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The AISB’00 Convention

The millennial nature of current year, and the fact that it is also the University of Birmingham’s centennial year, made
it timely to have the focus of this year’s Convention be the question of interactions between Al and society. These
interactions include not just the benefits or drawbacks of Al for society at large, but also the less obvious but increas-
ingly examined ways in which consideration of society can contribute to Al. The latter type of contribution is most
obviously on the topic of societies of intelligent artificial (and human) agents. But another aspect is the increasing
feeling in many quarters that what has traditionally been regarded as cognition of a single agent is in reality partly a
social phenomenon or product.

The seven symposia that largely constitute the Convention represent various ways in which society and Al can con-
tribute to or otherwise affect each other. The topics of the symposia are as follows: Starting from Society: The Appli-
cation of Social Analogies to Computational Systems; Al Planning and Intelligent Agents; Artificial Intelligence in
Bioinformatics; How to Design a Functioning Mind; Creative and Cultural Aspects of Al and Cognitive Science;
Artificial Intelligence and Legal Reasoning; and Artificial Intelligence, Ethics and (Quasi-)Human Rights. The Pro-
ceedings of each symposium is a separate document, published by AISB. Lists of presenters, together with abstracts,
can be found at the convention website, at http://www.cs.bham.ac.uk/~mgl/aisb/.

The symposia are complemented by four plenary invited talks from internationally eminent Al researchers: Alan
Bundy ("what is a proof?"- on the sociological aspects of the notion of proof); Geoftrey Hinton ("how to train a com-
munity of stochastic generative models"); Marvin Minsky ("an architecture for a society of mind"); and Aaron Slo-
man ("from intelligent organisms to intelligent social systems: how evolution of meta-management supports social/
cultural advances"). The abstracts for these talks can be found at the convention website.

We would like to thank all who have helped us in the organization, development and conduct of the convention, and
especially: various officials at the University of Birmingham, for their efficient help with general conference organi-
zation; the Birmingham Convention and Visitor Bureau for their ready help with accommodation arrangements,
including their provision of special hotel rates for all University of Birmingham events in the current year; Sammy
Snow in the School of Computer Science at the university for her secretarial and event-arranging skills; technical staff
in the School for help with various arrangements; several research students for their volunteered assistance; the Cen-
tre for Educational Technology and Distance Learning at the university for hosting visits by convention delegates; the
symposium authors for contributing papers; the Committee of the AISB for their suggestions and guidance; Geraint
Wiggins for advice based on and material relating to AISB’99; the invited speakers for the donation of their time and
effort; the symposium chairs and programme committees for their hard work and inspirational ideas; the Institue for
Electrical Engineers for their sponsorship; and the Engineering and Physical Sciences Research Council for a valu-
able grant.

John Barnden & Mark Lee

ii



Artificial Intelligence in Bioinformatics

Andrew C.R. Martin*; Dave W. Corne’

*Parallel Emergent & Distributed Architectures Laboratory, Dept. of Computer Science,
University of Reading, PO Box 225, Whiteknights, Reading RG6 6AY, UK;
D.W.Come@reading.ac.uk
tDivision of Cell & Molecular Biology, School of Animal and Microbial Sciences,
University of Reading, PO Box 228, Whiteknights, Reading RG6 6AJ, UK;
A.C.R Martin@reading.ac.uk

The term ‘bioinformatics’ has been around for several years to refer solely to analysis of protein and DNA sequence
data. In the last 6 years, the science has been broadened to encompass every aspect of computational biology from DNA
sequence and evolution analysis through amino acid sequence analysis (general analysis, looking for patterns, motifs and
fingerprints or looking for distant evolutionary relationships) to protein structure analysis and prediction. It also covers
such diverse topics as automated data collection, text analysis and data storage.

As such, bioinformatics is at the boundary between biology and computer science. Most of the tools used routinely have
been developed by scientists from a biological sciences background. For example, the developers of the first application of
dynamic programming to protein sequence alignment were clinicians (Needleman & Wunsch (1970) “A general method
applicable to the search for similarities in the amino acid sequence of two proteins”, J. Mol. Biol. 48: 443-453). They had
no computer science training and came up with the dynamic programming method independently as a way of performing
global alignment between two sequences. The method was later formalised and adapted to local alignment by Smith and
Waterman (1981, “Identification of common molecular subsequences”, J. Mol. Biol. 147: 195-197). However, the two
disciplines are now starting to realise that they can learn a lot from eachother and are starting to share their knowledge
more intimately.

The amount of biological data available is increasing exponentially. In particular, the volume of sequence data (DNA
and protein) and of protein structural data doubles approximately every 18 months. Thus it is becoming more and more
important that rigorous computational methods are available to store, process, clean and analyse these data. In addition,
this presents vast opportunities for the application of a wide range of techniques from computer science including artificial
intelligence.

This symposium focuses on the application of artificial intelligence and related techniques to bioinformatics issues.
The range of papers presented illustrates the broad diversity of techniques being applied: support vector machines, ge-
netic algorithms, constraint programming, inductive logic programming, neural networks, database analysis, information
extraction and information agents. The applications are equally diverse: drug design, drug target identification, protein
structure comparison, genome annotion, protein sequence annotation, data extraction from the literature, structural analysis
and determination of protein structure folding signatures.

The programme committee are thanked for their valuable services: Chris Cannings (University of Sheffield, UK),
Thomas Dandekar (EMBL, Heidelberg, Germany), Alex Gammerman (Royal Holloway and Bedford New College, UK),
David Gilbert (Computer Science, City University, UK), Arun Holden (School of Biomedical Sciences, University of
Leeds, UK), David Jones (Biochemistry, Brunel University, UK), Nigel Martin (Computer Science, Birkbeck College,
UK), Graham Megson (School of Computer Science, Cybernetics and Electronic Engineering, University of Reading,
UK), Ray Paton (Computational Biology Group, University of Liverpool, UK), Shail Patel (Unilever PLC, UK), Vic
Rayward-Smith (School of Information Systems. University of East Anglia, UK), Martin Reese (University of California,
Berkeley, USA), Rob Russell (Smith Kline Beecham, UK), Richard Sibly (School of Animal and Microbal Sciences,
University of Reading, UK), Richard Tateson (British Telecommunications PLC, UK), David Westhead (Biochemistry,
University of Leeds, UK),

it






Drug Design by Machine Learning: Support Vector Machines for
Pharmaceutical Data Analysis
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Abstract

In this paper, we show that the support vector machine (SVM) classification algorithm, a recent development from the
machine learning community, proves its potential for QSAR analysis. In a benchmark test, the SVM is compared to sev-
eral machine learning techniques currently used in the field. The classification task involves predicting the reduction of
dihydrofolate reductase by pyrimidines, using data obtained from the UCI machine learning repository. Three artificial
neural networks, a radial basis function network, a C5.0 decision tree and a nearest neighbour classifier are all outper-
formed by the SVM. The SVM is significantly better than all of these, bar a manually capacity-controlled neural network,

which takes considerably longer to train.

1 Introduction

A recent classification algorithm from the machine learn-
ing community is introduced and applied to a well-known
problem in the field of drug discovery. As a control, the
algorithm is compared to several intelligent classification
techniques that are currently used to tackle the problem.
In this paper we first describe QSAR analysis, a technique
used by pharmaceuticals companies in the drug discovery
process. Following this, we introduce the support vector
machine (SVM), a new learning algorithm for classifica-
tion. After a brief theoretical argument on the advantages
of using SVMs for QSAR analysis, we present empirical
evidence for this approach. Finally, we make some con-
clusions.

2  QSAR Analysis

Quantitative structure-activity relationship (QSAR) anal-
ysis represents an essential part of the drug discovery pro-
cess. It also presents an extremely challenging problem
to the field of Intelligent Systems and one that, if solved
successfully, has the potential to provide significant eco-
nomic benefit. In this paper, we present evidence that a re-
cent state-of-the-art machine learning technique consider-
ably outperforms several of its competitors when applied
to such problems.

The underlying assumption behind QSAR analysis is
that the variation of biological activity within a group of
compounds can be correlated with the variation of their
respective structural and chemical features. That is, there
exists a rule or function that predicts a molecule’s activity
from the values of its physicochemical descriptors. The
aim of QSAR analysis is to discover such general rules and

equations. Activities of interest include chemical reactiv-
ity, biological activity and toxicity. In this paper, we are
concerned with predicting biological activity for drug de-
sign. Typically we measure or calculate the descriptors of
a finite number of compounds and measure the activity of
interest. A priori knowledge about the underlying chem-
istry may also be considered. The aim is that the rules dis-
covered should be successful in predicting the properties
of previously unseen compounds. Solving QSAR prob-
lems where data sets contain few rows (compounds) and
many columns (descriptors) is very difficult with standard
statistical approaches. Large data sets of high dimension-
ality, which describe highly non-linear relationships be-
tween structure and activity, pose similar problems.

QSAR analysis is becoming increasingly important
in automated pharmaceutical production processes. New
compounds emerging from the production lines must be
screened for their potential use (measured by chemical or
biological activity in some assay) in future products. The
capacity of the production lines is increasing through de-
velopments in robot technology and pharmaceutical meth-
ods. QSAR analysis forms an essential part of the over-
all screening process, in which new compounds are tested
against structural models to determine their potential ac-
tivity or otherwise. As demand for new pharmaceutical
products increases, along with competition within the in-
dustry, companies require increased screening throughput
and accuracy. Mistakes made at the screening stage are
reflected in process inefficiencies and subsequent capital
losses to the company involved.

Artificial intelligence techniques have been applied to
QSAR analysis since the late 1980s, mainly in response
to increased accuracy demands. Intelligent classification
techniques, including neural networks (Devillers, 1999b),
genetic algorithms (Devillers, 1999a) and decision trees,



have come to the fore. The problem of combining high
classification accuracy with informative results has also
been tackled via the use of hybrid and prior knowledge
techniques, such as expert systems (Gini et al., 1998). Ma-
chine learning techniques have, in general, offered greater
accuracy than have their statistical forebears, but not with-
out accompanying problems for the QSAR analyst to con-
sider. Neural networks, for example, offer high accuracy
in most cases but can suffer from over-fitting the training
data (Manallack and Livingstone, 1999). Other problems
with the use of neural networks concern the reproducibil-
ity of results, owing largely to set-up and stopping criteria,
and lack of information regarding the classification pro-
duced (Manallack and Livingstone, 1999). Genetic algo-
rithms may also suffer from their stochastic nature, in that
results may be hard to reproduce and the resulting classi-
fication may not be optimal (Goldberg, 1989). Decision
trees offer a large amount of information regarding their
decisions, in the form of predictive rules, but occasionally
struggle to provide the accuracy supplied by more power-
ful, but less informative, techniques. Owing to the reasons
outlined above, there is a continuing need for the applica-
tion of more accurate and informative classification tech-
niques to QSAR analysis.

3 Support Vector Machines

The general problem of machine learning is to search a,
usually very large, space of potential hypotheses to deter-
mine the one that will best fit the data and any prior knowl-
edge (Mitchell, 1997). The data may be observed or un-
observed or a combination of the two. In the case of clas-
sification problems we are presented with examples gen-
erated from some real world phenomenon. Each example
belongs to one of a fixed number of classes, possibly in-
cluding the null class. We assume that the examples are
independently and identically distributed (i.i.d.). The task
is to learn an hypothesis based on this data and any prior
knowledge that correctly predicts the labels of previously
unseen data generated i.i.d. from this phenomenon. That
is we aim to minimize the generalization error. Normally
we randomly partition the data into a training set and a test
set. The hypothesis is learned using the training data. An
unbiased estimate of the generalization error is then given
by the error on the test set. To reduce the variance in the
estimate this can be repeated several times and the results
averaged over the different partitions (cross-validation).
Classifiers typically learn by empirical risk minimiza-
tion (ERM) (Vapnik, 1998), that is they search for the hy-
pothesis with the lowest error on the training set. Unfor-
tunately, this approach is doomed to failure without some
sort of capacity control. To see this, consider a very ex-
pressive hypothesis space. If the data are noisy, which is
true of most real world applications, then the ERM learner
will choose an hypothesis that accurately models the data
and the noise. Such a hypothesis will perform badly on

unseen data. To overcome this we limit the expressiveness

of the hypothesis space. This is achieved by adding areg-

ularization term that penalizes complex models (Ripley,

1996). The other main problem with conventional

techniques is that there are usually numerous parameters.

These are generally set using a separate validation set of

data or by ad hoc heuristics. Thirdly, many algorithms con-
verge only to locally optimal hypotheses within their search
space, as opposed to the global optimum.

The support vector machine (SVM) is a relatively re-
cent addition to the toolbox of the data-mining practitioner.
Support vector machines are based on the structural risk
minimization principle (SRM) (Vapnik, 1979) from com-
putational learning theory. SVMs construct a hyperplane
that separates two classes (this can be extended to multi-
class problems). Separating the classes with a large mar-
gin minimizes a bound on the expected generalization er-
ror. By searching for large margin hyperplanes the SVM
is limiting the complexity of the hypothesis space, mea-
sured in terms of the VC-dimension (Vapnik and Chervo-
nenkis, 1974). This is also intuitively reasonable since,
given two separable classes, we would like to construct an
hyperplane that is in the centre of the separating band. In
the case of non-separable classes we simply minimize the
number of misclassifications whilst maximizing the mar-
gin with respect to the correctly classified examples (this
introduces the only free parameter, C, of the SVM, see be-
low). The hyperplane output by the SVM is given as an
expansion on a smail number of training points known as
support vectors {SV). The SVs are closest to the hyper-
plane and intuitively correspond to those points that are
hardest to classify. To train an SVM requires solving a
large-scale quadratic programming (QP) problem. The so-
lution to the QP problem is the global optimum and can
be found quickly using techniques from mathematical pro-
gramming (Burges, 1998).

SVMs are very powerful learners. Since the training
data only appear in scalar products we can use a Mercer
kernel (Mercer, 1909) to learn an hyperplane in a very high
(even uncountable) dimensional space. SVMs can thus be
used to learn two-layer, sigmoid neural networks, radial
basis function (RBF) networks (see Bishop, 1995, for a de-
scription of these techniques) and polynomial classifiers
among many others. In the separable case SVMs are fully
automatic in that they need no fine-tuning. The VC-dimen-
sion can be used to select the optimal parameter settings
without expensive cross-validation. Moreover, SVMs are
relatively insensitive to variation in the parameters and are
not prone to overfitting when, for example, using high de-
gree polynomial kernels.

4 Why Should SVMs Work for QSAR
Analysis?

When learning QSARSs the algorithm must deal with high
dimensional feature spaces. The SVM uses VC-theory to



avoid over-fitting and hence has the potential to deal with a
large number of features, even in the low throughput case
where there are few training examples. This is apparent
from the fact that SVMs typically learn in very high
dimensional spaces without over-fitting. As mentioned in
section 2, QSARs are typically highly non-linear. Learn-
ing a high degree polynomial classifier by regression is
time-consuming and ad hoc, since we must decide on which
cross-products to include and tune the degree of the poly-
nomial. Using an SVM, we can learn a high degree poly-
nomial classifier and be confident that it will not over-fit.
Furthermore, the degree of the polynomial can be chosen
using the VC dimension. A third point is that SVMs do
not make any assumptions about correlations between the
features, as opposed to techniques that assume statistical
independence. Since SVMs are robust learners they are
not as badly affected by noise as other classification al-
gorithms. This is particularly important in high through-
put screening where there may be a significant amount of
noise in the data labels.

5 Problem Description

The data used in this experiment were obtained from the
UCI Data Repository (Blake and Merz, 1998) and are de-
scribed in (King et al., 1992). The problem is to learn a
binary relationship on the biological activity of trimetho-
prim analogues. The biological activity is measured as
log(1/K;), where K; is the equilibrium constant for the
association of the drug to dihydrofolate reductase. Each
drug has three positions of possible substitution. For each
substitution position there are nine descriptors: polarity,
size, flexibility, hydrogen-bond donor, hydrogen-bond
acceptor, 7 donor, 7 acceptor, polarizability and o effect.
Each of the twenty-four non-hydrogen substituents was
given an integer value for each of these properties (see King
et al., 1992, for details); lack of a substitution is indicated
by nine —1s. This gives twenty-seven integer attributes
for each drug.

The task is to learn the relationship great(d,,d,,)
which states that drug no. n has a higher activity than drug
no. m. Each instance consists of two drugs, giving fifty-
four attributes in total, and a label ‘true’ or ‘false’, indicat-
ing the value of the relationship great(). Each instance in
the data is followed by its inverse, for example if the first
instance represents great(ds, d;) = true then the second
instance represents great(d, d;) = false. This produces
atwo-class classification problem where each class is equa-
lly represented (hence the misclassification costs are equal).
The data are partitioned into a five-fold cross-validation
series, with each fold consisting of approximately 1800
training examples and 1000 test examples. In learning the
relationship great() we can rank the compounds in terms
of their activity without going to the effort of predicting
that activity. This is in contrast to the more general and
harder problem of learning a set of rules or a regression

equation to predict activity. The obvious limitation of this
set up is that great(d,, d,,) is meaningless whenn = m,
or when the two drugs have the same activity.

6 Results

A variety of standard classification algorithms were trained
and tested on each cross-validation fold. Using the soft-
ware package Clementine 5.0 (http://www.spss.com) a
C5.0 decision tree, Gaussian RBF network and two- and
three-layer sigmoid neural networks were trained. A 1-
nearest neighbour (1-NN) classifier was also implemented
using Matlab 5.3 (http://www.mathworks.com). An SVM
was used to learn a Gaussian RBF classifier, the SVM was
implemented with the software package svmlight (Joa-
chims, 1999, http://www-ai.informatik.uni-dortmund.de/
thorsten/svm_light.html). The parameters for the various
algorithms were chosen as follows. For C5.0, Clementine
defaults were used (extensive validation showed that these
were very close to optimal settings for this problem). For
the neural network and RBF network, Clementine defaults
were again used and capacity control was manually tuned
by adjusting the number of hidden nodes. The number and
location of the centres of the RBFs was found automat-
ically by Clementine using k-means clustering. For the
nearest neighbour classifier Euclidean distance was used.
For the SVM the width of the Gaussian RBFs was chosen
as that which minimized an estimate of the VC-dimension.
The parameter C in the SVM, which controls the error-
margin tradeoff, was set at 100 (this is set by observing
the number of SVs in the solution).

The test accuracies, averaged over the five cross-valid-
ation folds, are shown in table 1. Using 50% of the avail-
able training data to track generalization error, an automat-
ically pruned neural network achieved 85.56% and a dy-
namically grown three-layer network achieved 85.27%.
Thus, the SVM classification is significantly better (p <
0.01) than all of the existing techniques bar the capacity
controlled neural network. C5.0 is quickest to train, fol-
lowed by the SVM. The neural networks used require at
least an order of magnitude greater training time. The near-
est neighbour classifier requires no training but classifica-
tion time is two orders of magnitude greater than for the
other models.

Classifier Test Acc % | Time/s
SVM-RBF 87.33 77.4
1-NN 83.62 382
NN (manual) | 86.97 2110
RBF 78.76 418
C5.0 81.30 4.40

Table 1: Test accuracies and computational times; time in-
cludes training and test time but not I/O.



7 Conclusion

The support vector machine has been introduced as a
robust and highly accurate intelligent classification tech-
nique, well suited to QSAR analysis. Onareal QSAR anal-
ysis problem the SVM outperforms several of the most fre-
quently used machine learning techniques. The neural net-
works achieve similar performance to that of the SVM but
require an order of magnitude longer training times and
manual capacity control. This becomes increasingly sig-
nificant when learning QSARSs on large numbers of com-
pounds. Other techniques, including an RBF network, a
C5.0 decision tree and a nearest neighbour classifier, all
fall considerably short of the SVM’s performance. The
SVM is an automated and efficient deterministic learning
algorithm, providing the benefit of reproducible and veri-
fiable results.

The evidence presented in this paper suggests that the
SVM is a data-mining tool with great potential for QSAR
analysis.
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Abstract

Exploiting the rapid increase in available sequence data, definition
of medical relevant protein targets is improved by a combination of
(i) differential genome analysis (target list) and (ii) structure
prediction (individual target picture). Fast sequence comparisons,

data mining and genetic algorithms further enhance these

procedures. Mycobacterium

tuberculosis polyphosphate

glucokinase is chosen as an application example.

1 Introduction

Here we present some of the challenges
and problems for bioinformatics in the
steps towards the identification of a
potential medical protein target from an
available more or less complete genome
sequence. The steps will be illustrated
referring to examples and techniques
from our laboratory. We will first
review and describe steps in identifying
a potential interesting target from a
genome sequence. Next a particular
target found (example: polyphosphate
glucokinase from Mycobacterium
tuberculosis) 1is examined in its
structure applying the genetic
algorithm. Techniques from artificial
intelligence (AI) become also more and
more important in protein target
identification. On the other hand,
several steps are not yet easy automised
or decided and recognised by Al systems
and computers without any human
intervention.

2. Materials and Methods

2.1. Differential genome
analysis
Differential genome  analysis was

carried out extensively using sequence
comparison methods as described
previously (Huynen et al., 1998).
Additional programs for protein and
domain identification included PSI-
BLAST (Altschul et al., 1997) and SMART
(Schulz et al.,, 1998), and specific PERL
and awk programs and routines.

2.2, Secondary structure

prediction

Secondary structure prediction was
achieved using available secondary
structure prediction programs. Profile



based neural networks are used by Rost's
program PHD (Rost, 1996). In contrast,
Frishman and Argos' program
PREDATOR (Frishman and Argos, 1997)
utilises local pairwise alignment of the
sequence to be predicted with each
related sequence. Levin's program
SIMPA96 assigns secondary structure
comparing the blosum62 similarity
scores of best matching fragments in a
database of known structures (Levin,
1997).

2.3. Genetic algorithm protein
folding simulations.

The protein main chain (N,Cy,C' and O)
was modelled in grid free simulations
using internal co-ordinates and a set of

seven standard conformations to assign-

¢ and y values to the backbone (Rooman
et al.,, 1991). The conformations of all
residues along the amino acid sequence
were successively collected together and
decoded from a long bit-string (a
“chromosome™). Starting  from a
population of random bit-strings, the
quality of each encoded structure was
judged by a fitness function composed of
rewards and punishments. Five
structure parameters, suitably weighted
(further details in Dandekar and Argos,
1994, 1996) were calculated and summed
up to judge structural fitness, briefly

1) the total scatter of all residues around

the common centre of mass is calculated;
2) the distribution of hydrophobic
residues around the centre of mass
(same centre as in 1) is considered;

3) main chain van-der-Waals atomic
overlaps are punished;

4) secondary structures are promoted
co-operatively with different functions
depending on whether they occur in a
region predicted by secondary structure
prediction programs or not;

5) the formation of hydrogen bonds in
B-strands, formation of B-sheets and
reverse turns is measured by different
subroutines;

2.4. Genetic algorithm
simulation conditions

High quality bit-strings (after a random
start) were selected preferentially as

parents and mutated (one bit per string
per generation) and recombined
through cross-over (probability of
recombination is 0.2 per bit string per
generation and occurs at exactly one
equivalent site chosen at random on
each of the parental chromosome pairs)
to yield the next parental generation of
folds. A ©positive constant keeps the
population of prediction trials richer
since low fitness individuals may also
survive. Simulations were run over
many generations to allow convergence
(the product of population and
generation equalled at least 4 x 109,
corresponding to a processing time for
main chain simulation runs of 20
minutes on a VAX 7620 for a 46-residue
protein). The best fold comparing the
fittest individuals from ten runs yielded
the prediction in these simulations.

3. Results and Discussion

3.1. Differential
analysis

genome

Large scale sequencing projects yield a
huge amount of sequencing data. Even
the complete genome sequence from a
number of prokaryotic organisms has
been obtained and after yeast also the
first genomic overviews from
eukaryotes such as Caenorhabiditis
elegans and Drosophila become
available. In the following we will
concentrate on a simpler, but severely
pathogenic organism, Mycobacterium
tuberculosis.
Detection of open reading frames is
even in prokaryotes a non-trivial
exercise involving detection software
such as GENEMARK (Lukashin and
Borodovsky, 1998). Such programs are
constantly improved, for instance by
applying hidden markov chain models
but they doubtless require further
improvement for the challenging task
of gene detection, in particular in
eukaryotes, including more AI methods.
However, for the purpose
described here, protein target
identification, we will focus on the next
step, differential genome analysis, as
this method allows us to tackle the



following recognition task: Which
proteins are specific for this organism,
which are shared with several other
species and which proteins are general
and wide-spread ? Sorting the genome
encoded proteins in this way allows in a
first order approximation to define

pharmacological targets: Genome
specific enzymes may be
pharmacological targeted without

hurting other organisms, in particular
the human patient if the genome
analysed is from a  pathogen.
Furthermore, genes shared only among
pathogens give a further clue to
identify new pathogenicity factors.

These questions can be answered
by a two step procedure, first the group
of genes one is interested in (or even a
whole genome) is compared by fast,
automated sequence comparison
procedures with the corresponding
genes from other genomes.

Three different types of genes
can be distinguished after Dbeing
compared to a given query sequence:
Genes from other species can either be
(i) strongly similar and probably encode
a protein with the same function
(orthologue), (ii) be related but perhaps
only in certain domains or parts of the
complete sequence (a "homologue") or
(iii) are not significantly related.
Relatedness 1is established by significant
e-values (p > 0.001) in sequence
comparisons, orthology by the stricter
criterion of highest reciprocal
relatedness among all proteins from a
whole genome. For this typical
algorithms such as BLAST, FASTA and
PSI-BLAST are available (Bork et al.,
1998). In particular, with application
specific software for large scale
sequence to sequence comparisons the
speed up obtained is large enough to
compare even complete genomes
amongst each other (Huynen et al,
1998).

3.2. Lists of potential targets

The genes encoding orthologous protein
with the same function we next classify
according to Venn diagrams. Different
categories are identified in this way
such as organism specific genes (e.g.

our example kinase), genes shared
between several pathogenic species (e.g.
host interaction factors), between most
bacteria (e.g. ribosomal proteins) or
between patient and parasite (e.g.
triosephosphate isomerase). This Venn
classification can be automated using
awk scripts and perl programs.

Currently we are investigating more
advanced ways to cluster and sort genes.
This includes different data mining
subroutines which in addition to direct
sequence similarity (orthologous genes,
detected by the programs mentioned
above) interpret and start to understand
similar functionality. This can be
achieved by combining clusters
according to sequence similarity with
perl programs linking and sorting
genes by functional patterns identified
in the description line comparing genes
from different species. Thus, referring
to the specific example explained here,
the polyphosphate glucokinase from
Mycobacterium tuberculosis (E.C.
2.7.1.63) can be brought and grouped
into the context of other, not functional
identical but related enzyme activities
for instance hexokinases and
glucokinases from different organisms.

3.3. further identification tools

The challenging recognition
problem of species specific versus wide-
spread, common genes can thus at least
in a first level approximation be
automated using a two step procedure
and by excessive use (computer time
demanding cross-comparisons) of fast
comparison routines on each step. On
the other hand several additional steps
necessary to derive suitable targets we
have not yet codified. For instance,
expert knowledge is required to
understand and derive detailed medical
implications from the different lists and
genes compiled in the above mentioned
way so that attention can be focused on
the biological most interesting or
medical most promising targets.

However, expert systems may
after sufficient training and
development also perform such further
sorting steps. As one step towards this



goal we are currently concerned with
deriving more general rules how related
sequences may be recognised and can be
grouped. Simple rules such as the
percentage of sequence identity
multiplied by the length of the identity
stretch are combined with enzyme
specific data strings (such as "kinase")
and recognition motifs (e.g. from the
database PROSITE) to allow a far more
specific recognition and classification
of related enzyme activities and with the
potential for large scale up.

3.4. target structure analysis

We will now for the second part of
our results focus on the structure
analysis of the polyphosphate
glucokinase from Mycobacterium
tuberculosis. The gene and its encoded
enzyme are a specific adaptation of
Mycobacterium tuberculosis (see set 1
above, species specific adaptations). It
catalyses the reaction: phosphate(n) +
D-glucose <-> phosphate(n-1) + D-glucose
phosphate.

As polyphosphate glucokinase
connects carbohydrate metabolism and
energy utilisation it may be considered
part of a supportive or backup pathway
for Mycobacterium tuberculosis not
present in human beings and presents
in this way a potential interesting
pharmacological target. As a first step
for drug design a picture of its three
dimensional structure is helpful, e.g. to
define hydrophobic pockets or size and
shape of its catalytic cavity.

Recognition of the three
dimensional structure of a protein is
again a challenge for AI. Many
different methods for the prediction of
three dimensional protein folds have
been devised (reviewed e.g. in Dandekar
and Konig, 1997), including different
methods from AI research such as the
use of neural networks (e.g. Jones, 1999;
Norton et al., 1998; Mandal et al., 1996)
and genetic algorithms (reviewed e.g. in
Clark and Westhead, 1996). We will
present here own results applying the
latter technique. These search strategies
are robust global optimizers and have
been applied for numerous optimisation
tasks in engineering and computing as

well as to build classifier systems and to
perform other tasks in AI research
(Goldberg, 1989). Since several years
(Dandekar and Argos, 1992; Koénig and
Dandekar, 1999) we are applying genetic
algorithms for protein fold prediction
from sequence and secondary structure.

Regarding the polyphosphate
glucokinase from Mycobacterium
tuberculosis, a first check concerned
the question whether the fold can be
recognised by simpler techniques. In
particular it was tested whether it can
be linked via sequence homologies to a
known three dimensional protein
structure, for instance applying the
program PSI-BLAST (Altschul et al.,
1997). In the example there is not yet a
homologous structure available, similar
a program specifically geared to
recognise and analyse protein domains
("SMART", Schulz et al., 1998) fails to
recognise a known domain. In such
cases, use of the genetic algorithm to
derive a fold prediction is advantageous.
Starting from sequence and a combined
secondary structure prediction (using
the programs PHD, SIMPA96 and
PREDATOR, see Materials and Methods)
the genetic algorithm calculates from
this start information a prediction of the
protein fold for the polyphosphate
glucokinase from M.tuberculosis.

Different protein structure
selection criteria (see Materials and
Methods) are implemented to select
structures by mutation and
recombination of solution trials during
several hundred generations structures
which close to optimal fulfil the
combined structure selection criteria. To
achieve fold predictions close to the
native  structure of the protein
appropriate criteria and  suitable
respective weights for the fitness
function had to be carefully selected.
Furthermore, an extensive test battery
of structures with known three
dimensional fold was used in numerous
test runs to judge the outcome of the
selection and how it operated on
different sequences and  protein
topologies (see Materials and Methods;
further details in Dandekar and Argos,
1994; Dandekar and Argos, 1996).



The globular fold obtained by the
genetic algorithm simulation is a
prediction of the complete fold for that
protein. However, in our experience, as
this protein structure is larger than 100
amino acids (in total 265 amino acids)
and contains many different secondary
structure elements this presents only a
rough first order approximation of the
fold (RMSD error in parts of the fold still
higher than 5 A). Nevertheless, the
respective  topology of important
residues (e.g. the catalytic centre) is
available from the model structure and
sufficiently detailed to plan molecular
biology and structure probing
experiments (Koénig and Dandekar,
1999). In particular, after several cycles
of model building and experiment such a
model becomes accurate enough (Saxena
et al., 1997) that pharmacological
intervention strategies can be
examined.

In the concrete example this
could be inhibitors of M.tuberculosis
polyphosphate glucokinase targeting its
catalytic centre, however, with low
affinity to the standard glucokinases
and hexokinases present in  man,
especially in liver (main organ where
glucokinase is present), erythrocytes
and brain (glycolysis critical for energy
supply in these organs).

4. Conclusion

We present here our two part
strategy to identify and analyse
potential pharmacological targets from
genome sequences using
Mycobacterium tuberculosis as an
example. Both parts involve different
algorithms and programs from

biocomputing and exploit
advantageously concepts from Al,
notably concerning complex
recognition tasks.

In the first task, the

identification of a new target, we
achieve this by a combination of
sequence to sequence comparisons, data
mining and motif recognition, for the
second task, three dimensional fold
recognition, we exploit genetic
algorithm simulations; polyphosphate

glucokinase is yielded as a potential
medical target.

Nevertheless, for both tasks,
additional improvements will be made
possible from advances in Al research,
in particular to further reduce the
requirement for human intervention
(notably in target recognition) and
experimental data (notably in structure
prediction).
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Abstract

We describe the design and implementation of a fast topology—based method for protein structure compar-
ison. The approach uses the TOPS topological representation of protein structure, aligning two structures
using a common discovered pattern and generating measure of distance derived from an insert score. Heavy
use is made of a constraint-based pattern matching algorithm for TOPS diagrams that we have designed.
The system is maintained at the European Bioinformatics Institute and is available over the Web via the at
tops.ebi.ac.uk/tops. Users submit a structure description in Protein Data Bank (PDB) format and can com-
pare it with structures in the entire PDB or a representative subset of protein domains, receiving the results

by email.

Keywords: structure comparison, constraints, pat-
tern matching, pattern discovery, protein motifs, pro-
tein topology.

1 Introduction

An understanding of the similarities and differences
between protein structures is very important for the
study of the relationship between sequence, structure
and function, and for the analysis of possible evolu-
tionary relationships. This has lead to the need for
computational methods of structure comparison; fur-
thermore, the rapid increase in the size of structural
databases means that techniques to compare a given
structure with member of such a database should be
fast.

Various structure comparison methods have emerged,

ranging from those which make detailed geometri-
cal comparisons of backbone coordinates Taylor and
Orengo (1989), through methods using vector ap-

proximations to secondary structure elements, or SSEs,

Mitchell et al. (1989); Grindley et al. (1993); Arty-
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muik et al. (1994), and finishing with methods based
on highly simplified models of structure Koch et al.
(1996); Koch and Lengauer (1997); Tsukamoto et al.
(1997). These latter methods typically consider a se-
quence of SSEs, along with relationships like spatial
adjacency within the fold and approximate orienta-
tion, neglecting details like lengths and structures of
loops, and the lengths of the secondary structure ele-
ments themselves. This type of description of a pro-
tein structure is commonly known as a ‘topological’
description.

The topological description has the advantage of
simplicity, which makes it possible to implement very
fast comparison algorithms. Further, by neglecting
many of the details which typically vary between re-
lated structures, like lengths and structures of loops,
and exact lengths, spatial positions and orientations
of SSEs, it has the potential to detect more distant
structural relationships than could be found by meth-
ods based on more geometrical descriptions. On the
other hand, its disadvantages are that there may be
structures which, although related at the topologi-



cal level, are very different from a geometric point
of view, and have no meaningful biological relation-
ship.

2 TOPS diagrams and patterns

TOPS cartoons were originally drawn manually Stern-
berg and Thornton (1977) and comprise graphical

representations of secondary structure elements (SSEs),

their relative orientations and some indication of spa-
tial adjacency. Subsequently a richer representation
of the topological structure has been devised Flores
et al. (1994); Westhead et al. (1999, 1998), termed
a TOPS diagram, which includes information about
hydrogen bonding between strands and chirality con-
nections between SSEs; this representation is used to
automatically produce graphical cartoons.

We have previously described in detail our for-
mal representation of TOPS diagrams and patterns
as graphs, and the design of a fast pattern matching
program Gilbert et al. (1999). In this paper we de-
scribe a pattern discovery algorithm for TOPS dia-
grams and show how we use it to structurally align
diagrams and compute a comparison measure.

TOPS diagrams In TOPS diagrams (for example
the diagram for 2bop in Figure 1), strands are repre-
sented by triangles and helices by circles, connected
in a sequence from the amino (N) terminus to the car-
boxy (C) terminus. SSEs are considered to have a di-
rection of ‘up’ or ‘down’, implied in the way the con-
necting lines to the symbols are drawn: connections
drawn to the edge of a symbol imply connection to
the base and those drawn to the centre imply connec-
tion to the top, and the direction is that taken by the
protein chain from N to C terminus. The direction
information is duplicated for strands: upward point-
ing triangles have the direction ‘up’ and downward
pointing ones the direction ‘down’. The existence of
hydrogen bond ladders between a pair of strands is
indicated by a single H-bond in the TOPS represen-
tation, labelled as being parallel or anti-parallel, ac-
cording to the relative directions of the two strands
that it joins. In addition, TOPS diagrams also repre-
sent the chiralities of connections between connec-
tions between two parallel strands within the same
sheet and connections between long parallel helices.
A more detailed description of TOPS diagrams can
be found in Gilbert et al. (1999).
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More formally, a TOPS diagram is a triple (S, H, C)

where § = S5i,..., Sk is a sequence of length & of
secondary structure elements (SSEs) and H and C
are relations over the SSEs, called respectively H-
bonds and chiralities. In this description an H-bond
constraint refers to a ladder of individual hydrogen
bonds between adjacent strands in a sheet. We will
later refer to the length of a diagram as the length of
the sequence S.

In our formalism an SSE is a character from the
alphabet {c, 3} standing for helix and strand respec-
tively. Since each SSE in a TOPS diagram is associ-
ated with a direction up or down we associate a direc-
tion symbol, + or —, with each letter of our alphabet,
giVing {a+, a—, /B+1 ﬁ— }

Both H-bonds and chiralities are symmetric re-
lations (non-directed arcs in the graph). An H-bond
constrains the types of the two SSE’s involved to be
strands, and each bond is associated with a relative
direction § € {P, A}, indicating whether the bond is
between parallel or anti-parallel strands. Chiralities
are associated with handedness x € {L, R} (left and
right respectively), and only occur between pairs of
SSEs of the same type. We denote the H-bond rela-
tionship between two SSEs S; and S; by (S;, 4, S;)
and a chirality relationship by (S;, x, S;)-

The formal definition of a TOPS diagram D =
(S, Hg,Cy), given £ = {oy,a_,B+,06-},1s
S = (Sl,...,Sk),Si eEX
Hy = {(Sh S, S])lsla S] € {ﬁ+a:3—}a 6 =P &
Si=8j,0=A685#5;}

Cq= {(Siax’ Sj)lsia Sj €3, x€ {R7L7 }}

As an example, consider the TOPS diagram for
2bop in Figure 1; we can ‘stretch out’ this diagram
to give a linear form, as shown in Figure 3, and rep-
resent it formally as 2bop = (S, H, C), where
S = (;8+1 3 Omgy Qg ﬂ+4a /6+57 :3—57 Agqy ﬂ—s)

H= {(6+1aA’:8—s)a (ﬂ+1aAs:B—g)7
(ﬂ+4 ’ A7 B’G)? (ﬂ+5 ’ A’ 13—6 )}
C= {(:3+17R5 /B+4)a (/B—saR'l :3—8)}

TOPS patterns A TOPS pattern (or motif) is sim-
ilar to a TOPS diagram, but is a generalisation which
describes several diagrams conforming to some com-
mon topological characteristics. This generalisation
is achieved by specifying the insertion of SSEs (and
any associated H-bond and chiralities) into the se-
quence of secondary structure elements; indeed a di-
agram is just a pattern where no inserts are permitted.
The length of an insert is constrained to be within the



range of the lengths of the sequences that can be in-
serted. A TOPS pattern is thus a triple, similar to that
of a TOPS diagram; in this case, however, we refer
to the sequence of SSEs with inserts permitted as 7-
pattern. The inserts are similar to wild cards with
length constraints; we extend the definition of TOPS
patterns given in Gilbert et al. (1999) to permit such
wild cards before the beginning of, and after the end
of the sequence of SSEs.

Formally a TOPS pattern is a triple (T, H,C)
where T (referred to as a T'-pattern) is a sequence
(no,mo)~V1—(n1,m1)~Va—...—(ng_1,mk—1)—
Vi — (ng, my) comprising secondary structure el-
ements indicated by V; and between each of these
an insert description, as well as an insert description
(ng, mp) before V; and also an insert (ng, my) after
Vi. Each insert description is a pair (n,m) where
n stands for the minimum and m for the maximum
number of SSEs which can be inserted at that po-
sition. The range of n and m is from zero to the
largest number of SSE’s in any TOPS diagram (ap-
proximately 60). H are H-bonds and C are chirali-
ties, just as in the diagrams. Since TOPS diagrams
exhibit rotational invariances of 180° about the x and
y-axes, we associate a direction variable, @ or ©
with each SSE in a pattern P s.t. they satisfy the
constraint
V®,0 € P:opp(@,0) @ (d=4+AN0=-)V
B=-A6=+)

The formal definition of a TOPS diagram pattern
P = (Ta Hpacp)’ VGB?G € P: Opp(@,e), given
r= {Ol@, Qg, ﬂ@a :3@} is:

T = (ng,mo)—V1—(n1,m1)—Va—...—(ng_1,mg_1)—

Vi — (nk,mk), VJ €3, T < mj

HP = {(Si’(s’ SJ)"SHSJ € {IB®7B6}, =P &
Si=Sj, (5=A(—>Si7éSj}

Cp= {(Si, x S]')IX €{R,L,}, S, 85 € x}

For example a TOPS pattern which describes plaits,

of which 2bop is an instance, is given by Plait =
(V,H,C), where

V =((0,N) - Bs, — (O,N) — ag, — (O,N) — Bg, —
(OaN) - 594 - (O’N) — Qg5 — (07N) - /396 - (OaN))
H= {(:BEvaA, 564)7 (:36911A’:366)v (:36937 A, 594)}
C= {(:36917 R, 13633)’ (ﬁeu R, ﬂee)})

Figures 2 and 4 illustrate this in non-linear and
linear form respectively.
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Figure 2: TOPS diagram for the plait motif

3 Methods

We have designed a measure to compare the similar-
ity between two TOPS diagrams, in order to be able
to perform structure comparison at the topological
level. Our method works by performing a structural
alignment of the SSEs of the diagrams and comput-
ing a score based on an edit distance over aligned
blocks of SSEs plus contributions from the H-bond
and chirality sets of the diagrams. In order to per-
form the alignment we use a least general common
pattern generated by a pattern discovery technique
which we have designed; this in turn makes heavy
use of our constraint-based pattern matching method
for TOPS diagrams.

3.1 Pattern discovery for TOPS diagrams

Pattern discovery for sequences is a well-established
technique Brazma et al. (1998) which could be ap-
plied to TOPS diagrams and patterns as follows. The
first, “pattern driven” (PD) is based on enumerating
candidate patterns in a given solution space and pick-
ing out the ones with high fitness; the second, “di-
agram driven” (DD) comprises algorithms that try
to find patterns by comparing given diagrams and
looking for local similarities between them. In the
equivalent of DD for sequences, an algorithm may
be based on constructing a local multiple alignment
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Figure 4: Linearised TOPS diagram for the plait mo-
tif

of given sequences and then extracting the patterns
from the alignment by combining the segments com-
mon to most of the sequences.

Essentially the difference between pattern dis-
covery for sequences and TOPS diagrams is that tech-
niques for the former assume that the grammar of the
former is regular whilst that of the latter is context—
sensitive due to the fact that H-bond and chirality
arcs may cross (i.e. they describe a “copy language™).
Thus in a naive version of a PD approach for TOPS
diagrams not only would we have to enumerate an
exponentially large number of patterns comprising
not only all the possible combinations of the SSEs
(and their orientations) in a pattern of length k, but
also all the possible H-bond and chirality connec-
tions over them.

Our algorithm discovers patterns of H-bonds (and
chiralities) based on the properties of sheets for TOPS
diagrams; we also derive T-patterns, i.e. the asso-
ciated sequences of SSEs and insert sizes. Briefly,
the algorithm attempts to discover a new sheet by
finding, common to all the target set of diagrams,
a (fresh) pair of strands, sharing an H-bond with a
particular direction. Then it attempts to extend the
sheet by repeatedly inserting a fresh strand which is
H-bonded to one of the existing strands in the (cur-
rent) sheet. The algorithm then finds all further H-
bonds between all the members of the current sheet.
The entire process is repeated until no more sheets
can be discovered; any chirality arcs between the H-
bonds in the pattern are then discovered by a similar
process. The numbers of inserts between each strand
in the pattern are then computed for all the patterns
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in the learning set, and the minimum and maximum
size of the gaps in the corresponding insert positions
in the pattern are thus found, and combined with the
SSE sequence to give the T-pattern. The result is the
least general common TOPS pattern characterising
the target set of protein descriptions.

Naive insertion of a new SSE into an existing se-
quence of SSEs is expensive: consider the case when
the existing sequence is of length 2. The new H-bond
can be inserted at the beginning of the sequence, at
the end of the sequence or between the existing two
SSEs. Moreover, a new H-bond must be discovered
between the new SSE and one of the existing SSEs
in the sequence. We use a ‘seed’ derived from one of
the target set of diagrams in order to give the inser-
tion point: the H-bond pattern is extended in one di-
agram first by selecting one of the remaining bonds
from the diagram H-bond set; if this fails to give a
pattern which matches the other diagram, then an al-
ternative bond is selected.

An alternative approach would be to adapt that of
Koch et al Koch et al. (1996), which constructs an
edge product graph for two graphs and then employs
Bron and Kerbosch’s algorithm Bron and Kerbosch
(1973) which enumerates all the maximal cliques in
the graph. Although Koch et al improve Bron and
Kerbosch’s algorithm by restricting the search pro-
cess to cliques representing connected substructures,
they determine common substructures in more than
two topology graphs by forming the intersections be-
tween all substructures of all cliques resulting from
a pairwise comparison.

The worst-time complexity for the learning algo-
rithm based on repeated matching is approximately
O(k * n™), where k is the number of sequences, and
n the number of secondary structures (helices and
strands) in a sequence. The maximal clique method
has complexity O((n*/cx)!) (with little information
about ¢, except ¢, > 1) for the same n and k. These
are approximations assuming that number of nodes
is approximately the same as the number of edges —
this is more or less true in TOPS. In terms of imple-
mentation, the clique algorithm (for £ = 2) tends to
be slower (up to 10 times) in comparison with the
repeated matching algorithm, although it sometimes
produces better results.

We use a variant of the repeated matching al-
gorithm to discover common patterns in all-a do-
mains, where patterns of chirality arcs are discovered
(stage ??), and stage ?? is omitted.



Figure 5: Making an alignment

Distance measure

Given two TOPS diagrams D1 = (S1,H1,C1), D2 =
(S2, H2,C2) and a least general common pattern
P = (SP, HP,CP), we can make a structural align-
ment of S1 and S2 by matching P with D1 and D2.
If length(SP) = N, then there are N + 1 insert po-
sitions in the pattern, corresponding to N + 1 blocks
of unaligned SSEs in D1 and S2. An example is
illustrated in Figure 5, where aligned blocks in S1
and S2 are indicated by S1, ... S15and §2;... 525
respectively.

The distance measure M between D1 and D2
is given by the normalised sum of the edit distances
(Levenshtein (1965)) of all the blocks plus a contri-
bution from the extra (when compared with the pat-
tern) H-bonds and chiralities in the diagrams.

We have evaluated our method by performing a
pairwise comparison of 1396 domains from the SCOP
PDB40d database Murzin et al. (1995) and computed
the error versus coverage data using the SCOP num-
bers as an indication of structural homology. Two
domains are defined as homologous if at least their
first three SCOP numbers are identical; the domains
are non-homologous if only their first SCOP num-
bers are identical. Matches between domains with
with only the first two SCOP numbers identical are
ignored (not performed) since the SCOP hierarchy
does not differentiate homologous and non-homologous
pairs at this level. Coverage versus error results are
given in Figure 6.

Times per comparison pair are typicaily 30-400ms
on average (DEC Alpha).
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Figure 6: Coverage vs error

System availability: structure compar-
ison server

The comparison system can be used via the Web at
tops.ebi.ac.uk/tops. Target structures can be com-
pared against either a database of TOPS diagrams
corresponding to all the domains currently in the PDB
(currently over 24000 domains) or with a representa-
tive subset (the TOPS Atlas Westhead et al. (1998)),
based on clustering structures in the structural data-
bank Bernstein et al. (1977); Abola et al. (1987) us-
ing the standard single linkage clustering algorithm
at 95% sequence similarity, and containing to date
over 3000 members.

Users upload a target structure description in PDB
format, select a database against which to compare,
and enter their email address in order to receive the
result. The target description is first analysed using
the DSSP program Kabsch and Sander (1983) which
locates SSEs and atomic hydrogen bonds. The TOPS
program Flores et al. (1994); Westhead et al. (1999)
uses this information in a topological analysis which
includes analysis of connection chirality; the result-
ing file is then translated into a TOPS diagram in
logic programming format by a compiler we have
written in clp(FD) Codognet and Diaz (1996). The
comparison is then performed off-line, the result of
each comparison comprising the distance measure,
the name of the domain compared, and its hierarchic
classification according to the CATH system devel-
oped at UCL Orengo et al. (1997). The output is
sorted by distance from the target protein, and re-
turned to the user by email. Users may also request
the output for each comparison to be annotated with
the numbers of the corresponding residues and also



the common discovered pattern.

The system is fast; a comparison of one structure
against the entire PDB (15000 domains) takes from
under 10 minutes to 1 hour or more on a DEC Alpha,
depending on the complexity of the structure submit-
ted.

4 Conclusions

Although our pattern discovery algorithm produces
the richest patterns over a—(3 domains, when both
H-bond and chirality connections can be discovered,
it also discovers patterns of H-bonds for all-3 do-
mains and patterns of chiralities for all-a domains.
However, the null pattern will be discovered when
comparing two all-a domains with no chirality in-
formation, and thus in this case neither an alignment
no a meaningful comparison measure can be com-
puted. The accuracy of the system as measured by
coverage against error falls in between those for a
well-performing atom-coordinate approach (ranging
from 60% coverage at 1% error to 78% coverage at
5% error) and sequence-based approaches (ranging
from 16% coverage at 1% error to 18% coverage at
5% error).

A disadvantage of the topological approach is
that no RMSD output can be made - the best that
can be done is to return the numbers of the matching
residues of the matching SSEs, which is not a one
to one relationship between residues, but rather be-
tween between SSEs which are potentially of differ-
ent lengths. However, an advantage of our pattern—
based declarative approach is that the patterns can be
returned to the user - these contain more information
than is conveyed by the comparison score alone, for
example that both pattern contained a complete bar-
rel.

Finally, our pattern discovery algorithm can be
used to make multiple alignments of TOPS struc-
tures, since it is is linear time in the number of mem-
bers of the target set.
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Abstract

With the explosive growth of scientific literature in the area of molecular biology, the need to automatically process
and extract information from on-line text sources has become increasingly important. In this paper we consider the
application of Information Extraction (IE) technology to the extraction of factual information from biological journal
papers. IE has proved successful at extracting information primarily from newswire texts and primarily in domains
concerned with human activity as demonstrated by the systems that took part in the U.S. DARPA Message Understanding
Conferences (MUCs). We describe how an information extraction system designed to participate in the MUC exercises
has been modified for two bioinformatics applications: EMPathlE, concerned with enzyme and metabolic pathways;
and PASTA, concerned with protein structure. The progress so far provides convincing grounds for believing that IE
techniques will deliver novel and effective ways for the extraction of information from unstructured text sources in the

pursuit of knowledge in the biological domain.

1 Introduction

Information Extraction (IE) may be defined as the activity
of extracting details of predefined classes of entities and
relationships from natural language texts and placing this
information into a structured representation called a tem-
plate (Cowie and Lehnert, 1996; Gaizauskas and Wilks,
1998). The prototypical IE tasks are those defined by the
U.S. DARPA-sponsored Message Understanding Confer-
ences (MUCs), requiring the filling of a complex template
from newswire texts on subjects such as joint venture an-
nouncements, management succession events, or rocket
launchings (Def, 1995, 1998). While the performance of
current technology is not yet at human levels overall, it
is approaching human levels for some component tasks
(e.g. the recognition and classification of named entities
in text) and is at a level at which comparable technolo-
gies, such as information retrieval and machine transla-
tion, have found useful application. IE is particularly rel-
evant where large volumes of text make human analysis
infeasible, where template-oriented information seeking
is appropriate (i.e. where there is a relatively stable in-
formation need and a set of texts in a relatively narrow
domain), where conventional information retrieval tech-
nology is inadequate, and where some error can be toler-
ated.

One area where we believe these criteria are met, and
where IE techniques have as yet been applied only in a
limited way (though see Fukuda et al. (1998); Rindflesh
et al. (2000); Thomas et al. (2000)), is the construction
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of databases of scientific information from journal art-
icles, for use by researchers in molecular biology. The
explosive growth of textual material in this area means
that no one can keep up with what is being published.
Conventional retrieval technology returns both too little,
because of the complex, non-standardised terminology in
the area, and too much, because what is sought is not
whole texts in which key terms appear, but facts buried
in the texts. Further, useful templates can be defined for
some scientific tasks. For example, scientists working
on drug discovery have an ongoing interest in reactions
catalysed by enzymes in metabolic pathways. These re-
actions may be viewed as a class of events, like corporate
management succession events, in which various classes
of entities (enzymes, compounds) with attributes (names,
concentrations) are related by participating in the event in
specific roles (substrate, catalyst, product). Finally, some
error can be tolerated in these applications, because sci-
entists can verify the information against the source texts
— the technology serves to assist, not to replace, investig-
ation.

Thus, we believe automatically extracting information
from scientific journal papers is an important and feas-
ible application of IE techniques. It is also interesting
from the perspective of IE research because it extends IE
to domains and to text genres where it has never been
applied before. To date most IE applications have been
to domains of human activity, predominately economic
activity, and have involved newswire texts which have a
characteristic lexis, structure and length. Applying IE to



scientific journal papers in the area of molecular biology
means a radical shift of subject domain away from the
world of people, companies, products and places that have
largely figured in previous applications. It also means
dealing with a text genre in which there is a vast and
complex technical vocabulary, where the texts are struc-
tured into subsections dealing with method, results, and
discussion, and where the texts are much longer. These
differences all pose tough challenges for IE techniques as
developed so far: can they be applied successfully in this
area?

In this paper we describe the use of the technology de-
veloped through MUC evaluations in two bioinformatics
applications. The next section describes the general func-
tionality of an IE system, and section 3 then describes
the two specific applications on which we are working:
extraction of information about enzymes and metabolic
pathways and extraction of information about protein str-
ucture, in both cases from scientific abstracts and journal
papers. Section 4 describes the principle processing stages
and techniques of our system, and section 5 presents eval-
uations of the system’s performance. While much fur-
ther refinement of the system for both applications is pos-
sible, indications are that IE can indeed be successfully
applied to the task of extracting information from sci-
entific journal papers.

2 Information Extraction
Technology

The most recent MUC evaluation (MUC-7, (Def, 1998))
specified five separate component tasks, which illustrate
the main functional capabilities of current IE systems:

1. Named Entity recognition requires the recognition
and classification of named entities such as organ-
isations, persons, locations, dates and monetary am-
ounts.

2. Coreference resolution requires the identification of
expressions in the text that refer to the same ob-
ject, set or activity. These include variant forms of
name expression (Ford Motor Company ... Ford),
definite noun phrases and their antecedents (Ford
...the American car manufacturer), and pronouns
and their antecedents (President Clinton. . . . he). Co-
reference relations are only marked between certain
syntactic classes of expressions (noun phrases and
pronouns) and a relatively constrained class of re-
lationships to mark is specified, with clarifications
provided with respect to bound anaphors, apposi-
tion, predicate nominals, types and tokens, func-
tions and function values, and metonymy.

3. Template Element filling requires the filling of small
scale templates (slot-filler structures) for specified
classes of entity in the texts, such as organisations,
persons, certain artifacts, and locations, with slots
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such as name (plus name variants), description as
supplied in the text, and subtype.

4. Template Relation filling requires filling a two slot
template representing a binary relation with point-
ers to template elements standing in the relation.
For example, a template relation of employee_of
containing slots for a person and organisation is
filled whenever a text makes clear that a particu-
lar person is employed by a particular organisation.
Other relations are product_of and location.
of.

5. Scenario Template filling requires the detection of
relations between template elements as participants
in a particular type of event, or scenario (rocket
launches for MUC-7), and the construction of an
object-oriented structure recording the entities and
various details of the relation.

Systems are evaluated on each of these tasks as fol-
lows. Each task is precisely specified by means of a task
definition document. Human annotators are then given
these definitions and use them to produce by hand the
‘correct’ results for each of the tasks — filled templates
or texts tagged with name classes or coreference rela-
tions (these results are called answer keys). The parti-
cipating systems are then run and their results, called sys-
tem responses, are automatically scored against the an-
swer keys. Chief metrics are precision — percentage of
the system’s output which is correct (i.e. occurs in the an-
swer key) — and recall — percentage of the correct answer
which occurs in the system’s output.

State-of-the-art (MUC-7) results for these five tasks
are as follows (in the form recall/precision): named entity
— 92/95; coreference — 56/69; template element — 86/87;
template relation — 67/86; scenario template 42/65.

3 Two Bioinformatics Applications of
Information Extraction

We are currently investigating the use of IE for two sep-
arate bioinformatics research projects. The Enzyme and
Metabolic Pathways Information Extraction (EMPathIE)
project aims to extract details of enzyme reactions from
articles in the journals Biochimica et Biophysica Acta and
FEMS Microbiology Letters. The utility for biological re-
searchers of a database of enzyme reactions lies in the
ability to search for potential sequences of reactions, where
the products of one reaction match the requirements of
another. Such sequences form metabolic pathways, the
identification of which can suggest potential sites for the
application of drugs to affect a particular end result. Typ-
ically, journal articles in this domain describe details of a
single enzyme reaction, often with little indication of re-
lated reactions and which pathways the reaction may be
part of. Only by combining details from several articles
can potential pathways be identified.



The Protein Active Site Template Acquisition (PASTA)
project aims to extract information concerning the roles
of amino acids in protein molecules, and to create a data-
base of protein active sites from both scientific journal
abstracts and full articles. The motivation for the PASTA
project stems from the need to extract and rationalise in-
formation in the protein structure literature. New protein
structures are being reported at very high rates and the
number of co-ordinate sets (currently about 12000) in the
Protein Data Bank (PDB) (Bernstein et al., 1977) can be
expected to increase ten-fold in the next five years. The
full evaluation of the results of protein structure comparis-
ons often requires the investigation of extensive literature
references, to determine, for instance, whether an amino
acid has been reported as present in a particular region
of a protein, whether it is highly conserved, implicated in
catalysis, and so on. When working with several differ-
ent structures, it is frequently necessary to go through a
large number of scientific articles in order to discover any
functional or structural equivalences between residues or
groups of residues. Computational methods that can ex-
tract information directly from these articles would be
very useful to biologists in comparison classification work
and to those engaged in modelling studies.

The following section describes the EMPathIE and
PASTA tasks, including the intended extraction results
from documents containing text such as that shown in Fig-
ure 1.

Results: We have determined the crystal structure of a
triacylglycerol lipase from Pseudomonas cepacia (Pet) in
the absence of a bound inhibitor using X-ray crystallo-
graphy. The structure shows the lipase to contain an
alpha/beta-hydrolase fold and a catalytic triad compris-
ing of residues Ser87, His286 and Asp264. The enzyme
shares several structural features with homologous lipases
Jrom Pseudomonas glumae (PgL) and Chromobacterium
viscosum (CvL), including a calcium-binding site. The
present structure of Pet reveals a highly open conformation
with a solvent-accessible active site, This is in contrast to
the structures of PgL and Pet in which the active site is bur-
ied under a closed or partially opened ’lid’, respectively.

Figure 1: Sample Text Fragment from a Scientific Paper
in Molecular Biology

3.1 EMPathlE

One of the inspirations for the Enzyme and Metabolic
Pathways application was the existence of a manually con-
structed database for the same application. The EMP data-
base (Selkov et al., 1996) contains over 20,000 records

of enzyme reactions, collected from journal articles pub-

lished since 1964. That such a database has been con-
structed and is widely used demonstrates the utility of the
application. EMPathie aims to extract only a key subset
of the fields found in the EMP database records.
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The main fields required in a record of an enzyme
reaction are: the enzyme name, with an enzyme clas-
sification (EC) number, if available, the organism from
which the enzyme was extracted, any known pathway in
which the reaction occurs, compounds involved in the re-
action, with their roles classified as either substrate (in-
put), product (output), activator, inhibitor, cofactor or buf-
fer, and any compounds known not to be involved in the
reaction, with their roles classified as either non-substrate
or non-product.

The template definitions include three Template Ele-
ments: enzyme, organism and compound, a single Tem-
plate Relation: source, relating enzyme and organism ele-
ments, and a Scenario Template for the specific metabolic
pathway task. The Scenario Template describes a path-
way involving one or more interactions, each of which
is a reaction between an enzyme and one or more parti-
cipants, possibly under certain constraints. A manually
produced sample Scenario Template is shown here, taken
from an article on ‘isocitrate lyase activity’ in FEMS Mi-
crobiology Letters.

<ENZYME-1> :=
NAME: isocitrate lyase
EC_CODE: 4.1.3.1

<ORGANISM-1> :=
NAME: Haloferax volcanii
STRAIN: ATCC 29605
GENUS: halophilic Archaea

<COMPOUND-1> :=
NAME: phenylhydrazone

<COMPOUND-2> :=
NAME: KC1

<SOURCE-1> :=
ENZYME: <ENZYME-1>
ORGANISM: <ORGANISM-1>

<PATHWAY-1> :=
NAME: glyoxylate cycle
INTERACTION: <INTERACTION-1>

<INTERACTION-1> :=
ENZYME: <ENZYME-1>
PARTICIPANTS: <PARTICIPANT-1>
<PARTICIPANT-2>

<PARTICIPANT-1> :=
COMPOUND: <COMPOUND-1>
TYPE: Product
TEMPERATURE: 35C

<PARTICIPANT-2> :=
COMPOUND: <COMPQUND-2>
TYPE: Activator
CONCENTRATION: 1.75 M

This template describes a single interaction found to



be part of the metabolic pathway known as the glyoxylate
cycle, where the interaction is between the enzyme isocit-
rate lyase and two other participants. The first participant
is the compound glyoxylate phenylhydrazone,
which has the role of a product of the interaction at a tem-
perature of 35C. The second is the compound KCI, which
has the role of an activator at a concentration of 1.75M.

The template design follows closely the MUC-style
IE template, and is richer than the EMP database record
format in terms of making relationships between entit-
ies explicit. However, most of the slot values can still
be mapped back to the EMP format to allow an auto-
matic evaluation of system output against the manually
constructed EMP resource.

3.2 PASTA

The entities to be extracted for the PASTA task include
proteins, amino acid residues, species, types of structural
characteristics (secondary structure, quaternary structure),
active sites, other (probably less important) regions, chains
and interactions (hydrogen bonds, disulphide bonds etc.)
In collaboration with molecular biologists we have de-
signed a template to capture protein structure informa-
tion, a fragment of which, filled with information extrac-
ted from the text in Figure 1, is shown below:

<RESIDUE-str97-521>:=

RESIDUE_TYPE: SERINE

RESIDUE_NO: "87"

IN_PROTEIN: <PROTEIN-str97-521>

SITE/FUNCTION: "active site"
"catalytic"
"interfacial activation"
"calcium-binding site"
alpha-helix
rlia:
<ARTICLE-str97-521>

SECOND_STRUCT:
REGION:
ARTICLE:

<PROTEIN-str97-521>:=

NAME: "Triacylglycerol lipase"
SCOP_CLASS: "Lipase"

PDB_CODE: 1LGY

IN_SPECIES: <SPECIES-str97-521>

<SPECIES-str97-521>:=
NAME : "Pseudomonas cepacia®
NAME_TYPE: SCIENTIFIC

The residue information contains slots that describe
the structural characteristics of the particular protein (e.g.
SECONDARY structure, REGION) and the importance
of the residue in the structure (e.g. SITE/FUNCTION).
Other slots serve as pointers, linking different template
objects together to represent relational information between
entities (e.g. the IN_.PROTEIN and IN_SPECIES slots).
Further Template Relations can also be defined to link
proteins or residues with structural equivalence.
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4 The EMPathlIE and PASTA
Systems

The IE systems developed to carry out the EMPathIE and
PASTA tasks are both derived from the Large Scale In-
formation Extraction (LaSIE) system, a general purpose
IE system, under development at Sheffield since 1994 (Ga-
izauskas et al., 1995; Humphreys et al., 1998). One of
several dozen systems designed to take part in the MUC
evaluations over the years, the LaSIE system more or less
fits the description of a generic IE system (Hobbs, 1993).
LaSIE is neither as ‘deep’ as some earlier IE systems
that attempted full syntactic, semantic and discourse pro-
cessing (Hobbs, 1991) nor as ‘shallow’ as some recent
systems that use finite state pattern matching techniques
to map directly from source texts to target templates (Ap-
pelt et al., 1995). The processing modules which make
up the EMPathIE system are shown in figure 2, within
the GATE development environment (Cunningham et al.,
1997). The PASTA system is similar and reuses several
modules, within the same environment. The architecture
of the original LaSIE system has been substantially re-
arranged for its use in the biochemical domain, mainly
to allow the reuse of general English processing mod-
ules, such as the part-of-speech tagger and the phrasal
parser, without special retraining or adaptation to allow
for the domain-specific terminology. This has resulted
in an independent terminology identification subsystem,
postponing general syntactic analysis until an attempt to
identify terms has been made. In general, the original
LaSIE system modules, developed for newswire applic-
ations, have been reused, but with various modifications
resulting from specific features of the texts, as described
in the following. Both systems have a pipeline architec-
ture consisting of four principal stages, described in the
following sections: text preprocessing (SGML/structure
analysis, tokenisation), lexical and terminological pro-
cessing (terminology lexicons, morphological analysis, ter-
minology grammars), parsing and semantic interpreta-
tion (sentence boundary detection, part-of-speech tagging,
phrasal grammars, semantic interpretation), and discourse
interpretation (coreference resolution, domain modelling).

4.1 Text Preprocessing

Scientific articles typically have a rigid structure, includ-
ing abstract, introduction, method and materials, resuits,
and discussion sections, and for particular applications
certain sections can be targeted for detailed analysis while
others can be skipped completely. Where articles are avail-
able in SGML with a DTD, an initial module is used to
identify particular markup, specified in a configuration
file, for use by subsequent modules. Where articles are
in plain text, an initial ‘sectioniser’ module is used to
identify and classify significant sections using sets of reg-
ular expressions. Both the SGML and sectioniser mod-
ules may specify that certain text regions are to be ex-
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Figure 2: EMPathIE system modules within GATE

cluded from any subsequent processing, avoiding detailed
processing of apparently irrelevant text, especially within
the discourse interpretation stage where coreference res-
olution is a relatively expensive operation.

The tokenisation of the input needs to identify tokens
within compound names, such as abbreviations like NaCl,
where Na and Cl need to be matched separately in the
lexical lookup stage to avoid listing all possible sequences
explicitly. The tokenisation module must therefore make
as few assumptions as possible about the input, proposing
minimal tokens which may be recombined in subsequent
stages.

4.2 Lexical and Terminological Processing

The main information sources used for terminology iden-
tification in the biochemical domain are: case-insensitive
terminology lexicons, listing component terms of vari-
ous categories; morphological cues, mainly standard bio-
chemical suffixes; and hand-constructed grammar rules
for each terminology class. For example, the enzyme
name mannitol-1-phosphate 5-dehydrogenase would be
recognised firstly by the classification of mannitol as a
potential compound modifier, and phosphate as a com-
pound, both by being matched in the terminclogy lex-
icon. Morphological analysis would then suggest dehyd-
rogenase as a potential enzyme head, due to its suffix -ase,
and then grammar rules would apply to combine the en-
zyme head with a known compound and modifier which
can play the role of enzyme modifier.

The biochemical terminology lexicons, acquired from
various publicly available resources, have been structured
to distinguish various term components, rather than com-
plete terms, which are then assembled by grammar rules.
Resources such as the SWISS-PROT list of official en-
zyme names were manually split into separate lists of com-
ponent terms, based purely on their apparent syntactic
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structure rather than any expert knowledge of whatever
semantic structure the names reflect. Corresponding gram-
mar rules were then added to recombine the components.
Of course, lists of complete multi-word terms can also
be used directly in the lexicons, but the rule-based ap-
proach has the advantage of being able to recognise novel
combinations, not explicitly present in the term lists, and
avoids reliance on the accuracy and completeness of avail-
able terminology resources. Component terms may also
play multiple roles in different terminology classes, for
instance amino acid names may be components of both
protein and enzyme names, as well as terms in their own
right, but the rule-based approach to terminology recog-
nition means they only need to be listed in a single ter-
minology category. The total number of terminology lex-
icon entries for the biochemical terms is thus comparable
to other domains, with approximately 25,000 component
terms at present in 52 categories.

4.3 Parsing and Semantic Interpretation

The syntactic processing modules treat any terms recog-
nised in the previous stage as non-decomposable units,
with a syntactic role of proper noun. The sentence split-
ting module cannot therefore propose sentence boundar-
ies within a preclassified term. Similarly, the part-of-
speech tagger only attempts to assign tags to tokens which
are not part of proposed terms, and the phrasal parser
treats terms as preparsed noun phrases. Of course, this
approach does not necessarily assume the terminology
recognition subsystem to be fully complete and correct,
and subsequent syntactic or semantic context can still be
used to reclassify or remove proposed terms. In particu-
lar, tokens which are constituents of terms proposed but
not classified by the NE subsystem, i.e. potential but un-
known NEs, are passed to the tagger and phrasal parser
as normal, but the potential term is passed to the parser in



addition, as a proper name, to allow the phrasal grammar
to determine the best analysis. If the unclassified NE is
retained after phrasal parsing, it may be classified within
the discourse interpreter, using its semantic context or as a
result of being coreferred with an entity of a known class.

The phrasal grammar includes compositional semantic
rules, which are used to construct a semantic representa-
tion of the ‘best’, possibly partial, parse of each sentence.
This predicate logic-like representation is passed on as in-
put to the discourse interpretation stage.

4.4 Discourse Interpretation

The discourse interpreter adds the semantic representa-
tion of each sentence to a predefined domain model, made
up of an ontology, or concept hierarchy, plus inheritable
properties and inference rules associated with concepts.
The domain model is gradually populated with instances
of concepts from the text to become a discourse model. A
powerful coreference mechanism attempts to merge each
newly introduced instance with an existing one, subject
to various syntactic and semantic constraints. Inference
rules of particular instance types may then fire to hypo-
thesise the existence of instances required to fill a tem-
plate (e.g. an organism with a source relation to an en-
zyme), and the coreference mechanism will then attempt
to resolve the hypothesised instances with actual instances
from the text.

The template writer module reads off the required in-
formation from the final discourse model and formats it
as in the template specification.

Initial domain models for the EMPathIE and PASTA
tasks have been manually constructed directly from the
template definition. This involves the addition of concept
nodes to the system’s semantic network for each of the
entities required in the template, with subhierarchies for
possible subtypes, as required. Property types are added
for each of the template slots (e.g. concentration,
temperature), and consequence rules added to hypo-
thesise instances for each slot of a template entity, from
an appropriate textual trigger. The Discourse Interpreter’s
general coreference mechanism is then used to attempt to
resolve hypothesised instances with instances mentioned
in the text. Subsequent refinement of these models will
involve extending the concept subhierarchies and the ad-
dition of coreference constraints on the hypothesised in-
stances, based on available training data.

5 Results and Evaluation

5.1 Evaluation

Currently, a complete prototype EMPathIE system exists
which can produce filled templates as specified above.
This prototype has been developed by concentrating on
the full texts of six journal papers (the development cor-
pus) and evaluated against a corpus of a further seven
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journal papers (the evaluation corpus). Filled templates
for all thirteen of these journal papers were produced by
trained biochemists highlighting key entities on paper cop-
ies of the texts and adding marginal notes where necessary
to specify compound roles in interactions and any addi-
tional slot values such as concentration, temperature, etc.
The annotations were translated to template format by the
system developer (with the system frozen before evalu-
ation texts were seen), but some degree of subjective in-
terpretation was required in this process. The annotation
would therefore probably be difficult to reproduce without
a detailed task specification document, which would be
aided by inter-annotator agreement studies to highlight
areas of ambiguity in the task definition. However, the
current templates at least have the advantage of being pro-
duced with some degree of consistency by the developer
alone, and so do allow a useful measure of the system’s
accuracy.

Overall template filling results are shown in Table 1.
The columns show: the number of items the system cor-
rectly identified (CORrect), the number of items where
the system response and the answer key differed (INCor-
rect), the number of items the system missed (MISsing),
the number the system spuriously proposed (SPUrious)
and the standard metrics of RECall and PREcision, dis-
cussed in section 2 above. Here “items” refers to filled
slot occurrences in the templates. Scoring proceeds by
first aligning template objects in the system response with
objects in the answer key and then counting the number of
matching slot fills in the aligned objects (see Def (1998)
for details).

Test Set || COR | INC | MIS | SPU || REC | PRE
Dev 150 | 121 | 330 61 25 45
Eval 213 | 193 | 518 93 23 43

Table 1: Initial Template results for EMPathIE

In addition to evaluating the template filling capabil-
ities of the prototype we have evaluated its performance
at correctly identifying and classifying term classes in the
texts (this corresponds to the MUC named entity task).
To do this six of the seven evaluation corpus articles were
manually annotated for eleven terminology or named en-
tity classes. The results are shown in Table 2 !.

The PASTA system has been implemented as far as
the terminology recognition stage. Preliminary template
design, as indicated above, has been carried out, and we
are starting to build a domain model. A corpus of 52
abstracts of journal articles has been manually annotated
with terminology classes, by the system developer with

'In calculating both EMPathie and PASTA terminology results we
have used a weak criterion of correctness whereby a response is cor-
rect if its type matches the type of the answer key and its text extent
matches a substring of the key’s extent. Insisting on the stronger match-
ing criterion of strict string identity lowers recall and precision scores
by approximately 4 % overail



Name_Type || COR | INC | MIS | SPU || REC | PRE
compound 100 6 | 156 3 38 92
element 22 0 17 0 56 100
enzyme 136 0 2 13 99 91
gene 0 0 2 0 0 0
genus 15 0 0 9 100 63
location 11 0 3 10 79 52
measure 157 0 49 11 76 93
organism 59 0 26 23 69 72
organizatio 8 2 7 4 47 57
pathway 0 0 10 1 0 0
person 7 1 13 1 33 78
TOTALS 515 9 [ 285 75 64 86

Table 2: Initial Named Entity results for EMPathIE

the assistance of a molecular biologist, to allow an auto-
matic evaluation of the PASTA terminology system using
the MUC scoring software. Table 3 shows some prelim-
inary results for the main terminology classes.

Name_Type || COR | INC | MIS | SPU || REC | PRE
protein 358 0 52 12 87 97
species 111 0 22 3 83 97
residue 175 0 4 13 98 93
site 53 0 34 10 61 84
region 19 0 24 0 4 100
2 struct 78 0 1 1 99 99
sup_struct 84 0 0 5 100 94
4_struct i15 0 5 3 96 97
chain 27 0 12 0 69 100
base 38 0 0 1 100 97
atom 42 0 2 10 95 81
non_protein 107 0 0 21 100 84
interaction 10 0 3 1 77 91
TOTALS 1217 0 [ 159 80 88 94

Table 3: Initial Named Entity results for PASTA

5.2 Discussion

It should be stressed that these evaluation results are very
preliminary, and we would expect them to improve sub-
stantially with further development.

The overall EMPathIE template filling precision scores
for both the development and evaluation sets are very close
to the score of the LaSIE system in the MUC-7 evalu-
ation (42%). Recall is noticeably lower however (47%
in MUC-7), but this is certainly affected by the limited
amount of training data available, giving a much smal-
ler set of key words and phrases to use as cues for tem-
plate fills. Also, it is clear that the EMPathlE task re-
quires much more specialist domain-specific knowledge
than the MUC tasks, which typically require only general
knowledge of companies and business procedures. The
EMPathlE task, as the process of manually filling the tem-
plates has demonstrated, can only be performed with the
use of detailed domain knowledge, very little of which has
been incorporated into the system. For example, a single
mention of ‘cyanide’ in one of the evaluation texts causes
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its entry as an ‘inhibitor’ in the manually filled template,
though no explicit information in the text would allow it
to be classified as such. Only domain-specific knowledge
that cyanide is usually an inhibitor allows it to be classi-
fied in this case. Such cases are missed completely by the
system because the specific knowledge required has not
been entered, mainly due to the fact that the developer is
not an expert in the domain.

Further consultation with experts would allow more
domain-specific information to be entered, improving re-
call in particular. With this, and a more extensive training
set, it should be entirely possible for system performance
on the EMPathIE task to equal the best MUC-7 scores
(48% recall, 68% precision, from different systems).

The terminology recognition results are more encour-
aging, and compare favourably with MUC named entity
results, particularly the PASTA results. It should be noted
that both the EMPathIE and PASTA terminology recogni-
tion tasks require the recognition of a considerably broader
class of terms than the MUC named entity task and that
considerably smaller sets of training data were available.
The discrepancy between the EMPathIE and PASTA res-
ults on this task can probably be explained by the fact that
there was in fact no training data available specifically for
the EMPathlIE task before the evaluation was carried out,
only the informal feedback of biologists looking at sys-
tem output. Furthermore, the annotation of texts for the
EMPathlE terminology task was carried out by a larger
group of people than carried out the PASTA annotation
task and without a formal annotation specification. Thus,
this annotated data is almost certainly less consistently
annotated and the results should therefore be interpreted
with some caution.

6 Conclusion

Between these two projects much of the low-level work
of moving IE systems into the new domain of molecu-
lar biology and the new text genre of journal papers has
been carried out. We have generalised our software to
cope with longer, multi-sectioned articles with embedded
SGML; we have generalised tokenisation routines to cope
with scientific nomenclature and terminology recognition
procedures to deal with a broad range of molecular biolo-
gical terminology. All of this work is reusable by any IE
application in the area of molecular biology.

In addition we have made good progress in designing
template elements, template relations, and scenario tem-
plates whose utility is attested by working molecular bio-
logists and in adapting our IE software to fill these tem-
plates. Preliminary evaluations demonstrate the difficulty
of the task, but results are encouraging, and the steps to
take to improve performance straightforward. Thus, we
are optimistic that IE techniques will deliver novel and
effective ways for scientists to make use of the core liter-
ature which defines their disciplines.
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Abstract

Methods for the prediction of protein function from structure are of growing importance in the age of structural genomics.
Here we focus on the problem of identifying sites of potential serine protease inhibitor interactions on the surface of proteins of known
structure. Given that there is no sequence conservation within canonical loops from different inhibitor families we first compare repre-
sentative loops to all fragments of equal length among proteins of known structure by calculating main-chain RMS deviation. Frag-
ments with RMS deviation below a certain threshold (hits) are removed if residues have solvent accessibilities appreciably lower than
those observed in the search structure. These remaining hits are further filtered to remove those occurring largely within secondary
structure elements. Likely functional significance is restricted further by considering only extracellular protein domains. By comparing
different canonical loop structures to the protein structure database we show that the method was able to detect previously known in-
hibitors. In addition, we discuss potentially new canonical loop structures found in secreted hydrolases, toxins, viral proteins, cytokines
and other proteins. We discuss the possible functional significance of several of the examples found, and comment on implications for

the prediction of function from protein 3D structure.

1 Introduction

Recent years have seen a dramatic increase in the num-
ber of known protein three-dimensional structures. The
speed with which protein structures are now determined
means that structures can often be solved prior to any
knowledge of function (e.g. Yang et al, 1998). These
occurrences make methods that predict details of protein
function from structure of great importance, particularly
in light of the projects now underway to solve structures
with the aim of determining function (e.g. see Orengo
et al., 1999; references therein).

There are several means to predict functional details
from structure. Proteins that adopt a similar fold, even
in the absence of any sequence similarity, frequently
perform similar functions (Murzin et al., 1995; Orengo
et al., 1997), and even when functions are different,
certain folds show a preference for binding site location
(or supersites; Russell et. al., 1998). If overall structure

26

similarity fails to provide functional information, or if a
protein adopts a new fold, possible functional inferences
may come from other methods. For example, functional
details can be predicted by the analysis of protein sur-
faces for possible binding clefts (Orengo et al., 1999),
from the detection of recurring side-chain patterns (Rus-
sell, 1998; Artymiuk et al 1994), or the recurrence of
short motifs (even in different folds) that can indicate
functional details such as the phosphate binding P-loop
(Swindells, 1993) or DNA binding helix-turn-helix (Do-
herty et al.,1996). Typically, these motifs or patterns
contain key residue identities that are critical to a par-
ticular function (e.g. Glycine residues in the P-loop, or
the Asp/His/Ser catalytic triad).

A different phenomenon is observed within the canoni-
cal serine protease inhibitor loops. For these loops, a
common function (namely serine protease inhibition) is
maintained despite no similarity in amino acid se-
quence, and despite the fact that the loops occur in



clearly non-homologous protein structures (i.e. those
adopting different folds). The inhibitors have represen-
tatives in the all-o, all-B, o + B, and Small protein
classes, representing nine fold families and 12 superfa-
milies in total (according to the SCOP classification
Murzin et al. 1995). Rather than being conferred by a
specific combination of side-chains, the inhibitory func-
tion of the loop appears to be due to a highly con-
strained main-chain conformation (Laskowski & Kato,
1980). Bode & Huber (1992) define the characteristic
substrate-like canonical loop as involving six binding
residues P3-P2-P1-P1’-P2’-P3° (nomenclature from
Schechter & Berger, 1967) where the P1-P1' peptide
bond represents the site of proteolytic cleavage. When
analysed in different crystallisation states, complexation
states and by NMR, the motif consists of a main-chain
conformation of polyproline II at P2 and P1’, an ap-
proximate 3 -helix at P1 and parallel B-strand at P2’ and
P3’. This common motif is presumed to mimic the pro-
ductive bound substrate conformation, being an intrinsic
property of the inhibitors (Bode & Huber, 1992).

Analysis of protein-protein interaction energies in a se-
ries of non-homologous serine protease-canonical in-
hibitor and antibody-antigen complexes showed that the
two most commonly studied models for protein-protein
molecular recognition interact by a fundamentally dif-
ferent mechanism in terms of main-chain and side-chain
contributions (Jackson, 1999). The energetics of prote-
ase-inhibitor interactions are dominated by the main-
chain to main-chain interaction, whilst the antibody-
antigen recognition is largely determined by side-chain
interactions. This may reflect the differing roles played
by the two classes of protein. The serine protease in-
hibitors bind tightly to their target enzymes and this may
be best achieved by a constrained main-chain confor-
mation which recognises the main-chain conformation
of its target. The inhibitor is highly committed to the
enzyme in an evolutionary sense, since a change in the
main-chain conformation of the target would compro-
mise binding. However the arrangement is highly en-
tropically favourable since the primary determinate for
binding (the main-chain) is generally more highly con-
strained than the side-chain degrees of freedom.

Here we assess the possibility of using this local struc-
turally similar main-chain motif (where side-chain in-
formation is absent) to search a protein 3D database.
This is used in conjunction with a residue accessibility
filter as a structural fingerprint for inferring protein
function. The aim is to assess to what extent it is possi-
ble to predict protease binding sites using structure
similarity. This increasing realisation that protein recog-
nition often involves structurally similar motifs means
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that structural similarity will be of increasing use in pre-
dicting biomolecular interactions

2 Methods

2.1 Database search for the canonical loop
conformation

The co-ordinates of a probe structure (here the canonical
loop conformation) are compared to each segment of the
same length with the first occurring representative
structure from the Structural Classification of Proteins
(SCOP) database (Murzin et al, 1995). The database
contained one representative from each species level in
SCOP (version 1.38), yielding a total of 3495 protein
domains. For each residue in the structure, a secondary
structure assignments from the DSSP database (Kabsch
& Sander, 1983), and a relative solvent accessibility
calculated using the program NACCESS (Hubbard &
Thornton, 1993) were obtained. The accessibilities were
calculated by considering each domain in isolation (i.e.
outside of any multimeric, or muitidomain context). The
relative accessibility of residue X is given by dividing
its accessibility by the accessibility of that residue type
in an extended Ala-X-Ala tripeptide. For each segment
in each representative structure, the RMSD with main-
chain atoms of the probe was calculated and values
above a cutoff were discarded. For remaining hits the
relative solvent accessibilities are compared.  For all
residues in the database segment, it is required that:

(RA(d) - RA(p))
— > -0.33
RA(p)

where RA(d) and RA(p) denote the relative accessibil-
ities for the database and probe residues respectively.
This essentially requires that each database residue have
a relative accessibility that is not less than a third
smaller than that observed at the equivalent position in
the probe.

2.2 Calculation of P values

P values are reported for each RMSD. For the four and
five residue loop from bovine pancreatic trypsin inhibi-
tor (1bpi) we extracted all matches in the PDB having
an RMSD smaller than 10.0 angstroms and satisfying
the accessibility filter. These values were used to derive
the empirical distribution function P(x) (this is the pro-
portion of values where RMSD < x). We found that



log(P) was linearly related to 1/x for 0.85 < P(x) < 0.98,
implying exponential decay in the upper tail of the dis-
tribution. A linear model was used to derive the ap-
proximate P value for any observed RMSD as described
in Russell (1998).

2.3 Docking test

Docking was performed by superimposing the corre-
sponding main-chain atoms of the match onto those of
BPTI in the B-trypsin-BPTI complex (PDB code 2ptc).
BPTI was removed from the newly generated f-trypsin-
protein complex and only Co. atoms were further con-
sidered. A maximum of two bad (distance < 3.5 A) in-
ter-protein Co—>Ca contacts (including those of the
putative loop) are allowed, otherwise the complex fails
the docking test. Such a small number of bad contacts
could conceivably be relieved by slight adjustment of
molecular positions or local main-chain conformational
change without compromising loop binding.

3 Results

The representative canonical serine protease inhibitors
are given in Table 1 for each of the 12 superfamilies,
representing nine folds: All-alpha (1), All-beta (2), al-
pha + beta (2), small protein (4) according to the SCOP
classification (Murzin et al. 1995). A representative ca-
nonical loop (residues P2-P3’ and P2-P2’) was searched

against the database for each particular fold. For clarity
the results of searching a single canonical loop repre-
sentative (SCOP Class: Small proteins, Fold: BPTI-like,
Superfamily: Kunitz-type inhibitors) from uncomplexed
BPTI (1bpi) against the representative set of protein
domains is given in Figure 1 for the five residue (P2-
P3’) segment (Residues: Cys 14 - Ile 18) both before
(A) and after (B) applying the residue accessibility as a
filter. For hits with an RMSD smaller than 1.0 A, the
accessibility filter has a dramatic effect on the sensitiv-
ity of the search. Applying the filter reduces the number
of false hits (“false”: not known to be a protease inhibi-
tor) from 2162 -> 91 while only slightly reducing the
hits from known serine protease inhibitors (16 -> 15).
Although the five residue (P2-P3’) canonical loop frag-
ment of BPTI is highly discriminating (when RMSD and
accessibility are combined) the 15 hits represent only
four superfamilies and four folds. More folds and super-
families known to contain the cannonical loop are found
if shorter loop fragments are searched against the data-
base, but this also increases the number of false hits.
For the four residue (P2-P2’) canonical loop fragment of
BPTI there are 686 false and 24 true hits that have
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RMSD <1.0 A and also pass the accessibility filter. The
coverage for this search includes 9 of the 12 superfami-
lies and 6 of the 9 folds. The best hit for each superfa-
mily is given in Table 1. The three superfamilies/folds
with RMSD > 1.0 A are Ecotin which gives a weak hit
(RMSD 1.2 A) and the bifunctional inhibitor and ascaris
which do not give hits <1.5 A. The three folds have only
one representative protein in the database, which are
either low resolution Xray structures (bifunctional in-
hibitor (1jfo) and ecotin (lecz), Resolution: 3.3 A and
27 A respectively) or NMR (ascaris (lata)). Analysis
of NMR or low resolution crystal structures is problem-
atic when using RMSD fit. Using more stringent RMSD
criteria (hits must have < 0.8 A RMSD) the number of
false hits falls to 145 (and true hits to 22) whilst all 9
superfamilies are still represented. Hence, the search can
be made sensitive enough to include most of the known
serine protease inhibitor canonical loops whilst inlcud-
ing relatively few false hits. .
Figure 1b and Table 1 show that the methodology em-
ployed here can be used to identify the recognized ca-
nonical serine protease inhibitors. However, the method
has also found numerous hits in proteins not known to
inhibit proteases, and these may represent new sites of
protease interaction. Some confirmation of this idea
comes from considering the list of false hits that pass
both filters. Two examples that stand out as having a
clear inhibitory function but not included in the initial
search are (1) a synthetic peptide (1smf chain I) based
on a fragment of the bowman-birk inhibitor (Figure 2a)
coming under the peptides Class (Thr10-Ile13 to 1bpi
P2-P2’, RMSD: 0.41 A) and (2) HL collagenase from
common cattle grub (2hlc chain A) which has two hits
one of which (Figure 2b) is a loop (Asp 37B-Arg 39 to
1bpi P2-P2’, RMSD: 0.94 A) binding in the active site
of the symmetry related dimer, in a self inhibitory
mechanism.

The recognized canonical serine protease inhibitors con-
form to certain other criteria in addition to possessing a
loop of defined conformation and solvent accessibility.
Accordingly, the following criteria were applied to
screen hits that were least likely to perform an inhibitory
function. In order to be considered further hits had to:
(1) be in extracellular proteins; (2) not near an N- or C-
termini (unless constrained by a disulphide bridge) or in
a poorly determined region of a structure ( e.g. disor-
dered region in NMR structure); (3) not be in a peptide
or theoretical model; (4) not be in a B-strand or f-
hairpin structure and (5) be appreciably protruding i.e.
in a convex region of the protein. This last constraint
was imposed after visual inspection and therefore does
contain a degree of subjectivity.
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Figure 1

Search using the canonical loop (P2-P3”) from uncomplexed BPTI (1bpi) against a representative set of protein domains
both before (A) and after (B) applying residue accessibility as a filter. Black bar: serine protease inhibitor, White bar: not
known to be a serine protease inhibitor.

Table 1 Known canonical serine protease inhibitors® and the first representative “hit” for a given superfamily®

c
P PDBcode chain Range Sequence DSSP

Class Fold Superfamily RMSD Acc.
(probe} 1bpi 14-17 CKAR S--- 3948
All Alpha Bifunctional inhibitor Bifunctional inhibitors N/A N/A 1jfo
All Beta beta-Trefoil STI-like 0.771 0.013 1ba7 A 62-65 YRIR Ss-8 5937
Ecotin Ecotin, trypsin inhibitors 1.203 0.164 1lecz A 83-86 TMMA ——— 4878
Alpha + beta CI-2 family CI-2 family of inhibitors 0.275 3e-08 2sni I 58-61 TMEY E-B- 6937
Subtilisin inhibitor Subtilisin inhibitors 0.372 6e-06 3sgb I 17-20 TLEY E--B 7846
Small proteins BPTI-like Kunitz-type inhibitors 0.254 7e-09 1ltfx C 14-17 CRGY B--- 4948
Knottins Plant inhibitors 0.448 8e-05 1ppe I 4- 7 PRIL E--- 3957
Bowman-Birk inhibitors 0.440 6e-05 1ltab I 25-28 TKSM BSSS 5948
Elafin-like 0.703 0.006 1fle I 23-26 CaML ES-S 2948
Leech antihemostatic 0.508 3e-04 1lhia I 29-32 CRIR ES-- 3959
Ovomucoid/PCI-1 Ovomucoid/PCI-1 0.377 8e-06 2sic I 72-75 PMVY E--- 6867
Ascaris Ascaris trypsin inhibitors N/A N/A lata

* Class, Fold and Superfamily. Classified according to the SCOP database (Murzin et al. 1995)

*Search performed with residue 14 — 17 (the P2-P2’ segment) of BPTI (1bpi) screened according to residue solvent acces-
sibility. Each “hit” is shown in terms of the protein PDB code, the chain identifier, the main-chain RMSD, the sequence
match, the DSSP secondary structure match, and the residue accessibility match.

‘P values (see methods for details)
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Figure 2

Putative canonical loops (in red). disulphide bonds
(dotted line) (a) lsmf: B-trypsin (catalytic triad in
green) - synthetic peptide based on Bowman-birk in-
hibitor. (b) 2hlc: chains A and B (catalytic triad in
green). (c) lhgi: high (1) and low (2) resolution hits. (d)
Superimposed viral coat proteins (Irlal (orange), 2plvl
(green), 1tmel (cyan), 2cas (light blue), 1fpv (blue),
Icovl (yellow)). Grey region indicates their common
(beta-jelly roll) core structure. (e) laho: Toxin II from
the Scorpion toxin-like superfamily (f) lkapp: Zinc
Metalloprotease from the Zincin superfamily (catalytic
Zn-ion in green).



Table 2 Putative canonical loops®

Superfamily RMSD Pb probeccode chain class Range Sequence DSSP Acc. Bd];
Probe 1lbpi 14-17/18 CKARI S---E 39483
Viral proteins:

Viral coat proteins 0.551 7e-04 4 1lrlal beta 276- 279 TAIV -S-- 4888
Viral coat proteins 0.659 0.004 4 2plvl beta 146- 149 NNGH ---- 65948 X P
Viral coat proteins 0.714 0.007 4 1tmel beta 135- 138 GTDT S-S- 5976 P
Viral coat proteins 0.719 0.008 4 2plvl beta 38- 41 SKEI SS-- 5986 P
Viral coat proteins 0.753 0.011 4 1rlal beta 202- 205 GDNT -SST 4969 P
Viral coat proteins 0.877 0.030 4 2cas beta 390- 393 TTGE --S- 3948 P
Viral coat proteins 0.897 0.035 4 1fpv beta 474- 477 FDTD --SS 6959
Viral coat proteins 0.944 0.047 4 2cas beta 514- 517 ASAN -SS- 4978
Viral coat proteins 0.957 0.051 4 2cas beta 512- 515 PDAS TT-S 7949 P
Viral coat proteins 0.935 0.008 5 2plvl beta 144- 148 ETNNG SS--- 59594 X P
Viral coat proteins 0.952 0.009 5 1lcovl beta 25- 29 SEAIP SS--S 69665 P
Segmented RNA-genome virus 0.728 0.008 4 1lhgia beta 275- 278 DTCI ---- 3737 P
Scaffolding protein gpD 0.909 0.006 5 1al0l alpha 109- 113 NGVER HT--- 78582 P
RNA bacteriophage capsid 0.923 0.007 5 1lunaa alpha+beta 97- 101 ATDDV TT--- 99673 P
Trypsin-like 0.985 0.011 5 1lvcpa beta 156- 160 AKLAF HTS-- 38282
Trypsin-like 0.993 0.012 5 1kxf beta 152- 156 SKLKF GGS-- 38292
Toxins:

Yeast killer toxins 0.626 0.002 4 1lkvdab alpha+beta 29- 32 TTIA ---- 2946 P
Bacterial enterotoxins 0.657 0.004 4 2chbd beta 30- 33 SLAG E-ST 3948 P
Bacterial enterotoxins 0.706 0.007 4 1ltsd beta 30- 33 SMAG E-ST 2957 P
Galactose-binding domain 0.882 0.031 4 1dlc beta 555- 558 VSYS -SS- 2966 X P
Snake toxin-like 0.909 0.037 4 1nea Small 8- 11 SSQP TTS- 6857 X
Scorpion toxin-like 0.900 0.006 5 1laho Small 59- 63 GPGRC -SS-- 39682 P
Hydrolases:

Trypsin-like 0.817 0.019 4 1ltomlh beta 73- 76 RTRY SS-- 4667
Trypsin-like 0.807 0.017 4 1lautc beta 145- 148 SSRE -S-- 4878 X
Trypsin-like 0.913 0.039 4 1ldanh beta 170F-170I GDSP TT-- 9945 X
Trypsin-like 0.955 0.050 4 1l1ldanh beta 60- 60C DKIK TT-- 492% X
Acid proteases 0.881 0.031 4 1lepne beta 250- 253 CSAT TT-- 3939 X
Acid proteases 0.904 0.036 4 Ilopp beta 289- 297 DGGN ESSS 4956 X
Acid proteases 0.904 0.006 5 1lzap beta 333- 337 TSASS -S--- 49464
Thermolysin-like, C-terminal 0.831 0.021 4 1npc alpha 222- 225 YTGS --SS 4848 X
Thermolysin-like, C-terminal 0.977 0.010 5 8tlne alpha 221- 225 YTGTQ --SSH 28387 X P
Zincins, catalytic domain 0.888 0.033 4 1last alpha+beta 49- 52 TTES S§S-S 7837
zincins, catalytic domain 0.838 0.003 5 1lkapp alpha+beta 20- 24 GDELV SSSEE 89773 P
alpha/beta-Hydrolases 0.843 0.003 5 1lakn alpha/beta 275- 279 GSTEY SS--S 69698 X
alpha/beta-Hydrolases 0.939 0.008 5 1lacs alpha/beta 421- 425 STDDS TT--- 78384 X
Subtilases 0.937 0.045 4 2prk alpha/beta 119- 122 NNRN GGS- 8739
beta-Lactamase 0.901 0.036 4 3blm Mul t 270- 273 KSDK TT-- 6828 P
Lysozyme-like 0.641 2e-04 5 1hfx alpha+beta 65- 69 TTVQS SS--- 49392 X
Starch-binding domain 0.658 3e-04 5 1lkum beta 601- 605 PQACG ---SS 48366 X
Cystatin 0.730 0.009 4 1lcewi alpha+beta 36- 39 SNDK S--S 3936
Cystatin 0.940 0.046 4 1stfi alpha+beta 118- 121 KHDE TTS- 5837 P
Kringle modules 0.950 0.049 4 2hppp Small 335- 338 RKDQD SSS- 6849 X
Serpins 0.684 0.005 4 ©%apiab Mult 278- 281 NEDR ---- 2676 X
Cytokines or horomomnes:

Interleukin 8-like 0.853 0.025 4 3ils8 alpha+beta 13- 16 YSKP --S- 3766
Neurophysin II 0.851 0.004 5 1lnpoa beta 50- 54 LPSPC -SS-B 39462 P
4-helical cytokines 0.858 0.026 4 3inkc alpha 40- 43 LTFK TTS- 3647
4-helical cytokines 0.938 0.008 S5 2ilk alpha 43- 47 LDNLL --S-S 69768 P
Cystine-knot cytokines 0.892 0.033 4 1lhcna Small 72- 75 GGFK SS-E 8659 X P

*See " in Table 1 for column definitions. Entries in bold pass the protein docking test (see methods).
"The P values were calculated for the appropriate P(x) distributions for the four or five residue data (see Table 1).
‘ Loops with a crystallographic Probe length, with the four and five-residue probes corresponding to 1bpi (14-17) and 1bpi

(14-18) respectively.

* Loops with a crystallographic B-factor >50A” for at least one of the main-chain atoms or determined by NMR are indi-

cated by “X".
° Entries marked P pass the docking test.

The lack of knowledge of the nature of the protease (or
proteases) to which any putative inhibitor binds pre-
cludes rejection based soley on a docking study involv-
ing an arbitrary serine protease (e.g. HL Collagenase
inhibits itself by binding in a relatively shallow active
site cleft). Moreover, there remains the possibility of
conformational changes prior to a putative loop inhibit-
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ing a protease. It is nevertheless informative to know
which of the loops above pass a simple docking test.
Accordingly, we applied a docking test to indicate
whether the putative inhibitor loop is sterically compati-
ble with binding to B-trypsin. Thus, to pass this test the
protein must posses a suitably exposed loop and must
bind in such a way that the rest of the subunit does not



appreciably overlap with any part of the trypsin Co
skeleton. The representatives from each known serine
protease inhibitor superfamily (Table 1) pass the dock-
ing test with the exception of ascaris.

Table 2 shows those hits found during the search with
the four and five residue loop from BPTI that are not
known to be protease inhibitors and conform to the 5
requirements given. Entries in the table marked P (in
colomn D) pass the docking test. Loops with a high
crystallographic B-factor (>50A% for at least one of the
main-chain atoms or determined by NMR are also indi-
cated. Inspection of the results showed that they could
be divided into five categories: 1) viral proteins (16); 2)
secreted toxins (6); 3) secreted hydrolases (21); 4) se-
creted cytokines (5) and 5) others (9). The most inter-
esting hits are discussed in the sections below.

3.1 Viral Proteins

Numerous hits were found in viral proteins. Perhaps the
most striking match is that within influenza virus he-
magglutinin (PDB code lhgi chain A; Asp 275- Ile 278,
to 1bpi P2-P2’, RMSD: 0.73 A) loop (1) in Figure 2c in
a region not known to be cleaved during activation
(Chen et al, 1998). A low resolution hit is also found in
(2) another prominent surface loop in hemagglutinin
(Gly142- Ser 145 to 1bpi P2-P2’, RMSD: 1.39 A).
Several hits were found in viral coat proteins, the core
of which all adopt a P jelly roll structure. The hits
found are mainly outside of this core structure, in elon-
gated loop regions, and there is essentially no overlap in
the location when one considers the superimposed fam-
ily of protein structures (see Figure 2d), apart from an
agreement between the loop in lcov and 2plv, which
share 55 % sequence identity. Of the 25 representative
viral coat proteins considered (including those from
bacteria (2), plants (11), insects (1) and mammals (12))
all 6 proteins containing are found in viruses that infect
mammals. Interestingly the long loops that extend from
the core B-jelly roll structure are largely absent from the
viruses infecting other organisms.

There is good biological rationale as to why viruses
could contain such loops. During host cell infection,
viruses can come under attack from a variety of host cell
defense mechanisms, many of which involve proteases.
The presence of loops that might interfere with such
attacks would be an advantage. Moreover, it is possible
that viruses could use host cell proteases as shields that
might protect them from recognition by other mole-
cules, such as antibodies, involved in the immune sys-
tem.
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3.2 Toxins

Secreted toxins form another group of proteins that
contain canonical loop like structures. Their presence in
toxins of the Kunitz-type superfamily (e.g. alpha-
Dendrotoxin, Dendrotoxin K, Dendrotoxin I) are well
documented (Strydom, 1974) since they are closely re-
lated to the Kunitz-type protease inhibitors, and analysis
shows they are weak protease inhibitors e.g. Dendro-
toxin I binds to chymotrypsin with ~5% of BPTI activity
(Strydom, 1974). We also found examples of promi-
nently exposed canonical loop structures observed in
structurally dissimilar toxins. For example, toxin II
(laho; see Figure 2e), alpha-toxin (1nea), SMK toxin
(1kdv Chain A,B) Heat-labile toxin (1lts chain D) and
delta-Endotoxin, C-terminal domain (1dlc), all of which
are classified as different folds according to SCOP. To
our knowledge, none of these toxins are known to in-
hibit proteases.

Like the viral proteins, toxins, whether from pathogens
or used as defensive/predatory mechanisms by insects or
reptiles, will be the target of host cell defense mecha-
nisms. They could profit from containing means to pro-
tect themselves from attack by host proteases, or from
proteins in the immune system. Alternatively, their role
may be related to interactions with coagulant enzymes
of the host. Venoms contain a variety of factors that
affect the haemostatic mechanisms, possessing coagu-
latant, anticoagulent and haemorrhagic activity, as there
is an advantage of the venom producer to spread the
venom toxins throughout the body (Marsh, 1994).

3.3 Hydrolases

Canonical loop like structures are present in many se-
creted hydrolases. For example, the self inhibiting serine
protease, HL collagenase from common cattle grub
(Figure 2b). There are a number of other serine prote-
ases that have surface exposed canonical loops. In par-
ticular those involved in the coagulation cascade, in-
cluding thrombin (1tom chain L,H), Coagulation factor
VlIla (1dan chain H) and Activated protein C (autopro-
thrombin Ila; laut chain C). Like HL collagenase all
three proteins have at least one hit in a (different) loop
at the edge of the active site, the arrangement of loops
partially restrict access to the active site cleft. Four hits
are found in Metalloproteases. There are two hits in dif-
ferent regions in the alpha+beta Zincin-like fold in the
catalytic (N-terminal) domain of alkaline protease (1kap
chain P, residues: 1-239) see Figure 2f and in Astacin
(last). Although there is no evidence that the canonical
loops bind to any of the known serine proteases, inhibi-



tory function could be important in regulation of the
serine proteases in the extracellular environment.

3.4 Cytokines

Several hits where found in small, secreted effector
molecules, such as cytokines or hormones. Several of
these occur on the surfaces of interleukins.

There are nine other hits (not shown in Table 2) that do
not fit into the above categories, though still may repre-
sent real examples of protease inhibitor loops that serve
a possible function that is not obviously apparent. Sev-
eral are within extracellular receptor attached domains
(e.g. fibronectins). It may be that these regions play a
roll in avoiding proteolytic cleavage, or are involved in
specific protein-protein interactions.
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Abstract

Information agents integrate multiple distributed heterogeneous information sources. The challenging, yet unsolved,
problem remains to ensure the semantic consistency of the integrated data. In this paper, we set out to develop a general
approach to inconsistency management for information agents. It is implemented as part of the EDITtoTrEMBL system
and applied on a large real-world problem in the domain of bioinformatics, the annotation of membrane spanning pro-

teins.
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1 Introduction

Information agents are computational software systems
that have access to multiple, heterogeneous and geograph-
ically distributed information sources (Wiederhold and
Genesereth (1996)). One of their main tasks is to perform
active searches for relevant information in non-local do-
mains on behalf of their users or other agents. Information
from multiple autonomous sources is retrieved, analysed,
manipulated and integrated to finally provide a high-level
access to information that is otherwise not efficiently us-
able.

A common architecture for information agents con-
sists of information providers, wrappers, facilitators, and
mediators (Wiederhold and Genesereth (1996)). A wrap-
per is associated with each information provider to pre-
pare retrieved data for the mediator. The mediator is the
point of contact for a user (human or agent); it uses the fa-
cilitator to get in touch with the wrappers and knows what
kind of information the wrappers can provide. Given a
user query it will then contact the wrappers, integrate the
results, and return them to the user.

Recently, much effort has been devoted to information
agents resulting in systems such as SIMS (Arens et al.
(1993, 1996)), UMDL (Durfee et al. (1997)), Infomas-
ter (Genesereth et al. (1997)), InfoSleuth (Bayardo et al.
(1997)) and Softbot (Etzioni and Weld (1994)).

This paper presents how during the process of inte-
gration potential inconsistencies can be both revealed and
removed. These techniques are implemented in the agent
system EDITtoTrEMBL (Mdller et al. (1999)), for which
the integration of data while preserving consistency is a
special challenge due to the inherent uncertainty and in-
completeness of provided data.
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For this purpose domain knowledge is fomalized in
extended logic programs (Alferes and Pereira (1996)), i.e.
we model reliability of information and define potential
inconsistencies. Revise (Damasio et al. (1997)) is intro-
duced as a tool capable of determining facts responsible
for inconsistencies and to make suggestions for a knowl-
edge refinement. We discuss the kinds of inconsistency
our method can detect and also its limits.

2 The Agent
toTrEMBL

Background The pharmaceutical industry and geneti-
cists all over the world expect answers to many ques-
tions on the basis of the results of genomic sequencing
projects and they already have answered many. This not
only includes the human genome but also model organ-
isms, e.g. the fruit fly and yeast, and a range of pathogens.
The DNA sequences are semi-automatically searched po-
tential genes and are subsequently submitted to a public
database, e.g. the EMBL nucleotide database ((Stoesser
et al. (1998))). No biochemical characterization is avail-
able at this stage. Since the number of potentially interest-
ing genes is so large, the data must be annotated to allow
an easier preselection of sequences for further studies.
This leads to the problem of sequence annotation.
SWISS-PROT, a high-quality database for protein se-
quence data, is annotated manually by a team of profes-
sional annotators ((Bairoch and Apweiler (1999))). How-
ever, the ever increasing amount of data creates the need
for new techniques to complement manual curation. To
address this problem, the database TrEMBL (Transla-
tion of EMBL) was created as a supplement to SWISS-

System EDIT-



PROT to store all coding sequences in EMBL that are
not already integrated in SWISS-PROT. The concept of
SWISS-PROT+TrEMBL allows the provision of a com-
prehensive protein sequence database without lowering
the editorial standards of SWISS-PROT. Every entry in
TrEMBL is enriched by automated annotation. This
means that every TTEMBL entry is analysed by a set of
programs and from their output new or improved annota-
tion is derived.

At the EBI these arbitrary analysis programs are inte-
grated into a distributed and highly flexible environment
EDITtoTrEMBL(Environment for Distributed Informa-
tion Transfer to TrTEMBL), described in detail in (Moller
et al. (1999)). Its purpose is to provide a correct, com-
prehensive and complete annotation of the sequence data
available in the databases.

The main contribution of this paper is a method and
an algorithm to maintain semantic consistency among the
integrated predictions. Before going into the details of
our approach we elaborate on the nature and origin of the
integrated information.

Architecture The environment comprises two kinds of
agents. One, the DISPATCHERSs act as a combination of
mediator and facilitator. The other, ANALYSERs, function
as wrappers around the incorporated heterogenous data
sources to provide a homogenous environment.

The ANALYSER’s responsibilities are to ensure a con-
sistent use of vocabulary to estimate the quality of the an-
notation it provides.

Main Dispatcher

For the task presented, the annotation of transmem-
brane proteins, three databases PROSITE (Bairoch et al.
(1997)), PRINTS (Attwood et al. (1998)), and PFAM
(Bateman et al. (1999)) are accessed and the applica-
tions TMHMM (Sonnhammer et al. (1998)), HMMTOP,
PHD (Rost et al. (1996)), TOPPRED (MG and von Heijne
(1994)), MEMSAT (Jones et al. (1994)), DAS (?)), SO-
SUI (Hirokawa et al. (1998)), Eisenberg-analysis (Eisen-
berg et al. (1982)), and Hydropathy-analysis (Kyte and
Doolittle (1982)) are wrapped. Three dispatchers are in-
volved. The first controls the whole process, the second
integrates the domain databases and the third integrates
the prediction methods.

Figure 1 shows the system’s tree structure. A subtree
represents a problem domain. The entries are sent to a
set of programs and the integration is performed by the
respective dispatcher responsible for the problem domain.

Depending on the work load muitiple instances of a
specific dispatcher and eventually its tools can be created.
This ensures the scalability of the approach.

Dispatchers may find the information provided by an
analyser inconsistent. In this paper, we show how to en-
hance the dispatchers’s capabilites by inconsistency man-
agement. We show how it can identify semantic inconsis-
tencies among its annotations and how it can revise them
appropriately.

To reduce complexity a dispatcher makes the assump-
tion that entries sent to it are always consistent and hence
only cares about inconsistency introduced by analysers
under its control. Again this ensures scalability.

Protein Domain Dispatcher

Awareness
Dataflow

A

y

[ | Dispatcher

< > Analyser

TOPPRED &=

Transmembrane Prediction Dispatcher .
P PROSITE 5B
= - N

Hydropathy §§

q

w825 Csomn E2D

Figure 1: The EDITtoTrEMBL architecture. Dispatchers
act as mediators, analysers as wrappers.
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Sources of Information The databases incorporated
are so called protein domain databases. The protein
domain dispatcher retrieves matches to these external
databases. The prediction of a domain becomes a rule for
annotation by induction from the annotation that is associ-
ated in the protein database SWISS-PROT and by manual
creation.

We focus on the annotation of transmembrane pro-
teins by interpreting the results of a set of different pro-
grams for the prediction of membrane spanning regions.
The programs make different premises for the prediction
and differ in their quality for different protein families.

A match of a domain’s pattern in a protein sequence is
associated with a probability by which a random sequence
might contain it. Similarly, other tools provide reliability
factors which the analyser uses as a basis to determine the
probability for the correctness of the information.

The basic assumption underlying the approach of an
integration of multiple programs is that if a protein’s fea-
tures are equally determined by different methods then
this prediction should more likely be correct.

The transmembrane dispatcher can not revise in-
formation that has been provided by protein domain
databases. This information respective the proteins topol-
ogy is usually incomplete but most reliable. It serves as a
referee to resolve ambiguities and to avoid wrong annota-
tion.

Sequential annotation of protein sequence data Fig-
ure 1 also shows how annotation is added incrementally.
The DISPATCHER creates a summary of the results of indi-
vidual agents. This is the moment when the DISPATCHER
may find the provided information inconsistent and the
techiques presented in this paper are applied.

If available, the information presented by protein do-
main databases is most valuable for a first characterization
of proteins and should therefore be requested first. De-
pendencies between participating agents can be dynami-
cally derived (Moller et al. (1999)) or otherwise declared.

Membrane Proteins: Biological Background This
section presents the biological grounds helpful to under-
stand the facts and rules described in section 4.

Membranes are boundaries of cells or their compart-
ments. Certain proteins are integrated in a membrane and
act as transporters or they transduce signals. They are
very important for medical research and hence of high in-
terest. For the undertstanding of a transmembrane pro-
tein’s function it is helpful to determine its structure, es-
pecially to determine which moieties are buried within the
membrane and which parts of the protein form loops on
either side of the membrane.

A protein is represented as a linear chain of amino
acids (see figure 2). When integrated into a membrane
they can be visualized as boxes spanning the membrane
connected by the protein chain.
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transmembrane region

el
. membrane
protein

Figure 2: Schematic view of a transmembrane protein

Transmembrane segments for cytoplasmic or mito-
chondrial inner membranes are assumed helical and have
a length between 16 and 25 residues. The majority of
positive residues are on the inner side of the membrane
(von Heijne (1986)). Several modifications are potentially
done to individual residues of the amino-acid chain which
depends on the compartment the protein is accessible to.
The transmembrane annotation must be compatible with
known post-translational modifications made to the pro-
tein.

Biochemically, the topology of transmembrane pro-
teins can not be fully determined. Experiments testing the
accessibility to proteases or antibodies still leave room for
interpretation and so do fusion experiments with indicator
proteins. Even the few crystal structures available do not
give experimental evidence on how exactly the protein is
embedded in the membrane. On the one hand this makes
the evaluation of a prediction difficult, but on the other
hand this also means that a bullet-proof annotation is not
expected by biologists.

3 Representing Knowlege and Un-
certain Beliefs

A consensus can be achieved in different ways. One
might look for the annotation supported by the majority
of tools (Cuff et al. (1998)), though with extra knowl-
edge from domain databases the majority may be proven
wrong. An integration can not be achieved without an
interpretation of the data on a semantic level.

In the this section we introduce extended logic pro-
gramming to represent the possibly inconsistent biologi-
cal domain knowledge and to be able to revise the least
reliable information.

Extended Logic Programming Well-founded seman-
tics with exlicit negation (WFSX) provides a semantics
for extended logic programs, i.e. logic programs, which
are extended by a second kind of negation. This pow-
erful language is appropriate for a spate of knowledge
representation and reasoning forms (Alferes and Pereira
(1996)). Formally, an extended logic program is defined
as follows:

Definition 3.1 An extended logic program is a (pos-
sibly infinite) set of rules of the form Ly ¢«
Li,...,Lp,not Lyy1,...,not L, where each L; is an



objective literal (0 < © < n). An objective literal is ei-
ther an atom A or its explicit negation ~A. Literals of the
form not L are called default literals. Literals are either
objective or default ones.

Example 1 Consider two predicates, domain and ft,
for a feature table entry of the databases SWISS —
PROT or TrEMBL, for example. The ft predicate
contains the start and end position of a given region
such as transmembrane. The derived domain predi-
cate states that all positions between these two bound-
aries are transmembrane. We can capture this relation by
the rule below:

domain(Agent, Pos,transmem) +

ft(Agent,transmem, Posl, Pos2), Posl < Pos, Pos < Pos2.

Besides facts and rules, we can specifiy integrity con-
straints.

Definition 3.2 Anr integrity constraint has the form 1 <+
Ly,...,Lp,notLyyq,...,n0t Ly with( < m < n
where each L; with 0 < i < n is an objective literal , and
L stands for false.

Syntactically, the only difference between the program
rules and the integrity constraints is the head. A rule’s
head is an objective literal, whereas the constraint’s head
is L, the symbol for false. Semantically the difference is
that program rules open the solution space, whereas con-
straints limit it.

Example 2 The constraint below states that transmem-
brane regions have to be longer than 16.

1 « ft(Agent, Acc,transmem, Posl, Pos2),
X is Pos2 — Posl, X < 15.

When defining integrity constraints our first objective is to
detect violations, the next step is to remove the violations.
Since by definition it is not possible to change a fact, we
introduce revisables. Revisables are assumptions we are
willing to change if inconsistencies arise.

Definition 3.3 The revisables R of a program P are a
subset of the (possibly default negated) literals which do
not occur as rule heads in P.

Example 3 Predictions of transmembrane regions are
formalized in the feature table. For our application we
must not take them for granted and hence they are de-
fined as revisables rather than facts. By default we set the
entries to true, but should inconsistencies arise, we are
willing to withdraw them, i.e. set them to false.

revisable( ft(tmhmm, pl12345, transmem, 6,26), true).

Similarly, it is possible to revise assumptions from false
to true.

For many cases it is useful to specify how easily a
revisable can be changed or, in other words, how reliable
an assumption is.

Example 4 The probabilities below state that tmhmm’s
assumption about first transmembrane region is not very

reliable (0.5), whereas its assumption about the second
region is (0.1).

probability(  ft(tmhmm, p12345, transmem, 6,26),  0.5).
probability(  ft(tmhmm, p12345, transmem, 27,50), 0.1).

Probabilities can also be used to rank competing ft en-
tries generated by a single analyser. This is most useful
for a wrapper of a neural network. It would represent the
most active neuron with a higher proabillity than the sec-
ond most active one.

To summarise, we model knowledge by facts, rules,
and integrity constraints and beliefs of the agents by re-
visables. The certainty of the beliefs may be qualified by
a probability indicating the degree of reliability.

Revising Inconsistent Domain Knowledge and Agent
Beliefs Our objective is to detect violations of the in-
tegrity constraints and to revise the assumptions involved
as little as possible to repair them. Formally, such as revi-
sion is defined as follows:

Definition 3.4 Let P be a program and R a set of revis-
ables. Theset R' C {L | not L € R}U{-L|L € R}is
called a revision if it is a minimal set such that PU R’ is
free of contradictiction, i.e. PU R' - wrsx L!

Before we show how the revisions are computed, we need
some defintions. Conflicts are sets of revisables that lead
to a contradiction.

Definition 3.5 Let P be an extended logic program with
revisables R. Then Ry C Risaconflictif PUR, = 1.

To compute revisions, we have to change revisables so
that all conflicts are covered. Such a cover is called a
hitting set, since all conflicts involved are hit.

Definition 3.6 A hitting set for a collection of sets C is a
set HC Ugee S suchthat HNS # Q foreach S € C. A
hitting set is minimal iff no proper subset of it is a hitting

set for C.

Theorem 3.7 Let P be a program. Then R is a revision
of P iff R is a minimal hitting set for the collection of
conflicts for P.

Theorem 3.7 states that revisions can be computed from
conflicts and hitting sets which can be obtained from hit-
ting set trees (Reiter (1987)):

Definition 3.8 Let C be a collection of sets. An HS-tree
for C, call it T, is a smallest edge-labeled and node-
labeled tree with the following properties:

1. The root is labeled / if C is empty. Otherwise the
root is labeled by an arbitrary set of C'.

2. For each node n of T', let H(n) be the set of edge
labels on the path inT" from the root node to n. The
label for n is any set ¥ € C such that ¥ N H(n) =
@, if such a set ¥ exists. Otherwise, the label for n

is v/.

IFor details on the definition of the inference operator E=wrsx see
e.g. (Alferes and Pereira (1996)).




3. If n is labeled by the set X, then foreach o € 3, n
has a successor n, joined to n by an edge labeled
by o.

We informally explain the algorithm (proposed in (Reiter
(1987)) and corrected in (Greiner et al. (1989))) with its
adaption to extended logic programs.

To compute conflicts, the Revise engine uses SLXA,
a proof-procedure, which returns the revisables involved
in the proof. It is based on the SLX proof procedure for
WESX [1].

The calls to SLXA are driven by the Revise engine. Its
main data structure is the hitting-set tree. The construc-
tion of the hitting-set tree is started on candidate §, mean-
ing that the revisables initially have their default value.

We say that the node (} has been expanded when the
SLXA procedure is called to determine one conflict. If
there is none, then the program is non-contradictory and
the revision process is finished. Otherwise, the Revise
engine computes all the minimal ways of satisfying the
conflicted integrity constraint returned by SLXA, i.e. the
sets of revisables which have to be added to program in
order to remove that particular conflict.

For each of these sets of revisables, a child node of
§ is created. If there is no way to satisfy the conflicted
integrity then the program is contradictory. Otherwise the
Revise engine selects a node to expand according to some
preference criterium and cycles: it determines a new con-
flict, it expands that node with the revisables which re-
move the conflict. This continues until there is no further
conflict remaining and hence a solution is found.

The solution is kept in a table for pruning the revision
tree by removing any nodes which contain some solution,
and have been selected according to the preference cri-
terium.

The order in which the nodes of the revision tree are
expanded is important to obtain minimal solutions first.
In the current implementation we cater for minimality by
set-inclusion, cardinality and probability (Damdsio et al.
(1997)).

4 Representation of the Biological
Knowledge and the Agent Beliefs

This section presents biological background for a selec-
tion of conflicts and their formal representation in Revise.
A transmembrane prediction is presented as a set of facts.
The numbers denote the respective start and end of a spe-

cific region of sequence described as a feature.

A fact’s first argument is the source of a information.
The second argument is an identifier for the sequence, the
accession number.

ft(swissprot,pl7353, transmem, 31, 50).

Besides the localisation of transmembrane regions it
is important in what direction the protein is integrated
into the membrane. This is denoted by the predicate
topology(Source, Accession, Domainl, Domain2). It
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describes the direction of the first transmembrane helix.
Post-translational modifications are subject to individual
residues of a peptide sequence only. The two positions
will hence be identical. The only exception to this are
disulfid bridges which connect two residues.

ft(mod_res, 5,5, phosphatation).
ft(carbohyd, 10, 10).
ft(disulfid, 66,99).

A disulfide bridge links to redidues within the same com-
partment only:

« ft(Agent, Acc,disul fid, Posl, Pos2),
in_or_out(Agent, Acc, Posl, D1),
in.or_out(Agent, Acc, Pos2, D2),

D1 # D2.

A conflict also occurs if a disulfide bridge is established
in the intracellular domain:
«— ft(Agent, Acc,disul fid, Post, _P),
in_or_out(Agent, Acc, Posl,inner).
«— ft(Agent, Ace,disul fid, .P, Pos2),
in_or_out( Agent, Acc, Pos2,inner).

Glycosylation is established in the outer domain only:

+— ft(Agent, Acc, carbohyd, Pos, Pos),
in_or_out(Agent, Acc, Pos, D),
D # outer.

It must be checked that the other modifications are made
to residues of the inner compartment

«— ft(Agent, Acc, Modification, Pos, Pos, ),
member(Modi fication, [lipid, mod_res)),
in_or_out(Agent, Acc, Pos, D),

D # inner.

Knowledge specific for transmembrane proteins The
rules presented before only looked at individual revis-
ables and their consistence with knowledge independent
from the transmembrane prediction process. The follow-
ing rules compare transmembrane predictions with each

other.
All methods must agree on a protein being transmem-
brane at all.

+— ft(Agent, Acc,transmem,p rom,r o),
not is.transmembrane(Agent2, Acc).

If two transmembrane regions are predicted to overlap
then neither border should differ more than four residues
from the other predictions border.

+— ft(Agentl, Acc,transmem, Froml,Tol),
ft(Agent2, Acc,transmem, From2,To2),

(Froml > From2, Froml < To2;Tol > From2,Tol < To2),

(abs(Froml — From2) > 4;abs(Tol — To2) > 4).
The length of a transmembrane region ist limited:

+— ft(-Origin,_Accession Number,transmem, From, To),
X tsTo— From,X < 15.

—  ft(Origin,_AccessionNumber,transmem, From,To),
X isTo— From, X > 25.

Futher heuristics, like the positive-inside rule (von Heijne
(1986)) have been implemented and can be used for the
support or refusal of a prediction.



rev(ft(das, p04633,tm, 19, 29), true).

rev(ft(das, p04633, tm, 120, 128), true).
rev(ft(das, p04633, tm, 214, 229), true).
rev(ft(das, p04633, tm, 216, 227), true).
rev(ft(das, p04633, tm, 280, 285), true).

rev(top(phd, p04633, inner, outer), true).
rev(ft(phd, p04633, tm, 18,35), true).
rev( ft(phd, p04633,tm, 117,133}, true).
rev(ft(phd, p04633,tm, 214,231), true).
rev(ft(phd, p04633, tm, 271, 288), true).
rev(tm(tmhmm, p04633), false).

rev(ft(toppred, p04633,tm, 13, 33}, true).

rev( ft(toppred, p04633, tm, 113,133), true).
rev(ft(toppred, p04633, tm, 212, 232), true).
rev( ft(toppred, p04633, tm, 239, 259), true).
rev( ft(toppred, p04633, tm, 269, 289), true).

Figure 3: Revisables presented to Revise.
transmembrane is abbreviated as tm, topology as
top, revisable as rev.

Matches with domain databases and derived knowl-
edge Stating that an protein sequence sequences
matches a domain specified in a protein domain database
is stated with the predicate matches (see 5):

matches(Prot Accession, Domain Accession, From,To).

For the current implementation we make use of a manual
translation of information stored in PROSITEDOC. This
presents a biochemical interpretation of domains repre-
sented in the database PROSITE.

The rules gathered from domain databases are valid
independently from the actual sequence since they all re-
quire the sequence to match a specific pattern before any
further information can be deduced.

A sequence’s match can be dynamically determined.
For better efficiency, only those rules are presented to re-
vise that have a chance to fire.

5 Application

This section gives an example how Revise works. It is
provided with the set of revisables shown in figure 3 and
the rules as previously described in 4.

The predicate solution returns a list of minimal revi-
sions, censisting of each a set of revisables changed from
false to true and a list of those revisables changed from
true to false.

Local conflict checks only If neither the domain infor-
mation is present nor the domain database has any rules
available, solution(X) will return a single solution:

X =[[), [ft(das, p04633, transmem, 19, 29), ft(das, p04633,
transmem, 120, 128), ft(das, p04633, transmem, 216, 227),
ft(das, p04633, transmem, 280, 285)]] ;

This represents the transmembrane regions that are
too short.
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Balance with other predictions With the additional
constraint that all predictions must agree on wether a pro-
tein is integrated into the membrane or soluble a revision
of TMHMM’s prediction from true to false is introduced.
The third solution trusts TMHMM and assumes all trans-
membrane regions to be false positive. This means the

revision of all the facts revisables.

X = [[istransmembrane(tmhmm, p04633)], [ft(das,
p04633, transmem, 19,..., 285), ft(phd, p04633, transmem, 18,
351

X = [[istransmembrane(tmhmm, p04633)], [ft(das,
p04633, transmem, 19,..., 285), ft(toppred, p04633, transmem,
13, 33)}1 ;

X =[], [ft(das, p04633, transmem, 19,..., 285), ft(phd,
p04633, transmem, 18, 35), ft(phd, p04633, transmem, 117,
133), ft(phd, p04633, transmem, 214, 231), ft(phd, p04633,
transmem, 271, 288), ft(toppred, p04633, transmern, 13, 33),
ft(toppred, p04633, transmem, 113, 133), ft(toppred, p04633,
transmem, 212, 232), ft(toppred, p04633, transmem, 239, 259),
ft(toppred, p04633, transmem, 269, 289)] ;

Use of protein domain database The following
matches to the PROSITE database have been derived:

matches(p04633, ps00215, prosite, 32,41).
matches(p04633, ps00215, prosite, 132, 141).
matches(p04633, ps00215, prosite, 231, 240).

Additional information could be retrieved from matches
to the PROSITE database:

is-transmembrane(prositedoc,Acc)+—
matches(Acc, ps00215, prosite, _, .).
num-tm_regions(prositedoc, Acc,6)
matches(Ace, ps00215, prosite, , ).
loop(prositedoc,Acc,”, X, Ty
matches(Acc,ps00215, prosite, F,T), X is F + 3).
transmembrane(prositedoc,Acc, X, X, )
matches(Acc,ps00215, prosite, F,T), X is F — 3).

The knowledge that this protein sequence indeed belongs
to a transmembrane protein led to the exclusion of the
previously third option. The previously second solution
needed to be removed since PHD’s transmembrane region
from 18 to 35 is in conflict with a loop region between
residues 35 and 41.

X = [[], [ft(das, p04633, transmem, 19,...285), ft(phd,
p04633, transmem, 18, 35), ft(toppred, p04633, transmem, 239,
259115

Interpretation of Revise’s output The constraints set
to the system guarantee that this final solution has the
property not to be in conflict with information known for
specific protein domains. When multiple tools predict the
same transmembrane region then they vary only slighly in
their description.

Revise presents all possible interpretations of predic-
tion methods consistent with itself and extra knowledge
from protein domain databases. This can be visualized as
follows:

In figure 4 the boxes represent membrane spanning
regions. Crossed out is a predicted region Revise found
to be in conflict with other information.
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Figure 4: Visualisation of conflict resolution

For the annotation that goes into TTEMBL the median
of the transmembrane regions’s borders are choosen re-
spectively. If ambiguities remain, ie. multiple solutions,
only the common annotation goes into TTEMBL being ap-
propriately marked.

Mutual independence of revisables The revision of a
fact may give rise to new conflicts. This inherent non-
monotonicity is the major difficulty in conflict resolution.
It is not directly possible to give an advice to the system
which revisions should be attempted in case of the need
for a specific revision due to a specific conflict.

This feature could also be used to define semantic de-
pendencies among revisables. If these exist, those must
be defined in Revise as conflicts. There are two problems
with this approach. The obvious one is that these rules
may be hard to maintain. But also if there is a semantic
dependence the probability of a change may be different
if a change was not triggered directly but by a secondary
constraint.

For this reason the transmembrane annotation was
represented by the transmembrane regions as a collection
of predicates plus an additional one for its topology. The
alternative was an additional description of the individual
loops, leading to an increased efficieny for rules, though
thereby loosing the revisables’s mutual independece.

6 Conclusion and Future Work

In this paper, we have demonstrated that the integration
of heterogenous data sources can have a symbiotic effect
on the overall quality of the information provided. For
the automated annotation of protein sequences this is ab-
solutely vital and we are very confident that similar ap-
proaches will be implemented for other domains in the
future.

We have demonstrated how extended logic program-
ming and program revision can be used to represent do-
main knowledge and agent beliefs in distributed informa-
tion agent systems. In particular, we have shown how to
deal with different degrees of reliability and how to re-
move inconsistencies using various minimality options.

While a revision is ideal for binary statements, it is not
practical to use Revise to allow a fact’s refinement. This
means the adaption of a fact instead of its removal. The
possibility to allow refinements may have been beneficial
for our application for which a domain’s boundaries could
have been changed to fulfill a constraint. This will be
addressed in our future work.

[T} Prediction 3
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It may be at value to note that although the process of
a revision leads to a centralization of processing this does
not represent a bottleneck. Any agent in the system can be
individually cloned and thereby duplicate the bandwith.
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Abstract

Computational methods for automated genome annotation are critical to understanding and interpreting the bewildering
mass of genomic sequence data presently being generated and released. A neural network model of the structural and
compositional properties of an eukaryotic core promoter region has been developed and its application for analysis of the
Drosophila melanogaster genome is presented. The model uses a time—delay architecture a special case of a feed—forward neural
network. The structure of this model allows for variable spacing between functional binding sites, which is known to play a key
role in the transcription initiation process. Application of this model to a test set of core promoters not only gave better
discrimination of potential promoter sites than previous statistical or neural network models, but also revealed indirectly subtle
properties of the transcription initiation signal. When tested in the Adh region of 2.9 Mbases of the Drosophila genome, the NNPP
program that incorporates the time—delay neural network model gives a recognition rate of 75 percent (69/92) with a false positive
rate of 1/547 bases. The presented work can be regarded as one of the first intensive studies that applies novel gene regulation
technologies for the identification of the complex gene regulation sites in the genome of Drosophila melanogaster.

1 Introduction

Recent advances in sequencing technology are making
the generation of whole genome sequences
commonplace. Capillary sequencers speed the
production of raw data. Changing tactics from
traditional mapping and sequencing clones in series to
an integrated simultaneous mapping and sequencing
approach (whole genome shotgun) has significantly
reduced the amount of time it takes to completely
sequence a genome. These improvements in genomic
sequencing are possible because of software advances
that fully exploit mapped clone constraint data and
directly attack the problems that repetitive sequences
cause during sequence assembly.

At present several very large—scale genomic
sequencing projects are complete or are expected to
complete within a few months. These initial genome
sequences are from key model organisms in genetics
and include five eukaryotes, Saccharomyces
cerevisiae, Schizosaccharomyces pombe,
Caenorhabditis elegans, Drosophila melanogaster and
Arabidopsis thaliana, as well as draft human
sequence. In a few years sequencing new genomes and
individuals will become routine practice. This raw
data is not immediately useful and interpreting it
places major demands on the field of computational
biology.
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The development and application of a novel neural
network system to recognize eukaryotic polymerase II
promoters in the annotation of the Drosophila
melanogaster genome is presented. A time—delay
neural network (TDNN) is developed, an architecture
that was originally introduced in speech recognition
(Lang & Waibel, 1990; Waibel et al., 1989), to model
the complex sequence structure of a transcription start
site. The transcription start site (TSS) is the location
upstream of a gene where the polymerase II protein
binds to the genomic DNA and initiates the
transcription process. The entire region around the
transcription start site is called a promoter.

A typical polymerase II promoter consists of multiple
functional binding sites that are involved in the
transcription initiation process. I trained separate
neural networks for these individual binding sites
(TATA box and initiator (Inr)) and integrate these
separate networks into a time—delay neural network.
The architecture of a time—delay neural networks is
chosen because it is well suited to model this complex
sequence structure because it allows for variable
spacing between functional sites (equivalent to
different time points in speech recognition), a feature
common to polymerase II promoters.

These promoters have a very complex structure (for
reviews see (Kornberg, 1999; Pugh, 1996; Pugh &



Tjian, 1992; Yokomori et al., 1998)) consisting of
these multiple DNA binding sites for transcription
factors. Some of these sites enhance transcription and
some other repress transcription. The nucleotide
pattern of the sites is often related to the strength of
binding. In addition to these core promoter elements
in the vicinity of the transcription start site there exist
long-range interactions through so called enhancer
sites. Therefore, current methods to model these
promoters are pruned for a high rate of false positives
and the task of promoter recognition can be seen as
one of the most difficult in the field of DNA sequence
analysis.

2 Methods

2.1 Time-delay neural networks

For promoter modeling, a special neural network is
chosen, the time—delay neural network (TDNN)
architecture developed by Waibel et al. (1989). This
architecture was originally designed for processing
speech sequence patterns in time series with local time
shifts. The usual way of transforming sequence
patterns into input activity patterns is the extraction of
a subsequence using a fixed window. This window is
shifted over all positions of the sequence and the
subsequences are translated into input activities. The
network produces an output activity or score for each
input subsequence.

The following two promoter specific features have to
be learned:

1. The network has to recognize subsequences
that may occur at non—fixed positions in the
input window. Therefore the network has to
learn that the subsequence is a feature
independent of shifts in its position.

2. The network has to recognize features even
when those features appear at different
relative positions. This situation arises in
cases where different subsequences occur in
the input window with different relative
distances. This happens very frequently in
genomic sequences when one or more
elements (nucleotides) are inserted or deleted
in a given promoter.

The TDNN architecture addresses these problems by
imposing certain restrictions on the network topology
and by the way in which weights are updated. Hidden
units are connected to a limited number of input units
that represent a consecutive pattern in the input
window. These hidden units have a receptive field,
that is, they are only sensitive to a part of the input
window. The important restriction is that the same
receptive field has to be present at each position in the
input exactly once. If the input window contains, for
example, ten positions and a receptive field covers a
subsequence of three positions, there must be eight
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hidden units with the same receptive field. Since the
corresponding weights in all copies of a receptive field
are forced to have the same values, these hidden units
are said to have linked receptive fields. In neural
network terminology this is also known as weight
sharing. Each hidden unit is called a feature unit
because it will recognize a certain feature in the input
window irrespective of its relative position. During
learning, the partial derivatives of corresponding
weights in linked receptive fields are calculated
separately since these hidden units with their receptive
fields at different positions in the input window get
different activation. To adapt a receptive field, the
weight update is averaged over all copies of a weight.
This average update is then applied to all copies of
that weight. In this way, it is ensured that the copies of
a receptive field remain identical for a given feature.
In the basic TDNN architecture the hidden layers
(feature units) are connected to the output layer in a
standard feed—forward way. Training is performed
using a modified backpropagation algorithm.

There are several successful applications of TDNNs in
speech recognition (Waibel et al., 1989) and the
recognition of handwritten characters (Lang &
Waibel, 1990). These references include a detailed
description of the time—delay architecture.

2.2 Implementation of the core—promoter
time—delay neural network model (NNPP)

Using the time—delay architecture described above,
two distinct neural networks, one for the TATA box
and one for the Inr, were trained. I selected an input
window of 30 bp (—40 to —10) for the TATA box
neural network and a window of 25 bp (—14 to +11)
for the Inr network. The window sizes were selected
so that the consensus sequences for both binding sites
are included. The two signals occur at varying
distances relative to the TSS.

The two time—delay neural networks were trained
independently. It was experimentally determined that
a receptive field size of 15 bp performed the best. For
the TATA network, this leads to a total of 120 input
units (30 bp) and 60 weights (4 x 15) for each unit in
the hidden layer. The Inr network has 100 input units
(25 bp) and also 60 weights (4 x 15) for each unit in
the hidden layer.

The weights of the receptive fields for both of the two
networks were initialized using the weight matrices
from the literature to “push” them to recognize
particular signals. The TATA box weight matrix was
taken from Bucher (1990), and the Inr weight matrix
from Penotti (1990). These initializations were ideal to
train the TDNNs to recognize the appropriate signal in
the sequence (i.e. the TATA box time—delay network
was forced to train only on the TATA box pattern at
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Figure 1: The trained two—layer time—delay neural
network. The small squared boxes symbolize the
neurons. The input layer is on top with the window
reading in the DNA sequence. The receptive fields
indicated with a circle grouping connections from the
input layer to the two hidden layers (TATA and Inr)
show the structure of the time—delay connections.
Both hidden layers connect to the single output
neuron on the bottom. For clarity, only strong weights
are shown. For example, the only significant weights
shown from the TATA-layer to the output unit are the
ones that localize the position of the TATA box at the
beginning of the input window (below CCACCGG).
The TATA box is boxed. This test sequence of
CCACC....GGACG received a score of 0.823 from
NNPP.
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approximately —20 bp). The results of both networks
can be seen in Table 1 and are discussed below.

2.2 Incorporation of feature detector
networks into the final TDNN

To combine the individual feature detector neural
networks for TATA and Inr, we use a two—layer time~
delay neural network. The input to the final TDNN
consists of 51 bp, spanning the transcription start site
from position —40 to +11 and including the TATA box
and the Inr. The hidden layers from the two previously
trained single—feature time—delay neural networks are
copied into the combined TDNN and training is
carried out. The resulting neural network maps high
order correlation between the different features and
their relative distance into a complex weight matrix. A
snapshot of the two—layer (TATA and initiator)
trained TDNN is shown in Figure 1. The weights from
the hidden layers can be interpreted as the preferred
position for an individual element in the input
window.

All neural networks were integrated and tested using
the Stuttgart Neural Network Simulator Software
toolkit (Zell & al., 1999). The networks were then
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implemented in the Neural Network for Promoter
Prediction (NNPP) program. This program is publicly
accessible through a World Wide Web server
(http://www fruitfly.org/seq_tools/promoter.html).

3 Results

3.1 Application of NNPP to a cross—
validated set of promoters

Table 1 shows the prediction results for the two single
feature time—delay neural networks, the TATA box
feature detector (column 2), the Inr feature detector
(column 3) and the two—layer TDNN, which
incorporates both (column 4 and 5). The results are
averaged over four cross—validated test sets produced
from the complete dataset of 429 promoters. The
correlation coefficient is calculated as defined
originally by Matthews (1975) and later adapted to the
problem of gene finding evaluation by Burset and
Guigd (1996) as:

cC- (TPxTN)-(FN x FP)
~ J@P+FN)<@N + FP)x (TP + FP) (TN + FN)

As can be seen from Table 1, the performance of the
feature detecting networks used in isolation is rather
poor. The TATA box network has the better
performance of the two, since over 60% of the
vertebrate promoters contain a TATA box. The
predictive power of the initiator network is weaker
because there is no real consensus sequence for
vertebrate Inrs. The TATA box network recognizes on
average 64 (60%) of the 107 promoter sequences in
each test set (4-fold cross—validated) with an average
of 38 (3.8%) false positive predictions. If we adjust
the threshold so that on average 75 (70%) of the
promoters are predicted correctly, there are 72 (7.2%)
false positive predictions. The Inr neural network can
only detect 11 (10%) of the promoters, with a false
positive rate of 0.8%. The combination of both neural
networks increases the prediction rate. If on average in
the 4 cross—validated sets 54 (50%) promoters are
correctly predicted, the false positive rate drops down
to 1.0% (ten coding DNA regions predicted as
promoters; correlation coefficient of 0.65), but that is
similar to the TAT A-only results. Even if 75 (70%)
promoters are correctly predicted, the average number
of false predictions is only 53 (versus 72 for TATA
alone). At a threshold of 0.12, 80% of the promoters
predicted, the number of false positive predictions
goes up to 125 (12.5%). 21 (19.6%) promoter sites on
average in the test sets cannot be predicted at all using
this 2—layer neural network.

For comparison, the results for a standard feed—
forward backpropagation neural network with one
hidden layer trained on the same data sets are shown



% TATA  Initiator | Combined Threshold Multi-layer
Promoter box FP- FP-rate 2-layer (0-1)for  Perceptron
s rate (CC) (CO) TDNN (CC) combined FP-rate
recognize TDNN (CO)
10 02% 0.8% | 0.0% 0.99 0.2%
(0.36) (0.28) | (0.38) (0.35)
20 03% 27% | 0.1% 0.97 0.3%
(0.45) (0.27)| (0.38) (0.45)
30 05% 7.0% | 0.3% 0.92 0.8%
(0.52) (0.28) | (0.50) (0.48)
40 09% 10.6 | 04% 0.85 1.9%
056) 9 (0.60) (0.50)
(0.26)
50 1.3% 18.7 1.0% 0.70 3.7%
062) ¢ (0.65) (0.51)
0.25)
60 38% 330 [ 3.1% 0.38 9.9%
0.60) o (0.61) (0.44)
(0.21)
70 72% 45.5 5.3% 0.20 16.1%
057 9 (0.58) (0.40)
(0.18)
80 223 605 | 125% 012  455%
% % (0.52) 0.23)
0.39) (0.17)

Table 1: NNPP Prediction performance on the 4-fold
cross—validated data set. False positive rates and
correlation coefficients are averaged over the 4—cross
validated sets.

in the last column of Table 1. The number of hidden
units and the number of training cycles were
optimized exactly the same way as for the time—delay
neural network. The results show the superiority of the
two—layer TDNN. At a threshold that gives 64 (60%)
correct predictions, the number of false positive
predictions is more than three times higher for the
standard network (99 false predictions) than for the 2-
layer TDNN (31 false predictions). This shows that
reducing the parameter space from 3,091 adjustable
weights in the standard network to 169 in the TDNN,
improves the prediction accuracy on a limited training
data set (419 promoter sequences).

3.2 Application of NNPP in Drosophila
melanogaster: The Adh region

To apply the 2—layer time—delay neural network to
contiguous genomic sequence, a window of 51 base
pairs is shifted over the sequence base by base. In this
way, a score is computed for every position in the
sequence. These individual scores are subsequently
smoothed by a simple but efficient function, which
selects the position of the highest score in a window of
10 neighboring positions as the final prediction. The
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smoothing function is implemented as a post—
processing procedure and is part of the final NNPP.

To test the accuracy of NNPP in Drosophila
melanogaster, NNPP was applied to the 2.9 Mbase
genomic sequence of the Adh region (Ashburner et al.,
1999). A careful promoter analysis in this region
(Reese et al., 2000a) resulted in high quality full-
length cDNA alignments for 92 genes out of the
original 222 gene annotations including.

In Table 2 the NNPP results are reported on this test
set of genes in the Adh region (Ashburner et al., 1999)
in comparison to Corelnspector (Scherf et al., 2000)
and MCPromoter (Ohler et al., 1999) both evaluated
in a recent annotation experiment (Reese et al.,
2000a). Although NNPP is far from accurate, this test
shows good results similar to those in a 1997 review
by Fickett and Hatzigeorgiou (Fickett &
Hatzigeorgiou, 1997). In this paper they reported a
recognition rate of 54% of the known promoters at a
threshold of 0.8. In Adh, the same threshold identifies
69 or 75% of the total of 92 annotated promoters with
a false positive rate of 1/547, similar to the rate of
1/460 reported in (Fickett & Hatzigeorgiou, 1997). It
has to be noted that Fickett and Hatzigeorgiou used
both strands to calculate the false positive rate while
for Adh only the gene strand was used. If one applies a
more stringent threshold of 0.97, 35 of the 92
promoters are still recognized with a much lower false
positive rate of 1/2,416. The higher classification rate
might be due to biased promoter selection in (Fickett
& Hatzigeorgiou, 1997).

4 Discussion

The presented tool is an artificial neural network
model using a time—delay network architecture. This
network has two feature layers: one for the TATA box
and one for the Inr (initiator). The output of both
feature layers is combined in a time—delay neural
network. I have shown that such a neural network
detects the TATA box and the Inr and is insensitive to
their relative spacing and is therefore an excellent
model for the compositional sequence properties of a
eukaryotic core promoter region. The discriminative
ability of such a model for the short core promoter
region of —40 to +11 bases spanning the transcription
start site is so strong that this model can be used to
predict an entire promoter in genomic DNA. These
results show that the highest information content in a
promoter region exists in the core promoter region.

The NNPP computer program implements the time—
delay neural network model. The program is able to
predict over 70% of transcription start sites in genomic
DNA when used with the default parameters. The false
positive rate calculated on the Adh region in
Drosophila melanogaster is 1/ 547 bases. The
Matthew’s correlation coefficient (Matthews, 1975) is



System Identified Rate of false
name TSS predictions in
annotated Adh
region (total
853,180 bases)
From Corelnspector 1(1.0%) 1/853,180
(Reese (0.00012%)
et al.,
2000a)
MCPromoter 31 172,437
v2.0 (33.6%) (0.041%)
NNPP NNPP (t=0.99) 20 1/6,227
21.7%) (0.016%)
NNPP (t=0.97) 35 172,416
(38.0%) (0.041%)
NNPP (t=0.80) 69 1/547
(75.0%) (0.183%)
NNPP (t=0.70) 80 1/400
(86.9%) (0.250%)

Table 2: Evaluation of promoter prediction systems

on the Adh region. The table only shows the results
of the "search by signal" program (Corelnspector)
and "search by content” programs (MCPromoter)

from the experiment of Reese et al. (2000a) and the

prediction sets from NNPP with different
thresholds. The rate of false positives is shown for
the sequence where cDNA annotations define the
region as non—promoter.

0.58. 30% of all promoter sequences remain
undetected and this is probably due to the non—local
structure of the promoter region, where initiation
control elements can occur at positions many
kilobases distant from the transcription start site.

The NNPP program can easily be extended to
incorporate novel information as it becomes available.
Other known promoter elements such as the CAAT
box, GC box, DPE (downstream promoter element; so
far known to exist only in Drosophila), and conserved
transcription factor binding sites can also be used
within the existing framework. The extended
parameter space of such an extended model would
require more data for training.

The positive results obtained using the time delay
architecture will hopefully lead to more widespread
application of neural networks to similarly complex
problems in molecular biology, such as the detection
of splice sites and protein—protein interaction motifs.
For the application to complete genome annotations
the NNPP code needs to be integrated into a more
global annotation system such as Genie (Reese et al.,
2000b).
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Since I made the NNPP program available on the
World Wide Web it has been widely used in the
scientific community to hypothesize about potential
transcription start sites. Recently the program was
used to correct an important C. elegans gene, unc—86,
that encodes a POU IV class transcription factor. In
this study the transcription start site prediction by
NNPP was experimentally verified through
experiments (Roehrig, 2000, personal
communication).

This example demonstrates how useful a program like
NNPP can be in the right context. It is clear that a
program cannot substitute for the final experimental
proof but the example shows that it can give direction
and guidance for such experiments to verify
computational predictions.
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Abstract

This paper presents an application of Inductive Logic Programming (ILP) to automatically discover protein folds sig-
natures. Cross-validation experiments were carried out for the 20 most populated folds. The overall cross-validated
accuracy is 75%. The signatures associate local sub-structures and sequence motifs to complex three-dimensional folds.
The signatures often highlight regions which are important for function, such as the nucleotide binding site in the case
of the Rossmann-fold. ILP can produce rules which are both accurate and easily amenable to human interpretation.

1 Introduction

Understanding protein structure is one of the major chal-
lenges of molecular biology. Despite more than three
decades of research, predicting the three-dimensional struc-
ture from the knowledge of sequence information alone
remains an elusive goal. However, the coming of the
functional genomics era and the explosion of sequence
data are now putting tremendous pressure for progress to
be made. Indeed, it is generally believed that a detailed
knowledge of the three-dimensional structure is essential
to understand, and eventually manipulate, protein func-
tion.

Although the pace of protein three-dimensional struc-
ture determination has been slower than that of the se-
quence determination, large amounts of data have been
accumulated over the years; approximately 10,000 pro-
tein structures are found in the public repository. To facil-
itate understanding classification schemes have recently
been developed. One example is SCOP (Structural Clas-
sification of Proteins) (Brenner et al., 1996). Such clas-
sifications are hierarchical, proteins which are known to
have evolved from a common ancestry are grouped to-
gether into families, and super-families. The next level
puts together proteins that share the same fold, i.e. the
same core secondary structure elements and the same in-
terconnections. In this case, the similarity may be the re-
sult of convergence towards a stable architecture. At this
level, the proteins have quite dissimilar sequences which
makes it impossible for sequence comparison methods to
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detect the kinship. Here, this classification scheme is the
starting point for a machine learning experiment which
aim to relate local structures to the concept of folds.

2 Protein 3D structure

The three-dimensional structure of proteins is highly com-
plex. In general, three levels of abstraction are distin-
guished: primary, secondary and tertiary structure. Pro-
teins are long chains of amino acids. There are 20 natu-
rally occurring amino acids, each with different chemical
properties. The amino acids are linked by a covalent bond
to form chains, typically 100 to 500 amino acids long, and
referred to as primary structure or sequence. A particu-
lar sequence folds into a specific compact three-dimen-
sional or tertiary structure. The two predominant meth-
ods to structure determination are X-ray crystallography
and NMR spectroscopy. Those techniques require sophis-
ticated equipments and because of technological limita-
tions, the sequences of amino acids are routinely deter-
mined in large quantities whilst the determination of the
three-dimensional structure remains difficult. Early on
it was predicted that segments of the primary sequence
would adopt local regular structures (Pauling et al., 1951),
the two main types are the a-helices and the §-strands,
while the intervening regions are called loops or coils,
collectively those elements are referred to as the secondary
structure.

Identifying rules which explain the observed folds re-



mains a challenge and often involves manual interven-
tion of experts (Brenner et al., 1996; Branden and Tooze,
1999; Orengo et al., 1994). For several folds, these signa-
tures are reported in the literature, generally after exten-
sive study. A few experts are familiar with many of these
rules and the knowledge is certainly not formalised, with a
common language, in a form suitable for automated test-
ing as new structures are determined. Also, automated
methods can identify features that are missed by manual
examination.

3 Approach

The objective of this work is to automate the discovery of
structural rules, also referred to as signatures. Inductive
Logic Programming (ILP) is a logic-based approach to
machine learning. ILP is particularly well suited to study
problems encountered in molecular biology. First, pro-
tein structures are the result of complex interactions be-
tween sub-structures (secondary structures) and the abil-
ity to learn relations might prove to be a key feature. Sec-
ond, ILP systems can make use of problem-specific back-
ground knowledge taking advantage of the vast amount of
knowledge that has been accumulated. Third, ILP uses a
common representation for the examples, the background
knowledge and the hypotheses, and therefore provides a
good integration for the development of applications to-
gether with the machine learning experiments. Finally,
the hypotheses can be made readable, by straightforward
translation to natural languages, and integrated to the cy-
cles of scientific debates. In complex domains, such as the
structure determination, it is unlikely that a breakthrough
will come from a single machine learning experiment, the
ability of ILP to make the rules readable is therefore an
important advantage to assist the process of scientific dis-
covery.

3.1

Inductive Logic Programming is concerned with the in-

Machine learning algorithm

duction of hypotheses from examples and background knowl-

edge (Muggleton and Raedt, 1994). In this work, we
use Progol which is being developed by the second au-
thor (Muggleton and Firth, 1999). As mentioned above, a
restricted subset of first-order logic is used as a common
representation for the examples, the background knowl-
edge and also the generated hypotheses. In the case of the
protein folds problem, a (positive) example represents the
fact that the domain d1hlb__ belongs to the Globin fold
by fold(’'Globin-1like’, dlhlb..). The back-
ground knowledge contains information such as the rela-
tionships between secondary structures and the presence
of a proline. The algorithm then constructs a hypoth-
esis which explains this example in terms of the back-
ground knowledge, the following rule was generated for

the Globin-like fold,
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Figure 1: Schematic representation of a member of the
globin fold. The first and the second helix that contains
the proline are coloured in black. This figure was pre-
pared using Molscript version 2.1 Kraulis (1991).

fold(’'Globin-like’, X) :-
adjacent (X, _, B, 1,
has_pro(B).

hl h)l

which is interpreted as “domain X belongs to the Globin
fold if its first helix is followed by another one that con-
tains a proline”. Figure 3.1 illustrate this rule.

More specifically, the background knowledge for those
experiments contains information about the secondary struc-
ture, calculated with PROMOTIF (Hutchinson and Thorn-
ton, 1996) from experimental three-dimensional structures.
For each secondary structure we calculate the average hy-
drophobicity, the hydrophobic moment and the number
of amino acids. The presence of a proline is also noted.
For each inter-secondary structure region we calculate the
number of amino acids. The background knowledge con-
tains global information as well: the total number of strands
and helices and the total number of amino acids.

4 Discussion

We have compared two different representations of the
background knowledge (Turcotte et al.). For the first one,
the background knowledge contained only predicates which
encode global characteristics of protein folds, specifically,
the total number of residues and the total number of sec-
ondary structures of both types, helices and strands. For
the second approach, new predicates were added which
introduce relationships between secondary structure ele-
ments and their properties. The results showed that it is
possible to construct good classifiers with a background



knowledge which is essentially limited to attribute-values.
Statistically better results were obtained with the rela-
tional representation, however this might be attributable
to the fact that more features were used. Interestingly, in
the case of the relational dataset, some of rules can be
related to results published in the relevant scientific liter-
ature. One such example is that of the Globin fold.

Rule 1 (Globin fold) Helix A at position 1 is followed by
helix B. B contains a proline residue.

fold(’'Globin-like’, X) :-
adjacent (X, A, B, 1, h, h),
has_pro(B).

The Globin-fold is a good example of divergent evolution.
In SCOP, this fold comprises diverse sequences such as
myoglobin, hemoglobin and phycocyanins. Yet the three-
dimensional structure of these proteins is well preserved.
One hallmark of this fold is the presence of a conserved
proline residue in helix B, which causes a sharp bend in
the main chain. This observation has been reported pre-
viously by Bashford et al. (Bashford et al., 1987) and is
illustrated in Figure 3.1.

One of the main limitations of this application con-
cerns the representation. Secondary structure positions
are counted from the N-terminal end of the structure and
do not take into account the possibility of insertions. We
have developed a new representation that i) sequentially
numbers the secondary structures for the C-terminal as
well as N-terminal and ii) includes additional information
about the topology of the sheets and the packing the he-
lices. Preliminary runs show that Progol can now learn
descriptions such as the following:

fold(a, 'SH3-1like barrel’) :-
number_ strands (4=<A=<7),
sheet (A,B,anti),
has_n_strands(B,5),
strand(A,C,B,1),
strand(A,D,B,-1),
antiparallel(C,D).

which allows for insertion into the sheet. Cross-validation
data and detailed analysis will be presented at the confer-
ence.

Those experiments show that ILP can be used effec-
tively to learn rules in complex domains such as protein
structure. The rules produced in the context of the rela-
tional learning experiments, were found to be more infor-
mative, as judged by our knowledge of protein structure,
than those generated in the context of attribute-value ex-
periments. The rules can be explained in terms of struc-
tural and/or functional concepts, such active site and bind-
ing location. Indeed, when constructing a rule, Progol
looks for motifs which are common to all the domains of a
given fold but almost never encountered in others, except
for a limited number of cases which is set by a user de-
fined threshold (noise). Characteristics which are impor-
tant for structure and/or function are conserved amongst
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members of the same fold, at least up to the super-family
level. Therefore the rules constructed by Progol can some-
times identify conserved functional motifs. Of the 59
rules generated, at least 5 can be related to previously
published results.
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