It is important to note here that we show a version of the clause that is valid
for both contract templates and contracts, where R1 is a variable, the value
of which is set by unification in the activating condition (i.e. the Repair
Company that created the Repair Report). If one is not interested in reusing
this clause in several contracts, R1 could be directly substituted here by the
specific Repair Company.

52

• Contract An agreement between several parties
• Obligation An obligation corresponding to an agent
• Party A person, agent or entity
• Action An action taken by one of the parties
• Predicate A logical predicate with zero or more arguments which

is true or false
• List The classical notion of list
• Penalty The penalty for a party when violating of an obligation

The table below shows two examples of pre-defined ac-
tions and predicates to express statements about contracts are
shown. The first is the action of committing to a contract and
the second is the action of creating a contract. Attributes rep-
resent both inputs and outputs. Wherever a predicate appears
in the precondition and does not in the postcondition, it is as-
sumed that it remains the same after the action is completed.

action attributes precond. postcond.

P: Instance of Party C is valid committed(P, C)
commit C: Instance of Contract initiated(C)

∀ O Instance of Obligation
in C: obliged(P, C, O)

happened(P, commit(P, C))
create P: Instance of Party ¬(exists(C)) exists(C)

C: Instance of Contract happened(P, create(P, C))
Other actions, defined in a similar way are: terminate, withdraw,

cancel, get, update and more. Predicates are of the form of:

• committed(P, C), where P is instance of a party and C is instance
of a Contract

Other predicates, defined in a similar way are: happened, all-
committed, violated, obliged, initiated, active, cancelled, and more.

5 Contracting Messages and Protocols

In order to increase the expressivity of the communication between
services to introduce some intentional stance, the contracting lan-
guage also defines a set of performatives to be used by the parties.
We have extended FIPA ACL [6] performative set in a way that can
be used not only by Web services but also by agents. To properly use
those performatives, our contracting language also specifies the mes-
sage structure, a content language and a set of contracting protocols

5.1 Message Structure

The message structure is a XML variation of FIPA’s message struc-
ture [6], where the message body contains the usual FIPA proposed
attributes, i.e. sender, receiver, performative, language, content, etc.

5.2 Message Content

The content of the communication message describes what the pur-
pose of the communication is and expresses knowledge existing in
the level of the world representation.

One important feature of the contracting language is that not only
full contracts can appear as content of the message but statements
about contracts and contractual actions too (see 4.4)

The language used to express the content of the messages between
the actors is based on a subset of FIPA-SL [5] namely FIPA-SL2,

adapted to an RDF representation.6 The reason for this is that it re-
mains an adequately expressive set as it allows first order predicate,
modal logic operators, quantifiers (forall, exists) and reference opera-
tors (iota, any, all), which are needed in order to give the expressivity
needed for flexible contract-related communication.

5.3 Performatives
The full set of FIPA-ACL [6] performatives is adopted (e.g. query,
inform, etc.). However, FIPA standards do not include cases in which
an agent might propose an action to be performed by more than one
agent (e.g. to propose that many agents commit on a contract). For
this reason, FIPA-ACL alone is not sufficient, as its speech acts can-
not be used to form, maintain and dissolve joint intention (mainly to
commit) in order to support advanced social activity (i.e., teamwork).

We have extended FIPA-ACL performatives with extra performa-
tives based in joint intention theory:

• suggest: The action of submitting a suggestion for the sender and
the receiver to perform a certain action.
<i, suggest (j, <i, act>, <j, act>)>
where i is the sender and j is the receiver.

• consent-suggestion: The action of showing consent to a sugges-
tion for the sender and the receiver to perform a certain action.
<i, consent-suggestion (j, <i, act>, <j, act>)>
Agent i informs j that, it consents for agent i and agent j to perform
action act giving the conditions on the agreement.

• dismiss-suggestion: The action of dismissing a suggestion for the
sender and the receiver to perform a certain action.
<i, dismiss-suggestion (j, <i, act>, <j, act>, ψ)>
Agent i informs j that, because of proposition ψ, i does not have
the intention for i and j to perform action act.

5.4 Protocols
The architecture defined in [9] identifies agent behaviours which
should be well defined and designed, in order for the contract life-
cycle to be smoothly executed. These include the phases of Contract
Creation, Contract Fulfilment, Contract Modification and Update,
Contract Violation, Contract Cancelling By Agreement and more.
Such a communication can be achieved through communication pro-
tocols which define significant part of every agent’s behaviour.

A set of contract handling protocols has been created to support
those behaviours. Figure 9 depicts an example of a protocol express-
ing the creation of a contract between two agents.

Protocol handlers have been developed for both agents and agenti-
fied Web services, easing the implementation of the communication
to the designer.

6 Runtime Contract Execution
Once a contract is created, the contract handling mechanisms cre-
ate an interaction context following the specification of the con-
tract. Such context acts as an Electronic Institution providing a safe
environment for contractual interactions. Context includes facilita-
tor agents such as Notaries, Ontology Service, Contract Storers and
Managers. Notaries are trusted third parties that can be used as testi-
monies of the execution of a contract. The Ontology service can be
queried by the agents: it receives a reference to an ontology definition

6 RDF has been chosen here instead of XML because it is easier to integrate
with semantic representations such as OWL.

53

Figure 9. Simple Contract Create protocol

and returns the definition itself. Contract stores are trusted reposito-
ries for contracts, which keep a version of any contract agreed and
any update made to it. Contract Managers are the ones that monitor
contract execution, by keeping an updated list of all clauses in the
contract and their status (active, inactive, violated, etc.). The status
for each clause is handled by tracking the Activating, Exploratory
and End conditions. Contractual obligations are converted into criti-
cal states (see [9]) which are checked for and acted upon, and which
can also be used for verification. Violations are detected by the Ac-
tivation conditions in the violation handling clauses and in such case
the manager performs corrective actions or enforces compensations
for agreements violated by parties.

7 Previous Work
As explained in section 1, existing contract representations in
service-oriented Architectures are either too abstract, human-
oriented (such as OASIS ebXML [3] or too low-level, based on
Service Level Agreements (SLAs). We will concentrate in the lat-
ter ones, as these are the only ones usable for monitoring compu-
tational behaviours. WS-Agreement [4] was one of the first XML-
based languages for agreements (terms and meta information about
the agreement) which also included a definition of a protocol for
establishing these agreements. Although WS-Agreement is widely
used, it is not possible to describe multi-party contractual relation-
ships, only one-to-one contracts. It also lacks the definition of met-
rics in order to support flexible monitoring implementations. Most of
this has been solved in the Web Service Level Agreement (WSLA)
[8] framework, a more expressive language targeted at defining and
monitoring agreements for Web services, covering the definition of
the involved parties, the service guarantees and the service definition.
WSLA allows the specification of third parties and also monitoring
service performance by means of metrics. However, it lacks the de-
scription of the application execution context and mechanisms for
the execution of activities such as negotiating the contract. Both WS-
Agreement and WSLA also lack formal semantics about behaviours
and agreements (making it difficult to reason about them or to verify
certain properties). Finally, Rule Based Service Level Agreements
(RBSLA) [11, 10] focuses on sophisticated knowledge representa-
tion concepts for service level management (SLM) of IT services.
RBSLA is an extension of RuleML. The rules are based on the logic
components of Derivation, Event Condition, Event Calculus, Cour-
teous Logic and Description Logic. RBSLA’s flexibility is based on
its declarative nature, allowing a more compact and intuitive repre-
sentation. Monitorisation of agreements is based in Event-condition-
action rules with proper operational semantics. However no notion of

responsibilities or obligations are defined. The language we propose
is thus far more expressive than RBSLA, allowing to represent the
parties responsibilities.

More formal approaches in contracts include the work by Sergot
in [12], where the role of deontic logic in legal knowledge repre-
sentation is addressed, or the work by Weigang et al. in [7], where
an agent societies model and techniques that achieve the described
objectives, landmarks and contracts, are described.

Up to our knowledge, none of the existing languages covers all the
layers of communication included in our approach, from the domain
and contract layers to the interaction protocol and context.

8 Conclusions
This paper presents ongoing work in the definition of a contracting
language which can be used in both service-oriented architectures
and in agent-mediated systems. This covers all the levels of commu-
nication and bases its expressivity in the introduction of speech acts
in the parties communication and the use of deontic notions such as
obligations, permissions and prohibitions in the contract clauses.

The semantics of the language are based in the formalisation in
[2]: deontic expressions (in clauses) are reduced into LTL expres-
sions, and critical states are treated as landmark patterns. Ongoing
work is to extend the formalisation to also map the intentional state-
ments in the message layer (such as joint commitments) into LTL.

ACKNOWLEDGEMENTS
This work has been funded mainly by the FP6-034418 CON-
TRACT project. Javier Vázquez-Salceda’s work has been also par-
tially funded by the Ramón y Cajal program of the Spanish Ministry
of Education and Science. All the authors would like to thank the
CONTRACT project partners for their inputs to this work.

REFERENCES
[1] IST Contract project WP3 technical report, 2007. Available at

http://www.ist-contract.org.
[2] Huib Aldewereld, Autonomy vs. Conformity: an Institutional Perspec-

tive on Norms and Protocols, PhD thesis, Utrecht University, 2007.
[3] OASIS ebXML Joint Committee, 2008. http://www.ebxml.org.
[4] A. Andrieux et al, Web Services Agreement (WS-Agreement)

Specification, World-Wide-Web Consortium (W3C), 2005.
http://www.ogf.org/documents/GFD.107.pdf.

[5] Foundation for Intelligent Physical Agents, FIPA SL Content Language
Specification.

[6] Foundation for Intelligent Physical Agents, FIPA ACL Message Struc-
ture Specification, 2000.

[7] Weigand. H., V. Dignum, J-J Meyer, and F. Dignum, Specification by
Refinement and Agreement: Designing Agent Interaction Using Land-
marks and Contracts, Engineering Societies in the Agents World III,
LNAI 2577, Springer Verlag, pp.257-269, Berlin, 2004.

[8] H. Ludwig, Web Service Level Agreement (WSLA) Language Specifica-
tion, IBM, 2003. http://www.research.ibm.com/wsla.

[9] S. Miles, N. Oren, M. Luck, S. Modgil, N. Faci, C. Holt, and G. Vickers,
Modelling and Administration of Contract-Based Systems, Symposium
on Behaviour Regulation in MAS, Aberdeen, Scotland, 2008.

[10] A. Paschke, RBSLA: A declarative Rule-based Service Level Agreement
Language based in RuleML, Int. Conf. on Computational Intelligence
for Modelling, Control and Automation and Int. Conf. on Intelligent
Agents, Web Technologies and Internet Commerce Vol-2, 2006.

[11] A. Paschke, J. Dietrich, and K. Kuhla, A logic based SLA Management
Framework, In Semantic Web and Policy WS (SWPW) at 4th Semantic
Web Conf., Galway, Ireland, 2005.

[12] M.J. Sergot, The Representation of Law in Computer Programs, Bench-
Capon (ed.) Knowledge-Based Systems and Legal Applications, Aca-
demic Press, 1991.

54

Argumentation for Normative Reasoning
Nir Oren and Michael Luck1 and Timothy J. Norman2

Abstract. An agent’s behaviour is governed by multiple factors,
including its beliefs/desires/intentions, its reasoning processes and
societal influences acting upon it, such as norms. In this paper we
propose an extensible argumentation inspired reasoning procedure,
and show how it may be used to perform normative reasoning. .
The language used by our procedure is built around defeasible, non-
monotonic rules called argument schemes. The evaluation of the in-
teractions between argument schemes and predicates is performed
using a novel argumentation based technique. We show how issues
such as normative conflict, priorities over norms, and the effects of
norms may be represented using the framework, and how the agent
may use these to reason effectively.

1 Introduction
An increasingly popular way of declaratively controlling agent be-
haviour is through the use of norms. Most commonly, a set of obliga-
tions and prohibitions are imposed upon an agent, constraining its be-
haviour accordingly. Different approaches define these norms in dif-
ferent ways. In the simplest case, an obligation can be seen as a hard
constraint, with the system entering an undefined state if the norm is
violated. More flexible systems treat norms as soft constraints, but as
flexibility increases, difficult questions arise in areas including nor-
mative reasoning, verification, and semantics, as well as how norms
interact with each other.

In particular, additional complications arise when normative con-
flicts occur, with an agent having to select which norms to honour,
and which to ignore. Ultimately, the agent’s actions are governed by
its preferences, knowledge (including beliefs, desires and intentions),
the norms affecting it, and the state of the environment. Several ef-
forts to address this issue have been proposed, which take these var-
ious factors into account in different ways.

One strategy espoused by some (including the philosopher John
Pollock [8]) follows the approach that humans appear to use when
faced with multiple choices; namely to engage in an internal dia-
logue and act based on its outcome. For example, if I am to decide
whether to play a game or write a paper, I would weigh up the pros
and cons of each of these actions, in the context of my obligations,
e.g. when the paper is due, and how much I like my job. This weight-
ing process may create additional reasons to pick one action over
another, and may cause other reasons to no longer be applicable.

Pollock’s work was intended to apply to any form of practical rea-
soning, and did not pay particular attention to dealing with norms.
His internal dialogue based representation of practical reasoning, in-
stantiated via an argumentation procedure, is highly appropriate for
reasoning about norms because norms typically constrain desired be-
haviour, leading to the need to resolve (internal) conflicts so as to

1 King’s College London, UK, email: nir.oren,michael.luck@kcl.ac.uk
2 University of Aberdeen, Scotland, email:t.j.norman@abdn.ac.uk

allow an agent to determine whether to comply with its norms. Our
reasoning framework, while simpler than Pollock’s, contains the fea-
tures necessary to reason about normative issues. It is based on the
emerging AIF standard [3], and provides support for normative con-
cepts via the idea of argument schemes. Argument schemes repre-
sent defeasible, possibly non-deductive, rules of inference, and are
intended to capture common patterns of argument. They may be gen-
eral, or domain-specific.

In this paper, therefore, we use argument schemes to represent rea-
soning rules. We present a number of argument schemes that can be
used to reason about normative concepts. By representing its knowl-
edge using these argument schemes, and using results from argumen-
tation theory, an agent is able to infer, from the interactions between
argument schemes, how to act on the basis of its norms, and whether
any of its norms should be ignored. Our approach is able to naturally
deal with normative conflict and, due to its non-monotonic nature,
is easily able to handle cases where an agent is presented with addi-
tional information. Apart from the formal introduction of normative
argument schemes, our main contribution thus revolves around the
framework’s ability to aid an agent in resolving normative conflict.
Thus, we begin the next section by introducing argument schemes,
after which we show how an agent may reason about their interac-
tions. After providing an example showing the framework in action,
we conclude the paper by examining related research and proposing
further extensions to the work presented here.

2 Argument Schemes and Information

As mentioned in the introduction, agents using our framework reason
about the world using inference rules called argument schemes. We
begin this section by informally describing these argument schemes.
Later, in Section 4, we show how these argument schemes may be
used for normative reasoning.

An argument scheme represents a (possibly non-deductive) rule of
argument. Argument schemes consist of three components: a set of
premises, a set of conclusions, and a set of other argument schemes
which may be undercut by this scheme (an undercut represents a
reason for not being allowed to use the scheme, and is described in
more detail later). Premises and conclusions refer to concrete ele-
ments of the environment, form the basis of our language, and are
represented using Prolog-like predicates. As per Prolog convention,
we assume that the first letter of a variable is capitalised, while a
constant’s first letter is lowercase. Unbound predicates are predicates
containing variables; when we refer to predicates, we mean predi-
cates containing no unbound variables. We call the set of all unbound
predicates UPS , while the set of predicates is labelled PS.

We define a function subst(A, B), which returns predicate A uni-
fied according to the mapping B, where A ∈ UPS , and B is a map-
ping between variables and unbound predicates. Predicates are used

55

as the basis for knowledge representation within an agent’s knowl-
edge base, and are used to represent both contested and uncontested
facts. These facts are used as inputs to argument schemes, and may
also form as a result of the application of such a scheme. AIF refers to
such predicates as information, and we will adopt this terminology.

As stated previously, an argument scheme represents a rule of in-
ference (and usually refers to a repeatedly used form of argument).
Argument schemes operate on specific types of information, and thus
make use of unbound predicates; they are applicable when specific
conditions hold, namely when all their premises are present. The
application of an argument scheme results in some conclusions be-
ing drawn. Argument schemes may also influence the application of
other schemes. Pollock gives the following example of an argument
scheme undercutting another argument scheme (i.e. preventing the
other scheme coming into force). Here, the application of the second
argument scheme nullifies (undercuts) the first scheme’s application.

1. If an object looks a certain colour, it is that colour.
2. If a light of a certain colour shines on an object, that object will

take on the light’s colour (even if the object is not that colour).

Strong parallels exist between argument schemes and default rea-
soning, particularly when dealing with issues such as burden of proof
and critical questions [10]. Premises to an argument scheme may thus
be required, or be default (i.e. only the explicit presence of the nega-
tion of a default may cause a scheme to not be applied). Since our
language does not explicitly cater for negation, two types of conclu-
sions may exist for a given argument scheme, namely those conclu-
sions supported by the scheme, and those attacked by the scheme.
Formally then, we may define an argument scheme as follows:

Definition 1 (Argument Scheme) An argument scheme is a struc-
ture of the form

AS = 〈ASDefaults,ASPremises,ASSupports,

ASAttacks,ASUndercuts〉

where ASDefaults,ASPremises,ASSupports,ASAttacks ∈
2UPS . Furthermore, a predicate may only appear in one of
ASDefaults,ASPremises,ASSupports and ASAttacks . If a vari-
able v appears in an unbound predicate within ASSupports
or ASAttacks , it must also appear within ASDefaults or
ASPremises . ASUndercuts is a set of undercutting bindings.

ASDefaults represents the set of defaults which must not hold
for an argument scheme to be applied, while ASPremises repre-
sents those pieces of information that must hold. ASSupports con-
sists of those conclusions supported by the argument scheme, and
ASAttacks stores the conclusions that are attacked by the scheme.

Definition 2 (Undercutting bindings) An undercutting binding is
a pair 〈AS ,UBMapping〉 where AS is an argument scheme,
and UBMapping is a mapping from the variables found in
(ASPremises ∪ASSupports ∪ASAttacks) to UPS .

As an example, consider the argument scheme “if A implies C,
and B implies C, then, by accrual, C is to be strongly believed”.
Formally, this argument scheme could be represented as follows:

〈{}, {A, B, implies(A, C), implies(B, C)},
{C, strongly(C)}, {}, {}〉

Such an argument scheme implicitly assumes that the implication
may accrue. Another argument scheme, together with its associated

undercutting bindings may be defined to prevent this scheme from
being applied in situations where accrual may not occur3:

〈{}, {notAccrue(X, Y)}, {}, {},
{〈〈{A, B, implies(A, C), implies(B, C)},
{C, strongly(C)}, {}, {}〉, {{A, X}, {B, Y }, {C, C}}〉}〉

Note that there is no specialised representation for negation in our
framework. The following schemes are thus present in most systems:

< {}, {A}, {}, {not(A)}, {} >

< {}, {not(A)}, {}, {A}, {} >

An argument scheme may be used, together with some informa-
tion, to generate new information. The application of an argument
scheme in this way results in an instantiated argument scheme, and
is achieved via a process of unification.

Definition 3 (Instantiated Argument Scheme) An instantiated ar-
gument scheme is a tuple IAS =< AS, Mapping > where AS is
an argument scheme, and Mapping is a mapping such that,

∀U ∈ ASPremises, subst(U, Mapping) ∈ KB

∀U ∈ ASDefaults, subst(U, Mapping) /∈ KB

∀U ∈ ASSupports ∪ASAttacks, subst(U, Mapping) ∈ PS

3 Evaluating Arguments
The process of argument not only generates arguments, but also links
information in a specific way, with some arguments supporting oth-
ers, and other arguments and pieces of information attacking each
other in various ways. Given a set of arguments, an agent must be
able to determine which of these are, in some sense, admissible. That
is, which arguments may be deemed to “hold” given the interactions
within the set. The most influential work in this area is probably that
of Dung [4]. Here, arguments are treated as abstract entities, with
no attention paid to their content. The only attribute associated with
arguments is that they require the ability to attack other arguments.
Given a set of arguments, and a binary attack relation, Dung neatly
classifies the sets of arguments that a rational reasoner deems to be
admissible at the end of an argument.

Various extensions to Dung’s work have been proposed (e.g.
[2, 1]), and in this paper, we make use of Oren’s work on abstract
evidential reasoning [6], which we now describe. An evidential ar-
gument system stores the arguments and records the way they may
interact with each other. Two types of interactions may exist: attacks,
and supports. Oren’s work investigated which sets of arguments may
be considered “admissible”; that is, which sets make sense to some
sort of rational reasoner, given the interactions between arguments.
In his work, an argument is only considered admissible if there is
an unbroken chain of support from some sort of universally accepted
“evidence argument” to the argument. A chain may be broken if it is
successfully attacked by some other supported argument.

Definition 4 (Evidential Argument System) An evidential argument
system is a tuple (A, Ra, Re) where A is a set of arguments, Ra a
relation of the form (2A\{η})×A and Re a relation of type 2A×A.

Additionally, @z ∈ 2A, y ∈ A such that zRay and zRey.

3 It is also possible to represent this by introducing “virtual” information and
using the ASDefault property.

56

η

a

b x

c

Figure 1. An evidential argument system. Solid arrows represent support,
while dashed arrows represent attacks between arguments.

The Re and Ra relations respectively encode evidential support
and attacks from a set of arguments, to an argument4. η represents a
special argument, representing unquestionable support from the en-
vironment, and can also be used to represent defaults. As an example,
consider the following arguments:

a It was dark. When it is dark, a witness’s statement could be wrong.
b Witness b made the statement that the bird flew. A witness’ state-

ment can be viewed as evidence.
c Witness c made the statement that the bird did not fly. A witness’

statement can be viewed as evidence.
x We know that birds can normally fly, and thus given some evi-

dence, we may claim that the bird flew.

This would result in the following evidential argument system, as
illustrated graphically in Figure 1.

< {a, b, c, x},
{({a}, c), ({a}, b), ({c}, x)},
{({η}, a), ({η}, b), ({η}, c), ({η}, x), ({b}, x)} >

Within an evidential argument framework, it is necessary for an
argument to be supported by some other argument for it to ultimately
be admissible. This immediately raises bootstrapping concerns as
some initial argument has to be supported for any other argument to
eventually be supported. We overcome this problem with the special
η argument:

Definition 5 (Evidential Support) An argument a is supported by a
set S iff

1. SRea where S = {η} or
2. ∃S′ ⊂ S such that S′Rea and ∀x ∈ S′, x is supported by S\{x}

S is a minimum support for a if there is no S′ ⊂ S such that a is
supported by S′.

Assume, in the example above, that no direct link exists between
η and x. Then x is supported by the set {η, b}. Given the notion of
evidential support, we may define an evidence-supported attack:

Definition 6 (Evidence-Supported Attack) A set S carries out an
evidence-supported attack on an argument a if

• XRaa where X ⊆ S, and,
• All elements x ∈ X are supported by S.

An evidence-supported attack by a set S is minimal iff there is no
S′ ⊂ S such that S′ carries out an evidence-supported attack on a.

4 Attacks and supports from sets of arguments allow us to represent conjunc-
tive arguments [5].

We will usually write s-attack when referring to an evidence-
supported attack. A s-attack represents an attack backed up by ev-
idence or facts. Within the example, Arguments a and c are both
supported by η; a thus s-attacks b, and c s-attacks x.

Support for an argument is clearly one requirement for acceptabil-
ity, but it is not enough. Following Dung, an argument should be
acceptable (with respect to some set) if it is defended from attack
by that set. The question arises as to whether all attacks should be
defended against, or only s-attacks. Since the framework focuses on
s-attacks, we choose the latter option, allowing an argument to be
defended from attack by either having the attack itself attacked, or
by having any means of support for the argument attacked by the
defending set.

Definition 7 (Acceptability) An argument a is acceptable with re-
spect to a set S iff

1. S is a support for a.
2. Given a minimal s-attack X ⊆ 2A against a, ∃Y ⊆ S such that

Y Rax where x ∈ X so that X\{x} is no longer a s-attack on a.

An argument is thus acceptable with respect to a set of arguments
S if any argument that s-attacks it is itself attacked (either directly, or
by being rendered unsupported) by a member of S. The set S must
also support the acceptable argument. In the example, the x is ac-
ceptable with respect to the set {η, a}. However, acceptability here
is lacking in one respect in that it does not examine whether ele-
ments of S might themselves be attacked by other arguments (which
would prevent S from supporting a). The concept of admissibility
overcomes this issue, but to define it, we need two further notions.

Definition 8 (Conflict free and Self Supporting Sets) A set of argu-
ments S is conflict free iff ∀y ∈ S, @X ⊆ S such that XRay.
A set of arguments S is self supporting iff ∀x ∈ S, S supports x.

Admissibility may now be defined as follows, so that in the exam-
ple, {η, a} is an admissible set.

Definition 9 (Admissible Set of Arguments) A set of arguments S
is said to be admissible iff

1. All elements of S are acceptable with respect to S.
2. The set S is conflict free.

We are now in a position to define what sets of arguments a rational
reasoner may find consistent. Dung named these sets “extensions”.
Multiple types of extension exist, representing, among others, sets
of arguments that credulous and sceptical reasoners may find con-
sistent. For example, given the arguments x =“The man is guilty
because of reasons a, b, c”, and y =“the man is innocent because of
reasons d, e, f”, where a . . . f are independent unrelated arguments,
a sceptical reasoner would deem x, y inadmissible, as it has no way
of choosing between them. A credulous reasoner would instead say
that there are two scenarios, one where x is true, and one where y is
true, and would not be able to choose between them.

Definition 10 (Extensions) An admissible set S is an evidential pre-
ferred extension if it is maximal with respect to set inclusion. That is,
there is no admissible set S′ such that S ⊂ S′.

An evidential grounded extension of an evidential argument frame-
work EA containing the set of arguments A is the least fixed point
of FEA. Where

FEA : 2A → 2A

FEA(S) = {a|a is acceptable with respect to S}

57

Given a set of predicates P
Given a set of instantiated argument schemes I

1 For any i = 〈〈iASDefs, iASPrems, iASSupps,
iASAtts, iASUcuts〉, iMap〉 ∈ I,

2 let defaults(i) = {subst(U, iMap)|U ∈ iASDefs}
3 let premises(i) = {subst(U, iMap)|U ∈ iASPrems}
4 let supports(i) = {subst(U, iMap)|U ∈ iASSupps}
5 let attacks(i) = {subst(U, iMap)|U ∈ iASAtts}
6 let undercuts(i) = {subst(U, iMap)|U ∈ iASUcuts}
7
8 Let the set of arguments A = P ∪ I ∪ {η}
9
10 ∀p ∈ P, Re = Re ∪ ({η}, p)
11
12 if ∃i ∈ I, p ⊂ P such that p = premises(i)
13 Re = Re ∪ (p, i)
14 if ∃i ∈ I, p ⊂ P such that p = defaults(i)
15 Ra = Ra ∪ (p, i)
16 ∀i ∈ I, A = A ∪ supports(i)
17 ∀i ∈ I, ∀x ∈ supports(i), Re = Re ∪ (i, x)
18 ∀i ∈ I, ∀x ∈ attacks(i), if x ∈ A, Ra = Ra ∪ (i, x)
19 ∀i ∈ I, if ∃j ∈ I, x ∈ undercuts(i)
20 where subst(x, j), Ra = Ra ∪ (i, j)

Figure 2. The algorithm used to convert a set of argument schemes and
predicates to an evidential argument system.

An argument framework may have multiple evidential preferred ex-
tensions, each representing a set of arguments that a credulous rea-
soner would find consistent. Only one grounded extension exists,
representing the arguments a sceptical reasoner should agree with.

The evidential argument system above treats arguments as abstract
entities. We must therefore map between our system, which uses
predicates and argument schemes, and the abstract arguments found
in an evidential argument system, as shown in the algorithm of Fig-
ure 2. This mapping allows us to determine which predicates and
argument schemes, are, in a sense consistent, by evaluating the ap-
propriate extension over the resultant evidential argument system.

Within the algorithm, lines 1 to 7 define syntactic shortcuts used
in the rest of the algorithm, with line 8 defining the initial set of
arguments, made up of the predicates, η, and the instantiated argu-
ment schemes. While predicates and instantiated argument schemes
have different types, we do not differentiate between them at the ab-
stract level in which evidential argumentation systems operate. The
remainder of the algorithm populates the attacks and support rela-
tions according to intuitive rules; lines 12 and 13, for example, link
premises to argument schemes, while lines 14 and 15 cause the pres-
ence of a default to attack an argument scheme. The supported con-
clusions of an instantiated argument scheme, as specified in lines 16
and 17, must be added to the set of arguments, and the appropriate
support relations must also be instantiated. Line 18 instantiates at-
tacks between an argument scheme and its conclusions, while the
final line creates attacks between an instantiated argument scheme
and the schemes it undercuts.

Running the algorithm results in a system containing more pred-
icates and instantiated argument schemes than a rational reasoner
would believe are justified. By computing the evidential argument
system’s grounded or preferred extension, we may determine what
information and argument schemes are in fact consistent.

4 Argument Schemes for Normative Reasoning
We are now in a position to describe a number of argument schemes
that an agent may use when reasoning about norms. We only consider
obligations and permissions, and provide a very simple representa-
tion of these norms. Our first argument scheme deals with violations.
We represent obligations using the one place predicate obliged(G).
If G does not hold, we assume that the obligation is violated. This
leads to the following argument scheme:

< {}, {obliged(G), not(G)},
{violated(obliged(G))}, {}, {} >

When reasoning about obligations, an agent must reason about the
state of the world if an obligation is honoured. We assume that an
agent honours obligations by default, leading to the following argu-
ment scheme:

< {not(ignored(obliged(G))), not(violated(obliged(G)))},
{obliged(G)}, {G}, {}, {} >

Obligations may be conditional; for example, I may have an obliga-
tion to pay someone money if I buy something from them. We model
this conditional by using the Modus Ponens argument scheme:

< {}, {A, implies(A, B)}, {B}, {}, {} >

(Our use of Modus Ponens, together with the introduction of the vi-
olation(. . .) predicate allows us to easily represent contrary to duty
obligations.)

Now, permissions undercut obligations. That is, permissions ex-
plicitly allow us to ignore an obligation, by preventing the obligation
argument scheme from coming into force.

< {}, {permission(G)}, {}, {}, {obliged(not(G)} >

< {}, {permission(not(G))}, {}, {}, {obliged(G)} >

Finally, we assume that an agent values some obligations more than
others. This is captured, in the agent’s internal reasoning, via a
“higher priority” argument scheme. This argument scheme undercuts
the effects of the application of a norm, i.e. an agent reasoning that
one norm is higher priority than another will not attempt to honour
the lower priority norm. The defeasible nature of argument means
that if the higher priority norm is itself successfully attacked (i.e. is
not admissible), the lower priority norm will be reinstated.

< {}, {obliged(A), higherPriority(obliged(A), obliged(B)},
{}, {}, {(〈{not(violated(obliged(G)))}, {obliged(G)}, {G},
{}, {} >, {A, G})}〉

5 Argument Schemes and Normative Conflict
We have now presented a procedure for an agent to determine which
portions of an argument system are admissible, and proposed a num-
ber of general purpose and norm related argument schemes. How-
ever, we have not yet described how an agent may make use of these
schemes in deciding which action to take.

The agent needs to perform inference, determining, from its
knowledge base and argument schemes, which predicates hold. One
further complication appears as the predicates may be influenced by
those norms that the agent is willing to violate. As specified earlier,
we assume that an agent has a knowledge base KB containing those

58

01 Given a set of predicates KB
02 Given a set of argument schemes ASKB
03 i = 0
04 CS0 = (A, Ra, Re)
05 A = KB , Ra = Re = {}
06
07 ∀p ∈ KB, Re = Re ∪ ({η}, p)
08 repeat
09 i + +
10 CSi = CSi−1

11 ∀AS = 〈ASDefaults,ASPremises,
12 ASSupports,ASAttacks,ASUndercuts〉 ∈ ASKB
13 if subst(ASPremises,M)
14 where M ⊆ A and CSi = (A, Ra, Re),
15 CSi = CSi ∪ 〈AS, M〉 ∪ subst(ASSupports,M)
16 until CSi = CSi−1

17 return CSi

Figure 3. The algorithm used by the agent to infer a knowledge base given
an initial knowledge base KB and some initial argument schemes ASKB .

predicates that it believes hold in the environment, and that it is aware
of a set of argument schemes, stored in ASKB , so that we can create
a new knowledge base CS consisting of the agent’s original knowl-
edge base, together with any inferences it may draw from its argu-
ment schemes. We may then calculate what may be inferred from
CS, add it to CS, and repeat the process until no more inferences
may be drawn. This is shown formally in Figure 3.

Note that the final CSi will contain many instantiated argument
schemes, and predicates, that may not be admissible. To determine
what is admissible, we run the algorithm shown in Figure 2 over
CSi, starting at line 12, as we already have an argument framework.
We may then compute the preferred extension to determine which
predicates, and instantiated argument schemes, are actually admis-
sible5. The presence of more than one preferred extension indicates
that a normative conflict may exist. In this situation, the agent must
explicitly add predicates of the form not(honoured(O)) (and pos-
sibly add additional predicates to reflect additional actions), where O
is an obligation found in the agent’s knowledge base, and rerun the
reasoning algorithm, until only a single preferred extension exists.

By attempting to honour, or not honour different obligations, sup-
positional reasoning may take place. If the agent associates util-
ity gains and losses with various predicates, it may determine what
norms to ignore and honour in such a way as to maximise its utility.

6 Example
We illustrate the framework using a simple example. Before examin-
ing the agent’s reasoning process in detail, we describe the scenario
informally: A janitor (the agent) has an obligation to clean the floor,
but needs a mop to do so. The mop is behind an alarmed door saying
“authorised personnel only”. Of course, being a janitor, he is autho-
rised. However, the door is also alarmed, and the janitor is prohibited
from setting off the alarm. However, since it is part of his job, clean-
ing the floor is more important than not setting off the alarm. Clearly,

5 Note that this is a rather brute force approach to computing what holds, a
dialogue game based approach (as described in work such as [6]) may be
more elegant and computationally efficient.

the agent should decide to open the door, even though it means set-
ting off the alarm. We assume that the janitor agent has the following
predicates in its knowledge base:

implies(dirtyFloor , obliged(cleanFloor)), dirtyFloor ,
obliged(not(openCupboard)), permission(openCupboard),
implies(openCupboard , setOffAlarm), obliged(not(setOffAlarm))
higherPriority(obliged(cleanFloor), obliged(not(setOffAlarm)))

Apart from the argument schemes described above, we assume
that the agent has access to a planner, allowing it to determine what
needs to be done to achieve a goal. This is obviously a simplification,
but is sufficient for the purposes of illustration.

In this case, the argument system has a single extension, contain-
ing all the predicates found in the agent’s knowledge base (as no
conflicts exist between them), as well as the predicates

obliged(cleanFloor), cleanFloor , openCupboard , setOffAlarm

Figure 4 shows the resultant argument system. Here, if the “higher
priority” argument scheme was not admissible, two preferred exten-
sions would have existed. The agent would then have had to decide
which norm to violate to yield a single preferred extension.

7 Discussion and Future Work

The reasoning mechanism proposed in this paper is powerful, allow-
ing for reasoning about a wide variety of situations to take place.
However, this power comes at a cost; argument schemes must be de-
fined for any situation that must be reasoned about. We proposed a
number of argument schemes that may be used by the agent to reason
about norms. This work is, however, preliminary and additional nor-
mative argument schemes dealing with issues such as power should
also be present. Furthermore, our representation of norms is simple;
we have ignored issues such as norm activation, maintenance and dis-
charge (to model such issues requires the introduction of reasoning
about temporal artifacts). Finding and representing additional norm-
related argument schemes forms the backbone of our future work.
We also intend to enhance our model, allowing for additional fea-
tures such as argument schemes containing an arbitrary number of
arguments.

Apart from argument schemes and predicates such as “higher pri-
ority”, we have no way of comparing the strength of attack or sup-
port. This concept is very useful, especially when dealing with uncer-
tain concepts. Previous frameworks, such as the one described in [7],
provide a powerful mechanism for assigning strength to arguments,
but have difficulty handling loops. In the future, we aim investigate
how argument strength may be integrated into the model.

Like AIF, the model described in Section 2 does not specify a
structure for arguments, instead examining the interactions between
predicates and argument schemes. Translating between our model
and AIF is trivial, as concepts such as predicates map directly to I-
Nodes, while argument schemes become R and C nodes. Unlike AIF,
however, we are able to perform reasoning on our resulting struc-
tures. Recent work has suggested a more complex structure for argu-
ment schemes within AIF [9].

Our argument scheme structure, together with the presence of at-
tack and support links within our abstract framework, enables us to
easily model the most popular model of argument, namely the Toul-
min model. Existing frameworks have long had difficulty supporting
the richness of this model.

59

dirtyFloor

MP

implies(dirtyFloor,obliged(cleanFloor))

obliged(cleanFloor)

norm

cleanFloor

planner
openCupboard

setOffAlarm MP implies(openCupboard,setOffAlarm)

obliged(not(openCupboard))

not(openCupboard)

norm

mutuallyExclusive

permission(openCupboard)

obliged(not(setOffAlarm))

mutuallyExclusive

norm

not(setOffAlarm)

higherPriority

mutuallyExclusive

mutuallyExclusive

higherPriority(obliged(cleanFloor),obliged(not(setOffAlarm)))

Figure 4. The evidential argument system representing the example; the shaded nodes represent those supported by η. Circular/oval nodes represent
argument schemes intended to support certain conclusions, while diamond nodes represent attacking argument schemes. These are treated identically in the

framework, but are differentiated for visual clarity. Solid arrows indicate support, while dashed arrows represent attacks.

8 Conclusions

In this paper we showed how an agent may use argumentation
schemes and predicates to model its environment and normative
state. By transforming this model into an evidential argument sys-
tem, and computing the extension of this resulting argument system,
the agent could perform different types of normative reasoning. This
reasoning included detecting conflicts between norms, using addi-
tional knowledge from its knowledge base to overcome this conflict,
and checking whether it has indeed fulfilled (or decided to ignore) all
norms that affect it. Our framework was inspired by the way humans
appear to reason when dealing with norms, and is able to easily han-
dle normative conflict. Our approach is easily extensible, by adding
extra domain specific argument schemes, the agent can cope with
additional knowledge.
Acknowledgement: This work was undertaken as part of the CON-
TRACT project which is co-funded by the European Commission un-
der the 6th Framework Programme for RTD with project number
FP6-034418. Notwithstanding this fact, this paper and its content re-
flects only the authors’ views. The European Commission is not re-
sponsible for its contents, nor liable for the possible effects of any
use of the information contained therein.

REFERENCES
[1] Trevor Bench-Capon, ‘Value based argumentation frameworks’, in Pro-

ceedings of the 9th International Workshop on Nonmonotonic Reason-
ing, pp. 444–453, Toulouse, France, (2002).

[2] Claudette Cayrol and Marie-Christine Lagasquie-Schiex, ‘On the ac-
ceptability of arguments in bipolar argumentation frameworks’, in Pro.
of the Eighth European Conference on Symbolic and Quantitative Ap-

proaches to Reasoning With Uncertainty, volume 3571 of LNAI, pp.
378–389. Springer-Verlag, (2005).

[3] Carlos Chesñevar, Jarred McGinnis, Sanjay Modgil, Iyad Rahwan,
Chris Reed, Guillermo Simari, Matthew South, Gerard Vreeswijk, and
Steven Willmott, ‘Towards an argument interchange format’, Knowl.
Eng. Rev., 21(4), 293–316, (2006).

[4] Phan Minh Dung, ‘On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person
games’, Artificial Intelligence, 77(2), 321–357, (1995).

[5] Søren Holbech Nielsen and Simon Parsons, ‘A generalization of Dung’s
abstract framework for argumentation: Arguing with sets of attack-
ing arguments’, in Proceedings of the Third International Workshop
on Argumentation in Multi-Agent Systems, pp. 7–19, Hakodate, Japan,
(2006).

[6] Nir Oren, An Argumentation Framework Supporting Evidential Rea-
soning with Applications to Contract Monitoring, Phd thesis, Univer-
sity of Aberdeen, Aberdeen, Scotland, 2007.

[7] Nir Oren, Timothy J. Norman, and Alun Preece, ‘Subjective logic
and arguing with evidence’, Artificial Intelligence Journal, 171(10–15),
838–854, (2007).

[8] John L. Pollock, Cognitive Carpentry, Bradford/MIT Press, 1995.
[9] Iyad Rahwan, Fouad Zablith, and Chris Reed, ‘Laying the foundations

for a world wide argument web’, Artif. Intell., 171(10-15), 897–921,
(2007).

[10] Douglas N. Walton, Argumentation Schemes for Presumptive Reason-
ing, Erlbaum, 1996.

60

	04
	Index.pdf
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

