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Abstract:

Verification and Validation (V&V) arc the most important issues in building knowledge basc systems.

Rescarchers and practitioners in the ficld of AT applications gencrally all agreed that Knowledge Basc

in any intclligent systems must be adequatatly verified and validated. In this paper we present

OAV-VVT as an verification and validation cxpert systcm f(or V&V during the implementation and

maintcnance phascs of Knowledge Basc system life cycle.

The approach, which has been chosen in OAV-VVT system, is based on knowledge representation and

rcasoning tcchniques. Object-Attribute-Value (OAV) Knowledge representation method has been used

in OAV-VVT cxpert. All common issucs of V&V such as consistency. completeness, scmantic and

logical contradiction and corrcciness of knowledge basc have been considered in OAV-VVT cxpert.

The designed system is application independent: it has scveral important advantages:

First. OAV-VVT itscll is an cxpert system with rcasoning and cxplanation mechanisms.

Sccond. OAV-VVT can be cither used during the knowledge representation phasc or  refinement of

knowledge base.

Third, OAV-VVT is application and knowlcdge basc representation  independent: so it can be used

verilying and validating all AT systems basced on different knowledge base representation technics (i.c.:

logic, semantic network, framc, production rule, predicate logic).

Keyword: Verilication and Validation, Knowledge basc, Knowledge representation. OAV triplc,
Expert systems, Al systems.

1:Introduction

the lack of adequate and precise knowledge is a limiting factor to build an cfficient Al application.
When intelligent methods arc uscd in rcal applications, it is an important factor to be able to check
the consistency of knowledge and the correctness of the system’s rcasoning. As with any softwarce
systcm or application, attention to quality and safcty must be paid throughout the development of
knowledge basc systems. The need for an intcgrated approach towards Verification and Validation
(V&V) of Knowledge Basc (KB) is quitc obvious. In this paper we present OAV-VVT as an
verification and validation expert system for V&V of KB. In order to built such an expert sysiem
tool, [irst of all, it is nccessary to have a common definition of V&V. The table. 1 is indicatcing an
over-view of scveral rescarches and practitioners delined V&V of KB in scveral ways at different
times.



Table. 1: The definitions of V&V by the rescarchers and practitioners.

Researcher’s Validation Verilication
Name
BOEHM Building the right system. Building the system right.
{Boc84]
IGNIZIO . Justification for thc cmployment of an | The  validation  of  the
[Ign91] cXpert system, consistency and completencss of
The verification of the overall | e eXpertsystem’s rule basc.
performance of the expert system.
MENSHOEL & | Addresscs soltwarc system’s | Concerns a software system's
DELAB vsclulness with respect to some real- | conformance to its specification,
[Dcl&Men93] | world  task, regardless  of  its
specification.
KANDEL & A test of whether the ES matches the | Examine the technical aspects
SMITH design ideas, i.c., whether it matches | of an ES in order to determine
[Smi&Kan93] | the tcchnical requirements  and | whether the ES  is  built
cxpectations. correctly.
WU & al The correctness of inference without | The correctness  of  systems
[Wu&al94] considering the Input/Ourput. outputs according to specific

Inputs.

ROUSSET & al

The correctness of system’s  output

Checking  the  logical and

[Rou&al96] depends on Test cases and Initial valid | semantic contradiction of Rule
Fact Basc. Basc.
CARDENOSA | The sct of activitics in charge of | The sct of activitics aiming at
& ESCORIAL | checking that the system is adapted to | checking that the system s
[Car&Esc99] the cnvironment and user requirecments. | adapted  to the systcm
requircments,
KNAUF & al Asks whether or not a system is | Provides a firm basis [or the
[Kna&al00] considered to be the required one, | question of whether or not a

somcthing that somchow lics in the
cycs of the beholder.

system meets its specifications.

The approach, which has been chosen in OAV-VVT system, is bascd on knowledge representation and
rcasoning techniques. OAV-VVT sysiem is able to V&V the knowledge of KB with the Object-
Attribute-Value (OAV) knowledge representation technique. The existing KB will wransfer to OAV
knowledge representation technique (canonical KB). We will show that how the major techniques of
knowledge representation (i.c. logic, semantic network, frames, production rule) could be transfered to
OAV. OAV-VVT cxpert's reasoning validates and verifics the canonical KB. The dynamic process of
V&V in OAV-VVT cxpert will modify all knowledge in casc of any emor and construct a new
knowledge basc. The result will recognize a valid KB. Figurc .1 shows the process ef incoming
knowledge to OAV-VVT system.
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Abstract

There have been a number of very credible attempts to devise paraconsistent
logics to deal with the problems caused by the unavoidability of
contradictions in knowledge bases and elsewhere. This paper suggests a set
of principles for generating logical operator semantics which are broadly
drawn fom classical logic. These lead directly to a paraconsistent logic,

LM, which significantly outperforms other systems and solves the problem
for all practical purposes without giving rise to the difficulties inherent in
other attempted solutions
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Abstract

Formal BDI frameworks such as LORA [5] which use
temporal logic as a tool for describing beliefs about
the environment consider an agent behavior in the
following control loop:

Algorithm: Agent Control Loop
1. while true

2. observe the world;

3. update internal world model;

4. deliberate about what
intention to achieve next;

5. use means ends reasoning to

get a plan for the
next intention;
6. execute the plan;
7. end while.

Whereas the vast majority of agent literature fo-
cuses on steps 4, 5, and 6, we are interested in the
transition 2—3 which forms a link between the per-
ceived world and the way knowledge about that world
is represented within the BDI framework. One of the
efficient ways of specifying beliefs is to use combina-
tions of temporal or dynamic logics and modal logics
(see, for example, [1, 3]). We define a formal structure
from which Beliefs can be automatically extracted in
a way suitable for such formal representation.

Thus, we introduce an algorithm to incrementally
generate this structure, which we call a ‘A Temporal
Lattice’.  We invoke the standard technique of the
Formal Concept Analysis {4, 2], where an observation,
p, is formally represented as p C E x I, where E is
a set of eztents, and [ is a set of intents [2]. Since p

can be viewed as an expression in propositional logic
[2], the set of observations forms the alphabet, A for
labelling the nodes in a graph being constructed.

At each step, we assume that the deliberation on
which action (from the set of possible actions) must
be next taken is done by a deliberation function which
forms part of the BDI architecture. Thus, viewing
this deliberation function as a transition function, we
unwind the structure as a graph such that, given a
state, n, we make a non-deterministic choice of the
successor state, m.

This forms a sequences of states 1g, 71, T2, . . ., Which
are linked by actions act € Act. Additionally, extend-
ing the alphabet A by true and false (with their
standard meaning accepted in classical logic) we la-
bel them by the corresponding expressions from A
(the initial state is labelled by false). We refer to
this sequence as level 0 (n = 0) of the Temporal Lat-
tice to be constructed at the next stage.

Given a sequence 7, (see Figure 1) the initial node
of the Temporal Lattice, is the initial state of 7, and
we denote this node as wg, indicating that it oc-
curs at the O-th point of time and O-th level. The
successor node, wy o is the state 7, of 7 and has the
same label as the state 7, say, px. Now, we build the
node wy ; such that its label, p;, satisfies the following
condition:

p1 = (false V p) = pg
and the node w; _; such that its label, p,,, satisfies
the following condition:

pm = (false A py) = false.

The second index of the nodes w;; and wy,—; indi-
cate their level in the lattice, i.e. level 1 and level -1,



Wr,0

Figure 1: Temporal Lattice

respectively. Repeating this procedure again on sub-
sequent nodes, we derive the Temporal Lattice (the
fact the structure is indeed a lattice follows from the
construction algorithm).

The analysis of the Lattice enables us to

e generate abstractions,

e extract expressions (in linear-time temporal
logic) for the deliberation function,

e derive models of linear computations where these
formulae are satisfied.

We believe that the Temporal Lattice is an efficient
method (at every time point, ¢, we generate at most
2 x i nodes in the lattice) to generate Knowledge and
Beliefs incrementally from raw percepts and is there-
fore useful in agent applications where

1. there is limited perception of the environment

2. there is no prior knowledge about the environ-
ment

3. and the environment is dynamic and nondeter-
ministic.
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1 Introduction

We report on a commencing project that is con-
cerned with the transfer of techniques from multi-
agent systems research to the domain of automated
reasoning. The goal is to achieve more flexible or-
ganisation within a theorem-prover, not only to pro-
vide a better approximation to the human reasoning
approach, but also to solve more complex theorems.

In previous work we have already experimented to
some extend with the transfer of multi-agent tech-
niques to theorem proving. We have developed a dis-
tributed architecture to support interactive theorem
proving [3] within the MEGA theorem-proving envi-
ronment [1]. Its automation has led to a prototype
distributed reasoning system [2], which comprises
several hundred independent reasoning processes of
which some encapsulate full reasoning agents such
as independent automated theorem provers, model
generators, and computer algebra systems. The co-
operation of the single components is achieved via
a central hierarchical blackboard architecture and
the overall proof is constructed within a centralised
proof object. A significant bottleneck is the problem
of communicating partial proofs between the differ-
ent systems involved.

Many of our problems are typical for distributed
problem solving environments and have been tack-
led with some success in field of multi-agent sys-
tems [6; 4]. Here single agents are comprised of au-
tonomous computational entities that have both self
perception and a perception of their environment
containing other agents. This enables them to in-
dependently pursue their goals as well as to flexibly
form societies with other agents in order to coop-
eratively achieve goals. Some of the techniques we
try to incorporate from by multi-agent systems re-
search are, for instance, ways to negotiate between
agents, efficient communication languages, distribu-
tion of limited resources and heuristics to evaluate
performance.

The main goal of our project is to build a flexi-
ble automated theorem proving system based on the
agent paradigm that enables us to tackle hard prob-
lems by cooperation within a society of heteroge-
neous reasoning agents. The single agents are inde-
pendent from each other but can communicate and
cooperate in order to produce a proof. Thereby we
will exploit the considerable insights we have gained
in our previous work when we experimented with
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School of Computer Science
University of Birmingham
V.Sorge@cs.bham.ac.uk

an agent-based approach in IMEGA. Currently, we
extend our approach, bringing together work on dis-
tributed theorem-proving, the development of soci-
eties of agents, and the modelling and evolution of
cooperation, in order to investigate how an agent-
oriented approach may be used to improve theorem-
proving. We will, in particular, tackle the shortcom-
ings of the predecessor system, such as the communi-
cation bottleneck, the limited distribution, and the
lack of autonomy of the reasoning agents.

In the following we present some of the major re-
search tasks of the project.

2 Distributed proof search

The main aim of the agent-based system is to enable
the distribution of the proof search among groups
of reasoning agents. There are two possible ways to
distribute this search: (1) to tackle one subproblem
using several reasoning agents concurrently or coop-
eratively, and (2) to work on different subproblems
in parallel. This essentially corresponds to and-or-
parallelism within the search.

From the theorem proving point of view, this type
of search poses several challenging problems. (1)
The identification of possible dependencies between
parallel proof attempts: Which agents might inter-
fere with each other and how? What is the relevant
information that needs to be exchanged while tack-
ling different subgoals in parallel? When should the
parallel proof attempts by resynchronised? (2) The
problem of backtracking: How can backtracking be
organised in parallel proof attempts with heteroge-
neous reasoning agents? Which are the proof states
the system can backtrack to and what kind of infor-
mation, such as logical dependencies between differ-
ent proof branches, can be exploited? What are the
criteria for backtracking? (3) The construction of a
joint uniform proof object: H a proof attempt has
been successful we are still interested in the proof
that was constructed, i.e. it is necessary to recon-
struct a uniform proof object from the results of the
distributed search. For this the agents involved have
to retain some information about their own search.
Therefore, we have to investigate appropriate granu-
larity of this information and how should it be rep-
resented, communicated, and maintained? A final
uniform proof object is also particularly important
in order to guarantee correctness of the proof. Since
very heterogeneous systems can be involved (for in-



stance, provers for classical and constructive logic)
assembly of a distributed proof might not lead to a
correct proof.

3 Flexible cooperation

The major means to achieve a flexible behaviour of
the system is to enable the dynamic formation of
clusters of reasoning agents. These clusters can be
of various types. For example, agents that comple-
ment each other can attempt to cooperatively solve
a problem (for instance, the cooperation of a first or-
der and higher order theorem prover). Agents with
similar abilities can form clusters that have a cer-
tain reasoning expertise and can work concurrently
on given problems (for instance, a collection of first
order theorem provers). This increases the likeli-
hood that a problem at hand will be solved by one
of the agents. Clusters can also be comprised of
agents with contrasting abilities (for instance, an
ATP and a model generator), which would enable
the classification of some problems, for example, an
assertion is a theorem or has a counter model. In
order to form clusters it is necessary that the agents
have some knowledge of their own and each others
abilities.

In our prototype system, a significant bottleneck
was the problem of communicating partial proofs
between the different systems involved — in some
cases, the communication time outweighed the ac-
tual time needed for proof search. Therefore, one
major concern will be to find a concise representa-
tion for both problems and proofs in order to com-
municate them more efficiently. Currently, all com-
munication is routed via a central structure in a uni-
form format, a higher-order natural deduction cal-
culus. However, this is not necessarily desirable as
certain agents may be able to communicate more
concisely between each other, for instance, by ex-
changing sets of clauses. Therefore, we aim at com-
munication languages in which relevant elements of
the proof process can be effectively transferred.

4 Resources

We have to identify the resources that are lim-
ited and that have to be managed in the agent-
based system and to develop resource-guided heuris-
tics for spawning new threads within the theorem-
prover. Thereby we will consider as resources not
only the classical resources such as computation
time or memory, but also those special to the do-
main of automated reasoning. These additional re-
sources have generally to do with logical dependen-
cies between parallel proof attempts. For example,
we can consider the instantiation of a variable in
the proof as a resource. If one agent wants to in-
stantiate this variable with a particular term it can
affect the proof search of other agents. Therefore,
the resource would be consumed by the agent which
will need to be broadcasted to the other agents, or
the agent might even have to negotiate first to ob-
tain the right to instantiate this variable. Another
sensible resource may consist in the size of the rep-
resentation of the partial proofs exchanged between
the agents.

5 Architecture for Reasoning Agents

With the background of the above requirements for
our system we have to investigate what understand-
ing our reasoning agents need to have of themselves
and of other agents. The former is necessary for
an agent to gain sufficient self-recognition to know
its strengths and weaknesses and to judge its abili-
ties to contribute to the solution of a given problem.
The latter is generally important for the exchange of
information between agents and in particular help-
ful in negotiating with other agents about forming
societies that cooperatively pursue a task. For both
cases our agents need to have heuristics to judge
themselves and others. These heuristics can be in-
fluenced by a performance measure for past runs and
which can vary for different application domains.

Therefore, will investigate SimAgent [5], a very
flexible toolkit for exploring agent architectures.
This will be studied in order to decide which of
its features may be useful for the purposes of an
agent-based theorem prover. Examples might in-
clude mechanisms for controlling resource alloca-
tion, mechanisms for interfacing symbolic condition-
action rules running within an agent’s cognitive
system with “lower level” mechanisms treated as
“black boxes”, and mechanisms for linking agent
behaviours with graphical displays. We also want
to investigate to which extend already existing net-
works of mathematical reasoning systems can be in-
tegrated or exploited in our framework.
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ABSTRACT
We consider the containment problem for sets integral solutions of systems
of linear inequalities

{xEZk\Awa}.

Given two such sets @ and ¥, the Containment Problem as a decision problem is
to tell if @ C ¥. Many algorithms for model-checking of infinite-state systems
require solving multiple instances of the problem when the same set & is to be
tested for containment in different sets ¥, . . . ¥. This is a different problem. We
describe a way to represent a set @ based on the computation of a Hilbert basis,
such that containment in a set ¥, represented with a system of linear inequalities,
can be tested in linear time in the size of the basis and inequalities.

The representation used in the model-checker BRAIN [RV02] can be de-
scribed as follows. The set @ of integral solutions for a system of linear in-
equalities Az < b can be decomposed into a cone of solutions of the homo-
geneous part C = {z € Z¥| Az < 0 } and a finite set of vectors B, such that
@ = C + B. The cone C has a finite Hilbert basis H. Since H and B are
computed, containment test for @ and ¥ can be performed by testing if each
vector of H U B satisfies ¥. However the number of vectors in H U B can be
exponential in the size of the system (A4, b).

The usual alternative is to apply the methods of integer programming to
check that ¥ is consistent with the negation of every inequality which defines
&. Testing consistency of a system of linear inequalities over integers is an NP-
complete problem.

Depending on the number of containment tests, the performance gain on
solving containment becomes worth the effort spent in computing the Hilbert
basis. We observed the implementation which uses Hilbert bases to perform
better when applied to model-checking for a class of infinite-state transition
systems.

The model-checking problem is defined by a temporal logic and a class of
transition systems. It is the problem to decide if a given temporal formula holds
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over the sequences of states of the given transition system visited during the
evolution of the system.

We consider a particular class of transition systems with states represented
by integral vectors. Even for EF formulas which specify safety properties, the
model-checking problem is undecidable. However, there exists a semi-decision
procedure which decides model-checking for some special classes of systems
[EFM99]. The procedure is based on the backward reachability algorithm.

The algorithm computes fixed points of the inverse transition relation. The
inverse transition relation is the relation between states and all their possible
predecessors. Instead of operating on individual states the algorithm operates
simultaneously on sets of states defined by systems of linear inequalities. This
allows to apply model-checking techniques to infinite state spaces and evade
the “’state explosion”. For example, computation of a least fixpoint of a binary
relation is an iterative process which generates an increasing sequence of sets
of states. Each set is represented as a finite set of systems of linear inequali-
ties. Each time a new system is generated it is checked for containment with
the systems generated before, which results in multiple checks with the same
system.

This pattern of behaviour is exhibited by the backward reachability algo-
rithm, when it was applied to models of uniform cache-coherency protocols and
broadcast protocols.

We have compared an algorithm used in BRAIN which computes Hilbert
bases with a Gauss-Jordan solver of CLP(Q) on problems where rational and in-
teger containment tests produce the same result and observed better results from
the implementation from BRAIN. In our experiments we follow the methodol-
ogy of using sequences of problems extracted from practical application [HNRV].
Preliminary results show that representing solutions of linear inequalities with
Hilbert bases gives a significant performance gain on many reachability prob-
lems.
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Interest in typed unification grammars in Natural Language Processing can be traced
back to the seminal work on the PATR-II system [13]. Since then, the logics of feature con-
straints were studied and became well-understood [15] [3], and different types of unification-
based grammar formalisms were developed by the Computational Linguistics community
— most notably Lexical Function Grammars [6], Head-driven Phrase Structure Grammars
(HPSG, [11}) and Categorial (unification) Grammars [17]. During the last years large-scale
implementations for such grammars were devised.! More recently, important advances in
the elaboration of techniques for efficient unification and parsing with such grammars [16}.
Up to our knowledge, the possibility of automate learning/development of such grammars
is still (largely) unexplored.

We elaborated two procedures to be used in automatic learning of typed-unification
grammars, namely specialisation and respectively generalisation of typed feature structure
(FS) definitions. Their aim is to make an input set of sentences get a better coverage w.r.t.
the given grammar.

In specialising a grammar, new atomic constraints are added to a certain feature path
value (i.e. substructure in a typed FS), in such a way that sentences (or parses) which were
wrongly accepted in the form of the grammar be finally rejected (by the learnt form of the
grammar). Reversely, in generalising a grammar, parses (or more generally, sentences) which
are (wrongly) rejected by the input the grammar are forwarded to the learning system, which
makes their (partial) analysis provide clues about which constraints in the type FS definitions
have to be eliminated or softened in order to make that parse become acceptable by the (new
form of the) grammar. The two — specialisation and generalisation — procedures combine
naturally into a unified learning strategy.

The approach we followed in developing the two procedures for learning typed-unification
grammars is that proposed by Inductive Logic Programming (ILP) [9]. However, instead of
applying it to a first-order translation of the grammar to be learnt, we adapted the ILP
schema to the feature constraint (subset of the first-order) logic specific to such gram-
mars [1] (3] [2].

As implementation, our prototype system for learning typed-unification grammars was
developed by extending the LIGHT compiler system [4] with an ILP-like module. Experiments
were successfully conducted on a grammar adapted from [12], which embodies the main
principles of the HPSG theory.

Currently, in order to scale-up the range of application for the learning procedures we de-
veloped, we study a restricted form of generalisation of typed FSs (we call it F-generalisation)
on LinGO, large scale HPSG grammar for English developed at CSLI, University of Stan-
ford. The aim now is (not to provide a better coverage but) to maximally reduce the size of
the grammar, while maintaining its coverage. To off-line F-generalisation of the typed FSs in
the grammar will correspond on-line specialisation of the parsing (possibly partial) results.
! For instance the HPSG for English developed at Stanford [5] called LinGO, two HPSGs for

Japanese developed at Tokyo University [8], and respectively at DFKI-Saarbruecken, Ger-

many [14)], and the HPSG for German, developed also at DFKI [10]. Large-scale LFG grammars
were developed by Xerox Corp., but they are not publicly available.



The motivation behind this work on F-generalisation: measurements done with LinGO on
the CSLI test suite revealed that more than 50% of the feature constraints in the (expanded)
grammar can be eliminated without affecting the coverage.? As a consequence, the unification
time — the most consuming task during parsing with such grammars — will be significantly
reduced, provided that the number of parse items (i.e. partial parses) does not inflate.

As a consequence, the future tasks will be to design more efficient algorithms for F-
generalisation of LinGO-like grammars, and to examine/find techniques for keeping the
number of partial parses close to that in the original grammar. The link with stochastic
learning and (shallow) parsing techniques will be explored.
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We discuss the proposed application of the HR discovery system (and the various pieces of
mathematical software it uses) to discovery tasks in the domain of Zariski Spaces. We propose
an incremental approach using HR in a semi-automated, cross-domain fashion in domains of
increasing difficulty related to Zariski spaces. This work is to be funded by an EPSRC 1-year
visiting fellowship to employ Roy McCasland.

Zariski Spaces

Zariski Spaces were introduced in 1998 [MMS98]. In order to understand these spaces, one
needs to first understand Zariski Topologies. To this end, let R be a commutative ring
with unity, and let specR denote the collection of prime ideals of R. Now for each (possibly
empty) subset A of R, let the variety of A be given by: V(A) = {P € specR : A C P}.
It is easily shown that the collection of all such varieties constitutes (the closed sets of) a
topology, called the Zariski Topology on R, which we denote by ((R). It turns out that every
topology is a semiring, if one takes the operations of addition and multiplication to be set-
theoretic intersection and union respectively. Now let M be an R-module, and repeat the
above process. That is to say, let specM denote the collection of all prime submodules of M,
and for each subset B of M, let the variety of B be given by: V(B) = {P € specM : B C P}.
Finally, let {(M) represent the collection of all varieties of subsets of M. Then one can show
that while {(M) seldom forms a topology, it does form a semimodule over the semiring ((R),
where the operation in (M) is taken to be intersection, and scalar multiplication is given by
V(A)V(B) = V(RAB).

There are reasons to suppose that Zariski Spaces might turn out to be of considerable
importance in mathematics. For instance, Zariski Topologies and the study of varieties have
played an enormous role in the development of Algebraic Geometry, and in particular, the
Hilbert Nullstellensatz, which is one of the fundamental results in Algebraic Geometry. It is
certainly possible that Zariski Spaces could have a similar impact on some branch of math-
ematics. Furthermore, some preliminary results suggest a possible connection between a
certain concept in Zariski Spaces, called subtractive bases, and direct sum decompositions
within a large class of modules. The search for direct sum decompositions has been a major
undertaking in mathematics for some time, and has so far proven quite intractable, except in
special cases. The study of semimodules in general has already yielded many applications to
computer science [Gol92], and since Zariski Spaces are first and foremost semimodules, it is
possible that their study will promote further advances in theoretical computer science.



Proposed Discovery Methods

The HR program [Col00] has been successful in making discoveries in number theory [Col99]
and algebraic domains [CMO01]. HR is comprised of four modules which generate four types
of information, namely objects of interest, concepts which classify those objects, conjectures
which relate the concepts and proofs which explain the conjectures. HR. calls third party
software to achieve various tasks, including computer algebra systems, constraint solvers and
model generators to generate objects of interest (for both exploration and counterexamples)
and theorem provers to prove conjectures. At present, HR is autonomous, i.e., the user sets
some parameters for the search it will perform, then HR builds a theory and the user employs
various tools to extract information about the theory. We propose to extend the theory of
theory formation upon which HR is based by enabling any of the four modules to be replaced
on occasion by human intervention. That is, we intend to make HR semi-automated by
allowing the user to provide proofs and counterexamples to conjectures HR makes and to
specify related concepts and conjectures to base the theory formation around. Alongside the
development of HR’s functionality, we also intend to develop the application to Zariski spaces.
Zariski spaces represent a higher level of complexity than the domains in which HR has so far
been applied, and the new application will require an incremental approach whereby (i) HR
is enabled to form theories about increasingly complicated domains related to Zariski spaces
(ii) testing is performed to see if HR invents various concepts and conjectures required for
it to proceed and (iii) theory formation is centred around the important concepts and the
results analysed for any discoveries. The proposed route to Zariski spaces is via: semigroups,
semirings and semimodules, followed by groups, rings and modules and finally, using a cross
domain approach, Zariski spaces.

It is unclear at the moment how HR will interact with the user and with third party pieces
of mathematical software on this project. It seems likely that HR will be used for an initial
exploration of each domain, to: (a) invent core concepts (b) prove some fundamental theorems
using a theorem prover (HR has access to Otter, E, Spass and Bliksem through the MathWeb
Software Bus), and (c) generate some examples of the concepts using a model generator
or computer algebra system (HR uses MACE and Maple, also possible through MathWeb).
Following the initial investigation, the user will both prune uninteresting concepts and specify
which concepts should be emphasised in the next theory formation session. The user will be
more involved in that session, choosing to prove theorems, provide counterexamples and direct
the search where appropriate. By improving HR to enable such an interaction, we hope this
approach will lead to the discovery of new results about Zariski spaces.
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Proof critics are a technology from the proof planning paradigm. They ex-
amine failed proof attempts in order to extract information that can be used to
generate a patch which will allow the proof to go through.

We examine the proof of the “whisky problem”, a challenge problem from
the domain of temporal logic. The proof requires a generalisation of the original
conjecture and we examine two proof critics which can be used to create this
generalisation. Using these critics we believe we have produced the first fully
automatic proofs of this challenge problem.

We chose to use the proof planning system AClam [2] to attempt an automa-
tion of the proof of the whisky problem. The whisky problem is represented in
AClam as three axioms and a goal to be proved. The axioms are:

p(a,0),
Vz.p(z,0) = p(h(z),0),
Vz,y. p(h(z),y) = p(z,s(y))-

These are treated as the following rewrite rules in AClam:

p(a,0), (1)
p(h(X),0) = p(X,0), (2)
p(X,s(Y)) = p(h(X),Y). 3)
The goal to be proved is
Vz. p(a, x).

The challenge is that for a proof to go through the goal must be generalised to
Vz,n. p(h"(a), ) where h" signifies n applications of h. A AClam inductive proof
of this fails to apply the rewrite rule (3) in the induction to the goal p{a,n)
p(a, s(n)) because the resulting embedding is unsinkable. The embedding is part
of the rippling heuristic ([3]) used to control rewriting during induction. This
can be used to trigger a critic.

The existing AClam critic for this situation, based on work in [1], generalises
the initial goal to

Vz,y. p(F(y), z).

Where F is gradually instantiated during the course of the proof to the desired
function. This proof proved sensitive to the rewrite rules available in the default



context and required the provision of a new induction scheme:

P(B) P(G™B))+ P(G(G™(B))) (6)
vn.P((Az.G=(B))(n)) ’

We also investigated a more specialised critic based on work in [4] which
speculated the “target” generalisation of

Vz,n. p(h"(a), ).

directly based on the contents of the wave front in the unsinkable embedding.
The proof then went through in the default AClam context.

As far as we are aware these represent the first fully automatic proofs of the
whisky problem.
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Introduction

The connection between temporal logic and automata of different kinds is well known. A model
for a propositional linear-time temporal logic formula, ¢, is essentially a sequence of states
where the propositions from ¢ are set to true or false such that the sequence of states and
setting of propositions satisfies ¢. This sequence can be viewed as an infinite word over subsets
of the propositions in ¢. Thus for any propositional linear-time temporal logic formula we can
construct a finite automaton such that the automaton accepts exactly the sequence of states
(infinite word) which satisfies the formula [7]. If the propositional linear-time temporal logic
formula is unsatisfiable then the automata constructed is empty.

SNF (Separated Normal Form) is a normal form for representing propositional linear-time
temporal logic (PLTL) formulae [6]. The normal form comprises formulae that are implications
with present-time formulae on the left-hand side and (present or) future-time formulae on
the right-hand side. The transformation into the normal form reduces most of the temporal
operators to a core set and rewrites formulae to be in a particular form. The transformation
into SNF depends on three main operations: the renaming of complex subformulae; the removal
of temporal operators; and classical style rewrite operations. SNF has been used as the basis
for a temporal resolution method [6] and for execution of temporal formulae [1]. In previous
work we have considered the relationship between Biichi Automata and SNF [2].

An alternating automata is an automata that has both the power of existential and universal
choice, similar in structure to an and/or graph. Alternating automata were considered in [3, 4]
and have been studied in relation to temporal logic in 7] for example.

Alternating Automata

We define alternating automata following [7]. A is an alternating automata A = (I, S, sg, p, F)
such that

e X is a finite non-empty alphabet;
e S is a set of states;
e sp € S is an initial state;

e p: S X P(X) » BH(S) is a transition function



e F C S is a set of accepting states;

where BT(S) are the set of positive Boolean formulae over S, i.e. Boolean formulae built from
S using A and V. Runs in alternating automata are trees. In the following, given a tree 7, € is
the root node of 7, z is a node in 7 and |z| is the distance of z from the root, where |¢| = 0.
An W-labelled tree, for some set W is a tree, 7, and mapping ¢ such that { maps nodes of 7

to W. A run of A on an infinite word w = ag,a1,... is a possibly infinite S-labelled tree r
such that r(e) = sp and the following holds. If |z| = i, r(z) = s and p(s,a;) = 8, then z has
children z1,...zy for some k < |S| and {r(z1),...,r(zk)} satisfies . The run is accepting if

every infinite branch in r includes infinitely many labels in F'. Note the run can also have finite
branches; if |z| = %, r(z) = s and p(s,a;) = true then z does not need to have any children.
However we cannot have p(s,a;) = false as false is not satisfiable. Thus every branch in an
accepting run has to hit true or hit accepting states infinitely often.

The Translation Between SNF and Alternating Automata

We provide transformations from alternating automata into SNF and from SNF into alternating
automata in [5]. We show that a set, R, of SNF clauses is satisfiable if and only if the alternating
automata, Ap, constructed from R has an accepting run. Similarly an alternating automata A
has an accepting run if and only if the set of clauses R4 constructed from A is satisfiable.

This is part of ongoing work looking at the relationship between SNF and other formalisms.
We were prompted to investigate the connection between SNF and alternating automata due to
and/or structure of SNF i.e. SNF is a conjunction of clauses which are essentially disjunctions.
In particular, this result is useful as there is no direct method for checking the non-emptiness
of an alternating automata. However non-emptiness can be checked by, for example, giving
a translation into a (nondeterministic) Biichi automata (see for example [7]) and doing the
non-emptiness check there. Here, we can use the translation provided in [5] and then apply
temporal resolution to the clauses obtained. If the clauses obtained are unsatisfiable then this
means there is no accepting run.
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1 Introduction

Preprocessing algorithms can dramatically improve the performance of even the most efficient SAT
solvers on many problem instances [8]. Such algorithms simplify the formula by various means, includ-
ing the deduction of necessary assignments, the addition of implied clauses, the deletion of redundant
clauses, and the identification of equivalent literals. A number of preprocessors have been made publicly
available, including Compact [2], Compactor [6], Simplify [9], and CompressLite [4]. While each
preprocessor is very successful on some instances, they each combine a different selection of simplifi-
cation techniques, making it difficult to understand which techniques are responsible for their success
on a particular problem.

We are in the process of implementing each of the main simplification techniques in JQuest, a
Java framework designed to support comparisons of SAT techniques. JQuest has already been used
to evaluate the performance of various data structures for SAT solvers [7]. In addition to comparing
existing techniques, we are creating efficient implementations of those techniques and investigating
novel techniques. Here we briefly discuss two existing techniques: length-restricted resolution and
binary equivalence finding.

2 Length-restricted resolution

One common technique, used for example in Compactor [6], is to do all possible binary resolutions
where the resolvent has at most three literals. Other variations are possible, including limiting the size
of the resolvents to two literals, and only doing resolutions where both parents will be subsumed. We
also intend to investigate the effect on the branching heuristic of adding resolvents to the formula.

In practice, one problem with resolution is that resolvents are often subsumed by existing clauses in
the formula. Adding redundant clauses is unlikely to make the instance simpler to solve, and so should
be avoided if possible. We have a fast method for subsumption checking of binary and ternary clauses
based on hash tables, which can be used to efficiently identify redundant resolvent clauses. We also have
a similar technique, as yet unimplemented, for identifying and deleting clauses in the original formula
if they are subsumed by a resolvent clause.

3 Binary equivalence finding

Some SAT instances, particularly those mapped from real world problems, contain equivalent liter-
als [5). For example, if a formula contains the clauses (—a V b) and (a V —b), we know that a and b
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are equivalent because a implies b and b implies a. Loops of binary equivalences are possible, such as
(—~aV b), (b V), and (a Vv —c), in which a, b, and ¢ are all equivalent. Given a set of equivalent literals,
one of the literals in the set can replace all occurrences in the formula of the other literals in the set,
without altering the satisfiability of the formula. This replacement reduces the number of variables in
the formula (potentially reducing the number of assignments during the search), and can also identify
tautological clauses (which can safely be removed from the formula).

The implications represented by binary clauses can be represented in a graph, in which sets of
equivalent literals will appear as strongly connected components (SCCs). Tarjan [10] gives a linear time
algorithm for finding SCCs in a graph, applied to SAT by Aspwall et al [1] and later de Val [3]. Because
Tarjan’s SCC algorithm is linear, binary equivalence finding is an particularly cost-effective technique.

4 Future work

A number of techniques still need to be implemented, in particular those that deduce necessary assign-
ments. Once our implementation work has been completed, we intend to systematically compare the
performance of the various preprocessing techniques. We also plan to theoretically study the relation-
ships between the techniques.

5 Summary

Preprocessing techniques for SAT have not previously been experimentally compared in a systematic
fashion. We are in the process of implementing many of the published techniques in a common platform
(JQuest) in order to compare their performance.
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1 Introduction

Temporal logic. One of the great success stories of
non-classical logics in mainstream computer science is that
of linear temporal logic and its applications to systems
specification and verification [2]. The simple formalism
of a sequence of states and a valuation function map-
ping atomic propositions to sets of states, combined with
propositional and modal operators to construct complex
formulas, is surprisingly powerful when describing the be-
haviour of a given system over time.

However, this logic does mot support the concept of
modularisation in a natural manner. Each time we want
to add additional detail about a subsystem associated
with one of the states, we have to revise the specification
of the entire system.

Zooming in. We propose to remedy this shortcoming by
adding a zoom to linear temporal logic: If we (recursively)
relate every state with another time line to describe the
behaviour of the subsystem associated with that state we
obtain a tree-like structure. In fact, we obtain an ordered
tree: the relation connecting a state with all the states in
the time line beneath it is a tree (if we also introduce a
root) and the children of each node (the states of a single
time line) are ordered. In this paper, we discuss a modal
logic with frames that are ordered trees. It provides modal
operators working both along the branches of a tree (level-
of-detail dimension) and along the order declared over the
children of a node (temporal dimension).

We define syntax and semantics of this new logic in Sec-
tion 2 and briefly sketch a decidability proof in Section 3.
A full paper is currently in preparation [1].

2 Ordered Tree Logic

We present syntax and semantics of the modal logic of
(discretely) ordered trees.

Syntax. The set of well-formed formulas A of our logic
is formed according to the following BNF production rule
(p stands for propositional letters):

A 2= p|~A| ANA| ©A | GA | OA |
OA | GA| ®A | ©A | ©TA

Additional propositional connectives and box-operators
may be introduced as defined operators in the usual way
(like, for example, By = ~O—p).

Semantics. A discretely ordered tree T is a tree where
the children of each node form a discrete order (that is,
between any two sibling nodes there can only be finitely

*This work has been supported by the EPSRC under grant ref-
erence numbers GR/R45369 and GR/N23028.

many other nodes). A model is a pair M = (7,V), where
T is such an ordered tree and V is a valuation function
mapping propositional letters to sets of nodes of 7. Truth
of a formula @ in M at a node t € 7 is defined as follows:

M, t = piff t € V(p) for propositional letters p
Mt = —p iff not M,t =
MitEpAYiEMtEpand Mt =y

M,t = Op iff t has a parent ¢’ and M,t' = ¢

M, t = ©p iff t has a left neighbour ¢’ and M,t' |= ¢
M.t = Op iff t has a right neighb. t' and M,t' E ¢
M.t = &y iff t has an ancestor ¢/ with M, ¢’ = ¢
M, t = ©p iff t has a left sibling ¢/ with M,t' = ¢
M, t = S iff ¢ has a right sibling ¢’ with M, #' = ¢
Mt = @ iff ¢ has a child ¢’ with M,t' ¢

M,t = Ot iff t has a descendant t' with M,t' = ¢

© XN WD

—
e

11.

A formula ¢ is called satisfiable iff it has a model (i.e. iff
there are M = (T,V) and t € T with M, t = ).

3 Bounded Finite Models

Ordered tree logics can be shown to be decidable by es-
tablishing a bounded finite model property (fmp), that
is, by showing that any formula ¢ that is satisfiable in
some model is also satisfiable in a model of limited size
(where the maximal size is a function of the length of
©). Our techniques are similar to those used by Sistla
and Clarke [3] to establish upper complexity bounds for
propositional linear temporal logics.

Theorem 1 (Bounded FMP) The modal logic of dis-
cretely ordered trees has the bounded finite model property.

Theorem 1 is a corollary to Lemmas 2 and 5, proofs for
which we are going to informally sketch below. The follow-
ing observation will play a central role: To check whether
a given formula ¢ is true at some node in a given model we
have to check whether certain subformulas of ¢ are true
at certain (other) nodes in the model; formulas that are
not subformulas of ¢ are not relevant. So instead of mod-
els, we can work with type models, that is ordered trees
where each node is associated with a certain type (a set
of subformulas of the input formula ¢).

Bounded branching. We first work towards control-
ling the horizontal dimension and show how we can reduce
the branching factor of a given model.

Lemma 1 (Sibling pruning) The stretch between two
siblings of the same type can be removed (including one of
the end nodes) without affecting satisfiability, provided we
keep the node of evaluation as well as a witness for each
formula of the form ©¢ or ©* ¢ in the parent.



We can show this by structural induction. For atoms and
propositional connectives, pruning elsewhere in the tree
does not affect satisfiability. Formulas of the form & or
T are not affected by definition. Neither are formulas
of the form ®yp or ®p as they are either removed from the
tree or refer to nodes unaffected by the pruning operation.
The horizontal modalities provide the interesting cases.
We exemplify the general idea for formulas of the form
Op. Suppose Oy is true at a node somewhere to the left
of the stretch to be removed (we need to check that at
least one witness survives). If ®¢ is also true at the left
one of the ‘pruning nodes’, then it must equally hold at
the right one (because they have the same type), i.e. ¢
is true somewhere to the right of the stretch (and we are
done). Otherwise, ¢ must already hold somewhere before
the stretch (and we are done as well).

We can use the Sibling Pruning Lemma to prove the
following result:

Lemma 2 (Bounded branching) A formula ¢ of len-
gth n is satisfiable iff it is satisfiable in a (periodic) type
model with a mazimal branching factor of (n+1) - 2™.

Observe that for any set of children there are at most
n nodes the Sibling Pruning Lemma has to respect (the
node of evaluation and up to n—1 witnesses), but it can be
freely applied in between those n nodes. There are up to
n subformulas of ¢ and, hence, up to 2™ consistent types,
so we can reduce the n—1 finite stretches in between to at
most 2™ —2 nodes each.

The left- and rightmost stretch, however, may be infi-
nite. This is where periodicity comes into play. We con-
sider the rightmost stretch: In case it is finite, we can
reduce it to 2" —1 nodes. Otherwise, there is a point from
which onward all types that do come up come up infinitely
often. Each one of them must have another type that oc-
curs infinitely often as its right-hand neighbour. Hence,
we can apply the Sibling Pruning Lemma in such a way
that we obtain a periodic stretch of types (by always prun-
ing between a node and the next occurrence of a node of
the same type together with its ‘designated neighbour’).
The rightmost stretch as a whole (including the period)
can then be pruned down to 2™ —1 nodes.

Altogether, we get a maximum of n+ (n—1) - (2"-2) +
2-(2"-1) < (n+1)-2"™ nodes.

Bounded depth. Now we turn to the vertical dimen-
sion and show how to reduce the length of branches in a
given tree, again, without affecting satisfiability.

Lemma 3 (Branch pruning) If a node t; and its de-
scendant to have the same type, we can replace the subtree
beneath t1 with the tree beneath to without affecting satisfi-
ability, provided we do not remove the node of evaluation.

We omit the proof, which is similar to that of the Sibling
Pruning Lemma.

To allow for the finite representation of recursive trees
we introduce the notion of a link: a tree with a link from
a node t; to another node t2 represents the tree we get
by (recursively) replaceing t; with ¢; (together with the
subtrees beneath them).

Lemma 4 (Link introduction) If two nodes t; and t;
have the same type, we can introduce a link from t1 to ty
without affecting satisfiability, provided we keep the node
of evaluation and o witness for each formula of the form
®+(p n tg.

Again, we omit the proof and only point out that the ideas
are essentially the same as before.

Lemma 5 (Bounded depth) A formula ¢ of length n
is satisfiable iff it is satisfiable in a type model (with links)
with & maximal branch length of 2711,

Let us first observe that we can use the Branch Pruning
Lemma to ensure that every type has a first occurrence
at a node of depth < 2™ (there are up to 2" types and
we can shorten any branch that has more than one node
of the same type). We pick a minimal ‘upper part’ of the
tree that features each type at least once.

Then we turn all branches into finite branches by ap-
plying the Link Introduction Lemma in such a way that
links point from a node in the ‘lower part’ to one in the
‘upper part’. We can always find a node far enough down
the tree so that the lemma becomes applicable (i.e. that
we keep all the required witnesses).

Finally, we use again the Branch Pruning Lemma, this
time to reduce the ‘lower part’ to a maximal height of 2™.
Observe that, as we restrict pruning to the ‘lower part’
alone, no ‘link-heads’ will be cut off.

Decidability. Decidability is a direct consequence of
the bounded fmp: a naive decision procedure could simply
enumerate all potential models up to the known maximal
size and check each one of them. Hence, we obtain the
following main result:

Theorem 2 (Decidability) The satisfiability problem
for the modal logic of discretely ordered trees is decidable.

4 Conclusion

We conclude with a brief outlook on possible directions
for future research in this area.

Complexity analysis. A bounded fmp provides a first
step towards a complexity analysis of the logic under in-
vestigation. However, given that our bounds are exponen-
tial in both dimensions of a tree, at this stage, we can only
establish a NEXPTIME upper bound and it is not clear
if (and how) this could be improved upon.

Extensions. A number of interesting extensions to our
logic, both to the language and to the underlying seman-
tics, are possible. One such extension would be to investi-
gate the addition of the temporal operators since and until
(certainly to the horizontal dimension, but possibly also
along branches). On the semantical level, an interesting
extension would be to drop the condition of discreteness
for the order declared over sibling nodes and to consider
dense orders or general linear orders.

References

[1] U. Endriss. A Modal Logic of Ordered Trees. Manu-
script, 2002.

[2] A. Pnueli. The Temporal Logic of Programs. In Pro-
ceedings of the 18th Annual Symposium on Founda-
tions of Computer Science, pages 46-57. IEEE, 1977.

[3] A. P. Sistla and E. M. Clarke. The Complexity of
Propositional Linear Temporal Logics. Journal of the
ACM, 32(3):733-749, 1985.



Automatically Transforming Constraint Satisfaction Problems:
Further Progress

Alan M. Frisch, Ian Miguel
Al Group
Dept. Computer Science
University of York, York, England
{frisch,ianm }@cs.york.ac.uk

1 Introduction

A constraint satisfaction problem (CSP) consists of a
triple, (X, D,C), where X is a set of variables, D is a
set of corresponding domains of values and C is a set of
constraints which specify allowed combinations of assign-
ments of values to variables. Constructing an effective
model of a CSP is, however, a challenging task. Carefully
chosen transformations of a basic model can greatly re-
duce the amount of effort required to solve the problem
by systematic search (e.g. [5]). These include adding
constraints that are implied by other constraints in the
problem, adding constraints that remove symmetrical so-
lutions to the problem, removing redundant constraints
and replacing constraints with their logical equivalents.

1.1 CGRASS

Outwith a highly focused domain like planning [2], model
transformation is typically performed in an ad-hoc man-
ner by hand. We describe the CGRASS (Constraint Gen-
eRation And Symmetry-breaking) system that can im-
prove a problem model by automatically performing ap-
propriate transformations. The system architecture is
based on, and extends, Bundy’s ‘proof planning’ 1].

Proof planning is used to guide the search for a proof
in automated theorem proving. Common patterns in
proofs are identified and encapsulated in methods. A
proof planner takes a goal to prove, and selects from
a database of methods one which matches this goal.
The proof planner checks that the pre-conditions of the
method hold. If so the proof planner executes the post-
conditions. This constructs the output goal or goals.

Strong method preconditions limit transformations to
those that are likely to produce a simplified problem.
Methods act at a high level, performing complex trans-
formations that might require complex proofs to justify
at the individual inference rule level. Search control is
cleanly separated from the inference steps. We can there-
fore try out a variety of search strategies.

CGRASS’ input currently consists of a statement of the
initial problem variables and their domains and a list of
constraints. We intend to enable CGRASS to accept the
OPL language [6] as input, as well as specialised exten-
sions such as the ability to support matrices of variables
directly. Output is created in the same simple language.

Toby Walsh

Cork Constraint Computation Center

University College Cork
Ireland
tw@4c.ucc.ie

Hence, very little effort is necessary for translation into
the required input for a variety of existing solvers.
Fundamental to the efficiency of CGRASS is the nor-
mal form it imposes on the constraint set, inspired by
that used in the HARTMATH computer algebra system?.
A normal form allows us, to an extent, to replace the
test for semantic equivalence with a simpler syntactic
comparison. The normal form used combines a lexico-
graphic ordering and simplifications such as collection of
like terms, cancellation and removal of common factors.

2 Methods

The following set of methods is not complete in any
sense, and a principle item of future work is its extension.

Symmetry Often the most useful constraints can only
be derived when some or all symmetry has been
broken. Hence, CGRASS attempts to detect sym-
metry as a pre-processing step. Symmetrical vari-
ables have identical domains and are such that, if
all occurrences of the pair in the constraint set are
exchanged and the constraint set is re-normalised
it returns to its original state. A similar process is
used to check for symmetrical sub-terms. Symme-
try is broken by creating a partial order between
symmetrical variables/sub-terms.

Introduce This method binds a new variable to a non-
atomic sub-term that recurs in the constraint set.
Variable introduction is a powerful tool which, in
combination with eliminate (below), can tighten
the constraint graph and reduce constraint arity.
Tightening the constraint graph means that prop-
agation on the introduced variable’s domain has a
wider reaching effect. Reducing a constraint’s arity
means that fewer variables need to be instantiated
before it can be used to prune the search space.

Eliminate This method performs Gaussian-like vari-
able elimination. The preconditions identify vari-
ables or terms which can be eliminated from a more
complex constraint, insisting that the resulting con-
straint has a smaller size (in terms of number of
constituent terms) than the original.

'http://www.hartmath.org



Other Methods The genAl1Diff method greedily
generates an all-different constraint (for which we
have powerful pruning methods [4]) from a clique
of inequations. Other simple, but useful, methods
also exist. For example, nodeConsistency prunes
domain elements given an algebraic constraint con-
sisting of a variable and a constant. These methods
are not only cheap to fire, but often result in a reduc-
tion in the size of the constraint set. This promotes
efficiency by leaving fewer constraints for the more
complicated methods to attempt to match against.

3 Issues

In constructing CGRASS we have extended proof plan-
ning along a number of dimensions:

Non-monotonicity: CGRASS’ methods sometimes add
a new constraint, at others replace a constraint by
a tighter one, or eliminate a redundant constraint.
The constraint set may therefore increase or de-
crease. Hence, we replace the method ‘output’ by
‘add’ and ‘delete’ lists as used in classical planning.

Pattern matching: Existing proof planners typically
use first order unification to match a method’s input
against the current goal or subgoal. CGRASS uses a
richer pattern matching language specialised to the
task of reasoning about sets of constraints.

Looping: Unless a method deletes some of its input
constraints, its preconditions continue to hold, al-
lowing repeated firing. We incorporated an history
mechanism into CGRASS to prevent this.

Termination: Previous applications of proof planning
have a clear termination condition: goals are re-
duced to subgoals until all are proven. In trans-
forming CSPs it is much less clear. We must decide
when to stop making transformations and search
for an answer. CGRASS’ methods currently have
strong enough preconditions that they can be run
to exhaustion. We may in the future have to add
a proof critic-style executive [3] which terminates
proof planning when future rewards look poor.

Constraint utility: CGRASS uses measures like con-
straint arity and tightness to eliminate obviously
useless constraints. We are inventing heuristics to
help with the difficult decision as to which of the
remaining derived constraints to keep.

Explanation: In order for the user to see how a new
model was derived, we adapted the existing proof
planning tactic mechanism. CGRASS’ tactics write
out text explaining the application of the methods.

4 The Golomb Ruler Problem

We illustrate the operation of CGRASS by means of the

Golomb ruler problem [5]. A Golomb ruler is a set of n
ticks at integer points on a ruler of length m such that
all the inter-tick distances are unique. A concise model:

minimise:max; (z;)

Vi, kL GEDANKAEDAGERVF#D —
(zi — z; # z — z1) is added to the problem

Taken literally, this a poor model. The constraints are
quaternary, and will be delayed by most solvers. There
is also a large amount of symmetry present.

We focus on the 3-tick ruler. The basic model pro-
duces 30 constraints. CGRASS’ initial normalisation of
the constraint set reduces this to just 12. Symmetry
testing reveals that z1, s and z3 are symmetrical, hence
21 < 23 and z3 < z3 are added. Three variables,
20 = T1 — T2, 23 = Ty — x3 and 23 = x3 — I are
introduced and eliminate substitutes them into the
quaternary constraints. Finally, genA11Diff fires which,
coupled with the firing of some of the minor auxiliary
methods, gives the concise model of table 1.

r1 € {(ﬁ}
T < X2
20 = T1 — T2
All-different(zo, 21, 22)

zz € {1..8}
r2 < I3
21 =32 — XT3

z3 € {2..9}
1 # T3
22 = T3 — X1

Table 1: Golomb Ruler: Transformed Model.

This model is far easier to solve than the original. Sim-
ilar models are obtained for larger Golomb rulers, lead-
ing to substantial reductions in search effort. However,
larger problems generate a greater volume of input con-
straints via the naive input model. This creates a lot of
work for CGRASS and an overall reduction in efficiency.

5 Next Steps

In order to compensate, we are extending CGRASS to
support quantified expressions directly. This would im-
mediately reduce the size of the input to two constraints
in the Golomb ruler example. It would also allow us to
reason about a whole class of problems, rather than at
the level of single instances. Writing methods would typ-
ically be complicated by the need to support quantified
constraints. However, certain operations would be made
much easier. One example is the genAl11Diff method
where the input would be simply: Vi, j i #j = z; # ;.
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1 Introduction

Temporal logic is a variety of non-classical logic used in a range of areas within Computer Science and
Artificial Intelligence, for example the verification of reactive systems [8], the implementation of temporal
query languages [2], and temporal logic programming [1]. Consequently, different proof methods have
been developed, implemented and applied.

In this work we use a proof method for temporal logics based upon resolution for classical logic [6].
Resolution based methods have the advantage that, as in the classical case, a wide range of strategies
can potentially be used.

The temporal resolution procedure is characterised by the translation to a normal form, the applica-
tion of a classical style resolution rule between formulae that occur at the same moment in time, termed
step resolution, that is, where the clauses contain no eventualities ({1, i.e, I holds now or at sometime in
the future), together with a novel temporal resolution rule, which derives contradictions over temporal
sequences (temporal resolution). Although the clausal temporal resolution method has been defined,
proved correct and implemented it sometimes generates an unneccesarily large set of formulas that may
be irrelevant to the refutation. Not only that, but temporal resolution operations are applied only after
all step resolution inferences have been carried out. This means that cases where a large amount of step
resolution can occur the method may be very expensive.

The application of the temporal resolution rule involves searching for a set of clauses that together
represent X => O [l for resolution with {)-l. Rather than using an external procedure to do this, as
happens in [7], we provide an algorithm to detect X systematically using only step resolution. If we
need to search for a second loop we have developed an additional algorithm that can reuse the clauses
generated during previous searches rather than recreating then as is necessary in [3].

2 The Search for Loops
For the application of the temporal resolution rule a loop must be detected, that is, a set of clauses

¢: = O, to be resolved with (-, such that /\(¢z = O(A v #5))-
i=1 j=1
Trying to find such a set of clauses we propose the following algorithm where we begin choosing a
n

candidate for G; = V o;

1. Choose G_1 & true
2. Given a guess G; add the clause s; = O(~G; V —l) and apply Step Resolution.

3. For all clauses true = O(-s; V F;) obtained during the proof, let G;11 & G; A (v =Fj).
Jj=1

4. Go to 2 until either



(a) Gi; © Gi+1 (we terminate having found a loop).

(b) Gis1 is empty. (we terminate without having found a loop).
We can show

Theorem 1 (Soundness) If the above algorithm outputs X when applied to -l then X = O (L.

Theorem 2 (Completeness) If a set of clauses contains a loop X such that X = O ! then the
algorithm detects X' such that X = X'.

Proofs can be found in [5]. Essentially the proofs are based on [3].

Also in [5] we give an algorithm for searching for a second or subsequent loops that reuses clauses
generated by the previous searches.

In the future we hope to apply these results to the development of strategies for temporal resolution
that allows us to reduce the search space. In particular, we are interested in incorporating the set of
support strategy [9, 4], to guide the search for a proof in temporal resolution, with the expectation that
it will be success as in the classical case.
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Abstract. The guarded fragment and its extensions and subfragments have often been considered as a
framework for investigating the properties of description logics. But there are other decidable fragments
which all have in common that they generalise the standard translation of ALC to first-order logic. We
provide a short survey of some of these fragments and motivate why they are interesting with respect
to description logics.

In this abstract we focus on the description logic ALC and the extensions of ALC by disjunction,
conjunction and negation on roles and discuss their relationship to less well known logics including
Boolean modal logic, the two-variable fragment, the dual of the Maslov’s class K, Quine’s fluted
logic, and the positive restrictive quantification fragment PRQ. We compare the expressive power
of the formalisms, and discuss the applicability of various inference methods established in the field
of non-classical logics to description logics.

We denote the extension of ALC by the role-forming operators ry, ..., r, by ALC(r1,... ,7p).
The definition of the standard semantics of ALC [8] and its extensions by the role operators disjunc-
tion, conjunction, negation and inverse, indicates that these languages can be considered as subfrag-
ments of first-order logic. One of these fragments is the guarded fragment [1]. However, one important
property of the guarded fragment is that the guards, that is the atoms we obtain from the trans-
lation of roles, are always positive. Therefore, ALC(—) and its extensions contain concepts whose
translation will not result in guarded formulae. An example of an ALC(MM, =) concept which cannot
be translated into a guarded formula is the set of cheese lovers, that is V—(likes N eats).— Cheese.

Making economical use of first-order variables concepts of ALC(—) and many other description
logics can be embedded into finite-variable function-free fragments of first-order logic. One of them
is the two variable fragment FO? which consists of those formulae of first-order logic that can be
written using only two variables. The description logic which has the same expressive power as the
two variable fragment is ALB [4], i.e. ALC extended with full Boolean operations on roles and the
inverse operator. An extension of FO? is the dual of Maslov’s class K, denoted by K [5]. Consider
the following formula ¢; which defines the concept mwc as a subset of married couples with a
child: VzVy(mwe(z,y) = (married(z,y) A 3z(has_child(z, z) A has_child(y, z)))). The formula ¢,
is not in the guarded fragment and also not in FO?, but it is in K. In contrast, the formula
VzVy(mwd(z,y) — Vz(have_child(y,z,z) — doctor(z))) which describes the concept mwd as a
subset of married couples with a child who is a doctor, is guarded, but not in K. So, the guarded
fragment is not a subfragment of K nor is K a subfragment of the guarded fragment. However, K
contains a variety of classical solvable fragments, namely the monadic class, the initially extended
Skolem class, the Gédel class, and FO? as well as a range of non-classical logics, like a number of
extended modal logics, many description logics, reducts of representable relational algebras [3].

The concept mwmec of married couples whose all children are married, defined as follows:
Vz1Vro(mwme(zy, 22) ¢ (married(z1, 2) A Vzs(have_child(z1, z2, z3) — Jxamarried(zs, z4)))) is
not guarded but also not in K. It belongs to yet another solvable fragment of first-order logic,
namely fluted logic. In fluted logic the relational atoms may be negated, and consequently ALC(-),
ALC(U,MN, ), and the Boolean modal logic which cannot be embedded into the guarded fragment
can be embedded into fluted logic [7]. Moreover fluted logic can be extended with converse on
relations while still preserving decidability [6]. Fluted logic with converse allows for the embed-

ding of standard modal logics K, KT, KD, KB, KT B, more expressive logics, like ALB and the
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Fig. 1. The relationship of ALC, FO?, GF, K, and fluted logic

corresponding modal logic Kn,)(N,U, =, ), and also FO?. The relationship among the decidable
fragments, discussed so far, in this abstract is summarised in Figure 1.

However, if instead of extensions of .ALC by role-forming operators we look at products of
ALC with modal logics, for example, basic modal logic, then there are examples which fall in
neither of the solvable fragments of first-order logic we have locked at so far. Consider the sentence:
Minis are what Don believes to be a slow car. The sentence is expressible in K 4c¢ as follows.
Minis C [Donlpetieves - slow_car Its standard translation to first-order logic is the formula g.

Vz(Minis(reality, z) — Yw(believes_Don(reality, w) — slow_car(w, z)))

This formula is neither guarded nor fluted and is also not in K. However, it belongs to the so-
called positive restrictive quantification fragment (PRQ) introduced in [2}. Even though PRQ is not
solvable for fragments of PRQ that have the finite model property, there is a decision procedure in the
form of an extended positive tableaux method [9]. The method does not only detect unsatisfiability
but also generates finite models if they exist. Since ALC and many of its extensions have the finite
model property, this procedure provides a general, sound, complete, and terminating method for
solving the satisfiability problem for these logic without the necessity of additional correctness or
termination proofs. The procedure is also applicable to products of modal and description logics
which have the finite modal property such as K¢ [10]. The product of ALC with basic modal
logic K has the finite model property, therefore the considered example in K 4.¢ is covered by the
procedure.
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We report work in progress about using the automated
theorem prover SPASS [12] for proving theorems within
mereotopology. The mereotopological theory used is a
spatio-temporal extension of the spatial representation lan-
guage RCC-8 [11]. RCC-8 is a theory of space and time
with a primitive dyadic relation of connection. The the-
ory has been developed in a series of papers [11, 2, 6].
The most distinctive feature of the theory is that it uses
extended regions instead of points as fundamental enti-
ties. For the formal theory to be used for reasoning about
changes in spatial relations, it was augmented with a set
of envisioning axioms. These axioms specify which di-
rect transitions can be made in the topological relations
between pairs of regions. The change of state in RCC
relations via potential motion, analyzed through transi-
tion graphs in which relations form a conceptual neigh-
bourhood was thus posited in [3] (see figure 2). Spatio-
temporal continuity remained an implicitly assumed no-
tion.

Galton [5] and thereafter Muller [10] looked at what
continuity implies for a commonsense theory of motion.
Muller had an explicit generic characterization of conti-
nuity and presented theorems for the (non-existence of)
transitions between states in RCC-8 relations [10] within
a space-time framework. But Muller’s interpretation of
theorems of (non-existence of) transitions has been shown
not to be fully adequate [4]. Davis presents an alternative
framework for characterisation of transitions. However it
is not expressed as an object level first-order theory, and
sacrifices the spirit of mereotopology as it defines time in-
stants and spatio-temporal points.

We present a more comprehensive framework. The ba-
sic entities of our theory are non empty regions of space-
time. Following [7], space-time regions are termed histo-
ries. Note that following previous work within the group
[11, 6] we do not wish to admit lower dimensional entities -
e.g. in our work on spatial mereotopology all regions were

of the same dimension and we did not consider boundaries
as spatial entities. Here too we do not admit lower dimen-
sional entities such as temporal points into our ontology
for the same reasons as argued in [11, 2]. In order to re-
fer to regions within a given time we introduce the notion
of temporal slice. Thus TS(z, y) says that  is a temporal
slice of y and the syntactic sugar £ denotes the temporal
slice of y during ¢. Fig. 1 shows a space-time history for
a 2-D object and a temporal slice of the history. In a n-D
space, a space-time history is a n+1 dimensional volume.

time

Temporal Slice

space

Figure 1: A s-t history is a n+1 dimensional volume in a
n-D space.

Our theory is based on the basic dyadic relation of con-
nection. We have three versions of connection relation:
spatial, temporal and spatio-temporal interpreted in pure
space, time and space-time respectively (see [8] for de-
tails). We introduce operators to characterize transitions.
Furthere we have characterized a number of distinct no-
tions of space-time continuity [8] including the notion of
strong firm-continuity on which figure 2 depends.

The extended spatio-temporal theory is a first-order the-
ory with equality. To formalize our theory we use a sorted
first-order logic based on the logic LLAMA [1]. The prin-
cipal sorts we use are REGION and NULL. We define a set
of Boolean functions. The Boolean functions are sum, dif-
ference, intersection and complement. The functions are
partial but as discussed in [2], are made total in the sorted
logic by specifying sortal restrictions and letting the re-
sult sort of the partial functions be REGION U NULL. The
functions can be regarded as genuine Boolean operators



over the domain REGION U NULL. In the SPASS input
files along with the definitions for the Boolean functions
(mentioned here), we add axioms for an equational theory
of Boolean algebra [adapted from [9]] and have axioms to
link the Boolean algebra to the relational part of the the-
ory. This allows axioms for the Boolean functions to be
added without loss of saturation. Although previously [8]
we defined ¥ as syntactic sugar, for computational reasons,
in SPASS ¥ is represented using an actual binary function,
with axioms to specify its semantics.

In the absence of intended models and a syntactic proof
of completeness, the only way to know that the axiomatisa-
tion fulfills our intentions to characterize continuous tran-
sitions is by proving ‘transition theorems’. There are two
aspects to proving the correctness of the conceptual neigh-
bourhood: the links that are present need to be shown to
be necessary, and those absent to be shown to represent
discontinuous transitions. The latter is a theorem proving
task but the former requires model building and appears to
be much harder automated. We confine ourselves to the
second task here.

TPP NTPP

%6*¢E
0

Q
’7 ‘
DC
ppi  NTPPi

Figure 2: Conceptual Neighbourhood for RCC-8 relations
under strong firm continuity.

The non-existence theorems formally show which tran-
sitions are not continuous and correspond to the links ab-
sent in the transition graph shown in figure 2 for RCC-8
under strong frim continuity. We are using the automated
theorem prover SPASS to prove the non-existence transi-
tion theorems. The clausal form of the underlying theory
consists of 571 clauses, 80 predicates and 219 function
symbols.  http://www.comp.leeds.ac.uk/qst/SpassProofs
list some proofs found by SPASS in our spatio-temporal
theory.
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1 Introduction

The ‘LCF design’ inherited by the HOL theorem prover [1] allows users to
write ML functions encoding arbitrary patterns of logical deduction. Such ML
functions are called derived rules,! because the only way that they can create
theorems is by composing a sequence of existing rules. The initial rules, imple-
mented in a small logical kernel, are the primitive inference rules of higher-order
logic. This design philosophy is called fully-expansive proof, because every de-
rived rule can be ‘fully expanded’ to a (long) sequence of primitive inferences.

Example: Harrison’s HOL implementation of the model elimination procedure
is a derived rule. It takes a goal term, performs a proof search, and then executes
the successful proof as a sequence of primitive inferences. 0O

We are interested in creating efficient derived rules for normalizing terms.
Converting terms to conjunctive normal form (CNF) is necessary to apply many
first-order proof procedures, and some decision procedures for Presburger arith-
metic transform terms to disjunctive normal form as part of their operation.
Our present focus is on converting terms to definitional CNF: a normal form
similar to CNF in which the result formulas are only linearly larger than the
input formulas. An upper bound on the result size is essential when normalizing
large propositional formulas (such as those generated by hardware verification)
for input to satisfiability (SAT) solvers. In our experiments, we use Gordon’s
HolSatLib? library for hol98. It provides a harness for invoking SAT solvers on
HOL terms, and currently supports SATO, GRASP and zCHAFF.

Example: To prove that the boolean ‘exclusive or’ operation is associative, we

*Supported by EPSRC project GR/R27105/01.
1Or tactics, depending on the context in which they are used.
2http://www.cl.cam.ac.uk/users/mjcg/HolSatLib/



first convert the negation of the goal to definitional CNF:
Foa((-lp=-(g=r))=-(~(p=q) =1))) =

Jvg, v1, U2, U3, V4.
(vaVoi Vuz)A(va V=1 V-oug) A (v V-ug V-vg) A{vs Vo Vowvg) A
(vaVvaVr)A(wsV-we Var)A(vzV-rV-wg) A(rV v V-us)A
(v2VPpV @ A(w2V-pV@A(PVeV-v)A(gV-pV-w)A
(1 VPVue)A(viVpV-u)A(pV-veV-ui)A{(weV-pV-)A
(voVgVT)A(veV—=gV-r)A(gV-rV-u)A(rV-gVw)Auvy

Next we strip off the existential quantifiers (the ‘definitions’ of definitional
CNF) from the RHS of this equation, and invoke HolSatLib on the resulting
term. The HOL term is then converted to DIMACS format, sent to a SAT
solver, and, if no satisfiable assignments are found, the negation of the term is
asserted as a HOL theorem (with a ‘SAT solver’ oracle tag3). Finally, a couple
more primitive inferences suffice to derive our original goal as a theorem. O

As can be observed, the above method of proving propositional formulas
involves a conversion to definitional CNF. It is relatively easy to generate the
desired term, and so we can simply create the conversion theorem with a ‘nor-
malization’ oracle tag. However, it is interesting to see how efficiently we can
construct the fully-expansive proof of the conversion theorem. We could naively
try to mirror the definitional CNF algorithm using primitive inferences, but
large intermediate terms make this algorithm is quadratic in the size of the in-
put term. Instead, we use a technique of Harrison [2] using variable vectors to
create a novel algorithm that runs in (nearly) linear time. On our ADD4 exam-
ple term,* this uses more primitive inferences than the naive method, but small
terms at each intermediate point mean that the overall time taken is lower.

Operation on the ADD4 Term Time (s) Infs.

Definitional NNF 10.610 7677

Oracle version of definitional CNF 0.390 0

Naive definitional CNF 122.620 | 12034

Definitional CNF using variable vectors 28.800 | 238258

Applying the zCHAFF solver 4.680 0
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Position Statement

We are currently investigating® the application of proof planning to the
SPARK? approach to developing high integrity Ada. The SPARK approach
advocates correctness by construction — where the development of code and
verification proofs go hand-in-hand. Proof planning involves the use of high-
level patterns of reasoning in constraining the automatic search for verifica-
tion proofs.

Our investigation began in September 2001. An evaluation of the po-
tential use of existing proof plans within this new application is currently
under-way. This evaluation will also inform our development of new proof
plans. In addition, we are currently building a first prototype of NuSPADE,
an experimental proof planning system. NuSPADE will extend the SPADE
Proof Checker?, an interactive theorem proving environment designed to
support the proof of verification conditions arising from software written in
SPARK. This extension will build upon earlier work implemented within the
Clam proof planning system. We believe that NuSPADE will significantly
increase the level of proof automation that is currently supported by the
SPADE Proof Checker.

!The research outlined here is funded under the EPSRC Critical Systems Programme
- EPSRC grant GR/R24081.

?Praxis Critical Systems Ltd — http://www.praxis—cs.co.uk

3The SPADE Proof Checker is part of the SPARK Examiner tool-set and is a product
of Praxis Critical Systems Ltd.
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Abstract

We present, a framework for automated learning within mathemat-
ical reasoning systems. In particular, this framework enables proof
planning systems to automatically learn new proof methods from well
chosen examples of proofs which use a similar reasoning pattern to
prove related theorems. Our framework consists of a representation
formalism for methods and a machine learning technique which can
learn methods using this representation formalism. We briefly present
how to learn methods in the Q@MEGA proof planner. The approach is
a two-stage one, first to learn method outlines and second to build
complete methods from method outlines.

Proof planning [Bun88] is an approach to theorem proving which uses
proof methods rather than low level logical inference rules to find a proof
of a theorem at hand. A proof method specifies a general reasoning pattern
that can be used in a proof, and typically represents a number of individual
inference rules. Proof planners search for a proof plan of a theorem which
consists of applications of several methods. One of the ways to extend the
power of a proof planning system is to enlarge the set of available proof
methods. This is particularly beneficial when a class of theorems can be
proved in a similar way, hence a new proof method can encapsulate the gen-
eral reasoning pattern of a proof for such theorems. A difficulty in applying

"This work was supported by EPSRC grant GR/M22031 and European Commission
IHP Calculemus Project grant RTN1-1999-00301.



a proof pattern to many domains is that in the current proof planning sys-
tems new methods have to be implemented and added by the developer of
a system. We devised a framework within which a proof planning system
can learn frequently occurring patterns of reasoning automatically from a
number of typical examples, and then use them in proving new theorems
[JKBO1]. The availability of such patterns, captured as proof methods in a
proof planning system, reduces search and proof length. We implemented
this learning framework for the proof planner @MEGA [BCF*97], and — we
call our system LEARNQMATIC. LEARNQMATIC consists of, first, a learning
mechanism, which learns so-called method outlines from proof traces of typ-
ical examples. Method outlines are essentially names of methods, sequences,
disjunctions, repetitions (arbitrary or fixed number), and branching points
(as list of branches). For instance, from the outlines e; = [, @, a,a,b,c| and
e2 = [a,a,a,b,c] the system would generalise to [[a]*, [b, c]].

The second part of LEARN{IMATIC consists of a mechanism which en-
ables IMEGA to use these method outlines as fully fleshed proof methods
by adding to them additional information and performing search for infor-
mation that cannot be reconstructed.

Further information about the project and links to publications can be
found on www.cs.bham.ac.uk/“mmk/projects/MethodFormation/.
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1 Introduction

Temporal logics are extensions of classical logic, with operators that deal with time. They have been used
in a wide variety of areas within Computer Science and Artificial Intelligence, for example robotics [18],
databases [19], hardware verification [11] and agent based systems [17]. In particular, propositional temporal
logics have already made significant impact within Computer Science, having been applied to:

— the specification and verification of reactive (e.g. distributed or concurrent) systems [15};
— the synthesis of programs from temporal specifications [16, 14];

— the semantics of executable temporal logic [8, 9];

— algorithmic verification via model-checking [10, 2}; and

— knowledge representation and reasoning [4, 1,20].

In developing these techniques, temporal proof is often required, and we base our work on practical proof
techniques on the clausal resolution approach to temporal logic.

The clausal resolution method for propositional linear-time temporal logics provides the basis for a number
of temporal provers. The method is based on an intuitive clausal form, called SNF, comprising 3 main clause
types and a small number of resolution rules [5]. While the approach has been shown to be competitive [12,
13], we aim at an even more efficient implementation.

As usual, the temporal resolution approach aims at deduction of a contradiction from a given set of
formulas.

2 Separated Normal Form

A propositional temporal problem, whose satisfiability we are interested in, consists of four parts!:

1. a universal part I/, given by a set of propositional clauses;
2. an initial part Z with the same form as the universal part;
3. a step part S, given by a set of propositional step temporal clauses of the form:

LiANLsA...ALy=> Q(M; VM V...V M) (step clause),

where L;, M; are literals;
4. an eventuality part £, given by a set of propositional eventuality temporal clauses of the form:

LiANLsA...ANLyg :>0(M),
where L;, M are literals.

We say that a problem is satisfiable if, and only if, the formula Z A CJU A (OS A [J€ is satisfiable.

It is known [5] that a PLTL-formula is satisfiable if, and only if, a set of temporal clauses is satisfiable.
To translate a temporal formula into the SNF form (see [5] for full details), we essentially apply a set of the
transformation rules based upon the renaming of complex expressions by new propositions and upon the
substitution of temporal operators by their fixpoint definitions.

* On leave from Steklov Institute of Mathematics at St.Petersburg
! The TRP++ system uses slightly different normal form than described in [5] in that we allow universal clauses;
each universal clause C can be represented by a pair {start = C,true = O(C)} in terms of [5].



3 Temporal resolution

The deduction system for temporal problems essentially consist of the step resolution rule (that could be
thought of as an ordinary resolution rule acting on “arithmetization” of the initial, universal, and step parts)
and the eventuality resolution rule that involves the detection of a set of formulas that together imply [l
(known as a loop in —!l) for resolution with Ql. Note that for arithmetization, we represent temporal clauses
as (a very restrictive form of) first order clauses, namely, an initial clause C will be represented as C(0), a
universal clause D as D(z), and a step clause (A L; = O(V M;)) as (V =(Li(x)) V V(M;(f(z))).

Then, any first-order resolution system would allow us to perform step resolution steps; however, due to
very restrictive nature of the formulas, TRP++ uses it’s own “near propositional” approach to deal with
them. Further, search for loops (that is, the most costly part of the method) can be implemented by similar
techniques to those described in [3].
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First-order temporal logic (FOTL) based on the flow of time (N, <) is notorious for its ‘bad
computational behaviour:’ even the two-variable monadic fragment of this logic is not recursively
enumerable (see e.g. [2] and references therein). A certain breakthrough has been recently achieved
in [2], where the so-called monodic fragment of FOTL is introduced by restricting applications
of temporal operators to formulas with at most one free variable. The full monodic fragment
(containing full first-order logic) turns out to be axiomatisable [3]. Moreover, by restricting its
first-order part to decidable fragments, we obtain decidable monodic FOTLs, say, the monodic
guarded, monodic two-variable, and monodic monadic fragments. This opens a way to various
applications of the monodic FOTL in knowledge representation, temporal databases, and other
fields. For example, many temporal description logics and spatio-temporal logics can be regarded
as fragments of monodic FOTL [4, 5, 6]. Unfortunately, the decision procedures provided in [2] are
of model-theoretic character and cannot be used as a basis for implementations. In [1] a resolution-
based approach was developed for fragments weaker than monodic fragments. A tableau-based
analysis of the decision problem for monodic FOTL has been missing. In this paper we are trying
to fill in this gap. More specifically, our aims are as follows:

1. to develop a general framework for devising tableau-based decision procedures for decidable
monodic FOTLs and then,

2. within this framework, to construct tableau systems for a number of concrete monodic frag-
ments.

We consider monodic FOTLs interpreted in models with both expanding and constant domains.
The former case is technically much easier, but the latter one is more general: reasoning with
expanding domains can be reduced to reasoning with constant domains.

Our approach is based on the following ideas:

e modularity—a decision procedure for a given fragment of first-order logic is combined with
Wolper’s tableaux (7] for propositional temporal logic (PTL);

e finite quasimodel representations of temporal models with potentially infinite first-order do-
mains;

e the minimal type technique to keep the domains of temporal models constant.

To achieve modularity, we separate the temporal and the pure first-order parts of formulas and treat
them using available procedures for PTL and the corresponding first-order fragment. This is done



by replacing all occurrences of formulas starting with temporal operators by their ‘surrogates’—
unary predicates (the language is monodic) the proper ‘temporal behaviour’ of which is ensured
by some auxiliary surrogate azioms. The resulting set of purely first-order formulas is treated then
by the given first-order decision procedure to obtain descriptions of all possible models for this set.
If the procedure fails, then the formula is not satisfiable. Otherwise we make one ‘temporal step,’
namely, omit the ‘next-time’ operator (as in Wolper’s tableaux) and add new surrogate axioms.
This yields another set of purely first-order formulas, an so forth.

Some special techniques are used to preserve the representation of tableaux finite and to guar-
antee termination. For example, first-order models are represented by finite sets of types, each of
which standing for possibly infinite number of domain elements. Quasimodels are used to encode
temporal models by associating a finite set of types with each time instant.

When a tableau is completed, the pruning technique (again, as in Wolper’s tableaux) is used
to ensure that all eventualities are fulfilled. Then the resulting tableau represents quasimodels of
the testing formula.

A rather general theorem provides conditions under which a first-order decision procedure can be
combined with Wolper’s tableaux to yield a tableau-based decision procedure for the corresponding
monodic FOTL. The price we have to pay for this level of generality is that the resulting combined
tableaux are far from optimal. In particular, in many concrete cases new rules can be used instead
of surrogate axioms. Thus, the general framework for combining tableaux is not supposed for direct
applications or implementations, but rather as a guide for considering more specific cases.
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Introduction of ordering constraints has been one of the main breakthroughs
in the saturation based theorem proving. Using solvability of ordering constraints
we can dramatically reduce the number of redundant inferences in a resolution-
based prover. As a consequence, the problem of solving ordering constraints
for the known simplification orders is one of the important problems in the
area. A simplification order is a total monotonic order on ground terms. Given
such an order we can consider ordering constraints which are quantifier-free
formulas in the language of the term algebra with equality and order. Two kinds
of orders are used in automated deduction: the Knuth-Bendix orders [5] and
various versions of the recursive path orders [3]. Because of its importance, the
decision problem for ordering constraints has been well-studied. For the recursive
path orders decidability and complexity issues were considered in [4,1,11,12,10,
9]. For the Knuth-Bendix orders we have the following results: the decidability
of constraints (6], a nondeterministic polynomial-time algorithm for constraint
solving (7], a polynomial-time algorithm for solving constraints consisting of a
single inequality [8].

In resolution-based theorem proving there are important simplifications which
allow us to remove clauses form the search space (for example subsumption). It
turns out that in order to express applicability conditions for these simplifi-
cations, we need to consider constraints which involve first-order quantifiers.
Unfortunately the first-order theory of the recursive path orders is undecidable
[13,2]. Only recently the decidability of the first-order theory of recursive path
orders in the case of unary signatures has been proven [9]. A signature is called
unary if it consists of unary function symbols and constants.

Continuing our work on the Knuth-Bendix orders we prove the decidability of
the first-order theory of the Knuth-Bendix orders in the case of unary signatures.

Theorem 1. The first order theory of any Knuth-Bendiz order for a unary
signature is decidable.

Our decision procedure uses interpretation of unary terms as trees and uses
decidability of the weak monadic second-order theory of binary trees.

Let us note that the decidability problem for the first-order theory of the
Knuth-Bendix orders in the the case of arbitrary signatures remains open.
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Abstract

We are developing an Intelligent Knowledge Management Environment called CONCEPTOOL, which has been expli-
citly conceived to support knowledge analysis and sharing at the conceptual level using both logic-based and heuristic
deductions. At the moment of writing, CONCEPTOOL provides core analysis functionalities for an expressive enhanced
entity relationship model. Heuristic deductions beside purely logic-based ones, as well as the possibility of selectively
de-activating specific components of the expressive power, are among the novel features of our approach.

1 Motivations and rationale

Knowledge Management (KM) develops formal frame-
works for knowledge construction, access and reuse. KM
approaches are based on the concept of a knowledge life-
cycle, which encompasses knowledge acquisition, model-
ling, retrieval, publishing, maintenance and reuse. These
activities are considered as the explicit research challenges
of the Advanced Knowledge Technologies (AKT) Con-
sortium, which aims at producing an integrated approach
to the knowledge lifecycle that encompasses a multi-disci-
plinary range of viewpoints (AKT Consortium, 2001).
Effective support for the knowledge lifecycle requires
analysis and sharing functionalities based on a combina-
tion of logical and heuristic inferences. Analysis includes
knowledge verification, validation and augmentation ser-
vices. Sharing includes knowledge translation and align-
ment services that enable the same interpretation of (parts
of) a Knowledge Base (KB) by different humans or com-
puter agents (Compatangelo and Sleeman, 2001).
Despite the sizeable number of available systems for
knowledge analysis and sharing, there is still a lack of
integrated environments which provide a comprehensive
set of flexible inferential services for a variety of hetero-
geneous knowledge models. In fact, several systems only
provide knowledge editing and presentation (i.e. structur-
ing) functionalities for semi-formal conceptual models.
Some systems provide a core set of knowledge analysis
functionalities for carefully selected fragments of First-
Order Logic (FOL). A few systems provide knowledge
sharing functionalities for expressive subsets of FOL.
Structuring tools generally lack analysis and sharing
functionalities, which are implicitly based on a formal
knowledge model. Analysis tools mainly focus on epi-
stemological knowledge (e.g. frames), lacking support
for conceptual knowledge (e.g. entities, functions) and
its sharing. Sharing tools generally deal with the inter-
change of logical or epistemological knowledge, lacking
support for the analysis of conceptual knowledge.

In order to overcome these limitations, we have been
developing an Intelligent Knowledge Management Envir-
onment (IKME) called CONCEPTOOL, which provides
specialised analysis and sharing functionalities directly at
the conceptual level. Our approach uses a combination
of underlying terminological and heuristic reasoning ser-
vices to support lifecycle activities for declarative KBs
(e.g. conceptual schemas or ontologies). In doing so,
we adapt existing modelling and reasoning techniques to
the needs of sharing-driven analysis, without being con-
ditioned by their oddities or limited by their drawbacks.

2 System overview

We have planned the development of CONCEPTOOL in
stages, progressively increasing the number of specialised
services and the expressive power of its formal know-
ledge model. At the time of writing, with stage 1 fairly
completed, CONCEPTOOL provides structuring and ana-
lysis functionalities for reasoning with an expressive En-
hanced Entity-Relationship (EER) model. The EER lan-
guage presently recognised by CONCEPTOOL includes:

o Entity identifiers (simple and composite ones, as
well as external identifiers for weak entities).

¢ Entity and relationship attributes, with the possib-
ility of specifying standard (primitive) attribute do-
mains, fillers and full multiplicity ranges.

¢ Multiple is_a links (i.e. multiple hierarchical genera-
lisation-specialisation links) between entities as well
as between relationships of the same arity.

¢ Full range of cardinality constraints for the parti-
cipation of an entity in a relationship, without being
limited to the four cases 0:1, 1:1, O:N, 1:N.

e Separate disjointness and full coverage assertions
among entities.



Selectable identifiers, attribute fillers, full participatory
ranges and a conceptually unambiguous definition of mul-
tiple hierarchical links between relationships enable know-
ledge modelling and analysis within the EER framework.
Therefore, the expressive power of CONCEPTOOL repres-
ents an improvement over that of other comparable sys-
tems for EER conceptual modelling and analysis, such as
iCOM (Franconi and Ng, 2000).

Our approach to knowledge analysis in CONCEPTOOL
is that of providing a whole range of reasoning services at
the conceptual level. Therefore, CONCEPTOOL has been
designed to provide both logic-based and heuristic deduc-
tions. Our EER conceptual language has been mapped
(with suitable extensions and emulations) into the epi-
stemological language SHZ Q recognised by the Descrip-
tion Logic (DL) reasoner iFaCT (Horrocks, 1999).

Logic analysis does not make use of sources of know-
ledge (such as ontologies, lexicons, heuristic rules) which
are external to the KB under investigation. Therefore,
it could fail to detect relationships between semantically
similar concepts in a KB if these concepts are described
using different terminologies. In fact, the lack of sub-
sumption between concepts with pairwise different (but
semantically equivalent) role names is a well-known ma-
jor limitation of terminological approaches.

The above limitation can be overcome by lexical and
heuristic analysis, which provide suggestions likely to be
meaningful (but not always necessarily true) in the ana-
lysed context. As part of a more sophisticated service still
under development, CONCEPTOOL presently provides a
simple customisable heuristic analysis mechanism based
on substring matching between two or more entity names.

In addition to syntactic analysis, CONCEPTOOL offers
the following logic-based semantic analysis services:

¢ EER schema consistency.

e Detection of incoherent entities and relationships.
o Detection of synonyms in entities or relationships.
e Propagation of properties and constraints.

e Derivation of parents and ancestors.

e Derivation of consequences of assertions.

In order to improve the detection of new links between
concepts, CONCEPTOOL supports a full customisation of
its expressive power, with the possibility of selectively de-
activating or re-interpreting specific constructors. More
specifically, the distinction between attributes and identi-
fiers can be de-activated, so that the latter are re-interpreted
as attributes. The domain of identifiers and attributes, as
well as the multiplicity of attributes, can be redefined, so
that all of them share the same values. Either just at-
tribute fillers or all attribute properties can be ignored at
once, such that attribute names only are taken into ac-
count. Moreover, assertions (disjointness and coverage)
and relationships can be selectively ignored.

The simplicity of the EER model and its (almost) dir-
ect mapping into a DL can contribute to hide a major is-
sue: the gap resulting from the intrinsic difference between
a conceptual knowledge model and an epistemological
one. Roughly speaking, there are three main reasons for
this gap. Firstly, differences in the modelling abstrac-
tions (e.g. entities and relationships in conceptual model-
ling vs. generic concepts in epistemological modelling).
Secondly, different basic assumptions (e.g. closed world
vs. open world) underpinning the two knowledge mod-
els. Thirdly, different deductions (e.g. hierarchical links
between relationships as derived from their SHZ Q-based
representation and as expected in conceptual reasoning).

Unfortunately, there are no inferential engines avail-
able for most conceptual modelling languages, which can
provide a set of deductive services comparable with those
offered by DL systems. This is often a consequence of the
partially undefined semantics of these languages. There-
fore, logic-based engines are generally used to perform
deductions on conceptual knowledge directly. However,
these deductions can be consistently contrasting with the
one expected at the conceptual level. Consequently, there
is a deductive gap which must be overridden by way of a
semantically consistent mapping of the two levels.

The management of this mapping provides a rationale
for the introduction of two of the three knowledge rep-
resentations in CONCEPTOOL, namely the user-oriented
(EER) one, the internal (object-oriented) one and the DL-
oriented (iFaCT) one. The rationale for an internal know-
ledge representation can be explained as follows. Sev-
eral deductions (e.g. completion) do not really need to be
performed by the DL inference layer. Conversely, they
can be “syntactically” performed, provided that an “aug-
mented” KB can be developed and used to represent, for
instance, direct descendants, assertions and propagated
knowledge. In this way, overloading of the DL engine
is avoided, which results in a better system performance.
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1 Introduction

Abelian logic A was introduced independently by
Meyer and Slaney in [2] and Casari in [3] as the logic
of lattice-ordered abelian groups, motivated by the
former as a logic of relevance and by the latter as
a logic of comparison. Recently, extending a result
in [2], it has been shown that the so-called material
fragment of A coincides with Lukasiewicz’s infinite-
valued logic L [5]. Here we present a cut-free hyper-
sequent calculus for A, employing rules familiar from
Avron’s calculi for Gédel-Dummett logic LC and the
relevance logic RM [1]. Since L is a fragment of A we
are also able to fill a hole in the literature identified
in [4] and give a hypersequent calculus for L.

2 Abelian Logic

Definition 1 (Abelian Logic, A) —,+,A,V and
t are primitive. A has the following definitions, az-
ioms and rules:

Do Ao B=(A-> B)A(B— A)

D~ A=At
Al Ae (- A)
A2 ((AVB)-»CO)e ((A-O)A(B-=(C)
A3 ((A+B)-»C)e(A—-(B-0)
A4 A ((A-B)—- B)
A5 (A-B)-((B=2C)—=(A-0C)
A6 AANB - A
AT AAB-B
A8 ((A-B)A(A-C) = (A= (BAQ))
A9 (AANBVC) =2 ((AABYV(AACQ))

A10 ((A—->B)—=»B)— A

(mp) A—B,A (AI) AB

B AAB

Definition 2 (Lattice-Ordered Abelian Group)
A lattice-ordered abelian group (abelian l-group) is an
algebra (G, +,V,—,t) with binary operations + and
V, a unary operation - and a constant t, satisfying
the following equations:

al t+a=a

a2 a+b=b+a

a3 (a+b)+c=a+(b+e

a4 a+-a=t

ab avb=>bVa

a6 (avbVe=aV{bVe)

a7 a=aVa

a8 a+(bve)=(a+b)Vie+ec)

We also define aAb = —(—aV —-b), a = b = —(a+—b)
anda = b=(a—2bAb—a)

Theorem 1 (Characterisation theorem for A)
The following are equivalent: (1) ¢ is a theorem of
A. (2) ¢ is valid in all abelian l-groups. (8) ¢ is
valid in (Q,+,V,—,0).

3 A hypersequent calculus

Definition 3 (Hypersequent) A hypersequent is
a multiset of sequents, written: T'y - Aq|...|Tp F Ay
where I'; and A; are finite multisets of formulae for
i=1,...,n.

Definition 4 (Interpretation) The interpretation
of a sequent S = A;,...,Ap b By,...,Bp, is ¢5 =



(A1+...+A4,) = (Bi+...By,). The interpretation of [4] Proof theory of fuzzy logics: Urquart’s C
a hypersequent H = S| ...|S, is " = ¢51v.. . v¢n. and related logics. M. Baaz, A. Ciabatonni,
C. Fermuller and H. Veith. In Mathematical
Definition 5 (LA: A hypersequent calculus for A) Foundations of Computer Science (MFCS98).
LA has the following rules: Lecture Notes in Computer Science, vol. 1450,
Azioms pages 203-212, 1998.
(idy AFA (emp) +

Structural rules
[6] Analytic sequent calculi for abelian and

(EW) __,_GJ&,A_,_ (EC) _GEL"_AM Lukasiewicz logics. G. Metcalfe, N. Olivetti and
GTFAT FA e]) Q=

D. Gabbay. In preparation.
(Sc) GIl'1,Ta - Ay, Ay (M) Gl A, GIT2F Ay
G'F] = A11I‘2 = Ag Glrl,r2 = AhAZ

Logical rules
(—,1) GII'LBF A A (—=,7) GII',AF B,A
GIhA—- BF A G+ A - B,A
(+.,0) GII'A,BF A (+,7) GIl'+ A, B,A
T,A+B¥F GI'+ A+ B,
(A, ) GIl,A; F A (A7) GIlFA,A GI'FB,A
GII,A1ANA2 F A GI'FAAB,A

(V,) GII,ArA GQII,B+A  (Vi,r) GIT + Ai, A
GT,AVBF A GTFr A vA;FA

Theorem 2 LA is sound and complete for A ie for
a hypersequent H, H is provable in LA iff o7 is valid
in all abelian l-groups.
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Combined temporal and modal logics have been used in computer science for reasoning about
complex situations such as, for instance, the specification and verification of distributed [5] and
multi-agent systems [9]. We consider a particular combination, the fusion of PTL and SS(n), a
Temporal Logic of Knowledge (KL(n ) in which the dynamic and informational components of such
systems can be represented. Given a logical characterisation of a system, we then want to prove
that it matches the desired requirements and properties. Although there are proof methods for
such logics [5, 4, 3, 7], most of these cannot be easily adapted to deal with interactions between
the temporal and epistemic dimensions.

We say that time and knowledge interact when axioms relating the temporal and epistemic
dimensions are added to the logic. For instance, the axioms K; Q¢ = QK; ¢ (perfect recall and
synchrony) and OK;¢ = K; Oy (no learning and synchrony) [5] express how the knowledge
of an agent evolves over time: the first models situations at which agents remember all their
past history, whilst the second models situations at which agents do not distinguish their futures.
Adding interacting axioms usually increases the complexity of the validity problem for the combined
logic. For instance, on the single-agent case, the validity problem for the combined logic without
interactions, KL(l), is PSPACE, whereas if, in particular, the no learning and synchrony interaction
axiom is added, the complexity becomes EXPSPACE [6].

Recently, it has been shown that the resolution method for KL, proposed in [3] can also be
applied, with few modifications, to deal with perfect recall and synchrony [2] and with no learning
and synchrony [8]. Instead of adding new resolution rules, which would make implementation
more difficult, we introduce a set of clauses, which make explicit the constraints imposed by the
interaction axioms. Also, a number of definitions have to be added to the set of clauses before the
resolution method is performed. Many of these definitions are used for renaming complex formula
in the scope of the knowledge operator (K; ).

We have now proposed a new normal form, which avoids the introduction of these definitions
for complex formulae, and so reducing the set of clauses to which the resolution method is applied.
This new normal form was inspired by that proposed in [1], which simplifies the resolution method
for temporal logics. We then benefit from this improvement in the method for dealing with the
temporal dimension, and have adapted the resolution rules for the knowledge dimension. The
resulting proof method for KL n) is terminating, sound and complete. Proving correctness of the
extended method for synchronous systems with perfect recall or no learning is ongoing work.

We are also investigating how to extend the basic method to deal with interactions of the form
OK;¢ = K; O"¢ and K; O'¢ = O'K; ¢, where I,r € N, O% = ¢, and Q¢ = QO !¢ for
i > 0. Whilst, in general, interactions of these forms have not been studied in computer science,
some of their instances, such as the above-mentioned axioms, are very well known, as they express
important properties of multi-agent systems. This is the first step towards a general method for
dealing with general interactions between modalities representing different dimensions of reasoning.
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A problem in modelling mathematics is that few people have analysed and reported the way in
which mathematicians work. Lakatos(4) is a welcome exception. He presents a rational recon-
struction of the evolution of Euler’s conjecture that for all polyhedra, the number of vertices (V)
minus the number of edges (E) plus the number of faces (F) is two, and its proof. This work
spans 200 years of concepts, conjectures, counter-examples and ‘proofs’ and is invaluable to Al
researchers trying to model mathematical reasoning. Such models might serve to (a) illuminate
aspects of human mathematics, and (b) improve existing automated reasoning programs.

Figure 1: The hollow cube; V-E+F =16-24 + 12 =4

Lakatos suggests that Euler’s conjecture may have been proposed after noticing that the relation-
ship V — E+F = 2 holds for all regular polyhedra, (the tetrahedron, cube, octahedron, icosahedron
and dodecahedron). The counter-example of the hollow cube - a cube with a cube-shaped hole in
it - is then found. Reactions to this include:

1) saying that the existence of the counter-example is sufficient to disprove the conjecture, and
therefore abandon it;

2) claiming that the hollow cube is not a counter-example since it is not a polyhedron. The
conjecture remains unchallenged and the definition of polyhedron is tightened from ‘a solid whose
surface consists of polygonal faces’ to ‘a surface consisting of a system of polygons’ (thus excluding
the hollow cube);

3) generalising from the hollow cube to ‘any polyhedra with a cavity’ and then excluding these
from the conjecture. The new conjecture is ‘for all polyhedra without cavities, V — E+ F = 2’;

4) generalising from regular polyhedra to ‘convex polyhedra’ and then limiting the conjecture to
these. The new conjecture is ‘for all convez polyhedra, V — E 4+ F = 2.

Lakatos categorises these responses into methods: induction (scientific rather than mathemati-
cal) for generating the initial conjecture; and then if a counter-example is found: 1) surrender;
2) monster-barring; and two types of exception-barring - 3) piecemeal exclusion and 4)strategic
withdrawal. Our aim is to model these methods, using the theory formation program HR(2) as a
base. HR starts with objects of interest (e.g., integers) and initial concepts (e.g., multiplication
and addition) and uses production rules to transform old concepts into new ones. For example a
production rule might take the concept ‘number of divisors of an integer’, and change it to the
concept ‘number of divisors of an integer = 2’. It would then list all integers which share this
property (.e., all the primes in its database). Conjectures, such as concept X implies concept Y,
are made empirically by comparing the example sets of different concepts. For instance HR has
made the conjecture that if the sum of the divisors of n is prime, then the number of divisors of
n is prime (2). Since HR works especially well in number theory we have applied the methods to
this domain. Induction can be used to generate conjectures of the form Vz, P(z); and —3z such
that P(z), for some property P. Fermat’s Last Theorem is an example of this kind of conjecture.
Clearly surrender is sometimes necessary (many of the conjectures and concepts generated will
not be worth modifying) although few surrendered conjectures are recorded. One example in (1)
is the conjecture that the nth perfect number P, contains n digits. This was found by induction
on the first four perfect numbers - 6, 28, 496, 8128 - but surrendered when the fifth - 33, 550, 336 -



was found. An example of monster-barring is in (3), in which the definition of a prime number is
modified from ‘a natural number that is only divisible by itself and 1’ to ‘a natural number with
exactly two divisors’. This occurs because the number 1 (considered prime in the first but not in
the second definition) is a counter-example to many conjectures. For example in the Fundamental
Theorem of Arithmetic, that every natural number is either prime or can be expressed uniquely
as a product of primes, the uniqueness criterion is violated (6 =2x3=2x3x1=2x3x1x1
etc). Rather than explicitly exclude 1 in the theorem, it is more elegant to exclude it from the
concept definition, and thus the current definition of a prime is formed and accepted. Examples
of exception-barring are plentiful, for instance Goldbach’s conjecture that all even numbers ezcept
2 can be expressed as the sum of two primes; all primes ezcept 2 are odd; and all integers ezcept
squares have an even number of divisors.

So far we have modelled simple versions of both types of exception-barring in HR. To do this we
have had to enable it to generate conjectures with known counter-examples (whereas previously
only conjectures true of all examples were made). We have done this in two ways (and are currently
experimenting to see which is preferable). Firstly we have enabled it to make near equivalence
conjectures, i.e., conjectures which hold for z% of the objects of interest (where z is defined by
the user). Secondly we have run two versions of HR, which are able to communicate concepts
and conjectures to each other, in parallel. These simple agents have access to different databases
and therefore one may make a conjecture which is true of all its examples and ask the other for
counter-examples. If there is a large number of counter-examples then HR will look to see if it
already has a concept which includes only the counter-examples, and then use piecemeal ezxclusion.
For instance with a database of numbers 1 — 30 it formed the near equivalence conjecture that ‘all
integers have an even number of divisors’, with counter-examples 1, 4, 9, 16 and 25. It then found
the concept of ‘square numbers’ which covers the counter-examples and modified the conjecture
to ‘all integers except squares have an even number of divisors’, which is true. If HR makes a
conjecture for which there are only a few counter-examples (where the number is specified by the
user), it will invent a concept with a definition which excludes the counter-examples and then
perform strategic withdrawal. When we ran the agent version with databases 1 — 20 and 20 — 40
the second agent generated the conjecture ‘all primes numbers are odd’ and sent it to the first,
which found the counter-example 2. The second agent then generated the new concept ‘primes
numbers except 2’ and modified the conjecture to ‘all primes numbers except 2 are odd’.

These preliminary results look promising. Although other systems can be said to use certain
methods (HR(2) already used induction and Lenat’s AM program(5) performed a kind of monster-
barring), this is the only dedicated attempt we know of to model Lakatos-style reasoning.
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The Theorema system is a software intended to assist the working mathematician during all phases of its
mathematical work (proving as well), within one consistent logic and one coherent software system. The system
is built upon the computer algebra software Mathematica [Wol96] which offers unique facilities for the
input/output of logical expressions (including complex graphics), for programming by rewrite rules, and for
interactivity. In order to make proofs easy to read and interact with, the provers of Theorema follow a natural
style approach: the inferences imitate the natural steps used by human provers, and the rendering of the proofs is
done in natural language. This approach has been pioneered by Buchberger, (see e.g. [Bu96], [BuJeVa98]) who
designed and implemented the first versions of the predicate logic prover.

The Theorema system contains various provers for general and specific domains: a propositional and a
predicate logic prover [BuEAIOO], the Prove-Solve-Compute (PCS) prover for predicate logic with equality
[VaPhD0O0], induction provers over natural numbers and over lists [BuVa97], a set-theory prover [Wind01], a
Groebner Bases based prover for boolean combinations of polynomial equalities and inequalities, etc.

The provers operate on "proof-situations" consisting of a set of assumptions and a goal (sequents with only
one goal). Each prover is composed of a set of inference rules, each rule is typically expressed as a rewrite rule
which transforms a proof-situation into one or more proof-situations. The proof-object is a tree representation of
the development of the proof: each node corresponds to a proof-situation, while its successors in the tree corre-
spond to the inferred proof-situations. The root of the proof-object corresponds to the initial proof-situation,
while the leaves correspond to "proved" (successfully solved), "disproved", "failed” or "pending” (not yet
resolved) proof-situations.

The proof-object is used as an internal representation of the proof. The external representation of the proof
(which is displayed to the user in a proof-notebook) is produced by a post-processing of the proof-object, which
generates a structured cell representation in a Mathematica notebook. The structure of the cells reflects the tree
structure of the proof-object, and each inference step is typically represented as a phrase in natural language
accompanied by some formulae and referring to some other formulae by their labels

Normally, a proof call will try to solve/prove the goal by applying the inferences and the heuristics imple-
mented in the prover (or the combination of provers) which is used. Even for powerful proving methods, many
proof-problems arising in the current practice of mathematicians are too difficult to solve, mostly because of the
large search involved, but also because the impossibility to anticipate in advance all the necessary facts which
the formal proof will need as assumptions. In human proving practice, we usually try various possibilities and
rely on our intuition and previous experience in order to find an elegant proof.

One of the advantages of natural-style proving is that the user can easily understand and follow both the
inference rules which are available in the prover, as well as the proof situation at any given moment. We capital-
ize on this advantage and, in order to improve the effectiveness of the Theorema provers, we implemented a
general mechanism which allows a flexible interaction between the user and the system during the development
of the proof. Using this, one can choose between fully automatic (for a predetermined number of steps) and
interactive proof-development, one can easily navigate through the proof-object, and one can provide various
hints (e.g. suitable instantiations) to the prover.

When calling a prover in interactive mode, the system displays the proof in a special proof-window, and
shows additionally a proof-situation-window, a log-window and several Mathematica style menu-palettes.

*) Partially supported by the RISC phd scholarship program of the government
of the Upper Austria and by the FWF (Austrian Science Foundation) SFB project P1302.




The proof-window displays the current situation of the (possibly unfinished) proof. This is in fact the
user-friendly representation of the proof-object, and allows the user to navigate inside the proof-tree in order to
continue the proof on a certain branch, introduce new branches, etc.

The proof-situation-window displays the proof situation (current goal and assumptions) associated to the
node which is currently selected in the proof-tree. This window gives the user a good overview of the current
proof situation, and also allows him to indicate the goal or assumption which is to be manipulated in the next
proof step (e.g. for applying a certain inference). Pending (still unresolved) proof situations are shown with gray
background, and the result of the most recent inference is shown in framed cells.

The log-window logs the main commands of the user and displays the errors and the warnings.

The menu-palettes contain various interactive commands and settings, each being represented by a button
which triggers the respective action. Some of the palettes are general, some of them are specific to the particular
prover(s) which is/are used. Some of the commands require arguments (e.g. Execute needs a Prove command,
NewGoal needs a formula). In order to correctly use such a command, the user selects first the cell containing
the needed information.

In very concise words the main menu-palettes are: the Prove palette, containing the main commands for
controlling the development of the proof (start/finish execution etc.); the Proef palette which contains com-
mands that allow the modification of a proof situation of a certain proof step; the Simplification palette that
provides "shortcuts” to various proof simplification operations which are mostly used; the Provers palette which
allows the user to select the domain-specific prover which will be used for the next inferences.

The implementation of the palettes is done in such a way that it is easy to add new palettes and new buttons,
and also to arrange them in various ways on the user-screen. We plan to enhance these menus according to the
results of the experiments with the users. In particular, we plan to add a special dynamic palette which is shows
suggestions for the next inference step.

The work presented here has an experimental flavour: one has to try out various types of simplification and
interaction schemes in a real environment in order to take the appropriate decisions, and one has to implement
the system in a flexible way in order to be able to easily implement the changes suggested by practical experi-
ments with the users (currently, besides the members of the Theorema group, we also use as alpha—testersthe
PhD students enrolled in a special proof-training program at our institute). The presentation will be accompanied
by a live demo of the system.
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Abstract

Model generation [Manthey and Bry, 1988] provides a very straightforward basis
on which to construct more elaborate theorem provers where some rules are applied
backwards and some forwards. Unfortunately the basic algorithm can lead to a
considerable amount of repeated and redundant work. The current paper exploits
ideas from chart parsing [Kay, 1973, Kaplan, 1973] to minimise this problem.

1 Background

Various tasks in natural language processing require you to be able to reason: if you want
to do anything as a consequence of hearing/reading an utterance/text, you have to be
able to work out its consequences[Appelt, 1985, Asher and Lascarides, 1995, Baumgart-
ner and Kiihn, 2000, Blackburn et al., 1997, Crouch et al., 2001, Gardent and Konrad,
2000, Hirst, 1987, Hobbs et al., 1993, McRoy and Hirst, 1995, Schubert and Pelletier,
1984, Sperber and Wilson, 1986, Wedekind, 1996]. The situation is complicated by the
fact that this reasoning often involves intensional axioms and logical forms. This hap-
pens when reasoning about lexical items that explicitly express propositional attitudes
(words like ‘want’, ‘regret’, ‘expect’); for dealing with discourse relations such as the
theme:rheme distinction or the significance of phonological marks such as contrastive
stress; and for providing an account of terms like ‘only’ or ‘even’ which express an
attitude to parts of the utterance [Pulman, 1993]. We have exploited the distinction be-
tween backward- and forward-rules that is implicit in Manthey and Bry [1988]’s MODEL
GENERATION theorem prover to develop an inference engine for a highly intensional
logic, namely a constructive version of Turner [1987]'s PROPERTY THEORY. This lan-
guage is more expressive than a logic like AProlog [Nadathur and Miller, 1998] in that
it allows for NON-UNIFORM PROOFS [Miller et al., 1991, Loveland and Nadathur, 1998]:
the price we pay is that inference is even more difficult than usual.

The version of this inference engine reported in [Ramsay, 2001] incorporates a num-
ber of optimisations, mostly techniques that have been developed for standard first-order
inference and adapted to work with the intensional language we are using. This theorem
prover has been used to solve a number of problems in NLP [Ramsay, 1999a,b,c, 2000,
Ramsay and Seville, 2000b,a, 2001b,a, Seville and Ramsay, 2000, Gaylard and Ramsay,
2001], but the basic model generation algorithm can lead to a considerable amount of
repeated and redundant work. We therefore propose to exploit ideas from chart parsing
[Kay, 1973, Kaplan, 1973} to minimise this problem.



2 Chart parsing

Chart parsing was introduced to minimise the extent to which partial and failed analyses
of fragments of an utterance are repeatedly investigated during the process of obtaining
a global structural analysis of an input sentence. The key observation behind chart
parsing is that most parsing algorithms contain a step in which an incomplete analysis
is extended by incorporating a new fragment. The so-called FUNDAMENTAL RULE OF
CHART PARSING says that if you have an incomplete constituent X/[Y;, Y2 ..., Y,]
adjacent to an item of type Y; then you can merge them to form a new, more complete
item X/[Ya, ..., Y,]'. The crucial point is that if you retain every such object that
is created during the course of parsing, and use this to block the creation of new but
repetitive items, then you can have a cache of positive and negative lemmas which will
enable you to avoid carrying out repeated work.

3 Chart inference

The fundamental rule of chart parsing looks extraordinarily like an application of res-
olution. It should therefore be possible to exploit the same mechanism in a theorem
prover. The question is whether the overheads associated with keeping such a collection
of lemmas pays for itself in terms of cutting down the search space. In the long run it
must do: the argument that chart parsing provides an N3 algorithm for analysing text
in terms of a context-free, i.e. propositional, grammar whereas simple-minded chrono-
logical backtracking is exponential has to be adapted when the framework is first-order
or worse, but the argument still applies. Thus for the backward-chaining part of the
model generation algorithm, which applies solely to the Horn subset of the problem,
there will be some performance gains from using a chart.

But for model generation the improvement should be even more dramatic than that.
One of the problems with model generation is that it repeatedly generates new literals
to be added to the set of Horn sequents and then tries to (a) prove L, and (b) if
that fails then find a new literal to add. This, in the standard presentation, involves
attempting the same proofs over and over again. By using a chart the addition of a
new literal directly restart suspended, but failed, proofs of L and of the availability
of forward rules. We no longer have to repeat old proofs: we resume partial proofs
immediately at the point at which they were suspended. This will also work for proofs
which were suspended because two items failed to unify when further analysis reveals
that the items in question are equal. The treatment of equality within the chart-based
approach is more awkward than it was in the standard implementation, where we carry
the current equivalence sets around in the LABEL [Gabbay, 1996] associated with the
proof, but at the same time it allows more effective use of discoveries about what is
equal to what.

The current state of the implementation of this notion is that we have the chart in
place for avoiding repetition in the backward chaining part of the proof procedure, but
that the integration with the forward chaining phase is not yet complete.

!The notation X/[Y1, ..., Y] is a variant on the way CATEGORIAL GRAMMAR describes an item
of type X which requires to combine with items of type Yy, ..., Y, in order to become ‘complete’
[Steedman, 2000, Wood, 1993]. In parsing, of course, you need directional information about whether
Y: should be to the right or left of X/[Y1, Y2 ..., Y,], but this doesn’t make things much more
complex.
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1 General description

BRAIN is a tool for analysis of infinite-state systems in which a state can be represented by a vector of
integers. Currently it is used to verify safety and deadlock properties expressed as reachability statements
in a quantifier-free language with variables ranging over natural numbers.

2 Input language

The input language of BRAIN consists of problem descriptions specifying the following.

1. The sets of initial and final states by a quantifier-free formula of Presburger arithmetic. Instead of final
states, one can specify the set of deadlock states, which will be computed by BRAIN automatically from
the description of transitions.

2. Transitions expressed as guarded assignments guard -> assignment (see [2]), where guard is again a
quantifier-free formula of Presburger arithmetic and assignment is a sequence of assignments to variables.
Examples will be given below.

3. Queries of two types: reachability of a set of states from another set of states, or reachability of a deadlock
state from a set of states.

3 Transition systems

The semantics of a problem expressed in the language can be defined as follows. Let V be the set of all variables
declared in the problem. We call a state a mapping from the set of variables into the corresponding domain
(currently, only the domain of natural numbers is supported). Such a mapping can be homomorphically
extended to arbitrary terms of Presburger arithmetic over V by defining s(n) = n, for every non-negative
integer n and s(uj + u2) = s(u1) + s(u2). A guard G is a quantifier-free formula of Presburger arithmetic
with variables in V. In addition to the function symbol + and equality BRAIN allows one to use — and all
the standard comparison operators, such as <. If a formula C of variables V is true in a state s, we write
s | C. Every such formula C symbolically represents a set of states, namely the set of states in which it
is true, i.e., {s | s = C}. A transition t is a set of pairs of states. Transitions are declared in BRAIN using
guarded assignments of the form G — vy := uy,...,v, := u,, where all the v;’s are variables and the u;’s are
terms. This guarded assignment defines a (deterministic) transition ¢ with the following properties: (s,s') € t
if s k=G, §'(vn1) = s(u1),...,8 (v,) = s(un), and for every variable v € V- {v1,...,v,} we have s'(v) = s(v).
Though every guarded assignment specifies a deterministic transition, the transition relation specified by a
set of guarded assignments may be non-deterministic.

4 The reachability algorithm

The backward reachability algorithm LocalBackward of BRAIN is implemented via a saturation algorithm
given in Figure 1. This algorithm is taken from [3], where implementation of BRAIN is discussed in more
detail. Backward reachability was chosen for a simple reason: symbolic application of a guarded assignment
to a set of states represented by a formula C(V) gives a quantified formula, while quantifiers arising from
the backward application of a guarded assignment can be immediately eliminated.
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procedure LocalBackward
input: quantifier-free formulas In, Fin,
finite set of simple guarded assignments U
output: “reachable” or “unreachable”
begin
IS := pdnf(In); FS := pdnf(Fin)
if there exist I € IS, F € FS such that = 3V(I A F) then return “reachable”
unused := FS; used := 0
while unused # @
S := select(unused)
used := used U {S}; unused := unused — {S}
forall u € U
(* backward application of u *)
N := 57
(* satisfiability-check for the new comstraint N *)
if = 3V(N) then
(* intersection-checks *)
if there exists I € IS such that | 3V(N A I) then return “reachable”
(# entailment-checks *)
if for all C € used U unused we have = VV(N D C) then
unused = unused U {N}
forall ¢’ € used U unused
(* more entailment-checks #*)
if = YV(C' D N) then remove C’ from used or unused
return “unreachable”
end

Fig. 1. Local backward reachability algorithm used in BRAIN

5 Algorithms over simple constraints

The backward reachability algorithm of BRAIN requires efficient algorithms for checking satisfiability and en-
tailment of constraints. These algorithms are described in [3]. They are based on an algorithm [4] for building
the basis of simple constraints (systems of linear equalities and inequalities over nonnegative integers) similar
to the algorithm of [1]. The algorithm computes the basis of a constraint consisting of non-decomposable
solutions. Incremental computation of the basis is very useful for checking intersection with the set of the
initial states and also for deleting redundant inequalities or equalities.

6 Performance

Paper [3] contains experimental results comparing BRAIN with Action Language Verifier, HyTech and DMC.
For integer-valued problems HyTech and DMC use relaxation, i.e., they solve real reachability problems
instead of integer reachability problems. Therefore, they are correct only when they report non-reachability.
Our results reported in [3] show that BRAIN is usually faster that HyTech and considerably faster than
the other two systems, often by several orders of magnitude. BRAIN also consumes much less memory that
HyTech and Action Language Verifier. There are several problems which could only be solved by BRAIN,
but not by any of the other systems. On some of these benchmarks, BRAIN made about 10° entailment
checks within the overall running time of about 15 minutes. However, we would like to note that all of
these systems are on some benchmarks more powerful than BRAIN since they can use techniques such as
widening or transitive closure which the current version of BRAIN does not have. The system is available at
http://wuw.cs.man.ac.uk/~voronkov/BRAIN/.
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Combinations of propositional dynamic logic
(PDL) (3] and S5 [1,5] are meaningful when we
want to reason about actions and knowledge. We
focus on axiomatically defined products of PDL
and S5, in which the S5 modality commutes with
the dynamic operators by the following axiom
schema.

(NL APR) [a]Op < Olalp

(NL is short for no learning, and PR for per-
fect recall.) Generally axioms and theorems of a
logic are assumed true for all instantiations for
the atomic symbols. However, in this paper we
distinguish between two variants of the substitu-
tion rule. The weak substitution rule allows the
substitution of arbitrary formulae for the atomic
propositional symbols but does not allow substi-
tution for atomic action symbols. By contrast, the
full substitution rule allows both kinds of substi-
tutions.

Let £ be the language of PDL plus an addi-
tional modal operator OJ representing knowledge.
A logic (weak logic) in L is a set of formulae which
is closed under standard inference rules (modus
ponens and necessity rule) and under the full
(resp. weak) substitution rule. Notationally weak
logics are discerned by a subscript w.

The simplest form of combination of two (or
more) logics is their fusion, or independent join.
We denote the fusion of PDL and S5 by PDL&S5.

Proposition 1. PDL & S5 = (PDL & S5),,, i.e.
Jull substitution is admissible in (PDL & S5),,.

PDL & S5-models are combinations of the famil-
iar Kripke models for PDL and S5, that is, a
PDL & S5 model is a tuple (S, Q, R, =) such that
(S,Q, ) is a PDL-model (3] and (S, R, ) is an
S5-model [1].

The products of PDL and S5 we consider are
extensions of (test-free) PDL & S5 with the ax-
iom (NL APR) above. This axiom is a Sahlqvist
formula and its first-order equivalent is:

RoQ(a) = Q(a) o R

In the case of logics with full substitution a ranges
over all the actions, whereas for weak logics a
ranges over the set of atomic actions only and in
this case we will refer to this property as com,,.
We consider the logics:

(com)

[PDL, S5 = PDL & S5+ NLAPR
[test-free PDL, S5) =
test-free PDL & S5+ NL APR

and their weak versions [PDL,S5}, and
[test-free PDL, S5],,. These extensions con-
tain all possible definitions of axiomatic products
of (test-free) PDL and S5. By definition, a
[PDL, S5]-model ~ (resp. [test-free PDL, S5]-
model) is a PDL @& S5model (resp. test-free
PDL & S5-model) which satisfies property com.
We have similar definitions for weak logics with
the property com,, instead of com.

The following theorem tells us something about
the admissibility of the full substituion rule in
weak variants these logics.

Theorem 1. [PDL, S5] # [PDL, S5],,, but
[test-free PDL, S5] = [test-free PDL, S5,,.

All considered logics can be proved complete, de-
cidable, and have the small model property.

Theorem 2 (Small Model Property). Let L
be any of the logics [PDL,S5], [PDL,S5),,, or
[test-free PDL,S5]. Let ¢ be a formula of L and
n the number of symbols in ¢. If ¢ is satisfiable
in some L-model then it is satisfiable in an L-
model with no more than u(L,n) states, where
u([PDL,S5,n) = 2* and p([PDL, S8,y,n) =
p([test-free PDL, S5],n) = 2" - 22",

The knowledge modality can be trivially elimi-
nated from [PDL, S5].

Proposition 2. p « Op € [PDL, S5)].

This trivial elimination of the S5 operator in
the product [PDL, S5 is unsatisfactory both from
a logical perspective and an application-oriented
perspective. The reason for the elimination of the



S5 operator is the implicit connection between the
test operator and (] in the commutativity axioms
under full substitutivity. A solution we propose
here is to define an alternative semantics for test
such that in the resulting logic, I and test inter-
act in a way so that weak substitutivity implies
full substitutivity.

Therefore, we introduce a new operator, de-
noted by 7, as replacement for the standard test
operator. The new operator can be interpreted as
an epistemic test operator. The intuition of p? is
an action which can be succesfully accomplished
only if p is known in the current state. The result
of this action is an arbitary state within the same
knowledge cluster. Thus, p? is the action of con-
firming the agents’s own knowledge. In contrast,
with the usual test operator the agent has the
capability to confirm truths rather than knowl-
edge. Philosophically, this is a strong property of
an agent; we believe, too strong. In agent based
applications the new interpretation of test is more
suitable than the usual test operator.

Subsequently, the logical apparatus is the same
as previously with the obvious changes. The sym-
bol 7 is used in the superscript to indicate a re-
placement of the operator ? by ?. Let [PDL, S5)*
and [PDL, 857, be the logics in £L? obtained from
[PDL, S5} and [PDL, S5,,, respectively, by replac-
ing the usual test axiom with:

[p?lg « OOp — g).

In accordance with this axiom, the formula [p?]q
can be read as ‘q is known with respect to p being
known’. Thus, we think of the modal operator
[- 7] as the operator of relative knowledge.

Using the elimination of second-order quanti-
fiers [2,4] it is easy to find the corresponding se-
mantic definition for the new operator. Thus, a
(PDL @ S5)* model is a tuple (S, Q, R, |=) satis-
fying all the properties of PDL&® S5 model, except
the meaning of ? is specified by:

Q(¢7) = {(s,t) € R| t = Og}.

This induces the notions of [PDL,S5]2 and
[PDL, S5]* models as expected.

The definition of 7 still allows the elimination
of O but this time the elimination is not trivial.

Proposition 3. Op < [T?]p € PDL & S5°.

In this context, we obtain the theorem of
admissibility of the full substitution rule in
[PDL, S5]%..

Theorem 3. [PDL, S5]" = [PDL, S5]7..
Also the following theorem is proved.

Theorem 4. [PDL, S5)*
erty with u([PDL, S5)7,
plete and decidable.

has small model prop-
n) = 2" - 22" and is com-

How does the standard test operator of PDL
relate to the new one? It turns out that there is
a simulation of PDL in (PDL @ S5)*. Define the
translation ¢ from formulae of PDL to For® by
the following:

=a ol=_1
o(y ) = (o9)? op="0p
olaUp)=caUcf o(¢—=¢)=D0(c¢p = oy)
o(f) = oa;08 o([a]y) = Oloajoy
o(a) = (ca)*

Theorem 5. For any O-free formula ¢ in L, ¢ €
PDL iff 0¢ € (PDL @ S5)*.
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1 “The” diagonal argument?

Various automated reasoning approaches to diagonalisation arguments have approached the subject via
a meta-theoretic account of proof state, or reformulation via syntactic manipulation (eg [HKC95, CS98,
Mel94]). An alternative approach is based upon a more abstract characterisation of diagonal arguments,
where a single mathematical argument at the level of category theory can be instantiated into a wide range
of diagonal arguments. Category theory shares with proof planning the desire to generalise patterns of
argument, though it goes about this in a different way. The claim here is that this different separation
between object-level mathematics and meta-level control gives us more mathematical feel for the shape of
the proofs concerned.

Lawvere and Schanuel’s book [LS97], which we follow here, is intended as a way into mathematics for
“the general reader or beginning student”. In it (in section 29) there is a good discussion of diagonalisation,
based on Lawvere’s earlier research paper [Law69]. I assume basics of category theory in the following
summary. Suppose we are in a category with products, ie we have:

e Objects X,Y,T,...; with an associated notion of

e Maps f,g..., between these objects which can be composed in sensible ways (including identity
maps from an object to itself); and

o Product objects like X x Y. These are characterised via projection maps,eg 7x : X XY — X and
the ability to formamap (f,g): A =+ X x Y givenmaps f: A > X,g: A= Y.

Now the diagonal map § : X — X is just (1x, 1x) where 1x is the identity map on X. We suppose there
is an object 1 with exactly one map X — 1 forevery X. Forany ¢ : T' x X — Y, there is a family
of maps T — Y indexed by maps ¢t : 1 — X. If all the maps T — Y are in this family, we say that
¢ : T x X =Y parametrises the maps T — Y.

From this can be shown both positive and negative forms of the diagonal argument. The latter says that:

Diagonal Argument, Contrapositive. In a category C with products, if there is some « :
Y — Y with no fixed points, then for every T and every purported parametrisation ¢ : T' x
T — Y, thereisamap f : T — Y which is left out of the parametrised family.

Out of this drops for example that looking at sets and functions, no map 7' x T — bool (where bool is simply
a two-element set) can parametrise all maps 7' — bool, since the swap map on bool has no fixed-point.

2 Proof planning around this argument

It is plausible that this version of the diagonal argument is sufficiently general that reformulation is not
needed, but rather we want to instantiate the ingredients of the argument in a particular context. Typically
we need to, in some order:



1. Identify the objects and maps involved.
2. Check that maps compose, that identity map is present.
3. Identify the appropriate product construction, and check its characteristic properties.

4. Look for a fixed-point free map from the appropriate object to itself.

If these all succeed, we have the components for a diagonal argument, in the negative form. If (4) fails,
the negative argument fails (with the given choice of objects and maps), though the conclusion may hold
anyway.

It is natural to use a higher-order representation in dealing with this sort of problem. An initial implemen-
tation in AClam shows that this approach is feasible. Notably, it allows us to invent examples (and non-
examples) of diagonal arguments outside the standard stock. For example, can we continuously parametrise
the set of continuous functions f : R — R by means of some ¢ : R x R — R? We are pointed in the
direction of a series of lemmas:

1. Composition of continuous functions are continuous, and the identity map is continuous.

2. The topology on X x Y is defined so that the usual projections are continuous, and do indeed
characterise the product correctly.

3. There are continuous maps R — R with no fixed-points (eg z — = + 1).

And so we conclude that there can be no such continuous ¢.

[L.S97] does a sketch of how incompleteness for arithmetic fits into this set-up. It would be much harder to
invent the appropriate constructions here, but not so hard to check that they do fit this pattern.

In conclusion, this different way of organising a family of proofs by seeing them as instances of a single
more abstract argument is amenable to implementation in a higher-order framework. It allows us to apply
diagonal arguments across a wide range of examples, and gives an explanation for some cases where
diagonalisation fails.
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Abstract

We describe the first full implementation of the Comon-Nieuwenhuis method for implicit induction, including
a consistency checker, in a novel system where the proof and refutation programs communicate via sockets. This
allows the system to attempt to prove and disprove a conjecture at the same time, using parallel theorem proving
processes. As well as refuting several non-theorems, this system has accomplished what is, to the best of our
knowledge, the first fully automated proof by implicit induction of the commutativity of ged. This had been posed
as a challenge problem to the technique in the past.

1 Overview of The System

Comon and Nieuwenhuis described the operation of a refutation complete proving system based on an implicit
induction strategy in their paper, [1], but their implementation was not complete. We have produced a complete
implementation, described in figure 1. The input to the system is an inductive problem in Saturate format and
an I-Axiomatisation (as defined by Comon and Nieuwenhuis, see [1]). The version of Saturate customised by
Nieuwenhuis for implicit induction (the rightmost box in the diagram) gets the problem file only, and proceeds to
pursue inductive completion. Every non-redundant clause generated is passed via the server to the refutation control
program (the leftmost box). For every new clause generated, this program generates a problem file containing the I-
Axiomatisation and the new clause, and spawns a standard version of Saturate to attempt to find an inconsistency
in the file. Crucially, these spawned Saturates are not given the original axioms. This means that most of the
search for an inconsistency is done by the prover customised for inductive problems and the spawned Saturates
are just used to check for inconsistencies between the spawned clauses and the I-Axiomatisation. This should
enable an inconsistency to be found more quickly than if we just gave the axioms, the I-Axioms and the conjecture
to a first-order prover.

It is necessary to spawn the standard Saturate processes in parallel to the implicit induction process because
inductive completion may not terminate. A concurrent check for consistency allows us to detect incorrect conjec-
tures even in this case. For example, the system has refuted ged(z, ) = 0, a problem for which the completion
process is non-terminating. If a refutation is found by a spawned prover, the proof is written to a file and the
completion process and all the other spawned Saturate processes are killed. If completion is reached by the
induction prover, this is communicated to the refutation control program, which will then wait for the results from
the spawned processes. If they all terminate with saturation, then there are no inconsistencies, and so the theorem
has been proved.

All spawned Saturate processes output to stdout, but a separate xterm window is launched for the
implicit induction prover. This is because some user interaction is sometimes required for the implicit induction
process; if it was connected to the main stream, it would accept the output from another process as its input. The
user interaction required is the selection of the innermost defined symbol in order to determine an inductively
complete position, [1], taking advantage of the fact that our problems are in constructor theories to reduce the
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Figure 1: System Operation

amount of search required. This will be automated in the future. When the theorem proving process is over, the
user also has to type the commands required to recover the proof.

2 Examples

The system has proved a small number of theorems about the ged function, including commutativity and idem-
potence, as well as theorems about even numbers and the > predicate. Several non-theorems involving the
same function symbols have also been detected. For a table of results and some sample output see http:
//www.dai.ed.ac.uk/“grahams/linda/arw.html.

3 Further Work

Our eventual aim is to use this system (or one of its successors) for investigating conjectures about security proto-
cols, and then to automatically extract attacks from the refutations. The idea is to produce a first-order version of
the inductive formalism used by Paulson, [2], allowing us to reason about protocols involving an arbitrary number
of agents. The main disadvantage of Paulson’s method is that considerable experience with the Isabelle prover
is required in order to analyse a new protocol. This is especially true if the proof attempt breaks down, leaving
the user unsure as to whether there is a problem with the proof attempt, e.g. another lemma or a generalisation is
needed, or whether the protocol itself is faulty. A system which could automatically synthesize attacks in the case
of a faulty protocol would alleviate this problem.
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Spatial semantics have often been discussed, quite recently, both from the perspective of first-order
systems [RCC92, PS98] and from that of non-classical propositional logics [Ben96, Lem96, She99, Ste00].
One of the general directions seems to be toward the development of models of space that are closer to
common-sense reasoning than the standard one based on a cartesian product of the reals. Qualitative
models can either refer to continuous spaces or to digital ones; the latter ones, on which we intend to
focus here, can also be intended as multi-resolution cell complexes, and are in general comparatively
closer to machine representations [Kov92]. The basic semantical entities are taken to be regions that can
be topologically interpreted as regular open sets. Some of the spatial relations that can be defined on
regions are: parthood, disjointness, disconnection (binary), emptiness, connectedness (unary), and their
complements. Topologically, parthood can be interpreted as inclusion, disjointness as empty intersection,
disconnection as empty intersection of the respective closures, connectedness as impossibility to be split
into two non-empty, disjoint open sets.

It has already been discussed [TB02, TS02], in first place, how the topological semantics for intuition-
istic propositional logic (introduced with [Tar56]) can be re-adapted into a semantics for an axiomatic
version of intuitionistic second-order propositional logic (ISPL); besides, how an extension of ISPL can
be used to encode all the above-mentioned ‘positive’ relations (and, adding some semantical constraint,
also the complementary ones); the encoding does not work for all the spaces, but it does for a subclass
of Alexandroff topologies which are close enough to realise an intuitive idea of digital spaces.

Provability in ISPL can be inductively defined in terms of natural deduction, sequent-calculus or
Hilbert axiomatisation [Loe76, Gab81]; the definition of formula is of course different from that of intu-
itionistic first-order predicate calculus (IFPC), since variables have type formula (wff) instead than type
term (term), but the postulates are basically the same; the interpretation of quantifiers is substitutional;
actually, not all the IFPC postulates are necessary, since all the logical operators are 2nd-order definable
from —,V; however, we follow [Gab8l] in adding as an extra postulate the following ‘comprehension’
principle + Jz.(z & A)

Isabelle is an interactive, generic theorem-prover [Pau94] that has an implementation of higher-
order logic (HOL), allowing higher-order syntax for the binders, and making it possible to deal semi-
automatically with positive inductive definitions. An embedding of ISPL in Isabelle-HOL can be inter-
esting especially insofar as it allows the mechanisation of inductive meta-proofs; an example is the proof
required by the replacement of equivalents (- A +» B implies - C(A/z) < C(B/z)), a principle that can
be used to simplify quite radically the object-level reasoning.

Nevertheless, there seems to be a significant problem with handling the embedding of ISPL in a
direct way; in terms of higher-order syntax, propositional quantification has an ‘impredicative’ type
(wff — wff) — wff, which is not admissible from the point of view of recursive type declarations for
positive inductive definitions. A way to get around this problem appears to be a translation of ISPL into
IFPC; the latter can in fact be embedded in Isabelle-HOL in a comparatively standard way, using the
rules of sequent calculus. One possibility seems that to rely on a representation with all the rules for
IFPC, a one-place predicate Var (where Var(z) is intended to be the propositional variable for which
the object-variable z stands), and a corresponding version of the comprehension axiom. Another idea
is that of using the IFPC rules for — and V, with equality, ¢ : (term — wff) — term (the description




operator, which can be axiomatised with - z = wy.P(y) iff - P(z) A (Vy.P(y) - y = z)), Var, and a
one-place, second-order propositional function which associates a formula A to the object-variable z such
that Var(z) = A, defined as Term := AA.z.(Var(z) + A), assuming additionally that ¢ is defined for
every instance of Az.(Var(z) < A) (with z not free in A), so that A « Var(TermA) is provable for every
A. At the moment of writing, a prototype has been implemented, closer to the second line of thought
(though introducing Term directly, without ¢, and overloading the built-in notion of substitution with
a recursive definition that does not affect the treatment of the binders); the automatically generated
induction principle provided by Isabelle has been successfully tested on the proof of the replacement of
equivalents.
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