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The AISB’05 Convention 
Social Intelligence and Interaction in Animals, Robots and Agents 
 

Above all, the human animal is social. For an artificially intelligent system, how could it be otherwise? 

We stated in our Call for Participation “The AISB’05 convention with the theme Social Intelligence 
and Interaction in Animals, Robots and Agents aims to facilitate the synthesis of new ideas, encourage 
new insights as well as novel applications, mediate new collaborations, and provide a context for lively 
and stimulating discussions in this exciting, truly interdisciplinary, and quickly growing research area 
that touches upon many deep issues regarding the nature of intelligence in human and other animals, 
and its potential application to robots and other artefacts”. 

Why is the theme of Social Intelligence and Interaction interesting to an Artificial Intelligence and Ro-
botics community? We know that intelligence in humans and other animals has many facets and is ex-
pressed in a variety of ways in how the individual in its lifetime - or a population on an evolutionary 
timescale - deals with, adapts to, and co-evolves with the environment. Traditionally, social or emo-
tional intelligence have been considered different from a more problem-solving, often called "rational", 
oriented view of human intelligence. However, more and more evidence from a variety of different 
research fields highlights the important role of social, emotional intelligence and interaction across all 
facets of intelligence in humans. 

The Convention theme Social Intelligence and Interaction in Animals, Robots and Agents reflects a 
current trend towards increasingly interdisciplinary approaches that are pushing the boundaries of tradi-
tional science and are necessary in order to answer deep questions regarding the social nature of intelli-
gence in humans and other animals, as well as to address the challenge of synthesizing computational 
agents or robotic artifacts that show aspects of biological social intelligence. Exciting new develop-
ments are emerging from collaborations among computer scientists, roboticists, psychologists, sociolo-
gists, cognitive scientists, primatologists, ethologists and researchers from other disciplines, e.g. lead-
ing to increasingly sophisticated simulation models of socially intelligent agents, or to a new generation 
of robots that are able to learn from and socially interact with each other or with people. Such interdis-
ciplinary work advances our understanding of social intelligence in nature, and leads to new theories, 
models, architectures and designs in the domain of Artificial Intelligence and other sciences of the arti-
ficial. 

New advancements in computer and robotic technology facilitate the emergence of multi-modal "natu-
ral" interfaces between computers or robots and people, including embodied conversational agents or 
robotic pets/assistants/companions that we are increasingly sharing our home and work space with. 
People tend to create certain relationships with such socially intelligent artifacts, and are even willing 
to accept them as helpers in healthcare, therapy or rehabilitation. Thus, socially intelligent artifacts are 
becoming part of our lives, including many desirable as well as possibly undesirable effects, and Artifi-
cial Intelligence and Cognitive Science research can play an important role in addressing many of the 
huge scientific challenges involved. Keeping an open mind towards other disciplines, embracing work 
from a variety of disciplines studying humans as well as non-human animals, might help us to create 
artifacts that might not only do their job, but that do their job right. 

Thus, the convention hopes to provide a home for state-of-the-art research as well as a discussion fo-
rum for innovative ideas and approaches, pushing the frontiers of what is possible and/or desirable in 
this exciting, growing area.  

The feedback to the initial Call for Symposia Proposals was overwhelming. Ten symposia were ac-
cepted (ranging from one-day to three-day events), organized by UK, European as well as international 
experts in the field of Social Intelligence and Interaction.  
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• Second International Symposium on the Emergence and Evolution of Linguistic Commu-
nication (EELC'05)  

• Agents that Want and Like: Motivational and Emotional Roots of Cognition and Action  
• Third International Symposium on Imitation in Animals and Artifacts  
• Robotics, Mechatronics and Animatronics in the Creative and Entertainment Industries 

and Arts  
• Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction  
• Conversational Informatics for Supporting Social Intelligence and Interaction - Situ-

ational and Environmental Information Enforcing Involvement in Conversation  
• Next Generation Approaches to Machine Consciousness: Imagination, Development, In-

tersubjectivity, and Embodiment  
• Normative Multi-Agent Systems  
• Socially Inspired Computing Joint Symposium (consisting of three themes: Memetic 

Theory in Artificial Systems & Societies, Emerging Artificial Societies, and Engineering 
with Social Metaphors) 

• Virtual Social Agents Joint Symposium (consisting of three themes:  Social Presence 
Cues for Virtual Humanoids, Empathic Interaction with Synthetic Characters, Mind-
minding Agents) 

I would like to thank the symposium organizers for their efforts in helping to put together an excellent 
scientific programme. 

In order to complement the programme, five speakers known for pioneering work relevant to the con-
vention theme accepted invitations to present plenary lectures at the convention: Prof. Nigel Gilbert 
(University of Surrey, UK), Prof. Hiroshi Ishiguro (Osaka University, Japan), Dr. Alison Jolly (Univer-
sity of Sussex, UK), Prof. Luc Steels (VUB, Belgium and Sony, France), and Prof. Jacqueline Nadel 
(National Centre of Scientific Research, France). 

A number of people and groups helped to make this convention possible. First, I would like to thank 
SSAISB for the opportunity to host the convention under the special theme of Social Intelligence and 
Interaction in Animals, Robots and Agents. The AISB'05 convention is supported in part by a UK 
EPSRC grant to Prof. Kerstin Dautenhahn and Prof. C. L. Nehaniv. Further support was provided by 
Prof. Jill Hewitt and the School of Computer Science, as well as the Adaptive Systems Research Group 
at University of Hertfordshire. I would like to thank the Convention's Vice Chair Prof. Chrystopher L. 
Nehaniv for his invaluable continuous support during the planning and organization of the convention. 
Many thanks to the local organizing committee including Dr. René te Boekhorst, Dr. Lola Cañamero 
and Dr. Daniel Polani. I would like to single out two people who took over major roles in the local or-
ganization: Firstly, Johanna Hunt, Research Assistant in the School of Computer Science, who effi-
ciently dealt primarily with the registration process, the AISB'05 website, and the coordination of ten 
proceedings. The number of convention registrants as well as different symposia by far exceeded our 
expectations and made this a major effort. Secondly, Bob Guscott, Research Administrator in the 
Adaptive Systems Research Group, competently and with great enthusiasm dealt with arrangements 
ranging from room bookings, catering, the organization of the banquet, and many other important ele-
ments in the convention. Thanks to Sue Attwood for the beautiful frontcover design. Also, a number of 
student helpers supported the convention. A great team made this convention possible! 

I wish all participants of the AISB’05 convention an enjoyable and very productive time. On returning 
home, I hope you will take with you some new ideas or inspirations regarding our common goal of 
understanding social intelligence, and synthesizing artificially intelligent robots and agents. Progress in 
the field depends on scientific exchange, dialogue and critical evaluations by our peers and the research 
community, including senior members as well as students who bring in fresh viewpoints. For social 
animals such as humans, the construction of scientific knowledge can't be otherwise. 
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Dedication: 

I am very confident that the future will bring us increasingly many 
instances of socially intelligent agents. I am similarly confident that 
we will see more and more socially intelligent robots sharing our 
lives. However, I would like to dedicate this convention to those people 
who fight for the survival of socially intelligent animals and their 
fellow creatures. What would 'life as it could be' be without 'life as we 
know it'? 

 

Beppu, Japan. 

 

Kerstin Dautenhahn 

Professor of Artificial Intelligence,  
General Chair, AISB’05 Convention Social Intelligence and Interaction in Animals, Robots and Agents 

University of Hertfordshire 
College Lane 
Hatfield, Herts, AL10 9AB 
United Kingdom 
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Symposium Preface 
Second International Symposium on the Emergence and Evolution of 
Linguistic Communication (EELC’05) 
 
 
 

 
 AISB'05 Convention, 12-15 April 2005, University of Hertfordshire, U.K. 
 
 
 
SYMPOSIUM OVERVIEW - EMERGENCE AND EVOLUTION OF LANGUAGE 
 
The renewed scientific interest in the emergence and evolution of linguistic communication has be-
come one of the most important research issues in Artificial Intelligence and Cognitive Science. The 
EELC'05 Symposium focuses on the latest empirical and modelling research on the evolutionary fac-
tors that affect the acquisition, self-organization and origins of linguistic communication systems and 
their precursors. This considers both language-specific abilities (e.g. speech, semantics and syntax) and 
other cognitive, sensorimotor and social abilities (e.g. category learning, action and embodiment, social 
networks). Key questions relate to the emergence of: symbol grounding; deixis, gesture, and reference; 
predication; negation; syntactic categories; and compositionality; among other issues in the context of 
embodied, social interaction and evolution. This is a field characterized by a highly interdisciplinary 
and multi-methodological approach. It benefits from the contribution of researchers from wide ranging 
disciplines such as linguistics, psychology, neuroscience, anthropology and computer science. The 
methodologies adopted cover a wide range of approaches, from animal and human experiments, to 
brain studies and to computational and robotic modelling of linguistic behaviour. For example, compu-
tational models of language evolution and emergence involve artificial intelligence methods (e.g. artifi-
cial neural networks, evolutionary computation, rule-based systems) and techniques for the simulation 
of behaviour (artificial life, multi-agent systems, adaptive behaviour and robotics). The symposium   
creates the opportunity for the many of most influential in the field to present their latest research and 
to discuss the agenda for future studies.  
 
The use of computational models for simulating the evolution of language has been one of the main 
contributors to the renewed interest in language evolution research. In fact, up to 10 years ago, very 
few researchers were directly interested in the origins and evolution of language and publications on 
new language evolution studies were uncommon. This was partly the result of the famous ban in the 
19th century by the Société Linguistique de Paris on research and publication on language origins to 
quell rampant, unfounded speculation on the topic. The development of the first language evolution 
models in the early 1990s permitted researchers to deal with some of the main difficulties in such a 
scientific endeavour. Theories of language origins and evolution not only were difficult to test empiri-
cally but they tended to be stated in vague and general terms and were unable to generate detailed em-
pirical predictions. This was partially due to the problem of the scarcity of objective empirical evi-
dence. It is this very problematic aspect of the study of language evolution which computer simulations 
can help us to overcome. Computer simulations are theories of the empirical phenomena that are simu-
lated (Cangelosi & Parisi 2002). Simulations are a novel way to express theories in science. They are 
scientific theories expressed as computer programs. The program incorporates a set of hypotheses on 
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the causes, mechanisms, and processes underlying the simulated phenomena and, when the program 
runs in the computer, the results of the simulations are the empirical predictions derived from the the-
ory incorporated in the simulation. All this contributes to the development of a new approach to the 
study of the origins and evolution of language.  

 
 
THE EELC SYMPOSIUM SERIES 
 
Following on from the success of the First International Workshop on the Emergence and Evolution of 
Linguistic Communication in Japan 2004, and the Evolution of Language conferences, this symposium 
is held 14-15 April 2005 at the University of Hertfordshire, College Lane Campus, Hatfield, just out-
side London. It is part of the AISB 2005 Convention 12-15 April 2005, whose overall theme is "Social 
Intelligence and Interaction in Animals, Robots and Agents". EELC'04 was the First International 
Workshop on the Emergence and Evolution of Linguistic Communication (EELC), held in Kanazawa 
(Japan) in May/June 2004 under the auspices of the Japanese Society for Artificial Intelligence (JSAI), 
the Japanese counterpart of AISB, at the JSAI 2004 Convention. The Second EELC Symposium, now 
at AISB'05 in the U.K., aims to continue the philosophy of this meeting and its international tradition. 
This is particularly relevant since both British and Japanese scientists have played a major role on the 
development of computational models of language evolution. In addition, the location of the workshop 
within the AISB annual meeting permits a better exchange with other researchers working in the field 
of artificial intelligence and simulation of behaviour, whether they work in Britain or come from 
abroad to attend the meeting.  
 
The aims of the EELC symposium are: 

• to provide an common interdisciplinary forum for researchers of the emergence and evolution 
of language,  

• to discuss and disseminate the latest research on theoretical, empirical and modelling investi-
gations of the evolution of linguistic communication and its precursors,  

• to set the agenda for future research and identify the most promising theoretical and methodo-
logical issues in the area.  

 
 
Acknowledgements. The symposium was supported in part by a grant of the British Academy, the 
National Academy for Humanities and Social Sciences. We also thank the programme committee and 
local organizing committee of EELC’05, and the AISB 2005 Convention organizers, for their dedicated 
work, as well as all the authors and speakers in making this symposium a success!   
 

 Angelo Cangelosi and Chrystopher L. Nehaniv 
                 Programme Chairs, EELC'05 
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Colourful language and colour categories

Tony Belpaeme1,2 Joris Bleys1

1 Artificial Intelligence Lab
Vrije Universiteit Brussel

Pleinlaan 2, B-1050 Brussels, Belgium
{tony,jorisb}@arti.vub.ac.be

2 University of Plymouth
School of Computing, Communication and Electronics
Portland Square, Plymouth, PL4 8AA, United Kingdom

Abstract

We investigate whether the universal character of colour categories can be explained as the result of
a category acquisition process under influence of linguistic communication. A brief overview is pre-
sented of the different positions in explaining the mechanisms of colour category acquisition (or per-
ceptual categories in general). We introduce a computational model to study the acquisition of colour
categories with and without linguistic interactions. We present preliminary results, which are com-
pared with recent results from the World Color Survey. We argue that combining biases from colour
perception, perceptual categorisation and linguistic communication provides an alternative explanation
for the nature of colour categories.

1 Introduction

For more than three centuries the precise nature of
human colour categories has been one the most dis-
puted topics among physicists, psychologists, cogni-
tive scientists and anthropologists. Newton, already
in the eighteenth century, wondering about the num-
ber of categories that could be discerned in the sun-
light’s spectrum, decided on the divine number of
seven, thereby requiring a category called “indigo”
that no-one had observed until then. Three centuries
later much more precise data on colour categories is
available and together with the data came a plethora
of interpretations.

One of the most influential contributions is the
monograph by Berlin and Kay (1969) in which they
reported on the linguistic colour categories of 20 lan-
guages. Using naming experiments they elicited the
colour categories of subjects and comparing the cat-
egories across different languages they noticed a re-
markable cross-cultural correspondence. Until then
the general consensus had been that colour categories
were random for each culture, but Berlin and Kay’s
work rekindled the conviction that the universal char-
acter of colour categories could only be explained as
being genetically determined.

In this paper we first summarise the results of the
World Color Survey (WCS) (Kay et al., 1997, 2003)
reported in (Kay and Regier, 2003). This work pro-
vides the strongest evidence yet of strong universal
tendencies in colour naming in seperate languages.
We give an overview of the different accounts which
try to explain this universal character and then con-
tinue to present a computational model which tests
whether linguistic relativism might be a viable can-
didate. We report several results from the simulation
and compare these with the data from the WCS.

2 The World Color Survey

The WCS reports on colour naming experiments
with speakers of 110 languages spoken in non-
industrialised societies. The field data has been gath-
ered in North and South America, Africa and South-
East Asia.

In the study each subject is shown a series of 330
coloured chips drawn from the Munsell colour set 1

1The Munsell Color Company (GretagMacbeth, New Windsor,
NY) produces calibrated chips for art reproduction. The most satu-
rated chips have been used by anthropologists to study colour cat-
egories since the 1950s.
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(of which 320 chips show gradations of hues at differ-
ent lightness, all at maximal saturation, and 10 chips
show shades of grey, ranging from white to black) and
asked to name each chip.

The analysis of the data proceeded as follows. For
all subjects studied, the centroid was computed for
every colour term they used. For this the Mun-
sell colour values were converted to the CIE L∗a∗b∗

colour appearance model2. The term centroids were
projected back onto the closest matching Munsell
chip. For each language a chart can now be produced
showing the average representation of all colour
terms in that language.

To get a visual impression of the linguistic colour
categories over all 110 languages, the centroids of all
subjects of all languages can be combined into one
single histogram (figure 1). The floor plane of the
histogram corresponds to the ordered Munsell chart,
with on one axis the hue value of the chip, ranging
from red, over yellow, green, blue, to purple; and on
the other axis the lightness of the chip (note that it
does not display the counts for achromatic chips).

The histogram shows that the linguistic colour cat-
egories of different languages are not arbitrary; it
clearly illustrates the universal character of colour
categorisation. Peaks can be found at regions close
to the English colour terms pink/red, brown, yellow,
green, blue and purple.
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Figure 1: Histogram showing the linguistic colour
categories for 110 languages spoken in non-
industrialised societies (data from Kay and Regier,
2003).

2CIE L∗a∗b∗ is a perceptually uniform colour representation.
It is a 3D colour space, in which the L∗ dimension represents the
lightness, and the a∗ and b∗ dimensions represent the chroma of
the colour. A Euclidean distance function can be used to compute
the perceptual distance between two CIE L∗a∗b∗ values.

3 Attempts at explaining univer-
salism

The challenge now is accounting for colour nam-
ing universalism. The leading position has always
been that colour categorisation results directly or in-
directly from an innate endowment (Kay and Mc-
Daniel, 1978; Bornstein, 1985; Hardin, 1988; Shep-
ard, 1992; Kaiser and Boynton, 1996). One hypothe-
sis states that there exist basic colour categories that
are explicitly related to the opponent colour process-
ing in the human visual pathways. Psychological
and neurophysiological data indeed points to an op-
ponent character of human colour perception, with
white contrasting with black, red with green and yel-
low with blue. All other basic categories —orange,
brown, pink, purple and grey— can be deduced from
these six primaries. Although this account has made
it into textbooks (e.g. Crystal, 1997), some scholars
still doubt that colour categories are unequivocally
fixed by neural correlates (Saunders and van Brakel,
1997; Lucy, 1997; Jameson and D’Andrade, 1997) or
that colour categories are universal at all (Roberson
et al., 2000).

In the next section we will present a computational
model to study if colour categories can be explained
as a concept formation process which is under influ-
ence of language (or cultural exchange in general).
It has been proposed by some that colour categories
not only are associated with colour terms, but that
colour terms also have an influence on the acquisi-
tion of colour categories (Gellatly, 1995; Davies and
Corbett, 1997). This position has become known as
the Sapir-Whorf hypothesis (Whorf, 1956).

4 The computational model

The computational model we use is based on
a research methodology first proposed by Steels
(1996a,b). Using this methodology Steels studied
how meanings can be associated unambigiously with
words. It was later extended for studying adaptive
meanings and open lexica in (Steels, 1998; Belpaeme,
2001). The methodology relies on multi-agent sim-
ulations. Each agent is able to perceive, categorise
its perceptions and lexicalise the resulting categories.
We briefly present the internals of an agent:

Perception The perception of colours is modelled
by relying on the properties of the CIE L∗a∗b∗

colour space (Fairchild, 1998). Agents are of-
fered colour stimuli as RGB triplets, these are

2



converted to CIE L∗a∗b∗ values. The con-
version from RGB to CIE L∗a∗b∗ is given in
the following equations. The conversion matrix
is for PAL/SECAM viewing conditions, with
γ = 2.5; the XY Z coordinates of the ref-
erence white are taken to be [XnYnXn]T =
[0.950 1.000 1.089]T .

⎛
⎝X

Y
Z

⎞
⎠ =

⎛
⎝0.431 0.222 0.0202

0.342 0.707 0.130
0.178 0.0713 0.939

⎞
⎠ .

⎛
⎝R

G
B

⎞
⎠

γ

L∗ =

⎧⎨
⎩

116
(

Y
Yn

)
− 16 Y

Yn
> ε

903.3
(

Y
Yn

)
Y
Yn
≤ ε

a∗ = 500
(
f
(

X
Xn

)
− f

(
Y
Yn

))
b∗ = 200

(
f
(

X
Xn

)
− f

(
Z
Zn

))
f(x) =

{
x
1/3 x > ε

7.787x + 16/116 x ≤ ε
ε = 0.008856

The CIE L∗a∗b∗ colour representation was de-
signed to mimick human psychological colour
experience, and therefore serves well as our
colour perception model.

Categorisation To implement perceptual categorisa-
tion we resort to a point representation in the
CIE L∗a∗b∗ space. Each colour category is a
point in that space, and the membership func-
tion for a category is the Euclidean distance to
that point.

Lexicalisation Colour categories can be associated
with colour terms. The strength of the associa-
tion is represented by a scalar value s ∈ [0, 1].
Colour categories can be associated with more
than one word (thereby allowing synonymy) and
words can be associated with more than one cat-
egory (thereby allowing homonymy).

Additionally an interaction between two agents is
defined, which serves to let the agents acquire a reper-
toire of colour categories and colour terms. The inter-
action implements horizontal transmission of lexical
entries and categories. It consists of two components,
a discrimination game and a guessing game, both de-
scribed below.

4.1 The discrimination game

The discrimination game serves to build a repertoire
of categories that allows an agent A to distinguish be-
tween stimuli. This pseudo code for the discrimina-
tion game is as follows.

Algorithm 1 Discrimination Game(A, O)
1: Agent A chooses a topic ot from the contextO =
{o1, . . . , oN} containing N objects.

2: Agent A perceives each stimulus in the context
by constructing an internal representation for it:
{o1, . . . , oON} → {r1, . . . , rN}

3: For each internal representation ri, the best
matching category is found. This is the category
which has the highest output for ri of all the cat-
egories available in the category repertoire of the
agent ACR and which we will denote by cbest

i :
{r1, . . . , rN} → {cbest

1 , . . . , cbest
N }

4: If the best matching category for the topic cbest
t is

unique in {cbest
1 , . . . , cbest

ON
} the game succeeded,

otherwise it has failed.

An agent is offered a number of objects, this is
called the contextO. One of the object is the topic ot,
which the agent has to distinguish from the other ob-
jects in the context. For this, the agent first perceives
all objects, which results in a number of internal rep-
resentation ri. Next, the internal representation are
matched to categories. For example, if the agent has
only one category, all representation of objects will be
matched to that same category, making it impossible
for the agent to distinguish betweem objects. How-
ever, as soon as the agent has more than one cate-
gory, it can start distinguishing between objects. If
the topic is matched with a category with which no
other object matches, we say that the agent is able to
“discriminate the topic from the context” and we call
the discrimination game a success.

The discrimination game can fail in several ways:
this is an opportunity to improve the agent’s categor-
ical repertoire. When the category repertoire ACR is
empty, a new category is created on the internal rep-
resentation of the topic rt. When no discriminating
category could be found, there are two possible ac-
tions: (1) a new category is created on rt or (2) the
best matching category cbest

t is adapted to better rep-
resent the internal representation of the topic rt, this
is done by shifting cbest

t towards rt. Option (1) is
taken when the discriminative success of the agent is
below a threshold θadapt = 0.95, otherwise option
(2) is taken.
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4.2 The guessing game

The guessing game is played between two agents ran-
domly chosen from the population: one acting as
speaker (AS) and the other as hearer (AH ). The
pseudo code for the guessing game is as follows 3.

The speaker and hearer both observe the same con-
text O. The speaker knows what the topic ot of the
conversation is, and tries to linguistically commu-
nicate the topic to the hearer. For this the speaker
first plays a discrimination game, if this succeeds the
speaker looks up the word associated with the dis-
criminating category. This word is then relayed to the
hearer. The hearer looks up the category belonging to
the word, and maps the category onto the objects in
the context. It then points to the object which matches
best with the category. Finally, the speaker reports if
the hearer has pointed correctly to the topic. During
the course of the guessing game, both agents adapt
the strength sij between category ci and word wj ac-
cording to the following equation (with δ = 0.1).

⎧⎨
⎩

sij = min (sij + δ, 1)
skl = max (skl − δ, 0)

in row i and column j with k �= i, l �= j
(1)

A categories is adapted by shifting the point repre-
sentation of a category towards a representation r, as
in eq. 2; α is a learning rate, set to 0.7.

c← c + α(r − c) (2)

Of course, also the guessing game can fail at sev-
eral ways. For each failure, an appropriate action is
taken so that the agents will be more successful at
communicating in future games.

• The speaker fails at the discrimination game: it
adapts its categorical repertoire as described in
4.1.

• The speaker has no word associated with cbest
t : a

new word is created and associated with an ini-
tial strength s = 0.5.

• The hearer does not know the word w: the
speaker “points” at the topic and the hearer asso-
ciates the word w with the category best match-
ing the topic, with initial strength s = 0.5.

• The hearer fails to pick out the topic (ot �= oh):
the strength of the association between cbest

t and
w is decreased by δ.

3DG stands for discrimination game.

When the guessing game is successful the speaker
and hearer both increase the strength of the associa-
tion between the categories used and the communi-
cated word4.

5 Experimental results

As input to the agents we use two different sets of
colour data. One set, called the random set, con-
tains random colours generated by drawing colours
from the RGB colour solid and then converting them
to CIE L∗a∗b∗. The other set, called the nature set,
draws colours from digital photographs of natural
scenes. The difference between both is that the ran-
dom set contains a uniform distribution of colours,
while the nature set contains a skewed distribution
with an abundance of low-saturated colours and few
high-saturated colours. The purpose of having two
data sets is to study the effect of the environment on
the acquisition of colour categories.

For reference the results from the WCS (Kay and
Regier, 2003) are repeated in figure 2 now a contour
plot of figure 1. The locations of English colour terms
are added for reference.
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Figure 2: Contour plot of the WCS data.

Four types of simulations have been run. DGRAN:
discrimination game where agents are fed random
data. DGNAT: discrimination game where agents
are fed nature data. GGRAN: guessing game where
agents are fed random data. And GGNAT: guessing
game where agents are fed nature data.

Each type of simulation has a population of 10
agents and has been run 105 times5. The results pre-
sented for each type of simulation are the sum of
these 105 runs.

4More details, specifically on the implementation of the update
rules, can be found in (Bleys, 2004; Steels and Belpaeme, 2005)

5One could think of these 105 runs as hundred different artifi-
cial societies.
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Algorithm 2 Guessing Game(AS, AH , O)

speaker AS hearer AH

chooses topic ot

plays DG for ot

DG succeeds and returns cS

finds term w for cS

utters w → w → hears w
finds category cH for w
finds oh closest to cH

sees oh ← oh ← points to oh

if hearer guessed right, then ot = oh

update sS
cw using eq. 1

points to ot → ot → sees ot

updates sH
cw using eq. 1

adapts category cH to rt using eq. 2

Figures 3, 4, 5 and 6 show contour plots of his-
tograms collecting the colour categories of 10 × 105
agents. A first observation is that each type of sim-
ulation cuts up the colour continuum in a number
of peaks: colour categories are not randomly con-
structed (if they would be, the histogram should not
have any peaks).
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Figure 3: Contour plot of DGRAN results.

Two biases, present in all four simulations, are
quite influential. On the one hand, the psychological
colour space —modelled by the CIE L∗a∗b∗ colour
space— puts constraints in the location of the cat-
egories (the colour space is shaped like two bumpy
cones connected to each other at their base). The sec-
ond bias is formed by the property of categories to
be maximally distinctive. Both biases act together
so that colour categories are in a way “pushed” to-
wards locations where they are maximally distinctive
and where they form a stable configuration. Colour
categories are stable when they are located in places
where shifting the colour category would result in a
lower discriminative or communicative success.
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Figure 4: Contour plot of DGNAT results.
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Figure 5: Contour plot of GGRAN results.

In this sense, all four simulations return colour cat-
egories that retain all properties of human percep-
tual categories. However, the purpose of our study
is to see whether acquiring colour categories with an
additional bias formed by linguistic communication
would result in categories that are more human-like.
Figures 5 and 6 when compared to figure 2 give a
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Figure 6: Contour plot of GGNAT results.

qualitative impression, but a measure is needed com-
pare the histograms quantitavily. Eq. 3 computes
the sum of squared pair-wise differences between two
histograms h and h′ (with hi being the bin at index i
in histogram h).

d (h, h′) =
∑

i

(hi − h′
i)

2 (3)

Table 1 shows the comparison between the his-
tograms obtained from the simulations and the WCS
data. According to the measure we use, the DGNAT
simulation resembles human colour categories most.
However, also the DGRAN and GGNAT data have a
similar distance to the human data. Only the GGRAN
data seems to be off, why remains eludes us at the
moment.

d(h, WCS)
DGRAN 0.00973
DGNAT 0.00842
GGRAN 0.0145
GGNAT 0.00994
WCS 0

Table 1: Sum of squared differences between simu-
lation histograms and WCS data (lower values corre-
spond to a higher similarity).

6 Discussion

The computational models that are presented here im-
plement a view on colour categorisation which con-
trasts with the innatist viewpoint on colour categories.
We have shown how agents can acquire a set of cate-
gories that is sufficient to discriminate colours, and in
the case of the guessing game simulations, the agent

acquire colour categories that not only discriminate
well, but also communicate well.

The categories resulting from the simulations are
qualitatively similar to human colour categories: they
take up regions in the colour space that correspond
well to the WCS data. We have not been able to show
that the influence of communication on category for-
mation results in radically different categories. This
might however be due to the limitations of our analy-
sis. The sum of squared distances measure might not
be suited to compare two-dimensional histograms.
For example, if two identical histograms are com-
pared, but one is shifted relative to the other, the sum
of squared distances measure will return a low value;
this is not desired.

Future analysis will point out if there exist mea-
sures which might give a better impression of the sim-
ilarity of histograms. One alternatively could be to
extract the peaks of the histograms and compare the
using a certain distance measure6.
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Abstract

This paper reports results of a computer simulation which models the behavior of different species of
communicative agents which share the same habitat. The agents use signals to communicate. This
communication is in a male/female context: males use their signals to attract females. Since both share
the same habitat, the signals of the species have to be distinguishable, allowing females to identify
a male of her own species. But signals used by males of the same species should be similar. The
simulation shows that these conventions can emerge using mechanisms of self-organization.

1 Introduction
Research in the origins and evolution of language has
shown that a population of communicative agents can
reach a shared set of conventions without a global
control (Steels, 1996a). Language is now seen as
a complex adaptive system which becomes coherent
through mechanisms of self-organization.

The self-organized formation of vocabularies has
been studied by Ke et al. (Ke et al., 2002) and Steels
(Steels, 1996b). A set of agents starts with randomly
created vocabularies. But the agents must share vo-
cabularies to achieve cooperative benefits through
communication. Under certain conditions a coherent
vocabulary can emerge.

On the other hand, some research dealt with model-
ing linguistic diversity (Livingstone and Fyfe, 1999;
Arita and Koyama, 1998), where linguistic stochas-
ticity is a source for innovation.

In further scenarios, diversity of signals is strongly
intended as, for example, when two or more bird
species share the same habitat. Male birds use their
songs to attract females1 (Davies; Vehrencamp, 2000;
Attenborough, 1998). But since females of other
species hear these songs, too, it is vital that a con-
vention be established to distinguish the different
species. A female approaching a male of another
species would just waste time and energy.

This paper presents a simulation of how differ-
ent signals for different species can emerge from the
interactions of simple communicative agents. All

1They also use them to defend their territory and alarm others.

species start using the same signal. Since these sig-
nals are not distinguishable for the females, the males
start to modify their signals so that each species uses
signals which are distinguishable from the other ones.
But this, of course, leads to different signals within a
species. So each species has to make the effort to es-
tablish a common signal again. All this is driven by
the need to attract females of the same species.

2 Simulation Setup

In each simulation run there are m populations of
communicative agents of m different species. Each
population has a specific size. The ratio of male to
female birds is controlled by a simulation parameter.

The agents use signals S to communicate. A signal
s ∈ S is modelled with an array of scalars2. The nth
element of the array is denoted as sn. A randomly
created signal is composed of sine-waves of different
amplitudes.

Two signals x and y are similar if the squared dif-
ference does not exceed a specific limit l:∑n

i=1
(xi − yi)

2 ≤ l

In nature male birds can use a variety of differ-
ent songs by rearranging different parts or modify-
ing them. In this simulation only a simple signal is
used to show the basic idea of communication be-
tween agents.

2The size of the array was set to 60.
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3 Actions & Attributes of Agents
An agent can fly around freely. Male birds can emit
signals. All agents, which are in the near vicinity of
the source of such a signal, receive it.

Each agent has a memory where it can store sig-
nals. The agents stores one specific signal sown

which is associated with their own species. Male
birds emit this signal to attract females, and female
birds use this signal to compare it with those heard
previously as an aid in finding males of their own
species.

Each agent also stores a set of signals Sforeign

which is associated with other species. Females hear-
ing a signal which is similar to those of Sforeign do
not react to it. Signals in Sforeign tend to fade out
over time, unless they are heard again and can be
associated with a different species. Therefore, they
have a weight associated with them which is initial-
ized by a value F , decreased each simulation frame
by an offset f

−
, and increased by an offset f+ if

it can be associated with a different species. When
the weight reaches 0, the signal is removed from the
memory.

When male birds think that their signal sown is not
successful enough, they can either create a new one or
modify it. Failed signals are stored in a set Sfailures

which has only a limited capacity #Sfailures. If it is
full, the signal, which was stored first, is deleted.

To imitate other males of the same species, they
can adapt their signal step by step.

The male birds also have a value which defines
their dominance. Female birds tend to mate with
more dominant males.

When female birds enter the scenario, they do not
possess a signal sown. When they meet the first male
of their species, they remember his signal. When mat-
ing with other males, they gradually adapt their signal
to the signals used by these males.

4 Guidelines
The experiments follow the guidelines first set out
by Hutchins and Hazlehurst (Hutchins and Hazle-
hurst (1995), quotations from Curran and O’Riordan
(2002)).

• “The limited rationality constraint: No mind
may influence another except via a mediating
structure (no telepathy).” – Agents react only to
signals they received. Signals are of an acous-
tic nature. They can only be received within a
limited listening range of the source.

female of
different species
arrives ?

own species
arrives ?

female of

∆ −
∆ +

fly around

send signal

wait

decrease signal’s
success value
by

limit T ?
reached lower

yes

yes

generate new
signal

yes

mate

reinforce
signal by

no success
over a longer
time M ?

yes

Figure 1: Flow diagram of male behavior.

• “The distributed system constraint: No agent has
a complete view of all other agents.” – An agent
can only see and hear other agents which are in
its closer vicinity.

• “The open system constraint: There should be
an in-flux/out-flux of agents throughout simu-
lations to examine the stability of an emerg-
ing communication system.“ – A steady replace-
ment of agents with new ones was established.
The new agents came into the system with ran-
domly generated signals. The rate of replace-
ments was controlled.

• “No social mind can become organized except
via interaction with another or its environment.”
– The only chance for an agent to become orga-
nized is to interact with other males (imitating
their signals if they belong to the same species)
or females (rewarding his signal if he attracts a
female or modifying it otherwise).

• “The nature of a mental representation cannot
simply be assumed, it must be explained.” – An
agent stores the received signals in its memory.
It associates these signals with its own species
or another one. Signals of foreign species are
forgotten after some time in case they are not
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heard anymore. Additionally, own signals are
associated with a success value.

found exactly
one male ?

of own
species ?
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yes

yes

yes
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yes
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adapt signal 

yes

decide whether to
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yes
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modify
own signal

store as

by P        % adapt

Figure 2: Flow diagram of male imitation behavior.

5 Male Behavior
A male bird flies around and periodically emits a sig-
nal (i.e. sings a song). He then waits for a response.
If no female bird arrives, he moves on (Figure 1).

If a female of his species arrives which wants to
mate, his signal is rewarded by an offset ∆+. If a fe-
male of another species arrives, he decreases the suc-
cess value of his signal by an offset ∆

−
. If this value

reaches a lower limit T , the male bird generates a new

signal. The old one is remembered as not successful
and stored in Sfailures. The agent ensures that the
new signal is significantly different from his other un-
successful trials in Sfailures and from foreign signals
in Sforeign. If no females arrive at all within a certain
time M , he stores his signal in Sfailures and creates
a new one.

When a male bird hears a new signal, he can also
decide to follow the signal to its source and explore
to which species it belongs (Figure 2). When he ar-
rives at the source location and sees exactly one male,
he assumes that he is the source of that signal. It is
possible that the emitter has already flown away and
a male of another species has arrived at that location.
This leads to a false assumption. But since signals in
Sforeign tend to fade out, this mistake is not perma-
nently retained.

Figure 3: Similarity of signals within a species
(shown for two species). The lower the value, the
smaller the differences. In the closed system a com-
monly used signal emerges. Then, the system is
opened and remains stable.

If the observed male is from the same species and
more dominant, the male bird decides to adapt his
own signal to the newly heard one (by Padapt%). If
the observed male is less dominant, the probability
that the more dominant one adapts to the heard signal
is less likely.

If the observed male is from another species, the
signal is stored in Sforeign. If the agent’s own sig-
nal is similar to the one that he heard, he decides to
modify it so as to be distinguishable from the other
species.

Then the agent flies in the direction where he ob-
serves fewer males. Otherwise male agents tend to
occupy a single location chatting with each other.

If the number of successful contacts is less than
the number of contacts with females of a different
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species, the male tends to follow more often an un-
known signal. If he is more successful, he sees no
need in doing this and decides more likely against it.

Figure 4: Similarity of signals within a species (A2:
straight line, B2: dashed line). The lower the value,
the more similar the signals are.

6 Synchronization
In a first scenario with two different species (40
agents each) but without female birds, the male be-
havior was observed. The agents all started with dif-
ferent signals. The simulation measured the variety
of signals within each species.

At first the system was closed, i.e. no agent left
or entered the scenario. The development of the sig-
nals showed that the variety was reduced. After each
species converged to a commonly accepted signal, the
system was opened and agents were periodically re-
placed with new ones. Figure 3 shows the develop-
ment of the similarity of the signals. The lower the
value, the smaller the differences. It shows that the
convention of a signal can emerge in a closed society
and remains stable when new agents enter the system
afterwards. This is comparable to the results Steels
found in his experiments (Fig. 3 in Steels and Kaplan
(1998)). If the exchange rate is too high, the system
becomes unstable and diverges again.

7 Female Behavior
Female birds also fly around and listen to signals.
When they hear one, they compare it to those they al-
ready associate with other species, stored in Sforeign

(Figure 14). If it is similar to those, they just ignore it.
But if it is similar to sown or if they have not learned

Figure 5: Differences of average signals between
species A2 and B2. The larger the value, the larger
the difference.

any signal at all, they fly towards its source location.
If the signal is unknown, the probability to follow it
is reduced.

If they follow the signal, they search for a male.
If they find exactly one, they assume that he is the
emitter. Here, the same source of errors as for males
exists.

If the observed male belongs to the same species,
the female decides whether to mate with him or not.
The more dominant a male is, the more likely the fe-
male decides to mate. If the female has not learned
a signal so far, she takes this one as sown. Other-
wise, she adapts her signal sown to the signal of the
male (by Padapt%). This means, that females grad-
ually adapt to changes in male signals. Additionally,
she increases the success value of sown by the offset
∆+.

If the observed male belongs to another species,
the female bird compares the heard signal to sown. If
sown is similar, she decreases its success value by the
offset ∆

−
. If the lower limit T is reached, sown is

stored in Sforeign. If it is not similar to sown , she
stores the heard signal in Sforeign.

8 Examination of the Parameters
The simulation consisted of a number of parameters.
First, a configuration of this parameter set was ex-
amined by manually modifying the values. This pro-
vided some insights within what ranges the values led
to a successful solution and why other configurations
failed.

To examine a greater number of possible con-
figurations, the parameter settings were examined
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with a genetic algorithm (Holland, 1975; Goldberg,
1989). Therefore, the parameters were divided into
two groups. Those which described the “physical re-
ality” of the environment and those which influenced
the behavior of the birds. The physical parameters
could not be modified by the genetic algorithm. Only
the behavior parameters were put into a genome:

• Probability that dominant males adapt their sig-
nal to less dominant males.

• Percentage of the most dominant males which
are always chosen by females.

• Offset ∆+ by which the success value of sown

is increased.

• Offset ∆
−

by which the success value of sown

is decreased.

• Lower limit T for failed signals. If the success
value of sown falls below this limit, it is ex-
changed by a newly created signal and stored in
Sfailures.

• Maximal number #Sfailures of failed signals
which a male can remember.

• Initial weight F for foreign signals.

• Offset f
−

by which a foreign signal’s weight is
decreased each frame.

• Offset f+ by which a foreign signal’s weight is
increased if recognized again.

• Percentage Padapt by which a bird adapts its sig-
nal to the signals of other birds of its species.

• Length M of time interval while a male bird
remembers how many females wanted to mate
with him.

• Number of contacts a male remembers. For each
contact he remembers also whether it was a suc-
cess or not. If the number of failures is greater
than the number of successes, the probability to
move towards the source of an unknown signal
is set to a higher value (60%). Otherwise it is set
to a lower value (30%).

• Ratio of females to males. By decreasing this ra-
tio the probability of contacts is decreased forc-
ing the males to adapt their behavior.

As the fitness function the success rate of all fe-
males of all species was used. The population size3

3the number of simulations running parallel

was set to 45 and the search lasted for 200 genera-
tions4. The probability of mutation was set to 30%
and the probability for crossover to 80%.

Figure 6: Rate of female failures (of both species A2

and B2): average of all attempts (dashed, falling line)
and average of attempts within the last 500 frames
(jagged line).

9 Diversification
In a first scenario two species A2 and B2 were set
into the same habitat. Each population consisted
of 40 agents. All male birds of all species started
with the same signal. The system was open, so that
agents were periodically replaced with new ones ev-
ery 80000 frames. The whole simulation lasted for
300000 frames.

Figure 7: Similarity of signals within each species.
The lower the value, the smaller the differences (A3

straight line, B3 dashed, C3 dotted).

4for all scenarios
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In a second scenario three species A3, B3, and C3

were set into the same habitat. Each population con-
sisted of 30 agents.

And in a third scenario four species A4, B4, C4,
and D4 were set into the same habitat. Each popula-
tion consisted of 25 agents.

The parameter configurations for all scenarios
were examined using the genetic algorithm described
above. The scenario with two species was also exam-
ined by manually modifying single parameters.

Figure 8: Differences of average signals between
species A3 and B3 (straight), A3 and C3 (dashed),
and B3 and C3 (dotted). The larger the value, the
larger the difference.

10 Results

10.1 Two Species

Figure 4 shows the development of the similarity of
the signals used within each species. In the beginning
the similarity tended to worsen in a very short time.
The initial signals were too close to those of the other
species as they either attracted too many females of
the wrong species or no females at all as they discov-
ered that these signals were not to be trusted.

But after the first phase of diversification, the males
of each species started to synchronize their signals
and the similarity improved, while the distinction be-
tween the two species increased (Figure 5).

The successful and unsuccessful attempts of the fe-
males to approach males of their own species were
also measured. Figure 6 shows the ratio of failures to
all attempts: the dotted line shows the ratio for all fe-
males of all species; the thin (jagged) line represents
the ratio for the last 500 frames. The lines start at 1.0,

representing total failure, but drop quickly showing
the success of the newly learned signals.

After 100000 frames the range of the jagged line
becomes smaller and smaller and the absolute values
are also falling below 0.2 which means that less than
20% of the attempts were failures.

Figure 9: Rate of female failures (of all species A3,
B3, C3): average of all attempts (dashed, falling line)
and average of attempts within the last 300 frames
(jagged line).

The same scenario with a doubled population size
showed similar results. But as the size is further in-
creased the probability of reaching a convention de-
creases as Ke et al. (Ke et al., 2002) and Steels
(Steels, 1996b) already have observed.

In early test runs of the diversification scenario the
ratio of females to males was kept at one to one. This
led to too many contacts between males and females.
No evolutionary pressure was built up to force the
males to change their signals. Therefore, the number
of females was reduced to decrease the probability of
a contact.

Another important factor was the rate with which
agents were replaced in the habitat. If this replace-
ment rate is too high, a population can not reach a
convention about a common signal.

The diversification scenario was also initiated with
randomly generated signals for all males. This in-
duced better starting conditions and the failure rate
of the females dropped faster, while the inter-species
diversification was reached faster as was the inner-
species synchronization.

10.2 Three Species
In the second diversification scenario, three species
were set into the habitat. The diversification and
the synchronization took much more time. Figure 7
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Figure 10: Similarity of signals within each species.
The lower the value, the smaller the differences (A4

straight line, B4 dashed).

Figure 11: Similarity of signals within each species.
The lower the value, the smaller the differences (C4

straight line, D4 dashed).

shows the development of the similarity of the signals
used within each of the three species. Similar to the
scenario with two species, the males of each species
started to synchronize their signals and the similarity
improved after a phase of diversification in the be-
ginning. But the system was not as stable as in the
other scenario. Especially species A3 (straight line)
had difficulties to find a common signal. Species C3

(dotted line) was most successful.
This can also be seen in Figure 8 which shows the

differences of the average signals between species A3

and B3 (straight line), A3 and C3 (dashed line), and
B3 and C3 (dotted line). The differences of C3 to A3

and B3 are the largest.
The rate of female failures of all species, as shown

in Figure 9, decreased over time, but stayed in the
range between 20% and 40%. Thus, the females of

all three species were never as successful as those in
the scenario with only two species.

Figure 12: Differences of average signals between
species A4 and B4 (straight), A4 and C4 (dashed),
and A4 and D4 (dotted). The larger the value, the
larger the difference.

10.3 Four Species

In the final diversification scenario, four species were
set into the habitat. The system could not come to
a solution as in the other two scenarios. Figure 10
shows the similarity of signals for species A4 and B4,
Figure 11 for C4 and D4. The similarities improved
from time to time, but they never stabilized.

Figure 13: Rate of female failures (of species A4, B4,
C4, D4): average of all attempts (dashed, falling line)
and average of attempts within the last 300 frames
(thin line).

Also the differences between the species could not
be increased to a certain level and remain there. Fig-
ure 12 shows the differences of the average signals of
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A4 to all other species. After nearly 200000 frames
the emerged differences decreased again.

fly towards
source

similar to
foreign
signal ?

no signal
learned
so far ?

of own species?

yes

dominant male?

yes

mate

learned a
signal already ?

∆+

∆−

fly around
and listen

1 male ?

yes

yes yes

yes

yes

found exactly

is signal
unknown?

similar to
own signal ?

signal heard ?

yes

yes

of different
species ?

store as
foreign signal

own signal ?
similar to

yes

reached lower

associate with
foreign signals

no yes

limit T ?

decrease signal’s

store
heard
signal

reinforce
signal by
adapt signal

adapt

success value by

by P         %

Figure 14: Flow diagram of female behavior.

The rate of female failures of all species (Fig-
ure 13) also failed to improve constantly. After
240000 frames the number of failures suddenly in-
creased again.

11 Conclusion
The communicative agents were capable of memoriz-
ing signals, associating them with their own or other
species, generating, adapting, and comparing them.
Additionally, they could measure their mating suc-
cess. Based on only these basic possibilities and sim-
ple rules the different interacting groups of agents
were able to organize their behavior.

A positive feedback loop caused some signals to
proliferate and eventually become dominant within a
species. A negative feedback loop led to diversifica-
tion of signals between species. The results were ob-
tained without any global control, but only by simple
interactions of the agents.

Within a limited range, the system found a solution
which was favorable for all species. Changing spe-
cific parameters led to an unstable systems. This way
the conditions could be identified which were impor-
tant for a successful solution.

The system never reached a perfect state, since
there was always some in- and out-flux and finding
the correct emitter of a signal was not ensured. But
as soon as the convention about signals starts to be
passed on genetically – from generation to generation
– better results might be possible.
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Abstract

This paper describes a model that demonstrates that sharing knowledge can be adaptive purely for its
own sake. This is despite the fact that sharing knowledge costs the speaker in terms of foraging oppor-
tunities, and that initially the majority of the population consists of free-riders who listen but do not
speak. The population is able to take advantage of the increased carrying capacity of the environment
that results from the spread of knowledge, and the free riders are reliably out competed by the speakers.

1 Introduction

1.1 Is Language Costly Signalling?

Many contemporary theories on the emergence of
linguistic communication focus on mechanisms that
could compensate for the cost of communication
to the individual. When transmitted information is
viewed as a commodity rather then as a means of
influencing the behaviour of the receiver, the evolu-
tionary benefits of linguistic communication do be-
come unclear. The cost for a knowledge transmitter
is the cost of giving up a competitive advantage by
not keeping valuable information to themselves.

Dessalles (2000) uses agent based modelling to ar-
gue against the sharing of information as reciprocal
altruism. The starting point of his argument is that the
gathering of information is costly and that therefore
passing it to others for free is effectively costly too.
Dessalles’ claims that the results of running his agent
model where there is a cost to communicating show
that communication cannot be a form of reciprocal
altruism under realistic conditions. Only if informa-
tion were very valuable, the cost for dispensing it very
low and if it were easy to detect non-cooperative indi-
viduals, would the model favour communication. He
then proceeds to explain the benefits of language as
a means of forming coalitions and obtaining status
within a social group through coalitions.

We will not argue against this last point —
Dessalles makes a strong case for how language can
serve this purpose. Nor will we argue against any
other possible benefits of language that have been

brought forward over the years, for example its utility
in thinking (e.g. Dennett, 1996).

We do challenge the hypothesis that compulsively
sharing valuable knowledge is in itself not adaptive.
We have built a model in which agents communi-
cate about food. Agents only have access to food
resources they know how to exploit and being told
is one way of obtaining this knowledge. The cost of
dispersing information is that it enables other, com-
peting agents in the vicinity to gain access to limited
resources that otherwise may well have been monop-
olised by the original knowledgeable, communicat-
ing individual. Although there is this individual cost,
the population as a whole benefits from the disper-
sal of knowledge as it effectively increases the carry-
ing capacity of the environment by opening up addi-
tional food resources. Our model shows that there are
circumstances in which communicating agents out-
compete silent, knowledge-hoarding agents, despite
the fact that these silent agents hear and exploit all the
same knowledge the communicating agents in their
vicinity hear and exploit.

In the remainder of this section we give a brief in-
troduction in Agent Based Modelling. In the next sec-
tion we provide a description of our model, then we
report the results of the experiments more finally. We
conclude with a discussion and summary of results.

1.2 Agent Based Modelling

Agent Based Modelling (ABM) is used as a research
tool in a variety of areas including: social science
and economics (Epstein and Axtell, 1996; Cederman
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and Rao, 2001), animal behaviour (Hemelrijk, 2000)
and complex systems in general (Baray, 1998; Esteva
et al., 2001). In ABM, only the agents and their en-
vironment are modelled explicitly. The global be-
haviours being studied in the system emerge from
local interactions, both between agents and between
agents and their environment, when the model is run.
For example, in our models the agents only communi-
cate to their neighbours who are also their immediate
competitors for food. This means that for the indi-
vidual there is an immediate disadvantage in commu-
nicating. However, the global effect we show is that
over a longer period of time and for the entire popu-
lation, communication can be beneficial, and will in
some circumstances be selected.

Our models were built in NetLogo (Wilensky,
1999). NetLogo is a freely available multi-agent
modelling environment, specifically designed for the
ABM of natural and social phenomena. The Net-
Logo world consists of two kinds of programmable
agents: an environment divided into patches and mo-
bile agents called turtles. Patches can represent envi-
ronmental change, such as growing food, while tur-
tles are typically used to represent animals, including
humans.

2 Method

2.1 Prerequisites

In this section we describe our model’s implementa-
tion. We begin with an overview of the general prop-
erties of the model such as the relation between the
amount of food and the population size. Then we
explain how the environment is built and finally we
describe agent behaviour.

The model we use has to be suitable for simulating
evolutionary pressure and to model the effects of the
spread of knowledge through communication. The
first requirement entails that the model yields a more
or less stable population so that it can be studied over
a long period of time. In this context ‘stable’ means
that the population does not become extinct and does
not become so small that chance factors can kill off
otherwise successful minority species, but also does
not explode in size since this would slow the simula-
tion down a good deal.

For the same reason large, rapid fluctuations in
population size are undesirable. As a result, the
model has to be initiated with values close to the equi-
librium. The consequences of events that cause the
population to drop dramatically and the ability (and
the speed) to get back to a stable population are of

course very interesting, but fall outside the scope of
the current research.

In the simulation, time is measured in cycles, one
time-step corresponds to one cycle in which all the
agents have been activated. So activation is done in a
drawing without replacement fashion. Choosing the
order in which to activate the agents is resolved by
NetLogo itself.

2.2 Basics, the Environment and Food

The number of agents is determined by their birth
and death rate, and these in turn are both affected
by the replacement rate of the food. The agents re-
produce asexually and the reproduction preconditions
are chosen such to meet the above-mentioned stabil-
ity requirement. The offspring function is discussed
later in this section, but depends on energy levels.
Agents die if they run out of energy or reach maxi-
mum age. A maximum age of 50 cycles is imposed
to keep a small number of long-lived individuals from
influencing the spread of knowledge. In addition, to
live the agents need to keep their energy level above
zero. They do this by feeding.

Model runs are begun with the values for agent
energy and the number of agents close to equilib-
rium for the given amount of food, including special
food. Runs begin with a brief period of population
/ food oscillation, but these damp quickly to initial
equilibrium levels. The population equilibrium then
rises slowly as knowledge spreads through the agents,
while the food equilibrium stays roughly constant.

The environment consists of 201x201 patch square
on a torus space, which is presented on screen as a
square. This means agents that walk off any ‘edge’
of the square will reappear on the opposite edge. On
every cycle, energy available in the environment is
supplemented in the environment by ‘growing food’
in a method similar to Wilensky (1998). For every
patch, a random number is generated; if it is smaller
than the food replacement rate, food is added to the
patch.

There are two categories of food: regular food that
is available to all agents and six different types of spe-
cial food with twice as much nutritional value that
are only accessible to agents with the corresponding
know-how, which enables that food-type’s exploita-
tion1. A patch can contain only one unit of food. To

1This idea was derived from one due to Steele (2004), which
in turn derived from the Expensive-Tissue Hypothesis (Aiello and
Wheeler, 1995). Steele’s idea was that language and a larger brain
may have co-evolved. Communication enabled agents to exploit
richer food sources which in turn allowed them to have larger
brains and smaller guts, thus conserving overall metabolic cost.
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prevent the special food from clogging up the envi-
ronment if no agents know how to eat it, special foods
can be overgrown by the regular food using the fol-
lowing algorithm.

On each cycle, food growth is accomplished by
generating a random numbern for all empty patches,
and filling those with ann smaller then the replace-
ment rate for the special food with some special food.
Then this procedure is repeated for all the empty
patches and all patches containing special food us-
ing the replacement rate for regular food. This time,
if the random number for a patch that is either empty
or containing special food is smaller than the replace-
ment rate for regular food, the patch is emptied and
refilled with the regular food.

3 Knowledge and Transmission

There are two breeds of agents, agents that communi-
cate and agents that don’t. All agents of both breeds
understand communication, and will use knowledge
received to eat special food if they find it. The only
differences between the breeds is that, every time cy-
cle, agents of the communicating breed choose one
food type they know about and communicate this
knowledge to all their neighbours.

New knowledge comes into the simulated popula-
tion in a slightly unrealistic way. Agents are all born
knowing how to eat the most basic, lower calorie food
type. In addition, when the agents are born they have
a 5% probability of knowing how to eat any one of
the different, special, food types. No learning except
from communication is done after the agent is born.
Although somewhat unrealistic, this is relatively easy
to code. Further it simulates the propensity of young
agents to engage in exploration. Imagine if you like
that during their first time step of life, agents are more
likely to put strange things into their mouths. Again,
both breeds are equally likely to acquire new knowl-
edge this way.

The probability of an individual having offspring
depends on their energy level. To keep the popula-
tion size from fluctuating too much we have chosen
a conservative offspring function. Even agents with
relatively high energy levels do not necessarily re-
produce; rather reproduction is probabilistic, though
the probability increases with the energy level. When
agents with high energy do reproduce, their offspring
are at an advantage compared to that of agents with
less energy because at birth the parent’s energy is split
80:20 with its offspring.

The offspring is always of the same breed as the
parent. This may seem too deterministic, but it is easy

to see how a mutation probability biases the ratio be-
tween the two breeds. Assume for instance we have a
population of 100 individuals of 2 breeds, a 1:10 ratio
and a mutation probability of 10% (for explanatory
purposes, this is of course too high to be realistic). If
the rest of the parameters are such that the popula-
tion and the ratio between the breeds should stay the
same — all individuals hatch once and die immedi-
ately afterwards — this is what happens the first time
around:

minority breed att + 1 = 10 − 0.1 ∗ 10 +
0.1 ∗ 90 = 10− 1 + 9 = 18

majority breed att + 1 = 90 − 0.1 ∗ 90 +
0.1 ∗ 10 = 90− 9 + 1 = 82

Because we want communication to be the only force
influencing evolutionary pressure such a bias would
be undesirable.

The agents move across their environment ran-
domly with step lengths distributed according to a
Levi-flight distribution. Walking patterns fitting this
description have been found in foraging animals as
well as in evolutionary optimised foraging agents
(van Dartel et al., 2002). The formula describing a
Levi-flight distribution is:

P (l) = 1/z ∗ 1/lm

Wherez is a normalising constant andm is a value
between1 and3. In our implementation we deviate a
little from Levi-flight proper by taking1/m to be3.
This is done to keep the knowledge distribution more
localised by keeping step length relatively small. No-
tice though that the density of the population has no
impact on their mobility: any number of agents can
be standing in the same patch.

The agents lose a small amount of energy with ev-
ery time step regardless of the distance travelled. Be-
cause agents wander around aimlessly they are pre-
sented with feeding opportunities at random, but their
chances of actually feeding depend on two things:

1. the know-how they possess, and

2. how many neighbouring agents have the same
know-how and may thus be eating the same local
resources.

3.1 General Experiment Characteristics

The models are run for a long period of time, typically
12,000 time-steps, corresponding to roughly 350 gen-
erations. During this time a number of values are
recorded and plotted against the duration of the simu-
lation and recorded separately: the number of agents,
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the ratio between the two breeds, the amount of food
in the environment, the amount of regular food and
the total amount of the special food. The number
of things each agent knows, summed up and divided
by the total number of agents, is taken as measure of
know-how in the population and is also recorded and
plotted. While the values above describe properties
of the entire population, some properties of individ-
ual agents are also recorded. Namely, when an agent
dies its ID, age, date of birth, breed, know-how, par-
ent and all offspring are recorded to a file.

Every experiment started out with a population of
10% communicating agents and 90% silent agents.
Also, for each experiment, we ran a control ver-
sion where all conditions were the same except the
‘communicating agents’ did not actually communi-
cate. They were however still tagged as a different
breed from the normal/silent agents.

3.2 Metrics for Evaluation

Recording values as described above provides the
means to measure the influence of communication
and the opportunity to examine the mechanisms be-
hind it. Values taken from individual agents and re-
lated to breed, food distribution and know-how in-
clude the following frequencies:

1. Number of offspring.

2. Number of offspring that managed to reproduce.

3. Age at death.

Biological fitness is nothing but reproductive success.
Having many offspring is only an indication of fitness
if those offspring get to reproduce. For this reason
both 1) and 2) are taken as a metric. The age at death
is used by Baray (1998) to measure the effectiveness
of cooperative behaviour. We use it as an extra met-
ric; it is useful because it correlates with other popu-
lation properties like offspring survival rate.

There are also two systemic measures: the breed
ratios and the environmental carrying capacity. The
latter is simply the average number of agents the envi-
ronment can sustain — Epstein and Axtell (1996) use
this to measure the influence of trade. In the models
presented here the amount of food in the environment
is determined from the start of every experiment, but
the amount of food available to the agents depends
on the spread of knowledge. With a greater spread of
knowledge more food will become accessible, chang-
ing the carrying capacity of the environment.

The breed ratios provide a straightforward way of
determining how some trait influences fitness. It sim-
ply requires checking if individuals possessing that

trait take over the population. It is not a sufficient
measure because populations can sometimes become
extinct despite being well adapted, especially in a
model where the total number of individuals lower
than about 2000. Because there are fairly significant
but essentially random fluctuations of the population,
small populations will die out, even if they might ul-
timately have proved more adaptive. For this reason,
if less than 1000 agents are in the initial population,
the initial (less than 100) speakers often die out early
in the simulation.

4 Description of Runs

The growth rate of the food provides a handle for ma-
nipulating population density and consequently the
amount of communication. This holds primarily for
the growth rate of the regular food, the growth rate
of the special food does not have much effect on the
population until the appropriate know-how has per-
colated through the population. Most of the spread
of knowledge happens simultaneously with the com-
municating agents taking over the population; per-
fect knowledge on the other hand never seems to be
achieved.

In order to start the simulation with reasonable val-
ues, the amount of special food in the environment
has to be approximately the same as the amount of
food when the simulation reaches equilibrium. Re-
call that the equilibrium value depends on the replace-
ment rate and energetic value of the food and on agent
life properties. The latter include the offspring func-
tion, maximum age and the amount of energy agents
lose every cycle. In the first series of experiments
the effects of the different food ratios were measured
by keeping the growth rate of the regular food fixed
and varying the growth rate of the special food. Re-
member that the ‘special food’ differs from the regu-
lar food by having a twice as high energetic value and
a more limited availability.

4.1 Preliminary Results

We ran experiments with different amounts of food in
the environment. Under almost all of the conditions
the silent agents die out. As expected, with compara-
tively more special food in the environment the talk-
ing agents had more of an advantage. The time at
which all the non-communicating agents die out is
inversely proportional to the replacement rate of the
special food. Only when the amount of special food
in the environment is kept very low does the advan-
tage of communicating disappear. This is done by
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food replace rate average population size
regular special with comm. without comm.

16 1 1367.51 1336.21
16 2 1440.35 1373.81
16 8 2303.71 1447.97
16 16 4267.45 1579.35

Table 1: The average population size after equilib-
rium is achieved in two different conditions (with
and without communication) at four different replace-
ment rates for special food.

setting a (very low) limit to the amount of food, the
food only gets replenished if the sum total falls under
this threshold.

With communication the carrying capacity of the
environment increases with the amount of special
food. In the communication-free control conditions
there is also a population increase but much smaller.
This increase is due to the individuals who are ran-
domly born knowing about special food, even though
they can’t communicate about it. Table 1 shows the
total population size by the end of the simulation (set
to 12,000 time cycles, which is usually well after a
stable equilibrium is found.) Notice that in the last
two cases the silent agents were already extinct at the
time the population stabilised enough to get an aver-
age, but in the other cases the population stabilised
beforethe silent agents died out.
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Figure 1: An example run where there are 6 special
food types. Points are drawn approximately 10 gen-
erations apart.

Analysis shows there is no exclusive or common
know-how. That is, for every one of the different
things the agents can know, at any point in time, the
percentage of agents that have this knowledge will
fall in the same interval, yet there is never a point
reach where all agents know all things (see for ex-

ample Figure 1). Note that this means only that in-
dividual knowledge is distributed evenly at different
points in time. Across particular regions of space
some know-how may be shared by many agents while
some could be held exclusively by a small number
of individuals. In fact this is exactly what happens.
We have equipped our model with a visual diagnos-
tic tool to enable us to see which agents have the
same know-how. Of course, having some type of
know-how will lead to a higher energy level only if
the agent stumbles upon the corresponding food. The
speed of dissemination and the overall availability of
knowledge depends on the density of communicating
agents. Knowledge spreads faster in an environment
that can support more agents. Also the numbers of
communicating agents increases faster in an environ-
ment that has more special food (food that requires
knowledge) in it.

5 Discussion and Future Work

5.1 The Effects of Communication

We have chosen a natural way of modelling the cost
and benefit of communication. In our model the costs
of communication are individual and temporally lo-
cal. Also, the costs and benefits (for the receiving
agents) are probabilistic. The hearing agent only ben-
efits from the newl knowledge if it stumbles on a
patch with the corresponding food. The cost for the
communicating agent mirrors this. By compulsively
giving out information the communicating agent en-
ables its neighbours to take that same food. There
may never actually be any competition if the food is
not there. But when there is food in the vicinity, the
neighbouring agents will be in the position to take it
all. Nevertheless, compulsively giving free informa-
tion is the evolutionarily successful strategy.

5.2 Selection

It may be argued that what we are showing here is kin
selection. The agents live for a short time and they
mostly take small steps. Under these circumstances
an agent can be expected to have more contact with
its offspring or parent than with any other particular
random agents. These are simple agents which speak
to every neighbouring agent the same, whether they
are related or not, or even whether or not they are the
same breed. Nevertheless, some biologists argue for
kin rather than group selection even where the iden-
tity of kin may be ‘mistaken’, or in this case, not dis-
criminated.
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We can see no other explanation for why the silent
agents die out except that, since they tend to be near
their own relatives, they don’t tend to get to know
as much, and so they are out-competed for energy.
Similarly, although a speaker gives up the advantage
of its own knowledge in the short term, because it is
likely to be in a community of similar agents, it is
more likely to learn knowledge that helps it exploit
more different kinds of food. What our simulations
show is that, at least in some circumstances, this is
the better strategy than free-riding.

There is obviously a great deal of work remaining
to be done. It would be interesting to characterise
more formally when and why the silents die out and
the communicators dominate. We could also count
how many of the communications going on are be-
tween relatives as a proportion of the whole. It would
also be interesting to modify the model to explore
things such as what happens if agentsdo restrict their
communication to close relatives, practice deception,
or just accidently, through their own ignorance, com-
municate useless or even harmful knowledge.

Nevertheless, the work as it stands brings inter-
esting challenges to some existing Evolution of Lan-
guage theory. For example, every theory on the emer-
gence of language that presupposes that the cost to
communication automatically means communication
is not in itself adaptive needs to be reevaluated.

6 Conclusion

We have demonstrated that the propensity for com-
munication can have a selective advantage despite be-
ing costly, provided that it has sufficient benefit to the
community of speakers. Theact of communicating
may be costly to an agent, but thepropensityto com-
municate will benefit the agent if it is consequently
likely to learn from its children, parent, siblings and
cousins. Further, we have shown that free riders who
understand what they hear but do not share their own
knowledge not only fail to inhibit the selection of
free communicators, but will in the long term be out-
competed if they tend to pass on their propensity for
not sharing their knowledge and to live near their kin.

As we stated in our introduction, our results in
no way challenge whether there are other selective
forces that have affected the evolution of language,
particularly language as we know it. But we have
conclusively shown that arguments in favour of such
mechanisms as selection for prestige cannot rely for
evidence on free communication being non-adaptive.
Communication may still have been the first selective
advantage of language.
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Abstract 
 

On a ‘distributed’ view, cognition is embodied, situated and develops as agents use the world to al-
ter their cognitive powers. Among other things, this throws new light on how infants are trans-
formed by talk. This process comes to be seen as one of mutual gearing where, acting jointly, adults 
and infants link affect-based behaviour with normative patterns. Next, conclusions are drawn for 
language- sensitive machines. Androids that orient to norms by using human dynamics will, it is 
suggested, throw new light on language origins. Apart from using powers based in a language fac-
ulty, they can be used to explore how the etiology of ‘language’ uses developmental processes that 
enable us to develop beliefs based on historical use of writing. 
 

1   Introduction 
“Life is .. but a tale told by an idiot, 
full of sound and fury, signifying 
nothing.” Macbeth, 5.5. 17-25. 
 
Writing with one eye to machines, I sketch 
how talk helps make babies into persons. 
Emphasis falls, not on the words that we 
find in speech, but rather the sound and 
fury of old tales. Adopting a distributed 
view of cognition (e.g. Hutchins, 1995; 
Clark, 1997), I follow Kirsh and Maglio 
(1994), in stressing how human intelligence 
uses real-time activity to alter the way cog-
nition proceeds. From this perspective, the 
origins of language depend –not only on 
inner ‘faculties’ – but also how affect 
prompts infants to use visible and vocal 
expression.1 While emphasising how care-
giver beliefs prompt infants to change their 
multimodal human expression, I begin with 
the magical sound of speaking persons. 
 
 
 
                                                 
1 The dynamics of utterance-activity use ‘epistemic action’ (Kirsh 
and Maglio, 1994). In the examples below a baby uses an adult to 
change its own neural states (sic). 

2   Magical words? 

Words seem magical because what we say 
is, often, only distantly related to how the 
words are taken. In conversation a person 
may say ‘brown’ or ‘marrone’ to mean 
roughly “How can that disgusting stuff pos-
sibly be chalk?” In spite of the gap between 
the said and what is meant, agreement is 
possible because, in real-time, agents gear 
to each other’s expression (Cowley, 1997). 
In this paper, I sketch how the same abili-
ties contribute to more primitive activity.  
 
Infant response to a speaking person im-
pacts on development by altering the cogni-
tive processes that sustain human agency 
(Cowley, 2005). On this view, word-forms 
are second-order constructs rooted in ki-
netic, expressive and vocal events. In real-
time, the infant responds affectively to per-
sons whose dynamics are influenced by the 
norms applied in the circumstances. Using 
biomechanical biases, these cultural pat-
terns allow infants to synchronise and an-
ticipate events (Cowley, Moodley and 
Fiori-Cowley, 2004). Not only do they re-
flect on prior learning but, crucially, on 
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caregivers’ interpretations. Unknowingly, 
infants find that affect enables them to en-
gage with the interaction order (Goffman, 
1983; Drew and Wooton, 1988). As illus-
trated, dynamic joint behaviour or ‘utter-
ance-activity’ connects affectively based 
behaviour with adult ‘understanding’. In a 
world of cultural norms, while utterance-
activity can be analysed as discourse, sen-
tence-structure and words, its ontological 
origins lie in how bodies adjust to each 
other. Like most vertebrate communication, 
language is based in assessing and manag-
ing display (Owings and Morton, 1998). In 
development, as in evolution, changing as-
sessments drive changes in management 
strategies. 
 
3   Norms: the gearing hypothesis 

Drawing on affective reactions, infants use 
biomechanics to prompt adults to act in line 
with folk psychological analyses. As they 
orient to the relevant norms, therefore, they 
depend on neither simple invariants nor 
pattern recognition. This case can be effec-
tively presented around an example. While 
Distress Control Silence (DCS) routines are 
probably universal, they vary across cul-
tures, relationships and interactions. They 
conform to a simple pattern: 
 

• A baby shows distress 
• A caregiver tries to control the baby  
• The baby falls silent 

 

Interestingly, as routines change, response 
is dominated by different aspects of care-
giver regulation. While early DCS routines 
are based in kinesis (e.g. rocking, shaking 
and touching), work in three African com-
munities showed that, at 14 weeks, this was 
already falling away in (some) isiZulu 
speaking dyads (Cowley et al., 2004). At 
this age, vocal and visible dynamics were 
often sufficient to prompt babies to do what 
the caregiver wanted. In other contexts, 
more use was made of picking the baby up, 

hugging and soothing. Social learning led 
some14 week olds to discover: 

• Patterned vocalizations and gestures 
demand response. 

• How and when to respond. 
• What this affords.  

Rather than appeal to what an infant 
‘knows’, one can examine how each party 
regulates the other. On the infant side, in 
spite of sensory under-development and 
poor motor control, responses are managed 
by intrinsic motivation systems. Whatever 
their neural basis, the baby uses its brain 
for what Wilson (1998) calls ‘prepared 
learning’.2 Caregivers, by contrast, promote 
DCS routines because of how inner motives 
interact with cultural values, beliefs and 
strategies. In spite of this asymmetry, real-
time sensitivity to affective display prompts 
infants to gear to adult expectations. Gradu-
ally, they develop regulatory strategies that 
allow each party to manipulate the other. 
Infants learn when micro-behaviour in-
dexes likely affective reward (and punish-
ment). Even before 4 months, babies are 
able to use utterance-activity to anticipate 
events. They can show sensitivity to what 
another person wants. 
 DCS routines have both selective 
value and major cognitive consequences. 
These arise as each party gears to the other. 
By scaffolding caregiver response, a baby 
alters the cognitive results of its actions. 
When falling silent on command, for ex-
ample, an adult may find herself reacting to 
‘My baby is good’, ‘she really understands’ 
or ‘she is afraid of father’. DCS routines 
thus evoke normative behaviour. Especially 
when articulated, these give regularity and 
structure to a child’s experience of the in-
teraction order. In kwaZulu Natal, concepts 
like thula and hlonipha are powerful espe-
cially when, at DCS moments, a baby fails 
to fall silent. Because it does not thula (fall 
silent) a caregiver may treat it as failing to 
                                                 
2 Cowley (forthcoming) appeals to Trevarthen’s (1998; 2001) 
intrinsic motive formation.  For discussion of empathy and per-
ception-action mechanisms, see Preston and de Waal (2002). 
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show respect (hlonipha). The dyad’s reper-
toire develops as interactions featuring co-
ordination and conflict bind affect with ex-
pectations based on how, in different cir-
cumstances, adults use norms.  
 
Development uses how a baby meshes its 
behaviour with adult beliefs and wants (e.g. 
be quiet if father is sleeping). Joint activity 
based in learning and norms shape the bio-
mechanics of joint activity. 

Co-ordination comes to reflect on 
locally favoured dynamic patterns that 
prompt culturally mediated joint action to 
promote human functionality. Much human 
behaviour is thus based in neither symbol 
processing nor pattern recognition but, 
rather, a kind of soft assembly. In this, ex-
ternal features –affective values associated 
with cultural procedures –recruit neural 
systems that subtend sensorimotor control. 
Although relying on statistical learning and 
biases (biomechanical and cultural), pat-
terns emerge as infant motor control adjusts 
to normative dynamics. Social learning 
prompts dual control where, in some cir-
cumstances, infants incorporate adult be-
liefs into behavioural strategies (see, Spur-
rett and Cowley, 2004; Cowley, 2004b). In 
kwaZulu Natal, DCS routines help infants 
grasp dynamics based on expecting silence 
(thula) as a sign of respect (hlonipha). 
 

4   Aligning to the words spoken 

Since a baby uses manifest wants and be-
liefs, expressive behaviour enables cultural 
concepts to shape infant cognition. Even at 
3 months, a child’s behaviour is affected 
not just by utterance-activity but also im-
portant ‘words’. That, however, is just a 
first step in aligning to what is said. Before 
considering this, however, it should be 
stressed that the baby is an attractive hu-
man body who manipulates its kin by using 
contingent behaviour and joint affect. The 
selective history that derives human func-

tionality from utterance-activity is, there-
fore, likely to be ancient.  That said, let us 
turn to another example. 

The 9 month Luke is learning new 
ways of manipulating others. The baby, 
who knows no words, uses attentional abili-
ties to pick up on signals based in how be-
liefs permeate his world.  Consider other 
settings: were he a rural Kispigis speaker, 
he would be affectionately called a monkey 
and, perhaps, rely as much on manual as 
vocal communication. In Luke’s belief-
world, however, verbal intelligence is 
highly valued and his mother thinks 
(falsely) that a ‘self’ shows Luke what he 
can see, hear, feel etc.  While mistaken, 
these culture specific beliefs shape many of 
her doings. Luke uses affect together with 
abilities to anticipate contingent patterning 
that prompts new ways of acting (see, Cow-
ley, in prep).  Below, he comes up with a 
proto-thought.  

 
Fig 1. Luke’s proto-thought (‘get the block’) 
 
When Luke spontaneously generates a (fea-
sible) novel form of behaviour, he self-
rewards with a big smile. In thus altering 
his cognitive processes, he shows every 
sign of being close to becoming a self-
regulating agent. While using time-locked 
co-ordination and joint routines, Luke does 
more than meet his mother’s want. Though 
he does not know the source of his action, 
he grasps what she wants him to do.  What-
ever neural processes underlie the smile, 
they set off co-ordinated, self-initiated ac-

25



tion. Immediately afterwards, he crawls off 
to get a block.3 

How does Luke understand his 
mother? As English speaking adults, we 
note that, in 6 seconds, she asks three times 
if he wants to get the block. The words ac-
tually spoken, however, do not affect Luke. 
Lacking belief in words or meanings, as 
Cowley (in prep.) argues, he uses her body 
to decide ‘what now?’ Thus when analysed 
in real-time, mutual gearing can be shown 
to divide what happens into stages4  

• Realising this is not a giving game. 
• Grasping what it is all about (based 

on gaze following) 
• Inhibiting other stimuli to promote 

joint activity  
• Using her body to see what to do. 

As at 3 months, events depend on close 
timing and inhibition of other stimuli. The 
baby can no also follow gaze, recognizes 
when joint activity is expected, crawl, and 
pick up desired objects.  In 11 seconds, 
these schema come together and, anticipat-
ing his own doings, Luke rewards himself. 
This reward is a proto-thought or, in folk 
terms, “understanding that she wants him 
to fetch the block”.  In aligning to what is 
actually said, he effectively answers ‘Do 
you want to fetch the block?” 
 
Mutual gearing allows utterance-activity to 
transform human agency (Cowley, 2005). 
Soon, Luke will not only  show understand-
ing but also act in ways inviting analysis 
around words and rules (Spurrett and Cow-
ley, 2004; Cowley, 2004b). As he babbles, 
he may make [fe] sounds that may, in some 
conditions, prompt his mother to ‘fetching’. 
Given her beliefs, she may use this (falsely) 
as evidence that he ‘knows’ a word or 
meaning. Biomechanically, this affords 
new ways of integrating vocalizing with 
                                                 
3 This rolled away moments before. In the picture, his caregivers 
body ‘points at the block’. To prompt him to get it she has been 
shifting her gaze from the block to Luke (and back again). 
4 In Tomasello’s (1999) work, this kind of triadic behaviour is 
attributed to a special evolved socio-cognitive device (for cri-
tique, see Cowley, 2004a). 

joint perception-action schema. Saying [fe] 
thus adds functionality to how he manipu-
lates her. While based in associative learn-
ing, Luke’s fetching differs from that of a 
dog. Affect laden signals enable him, un-
knowingly, to draw on beliefs and values. 
In learning to ‘fetch’, multimodal utter-
ance-activity serves as a remarkable cogni-
tive resource.5  
 
5   The case for androids 

Can a machine exploit social learning to 
discover word-magic? This empirical ques-
tion can be addressed by harnessing com-
putational powers to sensors and motor 
control systems. Given the power of mutual 
gearing, we can gain from rethinking the 
nature of language-sensitive machines. In-
fant behaviour shows that, among other 
things, these exploit behavioural dynamics 
jointly regulated by culture and affect. Each 
case of falling silent, showing respect, and 
fetching that now use circumstances and, 
for that reason, cannot be simulated by sys-
tems that are reliant on invariants or brute 
statistical learning. Indeed, it is because so 
much of human cognition is contingent 
that, to exploit utterance-activity, machines 
need to use micro-behaviour in sensing to 
norms.6 If they do this, real-time human 
behaviour can be used to transform the ma-
chine’s causal and cognitive powers.  

 Real-time sensitivity to multimodal 
utterance-activity will be possible if ma-
chines look like us and behave in human-
like ways. Further, like infants, they will 
need to induce appropriate norm oriented 
human behaviour.7 The engineering prob-

                                                 
5 There is no reason to think that Luke needs an inner process to 
represent forms isomorphic to those of “Do you want to fetch 
that?”  In another sense, however, that is what he understands. 
His grasp of what to do uses how caregiver beliefs are enacted. 
6 It is instructive to contrast how humans and computers interact 
during Tetris (see, Kirsh and Maglio, 1994). While humans de-
velop strategies, a computer runs a program. Obliterating this 
contrast, language-sensitive machines would use dynamics rather 
as do Tetris players. 
7 Empirically, machines will look and behave ‘like’ us. Rather 
than assume that they will be like babies, we should remember 
that laboratory trained bonobos learn elementary language. We 
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lem, therefore, is to design machines that 
use spontaneous micro-behaviour to build 
relationships. Only androids (MacDorman 
& Ishiguro, 2004) can induce behaviour 
whereby machines can use affect to alter 
their cognitive powers by using human 
wants and de facto beliefs (let alone ex-
plicit ones!) On the other hand, humans are 
often well-disposed to robots and, for social 
reasons, act to couple affective display with 
norm-based activity. Thus, in examining 
human-robot interaction, Cowley and 
Kanda (in press) comment, “Perhaps the 
most significant finding in how children 
respond to Robovie is that what they do is 
affected less by robot behaviour than an 
imagined relationship.”  
 

5   Magic in words 

While babies do not understand the formal 
entities we associate with ‘words’, they are 
deeply affected by language-based beliefs.  
As Macbeth put it, they use the ‘sound and 
fury’ of human expression which, in other 
contexts, gives life to old tales. In one re-
spect, then, the physical grounding of lan-
guage lies in expressive patterns often re-
garded as ‘idiotic’.  How Luke uses his 
mother’s body shows that dynamics func-
tion by altering how cognition proceeds. By 
gearing to his mother, who gears to him, he 
is able to produce a proto-thought that is 
followed  up by activity that demands folk 
explanation (e.g. ‘getting the block as was 
suggested’). 

For engineers, the distributed view 
has three main implications. First, instead 
of focusing exclusively on word-forms, 
they can explore how the interaction order 
uses bodily dynamics in affect-driven 
‘transparent’ activity. Second, to use this 
spontaneously, we need machines that look 
like us, behave like us, and build human-
like relationships.  Third, development of 
                                                                        
mutually gear to each other’s strategic uses of affect (see, Cowley 
& Spurrett, 2003). 

androids may change our view of the evo-
lution of language. Instead of invoking or-
gans or instincts, the etiology of language 
seems to straddle nature, development and 
history.8 Not only do its evolutionary roots 
allow babies to link world and brain-side 
development but, especially in literate 
communities, language comes to be institu-
tionalised around word-use on linguistic 
beliefs that have altered in tandem with the 
historical processes that gave us technolo-
gies that include wax tablets, printed books 
and computer technology. 
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Abstract

This paper examines the effect of cultural learning on a population of neural networks. We compare
the genotypic diversity of populations employing only population learning and of populations using
both population and cultural learning. We show that cultural learning is capable of achieving higher
fitness levels and maintains a higher level of genotypic diversity.

1 Introduction

A number of learning models may be readily ob-
served from nature and have been the focus of much
study in artificial intelligence research. Population
learning (i.e. learning which occurs at a popula-
tion level through genetic material) is typically sim-
ulated using genetic algorithms. Life-time learning
(i.e. learning which takes place during an organisms’s
life time through reactions with its environment) can
be simulated in a variety of ways, typically employ-
ing neural networks or reinforcement learning mod-
els.

A relatively new field of study in artificial intel-
ligence is synthetic ethology. The field is based on
the premise that language and culture are too com-
plex to be readily analysed in nature and that insight
can be gained by simulating its emergence in popu-
lations of artificial organisms. While many studies
have shown that lexical, syntactical and grammatical
structures may spontaneously emerge from popula-
tions of artificial organisms, few discuss the impact
such structures have on the relative fitness of individ-
uals and of the entire population.

The focus of this paper is to attempt to understand
the effect of cultural learning on a population of ar-
tificial organisms. This is accomplished by study-
ing its effect on the population’s fitness as well as
its genotypic diversity. The remainder of this paper
is arranged as follows. Section 2 introduces back-
ground research, including descriptions of diversity
measures and cultural learning techniques that have
been used in the past. Section 3 describes the ex-
perimental setup. Section 4 presents the Experiment

Results and Section 5 presents conclusions.

2 Background research

2.1 Cultural Learning

Culture can be succinctly described as a process of
information transfer within a population that occurs
without the use of genetic material. Culture can take
many forms such as language, signals or artifactual
materials. Such information exchange occurs during
the lifetime of individuals in a population and can
greatly enhance the behaviour of such species. Be-
cause these exchanges occur during an individual’s
lifetime, cultural learning can be considered a subset
of lifetime learning.

An approach known as synthetic ethology
(MacLennan and Burghardt (1993); Steels (1997))
argues that the study of language is too difficult
to perform in real world situations and that more
meaningful results could be produced by modelling
organisms and their environment in an artificial
manner. Artificial intelligence systems can create
tightly controlled environments where the behaviour
of artificial organisms can be readily observed and
modified. Using genetic algorithms, the evolutionary
approach inspired by Darwinian evolution, and the
computing capacity of neural networks, artificial
intelligence researchers have been able to achieve
very interesting results.

In particular, experiments conducted by Hutchins
and Hazlehurst (Hutchins and Hazlehurst (1995))
simulate cultural evolution through the use of a hid-
den layer within an individual neural network in the
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population. This in effect, simulates the presence of a
Language Acquisition Device (LAD), the physiolog-
ical component of the brain necessary for language
development, the existence of which was first sug-
gested by Chomsky (Chomsky (1976)). The hidden
layer acts as a verbal input/output layer and performs
the task of feature extraction used to distinguish dif-
ferent physical inputs. It is responsible for both the
perception and production of signals for the agent.

A number of approaches were considered for the
implementation of cultural learning including fixed
lexicons (Yanco and Stein (1993); Cangelosi and
Parisi (1996)), indexed memory (Spector and Luke
(1996)), cultural artifacts (Hutchins and Hazlehurst
(1991); Cangelosi (1999)) and signal–situation tables
(MacLennan and Burghardt (1993)). The approach
chosen was the teacher/pupil scenario (Billard and
Hayes (1997); Denaro and Parisi (1996); Cangelosi
and Parisi (1996)) where a number of highly fit agents
are selected from the population to act as teachers for
the next generation of agents, labelled pupils. Pupils
learn from teachers by observing the teacher’s verbal
output and attempting to mimic it using their own ver-
bal apparatus. As a result of these interactions, a lex-
icon of symbols evolves to describe situations within
the population’s environment.

2.2 Diversity

Diversity measures typically quantify the differences
between individuals in a population. It is commonly
accepted that a population that is capable of maintain-
ing diversity will avoid premature convergence and
local maxima.

Diversity measures for populations of neural net-
works have been the focus of considerable research,
focusing mainly on genotypic diversity (Y. Liu and
Higuchi (2000); Opitz and Shavlik (1996); Brown
(2003)). Many methods exist for the calculation of
genotypic diversity, many based on binary represen-
tations. For the purposes of this research however,
many schemes are unsuitable due to the nature of
the marker-based encoding scheme used to represent
each neural network.

Our scheme examines each block of the encoding
and compares it to blocks of similar length in other
encodings. Each encoding block contains a single
node and a number of links emanating from that node.
Since it would be difficult to compare arbitrary blocks
of differing lengths to produce a diversity compari-
son, our approach pairs and compares blocks of sim-
ilar lengths.

The diversity calculation follows the following

steps: the genomes of the two individuals being com-
pared are examined and blocks having similar lengths
are identified and flagged in the genome of each in-
dividual. Each pair of blocks is then compared using
a euclidian distance measure. The measure is then
averaged over the length of the genome to produce a
diversity measure.

The diversity calculation is applied such that every
individual in the population is compared to all others,
resulting in a global diversity measure for the entire
population.

3 Experimental Setup

The following set of experiments each employs two
populations. One population is allowed to evolve
through population learning (by genetic algorithm),
while the other employs both population and cultural
learning. The experiments are carried out using a pre-
viously developed artificial life simulator (Curran and
O’Riordan (2003)) capable of simulating population
and cultural learning.

Cultural learning is implemented using a scheme
developed by Hutchins and Hazlehurst (Hutchins and
Hazlehurst (1991)) where the last hidden layer in
a neural network functions as a verbal input/output
layer. At the end of each generation, a number of
the best individuals in the population is selected to
instruct the next. Pupil networks observe teacher net-
works as they interact with their environment and at
each stimuli, the teacher networks produce an utter-
ance through their verbal I/O layer. The pupil re-
sponds to the utterance with its own, which is then
corrected by back-propagation to more closely re-
semble the teacher’s utterance. After the required
number of these interactions (teaching cycles) have
been completed, the teachers are removed from the
population and the pupils continue to interact with
their environment.

The problem domain for this set of experiments is
the 5-bit parity problem. Each network is exposed to
bit patterns and must determine whether the pattern
represents an odd or even number. Fitness is assigned
according to the mean square error of a network.

Each experiment consists of a population of 50
neural networks evolving for 250 generations with
crossover and mutation rates set at 0.6 and 0.02 re-
spectively. The population employing cultural learn-
ing takes the top 10% of each generation as teach-
ers which interact with pupils for five teaching cy-
cles. An additional parameter, cultural mutation,
adds noise to each interaction with probability 0.02.
Each of these parameters was determined empirically
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in previous work (Curran and O’Riordan (2004a,b)).
The results presented are averaged from 20 indepen-
dent runs.

4 Experiment Results

The graph presented in Figure 1 shows that, as shown
in previous work, the addition of cultural learning is
beneficial to the population. The average population
error can be seen to be declining in both populations,
but there is a clear distinction between the population
employing cultural learning and the population using
only population learning.
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Figure 1:Population Error

Figures 2 and 3 show the average minimum and
maximum error values for both populations. In the
case of minimum error, the population employing
cultural learning is generating individuals with lower
error values than population learning alone.
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Figure 2:Mininum Error Values

Examining the maximum error graph it is clear that
cultural learning is also generating individuals with a
lower maximum error than population learning alone.

Taking these two observations in combination, it can
be said that cultural learning is not simply propping
up the population (by improving the error values of
weaker individuals), but that it is also capable of pro-
ducing novel high performing individuals, thus im-
proving the population’s fitness as a whole.
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Figure 3:Maximum Error Values

The results for genotypic diversity, are illustrated
in Figure 4. While both populations have a tendency
to reduce diversity as the experiment progresses, the
population employing only population learning is
clearly converging faster. Cultural learning seems to
be better at preserving genotypic diversity. In fact, it
appears that genotypic diversity and fitness are pos-
itively correlated (0.82 value for Pearson’s correla-
tion) suggesting that a high level of diversity is desir-
able in the population.
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Figure 4:Population Diversity

To further understand the effect of cultural learning
on the population, the population employing cultural
learning was examined more closely. The average er-
ror value was taken at the start of each generation (be-
fore any teaching had taken place) and compared to
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the error value obtained subsequent to teaching. The
results presented in Figure 5 are especially interesting
when further compared to the error value obtained by
the population using only population learning.
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It appears that before individuals have the oppor-
tunity to learn through teaching, they perform very
poorly compared to their population learning coun-
terparts. However, once teaching is applied, they sur-
pass the performance of population learning. This
masking of what are infact mediocre,or poor individ-
uals by another process has been previously identified
as the Hiding Effect (Mayley (1997)).

Since its definition, the hiding effect has been fre-
quently considered the anti-thesis of the Baldwin ef-
fect (Baldwin (1896)) where learning guides the pro-
cess of evolution. However, these results suggest that
there may be another aspect of the hiding effect: by
masking poor genetic material, the population is ef-
fectively protecting its diversity and avoiding prema-
ture convergence.

5 Conclusions

It is clear from these results that cultural learning
is having a direct and significant impact on the per-
formance of the population for this particular prob-
lem set, namely reducing the average error of in-
dividuals in the population. In addition, from ex-
amination of maximum and minimum error values
within each population it can be said that cultural
learning achieves its higher fitness performance not
only through the correction of weak individuals, but
through a process of novel individual creation.

We have shown through these experiments that
there are new aspects to the hiding effect which may
not have been previously detected. By preserving ini-
tially mediocre individuals, the population is capa-

ble of maintaining its diversity and boost its perfor-
mance. The genetically mediocre individuals are then
allowed to learn through cultural learning, attaining
fitness levels higher than what would be possible us-
ing population learning alone.

In future work we will address more complex prob-
lems and examine how the addition of cultural learn-
ing may aid where environments are changing dy-
namically.
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Abstract 

 

 

After a long hiatus, the evolution of language has become a major topic of research and discussion, 

with considerable empirical and theoretical progress made in the last decade.  The same is less true 

of the evolution of music, despite a recent surge of interest in this topic. Like language, music is a 

human universal, found in all cultures, which has phrase structure and entails learning and cultural 

transmission. In contrast, music serves no obvious functional purpose. According to Darwin, the 

human musical faculty "must be ranked amongst the most mysterious with which he is endowed". 

This makes the evolution of music an interesting puzzle for evolutionary biologists. 

In this talk I discuss the possibility that the deep similarities between language and music in-

dicate a shared evolutionary history.  In particular, the fact that both language and music are human 

universals, have, suggests that any theory of the evolution of language will have implications for the 

evolution of music, and vice versa. I first discuss the similarities and differences between language 

and music, focusing on mechanisms of music perception and the ontogeny of prosodic communica-

tion, and discussing comparative data regarding various animal communication systems commonly 

called musical (such as bird and whale "song").  After briefly discussing possible functions of hu-

man music (courtship, group cohesion, mother/infant communication) I will end by discussing the 

phylogenetic history of music.  I conclude that many strands of evidence support Darwin's (1871) 

hypothesis of an intermediate stage of human evolutionary history.  This hypothetical stage was 

characterized by a communication system that resembled music more closely than language, but 

was identical to neither.  This pre-linguistic system, which I call "prosodic protolanguage", provided 

a precursor for both modern language and music. 

This hypothesis leads to some empirically testable predictions.  In particular, the considerable 

inter-individual variation in human musical skill makes it an excellent system to study genetic and 

neural mechanisms (comparing musicians to non-musicians) underlying a complex cognitive uni-

versal of our species. 
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Abstract

A central concern of work on the evolution of language has been to offer an account for the emergence
of syntactically complex structure, which underwrites a compositional semantics. In this paper we
consider the emergence of one class of utterances which illustrate that semantic expressiveness is
not correlated with syntactic complexity, namely metacommunicative interaction (MCI). These are
utterance acts in which conversationalists acknowledge understanding or request clarification. We
offer a simple characterization of the incremental change required for MCI to emerge from an MCI-
less linguistic interaction system. We discuss the evolutionary background in which MCI might arise
and become adaptive. We describe a system in which computational simulations can be run designed
to test hypotheses regarding the emergence of MCI.

1 Introduction

A central concern of work on the evolution of lan-
guage has been to offer an account for the emergence
of syntactically complex structure, which underwrites
a compositional semantics. In natural language, se-
mantic expressiveness is not correlated with syntactic
complexity. A key feature of natural language, which
provides striking instance ofsyntactically underde-
terminedsemantic complexity, is metacommunicat-
ive interaction (MCI)—utterance acts in which con-
versationalists acknowledge understanding or request
clarification. (1b) exemplifies such a syntactically
simple form which, nonetheless, in context can ac-
quire a highly complex content:

(1) (a) A: Did Bo leave?

(b) B: Bo?; (“Bo?” can mean in this contextAre
you asking if Bo, of all people, leftor who
were you referring to as Bo?).

Indeed NL possess forms whose sole meaning con-
cerns MCI, as exemplified by (2), a form whose sole
use is to query an antecedently uttered polar interrog-
ative whose subject has unclear reference:

(2) Do I like who?

The need to verify that mutual understanding
among interlocutors has been achieved with respect

to any given utterance—and engage in discussion
of a clarification request if this is not the case—is
one of the central organizing principles of conver-
sation (Schegloff (1992); Clark (1996)). However,
hitherto there has been little work on the emergence
of MCI meaning. Communicative interaction is fun-
damental to EoG(rammar) work, since it is interac-
tions among communicating agents that leads an ini-
tial ‘agrammatical’ system to evolve into a grammar
(with possible, concomitant phylogenetic modifica-
tion; see e.g. Briscoe (2000); Kirby (2000)). How-
ever, given an I-language perspective, the communic-
ative aspect as such is not internalized in the gram-
mar (though see Steels (1998)). Consequently, such
models of EoG cannot explain the existence of forms
whose meaning is intrinsically MCI oriented.

In this paper we offer a simple characterization of
the incremental change required for MCI to emerge
from an MCI-less CIS. We discuss the evolutionary
background in which MCI might arise and become
adaptive. Finally, we report on a system we are de-
veloping in which computational simulations can be
run designed to test hypotheses regarding the emer-
gence of MCI.
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2 Metacommunicative Interac-
tion and EoL

2.1 The significance of MCI for a lin-
guistic community

By metacommunicative interaction one means any
interaction that comments about the communicative
process underlying an utterance. More specifically,
the commonest MCI utterances are: acknowledge-
ments that an utterance has been understood, clari-
fication requests (CRs) in which an unclear aspect of
the utterance is queried, and corrections, where in-
dications are provided of erroneous assumptions con-
cerning naming, concepts associated with predicates
etc. (3), from the London Lund corpus, contains a
CR (utterance (2)), a correction (utterance (4)), and
an acknowledgement (utterance (5)):

(3) A(1): did you also scotch that other story
which is something like was he wasn‘t he re-
fused the chair in Oxford

a(2): who

A(3): Skeat, wasn‘t he refused

a(4): that‘s Meak

A(5): oh Meak, yes

(London Lund S.1.9, p. 245)

What significance does MCI have for linguistic in-
teraction within a community? MCI is redundant in
so far as the communication channel, i.e. that which
mediates between speaker and addressee, is perfect or
close to that. The need for MCI arises when the com-
munication channel is intrinsically liable to break-
down. If NL resembled formal languages like first or-
der predicate calculus (as often implicitly assumed in
EoL work, see e.g. Kirby (2000)), then problems with
the communication channel would be restricted to ac-
tual physical problems with the speech signal (mis-
hearing, mispronunciation, noise and the like), prob-
lems that affect just about any naturally occurring
communicative interaction system. However, NL di-
verges radically from first order predicate calculus in
its context dependence. This manifests itself in (at
least) three phenomena:

(4) a. indexicality: words like ‘I’, ‘You’, ‘here’,
‘now’, that are resolved relative to the ongo-
ing speech situation.

b. anaphoricity: words and phrases that are
resolved relative to semantic values estab-
lished by previous utterances (e.g. pronouns,
non sentential utterances etc).

c. ambiguity: words and phrases which pos-
sess multiple senses, one of which is utilized
in a given context.

Moreover, even a language like first order predicate
calculus used by agents who can reflect about inten-
tions underlying communicative acts, will give rise to
the sort of inferences that have come to be known as
Gricean conversational implicatures (Grice (1989)).
These add an extra layer of uncertainty to the com-
municative process.

Given this, acknowledgements, CRs and correc-
tions are a key communicative component for a lin-
guistic community. They serve as devices for allay-
ing worries about miscommunication (acknowledge-
ments) or for reducing mismatches about the lin-
guistic system among agents (CRs and corrections).
That is, they serve as a device for ensuring a certain
state of equilibrium or lack of divergence gets main-
tained within a linguistic community.

2.2 The Emergence of MCI: basic in-
gredients

Given the importance that MCI has for linguistic in-
teraction, some fundamental questions that need to be
answered are:

(5) a. Under what circumstances does a linguistic
interaction system without MCI evolve into
one that has MCI?

b. What mechanisms are involved in such a de-
velopment?

c. Why is the resulting interaction system
maintained?

In order to address these issues, we need to fix
what we mean byan interaction system with MCI.
In the literature on the semantics and pragmatics of
dialogue—more on which see section 3— a num-
ber of interaction systems have been defined where
in addition to the regular illocutionary acts (asser-
tion, querying, commanding etc), also additional
grounding acts (e.g. acknowledgements) are available
(see e.g. Poesio and Traum (1997)) and also sys-
tems where clarification requests are available (see
e.g. Ginzburg and Sag (2000); Ginzburg and Cooper
(2004)). Such systems assume that as a preliminary
to the processing of an utteranceu an addressee A
checks whether she understandsu. If she does, A
optionally responds with an acknowledgement, and
then reacts in the conventional way to the utterance
(accepting/disputing an assertion, answering a query,
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and so on.). On the other hand, if A does not fully
understandu, A poses a query that requests clarifica-
tion concerning the unclear aspect ofu (e.g. inability
to resolve a referent, unfamiliarity with or mishearing
of a word, etc.) using a number of predefined opera-
tions on utterances and utterance meanings.

Poesio and Traum (1997); Ginzburg and Sag
(2000); Ginzburg and Cooper (2004) show how ex-
isting formal frameworks for grammatical/semantic
processing of MCI-less natural language can be ex-
tended to process natural language that includes MCI
utterances such as acknowledgements and CRs. To
understand what is involved, though, one can restrict
attention to much simpler systems. We mention two
here discussed in Ginzburg (2001).

The utt(erance) ack(nowledgement) game In this
game, given an utteranceu0 consisting of a string
(word1. . . ,wordi,. . . ,wordn) by the master, the novice
may respond with the utteranceu1: wordi. In this
context, this utterance is assigned content:novice
acknowledges that an utterance including the word
wordi happened. This fact now becomes part of the
novice’s and master’s common ground. What cap-
abilities does playingutt-ackgame require from the
novice?

• Phonological imitation and segmentation mod-
ule (can be played in one word mode, i.e. game
does not require novice to have syntactically
complex capabilities).

• Ability to form mutual beliefs.

The reward for playing this game is shared interaction
with the master. Who can play this game?

• Human neonates: the initial stage of speech con-
sists largely in playing this game. Bates (1979);
Ninio and Snow (1996)

• Chimps: Greenfield and Rumbaugh (1993).

A rudimentary game with CRs: The ack-huh?
game Given an utteranceu0, the responder may ac-
knowledge the utterance or pose a simple CR query-
ing the content ofu0? For instance:

(6) Master: You want the ball? Novice:
(i)huh?/(ii)ball?

What additional capabilities does playingack-huh
require from the novice?

• Querying

• the ability to form questions querying the con-
tents of antecedently uttered utterances.

• No requirement for syntax

Who can play this game?

• Human neonates (from approx 20 months)

• Not chimps: Greenfield and Rumbaugh (1993)

The key feature of these games is at the level
of ontology, namely the possibility of reference to
utterances and sub-utterances and their properties.
In particular, for theack-huh? game agents re-
quire a notion of synonymy between utterances (i.e.
the ability to reformulate in a way that preserves
content), otherwise any metacommunicative-oriented
discussion will be circular. Thus, the simplest agent
with the ability to discussa CR is an agent who
can communicate contents such as “I don’t under-
stand (previous-utterance)” and “What do you mean
(previous-utterance)”. Given an agent who can re-
flect and form questions about entities in the do-
main, this means that once ‘say’ and ‘mean’ predic-
ates are in the language, then basic clarification re-
quests can be expressed. Consequently, the emer-
gence of metacommunicative interaction-oriented ut-
terances that go beyond mere acknowledgement, as
exemplified in theack-huh? game, can be viewed
as an instance of the problem of how vocabulary
emerges to talk about a class of entities in a domain,
given the need/desire to do so.

However, as should be obvious from this dis-
cussion, metacommunicative interactionslows down
interaction—it involves expending effort away from
the actual topic of discussion (food, social relations,
danger etc) onto mere conversation management.
Hence, it isprima facie clear that it is not adapt-
ive in a small, tight knit community, where lexical
differences among adults are minimal and where it
is extremely unlikely that issues of reference resolu-
tion will arise. Thissuggeststhat metacommunicat-
ive interaction could only emerge in a linguistic com-
munity where members have significantly diverse ex-
periences, which could lead to lexical divergences
arising (e.g. nomads who share territory on a sea-
sonal basis). We speculate that MCI has emerged as
an interactional device that keeps members of a lin-
guistic community from diverging too widely from
each other’s linguistic capabilities, say in terms of
their basic vocabulary.

The plausibility of this speculation can be assessed
by converting it into more concrete questions such as
the following:
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(7) (a) In a community with minor but random lex-
ical differences where some people use cla-
rification requests, whereas others do not, do
the clarification request users gain an advant-
age?

(b) Given a community A where clarification re-
quests do not get expressed, and community
B where they do, how do the two communit-
ies evolve with respect to vocabulary drift.

In the following sections we discuss a computa-
tional system we have been developing. This system
is intended to run simulations that can address ques-
tions such as (7). Experimental results from these
simulations will be presented at the workshop.

3 Modelling dialogue

3.1 Issue-based Dialogue Management

In this section we outline some of the basic principles
of Issue-based Dialogue Management, which under-
pins our dialogue system.

Information States We assume information states
of the kind developed in the KoS framework (e.g.
Ginzburg (1996); Larsson (2002)) and implemented
in systems such as GODIS and CLARIE (see e.g.
Larsson (2002); Purver (2004)). On this view each
dialogue participant’s view of the common ground is
structured by a number of attributes including the fol-
lowing three: FACTS: a set of facts representing the
shared assumptions of the CPs,LATESTMOVE: the
most recent grounded move, andQUD (‘questions un-
der discussion’): a set—often taken to be structured
as a stack—consisting of the currently discussable
questions.

Querying and Assertion Both querying and as-
sertion involve a question becoming maximal in the
querier/asserter’s QUD: the posed questionq for a
query whereq is posed, the polar questionp? for an
assertion wherep is asserted. Roughly, the responder
can subsequently either choose to start a discussion
(of q or p?) or, in the case of assertion, to update her
FACTS structure withp. A dialogue participant can
downdateq/p? from QUD when, as far as her (not
necessarily public) goals dictate, sufficient inform-
ation has been accumulated in FACTS. The query-
ing/assertion protocols (in their most basic form) are
summarized as follows:

(8) cooperative query exchange

1. LatestMove.Cont =
Ask(A,q): IllocProp

2. A: q becomes QUD maximal; re-
lease turn

3. B: q becomes QUD maximal; take
turn; make q-specific utter-
ance; 1 release turn.

(9) cooperative assertion exchange

1. LatestMove.Cont =
Assert(A,p): IllocProp

2. A: p? becomes QUD maximal,
release turn

3. B: p? becomes QUD maximal,
take turn; 〈 Option 1: Discuss
p?, Option 2: Accept p 〉

(10) 1. LatestMove.Cont = Accept(B,p) :
IllocProp

2. B: increment FACTS with p; pop
p? from QUD;

3. A: increment FACTS with p; pop
p? from QUD;

Grounding Interaction Grounding an utterance
u : T (‘the sign associated withu is of type T’) is
modelled as involving the following interaction. (a)
Addressee B tries to anchor the contextual parameters
of T. If successful, B acknowledges u (directly, ges-
turally or implicitly) and responds to the content of
u. (b) If unsuccessful, B poses a Clarification Request
(CR), that arises viautterance coercion(see Ginzburg
and Cooper (2001)). For reasons of space we do not
formulate an explicit protocol here—the structure of
such a protocol resembles the assertion protocol.

3.2 CLARIE

CLARIE (see Purver (2004)) is a dialogue system us-
ing the TRINDIKIT framework and is based on the
KOS approach to dialogue modelling.2 It is designed
to be able to (a) interpret users’ clarification ques-
tions and respond suitably, and (b) ask clarification
questions in order to learn new words and phrases.
It is based on the dialogue system GoDiS, but uses

1An utterance whose content is either an answer toq/or a ques-
tion q1 which is a subquestion ofq.

2TRINDIKIT Larsson and Traum (2000) is a toolkit for build-
ing and experimenting with dialogue move engines and informa-
tion states. TRINDIKIT allows a modular structure where vari-
ous models can feed information into the IS, or can read informa-
tion from it. The TRINDIKIT also allowsresourcesto be defined,
modules which don’t play a particular part in the overall control
algorithm but which provide particular information or capabilities
which can be called upon the other modules.
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a Head Driven Phrase Structure grammar (Ginzburg
and Sag (2000)) for interpretation and generation. It
also incorporates the ellipsis resolution techniques of
SHARDS (see Ferńandez et al. (forthcoming)).

4 An ALife Simulation

We are currently running artificial life simulations on
a population of agents with dialogue capacities based
on CLARIE. The simulation part is built up using
RePast (developed by ROAD), a set of Java libraries
that allow programmers to build simulation environ-
ments. The running of the simulation is divided into
time steps or ’ticks’, and at each tick some action oc-
curs using the results of previous actions as its basis.
Agents are created and placed in an environment in
which they are able to wander around in search of
food resources. Agents are endowed with a vision ca-
pacity in order to see food resources as well as other
agents. Upon meeting another agent, the two agents
enter a dialogue.

In order to test the questions raised in (7) the agents
need to have minor but random lexical differences,
and clarification requesting (CR) capabilities. As a
working assumption we build in variation along the
agents’ lexicons restricted to nouns. Some motivation
for this comes from the fact that verb clarification is
very rare, where the CR ratio is 40:1 for nouns vs.
verbs (Purver 2004).

Two types of agents exist in the model; agents cap-
able of making a clarification request and those incap-
able of doing so. When an utterance is passed from
one agent to another, the agent receiving the utterance
tries to parse it using its grammar (which is same for
every agent). If the utterance contains an unknown
word its semantic interpretation fails in the ground-
ing process. This triggers one of the two events (de-
pending on the agent’s clarification capability): a cla-
rification request (CR) is produced, or a lexicon ac-
quisition algorithm (LAA) is called. If a clarification
question is produced, the answer to that question is
used to resolve the semantics of the unknown word.
If the lexicon acquisition algorithm is called the agent
tries to ground the unknown word without producing
a clarification request.

In the simulations agents are distributed randomly
in the environment at the start of each simulation
run. Each agent is associated with its own version
of CLARIE. Once the simulation starts the agents be-
gin walking randomly in the environment. Agents are
able to perceive other agents that fall within their field
of vision. Once two agents see each other, they en-
gage in a dialogue by calling their dialogue systems

respectively. After the completion of the dialogue the
agents continue walking.

5 Conclusions and Future Work

In this paper we have discussed how metacommunic-
ative interaction (MCI) serves as a key component
in the maintenance of a linguistic interaction system.
We have outlined the basic components that need to
emerge in order that an MCI-less linguistic system
evolves into an MCI-containing system. We have de-
scribed the system we are developing for experiment-
ally assessing the emergence scenario of MCI.

We believe that one of the most significant pay offs
that studying the emergence of MCI will give rise to
is the need to tackle the issue of the costs and rewards
of participating in dialogue. Some initial steps in this
direction have been taken by Young (2002); Paek and
Horvitz (1999).
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Abstract

In this paper, we aim at constructing a model for agent showing symbolic activities. Based on a
discussion of a concept of symbol systems from the viewpoint of dynamical systems, we propose cor-
respondences of symbolic activities to behaviour of dynamical systems, such as, symbols to attractors,
symbol manipulations to transitions among attractors, and manipulation rules to order of the transition.
Thus, by using a dynamical system showing transition among attractors, we may be able to represent
symbolic activities, in part. We try to construct such a system with a chaotic neural network that is
a coupled NZ maps. We confirm that this model can memorize several patterns as attractors of the
system and shows transition among the memorized patterns. Further, we exemplify that not only recall
of the memorized patterns but also transitions among them are induced by certain external inputs. Ex-
amining these simulation results supports that the coupled NZ maps are used as a model of symbolic
agent for the study of emergence of linguistic communication.

1 Introduction

The remarkable feature of linguistic communications
is to use symbols for transmitting information and
mutual understanding. Deacon (1997) pointed out
that humans are symbolic species, namely, we show
symbolic cognitive activities such as learning, forma-
tion, and manipulation of symbols. In the research of
the origin and the evolution of language, we should
elucidate the emerging process of such symbolic cog-
nitive activities.

Most of agent models in simulation studies of the
language evolution presuppose the symbol process-
ing ability (Cangelosi and Parisi, 2002). For example,
a computational model for the evolution of composi-
tional syntax introduced in (Kirby and Hurford, 2002;
Kirby, 2002) can possess grammatical rules repre-
senting the correspondence of meanings and char-
acter strings that are considered as combinations of
symbols. In a dynamical systems model for the evo-
lution of prototypical category structure introduced
in (Hashimoto, 2002a), agents can emit, receive and
process sequences of words.

In order to understand the origin of language, we
should deal with the emerging process of such ability

of symbol processing. To this end, we need a model
of agent that autonomously acquires the ability of
symbolic cognitive activities for effectively studying
the emergence and the evolution of linguistic commu-
nication with the constructive approach.

The mathematical and computational studies of
symbol processing have been done in artificial intel-
ligence and connectionism. The former has difficulty
in the self-organization and emergence of symbols,
since symbols and the syntactic rules governing the
symbol processing are usually given by hand. While
the latter can acquire, in part, the symbolic represen-
tation from scratch without preparing explicit sym-
bolic elements, it is not good at explicitly describ-
ing symbols and their processing rules, since symbols
are in nature distributedly represented in neural net-
works. Thus, a new approach for symbol formation
has been required (Harnad, 1990). A new approach is
often supposed to be an integration of both artificial
intelligence type and connectionism type methods1.

A recent development to view cognitive systems is
the dynamic perspective. van Gelder (1998) argued

1Note that using connectionism model does not necessarily
mean that no symbolic element is prepared.

41



that cognitive systems can be understood well by
considering them as dynamical systems. This view-
point is also progressed to describe dynamic aspects
of brain activities using the framework of dynamical
systems and chaos (Tsuda, 2001).

The purpose of this research is to construct a model
of agent with a dynamical system, which shows sym-
bolic cognitive activities. When we construct a model
of cognitive agent for linguistic communication, we
take the dynamic viewpoint not only for the cogni-
tive systems (van Gelder, 1998) but also for language
(Hashimoto, 2002a,b). The dynamic view for lan-
guage means that symbols are not mere correspon-
dence of words to referents and symbol formation is
not mere assigning process of words to some objects.

The rest of this paper is organized as follows. In
§2 we discuss how symbolic systems are able to be
represented in dynamical terms. Based on the discus-
sion, we propose a model of dynamical systems for
symbol formation in§3. Concretely, the model is a
coupled chaotic dynamical systems. The simulation
results of the model are shown in§4. We discuss the
results in§5 and conclude this paper in§6.

2 Symbol Systems as Dynamical
Systems

To render the symbolic activities in the framework of
dynamical systems, we consider features of symbols.
In general, symbols are considered to represent or to
signify something and are manipulated according to
some rules such as a grammar in languages or a de-
duction rule in calculation and formal thought.

Harnad (1990) summarizes the feature of symbol
systems as the following definition:

1. A symbols is a set of arbitrary physical tokens
that are

2. manipulated on the basis of explicit rules

3. that are likewise physical tokens and strings to-
kens.

4. The rule-governed symbol-token manipulation
is based purely on the shape of the symbol to-
kens and

5. consists of rulefully combining and recombining
symbol tokens.

6. There are primitive atomic symbol tokens and

7. composite symbol-token strings.

8. The entire system and all its parts are all seman-
tically interpretable: The syntax can be system-
atically assigned a meaning.

This definition describes a system that can be inter-
preted as symbolic rather than an internal symbolic
activities. In order to construct an agent model that
shows symbolic activities, we construe this definition
as internal cognitive processes. Further, to implement
the agent model using a dynamical system, we in-
terpret the processes with the concepts of dynamical
systems.

The items 1, 6 and 8 say that there are some entities
that are accepted or interpreted as representing some-
thing such as objects, states of affairs, or abstract
ideas by cognitive agents. A cognitive process to re-
ceive some physical tokens evokes a cognitive pro-
cess to recall some memorized concepts. In the terms
of dynamical systems, this process can be viewed as
that some inputs to a dynamical system bring the sys-
tem to certain states. This representative function is
thought of as being realized by a kind of memory that
is usually modeled as attractors of the dynamical sys-
tem.

The items 2, 3 and 4 imply that the cognitive agent
performs symbol manipulation as a process of suc-
cessive recall of concepts (memories) and the suc-
cessions are rule-governed. In the dynamical terms,
we conceive the process as (spontaneous) transi-
tions among attractors in which the transition is rule-
governed or, at least, ordered.

The items 5, 7 and 8 mean that a part of sets or
some series of physical tokens, not all sets and se-
ries, are accepted as a ordered combination of enti-
ties, not as independent entities, and receiving pro-
cesses of such series induce retrieval processes of
concepts. These activities are considered as evoca-
tions of ordered transitions among attractors by some
input sequences.

Accordingly, we conceptualize the symbols sys-
tems from the viewpoint of dynamical systems under
the following correspondences:

• symbols to attractors,

• symbol manipulations to transitions among at-
tractors,

• manipulation rules to order of the transition.

A chaotic neural network is a candidate to im-
plement the symbolic behaviour as a dynamical sys-
tem. In chaotic neural network, memories are im-
plemented as attractors of the system (Adachi and
Aihara, 1997). In some chaotic dynamical systems,
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transitions among “attractor ruins2” have been found
(Kaneko and Tsuda, 2003), that is called “chaotic
itinerancy”. Thus, we may be able to construct a sys-
tem with plastically learnable symbolic activities by
a chaotic dynamical system by introducing the corre-
spondences mentioned above.

3 Model

3.1 coupled NZ map

In this paper, we use a coupled system of chaotic
maps, called NZ map (Nozawa, 1992), for a model
representing the features of symbols. A single NZ
map is a modified version of Hopfield type neuron
model. The modification is to add a self-feedback
connection and to descritize the time variable using
Euler method. Chaotic behaviour is observed in some
parameter region, as shown later. The coupled NZ
maps system with full connection is a model of mod-
ule structures of a neural network in the brain. It is
known that the coupled system chaotically itinerates
among attractor ruins (Nozawa, 1992).

The NZ map, a single element of the proposed sys-
tem, is given by the following equations:

pi(t + 1) = Fqi(t){pi(t)} , (1)

qi(t) = − 1
Tii





N∑

j 6=i

Tijpj(t) + Ii



 , (2)

Fq(p) = rp + (1− r)× (3)[
1− 1

2

{
1 + tanh

(
p− q

2β

)}]
,

where

• pi(t): the internal buffer of theith element at
time t, which develops according to the map,
Fqi(t), defined by Eqn.(3)

• qi(t): the activity of theith element at timet,
which includes the influence from the other ele-
ments,

• N : the number of elements,

• Tij : the connection coefficient between, theith
and thejth elements,

2An attractor ruin is a region in state space of a dynamical sys-
tem, in which orbit stays for a while like an attractor and escapes
from there.

• Tii: the coefficient of self-feedback connection
of theith element,

• Ii: the threshold of theith element,

• r, β: the parameters for the shape of the map
Fq(p).

Since the variableqi(t) behaves as a parameter of
the mapFqi(t), the NZ map varies the shape of the
function with time according toqi(t). For example,
whenr = 0.7 andβ = 0.006, there is a stable fixed
point, in the unit interval, nearp = 0 for q = 0 and
nearp = 1 for q = 1. For 0 < q < 1, the map has
three branches. Since the slope of the middle branch
is less than -1 for positiveβ, expansion occurs when
an orbit comes the middle branch and the dynamics
often becomes chaotic. Examples of the map and the
dynamics for differentq values are shown in Fig. 1.
In Fig. 1a) and c), the dynamics are chaotic, while it
is period two whenq is 0.5 (Fig. 1b)).

This dynamic behaviour of the map induces the
coupled system to show transitions among attractors.
As Eqn.(2) says, the parameterqi(t) varies through
interactions with the values of other elementspj(t).
Even if the dynamics of some elements fall into fixed
points, the parameterq of such elements are changed
by the other ones, and then the dynamics escape from
the fixed points.

3.2 Embedding Attractors

As mentioned above, we consider that symbols rele-
vant to attractors of a dynamical system. Since the
model proposed here is basically associative mem-
ory model, we can embed several memory states as
attractors of the dynamical system (Hopfield, 1984).
To do this, the connection weights between elements
should be appropriately set or learned correspond-
ingly to patterns to be embedded.

We use the following equation to determine the
connectionTij between theith andjth elements,

Tij =
∑

s

(2V s
i − 1)(2V s

j − 1) , (4)

whereV s = (V s
1 ,· · · ,V s

N ) is aN dimensional vector
with elements1 (“ON”) or 0 (“OFF”). This vector
represents a memorized pattern.

3.3 Recalled Pattern

We define, according to (Nozawa, 1992), a recalled
patternφ(t) = {φ1(t), · · · , φN (t)} by observing the
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Figure 1: The change of the shape of NZ mapFq(p)
and their dynamics for different values of a parameter
a)q = 0.09, b) q = 0.5 and c)q = 0.9, whenr = 0.7
andβ = 0.006. The horizontal and vertical axes are
the value of a variablep at timet andt + 1, respec-
tively. The dotted lines are the shape of the map. The
solid lines shows the dynamics of the map (cobweb
plot). The broken lines are diagonals.

values ofqi(t) of all elements as

φi(t) =

{
1 (qi(t) ≥ q̄(t)) ,

0 (qi(t) < q̄(t)) ,
(5)

where

q̄(t) = lim
n→∞

1
tN

t−1∑

t′=0

N∑

i=1

qi(t) (6)

is the criterion to separate whether each element is
“ON” ( φi(t) = 1) or “OFF” (φi(t) = 0). This cri-
terion is the spatiotemporal average ofqi(t). When a
recalled pattern is coincide with one of the embedded
patterns, that is,

φ(t) = V s (7)

for somes, the embedded pattern, or memory, is re-
trieved.

4 Simulation Results

We embed three orthogonal patterns, shown in Fig. 2
and namedC, F, 4, respectively, in the system of
16 elements. As a symmetrical nature of the sys-
tem, the reversed patterns of the embedded ones are
also attractors. Such reversed patterns are labelled as
C̄, F̄ and 4̄, respectively. All the other patterns than
the embedded and their reversed patterns are treated
in a lump and labelled byO. The parameters are
Ii/Tii = 0.09, r = 0.7 andβ = 0.006 throughout
this paper.

4.1 Recall and Transition of Embedded
Patterns

In a certain region of the strength of self-feedback
connectionTii, the system starting from generic ini-
tial state recalls one of the embedded or their reversed
patterns after some transient behaviour (Fig. 3). The
two graphs in Fig. 3 have the same parameters but dif-
fer in the initial states. They converge to the different
patterns. The fact that different initial conditions end
up with the different converged attractor means that
this system has multi-attractors.

When we rise the strength of the self-feedback
connection from the convergence parameter region,
the system itinerates among embedded and non-
memorized patterns as shown in Fig. 4. Namely, au-
tonomous changes of recalling patterns are realized
in this system.
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Figure 2: The schematic view of embedded patterns. The black and white boxes mean 1 (“ON”) and 0 (“OFF”),
respectively. Each patterns are named asC, F and 4, respectively.
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Figure 3: The time series of recalled patterns. Thex
andy axes are timet and the recalled patternsφ, re-
spectively. The labelsC, F, 4 are the embedded pat-
terns andC̄, F̄ , 4̄ are their reversed patterns, respec-
tively. The labelO means that the system is not in any
embedded pattern. Two graphs starts from the differ-
ent initial conditions. The self-feedback connection
is Tii = 13.0 in the both graphs.
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Figure 4: The time series of recalled patternsφ with-
out input. The self-feedback connection isTii =
15.0. This graph shows an itinerant motion among
the patterns.

4.2 Response to Input

We examine how the system acts to external input.
There is a variety of the way to give input for the sys-
tem. As simple cases, we consider constant and peri-
odic inputs and observe the response of the system to
the inputs. The external inputS(t) is given as

qi(t) = − 1
Tii





N∑

j 6=i

Tijpj(t) + S(t) + Ii



 (8)

in Eqn.(2)

In order to observe the dynamics of the system
more precisely than the sequence of recalled patterns,
we introduce a distance measure of orbitqi(t) from
the embedded patternsV s′ 3. The measure is defined

3The indexs′ is for the patterns both embedded and their re-
versed.
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as

Dists
′
(t) =

√√√√
N∑

i=1

(V s′
i − qi(t))2 . (9)

4.2.1 Constant Input

We give a constant input sequenceS(t) = 0.3 at
t = 10000 ∼ 20000 for the system with the self
feedback connectionTii = 15.0, that is, showing the
itinerant motion as shown in Fig 4. By this constant
input, the orbit is sometimes fixed at a pattern and
sometimes fluctuates among the patterns. Figure 5
shows the time series ofqi(t) around the period of
inputting when the system fall onto a fixed pattern
responding to an constant input. Only two of 16 el-
ements are depicted. The elements fluctuate largely,
actually itinerate among attractors, before the input,
and stabilized by the input.

Figure 5: The time series ofqi(t) around the period
of inputting (t = 10000 ∼ 20000) when a fixed input
S(t) = 0.3 is given. Thex axis is time. The self-
feedback connection isTii = 15.0. The time series
of 2 elements among 16 are drawn.

Figure 6 is a magnification of the inputting period.
As this graph shows, the elements compose two clus-
ters according to the range of the values. One clus-
ter moves between 0.2 and 0.3 and the other between
-0.05 and 0. While the elements are not fixed as
their dynamics ofqi(t), the recalled pattern does not
change. The time series of the distance measure, de-
picted in Fig. 7, tells that the system stays at a state
where the nearest pattern is̄F . Namely, the elements
in the upper cluster in Fig. 6 are “ON”, the others
are “OFF”. The pattern of “ON” and “OFF” coincides
with that ofF̄ .
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Figure 6: The time series ofqi(t) when a fixed input
S(t) = 0.3 is given. Thex axis is time. The self-
feedback connection isTii = 15.0. The time series
of all 16 elements are superimposed. They form two
clusters.
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Figure 7: The time series of the distance measure
from the embedded patterns,Dists

′
(t), when a fixed

input S(t) = 0.3 is given. Thex axis is time. The
self-feedback connection isTii = 15.0. The six
orbits of the distance from all patterns are superim-
posed. The orbits composing three clusters periodi-
cally change, but the nearest pattern is fixed atF̄ .
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Figure 8: The time series of recalled patterns with
a sinusoidal input sequence. The self-feedback con-
nection isTii = 15.0. This graph shows an itinerant
motion among the patterns.

Note that while the ON-OFF pattern of the system
is the same as the embedded pattern, the values of
qi(t) do not accord with the vectorsV s′ of the pat-
terns. The attractors of the system with constant input
are not fixed point but has dynamics. These facts can
be seen clearly in Fig. 7.

As we mentioned, the system with a constant in-
put sequence sometimes converges to a fixed pattern
with variety and sometimes itinerates among patterns,
in which the itinerant motion is not the same as one
without input sequence. This behavioral diversity de-
pends on the timing of the input, since the system is
in the itinerant states as shown in Fig. 4. This itiner-
ant behaviour is considered as an internal dynamics
of the agent. The agent differs its response to stimuli
according to its internal dynamics, even though the
same stimulus is given.

4.2.2 Sinusoidal Input

When we input a sinusoidal sequence,

S(t) = A sin(2πωt) (10)

at t = 10000 ∼ 20000 (A = 0.7, ω = 0.001)
to the same system as the previous experiment, the
self-feedback connection isTii = 15.0. A transition
among pattern is observed as shown in Fig. 8.

For a close observation, we draw the dynamics of
the distance measure in Fig. 9. This graph tells us
that the change of the nearest patterns occurs with
roughly the same intervals. The interval approxi-

mately matches with the cycle of the sinusoidal in-
put. The sequence of recalled patterns is not periodic.
Further, we have not found the clear statistical order
in the transition among recalled patterns.

Thus we can say that the change of the recalled
pattern is certainly induced by the periodicity of the
sine wave. But when the amplitude of the sine wave
comes to around zero, the system is reset to a transient
state and is lead into an attractor with growth of the
amplitude of the sine wave.
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Figure 9: The time series of the distance measure
from embedded patters,Dists

′
(t), when a sinusoidal

input sequence is given. The six orbits of the dis-
tance from all patterns are superimposed. The self-
feedback connection isTii = 15.0. A transition
among the nearest patterns with nearly the same in-
tervals is observed.

5 Discussion

We have summarized the correspondence of symbolic
activities to dynamical systems such that symbols
correspond to attractors, symbol manipulations to
transitions among attractors, and manipulation rules
to order of the transition. Let us examine how the
simulation results of the coupled NZ maps concor-
dant with these correspondences as the model of a
symbolic cognitive agent.

At first, some patterns are embedded to the system
and they are retrieved as attractors. The embedded
patterns are recalled when a constant input is given
to the system. Namely, the patterns and input se-
quences are associated like memories or concepts and
some patterns of perceptions. This signification or
representation is an important function of symbols.
Further, embedding several patterns or having multi-
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attractors indicates that the system has some capacity
to learn symbols.

Concerning the second point, a dynamical sys-
tem model of symbolic cognitive agent is required to
show, at least, transition among attractors. We can re-
alize such behaviour in some regions of the strength
of self-feedback connectionTii as shown in Fig. 4.
The transition is evoked by the input sequence of an
ordered change. Namely, our system also can have a
capacity of the symbol manipulations.

However, the transitions are not orderly. We have
not found the clear rule of the transitions, that is, no
syntax. We suppose that the reason why no order is
shown is partly that the embedded patterns are pre-
pared by hand and are orthogonal. This means that
the system does not develop in a particular environ-
ment. Namely, there is no structural coupling be-
tween the internal structure of the agent and an en-
vironment. Learning in a peculiar environment forms
the structure of the dynamical system. Thus, to inves-
tigate the behaviour of the system leaned in a struc-
tural environment is important to examine the sys-
tems legitimacy as a model of symbolic cognitive
agent.

Let us further discuss the process of symbol for-
mation or development of symbols based on the cor-
respondences between symbolic activities and be-
haviour of dynamical systems. Harnad (1990) sum-
marizes the developmental process of representation
as a progress from iconic representation to categorical
and to symbolic. The iconic representation is retriev-
ing an attractor by an input. This is shown by our
system.

The categorical representation can be translated in
two ways. One is retrieving an attractor for different
inputs, the other is grouping of attractors according
to some feature of the attractors, such as dimension
and nonlinearity. Our system shows the former be-
haviour. The dynamics of the elements differ for dif-
ferent inputs but they are categorized into one pattern
that is nearest to the dynamics. Namely, precise in-
ternal states and their dynamics of the agent do not
the same but the representing symbol is the same for
a class of inputs. To observe the latter interpretation,
we need further investigation about the characteristics
of attractors of the model.

The symbolic representation is an orderly transi-
tion among attractors induced by an input sequences.
As we examined, this is not realized in the present
system. If we develop, however, the system in a struc-
tured environment, the system will learn some sym-
bols as attractors and may show ordered transition
among the attractors. Thus, the progressing path of

symbolic representation may be able to treated.

6 Conclusion

We have proposed a dynamical system model of cog-
nitive agent that can exhibit a part of symbolic be-
haviour using a coupled chaotic maps called NZ map.
We have shown that symbols as attractors of the dy-
namical system can be embedded, that the system
can have internal dynamics, and that it shows sym-
bols manipulation behaviour as transitions among the
embedded attractors according to sequences of exter-
nal input signals. However, it does not show ordered
transitions among symbols, that is, no syntactically
structured behaviour.

In spite of this drawback at the status quo, we con-
clude that the coupled NZ map system can be devel-
oped as a model of symbolic individuals, since we
may overcome such insufficiency by further study es-
pecially on the system learned and developed in a par-
ticular structured environment.
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Abstract

This article analyses navigation and language parsing as two instances of the same abstract computa-
tion, and suggests that the tool needed may have evolved to serve the former task, and was then reused
for the latter. Supporting evidence for the idea, based on the authors’ concept of ‘songline’ naviga-
tion, is discussed in the context of current linguistic, psychological and neuroscience research. The
discussion is concluded with an outline of a number of experiments that could shed further light on the
subject.

1 Introduction

It is usually assumed that language as used by humans
is inherently different from any other form of com-
munication in other species, including primates. Fac-
ing this gap, and the intuitive expectation that several
mechanisms would have to be already in place before
language could play its role and provide any selective
advantage, one can question what role (if any) evo-
lution played in the emergence of language. Here we
approach this issue by observing that a crucial feature
of language, the ability to perform syntactic analysis
and generate sentences from a set of grammar rules,
can assist navigation, and suggesting that this ability
may first have evolved for that purpose, and could be
grounded in a general purpose neural circuit perform-
ing a certain class of abstract computations applicable
across domains.

The article starts with a summary of current the-
ories about the evolution and nature of thelanguage
faculty, the mechanism that allows us to acquire and
use language. The following section discusses the
use of computer simulations to model language evo-
lution, and describes the Songlines model of navi-
gation used in our simulations, and its implications
on the potential link between the ways humans have
evolved to handle navigation and language. This par-
allel, which we make from an abstract, computational
perspective, is then compared with linguistic, psycho-
logical and neurological evidence supporting our sug-
gestion. Further, the article describes the design for
an experiment aimed at using navigation to detect the

subject’s ability to perform computation, analogous
to context-free parsing. The last section summarises
the main ideas and proposes a framework for compar-
ative neuroimaging experiments that could help ver-
ify some of the claims made.

2 Evolution and Nature of Lan-
guage Faculty

While the evolution of languages is an established
idea nowadays, emphasised by the practice of group-
ing languages into genealogical trees of common de-
scent (Pagel, 2000), the quest for the nature of the
selective pressure that produced language has not
ended in a consensus yet. Language has variously
been suggested to emerge in order to provide in-
formation about the spacial aspects of the environ-
ment (O’Keefe and Nadel, 1978), maintain the so-
cial fabric of increasingly larger groups of hominids,
e.g., to replace grooming and spread gossip (Dun-
bar, 1996; Power, 2000), etc. Byrne shows exam-
ples of primates using communication as a deception
tool (Byrne, 1995), and it can easily be seen how full-
fledged language would benefit this ability.

Another related question is the exact nature of the
human language faculty and the extent to which it is
innate. Chomsky claims that we are born with a Lan-
guage Acquisition Device (LAD) (Chomsky, 1964),
a complex blueprint, which sets its parameters when
exposed to language. Marcus et al have reported that
seven-month-old infants can learn to discriminate be-
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tween the sentences of two different grammars (Mar-
cus et al., 1999), reinforcing the belief that this ability
is innate rather than acquired. While LAD has many
supporters, the claim that it is a prerequisite to using
language means that the coexistence of LAD and evo-
lution as leading scientific paradigms is a somewhat
uneasy one, as the notion that nature would have to
put a potentially very complex tool in place before re-
ceiving a payoff contradicts the common wisdom that
evolution usually advances in small steps, delivering
immediate benefit. A ‘macro-mutation’ that would
have produced the LAD all at once is extremely un-
likely, and so would be a hypothesis that the com-
ponents of LAD have been produced as a series of
mutations, each amounting to ‘genetic drift’, that is,
to a change that does not affect one’s fitness.

Marcus et al’s experiments were based on the fa-
miliarisation of subjects with sequences of syllables
from an artificial grammar (e.g., both “ga na ga” and
“li gi li” are instances of the general patternABA).
During the test phase, novel spoken sequences, some
of which violated the grammar, were played. A
strong shift of attention towards the loudspeakers was
judged as an acknowledgement of a perceived gram-
mar violation. Importantly, the test sentences con-
sisted entirely of new syllables. The study claims the
infants were able to learn to recognise the general
ABA pattern as different fromABB. The infants
could also discriminate between the patternsAAB

andABB after being familiarised to either.
Marcus et al.’s interpretation of their results is that

these are consistent with the infants’ being able to
“extract abstract algebra-like rules that represent re-
lationships between placeholders (variables)”, and
that simple statistical learning relying on transitional
probabilities cannot account for the experiments’ out-
come.1

Recently, many of the assumptions about the
uniqueness of the human faculty of language have
started to be questioned and experimentally tested
(Hauser et al., 2002). A recent study (Fitch and
Hauser, 2004) suggests there is a species (cotton-top
tamarin monkeys) that can learn to recognise exam-
ples ofspokenregular languages, but, unlike the hu-
man subjects in the studies, failed to learn a context-
free language.2 The results appear to extend the
ground humans share with other species, and to point
at the ability to handle CFGs as exclusively human.

In the reported work, Fitch and Hauser follow the

1They however rely on the presence of such statistical learning,
as observed by Saffran et al. (Saffran et al., 1996) to eliminate an
alternative interpretation of their results.

2In the article, CFGs are discussed under the more general cat-
egory of Phrase Structure Grammars.

familiarisation technique used by Marcus et al. (Mar-
cus et al., 1999), but there are differences, for instance
in the presence of overlap between syllables used in
the training and testing phase. The RG ((AB)n) and
CFG (AnBn) used by Fitch and Hauser are more
complex than those used on infants (ABB andABA

respectively), but still constrainn to 2 or 3 due to the
memory limitations of tamarins.

Marcus et al. claim to have honed their methodol-
ogy to eliminate the chance of having salient features
in either grammar that would allow its recognition by
statistical means. While following much of their pre-
cautions, and putting a considerable effort into elim-
inating any potentially salient non-grammatical fea-
tures, Fitch and Hauser’s work has been criticised for
the use of different speakers for each of theA and
B classes of symbols (syllables). If pitch is used as
a feature, it is claimed, each of the languages stud-
ied would collapse to one example (for each grammar
and value ofn), thus reducing the experiment to one
“about memory span and/or sensitivity to statistical
deviations”.

3 Songline Navigation

In recent years, there has been much research car-
ried out in attempting to model the evolution of lan-
guage through computer simulation. This research
falls broadly into two classes, simulations in which
language emerges in a single generation and simula-
tions concerned with evolving a language over several
generations.

In the former class, one of the most prominent re-
searchers is Luc Steels. In his simulations (Steels,
1999), a population manages to arrive at a single,
shared lexical language through participating in a se-
ries of ‘language games’. In a language game, two
agents discuss an object visible to both of them. If
they can agree on a word (or set of words) to describe
that object, then they both increase the weight they
associate with that word/meaning pair. After many
language games involving different pairs of agents, a
shared global lexicon emerges.

Amongst those studying languages which are cre-
ated over several generations, simulations presented
by Kirby (Kirby, 2002) are amongst the most com-
pelling, though Zuidema and Hogeweg (Zuidema and
Hogeweg, 2000) and Oliphant and Batali (Oliphant
and Batali, 1997) also present interesting results. In
Kirby’s simulations, a single agent attempts to ex-
press (resorting to invention if necessary) a subset of
meanings sampled from a set of meanings, expressed
in predicate calculus, while another agent attempts
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to learn to speak based on the expressed meanings
paired with the linguistic output of the first agent.
The agent which listened is then required to speak
in the same way as the first agent, while its output is
learned by yet another agent. After thousands of cy-
cles of this expression/induction behaviour, a gram-
mar with the minimum number of necessary rules is
seen to emerge and persist from generation to gen-
eration. Kirby attributes this to the ‘linguistic bot-
tleneck’ that prevents the observation of all possible
meaning/signal pairs by a single agent. Only com-
positional grammars can successfully pass through
this bottleneck, as idiosyncratic phrases present in a
grammar may fail to be expressed at some cycle and
be lost from the language.

We have also chosen simulations as a means to
study the evolution of language, but our approach,
first outlined in (Kazakov and Bartlett, 2002), differs
from all simulations mentioned above in several im-
portant aspects. Primarily, we see language as a tool
to achieve some purpose. This means that we can
consider issues such as when language will come to
be used by a population, whereas other researchers
have simply assumed that language is beneficial and
sidestepped these issues. So far, our published work
also differs by being unconcerned with the evolution
of vocabulary: we assume that a shared lexicon has
been fixed in the population by some means (for ex-
ample through language games such as those used by
Steels (Steels, 1999)), and concentrate on issues such
as the mechanisms by which compositional language
may have evolved and the types of environment in
which it would be most beneficial (Bartlett and Kaza-
kov, 2004).

Hamilton, and the following neo-Darwinist school
of evolution, have developed a formal model of the
phenomenon, and demonstrated on numerous exam-
ples that sharing among the individuals of a species
is compatible with the concept of natural selection in
the case ofkin selectionwhere help is directed to rela-
tives in proportion to the degree of kinship (Hamilton,
1964; Dawkins, 1982). We assume that the mecha-
nism of helping the poorer (hungrier, thirstier) agents
has already been established in our simulated soci-
ety (to simplify the matter, they are all considered
equally related), and compare the benefits of sharing
information about the location of the resource needed
(food, water) between two agents with the case of
help in kind, where part of the already collected re-
source changes hands.

A crucial observation, on which all work is based,
is the fact that navigation can benefit from, and be
based on a mental representation storing the route be-

B
l

l

1 l3

2
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Figure 1: Navigation as a parsing task.

tween two locationsA andB as a sequence of land-
marks to be passed on the way. In the example in
Fig. 1, to go toB, one has to be at (or go to) pointA,
then pass landmarksl1, l2 andl3, in this order. This
can be formally expressed as a rule:

goto(B) :: goto(A) l1 l2 l3 (1)

To the experienced eye, this is, of course, a rule of a
regular grammar, in which the start and end points of
a route play the role of non-terminals (as there may be
more than one way to reach and/or leave them), and
landmarks are terminals. Therefore, tracing out (or
following) a route between two points would amount
to generating (resp. parsing) a sentence of a reg-
ular grammar (Kazakov and Bartlett, 2004). This
representation was inspired by a socio-cultural phe-
nomenon among the Australian Aborigines known
as Songlines, a form of shared tribal memory, the
knowledge of which is mandatory, and often secret, in
which each song describes a landmark along a route,
and the series of songs constitutes a sung map (Bar-
wick and Marrett, 2003).

All that is needed to exchange a route between two
agents using ‘songlines’ as their internal representa-
tion of the environment, is a shared lexicon of land-
mark names. Steels’s experiments show that such a
lexicon can easily be evolved from simple first prin-
ciples (Steels, 1999). We assumed the existence of
this lexicon, and sought to identify the types of envi-
ronment in which sharing songlines outperforms self-
ish behaviour and sharing in kind. Among the factors
studied were the abundance of the two types of re-
source modelled, and their volatility The results show
language is particularly beneficial in the border zone
delineated by the trade-off given by the simultaneous
increase/decrease of resource availability and volatil-
ity. At one side of this line, there is too litle food
and the one found disappears too quickly to be worth
going back to; on the other side, food is sufficient to
permit the survival of selfish agents. The area in the
middle is where language appears to make the differ-
ence between survival and extinction (Kazakov and
Bartlett, subm). In those areas, language outperforms
both selfish behaviour and sharing previously accu-
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mulated resource.

4 Parallels between Navigation
and Parsing

We have demonstrated that memorising and plan-
ning routes by an agent that describes a path as a
sequence of landmarks (beacons) amounts to storing
the rules of a regular language and generating/parsing
its sentences. This is important:if a regular lan-
guage parser(i.e., a Finite-State Automaton (FSA))
could help navigation, it may first have evolved for
this purpose. Then only a relatively small change in
the neural connections, possibly even caused by a sin-
gle mutation, might have been required to make this
parser available to the human brain speech circuitry.
This compares favourably with the idea of macro-
mutation, as described above. The idea of separately
evolved needs for lexicon and grammar are also con-
sistent with evidence that they are separated in the
brain (Ullman, 2004).

We can consider now navigation and language
parsing as two instances of the same abstract com-
putation (involving strings of symbols) and enquire
whether the way we perform these tasks would re-
flect that. Anyone interested in this question would
be likely to look into existing models of the way in
which syntax is grounded in the neural substrate. Ull-
man’s recent model (Ullman, 2004) pinpoints several
memory circuits in the brain, “a network of specific
frontal, basal-ganglia, parietal and cerebellar struc-
tures”, which support “the learning and execution of
motor and cognitive skills, especially those involving
sequences”. The model separates, both neurophysio-
logically and conceptually, this so called procedural
memory from the declarative memory storing infor-
mation about facts and events, including the mental
lexicon. The suggested common basis for the pro-
cessing of verbal and non-verbal sequences is sup-
ported by other authors. Hoen et al. (Hoen et al.,
2003) report that using non-verbal symbols (playing
cards) to exersise the ability to reorder sequences in
a predefined way (123 → 231), helps patients im-
prove their ability to understand a type of sentences
that need the same transformation to have their con-
stituents rearranged in the default order: “It was the
cat1 that the dog2 chased3” → “The dog2 chased3

the cat1”. Hauser, Chomsky and Fitch (Hauser et al.,
2002) also draw a link between navigation and lan-
guage, suggesting understanding efficient processing
of language can help research in other domains, “
such as spatial navigation and foraging, where prob-

lems of optimal search are relevant”.
There are two ways in which the link between mo-

tor and verbal sequence processing may hold the key
to the origins of syntax. One could conceive two
coupled processes, (1) the need for ‘songline’ navi-
gation providing selective pressure for the evolution
of a parser, and, (2) the advantages of sharing ‘song-
lines’ promoting language. While it is very tempting
to suggest that not only navigation may have selected
for the evolution of a parser, but that it may have been
the first topic of discussion to which this parser was
applied, the second need not be the case. In fact, it is
not easy to imagine how such a specialised language,
possessing only nouns (or noun phrases) and the sin-
gle verb ’to go’, would have developed other parts
of speech as a function of the navigational task. On
the other hand, one can also consider another course
of events, that the parser originally evolved to serve
navigation as a means of internal representation and
planning, and it was at a later stage that this parser
(or its replica) became involved in communication.
This resembles the idea of virtual mind machines
processing whole classes of computationally homol-
ogous tasks, proposed by A. Sloman. This idea seems
to be mirrored in neurological evidence about the par-
allel circuits of basal ganglia as performing analogous
computations, applied to different sets of information
from different domains (Ullman, 2004).

5 From Regular to Context-Free
Languages

So far, we have only demonstrated that navigation
could have created the need to represent and pro-
cess regular languages. However, RGs are not suf-
ficient to describe the seemingly simple task of going
somewhere and returning back using the same way.
In terms of ‘songlines’, the landmarks passed on the
round trip would spell out a palindrome (e.g.,abcba

or aabbaa). It is known that a parser that can recog-
nise a palindrome, can handle any CFL. A CFL parser
is usually modelled as a push-down automaton, con-
sisting of a FSA (i.e., a RL parser) and memory (e.g.
stack). Regardless of whether this task created the
original need for CF parsing or not, it can be used
in an experiment involving navigation, rather than re-
sponses to speech, which could help avoid the criti-
cism to Fitch and Hauser’s work (Fitch and Hauser,
2004), while still assessing the subject’s ability to
learn syntax.

One could consider two classes of tasks. In the
first, the subject would have to learn to navigate be-
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Figure 2: Regular vs Context-Free Songlines.

tween two locations, e.g.,A andB in figure 2, col-
lecting a reward each time either location is reached.
Assuming landmarks are used to memorise the paths
betweenA andB as suggested above (Kazakov and
Bartlett, 2004), successful navigation would amount
to learning a regular grammar, e.g.:

Reward → B (2)

B → A l1 l2 l5 l10 (3)

Reward → A (4)

A → B l12 l9 l6 l3 (5)

The second experiment modifies the above setting
by extending the reward given in locationA to a more
significant one, provided the subject went fromA to
B and back using the same path. Navigation based
on a regular grammar with alternative routes will fail
to collect the extended reward most of the time, e.g.,
there are182 ways of going fromA to B and back in
figure 2, but only18 of these will bring the maximum
reward. However, a simple context-free grammar will
suffice:

Reward1 → A Reward2 A (6)

Reward2 → X (7)

X → LandmarkX Landmark (8)

X → B (9)

Landmark → li, 1 ≤ i ≤ 12 (10)

Using another string of salient features, such as
turns and distances will not change the need to re-
verse that string to navigate back (but will assume the
ability to transform a left turn to a right one and vice
versa). One can use obstacles to guarantee that no

complete path used in training is available in the test
phase and vice versa.

Classical Reinforcement Learning (RL) (Sutton
and Barto, 1998) cannot account for learning this nav-
igational behaviour. With consecutive phases of (ran-
dom walk) exploration and exploitation, RL will as-
sign in average equal rewards to allA to B, resp.B to
A paths; if the agent alternates between exploration
and exploitation, and gradually increases the latter,
the earlier anA to B, resp.B to A path is discovered,
the more likely it is to be subsequently reinforced,
and given preference in the long term.

The above setting would avoid issues stemming
from the much greater importance speech has for hu-
mans and put them on a more equal ground with other
species. A confirmation of Fitch and Hauser’s con-
clusions that possessing a CF parser is a distinctly hu-
man feature would raise the question whether this did
not initially evolve to serve non-linguistic purposes,
such as navigation, and study the circumstances that
made this new feature evolutionary beneficial. For in-
stance, taking the same way back home may reduce
the risk of encountering unexpected dangers or help
estimate the time needed to return back. On the other
hand, a shared need for navigation among species
would be consistent with them sharing the ability to
learn regular languages.

6 Discussion

The main ideas in this article can be summarised as
follows:

1. The ability to hangle regular grammar, a critical
step on the road to human language, may origi-
nally have evolved to assist navigation.

2. The shared need for navigation should be mir-
rored in the ability of other species to learn reg-
ular languages.

3. Navigation and language parsing are two in-
stances of the same abstract computation, and
the way they are grounded may reflect that.

4. The need for context-free grammars, typical for
human languages, could have originated in nav-
igation.

The range of indirect evidence for the above state-
ments suggests the idea of using neuroimaging to
compare the brain activity between tasks correspong-
ing to regular and context-free languages for naviga-
tion on one hand, and language, on the other. An ex-
citing, but yet unconfirmed possibility is that the pat-
terns of activation for navigation and language would
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be similar for the same class of languages, but pro-
cessing a different class of language would result in
distinguishable differences even for the same type of
task.

References

M. Bartlett and D. Kazakov. The role of environment
structure in multi-agent simulations of language
evolution. InProceedings of the Fourth Sympo-
sium on Adaptive Agents and Multi-Agent Systems
(AAMAS-4), Leeds, 2004. AISB Convention.

L. Barwick and A Marrett.Currency Companion to
Dance and Music in Australia, chapter Aboriginal
Traditions, pages 26–28. Currency Press, 2003.

Richard W. Byrne.The Thinking Ape: Evolutionary
Origins of Intelligence. Oxford University Press,
1995.

Noam Chomsky.Current Issues in Linguistic Theory.
Mouton, The Hague, 1964.

R. Dawkins.The Extended Phenotype. Oxford Uni-
versity Press, 1982.

Robin Dunbar.Grooming, Gossip, and the Evolution
of Language. Harvard University Press, 1996.

M. T. Fitch and M. D. Hauser. Computational con-
straints on syntactic processing in a nonhuman pri-
mate.Science, 303, 2004.

W. D. Hamilton. The genetic evolution of social be-
haviour I, II. Journal of Theoretical Biology, 7:
1–52, 1964.

M. D. Hauser, N. Chomsky, and M. T. Fitch. The
faculty of language.Sci., 298, 2002.

M. Hoen, M. Golembiowski, E. Guyot, V. Deprez,
D. Caplan, and P. F. Dominey. Training with cogni-
tive sequences improves syntactic comprehension
in agrammatic aphasics.NeuroReport, 14, 2003.

D. Kazakov and M. Bartlett. A multi-agent simu-
lation of the evolution of language. InProceed-
ings of Information Society Conference IS’2002,
pages 39–41, Ljubljana, Slovenia, Oct 2002. Mor-
gan Kaufmann.

Dimitar Kazakov and Mark Bartlett. Cooperative
navigation and the faculty of language.Applied
Artificial Intelligence, 19, 2004.

Dimitar Kazakov and Mark Bartlett. Benefits of us-
ing language to share information in a dynamic en-
vironment. Submitted to Connection Science (spe-
cial issue on Evolution of Language), subm.

S. Kirby. Learning, bottlenecks and the evolution of
recursive syntax. InLinguistic Evolution through
Language Acquisition: Formal and Computational
Models. Cambridge University Press, 2002.

G. F. Marcus, S. Vijayan, S. Bandi Rao, and P. M.
Vishton. Rule learning by seven-month-old infants.
Science, 283, 1999.

J. O’Keefe and L. Nadel.The Hippocampus as a Cog-
nitive Map. Oxford Univ. Press, 1978.

M. Oliphant and J. Batali. Learning and the emer-
gence of coordinated communication.The newslet-
ter of the Center for Research in Language, 11(1),
1997.

M. Pagel. The history, rate and pattern of world
linguistic evolution. InThe Evolutionary Emer-
gence of Language: Social Function and the Ori-
gins of Linguistic Form, Cambridge, 2000. Cam-
bridge University Press.

C. Power. The Evolutionary Emergence of Lan-
guage: Social Function and the Origins of Lin-
guistic Form, chapter Secret language use at female
initiation: Bounding gossiping communities. Cam-
bridge University Press, Cambridge, 2000.

J. Saffran, R. Aslin, and E. Newport. Statistical learn-
ing by 8-month old infants.Science, 274, 1996.

Luc Steels. The spontaneous self-organization of an
adaptive language. In Koichi Furukawa, Donald
Michie, and Stephen Muggleton, editors,Machine
Intelligence 15, pages 205–224. Oxford University
Press, 1999.

Richard S. Sutton and Andrew G. Barto.Reinforce-
ment Learning: An Introduction. MIT Press, Cam-
bridge, MA, 1998.

M.T. Ullman. Contributions of memory circuits to
language: the declarative/procedural model.Cog-
nition, 92, 2004.

W. H. Zuidema and P. Hogeweg. Selective advan-
tages of syntactic language - a model study. In
Proceedings of the Twenty-second Annual Confer-
ence of the Cognitive Science Society, pages 577–
582, Hillsdale, USA, 2000. Lawrence Erlbaum As-
sociates.

55



The Evolution of Meaning-space Structure  
through Iterated Learning 

 
Simon Kirby* 

*Language Evolution & Computation Research Unit 

University of Edinburgh 
40, George Square, Edinburgh EH8 9LL 

simon@ling.ed.ac.uk 

 
Abstract 

In order to persist, language must be transmitted from generation to generation through a repeated cycle of use 
and learning. This process of iterated learning has been explored extensively in recent years using computa-
tional and mathematical models. These models have shown how compositional syntax provides language with 
a stability advantage and that iterated learning can induce linguistic adaptation. This paper presents an exten-
sion to previous idealised models to allow linguistic agents flexibility and choice in how they construct the se-
mantics of linguistic expressions. This extension allows us to examine the complete dynamics of mixed com-
positional and holistic languages, look at how semantics can evolve culturally, and how communicative con-
texts impact on the evolution of meaning structure. 
 

1   Introduction 
One of the most striking aspects of human linguistic 
communication is its extensive use of composition-
ality to convey meaning. When expressing a com-
plex meaning, we tend to use signals whose struc-
ture reflects the structure of the meaning to some 
degree. This property is the foundation upon which 
the syntax of language is built. It is natural, there-
fore, that an evolutionary account of human lan-
guage should contrast compositional communication 
with a non-compositional, holistic alternative. In-
deed, Wray (1998) has argued that holistic commu-
nication (which is still in evidence in particular con-
texts today) can be seen as a living fossil of an ear-
lier completely non-compositional protolanguage. 

A compositional syntax has clear adaptive advan-
tages – with it we are able to successfully communi-
cate novel meanings (in the sense that we may never 
have witnessed signals for those meanings in the 
past). Despite this, research over the past decade has 
suggested that compositional syntax may have 
emerged not because of its utility to us, but rather 
because it ensures the successful transmission of 
language itself (see e.g. Kirby, 2000). It is suggested 
that the process of linguistic transmission, termed 
iterated learning (Kirby & Hurford, 2002), is itself 
an adaptive system that operates on a timescale in-
termediate between individual learning and biologi-
cal evolution. Computational models of this process 
(e.g. Kirby, 2000; Batali, 1998) have demonstrated 
that syntactic systems can emerge out of random 
holistic ones without biological evolution, at least 

for particular assumptions about learning, produc-
tion and so on.  

Further evidence for the argument that iterated 
learning can explain features of syntax has been 
provided by idealised computational (Brighton & 
Kirby, 2001) and mathematical (Brighton, 2002) 
models of iterated learning in general showing that 
compositional languages have a stability advantage 
over holistic ones. These models compare two sce-
narios under a number of different parameters. They 
analyse completely holistic languages and com-
pletely compositional ones. The parameters that are 
varied relate to, on the one hand, the structure of the 
meaning space, and on the other, the number of 
training examples an individual is exposed to (also 
known as the bottleneck on linguistic transmission). 
The overall conclusion is that with highly structured 
meaning spaces and few training examples, compo-
sitional languages are more stable than holistic ones. 

2   Problems 
This foundational work on the cultural evolution of 
meaning-signal mappings through iterated learning, 
though important in demonstrating that language 
itself has significant adaptive dynamics, suffers 
from two significant drawbacks, which we will turn 
to below. 
 
2.1   Stability analysis 
 
Early models such as Batali (1998) and Kirby 
(2000) involved populations of individual computa-
tional agents. These agents were equipped with: 
explicit internal representations of their languages 
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(e.g. grammars, connection weights etc.); a set of 
meanings (provided by some world model) about 
which they wished to communicate; mechanisms for 
expressing signals for meanings using their linguis-
tic representations; and algorithms for learning their 
language by observing meaning-signal pairs (e.g. 
grammar induction, back-propagation etc.). 
 
Typically, these simulations initialise the population 
with no language, or a random pairing of meanings 
and signals and then allow the linguistic system to 
evolve through repeated encounters between speak-
ing agents and learning agents. 
 
There has been much work in building simulation 
models within this general iterated learning frame-
work (e.g. Batali, 1998; Kirby, 2000; Tonkes, 2001; 
Kirby & Hurford, 2002; Brighton, 2002; K. Smith, 
2003; Zuidema, 2003). The great advantage of this 
kind of modelling is that it allows the experimenter 
to demonstrate possible routes by which language 
can evolve from one qualitative state, such as holis-
tic coding, to another, such as compositionality.1 
The models show how fundamental features of lan-
guage can emerge in a population over time given 
reasonable assumptions about how linguistic behav-
iour may be transmitted. 
 
Models such as these tend to have a large range of 
parameters, and it is therefore reasonable to want to 
know the relationship between the emergent prop-
erty and the parameter space of the model. Once we 
understand this, we can eventually hope to uncover 
theoretical principals that may apply to iterated 
learning in general rather than the specific model in 
question. 
 
As mentioned above, two key parameters in the 
emergence of compositionality are: meaning-space 
structure (i.e. the set of things agents communicate 
about); and learning bottleneck2 size (i.e. the num-
ber of training examples agents are exposed to). 
 
Computational simulations indicate that it is impor-
tant that there is some kind of learning bottleneck 
for there to be any interesting linguistic evolution. 
To put it simply, only when training data is sparse 
will language evolve to be compositional. 
 

                                                 
1 The emergence of compositionality has received a lot of atten-
tion. However, it is important to note that other fundamental 
linguistic universals may well explicable within this general 
framework. The central message is that wherever there is iterated 
learning, there is potential for adaptation of the system being 
transmitted to maximise its own transmissibility. 
2 See Hurford (2002) for discussion of why the term “bottleneck” 
is appropriate, and for an analysis of different types of bottleneck 
in language evolution. 

This parameter is relatively straightforward to ex-
periment with, but meaning-space structure is far 
more difficult, and most of the simulations of iter-
ated learning simply chose some kind of system of 
meaning representation and stuck with it for all 
simulations. 
 
The work of Brighton & Kirby (2001) and Brighton 
(2002) was an attempt to get round this problem by 
exploring a large range of possible meaning-spaces 
and examining what impact they would have in an 
iterated learning model. 
 
In those papers – as in this one – a highly idealised 
notion of “meanings” is employed: meanings are 
simply feature vectors. A meaning-space is defined 
by the number of features F it has and the number of 
different values V over which each feature can vary. 
So, to communicate about a world where objects 
were either squares, circles or triangles, and could 
be coloured green, blue or red, agents would need a 
meaning-space with at least F=2 and V=3. 
 
A reasonable strategy for thoroughly exploring the 
role of meaning-space structure might be to run 
many iterated learning simulations, each with a dif-
ferent meaning space, and determine the trajectory 
of the linguistic system in each instance. This proves 
computationally costly, so Brighton and Kirby in-
stead looked at what would happen to either a com-
pletely compositional language or a completely ho-
listic one for each meaning-space. 
 
Firstly using a computational model, and then using 
a mathematical generalisation of this model, they 
were able to calculate how stable either language 
type was for all meaning spaces. Simplifying some-
what, the overall result was that compositional lan-
guages have a stability advantage over holistic ones 
for larger meaning spaces, especially where the 
number of features are high. 
 
This kind of simplification of the iterated learning 
process is very useful but leads to the first of our 
two problems. Whereas a standard iterated learning 
simulation can demonstrate a trajectory, or route, 
from holism to compositionality, the Brighton and 
Kirby idealisation can only tell us about the relative 
stability of end-points of such a trajectory. In other 
words, we don’t know whether there is a way to get 
to a stable compositional language from an unstable 
holistic one because we don’t know anything about 
the languages in-between. 
 
2.2   Fixed, monolithic meaning space 
 
A second problem with much research into iterated 
learning so far has been its reliance on a pre-existing 
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meaning space provided for and shared by all agents 
in the simulation.3 The work described in the previ-
ous section makes strong claims about the likelihood 
of the emergence of compositional syntax given a 
particular prior space of meanings. But, where does 
this meaning space come from? It is assumed that 
biological evolution somehow endows the agents 
with a representational scheme prior to language, 
and if those representations are of sufficient com-
plexity, a compositional system of expressing them 
will follow naturally. 
 
Furthermore most, if not all, models assume that 
there is a single, monolithic system for representing 
meanings. Everything the agents in the simulations 
want to talk about can be expressed in the same 
format, be that a feature vector of particular dimen-
sionality, a predicate-logic representation, or a point 
on a real-number line etc. Equally, there is assumed 
to be one and only one meaning for representing 
every “object” in the agents’ world.4 
 
As with the study of the relative stability of “end-
points” in language evolution, a monolithic, fixed 
and shared meaning-space is a sensible idealisation 
to make. Modellers hold one aspect of the object of 
study constant – meanings – and allow another as-
pect – signals – to evolve through iterated learning. 
Much has been learned through these idealisations, 
but equally it is important to explore what happens 
if we relax these assumptions. 
 
3   A simple model 
 
In this paper I will set out a simple extension to the 
model in Brighton (2002) which allows us to look at 
what happens when agents have flexible meaning 
representations for objects. It turns out that this ex-
tension also allows us to move beyond a simple sta-
bility analysis of end-points of iterated learning and 
give us, for the first time, a complete view of the 
dynamics of iterated learning. 
 
3.1 Meanings 
 
Language can be viewed as a system for mapping 
between two interfaces (see, e.g., Chomsky, 1995). 
On the one hand, there is an articulatory/perceptual 
interface, which handles input and output of signals. 
On the other, there is a conceptual/intentional inter-
face, which relates linguistic representations to the 
                                                 
3 This is not true of the extensive work on symbol grounding 
carried out by, for example, Steels & Vogt, 1997; Steels, 1998; 
A.D.M. Smith, 2003; Vogt, 2003. 
4 The term “object” is used here by convention to stand-in for 
any communicatively relevant situation. In other words, an “ob-
ject” is anything that an agent may wish to convey to another 
agent through language. 

things we actually communicate about. It is primar-
ily the latter of these two that we are concerned with 
here. 
 
In the model, there is a predefined set of things 
about which the agents wish to communicate – we 
will call this the environment, E. The concep-
tual/intentional interface C consists of a number of 
meaning spaces CM VF ∈,  onto which every ob-

ject Eo∈  in the environment is mapped. Each of 
these meaning spaces, in keeping with previous 
models is defined as a set of feature-vectors, such 
that each meaning space is defined by the number of 
features F it has (its dimensionality), and the number 
of values V each of these features can take (its 
granularity). 
 
Throughout a simulation run, every object in the 
environment is paired with a particular point in 
every meaning space. For the simulation runs de-
scribed here, this is set up completely randomly at 
the start of the run. Loosely speaking, we can think 
of this as giving an agent a number of different ways 
of conceiving an object. Note that each point in each 
meaning space can be mapped to zero, one or many 
objects in the environment. So, for example, there 
may be particular feature-vectors in particular mean-
ing spaces that are ambiguous in that they map to 
more than one object in the environment. 
 
The important point here is that agents are prompted 
to produce expressions for objects in the environ-
ment and not meanings themselves. Part of the task 
of the agent is to choose which of that object’s 
meanings will be used to generate the linguistic ex-
pression. It is this that is the novel extension to pre-
vious work. Previously, only one meaning-space 
was available, so expressing an object and express-
ing a meaning were the same thing. Now that the 
latter is under the control of the agent the use of 
meanings can be learned and, ultimately, itself be 
subject to cultural evolution through iterated learn-
ing. 
 
3.2 Learning 
 
In this model I will follow Brighton (2002, 2003) in 
considering the task of learning a compositional 
system to be one of memorising signal elements that 
correspond to particular values on particular fea-
tures. A single compositional utterance carries in-
formation about how to express each feature-value 
of the meaning expressed by that utterance. 
 
If we consider just a single meaning space, then 
learning a perfect compositional system proceeds 
exactly as in Brighton (2002, 2003). The learner is 
exposed to a series of R meaning/signal pairs 
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),,,( 21 Rppp K  each of which represents a point in 
the space VF × . After this exposure, the learner is 
able to express at least as many meanings as are 
uniquely expressed in the training data. Note that 
this is likely to be less than R since meanings may 
be repeated. 
 
Is this the best expressivity that the learner can ex-
pect to achieve after learning? Not if the learner is 
exposed to a compositional language. The learner 
may be able to express novel combinations of fea-
ture-values as long as each feature-value occurs 
somewhere in the training data. 
 
Brighton (2003) gives the following simple ap-
proach to modelling the transmission of a composi-
tional language. The first step is to construct a 
lookup table recording how each feature-value is to 
be expressed. This table, O , is an VF ×  matrix of 
signal elements. In fact, in this model the actual 
nature of those signal elements is irrelevant. This is 
based on the assumption that the learner can cor-
rectly generalise a compositional language from the 
minimum exposure. Brighton terms this the assump-
tion of optimal generalization. (This idealises away 
from the task of decomposing the input signal into 
parts and identifying which parts of the signal corre-
spond to which parts of the meaning. We should be 
aware that, in a more realistic scenario, more data is 
likely to be required and furthermore, segmentation 
errors are likely to occur.) 
 
The benefit of this assumption is that we can simply 
treat each entry in the O matrix as a truth value: 

 

⎩
⎨
⎧

=
otherwise

observed is featureith   theof jth value  theif
, false

true
jiO  

 
When the entry jiO ,  is true, this means that the sub-
signal for the jth value of the ith feature has occurred 
at some point in the training data. 
 
On receiving some meaning/signal pair smp ,=  
the matrix is updated so that each of the feature-
values contained in m are logged in the O matrix. If 

),,( 21 Fvvvm K= , then: 
F  to1  ifor     , == trueiviO  

 
So far, this is simply a restatement of Brighton’s 
(2003) formalism. The novel feature here is just that 
there are multiple meaning-spaces, and therefore 
multiple O matrices to keep track of. To simplify 
matters for this paper, we will maintain the assump-
tion that learners are given meaning-signal pairs. 
That is, learners are able to infer which point in 
which meaning-space a speaker is expressing. It is a 

topic of crucial and ongoing research, particularly 
by those researchers looking at symbol-grounding, 
to develop strategies to relax this assumption (e.g., 
Steels & Vogt, 1997; A.D.M. Smith, 2003). 
 
So far, contra Brighton (2002, 2003), we have not 
looked at holistic languages. Holistic languages are 
those where meanings are unanalysed and each 
given distinct, idiosyncratic signals. Learners can-
not, therefore, generalise beyond the data that they 
are given. However, we can simply equate a holistic 
language with a compositional language for a mean-
ing-space with only one feature. The machinery 
described so far, is therefore sufficient to explore the 
difference between compositional and holistic lan-
guage learning – we simply need to provide agents 
with the relevant meaning-spaces. 
 
3.3   Language production 
 
We have specified an environment containing ob-
jects each of which are labelled with feature-
vectors drawn from each of a set of meaning-
spaces. We have set out a model of learning 
whereby sets of meaning-signal pairs given to a 
learning agent are transformed into O matrices, one 
for each meaning-space. 
 
In order to complete a model of iterated learning, it 
is necessary to provide agents not just with a way of 
learning, but also a way of producing behaviour for 
future generations of agents to learn from.  
 
Clearly, a particular meaning ),,( 21 Fvvvm K= can 
be expressed by an agent if, and only if, that agent 
has a way of expressing each feature-value using the 
language it has learned so far. In other words, iff 

FvFvv OOO ,2,21,1 ∧∧∧ K . 
 
It is important to note, however, that the agents in 
this model are not prompted to express a meaning. 
Rather, they attempt to produce expressions for ob-
jects in the environment. This means that an agent 
may have a choice of potential meaning spaces to 
employ when signalling about any one object. An 
object is expressible, therefore, if any of the mean-
ings associated with that object are expressible. If 
more than one meaning is expressible by an agent, a 
choice must be made. For the first simulations de-
scribed below, that choice is simply made at ran-
dom. 
 
The goal of language production in this model is to 
produce a meaning-signal pair. However, learning 
as described in the previous section actually makes 
no use of signals because of the assumption of opti-
mal generalisation. This means we can ignore the 
signal part of the signal-meaning pair. When a learn-
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ing agent observes the behaviour of a speaker, the 
simulation need only note the set of meanings used. 
 
3.3 Simulation run 
 
A simulation run consists of the following steps: 
 

1. Initialise environment. Associate each object in the 
environment with a single random meaning in every 
meaning space. 

2. Initialise population. In this simple model, the 
population consists of a single speaker, and a single 
learner. At the start of the simulation, the O matrices 
of the adult speaker are initialised with patterns of 
“true” and “false”. The particular way in which they 
are filled depends on the experiment being run, and 
represents the initial language of the simulation. The 
learner’s O matrices are filled uniformly with 
“false” because learners are born knowing no lan-
guage. 

3. Production. An object is picked randomly from the 
environment. A list of candidate meanings – one 
from each meaning space – is compiled for the ob-
ject. The O matrices of the speaker are used to de-
termine which, if any, of these candidates the 
speaker can express. One of these is picked at ran-
dom. 

4. Learning. If the speaker has been able to find an 
expressible meaning, the learner takes that meaning 
and updates its own O matrix for that meaning 
space. 

5. Repeat. Steps 3 and 4 are repeated R times (this de-
fines the size of the learning bottleneck). 

6. Population update. The adult speaker is deleted, 
the learner becomes the new speaker, and a new 
learner is created (with O matrices filled with 
“false” entries). 

7. Repeat. Steps 3 to 6 are repeated indefinitely. 
 
The relevant simulation parameters are: size of bot-
tleneck, R; number of objects in the environment, N; 
the make-up of the conceptual/intentional system, C 
(i.e. the particular VF ,  values for each VFM , ); 

and the initial language (i.e. the O matrices for each 
meaning space in C). 
 
4 Results 
 
This simulation model can be used to explore the 
dynamics of iterated learning given multiple mean-
ing-spaces. Because, as mentioned earlier, holistic 
languages are identical to compositional languages 
for 1-dimensional meaning-spaces, it can also be 
used to examine how compositional communication 
can arise out of a prior holistic protolanguage. 
 

4.1 Meaning space stability 
 
As many previous models have shown, composi-
tional languages are more stable than holistic ones 
through iterated learning with a bottleneck. We can 
track expressivity of the agents’ languages in a 
simulation over generations given an initial com-
pletely expressive language that is compositional, 
and compare that with a simulation initialised with a 
completely expressive language that is holistic. 
 
iteration 0 1 2 3 4 5 6 7 8 
holistic 1 .45 .22 .13 .08 .02 .02 .02 0 
comp. 1 1 1 1 1 1 1 1 1 

 
This table shows expressivity (as a proportion of all 
the objects in the environment) over time for a simu-
lation with 100=N , 50=R , }{ 2,8MC =  and a 

simulation with 100=N , 50=R , }{ 256,1MC = . 

 
Unsurprisingly, the holistic language cannot survive 
in the presence of a bottleneck. The size of the bot-
tleneck affects the rate of decay of expressivity in 
the holistic language: 
 
iteration 0 50 100 150 200 250 300 

R=100 1 0 0 0 0 0 0 
R=200 1 .15 .1 .06 .06 .04 .02 
R=300 1 .3 .21 .16 .16 .16 .12 
R=400 1 .61 .43 .38 .34 .32 .31 

 
As in previous models, this demonstrates once again 
the crucial advantage a language gains from a com-
positional syntax. 
 
4.2 Complete holistic/compositional dy-

namics 
 
Recall that one of the motives for this extension to 
previous work to move beyond simple stability 
analysis to see the complete dynamics of the move 
from holism to compositionality. To do this, we can 
simply run simulations with two meaning spaces 
instead of one, such as: },{ 256,12,8 MMC = . 

 
A particular point in the space of possible languages 
can be described in terms of the proportion of ob-
jects that can be expressed using the compositional 
language, 2,8M  and the proportion of objects that 

can be expressed using the holistic language, 
256,1M . 
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Figure 1a,b: Complete dynamics for languages that are partially holistic and partially compositional, without invention and 
with invention. Each point represents a language with a particular combination of holistic and compositional signals. Each 
arrows show the direction and magnitude of movement in this space after a single instance of learning, and represents the 
average of 100 simulation runs. (The gaps in the graph result from points in this space that cannot be constructed for an envi-
ronment of 100 objects.) 
 
 
The complete dynamics for all points in holis-
tic/compositional space is visible in figure 1a. The 
arrows show the magnitude and direction of change 
after one iteration of the model for that particular 
combination of holistic versus compositional ex-
pressivity. There is a single attractor at (0,0). In 
other words, the inevitable end state is one where no 
objects are expressible either holistically or compo-
sitionally. 
 
The reason for this is obvious: once a word is lost 
from the language, there is no way of getting it 
back. In fact, the agents rely on the expressivity of 
the language that is injected at the start of the simu-
lation. To get round this, most iterated learning 
models allow agents to “invent” new expressions. 
To model this, a new parameter is added – the in-
vention rate I. This gives the probability that, on 
failure to find any way of expressing an object, an 
agent will pick a meaning space at random and in-
vent an expression for the relevant meaning in that 
space. 
  
Figure 1b shows how an invention rate of 1.0=I  
affects the dynamics of iterated learning. Now, the 
single attractor is the completely compositional lan-
guage. This demonstrates that there is a clear route 
from all parts of the language space towards a com-
pletely compositional language, through intermedi-
ate mixed languages. 
 
As has been shown before, the size of bottleneck is a 
crucial determinant of whether compositionality will 
replace holism. If the size of the bottleneck is in-
creased, holistic utterances no longer have a disad-

vantage and the movement to the left-hand side of 
these plots is removed. It is the fact that language 
must pass through a learning bottleneck as it is 
transmitted from generation to generation that 
causes it to adapt and causes idiosyncratic non-
compositional expressions to die out. 
 
4.3 The evolution of meaning spaces 
 
The second motivation for the current model was to 
see how iterated learning might result in adaptation 
of the meanings of expressions as well as the form 
of the expressions themselves. Previous models used 
a monolithic, fixed meaning space, but the current 
model allows for any number of meaning spaces to 
exist concurrently. An agent’s learning experience 
(and hence, ultimately, its cultural inheritance) de-
cide the structure of the meaning used to express an 
object in the environment. 
 

 
 
The graph above shows an example simulation run 
with the following initial parameters: 
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},,,,,,,{
,50,100,1.0

2,83,73,63,54,46,316,2256,1 MMMMMMMMC
RNI

=
===

 
This table shows the pattern of meaning space usage 
averaged over 100 simulations with these parame-
ters measured at 50 generations: 
 

features 
values 

1 
256 

2 
16 

3 
6 

4 
4 

5 
3 

6 
3 

7 
3 

8 
2 

average 
expressivity 0 0 0 .11 .29 .15 .03 .45 

 
Despite being identical initially, agents end up using 
different systems of meaning for expressing objects 
in the environment in each simulation. In some runs, 
such as in figure 6, multiple meaning spaces remain 
partially expressive and stable. This means that 
agents may have different ways of expressing the 
same object. Real languages have different ways of 
carving up the world, and real speakers have differ-
ent ways of expressing the same message. This 
simulation demonstrates a mechanism by which this 
can be acquired and can evolve culturally. 
 
Are there any generalisations that can be made 
about the particular linguistic systems that emerge 
through this evolutionary process? A clear answer to 
this requires further research, but it may be that the 
meaning space adapts to structure in the environ-
ment. In the current model, the pairing between ob-
jects and points in meaning spaces is initialised ran-
domly with uniform probability. A future version of 
the model will allow the experimenter to populate 
the environment with objects with non-uniform dis-
tribution in meaning space. 
 
4.4 Inexpressive meaning spaces and 

the role of context 
 
In this model, there is a many-to-one mapping from 
objects in the environment onto meanings in any 
one meaning space. This means that the simulation 
can be set up in such a way that agents can produce 
expressions that are hugely ambiguous. Conceiva-
bly, a meaning space could be available that mapped 
all the objects in the environment onto one point. 
We can think of an agent using such a meaning 
space as expressing every object as “thing”. 
 
What happens in the iterated learning model when 
these “inexpressive” meaning spaces are included? 
An experiment was run with the following parame-
ters:  

}M,M,{MC
50,R100,N0.1,I

2,28,21,256=
===

 

 

In this situation, the agents end up expressing all 
100 of the objects in the environment using the two-
by-two meaning space. To put it another way, they 
use two word sentences with a vocabulary of four 
words. This kind of language is very stable since it 
requires very little data to learn. 
 
This seems a rather implausible result. In reality, 
language is used to communicate rather than merely 
label objects. To simplify somewhat, in a particular 
situation, a speaker may attempt to draw a hearer’s 
attention towards one of a range of possible objects 
in the current context.5 If all the objects in the con-
text map to the same meaning in the language, then 
no expression could be possible that would success-
fully direct the hearer’s attention. Only if the context 
size was minimised could an inexpressive meaning 
space hope to discriminate the intended object from 
the others, but in the limit this essentially renders 
communication irrelevant. If there is only one pos-
sible object to talk about, then the hearer will al-
ready know what it is. 
 
Contexts can be added to the simulation model rela-
tively easily. Speakers are given a target object and 
a number of other objects that form the context. 
When choosing a meaning space to use to convey 
the target, speakers will reject meanings that fail to 
discriminate the target from one or more of the ob-
jects in the context. 
 
Repeating the previous simulation with a context of 
5 objects leads to the domination of the expressive 
eight-by-two meaning space over the inexpressive 
two-by-two one. This result demonstrates once 
again how iterated learning can result in language 
adapting over a cultural timescale to the particular 
constraints placed on its transmission. 
 
5 Conclusions 
 
In this paper I have shown how previous models of 
iterated learning which used monolithic meaning 
spaces can be extended to deal with a more flexible 
notion of meaning. By allowing agents choice over 
the semantics of linguistic expressions, we can see 
how meanings as well as signals evolve culturally. 
 
This extension has allowed us to expand on earlier 
analyses of the relative stability of completely com-
positional versus completely holistic languages to 
look at the complete dynamics of a space of lan-
guages that are partially compositional. In addition, 
we can look at far more complex systems with am-
biguity of meaning, varying degrees and types of 
                                                 
5 Recall that “object” here is merely a term of convenience. We 
might wish to gloss this with “communicative intention”. 
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compositionality and semantic structure, and exam-
ine how communicative contexts affect the way 
language is transmitted. 
 
There is much work to be done in this area – I con-
sider this model to be a preliminary investigation 
only. Many possible extensions of the model could 
be worth pursuing. For example, the results suggest 
a puzzle: why aren’t all languages binary? The bi-
nary meaning spaces seem to be highly stable in the 
model, but nothing like this exists in natural lan-
guage. What is needed is a more realistic treatment 
of semantics and also considerations of signal com-
plexity. Natural language semantics does not take 
the form of fixed-length vectors, and there are plau-
sible pressures to keep signals short. 
 
Another interesting direction would be to combine 
this kind of idealised model with the mechanisms 
for collaborative meaning construction and ground-
ing developed by those working with robotics mod-
els (e.g., Steels & Vogt, 1997; Steels, 1998; Vogt, 
2003; Cangelosi, 2004). In this manner, we may 
begin to be able to relate abstract notions of expres-
sivity, learnability and stability with the particular 
features of natural language semantics grounded in 
the real world and embodied in human agents. 
 
The overarching conclusion of this line of work is 
that iterated learning is a surprisingly powerful 
adaptive system. The fact that language can only 
persist if it is repeatedly passed through a transmis-
sion bottleneck – the actual utterances that form the 
learning experience of children – has profound im-
plications for its structure. This point has been made 
clear before in relation to the syntax of language. 
The model in this paper shows that the semantics of 
language are also likely to have been shaped by iter-
ated learning. 
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Abstract

We examine evidence for the hypothesis that language could have passed through a stage when words
were combined in structured linear segments and these linear segments could later have become the
building blocks for a full hierarchical grammar. Experiments were carried out on the British National
Corpus, consisting of about 100 million words of text from different domains and transcribed speech.
This work extends and supports the results of our previous work based on a smaller corpus reported pre-
viously. Measuring the entropy of the texts we find that entropy declines as words are taken in groups
of 2, 3 and 4, indicating that it is easier to decode words taken in short sequences rather than individu-
ally. Entropy further declines when punctuation is represented, showing that appropriate segmentation
captures some of the language structure. Further support for the hypothesis that local sequential pro-
cessing underlies the production and perception of speech comes from neurobiological evidence. The
observation that homophones are apparently ubiquitous and used without confusion also suggests that
language processing may be largely based on local context.

1 Introduction

Hypotheses on the evolution of language can some-
times be supported, or undermined, by an investi-
gation into underlying characteristics of present day
language. Information theory provides some effec-
tive tools for carrying out such investigations, and is
employed here as a tool for examining the hypothe-
sis that the underpinnings of modern human language
may lie in sequential processing phenomena, (though
we also find that simple observations of every day
speech can also be illuminating.)

1.1 Overview of the investigations

The core of the work described in this paper is an
investigation into the statistical characteristics of spo-
ken and written language which can help explain why
language was likely to evolve with a certain structure.
We take a large corpus of written text and transcribed
speech and see whether the efficiency of encoding
and decoding the stream of language is improved by

processing a short sequence of words rather than in-
dividual words. To do this we measure the entropy of
the word sequence, comparing values when we take
single words, pairs, triples and quads. A decline in
entropy indicates an increase in predictability, facili-
tating an improvement in decoding efficiency.

We also measure the entropy with and without
punctuation, to see whether communication is more
efficient if the stream of words is broken into seg-
ments that usually correspond to syntactic compo-
nents. Our experiments (reported below) show that
entropy does indeed decline as word sequences up
to length three are processed, and thus supports the
hypothesis that local sequential processing under-
pins communication through language. Entropy also
declines further with the inclusion of punctuation.
As there is a strong correlation between punctuation
and prosodic markers in speech (Fang and Huckvale
(1996); Taylor and Black (1998)) this decline indi-
cates that there is an advantage in taking language in
the segments that prosodic markers provide, since it
is then easier to decode.

64



This suggests that there could be an intermedi-
ate stage in the development of a full hierarchical
grammar. Processing a linear stream of words that
is appropriately segmented is more efficient for the
decoder than taking unsegmented, continuous strings
of words. Such segments can then be the components
of a hierarchical grammar.

Experiments have been carried out with the
British National Corpus, BNC, about 100 million
words of text and transcribed speech from many dif-
ferent domains (BNC).

1.2 Related work
We point to recent work on the “small world” phe-
nomenon that investigates possible universal patterns
of organization in complex systems (i Cancho and
Sole (2001)). This effect, which is evident in natu-
ral language, picks up on the dominance of local de-
pendencies, and research is going on into how robust
complex systems can emerge, Section 5.

We also draw attention to other work that supports
our hypotheses: neurobiological, computer mod-
elling, and simple observation of everyday speech.

2 Background to this work

2.1 Co-operative communication
A number of scenarios have been used to intro-
duce hypotheses on the evolution of language, and
methods of communication between different animal
species in different situations have been studied ex-
tensively. This has included a range of possibilities
such as “gossip, deceit, alliance building, or other
social purposes” (Bickerton (2002)). The work de-
scribed here is based on those scenarios where pro-
ducers and receivers are co-operating, sharing infor-
mation. In the past little work in behavioural ecology
had been done to make systematic comparisons of
co-operative and non-cooperative signals (Krebs and
Davies (1993)). A typical scenario for co-operative
communication would be in group hunting or fishing
situations, where deceit would be counter-productive.
Even with manipulative communication a degree of
co-operation is required to enable understanding. We
look at modes of communication that are most effi-
cient for producers and receivers. To investigate this
we take a large corpus of spoken and written language
and apply an analytic tool from information theory,
the entropy measure, to help determine which pos-
sible characteristics of communication can make it
more or less efficient.

2.2 Entropy indicators
The original concept of entropy was introduced by
Shannon (1993)[1951]. Informally, it is related to
predictability: the lower the entropy the better the
predictability of a sequence of symbols. Shannon
showed that the entropy of a sequence of letters de-
clined as more information about adjacent letters is
taken into account; it is easier to predict a letter if the
previous ones are known. Entropy is represented as
H , and we measure

• H0 : entropy with no statistical information,
symbols equi-probable.

• H1 : entropy from information on the probabil-
ity of single symbols occurring.

• H2 : entropy from information on the probabil-
ity of 2 symbols occurring consecutively.

• Hn : entropy from information on the proba-
bility of n symbols occurring consecutively.

More precisely, Hn measures the uncertainty of a
symbol, conditional on its n − 1 predecessors. (For
n > 0, this is called the conditional entropy.)

For an introductory explanation of the concept
of entropy, see (Lyon et al., 2003, page 170). The
derivation of the formula for calculating entropy is
in Appendix B. For many years Automated Speech
Recognition developers have used entropy metrics to
measure performance (Jelinek (1990)).

2.3 Using real language
A significant amount of language analysis in this field
has not been done with real language. Well known
examples include Elman’s experiments with recur-
rent nets (Elman (1991)), which use a 23 word vo-
cabulary: 12 verbs 10 nouns and a relative pronoun.
Sentences like boy sees boy are considered grammat-
ical, because there is number agreement between the
subject and verb, though this sentence would be con-
sidered ungrammatical in real language with deter-
miners missing. Elman himself is careful to say that
this language is artificial, but this is not the case with
many of his followers, who claim it is is a subset of
natural language.

In fact many, sometimes most, of the words most
people utter are function words. Though in any model
we have to abstract out the features we consider most
significant, we suggest that the common focus on
content words introduces distortions. For example, to
jump from words to syntactic combinations of nouns
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and verbs without considering the intermediate stage
of phrase development leads to unrealistic conclu-
sions. In our work we need to take language as it
is.

3 The British National Corpus

Other recent work in this field has been done on
a comparatively small corpus of 26,000 words of
transcribed speech, annotated with prosodic markers
(Lyon et al. (2003, 2004)). However, using the large
BNC corpus enables us to confirm those results, and
extend them.

The BNC corpus is composed of a representa-
tive collection of English texts; about 10% of the to-
tal is transcribed speech. As we want to investigate
the processing of running language, headlines, titles,
captions and lists are excluded from our experiments.
Then adding in punctuation marks leads to a corpus
of about 107 million symbols.

In order to carry out an analysis on strings of
words it is necessary to reduce an unlimited number
of words to a smaller set of symbols, and so words are
mapped onto parts of speech tags. As well as making
the project computationally feasible this approach is
justified by evidence that implicit allocation of parts
of speech occurs very early in language acquisition
by infants, even before lexical access to word mean-
ings (Morgan et al. (1996)).

The BNC corpus has been tagged, with a tagset
of 57 parts of speech and 4 punctuation markers. We
have mapped these tags onto our own tagset of 32
classes, of which one class represents any punctua-
tion mark (Appendix A). Tag sets can vary in size
but our underlying aim is to group together words
that function in a similar way, have similar neigh-
bours. Thus, for example, lexical verbs can usually
have the same type of predecessors and successors
whether they are in the present or past tense:

We like swimming / We liked swimming

so in our tagset they are in one class. This maintains
a good degree of discriminability while moving to a
smaller, fairly natural tagset. Moreover, another rea-
son for mapping the BNC tagset onto our smaller set
is that the entropy measures are more pronounced for
the smaller set, while a larger tagset would require
even larger corpora to avoid undersampling errors in
entropy estimates.

4 Experiments

We have run the following experiments. First, we
have processed the whole corpus of 107 million parts
of speech tags, with punctuation, and found H1, H2,
H3, and H4 as shown in Table 1. We also ran exper-
iments over each of the 10 directories in which the
corpus material is placed to see if there was much
variation. In fact, variations between the directories
is small: the results cluster round a central tendency
shown by the measure for the whole corpus. An ex-
ample is shown in Table 1.

We also process a comparable set of randomly
generated numbers, in order to ensure that distor-
tions do not occur because of undersampling. With
32 tags the number of possible sequences of length 5
are 33,554,432. If too small a sample is used the en-
tropy appears lower than it should, since, e.g. not all
the infrequent cases have occurred. A simple empir-
ical test on sample size is through a random number
sequence check. For a random sequence, the entropy
should not decline as more of the information over
preceding numbers is taken into account, since they
are generated independently. Thus H for a sequence
of random numbers in the range 0 to 31 should stay at
5.0. Sequences of random numbers are produced by
the Unix random number generator. The results show
that for the whole corpus we can be fully confident up
to the H4 figure, but H5 should be treated with cau-
tion. For the 10 subdirectories, H4 should be treated
with caution, and H5 is omitted.

Secondly, we process the whole BNC corpus, but
omitting punctuation marks, as shown in Table 2.
This time there will be 31 tags, as the punctuation
symbol is omitted. The number of words is reduced,
as punctuation marks are counted as words.

4.1 Analysis of results

The results in Table 1 show that entropy declines as
processing is extended over the 1, then 2 and then 3
preceding consecutive parts of speech tags. There is
a small further decline when 4 consecutive tags are
taken. The results for 5 consecutive tags are not con-
sidered fully reliable, in view of the random sequence
check for 107 million symbols.

Compare these results with those in Table 2. This
time there is one less tag symbol, so we expect unpre-
dictability to decrease compared to that for the cor-
pus tagged with 32 symbols, and entropy to be less.
This is what we find for H0 and for H1. However,
as we take words 2, 3 and 4 at a time we find that
entropy is slightly greater than in the first case. This
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Corpus H0 H1 H2 H3 H4 H5

107 million words + punctuation 5.0 4.19 3.27 2.94 2.84 (2.75)
32 tags

107 million random words 5.0 5.0 5.0 5.0 5.0 4.8
32 tags

10 million words, subdirectory F 5.0 4.18 3.25 2.91 (2.79)
32 tags

10 million random words 5.0 5.0 5.0 5.0 4.93 3.05
32 tags

Table 1: Entropy measures for the BNC corpus, mapped onto 32 parts of speech tags. 3-grams, 4-grams and
5-grams that span a punctuation mark are omitted. Figures in brackets are to be treated with caution.

Corpus H0 H1 H2 H3 H4 H5

94 million words, no punctuation 4.95 4.16 3.29 3.14 3.07 (3.01)
31 tags

94 million random words, 4.95 4.95 4.95 4.95 4.95 4.72
31 tags

Table 2: Entropy measures for the BNC corpus, mapped onto 31 parts of speech tags, omitting punctuation. The
figure in brackets should be treated with caution.

indicates that punctuation captures some of the struc-
ture of language, allowing the next parts of speech
tag to be be better predicted, and that by removing
punctuation (corresponding to prosodic marking in
speech) we increase the uncertainty. Paraphrasing
Shannon we can say that a string of words between
punctuation marks is a cohesive group with internal
statistical influences, and consequently the n-grams
within such phrases, clauses or sentences are more re-
stricted than those which bridge punctuation ((Shan-
non, 1993, page 197)).

These results indicate that a stream of language
is easier to decode if words are taken in short se-
quences rather than as individual items, and supports
the hypothesis that local sequential processing under-
lies communication through language.

5 Other evidence for local pro-
cesses

5.1 Computer modelling and the “small
world” effect

In consider local processing, it is instructive to look at
syntactic models based on dependency grammar and
related concepts. Dependency grammar assumes that
syntactic structure consists of lexical nodes (words)
and binary relations (dependencies) linking them.
Though these models are word based, phrase struc-
ture emerges. An online practical example is the
Link Parser (Sleator et al. (2005)) where you can
parse your own texts and see how the constituent tree
emerges. Now, it is reported (i Cancho (2004)) that,
in experiments in Czech, German and Romanian with
a related system, about 70% of dependencies are be-
tween neighbouring words, 17% at a distance of 2.
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This is one of the characteristics of the small world
effect. A significant amount of syntactic knowledge
is available from local information, even before our
grammatical capability is enhanced by the addition
of long range dependencies associated with phrase
structure hierarchies.

From this one could also suggest that an inter-
mediate stage in the development of a fully fledged
grammar could have been based on local syntactic
constraints.

Returning to another computer model, Elman’s
recurrent networks, we note that they could have
a useful role to play in modelling short phrasal
strings, but there are inherent obstacles to modelling
longer dependencies (Bengio (1996); Hochreiter et al.
(2001)).

5.2 Neurobiological evidence

Our hypothesis is also supported by the fact that prim-
itive sequential processors in the basal ganglia play
an essential role in language processing (Lieberman
(2000, 2002)). The neural substrate that regulates
motor control includes the control of articulatory acts,
and this part of the brain seems to have extended its
role to manage the sequencing of linguistic elements.
An overview of the evidence that language and motor
abilities are connected is given in a special edition of
Science (Holden (2004)).

5.3 Simple observations of everyday
speech

Any hypothesis on the evolution of language needs to
explain why all languages seem to have homophones
(Lyon et al. (2004)). In English some of the most
frequently used words have more than one meaning
such as to / too / two. Even young children seem able
to disambiguate them without difficulty. In an ag-
glutinative language such as Finnish they are rarely
used by children, but occur in adult speech (Warren
(2001)).

Their prevalence undermines the theories based
on the assumptions that words in evolutionarily ad-
vanced language have a single meaning, that “the
evolutionary optimum is reached if every word is
associated with exactly one signal” ((Nowak et al.,
1999, page 151)) and that there is a “loss of com-
municative capacity that arises if individual sounds
are linked to more than one meaning” ((Nowak et al.,
2002, page 613)). While such theories and models
may appear to be logically attractive, they do not rep-
resent real language.

However, if we accept the hypothesis that local
sequential processing underlies our language capabil-
ity then there is not a problem accounting for the ho-
mophone phenomenon: homophones can be disam-
biguated by the local context.

6 Conclusion
When we look for clues to the evolution of language
we can examine the state humans are in now and rea-
son about how we could have arrived at the present
position. This may take the form of brain studies, but
it can also include the sort of analysis of language
that we are doing. Chomsky once famously claimed
that “One’s ability to produce and recognize gram-
matical structures is not based on notions of statisti-
cal approximation and the like” (Chomsky (1957)).
However, statistics can illuminate the way in which
language processing has been carried out, and inves-
tigations on large corpora can now be done that were
not possible a few decades back.

Our experiments suggest that utterances are pro-
cessed in segments of a few words. We go on to hy-
pothesize that these segments could be the elements
out of which a hierarchical grammar is built.
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Appendix A
The tagset of the British National Corpus is mapped
onto our tagset. Each of the BNC tags is mapped
onto an integer, as shown below, so that functionally
similar tags are grouped together.

Tag Code for our mapping

AJ0 1
Adjective (general or positive) (e.g. good, old, beau-
tiful)

AJC 1
Comparative adjective (e.g. better, older)

AJS 1
Superlative adjective (e.g. best, oldest)

AT0 2
Article (e.g. the, a, an, no)

AV0 3
General adverb: an adverb not subclassified as AVP
or AVQ (see below) (e.g. often, well, longer (adv.),
furthest).

AVP 3
Adverb particle (e.g. up, off, out)

AVQ 3
Wh-adverb (e.g. when, where, how, why, wherever)

CJC 4
Coordinating conjunction (e.g. and, or, but)

CJS 4
Subordinating conjunction (e.g. although, when)

CJT 4
The subordinating conjunction that

CRD 2
Cardinal number (e.g. one, 3, fifty-five, 3609)
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DPS 5
Possessive determiner-pronoun (e.g. your, their, his)

DT0 2
General determiner-pronoun: i.e. a determiner-
pronoun which is not a DTQ or an AT0.

DTQ 2
Wh-determiner-pronoun (e.g. which, what, whose,
whichever)

EX0 6
Existential there, i.e. there occurring in the there is
... or there are ... construction

ITJ 7
Interjection or other isolate (e.g. oh, yes, mhm, wow)

NN0 8
Common noun, neutral for number (e.g. aircraft,
data, committee)

NN1 9
Singular common noun (e.g. pencil, goose, time,
revelation)

NN2 10
Plural common noun (e.g. pencils, geese, times, rev-
elations)

NP0 11
Proper noun (e.g. London, Michael, Mars, IBM)

ORD 1
Ordinal numeral (e.g. first, sixth, 77th, last) .

PNI 12
Indefinite pronoun (e.g. none, everything, one [as
pronoun], nobody)

PNP 13
Personal pronoun (e.g. I, you, them, ours)

PNQ 14
Wh-pronoun (e.g. who, whoever, whom)

PNX 15
Reflexive pronoun (e.g. myself, yourself, itself, our-
selves)

POS 16
The possessive or genitive marker ’s or ’

PRF 17
The preposition of

PRP 18
Preposition (except for of) (e.g. about, at, in, on, on
behalf of, with)

PUL 0
Punctuation: left bracket - i.e. ( or [

PUN 0
Punctuation: general separating mark - i.e. . , ! , : ;
- or ?

PUQ 0
Punctuation: quotation mark - i.e. ’ or ”

PUR 0
Punctuation: right bracket - i.e. ) or ]

TO0 19
Infinitive marker to

UNC 7
Unclassified items which are not appropriately con-
sidered as items of the English lexicon.

VBB 20
The present tense forms of the verb BE, except for
is, ’s: i.e. am, are, ’m, ’re and be [subjunctive or
imperative]

VBD 20
The past tense forms of the verb BE: was and were

VBG 21
The -ing form of the verb BE: being

VBI 22
The infinitive form of the verb BE: be

VBN 23
The past participle form of the verb BE: been

VBZ 24
The -s form of the verb BE: is, ’s

VDB 20
The finite base form of the verb DO: do

VDD 20
The past tense form of the verb DO: did

VDG 21
The -ing form of the verb DO: doing

VDI 22
The infinitive form of the verb DO: do

VDN 23
The past participle form of the verb DO: done

VDZ 24
The -s form of the verb DO: does, ’s

VHB 20
The finite base form of the verb HAVE: have, ’ve

VHD 20
The past tense form of the verb HAVE: had, ’d

VHG 21
The -ing form of the verb HAVE: having

VHI 22
The infinitive form of the verb HAVE: have

VHN 23
The past participle form of the verb HAVE: had

VHZ 24
The -s form of the verb HAVE: has, ’s

VM0 25
Modal auxiliary verb (e.g. will, would, can, could,
’ll, ’d)

VVB 26
The finite base form of lexical verbs (e.g. forget,
send, live, return) [Including the imperative and
present subjunctive]
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VVD 26
The past tense form of lexical verbs (e.g. forgot,
sent, lived, returned)

VVG 27
The -ing form of lexical verbs (e.g. forgetting, send-
ing, living, returning)

VVI 28
The infinitive form of lexical verbs (e.g. forget, send,
live, return)

VVN 29

The past participle form of lexical verbs (e.g. forgot-
ten, sent, lived, returned)

VVZ 30
The -s form of lexical verbs (e.g. forgets, sends,
lives, returns)

XX0 31
The negative particle not or n’t

ZZ0 7
Alphabetical symbols (e.g. A, a, B, b, c, d)

Appendix B

The derivation of the formula for calculating conditional entropy
This is derived from Shannon’s work on the entropy of symbol sequences. He produced a series of approximations
to the entropy H of written English, taking letters as symbols, which successively take more account of the
statistics of the language.

H0 represents the average number of bits required to determine a symbol with no statistical information. H1

is calculated with information on single symbol frequencies; H2 uses information on the probability of 2 symbols
occurring together; Hn, called the n-gram entropy, measures the amount of entropy with information extending
over n adjacent symbols. As n increases from 0 to 3, the n-gram entropy declines: the degree of predictability is
increased as information from more adjacent symbols is taken into account. If n − 1 symbols are known, Hn is
the conditional entropy of the next symbol, and is defined as follows.

bi is a block of n − 1 symbols, j is an arbitrary symbol following bi

p(bi, j) is the probability of the n-gram consisting of bi followed by j

pbi
(j) is the conditional probability of symbol j after block bi, that is p(bi, j) ÷ p(bi)

Hn = −
∑
i,j

p(bi, j) ∗ log2 pbi
(j)

= −
∑
i,j

p(bi, j) ∗ log2 p(bi, j) +
∑
i,j

p(bi, j) ∗ log2 p(bi)

= −
∑
i,j

p(bi, j) ∗ log2 p(bi, j) +
∑

i

p(bi) ∗ log2 p(bi)

since
∑

i,j p(bi, j) =
∑

i p(bi).

N.B. This notation is derived from that used by Shannon. It differs from that used, for instance, by Bell et al.
(1990).
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Abstract 
 

The difficulties inherent in proceeding from the semantics of typically innate animal calls to lexical 
syntax encourage a search for alternative approaches to the animal origins of human language. One 
such is to start from the elaborate and structurally rich but un-semanticized sequences of song 
produced for display pursposes by some species of animals exhibiting vocal learning. Examples 
abound among birds, while whale and human song provide rare mammalian instances of the 
phenomenon. Humpback whales exhibit not only a rich repertoire of different learned songs, but 
these are shared among individuals of a group through copying. Such a shared repertoire of many 
distinct songstrings could become a vehicle for semantic communication if the use of such a 
repertoire became differentiated according to environmental, behavioral, or social context. That is, 
if different parts of the repertoire became selectively attached to specific contexts, different songs 
for different contexts, the songstrings would come to function as long and complex "song-names" 
for those contexts. If so, a further possibility arises: sub-sequences of these context-marking strings 
could be cross-matched to whatever contents, features or aspects that happen to be held in common 
by the contexts marked by the full strings (assumed to be not only structurally rich but also 
redundant). This supplies the logic of a stage-wise progression of parsing, cross-matching and 
contextual differentiation of increasingly specialized substring reference which we propose carries 
the potential of arriving at full lexical syntax, including the final stages of grammaticization 
described by historical linguists. This conception will be elaborated with the help of animal 
examples attesting to the biological plausibility of this scenario for the origins of human language. 

  
 

1   Introduction 
Human languages are quintessentially historical 
phenomena. Every known aspect of linguistic form 
and content is subject to change in historical time 
(Lehmann, 1995, p. 34). Many syntactic phenomena 
find their explanation in the historical processes that 
generated them, while apart from their history they 
can only be formalized (DeLancey, 1993). In fact, it 
has been proposed that the true universals of 
language are the modes of historical change that 
result in extant patterns of linguistic structure 
(Bybee, 2005). 

   If no aspect of language remains untouched by 
history, how far back does this process take us? 
Presumably all the way to the origin of language, 
since any stage in a historical process is preceded by 
earlier history. Yet at some point of the past there 
was no human language, and the question arises: out 
of what prior medium might human language have 
arisen in human prehistory?   

In what follows we shall suggest that the 
transition to human, historical language had its point 
of departure in a prior historical medium featuring 
inter-generational transmission by non-genetic 
means, rich in syntactic complexity but originally 
devoid of semantics. Not only do such systems exist 
in non-human nature in the form of elaborate song-
displays on the part of animals with vocal learning 
(Catchpole and Slater, 1995; Marler, 2000; 
Okanoya, 2002) but as we shall see, the 
semanticization of such a system to yield the 
essentials of language (Merker, in press) appears 
easier to achieve than the syntactification of a prior 
syntax-less semantic system. We first consider the 
problems encumbering the latter. 

 
2   The self-blocking path of animal 
semantics 
Animal call systems feature a pair-wise relation 
between call type and meaning, to the virtual 
exclusion of sequence combinatorics (syntax) as a 
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carrier of meaning (Marler, 2000, p. 37).  Calls are 
typically monosyllabic and carry one category of 
“meaning” per call type (Marler, 2004). Whether 
they express the varied emotional states of the 
animal calling or signal external social or 
environmental circumstances (as in alarm calls; 
Seyfarth et al., 1980) animal calls are meaningful 
signals to conspecifics within hearing. Because of 
this semantic aspect, animal calls have been by far 
the favorite model for an animal precursor of the 
words of human language, particularly since the 
documentation of  “functional reference” in animal 
calls (Marler et al., 1992). Yet calls and words differ 
in fundamental ways.  
   Animal calls tend to be innately based, while 
human words are invariably learned; they are also 
composites in a way in which animal calls are not 
(Hurford, 2004). Moreover, human words function 
as elements of sentences, yet the tight coupling 
between sound gesture and emotional-motivational 
dynamics characteristic of animal calls prevents 
them from acting as carriers of meaning in a 
sequential combinatorial system.  
   The problem is this: in order to function as 
elements of a combinatorial system for conveying 
meaning, vocal gestures must possess a modicum of 
neutrality and independence with respect to the 
basic emotional-motivational forces animating an 
animal’s behavior. Consider an animal whose 
repertoire includes two typical calls, one meaning 
“food”, normally given when the animal finds food, 
the other meaning “fear”, an alarm call normally 
given when the animal is frightened, as by a 
predator. Why not combine these calls to generate 
four meanings from the two, as follows: the alarm 
call followed by the food call signals “fear-food”, 
i.e. “fear-with-food”, and hence “poisonous food”, 
while the food call followed by the alarm call would 
mean “food-fear”,  i.e. “food-with-fear”, and hence 
“prey”? 
   To do so would require the animal to use a call 
inherently linked to its own state of fear (as evoked 
by a predator) to signal something the animal has no 
reason to fear (its prey), and also to use a call 
charged with positive valence (finding food) to 
signal an object with strong negative valence 
(poison). An inherent feature of calls – their strong 
unitary referential loading, on a typically innate and 
emotionally charged basis – prevents the animal 
from doing so. Thus the very traits which make calls 
so economical and efficient as components of an 
animal call system erect a functional barrier to the 
adoption of call combinations as a means to 
multiply meanings, and this blocks their 
development into a syntactic system. In searching 
for the path on which one single species in the entire 
history of life on earth came to supplement its call 
system with language we turn then from calls to that 

other use to which some animals put their voice, 
namely the learned vocal displays of animal song. 
Here a radically different situation obtains. 
 
3   Syntax without semantics: The 
complexities of learned song 
The song-bouts of many birds and a very few 
mammals abound in sequence complexity achieved 
by rearrangement of a finite set of song elements or 
phrases. Thus the sedge warbler varies the sequence 
of a repertoire of some 50 different song elements, 
producing song patterns which essentially never 
repeat (Catchpole, 1976). In the case of Bengalese 
finches the nature of their endlessly varying non-
deterministic song sequences has been formally 
worked out: it conforms to the output of a finite 
state grammar (Okanoya, 2002), and may even 
require a context free grammar to be fully described 
(Okanoya, unpublished observations). In the case of 
the humpback whale, one of the few mammals with 
complex learned song, the patterns that result from 
song learning are also shared. Individual males 
introduce innovations in their song, and the novelty 
spreads gradually through the group by copying 
(Payne, 2000; Okanoya, unpublished observations). 
The resulting repertoire is a largely shared and 
slowly changing set of complex and syntactically 
structured vocal strings specific for a given group 
and time, whose transmission across the seasons and 
generations amounts to a true song culture.  
   These and other feats of animal song, such as the 
1800 distinct melodies making up the repertoire of 
the brown thrasher (Kroodsma & Parker, 1977), all 
depend on the singular biological trait of vocal 
learning. This highly specialized mechanism equips 
an animal with the readiness and ability to learn to 
shape its vocal output to match and duplicate 
patterns of auditory models received through the 
sense of hearing and incorporating arbitrary pattern 
characteristics (see Ziegler and Marler, 2004). 
Humans have this capacity while chimpanzees do 
not (Snowdon and Elowson, 1992; Janik & Slater, 
1997), and we depend on it for every word we know 
how to pronounce and for every song we sing. If this 
capacity seems unremarkable to us, it is only 
because we have it. Yet in phylogenetic perspective 
it is exceedingly rare. No dog has ever been heard to 
imitate a cat or a crow, while mynah birds imitate all 
three. Mammals excel in their capacity to learn, yet 
vocal learning is a rarity among them (see review by 
Janik and Slater, 1997). Beyond a few mammals 
such as humans, whales and bats, it is birds that 
supply the striking examples of the ability to learn 
vocal patterns from auditory models. 
   The learned nature of these song displays, the 
existence of a practice phase resembling babbling 
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(“sub-song”), the open ended pattern generativity in 
the singing of some species, and the cultural 
transmission of song traditions, specific to 
subpopulations (often in the form of dialects, 
Nottebohm, 1970) has repeatedly led students of 
bird song to note its relevance – in both ontogenetic 
and evolutionary terms – to fundamental issues in 
the origins of human language (Darwin, 1871; 
Marler, 1970; Nottebohm, 1975; Doupe and Kuhl 
1999; Okanoya, 2002; Wilbrecht and Nottebohm 
2003; Jarvis, 2004). What is entirely missing in this 
regard, of course, is any hint of semantic 
differentiation in animal song: in sharp contrast to 
the situation regarding animal calls, there is no 
evidence that animal song performs semantic 
functions in the sense of carrying functional 
reference (Marler, 2000).  
   The pattern variety of song could in principle 
convey vast amounts of specific information, yet 
nothing indicates that it is put to such use in nature. 
Being a product of sexual selection, song essentially 
serves to impress, be it rivals or potential mates 
(Catchpole and Slater, 1995). Song syntax thus 
offers an unexploited resource for use as an 
informational medium, provided it could be 
semanticized. How might this come about? 
 
4   Songstring semanticization by 
contextual repertoire 
differentiation: moving song from 
aesthetics to language 
Let humpback whales, instead of discarding old 
portions of their repertoire as new additions are 
made through innovation, attach some portions of 
their repertoire to one context and other portions to 
other context, by preferentially using certain song-
strings in one context but not in another. There is 
precedent for such a process, if only incipiently so, 
in the singing of the wood warbler. Many of them 
do not use the same repertoire of song types 
indiscriminately for mate attraction and for fending 
off rival males, but tend to use some song types 
more in one context than in the other, perhaps 
reflecting differences in motivational state 
(Kroodsma, 1988). In the setting of the shared 
repertoire possessed by a group of humpback 
whales, the extension of such repertoire 
differentiation to multiple behavioral and 
environmental contexts would eventually make 
small sets of song-strings or single song-strings into 
“markers” or long “song-names” for those contexts 
or circumstances to which they were attached 
through preferential use.   
   Whether we use whales or birds as model, these 
strings, now preferentially attached to certain 

contexts, are composed of a finite set of unitary 
elements in long sequences which are not only 
highly varied, but redundant as well (Okanoya, 
2002). This means that despite the situation-
specificity of each songstring, these strings would 
contain substrings and partial sequences that were 
shared across strings – and therefore situations – in 
initially unpredictable patterns.  This in turn would 
provide the opportunity to start collating 
subsequences of matching substrings with matching 
situational characteristics in a process which thereby 
would start incorporating aspects of categories and 
relations - such as kinds of actions, agencies, objects 
and attributes - cutting across situations. Initially 
such cross-fitting between songstrings and the world 
could proceed quite freely, because the setting was 
that of frivolous song rather than of serious 
meaning. Poor fits would have occasioned no 
disadvantage compared to the unsemanticized prior 
state, yet the more apposite the cross-matches, the 
more would this inchoate meaning-aspect start 
constraining the process of collation and cross-
fitting.  
   Imagine, if you will, a nascent social game whose 
aim it was to discover similarities across disparate 
contexts and marking these by distinctive song 
fragments. Pursuing such a game, perhaps as a 
means to impress in the setting of sexual selection, 
one could do worse than to adopt the trick of the 
winter wren: to cut up the received songs into 
sections for rearrangement (see Kroodsma & 
Momose, 1991; Marler, 1991). Such “parsing” and 
reshuffling would, over time, allow cognitive 
categories capturing significant aspects of the 
workings of the world to be matched by 
corresponding substructures in the shared song 
repertoire. Proceeding to ever finer levels of 
correspondance through the process of subdivision 
and rearrangement, sometimes with deliberate 
invention – and social imposition? – of a string-
usage convention, this might eventually yield 
something resembling single words in the lexicon of 
human language. 
   How much further than that would this process 
have to be taken in order to qualify as human 
language? As far as the natural history of the 
process is concerned, we are actually done, because 
the state of song-string semanticization we have just 
outlined corresponds quite closely to the historical 
starting point of the various processes of 
grammaticization studied by historical linguists. As 
one of them has expressed it: “Thus we assume that 
grammaticalization starts from a free collocation of 
potentially uninflected lexical words in discourse” 
(Lehmann, 1995, p. 12). Such “free collocations of 
uninflected lexical items in discourse” is what the 
above process of song-string parsing and cross-
matching to ever more differentiated contexts would 
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deliver, and this in the setting of a shared, now 
semanticized, repertoire bequeathed through vocal 
learning to each new generation in a cumulative, 
historical process of cultural transmission. 
   The above, we suggest, constitutes a possible path 
to the biological origin of human language. 
Needless to say it is only the abstract principle of 
such a path that we have sketched, and not its 
implementation in terms of its cognitive 
prerequisites and logistical details, nor in terms of 
the sequence of the human fossil and archaeological 
record, and the neurological and behavioral 
developments to which that record bears witness. 
Such issues belong to the future. For now we rest 
content with a conjecture which at least has the 
merit of steering clear of biological magic. 
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Abstract

Language change is considered as a transition of population among languages. The language dynamics
equation represents such a transition of population. Our purpose in this paper is to develop a new
formalism of language dynamics for a real situation of language contact. We assume a situation that
memoryless learners are exposed to a number of languages. We show experimental results, in which
contact with other language speakers during acquisition period deteriorates the learning accuracy and
prevents the emergence of a dominant language. If we suppose a communicative language, when
learners are frequently exposed to a variety of languages, the language earns relatively higher rate of
population. We discuss the communicative language from the viewpoint of the language bioprogram
hypothesis.

1 Introduction

In general, all human beings can learn any human lan-
guage in the first language acquisition. One of the
main functions of language use is to communicate
with others. Therefore, it is easy to consider that the
language learners come to obtain a language which
they hear most in the community. In other words,
the most preferable language in the community would
eventually survive and become dominant in competi-
tion with other languages, depending on how much
ratio of the people speak it. Accordingly, language
change can be represented by a population dynamics,
examples of which include an agent-based model of
language acquisition proposed by Briscoe (2002) and
a mathematical framework by Nowak et al. (2001),
who elegantly presented an evolutionary dynamics of
grammar acquisition in a differential equation, called
the language dynamics equation.

Our purpose of this study is to develop a new for-
malism of language dynamics which deals with lan-
guage contact between language learners and speak-
ers, and then to investigate the relationship between
the language contact and language change. Thus far,
we have revised the model of Nowak et al. (2001) to
be more realistic, in order to study the emergence of
creole (DeGraff, 1999) in the context of population
dynamics (Nakamura et al., 2003). For the purpose

of modeling the process of creolization, we claimed
that children during language acquisition should con-
tact not only with their parents but also with other
language speakers. To meet this condition, we re-
vised the transition rate between languages to be sen-
sitive to the distribution of languages in the popula-
tion at each generation. We introduced the exposure
rate to determine the degree of influence from other
languages during acquisition. Namely, focusing on
language learners, we have given a more precise en-
vironment of language acquisition than Nowak et al.
(2001). In other words, introducing the exposure rate,
we have regarded the model of Nowak et al. (2001) as
a specific case of ours in language acquisition. There-
fore, these revisions enable us to deal not only with
the emergence of creole but also with other phenom-
ena of language change.

In this paper, we aim at examining the behavior of
our model in terms of language change. Komarova
et al. (2001) adopted two kinds of language learners
called memoryless learners and batch learners, com-
paring conditions of the two models for the emer-
gence of a dominant language. In this paper, intro-
ducing a new transition probability for a memoryless
learner exposed to a variety of languages, we com-
pare the behavior of the dynamics with that of Ko-
marova et al. (2001).

In Section 2, we propose a modified language dy-
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namics equation and a new transition matrix of mem-
oryless learning algorithm. We describe our experi-
ments in Section 3. We discuss the experimental re-
sults in Section 4. Finally, we conclude this paper in
Section 5.

2 Learning Accuracy of Memo-
ryless Learners

2.1 Outline of the Language Dynamics
Equation

We explain the outline of the language dynamics
equation proposed by Nowak et al. (2001). In their
model, given the principles in the universal grammar,
the search space for candidate grammars is assumed
to be finite, that is {G1, . . . , Gn}. The language dy-
namics equation is given by the following differential
equations:

dxi

dt
=

n
∑

j=1

xjfjQji − φxi (i = 1, . . . , n), (1)

where

xi : the ratio of the population of Gi speakers, where
∑n

j=1
xj = 1,

Q = {Qij} : the transition probability between
grammars that a child of Gi speaker comes to
acquire Gj ,

fi : fitness of Gi, which determines the number
of children individuals reproduce, where fi =
∑n

j=1
(sij + sji)xj/2,

S = {sij} : the similarity between languages, which
denotes the probability that a Gi speaker utters a
sentence consistent with Gj , and

φ : the average fitness or grammatical coherence of
the population, where φ =

∑

i xifi.

The language dynamics equations are mainly com-
posed by (i) the similarity between languages as the
matrix S = {sij} and (ii) the probability that children
fail to acquire their parental languages as the matrix
Q = {Qij}. The accuracy of language acquisition
depends on the search space {G1, . . . , Gn}, the learn-
ing algorithm, and the number of input sentences, w,
during language acquisition.

As a similarity matrix, in this paper, we mainly
deal with such a special case that:

sii = 1, sij = a, i 6= j , (2)

α
G1

Gn

Gp

Gp

1- α
PSfrag replacements

m11

m22

m12

m11

m21

m22

m12

Figure 1: The exposure rate α

where a is a number between 0 and 1. In accordance,
the transition probability comes to:

Qii = q, Qij =
1 − q

n − 1
, i 6= j , (3)

where q is the probability of learning the correct
grammar or the learning accuracy of grammar acqui-
sition.

2.2 Modified Language Dynamics
Equation

In a situation of language contact, a child may learn
language not only from his parents but also from
other language speakers who speak a different lan-
guage from his parental one. In order to incorporate
this possibility to language dynamics equation, we di-
vide the language input into two categories; one is
from his parents and the other is from other language
speakers. We name the ratio of the latter an expo-
sure rate α. This α is subdivided into the smaller ra-
tios corresponding to the distribution of all language
speakers. An example distribution of languages is
shown in Fig. 1. The child of Gp speaker is ex-
posed to Gp at the rate of the shaded part, that is
αxp + (1 − α), and the ratio of a non-parental lan-
guage Gj comes to be αxj .

Suppose that a child whose parents speak Gp hears
sentences from the adult speakers depending on the
exposure rate and on the distribution of population.
If the child presumes Gj and hears a sentence, it is
accepted with such a probability, Upj , that:

Upj = α

n
∑

k=1

skjxk + (1 − α)spj . (4)

For the special case where Eqn (2) is satisfied, it is
transformed to:

Upj =

{

1 − α(1 − a)(1 − xj) (p = j)
a + α(1 − a)xj (p 6= j)

, (5)

When a learning algorithm is expanded into the one
which allows language learners to be exposed to a
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number of languages, the matrix U = {Uij} corre-
sponds to S = {sij} in terms of an acceptable prob-
ability of a sentence for a child. Then, the Q ma-
trix depends on the U matrix and the U matrix on
the population rate. Since the distribution of pop-
ulation changes in time, the Q matrix comes to in-
clude a time parameter t, that is, Q is redefined as
Q(t) = {Qij(t)}. Thus, the new language dynamics
equation is expressed by:

dxi(t)

dt
=

n
∑

j=1

xj(t)fj(t)Qji(t) − φ(t)xi(t)

(i = 1, . . . , n). (6)

We call it the modified language dynamics equation.

2.3 Memoryless Learning Algorithm

Komarova et al. (2001) argue two extreme learning
algorithms called the batch learning algorithm and
the memoryless learning algorithm (Niyogi, 1998), in
which the former is considered as the most sophisti-
cated algorithm within a range of reasonable possi-
bilities, and the latter as the simplest mechanism. Be-
cause the memoryless learning algorithm is easy to
be remodeled with our proposal, we will use it and
compare the behavior of the dynamics with that of
Komarova et al. (2001). In this section, we explain
the learning accuracy of the memoryless learning al-
gorithm derived from a Markov process.

The memoryless learning algorithm describes the
interaction between a child learner and language
speakers. Namely, the child hears sentences of a lan-
guage. The learner starts presuming a grammar by
randomly choosing one of the n grammars as an ini-
tial state. When the learner hears a sentence from
the teacher, he tries to apply his temporary gram-
mar to accept it. If the sentence is consistent with
the learner’s grammar, no action is taken; otherwise
the learner changes his hypothesis about the grammar
to the next one randomly picked up from the other
grammars. This series of learning is repeated until
the learner receives w sentences.

Komarova et al. (2001) supposed there is one
teacher (the learner’s parent), so that the learner hears
only one language. In this case, the algorithm is
presented by the following expressions. The ini-
tial probability distribution of the learner is uniform:
p

(0) = (1/n, . . . , 1/n)T , where AT is the transposed
matrix of A, i.e., each of the grammars has the same
chance to be picked at the initial state. If the teacher’s
grammar is Gk and the child hears a sentence from
the teacher, the transition process from Gi to Gj in

the child’s mind is expressed by a Markov process
with such a transition matrix M(k) that:

M(k)ij =

{

ski (i = j)
1 − ski

n − 1
(i 6= j)

. (7)

After receiving w sentences, the child will acquire a
grammar with a probability distribution p

(w). There-
fore, the probability that a child of Gi speaker ac-
quires Gj after w sentences is expressed by:

Qij = [(p(0))T M(i)w]j . (8)

The transition probability of the memoryless learn-
ing algorithm depends on the S matrix. For in-
stance, if the condition of Eqn (2) is satisfied, the
off-diagonal elements of the Q matrix are also equal
to each other, and Eqn (3) holds. Therefore, q =
Qii (i = 1, . . . , n) is derived as follows:

q = 1 −

(

1 −
1 − a

n − 1

)w
n − 1

n
. (9)

This is the learning accuracy of memoryless learner.
If once a memoryless learner achieves his parental

grammar, he will never change his hypothesis. Sup-
pose there exist only two grammars, then the memo-
ryless learner has two states in a Markov process, that
is, a state for the hypothesis of his parental grammar,
Gparent, and a state for the other grammar, Gother.
The transition probability between the states is ex-
pressed by a Markov matrix M = {mij} such that:

M =

(

1 0
1 − a a

)

, (10)

where

m11: the probability that a child who correctly
guesses his parental grammar maintains the
same grammar,

m12: the probability that a child who correctly
guesses his parental grammar changes his pre-
sumed grammar to another,

m21: the probability that a child whose grammar is
different from his parents’ comes to presume his
parental grammar, and

m22: the probability that a child whose grammar is
different from his parents’ keeps the same gram-
mar by accepting a sentence1.

1If the memoryless learner is able to choose the refused gram-
mar again with a uniform probability when he failed to accept the
sentence, the Markov matrix is replaced by:

M =

(

1 0
(1 − a)/2 a + (1 − a)/2

)

.
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(b) A case a child hears sentences in a
number of languages

Figure 2: Markov processes for the memoryless
learning algorithm

Figure 2(a) shows a state transition diagram.
Komarova et al. (2001) have analyzed the language

dynamics equation and deduced the following results:

• When the learning accuracy is high enough,
most of the people use the same language, that
is, there exists a dominant language. Otherwise,
all languages appear at roughly similar frequen-
cies.

• The learning accuracy is calculated from a learn-
ing algorithm. Receiving input sentences, a
memoryless learner enhances his learning accu-
racy.

2.4 Memoryless Learners Exposed to a
Number of Languages

We define a transition matrix, Q(t) = {Qij(t)}, of
memoryless learners exposed to a number of lan-
guages during acquisition period. For a child whose
parents speak Gp, the transition matrix of a Markov
process is defined by:

M(p)ij =

{

Upi (i = j)
1 − Upi

n − 1
(i 6= j)

. (11)

The learning accuracy is derived by substituting
Eqn (11) for Eqn (8). Because Uij varies accord-
ing to the distribution of population of each grammar,
even in the special case where Eqn (2) is satisfied the
learning accuracy of each grammar is different from
each other. In other words, there are n values of the
learning accuracy for each grammar. Expression (11)
becomes equivalent to Eqn (7) at α = 0. Thus, the
transition probability with the exposure rate α is re-
garded as a natural extension of that of Komarova
et al. (2001).

For a learner exposed to a variety of languages,
the most important difference from a non-exposed
learner is that even when the learner presumes his
parental grammar Gp, a received sentence may not be
accepted by the grammar with the probability 1−Upp.
In this case he chooses one of the non-parental gram-
mars randomly with a uniform probability. Thus, the
memoryless learner is likely to refute his hypothesis
even if once he acquired his parental grammar. In a
two-grammars case, for example, the Markov matrix
of this process is expressed by the following equation:

M(p) =

(

Up1 1 − Up1

1 − Up2 Up2

)

. (12)

Figure 2(b) shows a state transition diagram of a
memoryless learner exposed to a number of lan-
guages, which differs from Fig. 2(a) in that learners
at a state Gp are possibly to move to another state.

In this section, we revised the memoryless learning
algorithm in order to model a more real situation of
language contact. In the next section, we examine
how a memoryless learner is influenced by a variety
of languages, and how a dominant language appears
dependent on the initial conditions. Especially, we
will look into the relationship between the exposure
rate and the occurrence of a dominant language.

3 Experiments

In this section, we show that the behavior of our
model with the memoryless learning algorithm de-
pends on the exposure rate α. We set the number of
grammars, n = 10, through the experiments. Firstly,
comparing the dynamics of the model with that of
Komarova et al. (2001), we examine how the expo-
sure rate α works in our model. Secondly, we observe
the behavior of dynamics, when there is a particular
language in terms of the similarity.
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Figure 3: Analytical solutions of Eqn (1) which satis-
fies Eqn (2) and Eqn (3) (n = 10, a = 0.1)

3.1 Exposure and Learning Accuracy

In this section, we observe the behavior of our model
especially when Eqn (2) is satisfied. We compare
the behavior of our model with analytical solutions
of Komarova et al. (2001), and with the behavior of
their model by memoryless learners, which is equiv-
alent to that of our model at α = 0.

Expression (1) substituted for Eqn (2) and Eqn (3)
has analytically been solved by Komarova et al.
(2001). The solutions of the model are derived by
setting an arbitrary initial condition of the distribu-
tion of population, affected by the learning accuracy.
Figure 3 shows the population rate of the most preva-
lent grammar in the community, x̂, versus the learn-
ing accuracy, q, by which children correctly acquire
the grammar of their parents, in case of a = 0.1.
There are two types of solutions; one is that only
one of the grammars earns a certain rate of popu-
lation whereas the others are given the rest divided
equally. Which of languages would be dominant de-
pends on the initial condition. The other is that the
solutions take the uniform distribution among gram-
mars. Therefore, there are two thresholds, q1 and
q2. When q < q1, the population of each language
would be uniform. When q > q2, there would be
one prevalent language in the community. Thus, q1 is
the necessary condition for the existence of the preva-
lent language and q2 is the sufficient condition. When
q1 < q < q2, the supremacy of one language depends
on the initial distribution of population.

Here, we examined our model with memoryless
learners at α = 0, which is equivalent to that of
Komarova et al. (2001). Because the learning accu-
racy, q, depends on the number of input sentence, w,
the q − x̂ relation is discretely represented by integer
numbers of w. At α = 0, the relation must iden-
tify that of the analytical solutions, depicted in Fig. 3.
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(a) Solutions by memoryless learning (α = 0)
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(b) Solutions by memoryless learning (α = 0.12)

Figure 4: The behavior of the model depending on
the exposure rate α (a = 0.1, w = 10, . . . , 50)

The result is shown in Fig. 4(a), in which the number
of sentences, w, was given within the range from 10
to 50. In the figure, a cross (×) denotes the q − x̂

relation for a given w, and dotted lines are that of
analytical solutions (copied from Fig. 3). As the re-
sult, we observed that the q − x̂ relation of the model
with memoryless learners exactly corresponds to that
of the analytical solutions.

Next, we experimented different values of α in
the memoryless learning by w. In our model, al-
though the transition probability Qij(t) varies de-
pending on the population rate at each generation, the
value of Qij(t) becomes stable as the population rate
approaches to the solution, and vice versa. There-
fore, we can observe the q − x̂ relation as well. We
expected that because of the variable transition ma-
trix Q(t), the q− x̂ relation collapsed from that of the
base model along with the increase of α. However,
as is shown in Fig. 4(b) where α = 0.12, the rela-
tion becomes the same as the one in Fig. 3. Instead,
we can easily observe that the increase of α deterio-
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Figure 5: Exposure rate α versus learning accuracy q

(w = 10, 50)

rates q in regard to w. Additionally, the solutions of
q seem to be separated into two groups. We drew the
graph with a several patterns of the initial distribution
of population. As a result, some values of α seem to
derive a bifurcation of q values which depend on the
initial population distribution.

In order to observe the influence of α on q, we
show α − q relation in Fig. 5, where two lines are
represented for each of w = 10 and 50. The number
of q values is determined according to α. At w = 50,
when α is between the dashed lines in the figure, there
exist two solutions of q which depend on the initial
distribution of population. Accordingly, two solu-
tions of x̂ are derived at α = 0.12 and w = 50, as
shown in Fig. 4(b).

Although the α − q relation varies along with w,
the learning accuracy, q, monotonously decreases de-
pending on α, in common with any w. Therefore, the
increase of α deteriorates q in regard to a common
value of w.

In our model, q varies from generation to gener-
ation, while Komarova et al. (2001) gave a constant
value to q fixed by a learning algorithm. We showed
that q would be stable for given α and thus x also
would be stable. Apparently q − x relation is similar
to that of Komarova et al. (2001). At this stage, we
may well conclude that the increase of α would just
decrease the accuracy of learning, and would not af-
fect q−x relation, when the algorithm is memoryless
and the language similarity is uniform.

3.2 Communicative Language

In this section, we assume such a hypothetical lan-
guage G1, given G2 and G3, that is much similar to
G2 and G3 than the rest. The S matrix is expressed

by:

S =















1 b b

b 1 a

b a 1
a

a
. . .

1















, (13)

where 0 ≤ a < b ≤ 1. We set a = 0.1 and
b = 0.5 for the following experiments. Accordingly,
languages are classified into three categories in terms
of the similarity. For simplicity, we call them LT1,
LT2 and LT3, each of which includes the commu-
nicative language (G1), the similar languages to G1

(G2 and G3) and the others (G4 . . . G10).
In order to observe how the exposure of children

to a number of languages affects the most abundant
language, we draw diagrams of the population rate of
most prevalent language, x̂, versus the number of in-
put sentences, w, at particular points of α (see Fig. 6).

We start from α = 0. Figure 6(a) shows that the
greater the number of input sentences is, the higher
the population rate of the most prevalent language
exists in stable generations. The population rate of
the most prevalent language depends on which of lan-
guage types the language belongs to. Therefore, we
can see three kinds of w − x̂ relation in the figure,
which correspond to the type of the language (LTi).
Note that in Fig. 6(a), LT1 < LT2 < LT3. Komarova
et al. (2001) explained the reason as follows; G1 has a
larger intersection with the rest of the languages than
the rest of them. When this language becomes pre-
ferred, it stands out less than other languages would
in its place, i.e., it corresponds to lower values of
the population rate. When a language earns the most
abundant population rate, the other languages share
the rest, so that except for the most abundant language
the rate of a language equals to another one which be-
longs to the same language type.

If w is smaller than a certain number, G1 becomes
the most abundant at any initial distribution of popu-
lation. Otherwise, one of other languages might su-
persede G1 depending on the initial condition. Here,
we define a threshold wd as the smallest number of
input sentences in which a language other than G1

could become the most prevalent language. When
α = 0, the threshold wd is 8.

Figure 6(b) shows a diagram of x̂ versus w at
α = 0.12. The threshold wd is boosted to 21, and
any of LT2 does not earn the most abundant rate of
population at w < 50. As was mentioned in Sec-
tion 3.1, the increase of the exposure rate makes the
learning accuracy low. For the memoryless learning
algorithm, the learning accuracy, q, increases with
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(a) Number of input sentences, w, versus population
rate of most abundant language, x̂ (α = 0)
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(b) Number of input sentences, w, versus population
rate of most abundant language, x̂ (α = 0.12)

Figure 6: The behavior of the model with a commu-
nicative language

the number of input sentences, w. The increase of
w keeps the same quality of learning accuracy in re-
sponse to α. Accordingly, wd increases along with
the exposure rate α.

We showed in Fig. 6 that the larger the exposure
rate α was, the greater the threshold wd was. It is ex-
pected that no matter how language learners are ex-
posed to a number of languages, one of languages
other than G1 may stand out as long as the learners
hear the proper quantity of language input. The quan-
tity is wd in Fig. 6. However, human beings have an
acquisition period in which an appropriate grammar
is estimated from their language input and it is lim-
ited in a finite time (Lenneberg, 1967). If the possible
number of input sentences to be heard during acqui-
sition period was settled in a specific value, then we
could draw a diagram concerned with the influence of
the exposure rate, α, on the population rate of most
abundant language, x̂. Figure 7 is an example of the
diagram for w = 30.
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Figure 7: Influence of the exposure rate, α, on the
population rate of most abundant language, x̂ (w =
30)

0

5

10

15

20

25

30

35

40

45

50

0 0.05 0.1 0.15 0.2
Exposure Rate α   (α)d

N
um

be
r 

of
 in

pu
t s

en
te

nc
es

, w
 (

 w
   

)
d

R1

R2

PSfrag replacements

m11

m22

m12

m11

m21

m22

m12

Figure 8: The relationship between two thresholds,
αd and wd

We define αd as the highest value of exposure rate
at which one of languages other than G1 could be-
come the most abundant depending on the initial dis-
tribution. In case of w = 30, it was αd ' 0.128. It is
easily conceivable that the greater the number of the
input sentences is, the larger the threshold αd is.

Thus far, we have observed the smallest number of
input sentences for the appearance of the most abun-
dant language other than G1, that is wd, at particular
values of α. On the other hand, we saw the high-
est value of the exposure rate for the appearance of
the most abundant language other than G1, that is αd,
at a particular number of the input sentence. These
two values have a functional relationship as shown
in Fig. 8. This figure represents conditions of w and
α on the appearance of the most abundant language
other than G1. The necessary number of input sen-
tences rapidly increases along with the exposure rate.
Learners need to receive 222 sentences at α = 0.13,
while 34 sentences at α = 0.129. Although the α−w

relation depends on the S matrix, the figure of the
curve is expected to be basically kept at arbitrary dis-
tribution of elements in the S matrix.
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4 Discussion

4.1 Possibility of Dominant Language

Figure 8 can be recognized as a boundary between
the following two regions:

R1: one of languages other than the communicative
one may become predominant.

R2: the communicative language obtains a certain
rate of population for any initial conditions.

Language learners growing under the condition
of R1 hear enough language input to acquire their
parental languages with high learning accuracy. Al-
though one of the languages may predominate in the
community, which of languages becomes predomi-
nant depends on the initial distribution of population.
Some of them are regarded as a dominant language.
In most cases, the most populous language at the ini-
tial state tends to take the supremacy.

In the area of R2, the most populous language
comes nothing but G1, although it is hard to be re-
garded as a dominant language because of smaller
population rate. Even if no one spoke G1 at the initial
state, G1 eventually comes to be the most abundant
language. Therefore, the change of the predominant
language is easy to occur.

It seems that the condition of R1 is hardly satisfied
for w when α is larger than approximately 0.13. This
result suggests that any dominant language never ap-
pear as long as language learners are frequently ex-
posed to a variety of languages.

4.2 Communicative Language and Bio-
program Hypothesis

In Section 3.2, we assumed that there is a commu-
nicative language, which is more similar to particu-
lar two languages than the others, that is G1. Let us
consider what the language corresponds to in the real
world. We dare say that it is considered as a language
that Bickerton (1984) supposed in the Language Bio-
program Hypothesis. Kegl et al. (1999) briefly outline
the features of the hypothesis as follows:

Bickerton (1984) proposed the Language
Bioprogram Hypothesis. This hypothesis
claims that a child exposed to nonoptimal
or insufficient language input, such as a
pidgin, will fall back on an innate language
capacity to flesh out the acquisition pro-
cess, subsequently creating a creole. This
is argued to account for the striking similar-
ities among creoles throughout the world.

Kegl et al. (1999)

The communicative language has something in
common with the bioprogrammed language in terms
of the condition of existence; it appears when learners
are frequently exposed to other languages so that any
dominant language does not appear, or when they are
not given sufficient language input. Therefore, if no
one spoke the communicative language at the initial
state, it would emerge as a creole.

If we recognize the communicative language to be
consistent with the language bioprogram hypothesis,
the bioprogrammed language is more communicative
with pre-existing languages than the others. How-
ever, we cannot examine whether the creole is more
similar to some particular languages or not. To ensure
our hypothesis here, we need to embed linguistic fea-
tures into the equation.

5 Conclusion

Contact of different language groups has been con-
sidered as one of main factors in language change.
We modeled the contact by introducing the exposure
rate to the language dynamics equation proposed by
Nowak et al. (2001). The exposure rate is the rate
of influence of languages other than the parental one
on language acquisition. We assess the accuracy
of parental language acquisition in the memoryless
learning algorithm. The exposure to other languages
made it possible that the language learner doubted his
hypothetical grammar even though he once acquired
his parental grammar. We expressed the acquisition
process in a Markov matrix, and then revised a new
transition probability that changes in accordance with
the distribution of population, which is a different
feature from Nowak et al. (2001). In addition, each
grammar has a different learning accuracy even in the
completely symmetrical similarity matrix of Eqn (2).

As the experimental result showed, the emergence
of a dominant language depends not only on the sim-
ilarities between languages but also on the ratio of
contact of multiple languages.

We compared our result with Komarova et al.
(2001) in Section 3.1. First, in case the similarity was
uniform, we found that the introduction of the expo-
sure rate α only deteriorated the accuracy of the tar-
get language acquisition; even though the population
ratio versus the learning accuracy was the same, the
introduction of α delayed the learning process. For
memoryless learners, the failure of communication
after achieving their parental grammars is fatal to the
acquisition of a correct grammar. Therefore, when
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children are only exposed to other languages a little,
a dominant language disappears. On the contrary, we
expect that batch learners are robuster in terms of the
noise. Our next target is to show the similar phenom-
ena in the batch learning algorithm.

In the next experiment, we assumed that there is
a most communicative language among the multi-
ple language communities. The result suggests the
following matters; If language learners hear enough
language input to estimate their parental languages,
one of languages other than the communicative lan-
guage would be dominant. However, when language
learners are frequently exposed to a variety of lan-
guages, the communicative language earns a certain
rate of population regardless of the number of input
sentences. The characteristic behaviors suggest that a
bioprogrammed language hypothesized by Bickerton
(1984). The experimental result shown in Fig. 8 sug-
gests that creole will emerge when language learners
are exposed to a variety of languages at a certain rate.
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Abstract

This paper surveys issues around several grand challenge problems for the understanding of the emer-
gence and evolution linguistic communication, and discusses possible approaches. The identified prob-
lems the emergence of (1) advanced use of deixis, gesture, and reference; (2) predication; (3) negation;
(4) syntactic categories; and (5) compositionality.

1 Introduction
In the last decade or so, there has been an explo-
sion of interest in the modelling and understand-
ing of language origins. The employment of simu-
lation and robotic agent-based, connectionist neural
network, and evolutionary techniques has provided
new methods for formulating hypotheses, validating
mechanisms, and selecting between alternative the-
ories on the emergence of linguistic and language-
like phenomena in controlled experimental settings
that meet the scientific criteria of reproducibility. Re-
cent work on the emergence and evolution of human
language and more simple communication systems
has been increasingly interdisciplinary, involving col-
laborations between linguists, philosophers, biolo-
gists, cognitive scientists, roboticists, mathematical
and computational modellers – see e.g. research pa-
pers (MacLennan, 1992; Steels, 1995; Hashimoto and
Ikegami, 1995; Arita and Koyama, 1998; Billard and
Dautenhahn, 1999; Kirby, 1999; Nehaniv, 2000; Can-
gelosi, 2001; Steels, 2003) and interdisciplinary col-
lections (Wray, 2002; Cangelosi and Parisi, 2002;
Christiansen and Kirby, 2003).

This paper surveys some currently open problems
in the emergence and evolution of linguistic commu-
nication that present grand challenges to those work-
ing in constructive aspects of the emergence of com-
munication. In this paper, we address the programme
of demonstrating mechanisms that achieve various
language-like properties in computational agent and
robotic models. This is not intended to be an exhaus-
tive survey. Many important research articles and re-

searchers could not be mentoned here. The discus-
sion is instead indicative of current research activity
(and inactivity) as regards a set of fundamental prob-
lems in the area.

We will discuss the following completely or
largely open areas:

(1) deixis, gesture, and reference;
(2) predication;
(3) negation;
(4) emergence of syntactic categories
(5) compositionality

The emergence and modelling of these phenomena
are discussed in the context of embodied, social inter-
action and evolution (cultural or otherwise). Ideally,
mechanisms based on sensorimotor and experiential
grounding in bottom-up, agent-centered models in-
volving populations of agents will help yield deep un-
derstanding of the emergence of the above phenom-
ena.

One area is conspicuously missing from the above
list:

(0) grounding and shared vocabularies

and will also be discussed briefly below. This area
has not been included in the list of current grand
challenges since there has been substantial progress
in it. However grounding and shared vocabular-
ies will need to be integrated with the answers to
the grand challenge problem areas (1-5) to yield
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grounded and shared language-like communication
systems with much more complex types of vocabu-
lary with grounded meaning than what has been so
far achieved.

2 What is Meaning and What is
Language For?

We regard linguistic and language-like communica-
tion as the capacity of an agent to influence the world
around by the systematic use of signals mediated by
their reception by other agents in its environment.
Thus, language is regarded as a means for the agent
to ‘manipulate’ the world around for its own benefit,
similar to other traits of biological organisms (cf. the
discussion of the transition to language from a bio-
logical viewpoint in (Maynard Smith and Szathmáry,
1995)). As Wittgenstein (1968) taught us, the mean-
ing of any signalling behaviour, such as in language,
arises in how it is used by the agent to manipulate
its environment (including other agents) in its interac-
tions with other agents. This can be related to the util-
ity to an agent (in a statistical sense) of information
in a signalling channel (see Nehaniv (1999); Nehaniv
et al. (1999, 2002)). According the insights of Peirce
(1839-1914) [republished in (Peirce, 1995)], the rela-
tionship between signs and significations is mediated
by an interpretant, and the mapping between signs
and what they signify is a process that depends on
the particular agents involved and on their situated
contexts. The ideas just presented follow the discus-
sion of Nehaniv (1999, 2000). The Wittgensteinian-
Peircian viewpoint outlined by Parisi et al. (2002) is
similar.

In particular, these realizations lead a tremendous
amount freedom in the emergence of language-like
phenomena that has often been ignored and over-
simplified by naively, often unconsciously, applying
constraints on simulation models. This freedom and
the related lack of constraints is illustrated by several
corollaries. Understanding the emergence of meaning
and language requires the generative synthesis of the
phenomena in question beginning with the following
facts:

1. Meaning is always agent-specific.

2. There is no privileged set of pre-existing space
of possible meaning, containing ideal concepts.

3. There is no unique and no pre-existing syntactic
structure on possible meanings.

4. If meanings, spaces of meaning, or syntax in
meaning space do arise, they will be agent-
specific as well.

5. The mappings between signs and meaning are
mediated by interpreted signals between agents,
and these mappings are also agent-specific and
depend on the context of the interaction.

See (Nehaniv, 1999, 2000) for further discussion of
these points.

Note that none of the above discussion refers to
truth values or truth conditions, which are highly de-
rived properties of human linguistic behaviour (Ne-
haniv, 2000), and that therefore should not be the
starting point for an attempt to understand meaning,
communication, and language. The highly refined
formal tools mathematics and logic – including truth
values, predicate logic, context-free grammars, de-
notational semantics, etc. – have allowed scientists
achieve precision and thus escape from ambiguities
and dependence on context and specific agents. But
specific agents and context are inherent to the emer-
gence of language, while these tools are based on
abstractions and refinements from human language.
Any explanation of the emergence of language that
uses them as primitives to derive the phenomena that
they are based on thus puts the proverbial cart before
the horse (Nehaniv, 2000; Milikan, 2004).

This is not to say that these tools and formalisms
should never be used. In computational modelling
this is clearly would not be possible, simply due
to the use of computers. No simulation or robotic
study in the emergence and evolution of linguistic
communication has been able to proceed successfully
without simplifying some (or sometimes all) of the
above complexity away. If agents are endowed with
some of these language-like capacities, it is impor-
tant to keep track of which ones. If new phenom-
ena then emerge, one has an argument that the built-
in capacities provide scaffolding for the new phe-
nomena. For instance, the work of Kirby (1999)
shows that, in populations of agents with the capacity
to use and derive context-free grammars, processes
of self-organization resulting from attempts to learn
grammar based on induction from the evidence of
grammar-generated utterances of other agents lead
over generations to increasingly compositional gram-
mars. His work does not how it is that context-free
grammars nor the capacity for compositionality could
first emerge (since these are given at the start).
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3 Symbol Grounding & Shared
Vocabularies

Different aspects of symbol grounding (Harnad,
1990) and the self-organization and maintenance of
shared vocabularies are increasingly well-studied
and coming to be understood, especially for vocabu-
laries to identify or name objects (selecting one target
of reference from an environment) or label situations
(MacLennan, 1992; Steels, 1995, 1998; Billard and
Dautenhahn, 1999; Baillie and Nehaniv, 2001; Parisi
et al., 2002). Less work has been done on the ground-
ing of shared vocabularies with more complexity, e.g.
in which various parts of speech exist (labelling for
example actions or actions on objects, or with compo-
sitional syntax), although the work of Cangelosi and
collaborators has moved in this direction (e.g. Parisi
et al. (2002)).

4 From Deixis, Gesture, and Ma-
nipulation to Reference

The items, deixis and gesture, in challenge area (1)
are clearly related and emergence of reference. Ref-
erence is often suggested to be grounded in deixis and
gesture but just how this occurs needs elucidation.
Pointing, deictic gaze, joint attention, and gesture
play important roles in the development of intersub-
jectivity and language in humans (cf. Kita (2003)).

Pointing, since it can be directed at many things
and since it directs others’ attention at them, could
have provided for a kind “ur-pronominalization” in
the emergence of linguistic communication. That is,
pointing provides for a variable or variables that can
be bound to object and persons in the environment,
giving at least of degree shared reference via shared
attention.

Rizzolatti and Arbib (1998) present a hypothe-
sis on the emergence of language based on mirror-
neurons in primates and humans. These neurons in
the premotor cortex fire both when carrying out and
when seeing an action performed. It is argued that
this provides a substrate on which shared meaning
can arise, as similar affordant gestures (e.g. manip-
ulations such as grasping a fruit) are immediately un-
derstood by a conspecific interaction partner. Gestu-
ral language is then hypothesized to have developed
and eventually to have given way to vocal language.
Hurford (2004) acknowledges a possible role for mir-
ror neurons in understanding the possible emergence
of language, but surveys many gaps that remain in
such an explanation, such as explaining the well-

known arbitrariness of the sign in regard to its ref-
erence.

Milikan (2004) has a more general notion of refer-
ence that relates to utility of information in internal
states or signalling channels. A more general notion
of gesture regards gesture as the signalling of such
useful information. This is similar to the viewpoints
on the meaning of signals in (Nehaniv, 1999, 2000;
Wittgenstein, 1968).

The issues discussed in this section evidently relate
closely to the grounding of symbols and the emer-
gence of shared systems of communication. Despite
progress in these areas, constructive studies linking
deixis and gesture to these problem areas remain to be
carried out constructively in robotic and simulation
models (but see Baillie and Nehaniv (2001); Baillie
et al. (2004) for some first work in this direction).

5 Predication
For detailed analysis of predication and its complex
structure in human language from the viewpoint of
linguistics, see (Napoli, 1989). In human language,
a rudimentary function of noun phrases is to pick out
objects of reference from the environment (possibly
even absent ones). Adjectives constrain the selection
by imposing conditions on which object might be re-
ferred to.

One formal view of reference (implicit e.g. in
(Steels, this volume) and classical box-world natu-
ral language processing systems) is that instances of
lexical items such as a noun (“ball”) or adjective
(“red”) are understood as predicating properties of
object variables. Selection of referents is determined
by solving constraints on such predicates over a space
of objects in the environment. For example, ball(X)
and red(Y ), restricts the reference to a red ball if
X must equal Y , as it must in the phrase “the red
ball”. Similarly verbs provide another class of pred-
icates which might take multiple semantic role argu-
ments expressed in a given syntactic subcategoriza-
tion frame that resolves variable references (Steels,
this volume).

As mentioned above, predicate logic and first-
order logic are abstractions from the predicate
structure of natural language. With the approach
just described, predication itself is a primitive and
therefore does not emerge. However, a transition
from reference to predication is suggested by an
association that tends to identify referential variables
in one-place referential predicates (like red(X)), or
by grammatical rules that force the identification of
variables in the referential predicates.
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Scenario for the Emergence of Predication.
Early on proto-words or gestural signs could have
their referents associated in a general way, non-
specific way merely by co-occurring close together
in time. We elaborate a suggestion on the earliest
source of predication: it may be a highly derived form
of topic-comment structure, which is itself founded
on association (Nehaniv, 2000). For instance, deic-
tic gesture serves to select a target of joint attention
(topic), and then another gesture or utterance near
to it in time serves to communicate content that was
associated to the topic as comment. Eventually rit-
ualization of such communicative practice produces
gramaticalization of a topic-comment construction.
Predication then arises via grammaticalizaton of the
special case in which not only an association between
topic and comment occurs, but the comment gives
to the topic a labelling category: “This - food”, a
property label “This – bad”, or a semantic action-
role “This – eat”. Thus there is a progression in
the emergence of predication from association and
topic-comment via ritualization to grammaticalizaton
of predication.

Ritualization is well-known in animal communi-
cation systems (Smith, 1977, 1996; Bradbury and
Vehrencamp, 1998) and one instance of it is grammat-
icalization, a well-recognized process in human lan-
guage change (e.g. (Bybee et al., 1994)). A clear path
for research into this open area would be to proceed to
validate this proposed scenario by building computa-
tional or robotic realization and showing whether and
how the transitions

association → topic-comment → predication

could occur (ideally including grounded referencing).
This should shed light on the details of the emergence
of predication and the mechanisms required for this to
occur.

If this could be done, more complex predication
and modification could then be addressed. In more
complex human language, both predicates and mod-
ifers occur. Predicates tend to mark more highly
salient assertions, while modifiers tend to act in the
background to tune reference via constraints (Ne-
haniv, 1987).

Let us again remark about the at best low rele-
vance of truth values here. In early language as in
animal communication system, the emphasis was of
course manipulation of and influence in the environ-
ment via signalling to others (cf. Maynard Smith and
Szathmáry (1995); Milikan (2004); Nehaniv et al.
(2002)), rather than on propositional assertions. Truth

values of predicates on objects was only a later inven-
tion and abstraction of humans.

6 Negation: A Small Research
Programme

It seems little has been done in emergence of nega-
tion in constructive evolution of language models.
A discussion of negation of speach acts and within
speech acts occurs in (Searle, 1980/1969). A com-
prehensive book on negation is (Horn, 2001).

Early Scenarios for Negation.
(The material in this subsection is modified from text
by Donna Jo Napoli (Napoli, pers. comm.).) Early
predicates used by early humans likely indicated ac-
tions such as “come”, “hide”, “be quiet”, “run”, or
referenced objects, such as “food”, “water”. Nega-
tion can operate on nouns as well as on verbs, or
other parts of speech, and is, of course, a predicate
in itself.1 Letting others know there is nothing in the
cave, for example, was probably a pretty important
early message. So one would expect “nothing” or “no
living thing” to be an early negation.

Non-verbal, facial and manual gestures may have
played an important role in early negation. When
hunting, when trying to be quiet for any reason,
people have always used their faces and hands. We
all recognize the hush gesture. We know to raise
our eyebrows to ask yes/no. This sort of thing is
extremely common around the world. In Australia,
many tribes used to have sign languages just for
hunting. (They had sign languages for other things,
too – like to use with widows – and for the deaf).
The first negation was likely either facial or gestural
– perhaps a head shake or lowered brows (as in
American Sign Language (Neidle et al., 2001)),
or protruded lips. Also, early negation was likely
simultaneous with whatever was being negated,
whether spoken words or other gestures. So shake
your head and say “buffalo” - or shake you head
and say “swim/enter water” or shake your head
and gesture “walk (whatever that gesture might be
for those peoples) – and you’re getting across the
messages “there are no buffaloes” – “don’t go in the
water” – “don’t walk”. (Scenario and examples due
to Napoli (pers. comm.). The author is responsible
for any misrepresenations of her views.)

1Or a modifier, where modification is plays a role, e.g. a spec-
ifying a constraint on reference within consituent syntactic struc-
ture, and is generaly less marked than predication.
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Computational Scenarios for Emergence of Nega-
tion.

We now give several ideas for constructivist ap-
proaches to negation:

1. It seems straight forward to use inhibition in
artificial neural networks to suppress the behaviour in
the presence of a negation signal N . Suppression of
all action could yield compliance (by inaction) with
commands such as “don’t touch that”. This could be
realized to many existing models.

2. A research scenario into the use of more
specific negation could employ connectionist neu-
ral network models of agents using linguistic sig-
nalling such as those of Cangelosi (2001), which
can have a noun-verb distinction (see below) that
they exhibit in language games. We propose that
these be extended by the introduction of tasks into
the language games that sometimes involve nega-
tion: When the new signal N co-occurs with
a previously learned linguistic signal S the lan-
guage game task requires choosing a different ob-
ject/property (“(proto)noun”/“(proto)adjective”) or
action (“(proto)verb”), respectively, than would be
for the signal S. Tasks without the signal N must also
be carried out by the agents and require the original
interpretation of S. That is, the agents could carry
commands such as “pull cup”, “not-pull [e.g. push]
cup”, “pull not-cup” (i.e. pull an object other than the
cup), , or even “not-pull not-cup” (e.g. pushing a ball
would be a correct response). The meaning of the
negation signal N would be grounded in the language
game tasks these agents have to perform. Demon-
strating that evolving populations of neural network
agents could learn this task would establish a connec-
tionist basis for specific negation of constituents of
simple linguistic utterances. Alternatively, one could
do the same kind of study using agents such as in the
work of Steels (2003).

3. We note that in many human sign languages
such as American Sign Language (ASL), the scope
of negation can be given over syntactic subunits by
non-manual gestures. In ASL non-manual marking
(furrowing of the eyebrows and side-to-side head-
shake) may spread over the (c-command) domain of
constituent syntactic node, and moreover such spread
is obligatory in the absence of manual marker (Nei-
dle et al., 2001). (This property agrees well with the
likely simultaneity in the early negation described in
Napoli’s scenario above.) Thus in constructivist stud-
ies of the emergence of language, it would be very
interesting to investigate scope of negation. For ex-
ample, in neural network agent models, the use of

a negative signal would have presumably to involve
the persistence in the network of internal state over
the scope of the negated constituent. Synthetic neural
imaging techniques like those of Cangelosi and Parisi
(2004) could be useful here.

7 Syntactic Categories
In artificial neural network connectionist models,
Parisi et al. (2002) have shown the grounded emer-
gence of rudimentary nouns and verbs: Nouns, as
linguistic signals that co-vary with sensory stim-
uli, and verbs, as linguistic signals that co-vary
with actions (largely independent of sensory stimuli).
They have suggested that this could be extended to
(proto)adjectives, that select a referent within a noun
category using some intrinsic property, and to non-
adjectival modifiers, such as location indicators (e.g.
left, right, above), that reflect more temporary prop-
erties of objects which are not instrinsic to the object
but depend on the relationship of object to speakers
and the environment. This remains to be done, as
does increasing the complexity of syntactic categories
the approach can generate (e.g. to verbs with a patient
and recipient role, as “give the apple to Mary”.

Steels (this volume) also considers the emergence
of shared semantic and syntactic frames based on
grammaticalization driven by computational needs of
disambiguation.

This issue of emergence of syntactic categories,
which are restricted in the types of semantic environ-
ments where they can occur (as in the work of Parisi
et al. (2002)), and in their signal contexts, and in the
types of arguments they can take (if any), leads to the
next grand challenge, the achievement of full-blown
compositional syntax in a grounded communication
system.

8 Compositionality
The emergence of lexical items that take arguments
(such as transitive verbs that take an noun-phrase as
object) is called compositionality. This has syntac-
tic and semantic aspects, and accounts for much of
the combinatorial richness of human language. There
have also been a growing number of studies on the
emergence of various aspects of syntax (e.g. (Kirby,
1999; Cangelosi, 2001; Steels, this volume)). While
there has also been some pioneering work on syntac-
tic categories (e.g. Cangelosi and Parisi (2004); Parisi
et al. (2002)), and grounded compositionality (Steels,
1998), many aspects of compositionality in linguistic
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communication remain completely open for construc-
tive modellers to begin to explain.

Segmentation and pauses in modern human
speech, e.g. arising from the need to breath or the
temporal nature of cognitive processes, combined
with local context have been shown information-
theoretically to improve the disambiguation of
speech, suggesting that sequential process of smaller
sequential units may help provide the basis for syntax
in language evolution and language processing Lyon
et al. (2003).

Cangelosi (2001) showed the emergence of verbs
for actions that take target objects references in neu-
ral network agents that can manipulate simple objects
in the environment in an evolutionary simulation, but
non-compositional communicative signals could also
evolve.

Assuming a fixed and syntactically structured
meaning space, and a capacity to use and learn
context-free grammars, Kirby (1999, 2001), as men-
tioned above, has shown that grammars with high de-
grees of compositionality arise and are easier to trans-
mit over the course of generations of learning in such
agents starting from agents using non-compositional
‘holistic’ grammars (i.e. with a different utterance for
each meaning). Extending this work to agent-centred
spaces of meaning grounded in interaction and lan-
guage games remains to be achieved.

Steels (this volume) argues that the purpose of
compositional grammar is to reduce the number of
variables in a decoded meaning structure in order
to hope with compuational complexity in interpre-
tation. He constructs agents in simulation studies
that apply this principle and are able to converge
on shared grammars by reinforcing and modifying
syntatic and semantic role-structural frames (to pro-
pogate referental constraints) based on communica-
tive success and failure. The same structures are used
for parsing and for production.

Recursive composition structure is possible if the
expansion of argument can non-trivially include the
same argument type (as with clauses embedded in
other clauses). When this occurs, in principal the lan-
guage becomes unbounded in size.

9 Conclusions
Our list of grand challenge areas identified five chal-
lenges beyond symbol grounding and the emergence
of shared systems of communicating meaning: (1)
the role of deixis, gesture, and manipulation in the
grounding and emergence of reference, (2) predica-
tion, (3) negation, (4) syntactic categories, and (5) full

syntax - compositionality and recursive structure.
Challenges (2), on predication, and (3), on nega-

tion, have been the most neglected by the evolution
of language community. We hope this paper stimu-
lates discussion on these issues and promote research
especially into those areas.

The problem of predication (2) is argued to be re-
lated to associative processes and to topic-comment
structures, as precursors. Predicates as the exist to-
day in human languages are seen as a highly derived
special case of related processes.

Computational scenarios for studying the emer-
gence of predication and of negation have been pro-
posed and discussed in order to encourage the inves-
tigation into their hemergence.

Other immediate work to be done to meet these
grand challenges includes: (4) emergence of syn-
tactic categories needs to be shown without assum-
ing an underlying categorization on some pre-existing
space of meanings in grounded language games. (5)
compositionality (and recursion) needs to be shown
to emerge in a setting of grounded meaning without
the assumption of an underlying grammatical abil-
ity, such as the capacity to learn and use context-free
grammars.
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Abstract 

 
Language is a unique human behaviour. Language has the characteristics that divide itself from 
other animal communication systems: the combinational creativity based on limited numbers of ar-
bitrary (socially established) tokens. Nevertheless, rudiments of some of the sub-faculties that en-
abled language can be seen in animals. We identified three of these non-trivial sub-faculties and 
considered neural substrates that enabled each of these. In Merker & Okanoya (in this volume) we 
presented a scenario for string semanticization by merging of songstrings and situational meanings. 
Based on the neural substrates assumed here, we propose a possible neural mechanism of language 
emergence.  

 
 

1   Introduction 
Birds and whales, as well as humans, can learn 
strings of vocal utterances. They even put tokens 
into a syntactical form (Okanoya, 2002, 2004; Payne, 
2000). Parrots, chimps, and monkeys, as well as 
other animals, can learn to associate situational 
meaning and particular sound (Pepperberg, 1999; 
Cheney & Seyfarth, 1990). But humans only can use 
language, a set of semanticized strings that are ac-
quired through leaning (Fig. 1).  

Thus, the Rubicon that devides us and other 
animas is the semanticization of vocal strings. In an 
associated abstract, Merker & Okanoya (2005) pro-
vided evolutionary scenario for string semanticiza-
tion and an origin of language. Here we suggest 
possible neural substrates that enable the process of 
string semanticization (Fig. 2). 

 
 

 

Figure 1: Independnt evolution hypothesis put for-
ward by Oknanoya (2002). 1. Vocal learning is the 
basis of linguistic faculty. 2. Syntactical evolution 
occurred as a courtship ritual that preferred for be-

havioral complexity. 3. Semantic evolution occurred 
as a kin-selection and reciprocal altruism in a lasting 
society. 4. Emergence of semanticsized syntax oc-
curred by mutual segmentation of strings and con-
text.  

 

 

Figure 2: Mutual segmentation of songstring and 
behavioural context. Songstring A is sung in context 
A and songstring B in context B. The common part 
of the context A and B is associated with the com-
mon sub-string of the string A and B. Based on the 
idea by Bjorn Merker. 

 

2   Neural substrates 
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2.1   Vocal learning 
Vocal learning independently evolved several times 
in vertebrates (Payne, 2000; Catchpole & Slater, 
1995; Boughman, 1998). Vocal learning refers to 
motor learning of spectro-temporal features of 
sound signals that are used in intra- and inter species 
communication by conspecific members. Most ani-
mal vocalizations are innately determined. Vocal 
learning, experience dependent, categorical, and 
long-lasting modification of vocal output, do not 
occur in most animals and only a few species of 
animals including whales, bats, birds, and humans 
exhibit vocal learning. 

Are there any specific anatomical substrates that 
correlate with the faculty of vocal learning? One of 
the candidates for this question is the direct cortical-
medullar pathway for articulation and breathing. In 
humans, a part of motor cortex directly projects to 
the medullary nuclei, the nucleus ambiguus and the 
nucleus retro-ambiguus (Kuypers, 1958). This pro-
jection is absent in the squirrel monkey and chim-
panzee. Jurgens (2002) thus assumes that this pro-
jection exists only in humans among primates. Simi-
larly, there is a direct cortical-medullar pathway for 
articulation and breathing in the zebra finch, a spe-
cies of songbirds, but a similar projection in pigeons 
do not exist. Most of pigeon vocalizations are con-
sidered to be innate (Wild, 1993; Wild et al., 1997). 
Considering these evidence, we can hypothesize that 
this projection exists in the species that show vocal 
learning while it is absent in the species without 
vocal learning (Fig. 3). 
 
 

 
 
Figure 3: Direct motor cortex – medullary nuclei 
related with breathing exist only in humans, song-
birds and whales (Okanoya et al., 2004).  
 
 

While this projection exist only in a limited 
number of species, it may be possible, that this pro-
jection is simply very faint in most of species. Dea-
con (1997) introduced anecdotal story of a zoo seal 
that learned to mimic speeches of drunken persons 
(Deacon, 1997). This seal had a brain inflammation 
as young and Deacon suspected that during the 
process of recovery the cortical medullar projection 
might be reinforced in this particular animal. If such 
cases could occur, by training animals to perform 
spontaneous vocalization while they are young, we 
may be able to reinforce this pathway and induce 
vocal learning in a species that was said to be non 
vocal learners.  
 
 
2.2   Syntax 
Songbirds learn courtship songs from adult males 
(reviewd in Catchpole & Slater, 1995; Zeigler & 
Marler, 2004). They often splice parts of songs that 
are sung by different males (Fig. 4). Birds probably 
do so by using statistical information in conspecific 
songs: chunking of song notes occurs at junctions of 
lower transition probability.  

In humans, a phrase structure is processed as a 
perceptual unit. Perceptual position of an embedded 
click moves outside of the phrase structure (Foder & 
Bever, 1965). We examined whether similar phe-
nomenon could be observed in songbirds.  

We trained Bengalese finches in a click-
detection experiment. When a background of his 
own song was played in the test box, reaction time 
of the subject bird to detect the click was longer 
than without the background song or with the back-
ground song played in reverse: detection of clicks is 
postponed until a chunk of song notes is processed. 
Thus, chunks of birdsong, like chunks of linguistic 
elements, are processed as a cognitive unit (Suge & 
Okanoya, submitted). 
 
 
  

 
 
Figure 4: An example of perceptual segmentation 
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observed in a Bengalese finch son reared in a multi-
family environment (Takahashi & Okanoya, unpub-
lished data).  
 
 

The auditory segmentation observed in song 
perception maybe governed by cortex-basal ganglia 
loop. of auditory. When a part of basal ganglia was 
destroyed in adult male Bengalese finches, patterns 
of song note segmentation changed (Fig. 5). 
 

 
Figure 5: Deterioration of motor chunking of song 
notes in Bengalese finch after the basal ganglia le-
sion (From Kobayashi et al., 2001). 
 
 

In an ERP study with human subjects, we found 
that string segmentation was associated with a nega-
tive brain potential that was strongest at electrode 
placed nearby the anterior cingulate cortex, suggest-
ing that string segmentation involves the cortex-
basal ganglia loop. The same loop is known to be 
used birdsong learning. Thus, segmentation of bird-
song strings may also be governed by the cortex-
basl ganglia pathway (Fig. 6).  
 
 

 
 
 
Figure 6: Average ERP recorded from the electrode 
situated at the point reflecting the activity of the 
anterior singulate cortex. Three-tone words were 
randomly defined and these words were randomly 
stringed and presented to the subject. In a three-tone 
word, the second and third tone could be predicted 
by what comes for the first, but the first tone could 
not because words were randomly stringed. Dotted 

line indicated the ERP recorded after the onset of 1st 
tone, showing a specific process presumably reflect-
ing the errors in sequence estimation (Abla et al, 
unpublished data). 
 
 
2.3   Semantics 
Behavioural contexts could be associated with par-
ticular behaviour tokens thus forming a rudiment of 
“naming” in several animals. We observed that 
when trained to use a rake to retrieve a distant food, 
monkeys be-gan to vocalize “coo” calls spontane-
ously. They did so especially when the prepara-tion 
of the rake tool by the experimenter delayed (Hihara 
et al., 2003). To further investigate this phe-
nomenon, we systematically manipulated behavioral 
contexts by presenting the tool or food whenever the 
monkey made a vocalization regardless of the types 
of the calls. In one experimental situation, the ex-
perimenter gave a food at a distance when the mon-
key produced a coo call (Call A). By the second coo 
call (Call B) the experimenter placed a rake tool to 
the monkey. The monkey could retrieve the food by 
the rake. In another, the experimenter gave the rake 
to the monkey beforehand. A food was placed at a 
distance when the monkey vocalized a coo call (Call 
C). Likewise, we never tried to differentiate the calls 
After 5 sessions of trainings, the monkeys eventu-
ally used acoustically distinct types of calls when 
they asked for the tool (Call 2) or food (Call 1 and 
3). The calls used to ask for the tool was longer and 
higher pitched than the ones used to ask for the 
food. 

We argue that the different reward conditions 
(food or tool) set up different emotional contexts for 
the monkeys. Different emotional contexts, in turn, 
affected the production of coo calls differently for 
the tool or food situations. Since the tool train-ing 
activated the neo-cortex very highly, the calls were 
associated with different behavioural contexts. Thus, 
the calls became categorized and emotionally differ-
enti-ated calls gradually became categorical vocali-
zations. Through this process, we suspect the emo-
tional coo calls changed into categorical labels de-
noting the behavioural situation. 

We speculate this categorization of vocal tokens 
maybe related with highly specified behavioural 
situations. Such specified behavioural situations 
would evoke specific emotional content in limbic 
system including amygdala and hippocampus. The 
sates of the excitation in the limbic system maybe 
labeld by the emotional vocalizations associated 
with the situations. 
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3   Merging of syntax and seman-
tics 
Taking these speculations together, we propose that 
longer songstrings are segmented by the action of 
the cortex-basal ganglia pathway and each part-
string is represented by a menmonc.  

A mnemonic can then be associated with par-
ticular behavioural contexts segmented by the pre-
frontal cortex-hippocampus- amygdala loop. The 
parallel operation of these two systems would then 
enable mutual segmentation and matching of behav-
ioural context and song strings, a process tanta-
mount to an incipient language system (Merker & 
Okanoya, 2005).  

Although no experimental evidence is available 
at this point, experiment directly asking the above 
hypothesis could be designed and performed. In an 
exploration of neural correlates of list learning, 
Christie &Dalrymple-Alford (2004) found that only 
learning of a short (4-item) list was retained after 
basal ganglia lesions but learning of longer lists (8 
or 12 items) were affected by such lesions. On the 
other hand, lesioning the hippocampus did not pro-
duce any notable effects on the list learning. Al-
though results are contrary to what we expect from 
the above hypothsis, similar paradigm with longer 
list length and more elaborated training might pro-
duce different results.  

Thus language maybe possible without assuming 
a special “recursion” device as suggested by Hauser, 
Chomsky and Fitch (2002). Recursive function 
might arise secondarily from the interaction between 
the cortex-basla ganglia loop and the prefrontal/ 
hippocampal/ amygdale loop (Fig. 7).  
 

 
 

Figure 7: Neural substrates for mutual segmentation 
of behavioral context and songstring. A long string 
can be segmented by the statistical learning of the 
cortex-basal ganglia system. Simultaneously, behav-
ioural contexts can be segmented by the pre-frontal 
cortex /amygdala/hippocampus system. A seg-
mented sub-string maybe labelled by a behavioural 

context and given a particular behavioural token to 
it.  

 
 
Acknowledgements 
We thank Maki Ikebuchi, Miki Takahashi, and Ya-
suko Tobari for inspirations. The preparation of the 
manuscript was supported by Japan Science and 
Technology Agency.   
 
 
 
References 
Boughman, J. W. (1998). Vocal learning by greater 

spear-nosed bats. Proc. R. Soc. Lond. B, 265, 
227-233. 

Catchpole, C. K., & Slater, P. J. B. (1995). Bird 
song: Biological themes and variations. Cam-
bridge, UK: Cambridge University Press.  

Cheney, D. L. & Seyfarth, R. M. (1990). How mon-
keys see the world. University of Chicago 
Press, Chicago. 

Christie &Dalrymple-Alford (2004) A new rat 
model of the human serial reaction time task: 
contrasting effects of caudate and hippocampal 
lesions. J Neurosci.,  24, 1034-9. 

Darwin C. (1871). The descent of man and selection 
in relation to sex. D. Appleton & Company, 
New York. 

Deacon, T. W. (1997). The symbolic species. Norton 
& Company, New York. 

Fodor, J, & Bever, T (1965). The psychological re-
ality of linguistic segments. J verbal learn ver-
bal behav 4, 414-420. 

Hauser, M., Chomsky, N. & Fitch, T. (2002). The 
faculty of language: what is it, who has it, and 
how did it evolve?  Science, 298, 1569-1579. 

Hihara S, Yamada H, Iriki A, Okanoya K. (2003). 
Spontaneous vocal differentiation of coo-calls 
for tools and food in Japanese monkeys. Neu-
rosci Res. 45, 383-9. 

Jurgens U. (2002). A study of the central control of 
vocalization using the squirrel monkey.  Med. 
Eng. Phys., 7-8 , 473-477. 

Kobayashi, K., Uno, H. & Okanoya, K. (2001). Par-
tial lesions in the anterior forebrain pathway 
affect song production in adult Bengalese 
finches. NeuroReport, 12, 353-358. 

97



Kuypers, H. G. J. M. (1958). Corticobulbr connec-
tion to the pons and lower brain-stem in man. 
Brain, 81, 364-88. 

Merker, B. & Okanoya, K. (2005). Contextual se-
manticization of song strings syntax: a possible 
path to human language. EELC05 abstract. 

Okanoya, K. (2002). Sexual Display as a Syntactic 
Vehicle: The Evolution of Syntax in Birdsong 
and Human Language through Sexual Selec-
tion. In A. Wray (Ed.), The transition to lan-
guage, pp. 44-64. Oxford: Oxford University 
Press. 

Okanoya, K. (2004). Song syntax in Bengalese 
finches: proximate and ultimate analyses. Ad-
vances in the study of behaviour, 34, 297-345. 

Okanoya, K., Hihara, S., Tokimoto, N., Tobari, Y. 
& Iriki, A. (2004). Complex vocal behaviour 
and cortical-medullar projection. EELC04 ab-
stract. 

Pepperberg, I. (1999). The Alex studies: cognitive 
and communicative abilities of grey parrots. 
Harvard University Press, Cambridge. 

Payne, K. (2000). The progressively changing songs 
of humpback whales: A window on the crea-
tive process in a wild animal. In N.L. Wallin, 
B. Merker, & S. Brown (Eds.), The Origins of 
Music, pp. 135-150. Cambridge, MA: The MIT 
Press. 

Suge, R. & Okanoya, K. (under revision). Percep-
tual chunking in self-produced song by Ben-
galese finches. Animal Cognition. 

Wild, J. M. (1993). Descending projections of the 
songbird nucleus rubustus archistriatalis. J. 
Comp. Neurol. 338, 225-241. 

Wild, J. M., Li, D., Eagleton, C.(1997).  Projections 
of the dorsomedial nucleus of the intercollicu-
lar complex (DM) in relation to respiratory – 
vocal nuclei in the brainstem of pigeon and ze-
bra finch. J. Comp. Neurol. 377, 392-413 

Zeigler, H. P. & Marler, P. (Eds.) (2004). Behav-
ioral Neurobiology of Birdsong. Annals of the 
New York Academy of Sciences, 1016. 

 

98



The Self-Organized Origins of Phonotactics and Phonological
Patterns

Pierre-Yves Oudeyer�
�Sony CSL Paris, 6, rue Amyot, 75005 Paris, France

py@csl.sony.fr

Abstract

In previous papers, we presented a system which showed how a society of agents could self-organize
a shared discrete vocalization system, starting from holistic inarticulate vocalizations. The originality
of the system was that: 1) it did not include any pressure for communication; 2) it did not include any
social capacity (agents did not play a language game for example); 3) it pre-supposed neither linguistic
capacities nor the existence of conventions. We present here an extension of the system which shows
how rules of sound combination as well as patterns of combinations can self-organize and be shared
by the society of agents. This illustrates how phonotactics might have bootstrapped.

1 Introduction

Human vocalizations have a complex organization.
They are discrete and combinatorial: they are built
through the combination of units, and these units are
systematically re-used from one vocalization to the
other. These units appear at multiple levels (e.g. the
gestures, the coordination of gestures, the phonemes,
the morphemes). While the articulatory space that
defines the physically possible gestures is continu-
ous, each language only uses a discrete set of ges-
tures. While there is a wide diversity of the reper-
toires of these units in the world languages, there are
also very strong regularities (for example, the high
frequency of the 5 vowel system /e,i,o,a,u/). The way
the units are combined is also very particular: 1) not
all sequences of phonemes are allowed in a given
language (this is its phonotactics), 2) the set of al-
lowed phoneme combinations is organized into pat-
terns. This organization into patterns means that for
example, one can summarize the allowed phonemes
of Japanese by the patterns “CV/CVC/VC”, where
“CV” for example defines syllables composed of two
slots, and in the first slot only the phonemes belong-
ing to a group that we call ”consonant” are allowed,
while in the second slot, only the phonemes belong-
ing to the group that we call ”vowels” are allowed.

It is then obvious to ask where this organization
comes from. There are two complementary kinds of
answers that must be given (Oudeyer, 2003). The
first kind is a functional answer stating which is the
function of systems of speech sounds, and then show-

ing that systems having the organization that we de-
scribed are efficient for achieving this function. This
has for example been proposed by (Lindblom, 1992)
who showed that discretenesss and statistical regular-
ities can be predicted by searching for the most ef-
ficient vocalization systems. This kind of answer is
necessary, but not sufficient: it does not say how evo-
lution (genetic or cultural) might have found this op-
timal structure. In particular, naive Darwinian search
with random mutations (i.e. plain natural selection)
might not be sufficient to explain the formation of this
kind of complex structures: the search space is just
too large (Ball, 2001). This is why there needs a sec-
ond kind of answer stating how evolution might have
found these structures, and in particular, how self-
organization might have constrained the search space
and helped natural selection. This can be done by
showing that a much simpler system spontaneously
self-organizes into the more complex structure that
we want to explain.

(Oudeyer, in press) has shown how a system of this
kind, based on the coupling of generic neural devices
which were innately randomly wired and implanted
in the head of artificial agents, could self-organize
so that the agents develop a shared vocalization sys-
tem with discreteness, combinatoriality and statistical
regularities. The originality of the system was that:
1) it did not include any pressure for communication;
2) it did not include any social capacity (agents did
not play a language game for example); 3) it pre-
supposed neither linguistic capacities nor the exis-
tence of conventions. We present now an extension of
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this system which gives an account of the formation
of rules of sound combination as well as of patterns
of sound combinations. This amounts to the forma-
tion of phonotactics. The extension is based on the
addition of a map of neurons with temporal receptive
fields. These are initially randomly pre-wired, and
control the sequential programming of vocalizations.
They evolve with local adaptive synaptic dynamics.

2 The system

We are going to make a summary of the architecture
presented in details in (Oudeyer, in press), before pre-
senting the extension. The system is composed of
agents which are themselves composed of an artificial
brain connected to an artificial vocal tract and an arti-
ficial ear. Agents can produce and hear vocalizations.
As described in (Oudeyer, in press), one can model
each component from the most abstract to the most
realistic manner. In this paper, our goal is to explore
the principles of the formation of phonotactics and of
phonological patterns, rather than to build a realistic
predictive model. Thus, we will use the most abstract
version of the components presented in (Oudeyer,
in press). In particular, this means that agents pro-
duce two-dimensional vocalizations (one articulatory
dimension and one temporal dimension). We use
only one space to represent vocalizations: the per-
ceptual space is bypassed and only the motor space
is used. So, we pre-suppose that agents can translate
a vocalization from the perceptual space to the mo-
tor space, which is acceptable since in (Oudeyer, in
press) we showed how this mapping could be learnt
by the agents. The articulatory dimension that we use
is also abstract, but one could imagine that it repre-
sents the place or the manner of constriction for ex-
ample. Finally, the agents are put in a virtual space
in which they wander randomly, and at random times
they generate vocalizations which are heard by them-
selves as well as the closest agent.

The brain of the agent is organized into two neural
maps: 1) one “spatial” neural map coding for static
articulatory configurations; 2) one “temporal” neu-
ral map coding for the sequences of activations of
the neurons in the static neural map (this constitutes
the extension of the system presented in (Oudeyer, in
press)).

2.1 The spatial neural map

The spatial neural map contains neural units Ni

which have broadly tuned gaussian receptive fields.
We denote vi,t the centre of the gaussian related to

Ni, which we call its “preferred vector” since it cor-
responds to the stimulus which activates maximally
the neural unit. If we note Gi,t the tuning function
of Ni at time t, s one input vector, vi,t the preferred
vector of Ni at time t, then:

Gi,t(s) =
1√
2πσ

e−
1
2 (vi,t.s)

2/σ2

The parameter σ determines the width of the gaus-
sian, and so if it is large the neurons are broadly tuned
(a value of 0.05, as used below, means that a neu-
ron responds substantially to 10 percent of the input
space).

All the neural units have initially a random pre-
ferred vector, following a uniform distribution. Each
neural unit codes for an articulatory configuration,
defined by the value of its preferred vector. If the
neural unit is activated by the agent and a GO sig-
nal is sent to the neural map, then there is a low-level
control system which drives the articulators continu-
ously from the current configuration to the configu-
ration coded by the activated neuron. A vocalization
is thus here a continuous trajectory in the articulatory
space, produced by the successive activation of some
neural units in the spatial neural map, combined with
a GO signal. As we will see later on, this activation
is controlled internally by the temporal neurons.

As we explained earlier, we use only one space to
represent vocalizations. Thus, when an agent pro-
duces a vocalization, defined by its trajectory in the
articulatory space, the agent that can perceive this vo-
calization gets directly the trajectory in the articula-
tory space. The perception of one vocalization pro-
duces changes in the spatial neural map. The con-
tinuous trajectory is segmented in small samples cor-
responding to the cochlea time resolution, and each
sample serves as an input stimulus to the spatial neu-
ral map. The receptive fields of neural units adapt to
these inputs by changing their preferred vector (the
width of the gaussian does not evolve). For each in-
put, the activation of each Ni is computed, and their
receptive field updated so that if the same stimulus
comes again next time, it will respond a little bit more
(this is weighted by their current activation). Basi-
cally, adaptation is an increase in sensitivity to stimuli
in the environment. The formula is:

Gi,t+1(s) =
1√
2πσ

e−
1
2 (vi,t+1.s)2/σ2

where Gi,t+1 is the tuning function of Ni at time t+1
after the update due to the perception of st at time t,
and vi,t+1 the updated preferred vector of Ni:

vi,t+1 = vi,t + 0.001.Gi,t(st).(st − vi,t)
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From a geometrical point of view, the preferred vec-
tor of each neural unit is shifted towards the input
vector, and the shift is higher for unit which respond
a lot than for unit which do not respond very much. 1

2.2 The temporal neural map

In (Oudeyer, in press), the production of vocaliza-
tions was realized by activating randomly neurons in
the spatial map. There was no possibility to encode
the order in which the neurons were activated, and
as a consequence agents ended by producing vocal-
izations in which all phoneme combinations were al-
lowed (but of course only the phonemes that appeared
as a result of the self-organization of the neural map
were used). On the contrary, we will use here a tem-
poral neural map which can encode the order of acti-
vations of spatial neurons, and is also used to activate
the spatial neurons.

Each temporal neuron is connected to several spa-
tial neurons. A temporal neuron can be activated by
the spatial neurons through these connections. The
tuning function of temporal neurons has a temporal
dimension: their activation depends not only on the
amplitude of the activation of the spatial neurons to
which they are connected, but depends also on the
order in which they are activated, which itself de-
pends on the particular vocalization which is being
perceived. The mathematical formula to compute the
activation of the temporal neuron i is:

GTi =

T∑
t=0

N∑
j=1

1√
2πσ

.e‖t−Tj‖|2/σ2
.

1√
2πσ

.e‖Gj,t‖|2/σ2

with T denoting the duration of the perceived vocal-
ization, N the number of spatial neurons to which it
is connected, Tj a parameter which determines when
the temporal neuron i is sensitive to the activation of
the spatial neuron j, and Gj,t the activation of the
spatial neuron j at t. Here, the Tj values are such that
the temporal neuron that they characterize is maxi-
mally activated for a sequence of spatial neuron ac-
tivation in which two neurons are never maximally

1The neural network that we use is technically very similar to
Self-Organizing Feature Maps (Kohonen, 1982). In our case, the
input space is of the same dimensionality than the output space,
so we do not use it to make dimensionality reduction. Feature
maps are normally used to extract some regularities in high dimen-
sional input data. Here, there is no regularity in the input data ini-
tially. Input data is generated by other neural networks of the same
kind. Regularities are rather created through self-organization as
explained in the “dynamics” section.

activated at the same time and for which the maxi-
mal activation is always separated by a fixed time in-
terval. In brief, this means that rhythm is not taken
into account in this simulation: we just consider or-
der. Mathematically,

T0 = 0, T1 = τ, t2 = 2.τ, ..., TN = N.τ

where τ is a time constant.
As stated in the first paragraph, the temporal neu-

rons are also used to activate the spatial neurons. The
internal activation of one temporal neuron, coupled
with a GO signal, provokes the successive activation
of the spatial neurons to which it is connected, in
the order specified by the Tj parameters. This im-
plies that the temporal pattern is regular, and only one
neuron is activated at the same time. In this paper,
each temporal neuron will be connected to only two
spatial neurons, which means that a temporal neuron
will code for a sequence of two articulatory targets
(N = 2). This will allow us to represent easily the
temporal neural map, but this is not crucial for the re-
sults. When an agent decides to produce a vocaliza-
tion, which it does at random times, it activates one
temporal neuron chosen randomly and sends a GO
signal.

Initially, a high number of temporal neurons are
created (500), and are connected randomly to the spa-
tial map with random values of their internal param-
eters. Using many neurons makes that basically all
possible sequences of activations of spatial neurons
are encoded in the initial temporal neural map. The
plasticity of the temporal neurons is different from
the plasticity of spatial neurons2. The parameters of
temporal neurons stay fixed during the simulations,
but the neurons can die. As a consequence, what
changes in the temporal neural map is the number
of surviving neurons. The neuronal death mecha-
nism is inspired from apoptosis (Ameisen, 2000), and
fits with the theory of neural epigenesis developed by
(Changeux, 1983). The theory basically proposes that
neural epigenesis consists of an initial massive gener-
ation of random neurons and connections, which are
afterwards pruned and selected according to the level
of neurotrophins they receive. Neurotrophins are pro-
vided to the neurons which are often activated, and
prevent them from automatic suicide (Ghosh, 1996).
We apply this principle of generation and pruning to
our temporal neurons, and depending on their mean

2Yet, some recent experiments which we do not describe in this
paper because they were not conducted with the same systematic-
ity, indicate that it is possible to use for both neural maps the same
neural dynamics and still obtain results similar to those we present.
In these experiments, the common neural dynamics was the same
as the one we use here for the temporal neural map.
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activity level. The mean activity of a temporal neu-
ron j is computed with the formula:

MAj,t =

< GTj,t >=
< GTj,t > .(window − 1) + GTj,t

window

where window has the initial value 50. The ini-
tial value MAj,0 is equal to 2.vitalThreshold. The
vitalThreshold constant defines the level of activ-
ity below which the neuron is pruned. This threshold
remains the same for all neurons in the map. The
value of this threshold is chosen so that there is not
enough potential activity for all the neurons to stay
alive: stability arises at the map level only after a cer-
tain amount of neurons have been pruned.

2.3 The coupling of perception and pro-
duction

The crucial point of this architecture is that the same
neural units are used both to perceive and to produce
vocalizations, both in the spatial and in the tempo-
ral neural map. As a consequence, the distribution
of targets which are used for production is the same
than the distribution of receptive fields in the spa-
tial neural map, which themselves adapt to inputs in
the environment. This implies for example that if an
agent hears certain sounds more often than others, he
will tend to produce them also more often than oth-
ers. The same phenomenon applies also to the order
of the articulatory targets used in the vocalizations. If
an agent hears certain combinations often, then this
will increase the mean level of activation of the cor-
responding temporal neurons, which in turn increases
their chance of survival and so increases the probabil-
ity that they will be used to produce the same artic-
ulatory targets combinations. These coupling create
positive feed-back loops which are the basis of the
self-organization that we will now describe.

It is important to see that this is not realized
through imitation, but is a side effect of an increase
of the sensitivity of neurons, and of the competi-
tion for neurotrophins between the temporal neurons,
which is are very generic local low-level neural mech-
anisms. Agents do not imitate each other in this ar-
tificial system, since they never repeat a sound that
they just heard, and they never store explicitly a sound
that they hear in order to reproduce it later on. Addi-
tionally, agents do not play any language game in the
sense used in the literature (Steels, 1997). In fact,
they have no social skill at all. They are just in a
world in which they wander around and sometimes

produce sounds and adapt to the sounds they hear
around them.

3 The dynamic formation of
phonotactics and patterns of
combinations

In these simulations, we use a population of 10
agents. As initially the preferred vectors of the spatial
neurons are random, and as there is a massive number
of random temporal neurons, agents produce vocal-
izations which are holistic and inarticulate: the con-
tinuum of possible articulatory targets is used, and
nearly all possible sequences of targets are produced.
The initial state of both neural map in two agents is
represented on figure 1: the spatial map is represented
on the x-axis, which shows the preferred vectors, and
is also represented on the y-axis, which shows the
same information. The temporal map is represented
by the small segments in the middle of the figure,
which all correspond to a point (x, y) for which x cor-
responds to an existing preferred vector in the spatial
map, and y to another existing preferred vector in the
spatial map. The x coordinate of a temporal neuron
corresponds to the first articulatory target of the vo-
calization that it encodes, and the y coordinate corre-
sponds to the second target that it encodes. The length
of the segment represents the level of neurotrophins
that each neuron possess.

After several hundred time steps, as we have shown
and explained in details in (Oudeyer, in press), we ob-
serve a clustering of the preferred vectors of the spa-
tial map. Figure 2 and 3 shows an example of the neu-
ral maps after 1000 interactions in two agents (taken
randomly among the 10 agents). Moreover, the clus-
ters are the same for all the agents of the same sim-
ulation, and different for agents of different simula-
tions. This shows that now the vocalizations that they
produce are discrete: the articulatory targets that they
use belong to one of several well defined clusters,
and so the continuum of possible targets has been dis-
cretized.

Moreover, if we observe the temporal map, we dis-
cover that there remains only temporal neurons cod-
ing for certain articulatory target sequences. This
means that some sequences of targets belonging to
the spatial clusters are not produced any more. All
the agents of the same population share not only the
same clusters in the spatial map, but they also share
the same surviving temporal neurons, as figures 2 and
3 show. This means that rules of phoneme sequenc-
ing have appeared, which are shared by all the popu-
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Figure 1: The neural maps of two agents at the beginning of the simulation. The neural maps of one agent is represented on
the left, and the neural maps of the other agent are represented on the right. The spatial map is represented by its preferred
vectors plotted on the x-axis and also plotted on the y-axis. The temporal neural map is represented by small segments whose
centre has its x and y corresponding to preferred vectors of the spatial neural map. The x coordinate of a temporal neuron
corresponds to the first target that it encodes, and the y coordinate corresponds to the second target that it encodes.

Figure 2: The neural maps of the same two agents after 1000 interactions. We observe: 1) that the preferred vectors of the
spatial neural map are now clustered, which means that vocalizations are now discrete: phonemic coding has appeared; 2) that
many temporal neurons have died and the surviving ones are organized into lines and columns: this means that phonotactic
rules have appeared and moreover that the repertoire of vocalization can be organized into patterns.
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Figure 3: Another example of neural maps of two agents after 1000 interactions.

Figure 4: Evolution of the number of surviving temporal neurons corresponding to the temporal neural map of the two agents
in figure 2. We observe that there is a first phase of massive pruning, followed by a stabilization which corresponds to a
convergence of the system.
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Figure 5: Evolution of the number of surviving temporal neurons corresponding to the temporal neural map of the two agents
in figure 3.

lation. In brief, this is the self-organization of phono-
tactics. Yet, this is not all that we can observe from
the temporal neural map. We also see that the sur-
viving temporal neurons are organized into lines and
columns. This means that the set of allowed phoneme
sequences can be summarized by patterns. If we call
the phonemes associated with the eight clusters of the
spatial map on figure 2

p1, p2, ..., p8

then we can summarize the repertoire of allowed se-
quences by:

(p6, ∗), (p8, ∗), (∗, p7)

where ∗ means “any phoneme in p1, ..., p8”. The
repertoire is thus organized into patterns, in a manner
similar for example to the “CV/CVC/VC” organiza-
tion of syllables in Japanese.

The states shown on figures 2 and 3 are conver-
gence state. Indeed, both the state of the spatial
map and of the neural map crystallize after a certain
amount of time. In (Oudeyer, in press), we explained
in detail why the spatial map practically converged
into a set of clusters for wide range of values of the
parameter σ which determines the dynamics of spa-
tial neurons.

We will now explain why there is a convergence
in the dynamics of the temporal neural map, as fig-
ures 4 and 5 show (we have plotted the evolution of
the number of surviving neurons within the tempo-
ral maps of two agents). As explained above, the
initial level of activity (MAj,0) of the temporal neu-
rons is set to a constant (2.vitalThreshold) which

is higher than the mean level of activity that will be
actually computed for each neuron at the beginning
of the simulation when they are still all alive. As a
consequence, the mean level of activity of all neurons
is going to go down at the beginning of a simulation.
Because there is stochasticity in the system, due to
the random choice of temporal neurons when a vo-
calization is produced, and also due to the fact that all
uniform distributions of preferred vectors are not ex-
actly the same in different agents, all the MAj,t’s will
not decrease exactly in the same manner. In particu-
lar, certain temporal neurons will have their MAj,t

go below the vital threshold (vitalThreshold) be-
fore the others and die (indeed, vitalThreshold is
chosen so that it is higher than the mean level of ac-
tivity of neurons if they are all alive). The survival of
one temporal neuron in a cluster of the temporal map
of one agent ag depends on the number of neurons in
the corresponding cluster in other agents, whose sur-
vival depends in return on the number of neurons in
the cluster of the agent ag. This creates positive feed-
back loops: sometimes and by chance, a number of
neurons die in the same cluster of one agent, which
favours the death of similar neurons in other agents,
because having less neurons in one cluster or area of
the space decreases the probability to produce a vo-
calization coded by the neurons of this cluster and
so decreases the mean level of activity of the corre-
sponding cluster in the other agents. Reversely, clus-
ters composed of neurons with a high mean level of
activity will favour the survival of similar clusters in
other agents. This interaction between the compe-
tition and the cooperation in the clusters of temporal
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neurons of all agents will precipitate a number of neu-
rons, and a number of clusters of neurons, below the
vital threshold, until there remains few enough clus-
ters so that the neurons that compose them are ac-
tivated often enough to survive and “live” together.
This explains the stabilisation observed on figures 4
and 5, where we see the two phases: a first phase
of initial and rapid pruning of neurons, and a second
phase of stabilisation.

The “cooperation” / positive re-inforcement can
happen between clusters of temporal neurons cod-
ing for the same phonemic sequence, but also be-
tween clusters of temporal neurons sharing only one
phoneme / articulatory target at the same location
within the vocalization. This is due to the mode of
activation of temporal neurons, as detailed in the for-
mula above. For example, let us denote p1, p2, p3

and p4 four distinct phonemes / articulatory targets
belonging to four distinct clusters. If the similar-
ity of two vocalizations with the same sequence of
phonemes is about 1, then the similarity between the
vocalization coded by the sequence (p1, p2) and the
vocalization coded by the sequence (p1, p3) is about
0.5, and the similarity between (p1, p2) and (p3, p4)
is about 0. This means that the level of activity “pro-
vided” to the temporal neurons of a cluster cl thanks
to two clusters of temporal neurons in other agents
which share exactly one phoneme in the same lo-
cation, is about the same that the level of activity
provided to the neurons in cl thanks to the cluster
in other agents which corresponds to temporal neu-
rons sharing all the phonemes in the right location
with those in cl. As a consequence, groups of clus-
ters re-inforcing each other will form during the self-
organization of the temporal neurons map. These are
the lines and the columns that we observed on figures
2 and 3, and this explains why we observe the for-
mation of phonological patterns in the phonotactics
developed by the agents. To summarize, the interac-
tions between competition and cooperation among in-
dividual clusters explains the formation of shared and
stable repertoires of allowed phoneme sequences, and
the interaction between competition and cooperation
among groups of clusters explains the formation of
phonological patterns.

4 Conclusion

In (Oudeyer, in press), we presented a system show-
ing how a society of agents could self-organize a dis-
crete speech code shared by all speakers of the same
community, and different in different communities.
We also showed how it allowed to predict certain sta-

tistical regularities characterizing the repertoires of
phonemes in human languages. The originality of
the system was that: 1) it did not include any pres-
sure for communication; 2) it did not include any so-
cial capacity (agents did not play a language game
for example); 3) it pre-supposed neither linguistic ca-
pacities nor the existence of conventions. This made
the system a good tool to think and develop our intu-
itions about the bootstrapping of speech, and attack
the problem of the origins of language as opposed
to the problem of the formation of languages which
has already been studied extensively in the computer
modelling literature (e.g. Browman and Goldstein
(2000); Kaplan (2001); Kirby (2001); de Boer (2001);
Oudeyer (2001); Cangelosi and Parisi (2002)). In-
deed, by making evolutionarily simpler assumptions
than existing models, one can understand more easily
how natural selection, in an environment favouring
the reproduction of individual capable of communi-
cation, could have been guided by self-organization
to establish the first and primitive forms of conven-
tions, such as the speech codes that our agents gener-
ate. In this paper, we presented a natural and crucial
extension to our earlier work, introducing a mech-
anism that takes into account the order of articu-
latory targets both in production and in perception
of vocalizations. This allowed to show that simi-
larly, agents could self-organize phonotactics, defin-
ing shared sets of allowed phonemic sequences in
a given population. Diversity was again a feature:
different populations of agents developed different
phonotactics systems. Moreover, the set of allowed
phonemic sequences could always be organized into
patterns, which has strong structural similarities with
the phonological patterns that we observe in human
languages.

Yet, with the system presented in this paper, we
can not show a statistical preference for certain kinds
of phonotactics and patterns as compared to others.
This is indeed also a feature of human phonological
systems: for example, most languages allow CV syl-
lables, but many disallow consonant clusters at the
beginning of syllables like in CCV syllables. A pos-
sibility to account for this phenomenon is to intro-
duce morpho-perceptual constraints, as it allowed the
prediction of human vowel systems in (Oudeyer, in
press), and energetical constraints such as the cost of
articulation of vocalizations. We are currently work-
ing on this particular issue, and the results will be dis-
cussed in a forthcoming paper.
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Abstract

One of the most distinctive characteristics of human language is the extent to which it relies on learned
vocal signals. Communication systems are ubiquitous in the natural world but vocal learning is a
comparatively rare evolutionary development (Jarvis, 2004). In this paper we take one example of this
phenomena, bird song, which displays some remarkable parallels with human language (Doupe and
Kuhl, 1999), and we focus on one particular case study, that of the Bengalese finch (Lonchura striata
var. domestica), a domesticated species whose song behaviour differs strikingly from its feral ancestor
in that it has complex syntax and is heavily influenced by early learning (Okanoya, 2002). We present
a computational model of the evolutionary history of the Bengalese finch which demonstrates how an
increase in song complexity and increased influence from early learning could evolve spontaneously
as a result of domestication. We argue that this may provide an insight into how increased reliance on
vocal learning could evolve in other communication systems, including human language.

1 Introduction

The human capacity for language is one of our
most distinctive characteristics. While communica-
tion systems abound in the natural world, human lan-
guage distinguishes itself in terms of its communica-
tive power, flexibility and complexity. One of the
most unusual features of human language, when com-
pared to the communication systems of other species,
is the degree to which it involves learning. Just how
much of language is innate and how much is learned
is an ongoing controversy, but it is undeniable that
the specific details of any particular language must
be learned anew every generation. We do, of course,
bring a great deal of innate resources to bear on our
language learning process, and the results these in-
nate biases have on the development of languages
may explain a great deal about the structure of the
languages we see today. But still every child in every
new generation must go through a lengthy process
of language acquisition if they are to become normal
language users.

Once in place, this inter-generational process of
language acquisition and use, oriterated learning
(Kirby and Hurford, 2002), can give rise to cultural
evolution, which studies have shown may explain
many prominent phenomena of human language, in-
cluding the emergence of dialects and, by extension,

separate languages (Livingstone, 2002), regular and
irregular word forms (Kirby, 2001) and composi-
tional syntax (e.g. Brighton, 2002).

The emergence of learning can therefore be seen
as a major transition in the evolution of language and
we would like to better understand the evolutionary
pressures and factors which caused this transition. A
natural point at which to start such an investigation
is to look at the communication systems of other an-
imals to see if there are any parallels which might il-
luminate the relevant ecological factors. Much com-
parative research has been carried out with the non-
human primates, but despite some fascinating results,
it seems that their natural communication systems
are very different to language, including the fact that
learning plays a much less prominent role. In fact
it appears that vocal learning systems have evolved
in only three groups of mammals: humans, bats and
cetaceans, and three groups of birds: songbirds, hum-
mingbirds, and parrots (Jarvis, 2004).

In this paper we concentrate on bird song as it has
many striking parallels with language, particularly
the way in which it is learned, as Darwin noted in
The Descent of Man:

The sounds uttered by birds offer in several
respects the nearest analogy to language,
for all the members of the same species ut-
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ter the same instinctive cries expressive of
their emotions; and all the kinds that sing,
exert their power instinctively; but the ac-
tual song, and even the call notes, are learnt
from their parents or foster-parents. (Dar-
win, 1879, p. 108)

Since Darwin’s day much research has been car-
ried out into bird song and, to take Tinbergen’s four
perspectives of ethology, we now know a great deal
about its mechanism, development, function and evo-
lution. However, despite much research, in general
the evolutionary function of song learning remains
unclear (Slater, 2003). The parallels between bird
song and human language have also been further
elaborated as modern techniques have allowed us to
establish the neural mechanisms of both song and lan-
guage (Doupe and Kuhl, 1999).

2 A case study

Recent studies by Kazuo Okanoya of a domesticated
species of finch, the Bengalese finch (Lonchura stri-
ata var. domestica), and its feral ancestor, the white-
backed munia (Lonchura striata), provide an inter-
esting case study of the interaction of learning and
evolution in bird song. The Bengalese finch sings a
song with complex finite state syntax which is heav-
ily influenced by early auditory experience. Surpris-
ingly, the munia sings a strikingly simpler, more lin-
ear song which is less influenced by early learning.
In other words, in a relatively short period of domes-
tication, there have been radical changes in song be-
haviour. This has happened even though the domes-
ticated species has been artificially bred for plumage
rather than song.

Okanoya (2004) has identified the neural mecha-
nism underlying this difference in behaviour and has
shown that while Bengalese chicks are able to learn
the songs of munia tutors, munia chicks are not able
to learn the more complex Bengalese song, clearly
demonstrating that there is a physiological basis for
this difference.

2.1 Okanoya’s hypothesis

As experiments have shown that both female mu-
nias and female Bengalese finches prefer the more
complex song, Okanoya (2002) argues that it is sex-
ual selection which drove this increase in complex-
ity. He argues that domestication freed the Bengalese
finch from the pressure of predation and other pres-
sures associated with life in the wild which had pre-
viously held song complexity in check. According to

Okanoya, the more complex song of the Bengalese
finch may therefore be seen as an honest signal of fit-
ness (Zahavi, 1975); a fitter bird can afford a more
complex song. Sasahara and Ikegami (2004) show
with a computational model of the finch data that
song complexity could indeed increase as a result of
sexual selection.

2.2 Deacon’s hypothesis

Reviewing the same data, Deacon (p.c.) agrees that
domestication masked the natural selection pressure
keeping the munia’s song simple, but argues that the
increase in complexity happenedwithoutdirect selec-
tion on the trait. Essentially, he posits that domestica-
tion shielded the trait from selection which allowed
random genetic drift to erode innate song biases in
the munia. This allows previously minor influences,
such as mnemonic biases and early auditory experi-
ence, to have more of an effect on song structure and
learning, which results in the various neural modules
involved in song production and learning becoming
increasinglyde-differentiated. Deacon goes on to ar-
gue that this process of masking and subsequent de-
differentiation is a potential explanation for the evo-
lution of complex functional synergies such as the
neural mechanisms for song production now present
in the Bengalese finch, and, he argues, in the human
capacity for language. The concept of selective mask-
ing and its effect on the evolution of language are ex-
plored in more detail in (Deacon, 2003).

3 A computational model

In order to evaluate Deacon’s hypothesis and to try
to establish if such behaviour could evolve sponta-
neously as a result of domestication, we have devel-
oped a computational model of the finch data. The
model is designed to be reasonably biologically plau-
sible, and also general enough that it could be ex-
tended to other species. The model works with an
evolving population of agents, or birds, and the main
stages in the simulation are listed here, details of each
stage are given below:

Birth The bird’s song filter is built up from its
genotype as described in section 3.1.

Development The bird is exposed toe songs from
its environment, and, using its filter, selectst songs
from which it will learn (its training set) as described
in section 3.2. The bird then uses the learning algo-
rithm described in section 3.3 to learn the song gram-
mar it will use to sing throughout its life.

109



Adulthood The bird is tested inf fitness trials, as
described in section 3.4 to see how many times, using
its filter, is can correctly recognise a bird of its own
species and how many times it is correctly recognised
by a bird of its own species. These values are added
to give a bird’s fitness score.

Reproduction Parents of the same species are
selected probabilistically according to their fitness
score and their chromosomes are crossed over using
one-point crossover with probabilitypCO (set to 0.7
for all results provided here), to give a new child.
Individual genes are mutated with probabilitypMut
(set to 0.05 for all results provided here). The muta-
tion operator used is the ‘Reflect’ operator described
in (Bullock, 1999).

Death Each bird in the population is sampleds
times and the resulting songs are stored for the next
generation to learn from. All of the current birds in
the population are removed and their children become
the new population.

3.1 The song filter

A bird is modelled as having a genetically coded
note1 transition matrix, which specifies a transition
probability from each note to every other note in the
used in the simulation, including a probability for
the first and final notes. The total number of notes
is a parameter of the simulation,numNotes, but in
all results provided here this was set to 8, i.e. the
notes froma alphabetically through toh, this value
was chosen as it appears to be the number of unique
notes identifiable in both the Bengalese finch and mu-
nia’s songs (Okanoya, 2002, p. 56). The matrix is
coded for by a chromosome which has one real val-
ued locus for each entry in the matrix which can vary
between 0 and 1. This chromosome will thus have
(numNotes + 1)2 loci, the 1 is added to include the
transitions at the beginning and end of the song. To
construct a matrix from the chromosome we look at
eachnumNotes + 1 loci of the chromosome in turn,
and normalise the values to give a probability distri-
bution for each row of the matrix. An example ma-
trix, and the chromosome that codes for it is shown
in table 3.1. Note that this scheme allows different
genotypes to code for the same phenotype.

The transition matrix serves one main purpose; to
establish the probability that a given song is one of the

1It should be noted that while we use the term ‘note’ throughout
this paper, this is not intended to refer to a particular acoustic note,
rather we simply use it to denote an atomic song element that can
be reliably differentiated from other elements which appear in the
song.

a b c E
S 0.08 0.15 0.62 0.15
a 0.11 0.89 0.00 0.00
b 0.05 0.10 0.40 0.45
c 0.82 0.09 0.00 0.09

0.1 0.2 0.8 0.2 0.1 0.8 0.0 0.0 0.1 0.2 0.8 0.9 0.9 0.1 0.0 0.1

Table 1: An example note transition matrix and the
chromosome that codes for it. The S indicates the
start of the song, and the E indicates the end of the
song.

bird’s own species song. This is done by establishing
the average probability of each note transition in the
song, as shown in equation 1 which defines the pref-
erence a given matrixmx has for a particular songsy,
in this equationn is the number of note transitions in
sy andmx(ti) is the entry inmx for theith transition
of sy. For example the preference value the matrix in
table 3.1 gives for the songcab, which has the transi-
tionsS-c, c-a, a-b andb-E, is 0.62+0.82+0.89+0.45

4 =
0.695, while the preference for the songacb is 0.043.
Note that we always include the transition to the first
note and from the last note, so the empty song ‘’ has
a single transitionS-E, for which this matrix has a
preference value of 0.15.

preference(mx, sy) =
∑n

i=0 mx(ti)
n

(1)

The matrix can be thought of as a song ‘filter’. A
song with a high probability will be more likely to
pass though the filter than one with a lower probabil-
ity, in our examplecab would be much more likely
to pass through the filter thanacb. If the matrix has
a single high probability transition for each note this
can be thought of as a strong filter, as it will only
accept songs which contain these transitions. If the
matrix has even probabilities for each transition it is
considered a weak filter as it accepts all songs equally.

We can measure the strength of the filter ex-
plicitly by calculating the entropy for each transi-
tion distribution (i.e. each row in the matrix), us-
ing Shannon’s (1948) measure. This will result in a
value which ranges from0 to log(nV alues), where
nV alues is the number of probabilities in rowrx (i.e.
the number of columns in the matrix). We then nor-
malise this value into the range0 to 1, as shown in in
equation 2, which defines the normalised entropy for
a given rowrx, in this equationpi is the probability
of the ith transition inrx. The overall strength of a
matrix mx is then calculated as the average entropy
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of each rowr in the matrix, as shown in equation 3.
A filter strength of 0 means that the filter will only
accept one song while an strength of 1 means that the
filter will accept all songs equally. As an example,
the matrix in table 3.1 has a strength value of 0.56.

entropy(rx) =
−

∑nV alues
i=0 pi log (pi)
log(nV alues)

(2)

strength(mx) =
∑nRows

i=0 entropy(ri)
nRows

(3)

This filter is intended to model the preferences
many songbirds have for their species specific
song (Catchpole and Slater, 1995). In the model a
bird uses its filter for two purposes:

1. To select its training set (the songs it will later
use to learn from) from the songs it is exposed
to during infancy.

2. To judge whether another bird is a member of
the same species for mating or territorial de-
fense.

In this respect, this model is similar to those used
in Lachlan’s models of the ‘cultural trap’ in bird
song (Lachlan and Slater, 1999; Lachlan and Feld-
man, 2003). This seems a reasonably plausible as-
sumption, as it is known that some songbirds do have
an innate preference for conspecific song both when
learning songs as a nestling and also for later mate
selection (Catchpole and Slater, 1995).

3.2 Selecting the training set

The infant bird is exposed toe environmental songs
to select itst training songs from, bothe and t are
parameters of the simulation, but were set to 50 and
5 respectively for all results provided here. 5 seems
a rather low value oft, but the learning algorithm is
very computationally intensive and so a low value is
used to speed up the simulation. Thee environmen-
tal songs are randomly selected from the songs sam-
pled from the previous generation, to compose this
set each bird is sampleds times, another parame-
ter which is set to 5 here, so for a population size
popSize of 100, as used here, this will contain 500
songs.

The infant bird is exposed to each of thee songs
in turn and uses its filter to compute the probability it
will be accepted. During experimental runs it was de-
termined that checking that the song is accepted once

did not impose enough of a pressure for the bird to
correctly select conspecific song and so a song is only
added if it is accepted by the filter twice successively.
If the bird has not pickedt songs after being exposed
to all e songs, the process is repeated untilt songs
have been selected. The training songs are then fed
into the learning algorithm described below.

3.3 Song learning

Song learning is modelled as minimum description
length (MDL) induction of a probabilistic finite state
machine (PFSM), closely following the algorithm de-
scribed in (Teal and Taylor, 2000). Induction of
finite-state machines was chosen to model learning
as Okanoya (2002) argues that the songs of both mu-
nias and Bengalese finches can be usefully described
by a finite-state syntax. The algorithm works by
firstly establishing the maximal PFSM that explic-
itly represents each song in the training set, the prefix
tree. The algorithm then searches for nodes which
can be merged which will reduce the MDL of the
overall machine, whilst also ensuring that the PFSM
remains deterministic. The MDL measure takes into
account the amount of information (measured by the
number of bits) required to code for the machine it-
self, and also to code for each of the training songs
in terms of the machine. Essentially the algorithm
searches for the most parsimonious machine in terms
of the data. This approach allows us the bird to gen-
eralise from its training set, whilst also always being
able to reproduce each of the songs it learned from.
The reader is referred to (Teal and Taylor, 2000) for a
more detailed description of the algorithm used. The
only difference between Teal and Taylor’s and our ap-
proach is that we also take into account the probabil-
ity of each note transition, given the probabilities of
each transition in the training set.

3.4 Calculating a bird’s fitness

To establish a bird’s fitness we want to check both that
its filter allows it to correctly identify its own species,
and that its song is correctly identified by other birds
of its species. This seems a reasonable model of the
pressures acting on song in the wild (Catchpole and
Slater, 1995).

To calculate an individual birdb1’s fitness we per-
form f fitness trials, a parameter set to 250 for the
results provided here. In each fitness trail we get the
b1 to produce a song and we then randomly select
another member of the population,b2 and check that
b2 correctly recognises the song using its filter. We
also getb2 to produce a song and check thatb1 cor-
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rectly recognises the song with its filter. Every correct
recognition means thatb1’s fitness is incremented by
1. With f set to 250, this means that the maximum
fitness achievable is 500, or generally2f .

3.5 Modelling the finch data

This is a fairly general model of bird song, and so
we need set it up to match the data available on the
Bengalese finch and the munia as closely as possible.
The simulation passes through 3 main phases, each
of which runs for 500 generations. The phases are
described below.

Phase 1 We know that the white-backed munia
has a very stereotyped song and that it seems to only
be able to learn songs that match its species-specific
song fairly closely (a munia cross-fostered with Ben-
galese parents is not able to learn its tutor’s song).
In our model this corresponds to the munia having a
strong filter. To simulate this state we seed the envi-
ronmental songs with a single song type, e.g.abcdef .
We then run the simulation for 500 generations using
the fitness function and learning algorithm described
above. As the environment songs are entirely identi-
cal the songs that any bird will learn from are always
the same, and so they will always induce the same
PFSM. This is not meant to be biologically plausible,
we simply want the population to develop strong fil-
ters for a particular simple song type.

Phase 2 At the end of phase 1 we have a population
of birds who sing a stereotypical song and produce
offspring with a strong genetic bias to learn that song.
To test if the filter can indeed help young birds recog-
nise the appropriate song to learn from in the second
phase of the run we start introducing random songs
into the bird’s environment, this is intended to model
hetero-specific song in the environment. We model
this by replacing 10% of thes sampled songs with
randomly generated songs which use the same notes
as the current population and which are constrained
to within the same length as the munia songs.

Phase 3 We model domestication of the popula-
tion simply by ceasing to calculate fitness, but we
continue to perform the crossover and mutation op-
erations. The seems a reasonable model of domes-
tication, as in captivity the birds no longer have to
recognise their own species to successfully mate or
defend their territory as the mating is now controlled
by humans and they are kept in aviaries. Domestica-
tion can thus be seen tomaskthe selection pressure
on these functions. We continue to introduce 10% of
random songs into the environment each generation,
as it seems a reasonable asumption that the birds will

still be exposed to hetero-specific song, or at least
other extraneous sounds, in captivity. Experimental
results of this setup are described in the next section.

4 Results

The graph in figure 1 shows several measures taken
over the course of each of the three phases described
above.

The first measure, in red, is how much variation
there is, on average, in an individuals repertoire. This
is calculated simply as the total edit (or Levenshtein)
distance between a number of an individual’s songs
(set to 10 for all runs shown here). The second mea-
sure, in green, is the average filter strength of the pop-
ulation, calculated as described in equation 3. The
third measure, in blue, is the average fitness of the
population. We do not calculate this measure in phase
3 and so it does not appear for this phase. The fourth
measure we include, in blue, is the average grammar
encoding length (GEL) of the population’s PFSMs,
this is a measure of the size, in bits, it would take to
encode a PFSM using the measure defined in (Teal
and Taylor, 2000). The fifth measure, in brown, is
the average song linearity of the songs tested in mea-
sure 1, defined as the number of unique notes in each
song divided by the number of unique note to note
transitions. The sixth and final measure, in yellow,
is the average linearity of the population’s PFSMs
calculated simply as the number of states divided by
the number of transitions. A completely linear PFSM
would thus have a linearity of 1, while a maximally
non-linear PFSM would have a linearity equal to 1
over the number of transitions in the PFSM.

Two example PFSMs taken from the population at
the end of phase 2 are shown in figure 2, and two PF-
SMs from the end of phase 3 are shown figure 3. The
GEL and PFSM linearity values for each machine is
also given.

Figure 2:Two example PFSMs from the population at the
end of phase 2.

4.1 Analysis

These results demonstrate that the strong filters built
up in phase 1, as shown by the increase in filter
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Figure 1:These results are averages taken over 10 separate runs of the simulation with a different random number generator
seed for each run. It should be noted that all these measures have been normalised and linearly mapped to give a value within
0 and 1000, where the minimum value seen in the run is set to 0 and maximum values seen in the run is set to 1000. This
graph therefore only shows the relative change each of the measures over the course of a run, not the absolute values of each
measure. We have also smoothed the lines in the graph to better allow us to see the overall trends. More detailed results are
available upon request.

Figure 3:Two example PFSMs from the population at the
end of phase 3.

strength2, enable the birds to filter out the hetero-
specific songs introduced in phase 2 without any
fitness decrease. We see that all 5 measures stay
roughly the same throughout this phase, indicating
that this is a fairly stable state. When we ‘domesti-
cate’ the population in phase 3 we see a significant
change in its behaviour. Immediately we see that the
filters begin to weaken, and we see that the GEL and

2Note that the strongest filter would give a value of 0, and the
weakest 1

the individual variation measures also rise steadily
throughout the phase indicating that the population’s
PFSMs are getting larger and the birds have a more
varied song repertoire. At the same time we see both
the song, and underlying PFSM linearity drop, indi-
cating that the songs a bird will sing have compara-
tively more varied note transitions.

This behaviour seems to be a result of the fact the
strength of the population’s filters is no longer being
selectively maintained, that it they have beenmasked
from selection. This allows mutations to accumu-
late and for the filters to become steadily weaker.
This allows some of the hetero-specific songs to pass
though the filter when a bird is selecting its training
set, which results in the bird inducing a more var-
ied PFSM. Essentially the domesticated populations
is able to learn from much more varied sources and
so early auditory experience has much more of an ef-
fect on adult song behaviour.

These results are comparable to those provided
in (Wiles et al., 2002), who show with a computa-
tional model how a similar masking effect, in this
case a fruit-rich environment rather than domestica-
tion, may have played a role in the loss of the ability
of anthropoid primates to synthesize vitamin C. Their
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model, however, goes further than ours and shows
that if the selection pressure were laterunmasked this
could result in selection for other abilities, e.g. colour
vision, that maintained the levels of vitamin C avail-
able.

4.2 Song complexity?

Okanoya (2002) argues that the Bengalese finch has a
much more “complex” song that the munia. His mea-
sure of complexity is the song linearity, defined as
the total number of unique song notes divided by the
number of unique note-to-note transitions. He finds
that the average song linearity of the munia is around
0.8 while the Bengalese finch song has a value of
around 0.4 (p. 56). We provide results for this mea-
sure over the course of our simulations in the graph
above, but on average we also see a higher value,
around 0.95, for the ancestral population and a lower
value, around 0.6, for the domesticated population.

While this measure seems a reasonably intuitive
measure of song complexity, it should be noted that
this measure will classify an entirely random song as
maximally complex. We do not want to equate ran-
domness with complexity, but we find it hard to define
a measure that can differentiate between the two. Any
standard measure of the information content of a song
will not be able to do so; a random song is maximally
informative in information-theoretic terms. However
we consider that two measures, the GEL of a bird’s
PFSM taken together with the linearity of the PFSM
provide a reasonable estimate of the complexity of
a song. A PFSM with a very small GEL and a low
linearity is likely to produce more random songs, as
it approaches a one state PFSM with multiple transi-
tions back to the same state. A PFSM with a large
GEL, but a very high linearity (as we see in the an-
cestral population in the model) will produce an en-
tirely linear song. A PFSM with a large GEL and
a relatively low linearity will produce songs that we
are more happy to refer to as complex, as the GEL
indicates that it has many states, and so different
notes will be used in different contexts, but each state
also has several transitions which means that differ-
ent transitions can be made from each context. Our
results demonstrate that the domesticated population
does have a higher GEL and a lower PFSM linear-
ity than the wild population and so we are tentatively
happy to agree that domestication has caused an in-
crease in song complexity. However, we are still
working on developing a more satisfactory measure
of song complexity.

4.3 Comparison with the biological data

Comparing these results with the data available for
the Bengalese finch we find that the model does seem
to capture some of the phenomena involved. Okanoya
has shown that a munia chick which is not exposed to
conspecific song will not sing a normal song, which
seems to fit with the model. He has also shown
that while Bengalese chicks can readily learn munia
songs, munia chicks cannot learn the more complex
Bengalese songs. In the model this difference is at-
tributable to their different filters. The difference in
the values for the song linearity in the ancestral and
domesticated populations also seem to match fairly
well.

As it stands though, the model does not explain
why the female munia prefers the Bengalese song.
We would argue that a bias for complexity song may
have been latent in the munia, and the fact that the
munia females prefer the more complex song does not
prove that this was the driving force for the change in
song behaviour, although introducing such a prefer-
ence into the model may help to tease these pressures
apart. Okanoya (2004) demonstrates that the NIf re-
gion of the Bengalese finch’s brain is necessary for
the it to be able to sing the more complex song; when
surgically lesioned a Bengalese finch with previously
complex song will sing a simpler, more munia-like
song. We would argue that the model remains neu-
tral to this datum, as it is possible that the munia does
have this pathway present in its brain but, because it
only ever learns a simpler song, does not use it.

5 Discussion

Our results demonstrate that an increase in song com-
plexity (in some sense) and increased influence from
early learning can arisewithoutdirect selection on ei-
ther trait, simply through the process of domestica-
tion, but what is the significance of this result for the
study of human language? Can studying the evolu-
tion of learning and complexity in bird song inform
our study of the origins of complex language in our
species? We believe that understanding the mecha-
nisms behind the emergence of the Bengalese finch’s
song, and indeed the evolution of bird song in gen-
eral, is valuable for evolutionary linguistics in two
ways.

Firstly, it has been argued that iterated learning is
a key mechanism for the origins of syntax in human
language (Kirby and Hurford, 2002). It is striking
that human language differs from most other commu-
nication systems both in being transmitted through
iterated learning and in having complex syntactic
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structure. We say “most” here but not “all”. We ap-
pear to be in a very exclusive club with songbirds
as another member. Of course, there are important
differences between iterated learning in humans and
birds. For example, in the former a central constraint
on transmitted languages is that they beexpressive,
in that strings must convey complex meanings. Bird
song does not carry meaning in the same way, al-
though a diversity of songs may play a role as a sex-
ual display (Catchpole and Slater, 1995). Neverthe-
less the co-occurrence of iterated learning and signal
complexity in both songbirds and humans combined
with the rarity of either anywhere else in nature can-
not be ignored.

Secondly, and more specifically, by uncovering the
crucial role of selectivemaskingin the case of the
Bengalese Finch, we bring a new mechanism to the
table for discussions of the origins of human syn-
tax. It is quite possible that we should not be look-
ing for selective advantages of a culturally transmit-
ted syntactic language, but rather asking what se-
lective forces may have been shielded in our recent
evolutionary past. The lifting of selection pressure,
and the subsequent diversification of behaviour could
have been the necessary precursors of a system of
iterated learning for language. What remains to be
understood is exactly what more is required for any
subsequent modification and synergistic reorganisa-
tion of the neural mechanisms underlying these new
behaviours.

We feel that the answer to this question is best pur-
sued through computational modelling of the vocal
behaviour of both birds and humans.
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Abstract

International Sign (henceforth IS) is a communication system that is used widely in the
international Deaf Community. The present study is one of the first to research extensively the
origin of both the IS lexicon and grammatical structures. Findings demonstrate that IS is both
influenced by natural sign languages (henceforth SLs) and relies heavily on iconic, universal
structures. This paper shows that IS continues to develop from a simplistic iconic system into a
conventionalized system with increasingly complex rules.

1 Introduction
The emergence of IS in its present form

began in the late 1950s, when the World
Federation of the Deaf (WFD) recognized the
need for a reliable and structured
communication system for deaf people at
international gatherings and events. While
interpersonal communication seemed to allow
for the spontaneous creation of a system of
gestures, signs and pantomime, conference
settings such as WFD meetings, committee
discussions and sports event planning boards
required a more elaborate system. A
committee was established that consisted of
five deaf people from various European
countries and the US (Moody 1989). As a
result of their work, 1200 signs were
published under the name ‘GESTUNO’. (The
British Deaf Association 1975). From this
collection of signs, a partially conventional
sign system has evolved which is used today
at international conferences as a both mode of
presentation and interpretation.  IS
interpreters stand at international conferences
and provide the audience with an
“interpretation” of what is said in a natural

language (signed or spoken) at the lecture.
How is this possible with such a limited
number of conventionalized signs and no
grammatical structures? How do IS
interpreters make lucid arguments,
explanations and create abstract propositions?
How much of these interpretations is
comprehensible to the audience? If this
system is not completely iconic, where do the
structures come from? Is the system
consistent and reproducible or entirely
spontaneous? To distinguish the early form of
GESTUNO from the more elaborate system
used today, the term IS will be used,
following Moody (2002). The present study
describes both the historical development of
IS, as well as the different sources of IS
vocabulary and grammar that shed light onto
the emergence of IS.

2 History of IS
To the present day, the hearing community

still harbors the misconception that sign
language is universal. The desire for
international communication, or so many
believe, found its answer in the “invention” of
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signed languages or in the inherent iconicity
of the system. Even deaf people believed until
the beginning of the 20th century that sign
language was an ideal means of
communication across borders. At what might
have been the first international gathering of
deaf people in 1850, the French deaf educator
Ferdinand Berthier observed seeing various
deaf people from all over Europe interacting
with ease. He remarked that ‘[f]or centuries,
scholars from every country have searched
for the universal language and failed. Well, it
exists all around you, and it is Sign
Language!!’ (quoted in Moody 2002:10).

In the early 1900s, deaf people started to
recognize that communication with gestures
alone did not suffice for the increasingly
more sophisticated exchanges required on an
international level (see Moody 2002). A
proposal to form a committee on the creation
of an international sign system was
introduced by a Finnish deaf delegate at a
conference for deaf education in 1911. It was
accepted but never actualized (ibid:12). It was
at the same conference, Moody believes, that
international signs were, at least to a degree
conventionalized. \ The need for international
communication arises out of the necessity to
exchange ideas. In the Deaf Community, with
the founding of the WFD and CISS
(International Committee of Sports for the
Deaf), this necessity grew to a degree that the
loosely established ‘international’ signs did
not suffice for satisfying communication
needs. It was not until 1977 that the WFD
published their compilation of 1200
international signs, called Gestuno (The
British Association of the Deaf 1975). Moody
(see above) summarizes the process of
developing the dictionary and the reactions by
the Deaf Community following the
publication: “The task was enormous, given
the highly flexible and uncoded nature of
International Sign, the uncontrolled natural
evolution it had followed since the beginning
of the 19th century, and the logistical

problems involved in calling meetings of the
commission (in spite of the fact that the
members were all European and American).
[…] Deaf people soon began complaining
that the signs in the Gestuno lexicon weren’t
iconic enough to be readily understood.”
(Moody 2002:16).

3 Evolution

Early literature on GESTUNO suggests that
the Deaf Community presumed that a
collection of 1200 signs would provide
enough basis for a full-fledged
communication system. This is expressed in
the first publication of the GESTUNO
dictionary: ‘[This is a] sign language which
would be of assistance to deaf brethren
throughout the world enabling them to
understand each other at friendly gatherings
and official conferences.’ (The British Deaf
Association 1975, Preface). These signs
included in the dictionary were either loan
signs from the national SLs used by the
committee members, or highly iconic in
nature. The assumption was that this
collection was easy to learn by both the
presenters or interpreters who would use
GESTUNO, as well as by the audience at
international gatherings. Reports by the first
consumers of GESTUNO at an international
conference in Bulgaria in 1976, however, are
a testimony to the impossibility of expecting
an adequate translation by providing
interpreters with only a limited list of
vocabulary. Moody (2002) describes how the
hearing Bulgarian interpreters use spoken
Bulgarian grammatical structures, combining
them with the GESTUNO signs and
Bulgarian SL when GESTUNO signs are not
available. The audience reports that they
cannot follow any of the presentations or
interpretations in GESTUNO. In the
following years, native signers, both hearing
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and deaf, were taking over interpreting at
international events.

Moody observes that the vocabulary of IS
interpreters can be traced to three main
sources: borrowed signs of the native
languages of participants of a given
discourse, pantomime, and a more
conventionalized pool of vocabulary that
might vary from group to group but is
perceived by its users to be understood
universally (1989:94). Moody emphasizes the
influence of the sign language of the host
country of any given event on the vocabulary
of IS there. This is empirically supported by a
study on the origin of IS vocabulary
conducted by Woll (1990). Her data was
collected exclusively in the UK. Over 70% of
all IS signs were labelled borrowings from
BSL. Other IS signs seem less conventional.
Moody (2002) describes them as ‘mimed
actions’; Locker McKee and Napier describe
them as “more iconic, simpler in form”
(2002:48). This lack of conventionalized
vocabulary could be explained by the lack of
native speakers and the use of IS in only a
limited number of domains. The role of the
invented signs published under the name
‘GESTUNO’ is not discussed in recent
articles. Woll (1990) mentions 13-21% signs
that are nonce signs (signs that are created
only for the purpose of a specific context) and
calls these international signs. Whether or not
she includes GESTUNO signs in this
category is unclear.

The source of IS grammar, on the other
hand, is still widely debated. The few
empirical studies of IS in recent years take
very different perspectives on the issue. The
ability of the interpreters to string together
words, express relations between people and
objects, and convey meaning beyond the
isolated sign indicates that a grammatical
system exists. Allsop et al. (1994) summarize
the different proposed sources for the
grammar of IS as follows:

•  “Signers export a fairly complete
version of their own Sign Language
grammar (Webb/Supalla [1994, in
Allsop et al. 1994]);

• Signers export those parts of their own
Sign Language grammar ‘felt’ to be
most universal (Moody [1979, in Allsop
et al. 1994]);

• Signers use a grammar specifically
belonging to International Sign (what
Garretson calls ’natural order’ [1990, in
Allsop et al. 1994]) which is different
from the grammar of their own Sign
Language;

• Signer uses some combination of their
own Sign Language grammar and some
structures particular to International
Sign”

Moody (1989) notes that the grammatical
properties of natural sign languages are
important in the formation of IS. But while
Supalla and Webb (1994) claim that the entire
grammar is included in the formation of IS,
Moody singles out only the most salient and
universal structures. "Signed phrases use
space, modifications of movements of signs
and grammatical facial expressions that have
been described by linguists for different sign
languages and that seem to be common
among most or all sign languages."
(1989:90). Garretson (1990) does not
recognize the influence the native sign
language of the user might have on the
structure of his/her particular IS. He describes
the communication system as a “zone of
‘pure’ or non-language stripped of grammar
and artificial … rules, the only syntax being
one of natural order.” (44). Allsop et al.
(1994) take a more moderate stand among
these extreme views. Their notion is that the
signer uses a combination of the grammar of
their own sign language and structures that
are particular for IS. In the present study, the
make-up of IS vocabulary and structure as it
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is used today will be compared to possible
sources.

4 Data
Three IS interpreter teams consisting of two

interpreters each were filmed for this study.
All participants were recruited during an
international Deaf Community event and
were filmed in their natural work
environment. The teams were approached
based on the topics of the lectures and the
linguistic background of the presenters.
Having worked at the event for three days
prior to this taping, it can be assumed that the
IS interpreters were more familiar with the
vocabulary and more comfortable with the
structures of IS than on the first day of the
event. All participants are native signers of
either British SL or American SL, except for
one who acquired American SL later in life.
Three are also fluent in Australian SL. Other
information collected on the IS interpreters
includes certification, experience as an
interpreter, mode of acquisition of IS and
frequency of use.

Of the six 45-minute videotapes of IS
interpretation collected at the event, twelve 5-
minute clips were randomly chosen and
transcribed. The topics of these clips varied
from strongly deaf-related topics such as
deaf-blindness to comparisons of the
economic situation for deaf entrepreneurs in
developed and developing countries. All clips
were glossed. The glosses were entered into
an excel spreadsheet. Various factors were
then transcribed. Handshapes for each sign
were recorded and counted. Occurrences of
fingerspelling, numbers, proper nouns,
different types of verbs were counted.
Grammatical facial expressions and other
non-manual structures were also noted in the
spreadsheet.

In the present study, an attempt was made
to determine sources of the IS lexicon by a
comparison to a variety of natural sign

languages. The number of occurrences for
each sign in the transcribed data was counted.
A list of signs occurring five or more times
was compiled. For a determination of the
origin of these 162 signs, native signers of 15
SLs were consulted. They were asked to
translate all 162 into their native SLs. These
forms were compared with the IS form used
by the interpreters. In order to determine the
degree of universality of signs, the SLs
included in this comparison were divided into
different groups (henceforth language
groups). The division was derived on the
basis of descriptions of historical relations
between SLs in Woll et al. (2001:25ff) as
well as observations made in this study
during the review of vocabulary provided by
the informants. SLs were categorized into one
of five groups: European SLs, ASL, BSL,
Asian SLs, and Near Eastern SLs. Since the
ASL, BSL and European SLs groups are
historically strongly related, those three
occurrences were grouped in one category
(Western SLs). Asian and Middle Eastern
SLs were grouped in another category
(Eastern SLs). The categorizations made for
the purpose of this study are shown below.
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Figure 1: Language Groups

5 IS Vocabulary
As described above, the source of the IS

lexicon has been the subject of many
discussions. While the general assumption
that the vocabulary is based mostly on
GESTUNO is easy to disprove (see below),
the origin of most IS signs has been said to
stem from the local SL where IS is used.
Moody (2002) suggests that IS interpreters
intentionally adapt vocabulary from the local
SL in the assumption that the audience will be
most familiar with that particular set of signs.
Woll (1990) finds that in her data of IS used
in Great Britain, 70 to 80% of the signs were
based on BSL. In Woll’s study, interpreters
also created nonce signs for the specific
context of use, employing metonymic and
metaphoric expressions to convey the content.

After determining these categories, the use
of different form/meaning pairs was counted

in all SLs. For example, the IS sign
DIFFERENT, shown below, is used in
identical form with the same meaning in eight
different SLs (namely BSL, NGT, DGS, Thai
SL, Swiss-German SL, Jamaican SL, ASL
and Nigerian SL). Based on the
categorization described above, the IS sign
DIFFERENT occurs in the same form in four
out of the five SL groups.

Figure 2: IS sign DIFFERENT

Lastly, signs that occurred in three or more
unrelated language groups were labeled
‘common’. Within this group, those signs
occurring in over four of the five language
groups and also in over 10 individual sign
languages were labeled ‘very common’.
Examples are the IS signs HOUSE or
OLYMPICS, shown below.

In this limited set of data (162 signs), most
signs were labeled ‘common’. Over 60%
were found in three or more unrelated
language groups. Only 2% were identified as
unique to IS. The remaining 36% were
identified as loans from specific SLs or Sign
Language groups. Original GESTUNO signs
did occur in the current IS data. All
GESTUNO signs, however, were iconic to a
degree that they were counted into the
category labeled ‘common’.

5.1 Gestuno
A comparison with the GESTUNO signs

shows that most of the original signs were
replaced by either more iconic signs or other
loan vocabulary. Comparisons of the old
GESTUNO signs and their new IS
counterparts are shown below. GESTUNO
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signs are above the gloss; the row beneath
shows the forms used today.

Figure 3: Comparison of GESTUNO and IS
Signs

5.2 Signs Unique to IS
Only 2% percent of the signs included in

this comparison were not found in natural
SLs and thus labeled unique to IS. It is
possible that these signs do occur in other
natural SLs not included in this study.

5.3 Loans
Loans make up a significant part of the IS

data. As described above, different categories
were distinguished in order to examine the
degree of distribution of a sign. 12% of the IS
signs compared in this study are loans from a
single SL. 15% are loans that occur multiple
times in SLs of the same language group. In
20% of the cases, the sign can be found in
one Western and one Eastern SL. These are
labeled ‘Two Families’. The largest group of
signs (53%) are shared by several of the
Western SL families. Note that no loans are
shared by Eastern families alone. This
supports the notion that IS is based largely on
Western SL structures.

Figure 4: Sources of IS Loans

Most loans can be traced back to several
SLs within one or two language groups. In
the figure below, the top row shows the IS
signs for HAVE and GOVERNMENT. The
screenshots below show the sign in a natural
SL. HAVE is unique to the ASL language
group. It occurs in ASL, Jamaican SL and
Swiss German SL. GOVERNMENT is found
in the BSL group, occurring in both Auslan
and SASL.

Figure 5: IS Loan Vocabulary

5.4 Common Signs
This is the largest category of IS signs in

this set of data. The most common signs,
occurring in over 10 different SLs from four
or five of the language groups, account for
24% of the total number of signs included in
this study. 38% of the 162 signs are shared by
three to five of the language groups in both
Western and Eastern SLs. In the signs most

    
YOUNG        SCHOOL      AGE     IMPORTANT

       

 
      HAVE      GOVERNMENT

        
American SL South African SL

Two Groups 20%

Western SLs
53%

One Groups 15%

One SL
12%
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common among all SLs, the degree of
iconicity is striking. The figure below shows
the signs for HOUSE, OLYMPICS, BOOK,
WRITE in three SLs from different language
groups. The IS sign is shown on the left,
followed by the examples from different SLs.

Table 1: Common Signs in IS
IS

Sign
Dutch SL Australian

SL
South

Korean SL

HOUS
E

OLYM
PICS

BOOK

WRIT
E

5.5 Iconicity
As can be seen in the comparison of

different sign languages above, iconicity
plays an important role in the lexicon of IS.
Woll (1990) has labeled 20-30% of all IS
signs iconic or metaphoric in nature. The
degree of iconic transparency a sign has for
an IS consumer is highly dependent on the
degree of shared cultural experience of the
signer and addressee.

The signs used in the informants’ natural
SLs all use the same metaphors for
knowledge and emotion. The location of the

head represents knowledge; the chest has
metaphoric meaning representing feeling
(described for ASL in Taub 2001 and for BSL
in Brennan 1990). Signs for the concept of
‘increasing knowledge’ are shown in the
upper row. A depressed feeling is expressed
in the signs in the row below. A non-signer
was able to guess meanings related to
knowledge and feeling.

Table 2: Universal Metaphors ‘feel’/’know’

Thai SL Kuwaiti
SL

NGT SKSL

IS makes use of the universality of these
metaphors in several signs in combination
with the morphemes {-SHRINK}/{-GROW}.
The opening and closing movements of the
morphemes {-SHRINK}/{-GROW} are used
to represent increase and decrease. Without
placement at a particular location, these
morphemes are meaningless.

Figure 6: Iconic Morphemes

When placed at a location at the head, the
morpheme {-GROW} expresses an increase
in knowledge (MIND-GROW). If the
morpheme {-GROW} is placed on the chest
or close to the heart, the meaning relates to
emotional well-being. The morphemes {-
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GROW} and {-SHRINK} can also be placed
by the ears to symbolize hearing more or less.
The diverse use of these iconic morphemes
demonstrates the variability of the IS lexicon.

Figure 7: Metaphoric Use of {-GROW}

In the area of interrogatives, on the other
hand, IS seems to be still very limited. Out of
99 interrogatives appearing in the present
data, 97 are the sign glossed as WHAT. The
remaining two are loan signs from ASL
(HOW and WHY), are recognized as slips by
the interpreter, and corrected with the
additional use of the sign WHAT.

Figure 8: IS Interrogative WHAT

This strongly suggests that IS only utilizes
one interrogative. It is important to note,
however, that the English source text includes
a variety of different interrogatives. The
examples below shows the English source
text and a gloss of the IS translation.

(1) “How do you get financial resources?”
     MONEY GIVE GIVE-MONEY POINT WHAT

(2) “What are the sources available to you?”
     PRO-1 THINK WHAT WORK SELF WHAT

(3) “[…]who were stay-at-home moms […]”
     PRO-1 WHAT

Overall, the IS lexicon shows a variety of
highly iconic signs that are very common
among all natural SLs, as well as loans

specific to single SLs or SL groups. Only a
very small number of signs is unique to IS.
Generally, the interpreters seem to use the
vocabulary in a flexible way, inventing nonce
signs where necessary. The use of the one
interrogative, on the other hand, suggests that
the IS lexicon is limited in its expressiveness
by the pragmatic constraints of broad
accessibility.

6 IS Structure
This present analysis of structures found in

interpreted IS confirms observations made in
previous studies and reveals many new
aspects. The assumption that IS makes use of
many complex structures resembling those of
natural SLs is confirmed on all linguistic
levels.

Observations on the phonology of IS
revealed structures that are as complex as
those of natural SLs. The handshape
inventory is varied and includes complex
handshapes. Phonotactic constrains match
rules observed in natural SLs. These
observations confirm the assumption by
Moody (1989), Locker McKee and Napier
(2002) and Webb and Supalla (1994) that the
most basic make-up of IS is similar to that of
natural SLs. The fact that complex
handshapes are rarely used points to the
pervasive attempt of the IS interpreter to
simplify structures as much as possible.

The number system in IS shows the
evolution from an entire iconic system to a
more conventionalized one. Smaller numbers
are often represented in an entirely iconic
way with a one-to-one correspondence
between the number of fingers and the
number of items that is referenced. This is
always true for the numbers between 1 and 10
and in some instances for numbers up to 20.
For higher numbers, economic considerations
control the structure. Digits are represented in
the order of written Arabic numerals. This
corresponds with observations for young SLs,

      KNOW         MIND-GROW
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specifically Katseff’s (2004) work on the
number system in Nicaraguan Sign Language
(LSN). She observed that with increasing
conventionality of the SL in general, number
signs become more and more abstract,
moving from a one-to-one representation to a
representation of digits, and, in some cases, to
a more complex and abstract structure (such
as the numbers ‘6’ to ‘10’ in ASL). This last
step of development was not observed in this
IS data and is unlikely to occur, since IS
prefers a high degree of iconicity.

The morphological system observed in this
IS data is highly complex and in many ways
comparable to that of natural SLs. As
observed by Moody (1989) and Locker
McKee and Napier (2002), IS makes use of
space for grammatical purposes extensively.
In the present study, the pronoun system and
verb  sys tem were  inves t iga ted
comprehensively. IS has different forms for
personal, possessive and reflexive pronouns.
All pronouns use space iconically to indicate
referents by directing the sign toward
locations or people. Interestingly, the sign
PRO-1 (“I”/ “me”) seems to be used as the
generic person in IS.

IS indicating verbs also use space for
grammatical purposes. By directing signs
toward an entity and moving toward another,
the subject and object of a sign can be
identified though spatial references. This
phenomenon is described estensively for
natural SLs (see Liddell 1980, Engberg-
Pedersen 1984). Taub (2001) describes both
the pronoun system and indicating verbs as
very iconic structures that are common in
many SLs. The fact, however, that both the
pronoun system and the indicating verbs in IS
seem to adhere to certain restrictions
(handshapes for the pronouns are lexicalized;
only specific signs allow for the spatial
reference of trajector and landmark, etc.)
points to the complexity of the grammatical
properties and a certain level of abstraction
within the system.

IS has been researched most extensively on
the syntactic level. Webb and Supalla’s 1994
study on negation described grammatical
facial expressions not only for negation, but
also for topicalizations and rhetorical
questions. Locker McKee and Napier (2002)
observed the use of rhetorical questions and
topic markers to divide the source message
into smaller units that they hypothesized are
easier to process. The present data confirms
this function of both topicalization and
rhetorical questions. These two grammatical
markers are the most frequent in the data.
Less frequent, but also occurring, are Wh-
questions, relative clauses, yes/no questions
and conditionals. The forms of facial
expressions seem to correspond largely with
the ones described by Liddell (1980) for ASL.
Affirmatives and negations are frequently
used to modify the meaning of manual signs.
No lexical items are necessary to convey
consent or disagreement with a proposition.
The complexity of the grammatical facial
expressions and the wide array of functions
they fulfill in IS point to an underlying
structure that is maixamally accessible
linking facial expressions to message content.
Whether the forms of the facial expressions
are indeed universal, or rather an influence
from specific natural SLs, will have to be
researched further.

On a discourse-pragmatic level, many
structures were found that correspond to
natural SLs structures. One of the most
frequently described characteristics of IS that
stands out to any observer is the extensive use
of role play (see Moody 2002, Locker McKee
and Napier 2002, Woll 1990, Rosenstock
2004). In several cases, actions are performed
by assuming a role, rather than by desciption.
This adds an element of personalization to the
discourse that makes it easier for the
members of the audience to envision the
events. At other times, role play is used to re-
enact dialogues or events or to demonstrate
the relationship between two or more people.
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The techniques used for role play in IS are
identical to those documented in natural SLs
(see Liddell 2003).

Two structures that have not been described
before in the IS literature were frequently
employed by the IS interpreters in this study;
these are tokens. Tokens are created when
signers associate specific locations in space
with different concepts. Tokens give
interpreters a way to refer back to concepts
without having to reiterate explanations. In
some sequences, up to ten different tokens are
introduced and re-accessed. Comparisons,
contrasts, dichotomies of power and other
relations can be expressed by specific
placements of tokens based on iconic and
metaphoric principles. While Moody (1989)
and Locker McKee and Napier (2002) have
described IS as placing persons in space, the
complexity and multilayered nature of the
tokens observed in this data suggest that IS
interpreters assume that tokens are
universally known and used.

On a discourse-pragmatic level, IS uses
many techniques to convey information
despite the lack of a conventionalized
grammar and rich lexicon. The lack of signs
for many concepts forces the IS interpreters
to expand upon concepts in lengthy
explanations. While this is useful in terms of
the increased iconic value, these explanations
are economically costly because they take a
long time. Therefore, in many cases the
interpreters limit the explanation of a concept
to whatever is immediately necessary. This is
illustrated with the introduction of the
concept ‘loan’ in one context as a request for
money and then, in another context, as the
entire process of receiving money, working
and paying it back. The lack of vocabulary
also leads IS interpreters to repeat entire
discourse sections. Often, the topic of a
section is introduced in the beginning and
repeated again at the end of an elaborate
explanation. This technique might be used to
compensate for the lack of syntactic

connectors available to the interpreters. In
many cases, the interpreter also has to omit
information from the source text. A
comparison of the ASL source text, English
interpretation and IS output would give
further insights into the choices the interpreter
has to make in terms of expansions and
omissions.

7 Conclusion
The analysis presented here shows an

extremely complex grammatical system with
a rather limited lexicon. As Haiman
(1985:535) observes for taboo languages,
systems with a limited vocabulary tend to
have a more ‘cumbersome’ grammar and a
higher degree of iconic motivation. This is
true for IS. The temporal constraints of the
discourse setting force the interpreters at
times to choose time-saving strategies over
iconic motivation. At other times, iconic
structures are chosen despite the temporal
constraints. The IS interpreters are constantly
forced to consider the difficulties of an
extended lag time or omissions versus
ensuring the understanding of the audience by
employing maximally iconic techniques. The
iconic elements documented in IS resemble
strongly those found in natural SLs (described
by Taub 2001). The number of IS structures
that resemble natural SLs indicate that there
is a connection between the IS grammar and
natural SL grammar. Webb and Supalla
(1994) speculated that the IS interpreters rely
entirely on their native SL grammar in
producing IS. A strong argument against this
position can be made based on the existence
of IS structures that differ from the native SL
of the interpreter. A comparison of the native
SLs of IS interpreters with their production of
IS would provide reliable empirical evidence.
The increased use of iconic structure (role
play, tokens) in comparison to a natural SLs
in the present data seems to suggest strongly

126



that Webb and Supalla’s position is not
accurate.

Moody (1989) claims that IS interpreters
use the most iconic structures of their own SL
and superimpose them onto their production
of IS. His position leaves unclear where
other, more conventional parts of the IS
grammar originate. If word order, for
example, is assumed not to be iconic, Moody
offers no explanation of the source of it in IS.
Comparisons of the IS produced by natives of
unrelated SLs, such as ASL and Japanese SL,
will be required to provide more data to test
this hypothesis.

Garretson’s (1990) proposal of IS as a
structure that is entirely iconic with no
influence from a more conventionalized
grammar can be rejected on the basis of data
found in this study. IS shows several
structures where convention is apparent. The
use of a QUESTIONMARK sign to
emphasize the structure of a sentence as a
question only occurs at the end of a phrase,
never at the beginning. Since there is no
obvious iconic reason to use this particle at
the end, this seems to be a conventionalized
aspect of IS. The use of a similar particle in
Kuwaiti SL is restricted to the beginning of a
clause. This further supports the
conventionality of the position of the
QUESTIONMARK particle in IS. Another
area where the sole use of universal, iconic
structures is disproved is the SVO structure
found both in Supalla and Webb’s (1995)
study and in this data. Goldin-Meadow and
Mylander (1991) found the basic order of
constituents in home sign systems to be
agent-patient-action. If this is assumed to be a
reflection of the maximally iconic structure,
than the SVO (agent-action-patient) order
found in this data suggests at least some
degree of conventionality.

Lastly, Allsop et al. (1994) suggest the
grammar of IS to be based on both
universally common iconic structures and
conventionalized rules. The findings in this

study suggest that this is indeed the case. IS
does have some conventional structures, as
demonstrated above. Yet, the heavy reliance
on tokens, surrogates, buoys, DVs, IVs
indicates that the IS interpreter in the
production of IS assumes a shared knowledge
with the audience of all these structures. This
suggests that these structures are universally
available. This study demonstrates that IS
relies on these very iconic structures to an
extent far beyond what previous researchers
have described.

Researchers in the past have attempted to
classify IS as either a pidgin, a Creole or a
koine. The complex grammatical structure
and limited lexicon described for IS in the
past and confirmed in this research rules out a
classification as a pidgin. Koines, on the other
hand, describe systems that are more complex
in their grammatical properties and are often
based on language dialects with a similar
structural make-up. Koines are developed by
neighboring communities that are in constant
contact with each other. This is not the case
for the community of users of IS. Similarly,
creoles are more complex in their
grammatical properties than pidgins and
might be more similar to IS in that respect.
Yet they are characterized by sociological
processes that involve a generation of native
speakers. This does not apply to IS which is a
system with no native signers. Research on
contact between two SLs (see Lucas and Valli
1992, Quinto-Pozos 2002) will likely help
classify IS more adequately.

As this research has demonstrated, IS
continues to evolve. Discourse strategies such
as the use of tokens and role play show a
level of sophistication similar to natural SLs.
On the other hand, the restricted IS lexicon
points to areas where IS will likely continue
to develop. Future studies will have to show
whether the current system suffices to fulfill
the demands of international communication
in the Deaf Community, whether it will be
expanded or replaced by a natural SL.
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Abstract

A model for knowledge transfer and sharing via linguistic communication is proposed. Our analysis
of the model suggests that the knowledge transfer requires a mechanism for structure learning which
is qualitatively different from the one that enables imitation learning.

1 Introduction

Acquisition of linguistic capacity is considered to be
a key factor for the expansion of Homo sapiens across
the globe between 100,000 and 15,000 years ago.
Knowledge transfer was an essential function that
was enabled by the linguistic communication capa-
bility, although gossiping, expressing emotions, and
others were also very important functions to establish
and manage stable societies. Its supporting evidence
is a fact that some species other than Homo sapiens,
to some degree, have methods to convey emotions
and are managing societies; but only Homo sapiens
has developed and maintained knowledge. Linguistic
communication has been a primary tool.

In this paper, we propose a model for knowl-
edge transfer via linguistic communication and dis-
cuss what might be the finishing touch to establish
knowledge transfer (or linguistic communication) ca-
pabilities.

Our analysis of the model suggests that the knowl-
edge transfer via linguistic communication is made
possible by ability to induce finite state automata
from the descriptions of the knowledge, where crucial
function is structure learning, the one requiring the
generalization capability which, we suggested (Shi-
nozawa and Sakurai (2004)), is necessary to acquire
syntactic rules. The structure learning is a mechanism
qualitatively different from the one which is used in
imitation learning now often discussed with mirror
neurons (Rizzolatti and Craighero (2004)).

Hurford (2004) argues that “mirror neurons cannot
give us any new insight into one of the most crucial
features of language, namely the meanings of signs.”

We are approaching the same problem (if mirror neu-
rons have something to do with language) from a
structural point of view, that is, if sharing of mean-
ings of words were provided by mirror neurons, shar-
ing of knowledge, structures constructed from words
and their relations, would not be possible.

2 Formulating knowledge trans-
fer and linguistic communica-
tion

2.1 Knowledge representation

Knowledge we have in our brain is nothing less than
neural activities in the brain. Since the neural activ-
ities are modeled by finite state automata, so is the
knowledge.

Brain is a complex system, or more than that. If
temporal coding is being used, the brain processes
information much differently or in a more complex
manner than we imagine. There are, though, many
kinds of noise in the brain and if the brain is robust to
the noise, information processing by the brain should
be equivalent to that by at most finite state automata
(see below). Even the brain were not robust to noise,
if our common knowledge is the result of commu-
nication between us, it should be modeled by finite
state automata, since otherwise, it could not be con-
veyed to others and failed to be common. Finite state
automata are learnable in polynomial time but in the
limit if the learner could ask membership queries to
the teacher, but pushdown automata are not learnable
in polynomial time.
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Although the neural activity is appropriately mod-
eled by finite state automata, their state spaces be-
ing huge, it might be better modeled by smaller Tur-
ing machines or quantum computers. Admitting it,
we still prefer to model knowledge by finite state au-
tomata, since the knowledge that we can communi-
cate to others in limited time is consequently limited
in size and complexity.

The hypothesis that the neural activity in our brain
is modeled by finite state automata if noise is assumed
to exist will not be mathematically proved, since the
activity is not well formulated in terms of mathemat-
ics. But the fact that recurrent neural networks are
at most finite state automata if noise exists as Maass
(Maass and Orponen (1998)) proved suggests that the
above hypothesis is valid under a wide variety of con-
ditions. Note that recurrent neural networks are not a
poor representation method but are more than Turing
machines when they are allowed to perform noiseless
infinite-precision calculation (Siegelman (1999)).

2.2 Knowledge description by language

For knowledge to be transferred, it must be described
somehow. Our best and natural way is to use a lan-
guge. Language used to describe and transfer knowl-
edge is a symbolic system, since knowledge transfer
may be done by “written” characters only,i.e., with-
out extra-linguistic features such as intonations, facial
and body expressions.

We know that the language we use in daily lives
is more versatile in expressing things and thoughts
than what a moderate size of symbolic system can do.
Context, custom, intonations, facial and body expres-
sions are secondary but important media to commu-
nicate information. But the role played by language
for knowledge transfer is equivalent to the one played
by “written” characters to transcript knowledge, since
knowledge has been transferred by written characters
or by texts. Even if the extra-linguistic features were
important, since we are sure to be imperfect in rec-
ognizing these features, we can again resort to the
Maass’ result (Maass and Orponen (1998)) and we
can safely say that the descriptions are produced by
finite state automata.

A note on describing static knowledge by an au-
tomaton. In conventional knowledge representation,
knowledge is expressed in, say, a list form (e.g.
in LISP). This type of knowledge would be trans-
formed into automaton representation by expressing
each atom by a state and sequence by state transition,
that is, a traversal of data structure would be into a
state transition.

Some dynamic knowledge may not be repre-
sentable without using context-free grammar or more
expressive way. We could, though, approximately
represent it by using finite state automaton by restrict-
ing, say, the depth of embedded clauses.

In real applications, sentences are an important tool
to describe our knowledge about the world. Hotaka
(Hotaka (1981)) proposed, implemented, and applied
in business field the idea that simple sentences are
suited to design schema models for databases.

2.3 Linguistic communication for
knowledge transfer

Communication is an endeavor to attain mutual un-
derstanding or to build common knowledge among
people by using symbols. Linguistic communication
is therefore communication with language as a pri-
mary media.

We will restrict our attention to two-party com-
munications. For the two parties to have common
knowledge, one party should learn the other party’s
knowledge, recognize the difference between it and
his own, and reduce the difference by communica-
tions that follow. Therefore, to have common knowl-
edge, knowledge transfer is a basic component. Note
that if communication is defined to be one-way infor-
mation transfer, knowledge transfer is the communi-
cation itself.

One’s knowledge is not completely transferable to
another. It is very common not only in real world but
also in our model. It is simply because the knowledge
itself is not transferable but only its descriptions are.

We require, then, that if we could communicate
as long as we need, knowledge would be transferred
completely. The concept is a version of well-known
“identification in the limit” introduced by Gold (Gold
(1967)). A method identifies a language in the limit if
the method identifies the language correctly in some
finite time during a course of inductive inferences but
it might not notice it. In our version, one party iden-
tifies the other party’s knowledge in some finite time
via communications but it might not know when it
happened.

We suppose that the finite state automata we adopt
in representing knowledge are of Mealy type (Mealy
machines). The inputs/outputs are associated with
transitions and not with states, and are identical for
each transition. The models are considered to be both
acceptors and generators. The input/output symbols
are characters, following conventions in automata
community, although words are more appropriate
when we consider linguistic expressions to describe
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knowledge. When the automaton is used for produc-
ing strings or describing the automaton, these char-
acters are used as output characters; when it is used
for accepting strings or testing if a string is properly
describing the automaton, the characters are used as
input characters. There might be multiple outbound
transitions from a state which implies multiple output
strings.

3 A mathematical model

Under the above conditions, we could build a few
types of models. We mention two variants of two
types in the following. In this section an “automaton”
refers to a finite state automaton.

1. A model to transfer knowledge. One party has
an automaton to represent a piece of knowl-
edge and the other infers it. The party with
the knowledge is a teacher and the party with-
out it is a learner when described in a learn-
ing paradigm. The teacher runs the automa-
ton by alternating possible transitions in the au-
tomaton and produces one string for each learn-
ing phase. The learner receives the string and
checks if the string is accepted by his automa-
ton. If the learner’s automaton does not accept it,
the learner modifies the automaton. The learner
then runs his automaton, produces a string, and
presents it to the teacher. The teacher checks if
his automaton accepts the string and returns the
answer to the learner.

The query the learner asks the teacher is called a
membership query (Pitt (1989)). Therefore this
is a finite state automaton induction with mem-
bership queries.

2. A model to establish common knowledge. Two
parties have their own knowledge. They com-
municate to infer the other’s knowledge and
modify his own knowledge to make them com-
mon. As described above, this model may be
constructed by combining the models for knowl-
edge transfer.

There are two types of models depending on how
we think knowledge is represented.

3. Knowledge is in fact represented (or well-
approximated) by automata.

4. Knowledge is represented in a much more com-
plex system, but when we are to describe it, we
could only use automaton.

In this paper we only consider the combination of
1. and 3. in the above.

4 An analysis of the model

The problem we consider in the paper is described as
below:

Problem 1 There are a teacher agentA1 with a finite
state automatonM1 and a learner agentA2 to infer
M1 with a finite state automatonM2. A1 runs M1

and presents its output string toA2. A2 receives the
string fromA1 and modifiesM2 based on the result
of inputting the string toM2 if necessary.A2 runs
M2 and presents its output toA1. A1 decides if the
string is accepted byM1 and sends the result toA2.
CanA2 identifyM1 in the limit by constructingM2

equivalent toM1 by repeating the above process ?

The following theorems hold.

Theorem 1 Suppose thatM1 is deterministic. IfA1

presents examples faithfully, there exists an algorithm
that makesM2 equivalent toM1 in polynomial time
in the sense of identification in the limit.

The proof is easily derived from Theorem 1 in
Parekh et al. (1998) based on Theorem 3 in Angluin
(1981). Since the proofs assume that the set of the
terminal symbols are known, we are to modify them
to incremental version, which is straightforward.

Also we have stochastic version of the theorem.
We may hypothesize that the transitions in the finite
state automata be probabilistic (see Clark and Thol-
lard (2004)). In the case, we adopt PAC (probably ap-
proximately correct) framework and have analogous
results with reasonable restrictions on the target finite
state automata.

Theorem 2 Suppose thatM1 is probabilistic. IfA1

is faithful, there exists an algorithm that makesM2

equivalent toM1 in PAC framework in the sense of
identification in the limit.

Note that PAC learnability implies polynomial
time complexity. The proof is based on Theorem 5
in Clark and Thollard (2004). Again as before we
are to pay attention to the terminal symbol set in the
proof.

We should note that the algorithms presented in
the proofs are described in symbol processing (or
programming) terminology and are not easily trans-
formed into neural network learning algorithms. Al-
though in principle the algorithms could be trans-
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lated into behaviors of some recurrent neural net-
work, since any computation can be coded into re-
current neural networks with finite precision, the ar-
chitecture is most probably far away from the neural
networks in our brain.

The recurrent neural networks have been tried as
a device to learn finite state automaton and achieved
some success (Omlin and Giles (2000)). The problem
for the recurrent neural networks is that the induced
hidden states are only implicitly represented as hid-
den layer neuron activations and are in general not
yet successfully extracted as symbolic rules (Omlin
and Giles (2000)). Moreover we do not have a con-
vergence proof. Consequently it is not easy to check
the correctness of the learned finite state automaton.
In fact, if the target automaton is cyclic, the obtained
network tend to miss the cycles.

One more note is that the algorithms used in the
proofs are a type of batch algorithm, which recieves
all the necessary samples, memorize them, and use
them to identify a result of the learning (the result
and its candiates are called hypotheses). In con-
trast to this, an online algorithm receives one sam-
ple, modifies its hypothesis if necessary, forget the
sample, and cycle the process. Clearly an online al-
gorithm is severely handicapped but is an idealized
form of learning machine with fixed amount of mem-
ory, which is usually small compared to the examples
given; or with fading memory. The above mentioned
symbolic algorithms are not online algorithms.

We present here one reinforcement learning algo-
rithm for finite state automata learning, which is an
online learning algorithm. An advantage of the algo-
rithm is that it may model knowledge transfer better
than symbolic algorithms and a disadvantage is that it
is very inefficient.

Let us first explain about the automatonM that
we have as a hypothesis. Suppose that we already
have a setS of stringsi.e. descriptions of the finite
state automaton to be learned (the target automaton).
For simplicity suppose that there is only one final
state (accepting state) in our automatonM . Let Σ be
the set of the input/output characters, or the terminal
symbols. Letpre(S) be the set of the prefix strings of
the strings inS. Let the automatonM have the states
namedαi ∈ pre(S), and if αia = αj (the lefthand
side is a concatenation of a stringαi and a character
a) thenM has a transition fromαi to αj with an in-
put/output charactera whereαi andαj are inS. The
empty stringλ corresponds the initial state.

Corresponding reinforcement learningRL is de-
fined as follows. The state(αi, a) of RL is a tuple
of the stateαi of M and a terminal symbola ∈ Σ.

The action isαj and the resultant state is uniform-
randomly selected from{(αj , a)|a ∈ Σ}, which
means the environment is stochastic.

The Q-valueQ((αi, a), αj) is initialized to−∞
(which means the value will not change) whenM has
a transition fromαi with input/output charactera to
someα′j 6= αj . The other Q-values are initialized to
0.

A series of actions starts with the initial state, pro-
ceeds with selecting the next action randomly or in
ε-greedy fashion until reaching the final state. The
reward is 0 for all the intermediate transitions, posi-
tive if the string produced is correct, and negative if it
is wrong.

It is not difficult to see the above reinforcement
learning problemRL converges with TD(λ) or Q(λ)
algorithm (Dayan (1992)) whenpre(S) is a live com-
plete set of the target automaton (Angluin (1981)).
The last condition is satisfied if the teacher will not
hide a short positive sample (all of which together,
expressed informally, constitute a live complete set),
i.e., the sampleS is large enough.

The next theorem follows:

Theorem 3 There is a reinforcement learning algo-
rithm that, if A2 uses,A2 can infer a deterministic
finite state automatonM2 which is equivalent to the
target finite state automatonM1.

The algorithm does not give a canonical automa-
ton (i.e. an automaton with the minimum number of
states among the equivalent ones). To obtain it, we
are to run the same algorithms with differentS in par-
allel and choose the smallest among converged ones.

We conclude based on the above arguments that
two-party knowledge transfer is possible in the sense
of identification in the limit. If we use the above men-
tioned symbolic algorithm it runs in polynomial time,
but may not so if we use an online algorithm.

Note that if we are to transfer knowledge among
many parties, we have to cease two-party transfers in
halfway. In the case errors may increase along the
way of transfers.

5 Comparison with imitation
learning

We will discuss briefly some insights obtained from
the arguments so far for the possibility of knowledge
transfer by linguistic communication.

There have been many discussions on possible
relations between language evolution and imitation
learning via mirror neurons (Rizzolatti and Craighero
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(2004)). There is clear difference, though, between
imitation learning of actions and knowledge transfer
from our viewpoint.

Although we compare the knowledge transfer to
the imitation learning in the following, the results ap-
ply to comparison of language acquisition to imita-
tion, since language acquisition is a problem to infer
grammars more powerful than finite state grammar,
which is a kind of super problem of knowledge trans-
fer.

Firstly, the imitation learning aims at acquiring one
best behavior (or, in a more general form, one best
policy to achieve one best behavior in possible situa-
tions) but knowledge transfer aims at obtaining a best
description of a set of infinite, acceptable, but seem-
ingly quite different strings.

Secondly, two models are different in the state de-
scriptions. In the action imitation learning, possi-
ble states are described with visual and other sensory
measurements (Morimoto and Doya (2001); Schaal
(1999)). In knowledge transfer model, no cues of
the way to describe the states are given. In both
problems, we have to discover or induce intermediate
states other than initial and goal states. Those states
will be described by sensory imputs in the imitation
learning, but by meaningless numbers or id’s in the
knowledge transfer.

In the action imitation learning, the search spaces
for the intermediate states are so huge that it is impos-
sible to search it by brute force and that imitation (to-
gether with physical constraints (Harris and Wolpert
(1998))) is thought to be a device to overcome the
difficulty (Schaal (1999)).

In the knowledge transfer, the search spaces are
combinatorially explosive, and cues to overcome the
difficulty are only the inputs to the learner.

For imitation learning by robots, reinforcement
learning paradigm is often adopted (Morimoto and
Doya (2001)). Standard techniques for reinforcement
learning try to find out a map from a state description
to a best action. Therefore reinforcement learning al-
gorithms are first consideration to solve the imitation
learning but are not for the knowledge transfer.

The problem to find out the structure of hidden
states is sometimes called hidden state problem or
structure learning, which is intrinsically a problem to
be solved symbolically, or (as we mentioned above)
by enumerating hypotheses one by one from small to
larger ones.

In general smaller hypotheses are preferred be-
cause of smaller generalization errors and higher
probability of guessing correctly (Li and Vitanyi
(1993)). For knowledge transfer, this preference is

crucial but for action imitation, physical constraints
would be suited.

Thirdly, the similarity measures to be defined be-
tween candidate solutions are different. Similarity
between the orbits is defined naturally, say, by Eu-
clidean distances. Similarity between knowledge is
hard to define. It may be defined based on the set dif-
ference, which is, though, hard to measure since the
sets are basically infinite and the difference of similar
strings (elements of the sets) is hard to define to begin
with.

In summary, imitation learning of actions via mir-
ror neurons might not be enough to explain language
evolution or emergence of linguistic communication,
since mechanisms for knowledge transfer, which is a
subset of the mechanisms needed for language acqui-
sition, require structure learning which may require
generalization, abstraction, or “variblization.”

6 Conclusion

We proposed a model for knowledge transfer via lin-
guistic communication. Knowledge representation
was modeled by finite state automata and knowledge
transfer was modeled by inductive learning of the au-
tomata. In the model, the knowledge transfer is pos-
sible in the sense of identification in the limit and re-
quires mechanisms different from those for imitation
learning via mirror neurons. Therefore, if linguistic
communication was used to transfer knowledge that
underlay the development of Homo sapiens and our
proposed model reflects the essence of the transfer,
more sophisticated mechanisms than mirror neurons
were necessary for the development.
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Abstract

I use agent-based computational models of inferential language transmission to investigate the rela-
tionship between language change and the indeterminacy of meaning. I describe a model of com-
munication and learning based on the inference of meaning through disambiguation across multiple
contexts, which is then embedded within an iterated learning model. The dynamic flexibility and un-
certainty inherent in the model leads directly to variation between agents, in both their conceptual and
lexical structures. Over generations of repeated meaning inference, this variation leads to significant
language change. Despite such change, however, the language maintains its utility as a communicative
tool within each individual generation.

1 Introduction

All living human languages are constantly changing.
Tiny, often barely perceptible, changes in the con-
texts in which particular words are used, or the way
in which they are pronounced, accumulate over gen-
erations of use to such an extent that the language
itself becomes unrecognisable in only a few genera-
tions. The driving force behind historical linguistic
change is widely recognised to be linguistic variation
(Trask, 1996). In this paper, I explore the relation-
ship between the incessancy of language change and
the indeterminacy of meaning, using an agent-based
computational model of iterated inferential communi-
cation. Inferential communication focuses on the fact
that information is not transferred directly between
communicants, but rather indirectly: the hearer infers
the meaning of a signal from pragmatic insights and
the context in which the signal is heard. The uncer-
tainty inherent in this process means that individuals
do not necessarily infer the same meanings, leading to
differences in their internal linguistic representations.
Over generations of inferential communication, small
variations may result in significant levels of language
change.

Inferential models of language have already been
used successfully to model learning conceptual struc-
tures and language in tandem (Smith, 2003b) and

the effects of psychologically plausible constraints on
lexical acquisition (Smith, 2005), but have not yet
been used in the detailed study of process of language
change. In the experiments presented here, I build
on the basic inferential model, embedding it within
a successful model of repeated cultural transmission
with generational turnover (Smith et al., 2003), in or-
der to explore the nature and extent of language varia-
tion and change across many generations of language
users.

The remainder of this paper is divided into five
parts. In section 2, I explore the twin theoretical foun-
dations on which the model used to perform the ex-
periments is based, namely cultural transmission and
the inference of meaning. In section 3, I describe the
model in detail, including how agents create mean-
ings, communicate with each other, and infer mean-
ing from multiple contexts. In section 4, I discuss the
different kinds of variation which are present in the
model, and how these can be measured. In section 5, I
present the results of the experiments themselves, and
demonstrate that conceptual and lexical variations re-
sult in remarkably rapid and significant change to the
language itself. At the same time, the language’s util-
ity as a successful shared communication system is
reconfirmed within each generation. Finally, in sec-
tion 6, I provide a summary of the paper’s main con-
clusions.
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2 Foundations

2.1 Cultural Transmission

Although we are all genetically endowed with the
cognitive capacity to learn and use language, the par-
ticular languages we actually learn are not stored in
our genes, but are instead those which we hear spo-
ken by people in the communities in which we live.
Languages are therefore passed on culturally. Re-
cent research into language evolution has focused on
this cultural nature of transmission, building models
which represent the external and internal manifesta-
tions of language as distinct phases in the language’s
life cycle: individuals produce their external linguis-
tic behaviour based on their internal linguistic repre-
sentations, and in turn induce their own internal lin-
guistic representations, or grammars, in response to
the linguistic behaviour, or primary linguistic data,
which they encounter. Such models of linguistic
evolution are known as expression/induction (E/I)
models (Hurford, 2002) or iterated learning models
(Smith et al., 2003). The cultural nature of these mod-
els is captured in the fact that the linguistic input used
by one individual to construct its grammar is itself
the linguistic output of other individuals. Differences
which occur between the internal grammars of indi-
vidual members of the population occur as a result of
the dynamic cultural evolution of the language itself.

Iterated learning models have been used success-
fully to demonstrate the cultural emergence of a
number of structural characteristics of language, no-
tably compositionality (Brighton, 2002) and recur-
sion (Kirby, 2002). These properties arise through re-
peated cultural transmission when agents must learn a
language made up of signal-meaning mappings from
a restricted set of data, through a transmission bottle-
neck. Under such conditions, holistic, idiosyncratic
rules of grammar can only be successfully transmit-
ted if the specific signal-meaning pair is encountered.
Compositional rules, on the other hand, are preferen-
tially produced due to their generalisability, and thus
are much more likely to pass through the bottleneck
into the next generation (Smith et al., 2003).

2.2 Meaning Inference

It is important to note, however, that many such
models of cultural evolution are characterised by the
explicit coupling of pairs of signals and predefined
meanings. This coupling necessarily leads to the de-
velopment of syntactic structure which is identical to
the predefined semantic structure, and which under-
mines, to a significant extent, the claims for emer-
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Figure 1: A model of communication which avoids
the signal redundancy paradox. The model has three
levels of representation: an external environment (A);
an internal semantic representation (B); and a public
set of signals (C). The mappings between A and B
and between B and C, represented by the arrows, fall
into the internal, private domain, whose boundary is
shown by the dotted line.

gence. In these models, a linguistic utterance consists
of the explicit conjunction of a signal and a meaning,
and communication involves the direct transfer of this
utterance between agents. In communication, then,
both the signal and the meaning are simultaneously
transferred. As I have shown previously, however, if
the meanings are directly transferred, then there is no
role for the signals to play, leading to the paradox of
signal redundancy (Smith, 2003b, 2005): what is the
motivation for language users to spend time and en-
ergy in learning a symbolic system of signals which
provides them no information that they do not already
have from the directly transferred meanings?

The inferential model presented here is motivated
to a large extent by avoiding the signal redundancy
paradox. This is easily done by recognising that
meanings are not directly transferable. Instead, a
meaning is encoded into a signal by the speaker, and
decoded back by the hearer. Of course, decoupling
meanings and signals means that there is now no easy
way for agents to associate them with each other, and
so we must assume that meanings are inferred from
some external source. The mere existence of an ex-
ternal world is not sufficient to avoid the signal re-
dundancy paradox, however; we must also insist on
a strong demarcation in the model between the exter-
nal world and the agents’ internal representations, as
shown in figure 1. The external, or public, domain
contains objects and situations which can be poten-
tially accessed and manipulated by all agents, while
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the internal, or private, domains are accessible only
by a particular agent, and contain representations and
mappings created and developed by the agent itself.

Signals and their referents are linked only indi-
rectly, mediated via separate associative mappings
between themselves and each agent’s internal mean-
ing representations. The associative mappings them-
selves, however, are created individually by each
agent through analysis of the co-occurrence of signals
and referents over multiple situations, as described in
section 3.2 below.

3 The Inferential Model

The E/I models of cultural transmission described in
this article, therefore, contain neither a predefined,
structured meaning system, nor an explicit link be-
tween signals and meanings. Instead, I describe ex-
periments with simulated agents who initially have
neither conceptual nor lexical structures, but have the
ability to create conceptual representations and to in-
fer meaning from their experiences. The model con-
tains an external world with a number of objects,
which can be objectively described in terms of the
values of their abstract features, real numbers gen-
erated within the range [0:1]. Agents are provided
with dedicated sensory channels, which they can use
to sense whether a particular feature value falls within
two bounds, and use these to create meanings which
allow them to distinguish objects from each other.
Agents can also create words to express these mean-
ings and to communicate about the objects. This
model is based on that described initially by Steels
(1996), in which two agents (a speaker and a hearer)
play a series of language games, but is extended in a
number of ways. In the following sections, I describe
how agents create meanings in response to their inter-
actions with the external world, how they create and
use signals to communicate to each other about situ-
ations in the world, and how they infer the meanings
of signals they receive. Finally, I explain how the in-
ferential model is placed within an iterated learning
paradigm, to allow experiments exploring the nature
and extent of language change across generations.

3.1 Meaning Creation

Meaning creation occurs as agents explore their en-
vironment and try to discriminate objects from each
other. In such an exploratory episode, an agent
investigates a random subset of objects, called the
context, with the aim of distinguishing one particu-
lar, randomly-chosen target object within the context

from all the other objects therein. The agent searches
its sensory channels for a distinctive category, an in-
ternal semantic representation which accurately de-
scribes the target, but does not accurately describe the
other objects in the context. If no such category ex-
ists, and so the episode fails, the agent expands its
semantic capacity, by splitting the sensitivity range
of an existing category into two halves, thereby cre-
ating two new categories. Repeated meaning creation
in this way results in the development of hierarchi-
cal, tree-like conceptual structures where the nodes
on the tree represent semantic categories. Nodes
nearer the tree root represent more general meanings,
with wider sensitivity ranges which cover a greater
proportion of the semantic space, while those nearer
the leaves represent more specific meanings. Impor-
tantly, the simulations contain no pre-specification of
which categories should be created, and meaning cre-
ation is carried out by each agent individually accord-
ing to its own experiences. This means that individ-
ual agents create different, but typically equally valid,
conceptual representations of their world.

3.2 Inferential Communication

Communication follows from a successful discrimi-
nation episode. Having found a distinctive category,
the speaker chooses a suitable signal from its lexicon
to represent it; if none is appropriate, then the speaker
creates a new signal as a random string of letters. The
signal is then transmitted to the hearer, who also ob-
serves the original context from which the speaker de-
rived its distinctive category. Importantly, however,
neither the distinctive category nor the target object
to which it refers are ever identified to the hearer.

Hurford (1989) developed dynamic communica-
tion matrices of transmission and reception behaviour
to model the evolution of communication strate-
gies, and showed that bidirectional, Saussurean map-
pings between signals and meanings are essential in
the development of viable communication systems.
Oliphant and Batali (1997) extended this model to
show that the best way to ensure continuing increases
in communicative accuracy is for speakers to always
choose signals based on how they are interpreted by
the rest of the population. Their algorithm, however,
requires agents to be able to have direct access to
the internal representations of other agents. In or-
der to avoid this mind-reading, I have used a modi-
fied version of the algorithm, introspective obverter
(Smith, 2003b), in which the speaker chooses the sig-
nal which it would be most likely to interpret cor-
rectly, given the current context. Because the speaker
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cannot access the interpretative behaviour of the other
agents, signal choice is based on the speaker’s own
interpretative behaviour.

Once provided with a signal, but without any in-
formation about the meaning or the object to which it
refers, the hearer must infer the meaning from the in-
formation in the context, and from its previous expe-
rience of the signal in other contexts. Inference takes
place through cross-situational statistical learning
(Smith and Vogt, 2004). In every situation in which
a word is encountered, the hearer creates a list of se-
mantic hypotheses, or every possible meaning which
could serve as a distinctive category for any single
object in the current context. Each of these mean-
ings is then associated with the signal in the hearer’s
internal lexicon. The lexicon contains a count of the
co-occurrence of each signal-meaning pair �����
	�� ,
which is used to calculate the conditional probability
that, given � , 	 is associated with � . The hearer sim-
ply chooses the meaning with the highest conditional
probability for the signal it receives and assumes that
this was the intended meaning.

If the hearer’s chosen meaning identifies the same
object as the speaker’s initial target object, then the
communicative episode is deemed successful. Com-
municative success is therefore based on referent
identity: there is no requirement for the agents to use
(or even to have) the same internal meaning, but they
must identify the same external referent. Further-
more, neither agent receives any feedback about the
communicative success of the episode, so the only in-
formation available for use in the inferential process
is the co-occurrence of signals and referents across
multiple contexts. This method of cross-situational
inferential learning is similar to the method proposed
by Siskind (1996), but differs from it most fundamen-
tally in that the set of possible meanings over which
inferences are made in the model presented here is
neither fixed nor predefined, but is instead dynamic,
and in principle infinite.

Previous experiments using cross-situational sta-
tistical learning show that the method is powerful
enough for agents to learn large lexicons, and that
agents with different conceptual structures can com-
municate successfully. The time taken to learn a
whole lexicon is primarily dependent on the size of
the context in which each item is presented (Smith,
2003a; Smith and Vogt, 2004), while communica-
tive success is closely related to the level of inter-
agent meaning similarity (Smith, 2003b). However,
if agents are endowed with psychologically motivated
interpretational biases to aid inference, such as mu-
tual exclusivity (Markman, 1989), then even agents

with very dissimilar conceptual structures can com-
municate successfully (Smith, 2005).

3.3 Iterated Inference

In order to explore how languages change over gen-
erations, the inferential model is then extended ver-
tically into a traditional iterated learning model with
generational turnover (Smith et al., 2003). It is help-
ful in this regard to consider the speaker as an adult,
and the hearer as a child. Each generation con-
sists of a number of exploratory episodes, in which
both agents explore the world individually and cre-
ate meanings to represent what they find, followed by
a number of communicative episodes, in which the
adult communicates to the child. At the end of a gen-
eration, the adult is removed from the population, the
child becomes an adult, and a new child is introduced.
The language which was inferred in the previous gen-
eration by the child becomes the source of its own
linguistic output in the subsequent generation, when
it is an adult. This process of generational turnover is
then iterated a specified number of times.

4 Variation

It is well recognised that language change is driven
by various kinds of variation in language communi-
ties (Trask, 1996). In the inferential model I have
sketched above, there are two main sources of vari-
ation, which I will call conceptual and lexical. In the
following sections, I will describe the source and ef-
fects of both types of variation, examples of which
can be seen in figure 2. Taken from a representative
simulation, this shows an extract from the conceptual
and lexical structure of an adult and a child from the
same generation. Each agent actually has five sensory
channels on which conceptual structures are built, but
only one of these channels is shown in figure 2.

4.1 Conceptual Variation

The independent creation of conceptual structure
based on individual experience leads inevitably to
variation in agents’ conceptual representations, both
because an agent’s response to a certain situation is
not deterministic, and because the experiences them-
selves differ between agents. The relative similar-
ity of two agents’ conceptual representations can be
quantified by measuring the tree structures built on
each sensory channel, then averaging across each sen-
sory channel (Smith, 2003a). If ���� �
��� is the number
of nodes which two trees � and � have in common,
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inferential learning

Figure 2: Extract from the internal structures of two agents, showing variation in both conceptual and lexical
structures. The conceptual structures are shown by hierarchical tree structures, each node of which represents a
different meaning. Conceptual variation, where meanings have no corresponding equivalent in the other agent’s
conceptual structure, is marked with dotted lines and colour. Lexical structures are represented by the words
attached to the nodes, which signify the agent’s preferred word for the meaning; empty nodes have no preferred
word. Lexical variations, where the agents disagree on the meaning of a word, are circled.

and ����� � is the total number of nodes on tree � , then
the similarity ����� ����� between trees � and � is:

����� �
����� � ���� �
�������� ��� ��� ���! 
By averaging this measure across all sensory chan-
nels, we can produce an agent-level measure of over-
all conceptual similarity. If "!#%$ identifies the tree on
channel & for agent ' , and each agent has ( sensory
channels on which they develop conceptual structure,
then the meaning similarity )*�+"-, � "/. � between agents"0, and "1. is:

)*��" , � " . ���32(
45*6�7 ,8$�9�: ����" ,;$ � " .<$ �>=?  

In figure 2 above, we consider only the nodes on
the trees themselves, without reference to the words
attached to them. Nodes which have no equivalent
in the other agent’s conceptual structure are marked
with dotted lines and colour. This shows clearly that,
although similar, the agents have developed different
tree structures: the child has created additional con-
ceptual structure in three different places.

4.2 Lexical Variation

The inherent uncertainty in the process of meaning
inference through cross-situational learning also pro-
duces variations in the lexical associations made by

the agents. Not only are the inferred meanings depen-
dent on the particular conceptual structure the hearer
has created, but the associations themselves depend
on the particular contexts in which the words are
heard. Lexical variation can be measured by con-
sidering whether two agents have the same preferred
word for any given meaning. An agent’s set of pre-
ferred words is calculated by sorting a copy of its en-
tire lexicon in descending order of conditional proba-
bility (see section 3.2), then mainpulating as follows:

1. find the topmost lexical entry, which is made up
of signal � and meaning 	 .

(a) store � as the preferred word for 	 ;

(b) delete all lexical entries containing � .
2. repeat step 1, until the lexicon is empty.

In figure 2, preferred words are represented by the
words attached to the appropriate nodes on the tree
structure; empty nodes have no preferred word. If
adult and child both have the same preferred word
for a meaning, then the child has successfully learnt
the word, and the lexical item has persisted through
the generation. Lexical items which do not persist
have undergone different kinds of semantic change;
these are shown as circled words in figure 2. For ex-
ample, the words wm and hhd have not been learnt
successfully, despite the relevant nodes in the adult’s
conceptual structure also existing in the child’s struc-
ture. In both of these cases, the words are associated
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with nodes nearer the root of the child’s tree than the
adult’s; because nodes nearer the root of a tree cover
a larger area of semantic space, I consider this kind
of change as a generalisation. Other kinds of seman-
tic change, such as specialisation and analogy are not
discussed further here.

Lexical persistence across the whole of an agent’s
lexicon is very useful as a broad measure of linguis-
tic change, and can be measured both within and be-
tween generations: intra-generational lexical persis-
tence is the proportion of the adult’s lexicon learnt by
the child, while inter-generational lexical persistence
is the proportion of the original language developed
by the adult in the first generation of the simulation
which is still intact in the language of the child at the
end of the � th generation.

5 Experimental Results

The aim of these experiments was twofold. Firstly,
I wanted to verify whether results obtained in previ-
ous experiments with an inferential model in a single
generation, briefly summarised in section 3.2, would
remain valid in a multi-generational model. More im-
portantly, I wanted to measure how languages them-
selves change over a number of generations, to ex-
plore whether languages undergoing rapid language
change over successive populations of language users
could still be communicatively viable.

5.1 Communicative Success and Mean-
ing Similarity

I have previously shown in mono-generational in-
ferential models that levels of communicative suc-
cess are closely correlated with levels of mean-
ing similarity between agents (Smith, 2003b). Fig-
ure 3 shows results from a typical simulation run
over ten generations, each of which is made up of
20,000 episodes. Analyses of communicative success
and meaning similarity were calculated every 1000
episodes: communicative success measures the pro-
portion of successful communications over the previ-
ous 1000 episodes, while meaning similarity is mea-
sured as described in section 4.1.

We can clearly see that levels of meaning similar-
ity and communicative success are again very closely
correlated, as expected. In each generation, the com-
municative success rate rises rapidly at first, as the
child successfully learns the meanings of many words
through cross-situational inference. The rate then
climbs more slowly, as the child tries to deduce the
meanings of the remaining words. These represent
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Figure 3: Communicative success and meaning simi-
larity in an iterated inference model. Each generation
consists of 20000 episodes.

meanings which are seldom used by the adult as dis-
tinctive categories, and so consequently occur rela-
tively infrequently in communicative episodes, which
makes the process of disambiguation through expo-
sure in different contexts much slower.

Levels of communicative success and meaning
similarity at the end of each generation were also
measured, to see if any inter-generational trends were
present, but we can clearly see in figure 3 that the lev-
els of communicative success and meaning similar-
ity achieved at the end of each generation were very
similar, and in fact no significant inter-generational
changes are discernible. This latter results contradicts
recent work by Vogt (2003), however, who claims
a small increase in inter-generational communicative
success in simulations run through his Talking Heads
simulator, using a similar model of inferential learn-
ing, which he calls selfish games.

5.2 Lexical Persistence

Secondly, I explored changes in the languages them-
selves over generations of different lengths, mea-
suring lexical persistence to determine the nature
and extent of change. Figure 4 shows both inter-
generational and intra-generational lexical persis-
tence over simulations of ten generations.

A comparison of the two graphs in figure 4 shows
us how the length of a generation (the number of
episodes which it contains) affects both measures
of lexical persistence. Generations containing 5000
episodes (left) result in intra-generational lexical per-
sistence rates at the end of each generation of between
60 and 70%, but if the generation length is increased
to 20,000 episodes (right), then the lexical persistence
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Figure 4: Inter-generational and intra-generation lexical persistence. Each generation consists of 5000 episodes
(left) and 20,000 episodes (right).

rates are closer to 80%. Unsurprisingly, given more
exposure to the language, the child is able to learn
a higher proportion of it successfully. Note, how-
ever, that variation in the conceptual structures of the
agents provides an effective ceiling for the level of
intra-generational lexical persistence, as it is impos-
sible for the child to learn the meaning of a word if
the corresponding conceptual structure does not exist
in its repertoire.

Figure 4 also shows that there are no significant
differences between the levels of lexical persistence
obtained within different generations. It is clear, on
the other hand, that the rate of inter-generational lex-
ical persistence shows a considerable cumulative de-
cline after only a few generations. There are two sep-
arate pressures on the language which enforce its re-
lentless erosion over successive generations of cul-
tural transmission through inference, which can be
regarded as twin bottlenecks on the language’s trans-
mission.

1. Conceptual variation restricts the number of
words which can potentially persist into the next
generation: only words which refer to meanings
which are shared are available to be learnt.

2. Lexical variation, or imperfections in inferential
learning, further restricts the number of words
which actually persist into the next generation.

The pressures from these two bottlenecks naturally
result in a cumulative decline in inter-generational
lexical persistence. These pressures are compounded
in subsequent generations, so that even after only a
few generations are passed, very little of the origi-
nal language remains, and we find a language which

is changing very rapidly on an inter-generational
timescale. Importantly, however, we can see from fig-
ure 3 that this rapid language change does not affect
levels of communication within a single generation,
which remain very high.

5.3 Generally Stable

If we investigate in more detail the languages which
are used by the child at the end of each generation,
we find that there is a distinct pattern to the language
change which occurs. Words referring to more spe-
cific meanings tend to disappear first, and only more
general words tend to survive across multiple gener-
ations. There are two obvious reasons for this, both
artefacts of the design of the model. Firstly, the Steel-
sian method of hierarchical conceptual construction
forces some order on the meanings which are created:
there is no way, for instance, to create a meaning in
the depths of a tree without first creating the relevant
meanings further up the hierarchical structure. This
restriction necessarily means that the more general
meanings nearer the root of the tree, are more likely
to be shared by the agents, and therefore less likely
to be excluded from being learnt by the conceptual
variation bottleneck. Secondly, agents use a model of
communication which follows the maxim of quantity
in Grice (1975)’s philosophical model of conversa-
tion, by choosing as distinctive categories meanings
which provide sufficient information to identify the
target object, but are not unnecessarily specific. This
means in turn that more general meanings are more
likely to be both used by the adult and also inferred by
the child, and so are much more likely to pass through
the second bottleneck on learning.
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6 Conclusions

Although the cultural nature of language transmis-
sion is becoming more widely recognised, its infer-
ential character is less widely acknowledged. Infer-
ential communication not only provides an explana-
tion for the existence of otherwise redundant signals,
but also allows the construction of realistic models
of dynamic language, in which uncertainty, variation
and imperfect learning play crucial roles.

In this article, I have briefly presented a model
of language as a culturally transmitted system of
communication, based on the creation and inference
of meaning from experience. Individual meaning
creation, and the uncertainty inherent in meaning
inference lead to different degrees of variation in
both conceptual and lexical structure. Conceptual
variation and imperfect learning create twin bottle-
necks on transmission, which result in rapid language
change across generations. Despite this rapid lan-
guage change, however, within each single genera-
tion the language itself remains sufficiently stable to
establish and maintain its utility as a successful com-
munication system.
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Abstract

The paper proposes that grammar emerges in order to reduce the computational complexity of semantic
interpretation and discusses some details of simulations based on Fluid Construction Grammars.

1 Introduction

There has been a flurry of recent theoretical models
trying to explain how and why human languages may
have evolved grammatical structures (Hashimoto
and Ikegami (1996), Nowak and Krakauer (1999)),
and there has been a growing series of computer
simulations and robotic experiments applying such
models to evolve grounded communication systems
in artificial agents (Cangelosi and Parisi (2001),
Briscoe(2002), Steels(2003)). The problem of the
origins of grammar is obviously a key question in re-
search on the origins and evolution of languages, and
it is only when we have clear theoretical models that
we can hope to reconstruct the ontogenetic and phy-
logenetic pathways towards grammatical language.

Most research reported so far views the problem of
verbal communication as a coding problem where a
meaningM is coded by the speaker into an utterance
u and thenu is decoded by the hearer to reconstruct
the same meaningM . Both processes are a function
of the lexicon and grammar, further called the lan-
guage inventory, of the speakerIs and hearerIh, so
thatcode(M, Is) = u anddecode(u, Ih) = M .

It is common to argue that syntax arises to make
both the size of the inventory and the length of the
utterance for a given meaning more optimal (Nowak
and Krakauer,1999). Language inventory can be min-
imised by using a compositional as opposed to a
holistic coding. Utterance length can be minimised
by coding certain aspects of meaning using syntac-
tic means such as word order or hierarchy. A smaller
inventory makes it easier to learn the language and it
has therefore been argued that the learning bottleneck
(i.e. the fact that language learners are only exposed
to a limited number of sentences) encourages agents
to choose a compositional as opposed to holistic cod-

ing (Smith, et.al., 2003). Although it cannot be de-
nied that syntax has this kind of optimising effect, this
paper proposes a different explanation for the role and
therefore the emergence of grammar. Specifically, I
will argue that the first primary function of grammar
(but not the only one) is to optimise semantic inter-
pretation. I will also argue that ’true’ grammar only
arises when there is an intermediary layer of linguis-
tic categories and constructions as opposed to syntac-
tic structure only.

The paper first defines formally the problem of se-
mantic interpretation and characterises its computa-
tional complexity. It then reflects on the nature of
grammar and argues that grammar only arises when
there is an extra intermediary layer of syntactic and
semantic categories that mediates between form and
meaning. The paper then explores a peer-to-peer
negotiation approach to the origins of grammar, in
which grammatical categories and constraints on the
use of these categories are progressively built and co-
ordinated by the agents, triggered by the need to op-
timise semantic interpretation.

2 Semantic Interpretation

Assume a set ofagentsA. Each agenta ∈ A is
defined as a paira =< Wa, Ia > where Wa is
the agent’s world model consisting of a set of facts
Wa = {f1, ..., fn} andIa is the agent’s language in-
ventory, whose structure is defined later. Agents take
turns being speaker and hearer and we will assume
that they use the same interventory both for coding
and decoding. Coding and decoding is in the service
of a more encompassing process: producing and un-
derstanding. Language speakers are not just uttering
sentences without any purpose. They do it because
they want to achieve an effect in the hearer. Although
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there are many possible effects, reflected in the type
of speech act implied by the sentence, we will here
focus on just one very common communicative goal:
The speaker draws attention of the hearer to an object
or event in the shared world situation.

After having chosen a topicTs, the speaker must
first conceptualise what meaningM he is going to
use to draw attention toTs. Conceptualisation is a
complex cognitive process and appears to be to some
degree language-dependent (Talmy, 2000). Here I
will just assume that the topic is one of the ob-
jects in the speaker’s world modelWs and that con-
ceptualisation selects a subset of the facts inWs:
conceptualise(Ts,Ws) = Ms ⊂ Ws. Ms should
be such that it uniquely circumscribes the intended
topic, which will be the case if the constellation of
predicates used inMs is true for the topic but not for
any other object in the world model. GivenMs, the
speaker then uses the coding function to produce the
utterance:code(Ms, Is) = u

The hearer now uses his own inventory to decode
the meaning of the utterance:decode(u, Ih) = Mh.
Usually it is assumed thatMs = Mh, however that is
too simplistic. What the hearer obtains from decod-
ing u is an expression with the same predicates asMs

but with variables instead of objects for the arguments
(assuming the simplifying case whereIs = Ih). The
hearer next needs to perform semantic interpretation,
which is the process whereby the variables inMh are
assigned values by matchingMh against the world
model Wh. The topic intended by the speaker can
then be retrieved, thus completing semantic interpre-
tation: interpret(Mh,Wh) = Th.

A simple example will make the need for this
extra step clearer. Consider the noun phrase “the
red ball” which refers (draws attention) to an ob-
ject, o1. The speaker’s conceptualisation has se-
lected two facts abouto1: red(o1) and ball(o1),
and we will write Ms as [o1|red(o1), ball(o1)], to
mean ‘the objecto1 such that the two predicatesred
and ball hold’. When the hearer decodes “the red
ball”, he obviously does not know yet which object
is intended. He is only told that there is something
which is red, that this thing is a ball, and that this
is what the speaker wants to draw attention to. For-
mally, Mh is therefore equal toMs with variables:
[X1|red(X1), ball(X1)]1. The hearer’s semantic in-
terpretation process must then match this expression
against the hearer’s world model and finds that the
variableX1 is bound too1.

Communicative success occurs when the topic

1Variables start with an upper case letter and values with a
lower case one.

identified by the hearer is unique and the same en-
tity in the real world as the topic originally chosen by
the speaker:

conceptualise(Ts,Ws) = Ms

code(Ms, Is)) = u
decode(u, Ih) = Mh

interpret(Mh,Wh) = Th

Ts = Th

Although language learners have been argued to re-
ceive no or little direct feedback on the nature of the
language inventory, they obviously receive plenty of
pragmatic feedback on whether the communication
was a success or a failure. For example, if you sit at
a table and ask for the plate with salmon by saying
”the salmon, please”, the success of communication
is simply reflected by whether you get the salmon or
not.

The problem of semantic interpretation is an in-
stance of a so called constraint satisfaction problem
(CSP) which has been widely studied in computer
science. Each predicate inMh can be seen as a con-
straint on its arguments. The domain of possible val-
ues is equal to the entities in the world model. A pred-
icatepi(X1, Xn) is satisfied for a particular assign-
ment iff the fact obtained by instantiating the vari-
ables is part of the given world model. For example,
pi(X1, X2) is satisfied for{X1 = o1, X2 = o1} iff
pi(o1, o1) is an element ofWh. A possible interpre-
tation ofMh is equal to a complete assignment where
all variables inMh are bound in a way that satisfies
all the constraints.

The computational complexity of CSP has been
thoroughly studied and this allows us to define the
computational complexity of interpreting a meaning
structureMh with respect to a world modelWh. Con-
cretely, we are dealing here with a discrete CSP and
assume (simplifying) that the number of possible ob-
jects in the world model is finite, hence the set of
possible assignments of variables d is finite as well.
The maximum number of possible assignments for
a given meaningMh with m variables is therefore
O(dm). Searching through this set to find the assign-
ment(s) that are compatible withWh is exponential
in the number of variables.

The following example makes this more concrete.
Suppose that the hearer’s world modelWh contains
the facts:

ball(o1), ball(o2), hit(o1, o3), hit(o2,o4),
box(o3), box(o4), nextto(o3,o6),
nextto(o4,o7), green(o6), green(o2),
cube(o6), cube(o7), blue(o5), blue(o7)
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and that he hears the utterance: “The ball that hit the
box next to the green cube”. Suppose furthermore
that the hearer has a lexicon that maps the content
words in this phrase to the corresponding predicates.
For example, “ball” addsball(X1) to Mh, “hit” adds
hit(X2, X3) toMh, etc., so that the phrase is decoded
as:

[X1 | ball(X1), hit(X2,X3), box(X5),
nextto(X6,X7), green(X8), cube(X4)]

There are 7 objects inWh, and 8 variables inMh,
which makes the set of possible assignments equal to
78 = 5764801, a very large number. Many language
sentences feature a much larger set of words and in-
volve situations that involve a lot more than 7 objects.
So unless a more intelligent method is found for se-
mantic interpretation, communication is not viable.

A first obvious step is to choose an algorithm that
does not search by enumerating the set of possible
assignments for each of the variables but starts from
the predicates inMh and enumerates only those as-
signments that actually occur in the world modelWh

for each predicate. The computational complexity of
semantic interpretation can then be defined in terms
of the number of facts in which the same predicate
occurs. Let k be the maximum number of facts in
the world model that use the same predicate, then the
computational complexity of semantic interpretation
is O(km). This is still exponential in the number of
variables, but, assuming a relatively small size of the
world model, will be a much smaller number. Con-
cretely, for the example world model given earlier, k
is only 2. (There are two boxes, two balls, two hit
events, etc.) And so we get28 = 256 possibilities for
Mh. However for realistic world models this is again
going to become very large.

3 The role of grammar

The computational complexity of semantic interpre-
tation can be reduced further either (1) by reducing
the number of variables inMh, or (2) by shrinking
the set of objects and facts in the world model, which
reducesk. Human language users use quite a few
devices (linguistic and extra-linguistic) to restrict the
context of a conversation and this reduces the domain
of the variables and the maximum number of facts
that have the same predicate, but I will not elabo-
rate on that aspect here. Instead I focus on the first
question, namely how can speakers and hearers re-
duce the number of variables in the decoded meaning
structure? This is precisely where grammar becomes
essential.

The key point of this paper is thatthe first purpose
of grammar is to reduce the number of variables in
a decoded meaning structure and hence reduce the
computational complexity of its interpretation. Go-
ing back to the example phrase “The ball that hit the
box next to the green cube”, we see that there is a lot
of additional information in this phrase, beyond the
lexicon, that communicates equalities between some
of the variables:

• “Green cube” forms a noun phrase so that the
hearer knows that the predicate green applies to
the same object as the predicate cube,X8 = X4.

• “The ball hit the box ... ” is a verb phrase
with “the ball” in subject and “the box” in di-
rect object position. This indicates the roles ref-
erents play in the hit-event, leading to the con-
clusion thatX1 = X2, X7 = X8 = X4 and
X6 = X5 = X3.

So we have a reduction from 8 to 3 variables and com-
putational complexity of semantic interpretation re-
duces fromO(256) toO(8). Variables which are con-
strained to refer to the same object are called equali-
ties.

The issue is not only complexity. Without the ad-
ditional information that some of the variables intro-
duced by the lexicon have to be assigned to the same
values, there would be several semantic interpreta-
tions which are all complete. Going back to the ex-
ample phrase, we see that, there are in fact28 of them
(because I constructed the example so that there are
two possible assignments for each predicate). How-
ever, when taking the additional constraints on vari-
able equalities communicated by syntax into account,
only one interpretation remains. So the secondary ef-
fect or grammar is also to reduce the number of pos-
sible interpretations so that only a unique complete
assignment of the variables remains.

4 From Syntax to Grammar

The next question is how natural languages commu-
nicate variable equalities. One way is through syn-
tactic structures, based on word order or extra mark-
ings. For example, combining the words “red” and
“ball” into “red ball” implies that the variables used
in red(X1) andball(X2) are equal,X1 = X2, so that
the meaning becomes[X|red(X), ball(X)]. Such a
patterning could at first be completely ad hoc, which
is the case for example in programming languages.
To specify the arguments of a procedure or function,
programming languages or logic use ordering. For
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example, the procedureDrawWindow(W,x, y, z),
requires 4 arguments to be supplied in a particular
order. Note that ad hoc syntactic structures could
already have recursive structure, if a group which
forms a unit (like “red ball”) is combined into a larger
structure (“red ball next to green ball”). In a pro-
gramming language, there is no further systematic-
ity in syntax. When defining another procedure like
MoveWindow, there could be a totally different or-
dering: MoveWindow(x2, y2, z2,W ) or move −
window(W, z2, y2, x2), etc., depending on the pro-
grammer’s wish. Of course a good programmer will
introduce some systematicity in the syntax he is using
but the interpreter and compiler know nothing about
this.

An experiment in the emergence of syntax in this
sense has been carried out by Batali (2002). His syn-
tactic combination rules contain ‘argument maps’ to
specify the variable equalities. They are created in
an ad hoc fashion as exemplars. Thus, using num-
bers for the arguments, the individual words usifala,
[(snake 1)(sang 1)] and ozoj [(chased 1 2)], are com-
bined into “usifala ozoj” to express (snake 1) (sang 1)
(chased 1 2), with the mapping 1:1 for the first word,
and 1:1, 2:2, for the second one. Agents negotiate the
use of exemplars, based on a lateral inhibition dynam-
ics: Success reinforces the use of certain exemplars
and failures discourages their use. Exemplars are re-
used as much as possible which implicitly creates at
least some systematicity but this systematicity is not
captured in rules.

Natural languages however impose an additional
layer in between the meaning to be conveyed and
the final syntactic form. The meaning is re-
conceptualised in terms of semantic frames such
as a TRANSFER-TO-TARGET frame with agent,
target and patient and the form is categorised in
terms of syntactic categories (like noun, article, etc.),
grammatical relations (like subject, determiner), and
syntactic patterns (like a Subject-Verb-Direct-Object
pattern). The combination of a semantic frame
and a syntactic pattern is known as a grammatical
construction (see figure 1) (Goldberg,1995). It is
only when such a layer of grammatical construc-
tions with syntactic and semantic categories that one
can speak about true grammar. It has the obvi-
ous advantage of economy and greater expressive
power. Constructions in natural language clearly
have different degrees of specifity (i.e. idiomatic-
ity), ranging from very idiomatic constructions built
around a particular noun or verb, to very general
constructions with wide applicability, such as Sub-
ject+Predicate+DirectObject (as in ”John gives a

Figure 1: A construction relates a syntactic pattern
such as Subject+Predicate+DirectObject+PrepObject
with a semantic frame such as TRANSFER-TO-
TARGET+Agent+Patient+Target.

book”). Constructions thus form networks where
more specific constructions inherit from more general
ones and combine with each other to achieve high ex-
pressive power. Moreover empirical observations of
actual language use shows that the inventory of con-
structions used by an individual (including adults) is
constantly changing. Constructions capture conven-
tionalised patterns of usage, but new patterns develop
all the time and others may go out of fashion.

To implement all this, we need a formalism which
can explicate semantic categorisation rules for re-
conceptualising meanings into semantic frames, and
syntactic categorisation rules that categorise words
and syntactic structures. There must also be an ex-
plicit representation of grammatical constructions,
i.e. associations between semantic frames and syn-
tactic patterns. These constructions should still es-
tablish equalities between variables (as Batali’s argu-
ment maps) but they will now be more generic and
hence applicable to a wide range of situations. If syn-
tactic and semantic categorisations and constructions
are explicitly represented in the grammar, then it fol-
lows that the agents must have operators for invent-
ing them (as speaker when there are equalities that
need to be eliminated), for adopting them (as hearers
when there are equalities that the speaker has elim-
inated) and for aligning them to ensure that the cat-
egories and rules of different agents become similar.
The next section provides a bit more technical detail
on how we have implemented these various aspects.

5 Fluid Construction Grammars

The formalism we have implemented for represent-
ing emergent grammars is called Fluid Construction
Grammar (FCG) and is related to other computational
implementations of construction grammar such as
ECG (Bergen and Chang,2003), as well as standard
techniques of unification-based grammar employed
in computational linguistics today (Pollard and Sag,
1994). Specifically, syntactic and semantic structures
are represented as typed feature structures, as shown
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in figure 2 and 3 for the sentence “Jill slides Jack
the block”. Fluidity refers to the goal of being ex-
tremely flexible in parsing and production, including
when there is no or insufficient grammar or when
some rules are violated. In FCG, all rules are bi-
directional so that they can be used both for produci-
tion (i.e. constructing an utterance that expresses spe-
cific meanings derived through a conceptualisation
process from a grounded world model) and for pars-
ing (reconstructing the meaning of an utterance and
mapping it back into reality by way of the grounded
world model). This is a tough technical requirement
which is achieved by viewing grammar rules as con-
straints and language processing as constraint propa-
gation.

Figure 2: Syntactic structure after application of the
TRANSFER-TO-TARGET construction. There is a
unit for each word and for combinations of words.
The syntactic categories as well as the properties of
the surface form are represented as predicates over
units.

Figure 3: Semantic structure built up alongside the
syntactic structure shown in the previous figure. It
contains bits of meaning as well as semantic categori-
sations necessary for the application of the grammat-
ical construction (in the slot SEM-CAT).

FCG rules contain a left pole and a right pole and
are activated and applied through unification. An

example of a grammatical construction is shown in
figure 4. The left pole constrains the semantic side
and the right pole the syntactic side. Other rules
will expand the semantic and the syntactic structure
with descriptions so that this rule can be applied.
For example, there will be a semantic categorisation
rule that re-conceptualises a slide-event with its var-
ious roles (as in John slides the book to Mary) into
a TRANSFER-TO-TARGET event. Producing and
parsing are totally analogous, the only thing which
changes is the direction of rule application.

Figure 4: Example of a construction which
relates a TRANSFER-TO-TARGET frame to a
Subject+Verb+Direct-Object+to+Prep-Object pattern

Agents in our simulations of grammar emergence
create categories and constructions in order to reduce
the computational complexity of semantic interpre-
tation and align these categories and constructions
based on the outcome of the language game. We sum-
marise the main principles of these simulations and
refer to Steels (2005) for more detail.

Suppose the speaker has a target meaningMs

which he wants to communicate to refer to a topic,
and he can use his lexicon (and maybe already a par-
tial grammar) to code that meaning into an utterance
u. But before sendingu to the hearer, the speaker can
first determine the complexity of semantic interpre-
tation byre-entrance: The speaker decodesu (using
his own lexicon and grammar) to yield a meaningM ′

s,
and then tries to interpretM ′

s against his own world
modelWh. This gives a set of possible bindings and
possibly a set of equalities. If there are equalities,
the speaker knows that additional grammar should be
added. Conversely, if the hearer attempts to interpret
his interpretation of an utteranceu and obtains a pos-
sible referentTh (possibly after additional interaction
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with the speaker if there was a failure), then he also
has a set of bindings and a set of equalities. If there
are equalities, the hearer can interpret the additional
syntactic information present in the utterance as a rea-
sonable hypothesis that this information is intended to
show how the equalities can be resolved.

We discuss first an example how a specific id-
iomatic construction is generated. Suppose that the
speaker wants to express the following fall event:
‘fall(ev1), fall-1(ev1,obj1), ball(obj1)’. Assume that
the speaker has already lexical rules for “fall” and
“ball”, leading to the semantic and syntactic structure
in figure 5. No grammar is involved yet.

Figure 5: Semantic (left) and syntactic (right) struc-
ture after applying lexical rules for “ball fall”.

If the speaker re-interprets himself the resulting
sentence “ball fall” using his own lexicon, he comes
up with the following meaning: ‘fall(?ev1), fall-
1(?ev1, ?obj1), ball(?obj2)’. If this is matched against
the original meaning, the equality ?obj1 = ?obj2 be-
comes apparent. So if this equality would become
expressed grammatically, the communication would
become more precise and the risk of failure decreases.
The speaker invents a construction for this purpose in
two steps.

The first step is to combine the structures derived
from the lexicon, introduce variables for all units and
entities involved, and add the precedence relation oc-
curring in the sentence, which was arbitrary but now
becomes rule-governed. Slots need to contain the
specified elements but also could contain other ones.
This gives the result shown in figure 6. Note that the
variable used with the predicate ball (i.e. ?obj1) is
the same as in fall-1. This is the way that the equality
will get established when the rule is applied.

This construction does the job in the sense that
when “ball fall” is seen, the lexicon contributes the
various predicates to the meaning and the construc-
tion establishes the right equality. However it is com-
pletely ad hoc, so a more general operation should
take place, which generalises the meaning and the
form by stating the constraints in terms of semantic
and syntactic categorisations. The result is shown in
figure 7.

The relation between the semantic categorisations
and the meaning predicates now needs to be trans-
lated into a sem-rules (shown in figure 8). These

Figure 6: The first step in inventing a construction is
to perform a kind of lambda-abstraction, introducing
variables for units and entities.

Figure 7: The second step in inventing a construc-
tion is to replace specific meaning and form predi-
cates with semantic and syntactic categorisations.

rules are easily constructed by taking the relevant part
of the meaning slot in the original semantic structure
and linking it to the sem-cat slot in the construction.
These categories are still ad hoc in the sense that they
have only one member, but the categories progres-
sively become richer as new elements are declared to
be members of them, so that the extent of sem-cat1
becomes something like ‘the set of objects which can
participate in physical movement events’, sem-cat2
becomes ‘the set of events that involve such physical
movement’, and sem-cat3 ‘the patient involved in this
physical movement’.

Figure 8: A semantic categorisation rule for some of
the semantic categories in the construction shown in
figure 7

The relation between the syntactic categories and
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the predicates describing aspects of form is expressed
in syn-rules. An example is shown in figure 9. The
form constraint is repeated in the left pole to make the
rule bi-directional. Again these categories are at this
moment ad hoc, having the specific words “ball” or
“fall” as only members, but as the construction gets
re-used, the category becomes broader and they will
become similar to the parts of speech in natural lan-
guages.

Figure 9: A syntactic categorisation rule for “fall”

The hearer goes through exactly the same sort
of operations for constructing his own grammatical
rules. The hearer detects equalities based on the
predicates supplied by the lexicon which are matched
against the specific situation in the shared environ-
ment to yield a set of bindings and possibly equali-
ties. Every rule in FCG has a strength which reflects
how much success the rule has had in the past. The
strength is updated using lateral inhibition dynamics,
already used for the lexicon Steels(1996): Success-
ful application reinforces the rule and failure causes
damping. This leads to a gradual self-organised co-
herence of the agents’ repertoires.

Language users should try to optimise their inven-
tories by re-using as much as possible existing con-
structions to cover new situations. This has two ad-
vantages: economy of memory, because fewer rules
need to be stored, and optimisation of processing be-
cause fewer rules need to be considered. But re-use
is also beneficial to speed up learning. If there is al-
ready a construction which is more or less doing the
job, then the hearer can use that construction as a ba-
sis to help guess the meaning and learn more about
the syntactic and semantic categories of the speaker.
In line with the (embodied) cognitive linguistics ap-
proach, we argue that grounding should play a major
role in deciding to re-use a construction.

Some cases are relatively straightforward. If there
is another fall event but now involving another ob-
ject, say a block, then “block” can simply be cate-
gorised as syn-cat1 and the predicate block as sem-
cat1, so that the OBJECT-MOVE construction shown
in figure 7 becomes applicable. However other cases
are not so straightforward. Suppose that a new
event has to be categorised (e.g. ‘slide(?ev5), slide-

1(?ev5,?obj6), slide-2(?ev5,?obj7)’). The already ex-
isting instances of a category (in the example above
this is so far only the fall-event with sem-cat2 and
sem-cat3) can be compared to the new event by ex-
amining the state transition networks that are used for
the recognition of each event. The primitive events
and event combinations of each event are paired to-
gether with the entities that play specific roles in each
event. Based on this comparison, a measure of cat-
egory membership can be computed in a straightfor-
ward manner, to find the category whose instances are
closest to the new event to be expressed. Thus, be-
sides a ’patient’ that is undergoing movement (sem-
cat3), an agent is involved in a slide-event. The en-
tity playing this role participates in different primi-
tive events than the patient and hence the correspond-
ing predicate would not fit very well with sem-cat3.
There are still other ways in which constructions can
be re-used. For example, if there is already a con-
struction like the one shown in figure 7 it could be
specialised with additional roles, e.g. to express the
agent of the move-event or the manner of movement.

These learning mechanism proposed are ’construc-
tivist’ Tomasello and Brooks(1999) in the sense that
they are not derived from statistical clustering but im-
posed by language users and then possibly adopted
as consensus. At first the categories are ad hoc and
have only a single entity as its member, but as con-
structions are re-used, more instances are added to
the category and so they are getting a richer content.
The instance-based learning of categorisation results
in the prototype behavior also seen with the linguistic
categories found in human natural languages.

6 Conclusions

This paper argued that reducing the computational
complexity of semantic interpretation, and hence the
chance of communicative success, can be the main
driving force for getting a population of agents to de-
velop grammar. It argued also that ’true’ grammar
only arises when syntactic and semantic categories
are used and grammatical constructions to have a
more abstract mapping between form and meaning.
We do definitely not argue that this is the only use of
grammar. In fact when second order predicates be-
come used (i.e. predicates that have other predicates
as argument, such as ”very” in ”very good”) there is
a second important reason for introducing grammar,
namely that the grammar specifies how a predicate
needs to be used. Much further work needs to be done
to carry the computational simulations forward, and
there is no doubt that the operators we have used so
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far need to be extended with more powerful mech-
anisms for the invention of new grammar. Chang
and colleagues (Chang and Maia,2003) have recently
presented computer simulations of such learning pro-
cesses based on empirical data of child language ac-
quisition and Bayesian learning mechanisms. The
perspective adopted here is along similar lines, al-
though we use an abductive learning approach.
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Abstract 

 

Recently, linguists from several quarters have begun to unpack some of the assumptions and claims 

made in linguistics over the last 40 years, opening up new possibilities for synergies between lin-

guistic theory and the variety of fields that engage with it. A key point of exploration is the relation-

ship between external manifestations of language and the underlying mental model that produces 

and understands them. To what extent does it remain reasonable to argue that all humans ‘know’ 

certain things about language, even if they never demonstrate that knowledge? What is the status of 

knowledge that is only stimulated into expression by particular cultural input? Many have asked 

whether the human’s linguistic behaviour can be explained with recourse to less innate knowledge 

than Chomskian models traditionally assume. But to what extent might it be appropriate, in addi-

tion, to move away from the quest to model full systematicity at all? This paper proposes that mod-

els that generate an untidy and only partially rationalised product may a better match for reality than 

is often supposed. The implications for simulation work are extensive: a reformulation of target out-

comes offers new possibilities for characterising starting states and processes.  

 

1   Introduction 

Linguistics in the pre-Chomskian era was in some 

ways naïve, even prejudiced, but in other ways it was 

much more open to the exploration of what variation 

between languages means, and what might underlie 

such variation. Revisiting the writings of Jakobson, 

Jespersen, Firth, Bloomfield, Saussure and others can 

refresh our perceptions of language (e.g. Wray 

2002a, chap.1), particularly if we ourselves have 

been heavily influenced by the Chomskian tradition. 

We need to move towards a mature synergistic ap-

proach that can evaluate the various contributions 

made to linguistic research over the past century or 

more, scrutinise points of difference, and identify and 

examine common assumptions. This is beginning to 

happen. To some extent language-focussed AI re-

search is fuelling this activity, but beyond that, it has 

much to gain from engaging with the moving tide of 

questions about language, many of which can be an-

swered empirically. Amongst the issues that are be-

ing examined, not least in response to the difficult 

questions that must be addressed in language evolu-

tion research, are the uniformity of language and of 

fundamental linguistic knowledge, and what, pre-

cisely, is it is that is innate in relation to language. 

Approaches to simulation vary, but all need to 

specify and manipulate a starting state and/or process 

in order to observe the effect on an end state. At least 

one of these elements must be defined by and/or 

evaluated relative to some external reference point, 

such as a current model of learning, the real world 

target of the simulation, etc. Pre-specifications of the 

starting state must be scrutinized, justified and where 

possible minimized, since they build in features that 

might otherwise have been explained as a product of 

the process. It follows that language simulators seek 

clear answers to questions about the phenomena they 

model: if, in a model of language evolution, X (Y) → 

Z, then what do linguists, psychologists and others 

consider reasonable definitions of X (starting state) 

and Z (end state), such that versions of Y (process) 

can be explored? 

Simulating language makes heavy demands if we 

construe language as a complex dynamic system with 

many interacting parts
1
. Simulation research to date 

demonstrates that even quite simple processes can 

result in a level of complexity in the end state that it 

was previously assumed must be subject to specifica-

tion in the starting state. Such discoveries, however, 

do not in themselves guarantee that the simulation is 

                                                 
1 Simon Kirby (personal communication). 
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a close match for the phenomena it models. Further-

more, linguists have tended to believe that language 

is fundamentally so complex that it is unlikely to 

render its secrets easily in simulation studies. Al-

though much is being done to establish how the basic 

building blocks of language could emerge – sound 

systems, meaning, basic thematic and grammatical 

roles, etc. – it remains unclear whether it will ever be 

possible to write a program that can learn a language, 

or generate linguistic material, in a way comparable 

(in outcome and/or process) to that of a human.  

With regard to this holy grail, one line of explora-

tion (e.g. Kirby et al 2004) is to establish whether the 

features of language that are held to be universal 

need to be pre-specified in a UG, or whether they can 

emerge on the basis of input. The account developed 

here is consistent with the latter position, but I also 

propose that the individual’s language knowledge 

may be more patchy than linguistic theory has gener-

ally assumed – if this is the case, it may be easier to 

model than we thought. I shall explore two main 

themes. Firstly, some of the complex features of lan-

guage may be ‘universal’ only in a secondary sense – 

bound to manifest in a particular form, but not actu-

ally bound to manifest. If so, then although they must 

still be explained, their place in models of language 

evolution or acquisition can be marginalized. Sec-

ondly, accounting for the presence in language of 

troublesome elements such as irregularity and semi-

regularity may be less a question of how such fea-

tures are generated than how and why they are toler-

ated. The theoretical model I shall describe accounts 

for complexity in a way that brings with it interesting 

opportunities for simulation studies. 

 

2.0 All languages are equal (but are 

some more equal than others?) 
 
The strong version of the uniformitarian position 

holds that since all languages are defined by the de-

sign of the human brain, which is the same for all 

modern humans, all languages must be equal in their 

complexity (see Newmeyer 2002). Those who take 

this position set a parameter for simulation studies: if 

the product is always of the same order, the starting 

state and process must, between them, account for 

that fact. As Newmeyer points out, in the absence of 

contrary evidence, some kind of uniformity in lan-

guage capacity must be assumed to exist, for “no-

body – at least one would hope nobody – has claimed 

that there exists a language for which subordination 

is literally impossible” (p.369). However, a weaker 

version of the uniformitarian position is possible. 

Newmeyer opens up the possibility that the uni-

formitarian view can, and should, accommodate cer-

tain observable tendencies in language, specifically, 

directionality in language change, e.g. from verb-

final to verb-medial, increasing morphophonemic and 

phonological complexity, increasing grammaticalisa-

tion, reduction in deictic complexity, and reduction 

of marked structures. He summarises a number of 

studies, including Nettle’s simulation work, that vari-

ously suggest influences on linguistic structure from 

culture, group size, and language contact. He ob-

serves that if there is, as considerable evidence sug-

gests, variation in the extent to which certain linguis-

tic features are expressed, this undermines the strong 

uniformitarian view that all languages are of equal 

complexity, but does not challenge the weaker ver-

sion, that all humans possess equal underlying lin-

guistic capabilities. 

He concludes that “if grammar is tailored to the 

needs and properties of language users (to whatever 

degree), and language users now are not what they 

used to be, then it follows that grammar is probably 

not what it used to be” (p.369). It is significant that 

he specifies “needs and properties of language users” 

as a determining factor in how the language is 

shaped. If, as the evidence suggests, one feature that 

is variable under conditions of user “needs and prop-

erties” is grammatically expressed subordination, that 

will automatically impact on the opportunities for 

certain supposed realisations of UG to be expressed, 

such as Subjacency. It follows that while we still 

have to account for shared underlying linguistic ca-

pacities in Homo sapiens we may not invoke as evo-

lutionary pressures any features of language that are 

contingent on socio-cultural or other factors not ex-

tant in prehistoric times. Care must be taken, of 

course. While we can make some reasonable guesses 

about group size, inter-group contact, ecology and 

food availability in pre-modern or early modern man, 

we cannot be sure about the precise circumstances at 

vital moments, as we would need to be for a mono-

genetic account of language emergence – especially 

catastrophic monogenesis. Nevertheless, features of 

language that evidence suggests are only expressed in 

literate and/or complex societies can reasonably be 

dismissed as candidates for selection at an early stage 

in human prehistory. Grammatical subordination 

seems to be one such (Kalmár 1985; Mithun 1984; 

Ong 1982; see Newmeyer 2002 and Wray & Grace 

forthcoming for interpretations of this evidence. Also 

see further discussion in section 4 below). 

We are challenged, then, to accommodate in a 

model of language evolution the emergence not only 

of what humans know and what humans do with what 

they know, but also a mechanism by which one is 

mapped onto the other. This challenge cannot be re-

duced to a version of the old competence-

performance debate – it is more fundamental than a 

simple failure of our production mechanisms to keep 

pace with some finely honed underlying system. In-

deed, the notion that there is a fully-specified under-

lying system can no longer be taken for granted. Dif-
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ferent theoretical approaches accommodate a lesser 

level of specification in different ways, but one fea-

ture that is increasingly playing a role is the question 

of how the experience of individuals can support a 

‘system’ (more or less systematic) without mastering 

it. The implications are considerable for simulation 

research, since mastery of the system has always 

been the most difficult thing to model. 

 

3.0 Mapping linguistic knowledge 
 

3.1 Intuition and patterns of use 

 
Establishing what humans ‘know’ about language is 

not easy. Corpus linguistics has opened our eyes to a 

great many things previously not recognised about 

patterns in linguistic behaviour, and these are surpris-

ingly different from what our intuitions predict. Sin-

clair (1991) views linguistic intuition as “highly spe-

cific, and not at all a good guide to what actually 

happens when the same people actually use the lan-

guage” (p.4). Much continues to be written, from 

both sides, about just why our intuitions don’t match 

our language use. Increasingly, linguists are looking 

for a way to model our knowledge of language that 

can account for the mismatch in some plausible way. 

By plausible, I mean that there should be predictive 

power to the model of the relationship, rather than 

simply writing off one or the other component as 

mysterious or uninteresting. I shall propose such a 

model later. There are several things that it needs to 

accommodate.  

On the performance side, one is the lexical pat-

terns that corpus linguistics reveals: “Grammars 

based on intuitive data will imply more freedom of 

combination than is in fact possible” (Stubbs 1993: 

17). Another is the disproportionate recurrence of 

certain formulations of common messages, where 

other formulations are also possible (Wray 2002a). A 

third is the absence of grammatical structures that are 

intrinsic to a basic grammatical theory. Meyer & Tao 

(2004) looked for gapping in the International Corpus 

of English (ICE). They found only 120 tokens in 

17,629 examples of local coordination capable of 

supporting it (0.007%) (see also Favareau et al, in 

preparation). 

On the competence side, we can note that our in-

tuitions do not seem to match linguistic theory. Lin-

guistics lecturers know that it is not always easy to 

convince a syntax class that the ‘official’ allocation 

of asterisks (on unacceptable sentences) is correct, 

even though it is supposed to reflect universal innate 

knowledge. Outside of the university setting, it is 

even more of an issue: Chipere (2000) found that 

relatively uneducated native speakers of English were 

very poor at making grammaticality judgements on 

complex sentences. 

What does this signify? Do people ‘know’ things 

but have difficulty articulating their judgements? Do 

they have problems separating out strictly structural 

judgements from semantic and pragmatic variables? 

Or is it possible that they really don’t know certain 

grammatical constraints? And if so, how should we 

define ‘know’ without raising questions of inegality 

at a fundamental level? Answering these questions 

impacts considerably on where simulation studies go 

in the next few years. 

 

3.2 What does it mean to ‘know’ some-

thing? 

 
Let us assume, with Newmeyer, that every human is 

equipped for Subjacency even if he or she is never 

called upon to engage with its constraints. Let us 

further assume that Subjacency did not arise as a re-

sponse to some mental or communicative pressure 

that no longer exists (though this should be fully ex-

plored at some point). It follows that we have to ex-

plain our sensitivity to constraints such as those of 

Subjacency as a spandrel. This does not get us off the 

hook – a spandrel of what, and why did precisely this 

sort of constraint arise? Our model of how language 

evolved may be freed up by not having to build in 

certain constraints at the primary level, but it must 

still produce the constraints at the secondary level, 

and, if Newmeyer is correct, across the board, in hu-

mans that do and do not have occasion to apply it. In 

the same way, a model of how human physiology 

evolved does not need to build in, at the primary 

level, the human’s capacity to ride a bicycle, since 

bicycle riding played no part in our physiological 

evolution. However, any evolutionary model that 

does not culminate in a modern physiology that in-

cludes the capacity to ride a bicycle is clearly wrong. 

The question is, therefore, what sorts of models of 

language evolution can, without entailing the full 

gamut of linguistic realisations found today, never-

theless predict that they will be possible today? And 

how does one avoid building in unprincipled 

preadaptations, that is, shaping the model in certain 

ways in anticipation of what will be needed later? 

 

4.0 Evaluating alternative models of 

linguistic knowledge 
 
Once the door is opened, there are many paths to 

explore. In what follows, I pursue one particular line, 

which entails three potentially independent, but also 

linkable, insights into how we might account for the 

phylogenetic (and, in passing, ontogenetic) acquisi-

tion of linguistic knowledge.  
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4.1. Culturally based insights about lan-

guage 

 
Echoing Newmeyer, and in keeping with various 

observations made about the role of literacy in our 

perceptions of language (e.g. Givon 1979, Grace 

1987, 2002a-c, 2003, Kalmár 1985, Ong 1982), Wray 

& Grace (forthcoming) propose that the extent to 

which humans engage with the free manipulation of 

linguistic structure is influenced by cultural and 

demographic variables. Drawing on ideas from Chafe 

(1985), Kay (1977), Laycock (1979), Mithun (1984), 

Thurston (1987, 1989) and Trudgill (1989, 2002), we 

suggest that the default level at which humans exploit 

the creative potential of language is somewhat con-

servative. However, under certain sorts of conditions, 

such as prolonged contact with adult learners of the 

language, and social structures that create and sustain 

linguistically defined in- and out-groups, additional 

engagement with the mechanics of language becomes 

necessary. This augmented engagement serves ex-

plicitness and form-meaning predictability. Messages 

will become easier to interpret out of their temporal 

and/or sociocultural context, and it will be easier to 

create and understand novel messages
2
. 

According to this model, there is a fluid range of 

potential experience for individuals in relation to the 

manipulation of their language. Those operating at 

the default level are those whose environment and 

way of life feature a large measure predictability in 

daily behaviour and message content, such that their 

ability to understand, and produce, novel messages is 

rarely challenged to handle more than limited lexical 

variation within much-used message frames. 

Under different sociocultural conditions, how-

ever, these same individuals will increase their 

engagement with the mechanisms of their language, 

to accommodate the greater need for explicitness in 

messages. To take a modern-day example, a special-

ist ‘in-group’ such as car mechanics may possess a 

highly contextualised code for discussing their work 

amongst themselves. This code will feature jargon 

that affords short-cuts in relation to customary refer-

ence – jargon that must be acquired as part of an ap-

prenticeship, both for social and practical reasons. 

The code may simultaneously facilitate in-group 

communication, furnish its users with a means of 

preventing outsiders from understanding certain se-

cret messages, and signal, through that exclusion, 

professional identity. However, the code is of little 

use when the mechanic has to discuss the state of a 

car with its non-specialist owner. Jargon must be 

                                                 
2  It should not be inferred that there is no scope for novelty with-

out this augmentation. The default level is above the threshold at 

which new meaning can be expressed and understood. However, 

more adventurous combinations will, indeed, be possible with 

augmented engagement. How this works is further described later. 

glossed, and technical procedures explained rather 

than just named. In order to achieve an adequate level 

of effective communication, both mechanic and cus-

tomer must have access to a code of common terms 

and ways of formulating them. This lingua franca 

will be most effective if its components are subject to 

transparency and regularity, so that meaning can be 

teased out where it is not available outright. For prac-

tical reasons, the lingua franca will also need to be 

transferable to other similar situations.  

Under this account, individuals’ linguistic capa-

bilities, in terms of novelty of expression, are conser-

vative by default, but easily stretched when neces-

sary. This ‘elastic’ model can explain the contrast 

between what we evidently can do, and what we cus-

tomarily do do. Unlike models that assume all indi-

viduals to be exercising the full range of linguistic 

manipulation all the time, there is no need here to 

account for the failure of that full potential to be real-

ised in most instances of language in use. Rather, the 

potent variable is that which forces the individual, 

temporarily or more permanently, out of the default 

mode in which messages are expressed the same way 

as last time, and in which the interpretation of input 

is filtered through pragmatic and contextual predict-

ability first, and only further analysed if necessary. 

 

4.2 Processing by need, not principle 

 
The processing mechanism upon which I propose the 

elasticity to be based is needs only analysis (NOA) 

(Wray 2002a: 130-2), and I shall explain it first in 

relation to child language acquisition. The principle 

of NOA is simply that the individual does not break 

down input any further than is necessary to extract or 

create meaning. That is, there is no gratuitous analy-

sis of form beyond the point where form-meaning 

mapping is sufficient for the present comprehension 

event, or for the construction of the presently re-

quired output. Over a period of time, an accumulation 

of event-specific comprehension and production re-

quirements will lead to the identification of many 

small, recombinable items, plus rules for their com-

bination. However, large units that never require such 

reduction will remain intact, and this will result in a 

mixed inventory of small and large items, as deter-

mined by the patterns in the input. In many cases a 

large unit will loosen up to permit limited morpho-

logical or lexical variation, creating a partially lexi-

calised frame (e.g. at the end of the __; NP1 pull + 

TENSE/AGR NP2+ POSSESSIVE leg). 

Once a reliable meaning can be associated with a 

particular unit, that unit will be subject to privileged 

retrieval for that meaning, both in comprehension and 

production. As a result, in comprehension, even if the 

unit is internally complex (e.g. don’t count your 

chickens; the thing is) other logical but disfavoured 
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interpretations of the unit will not be countenanced. 

Thus, under normal circumstances, tear along the 

dotted line will not be interpreted as an instruction to 

sprint along the middle of the road because another 

meaning is already associated with that complex unit. 

In production, other entirely grammatical formula-

tions of the intended message will tend not to be pro-

duced (e.g. rip along the marked pathway), because it 

is easier to retrieve a preformed unit than to construct 

one
3
. 

In further illustrating how NOA works, it is use-

ful to look at the extreme end. An idiom like by and 

large has reliable meaning at this three-word level, 

and so there is no impetus to break it down any fur-

ther. As a result, we do not construe the meaning of 

‘large’ with reference to its occurrence in this idiom, 

and we are not tempted to create novel meanings by 

changing items within it, e.g. *by but large; *by and 

small. 

A slightly less fixed idiom like from now on will 

also be initially assigned a holistic meaning, but over 

time, input will reveal the potential to loosen the 

fixedness of now to permit certain other time-related 

items, e.g. from then on, from Tuesday on, from that 

moment on, but without loosening the constraints on 

the first and third words, since no evidence will arise 

from input to suggest that *till now on or *from now 

off are possible. It follows that intuitions about what 

‘sounds right’ are closely attuned to experience of 

input and how that has affected the specification of 

looseness for a given lexical configuration.  

Literate language users will encounter a broader 

range of messages, many decontextualised and ex-

plicit. As outlined earlier, explicitness is achieved by 

virtue of predictability and system. Learning to be 

literate is, as any teacher will verify, much more than 

learning to recognise and form letters on the page. It 

entails the mastery of the manipulation of language in 

the service of explicitness. What we read counts as 

input, and the desire to read and understand changes 

the ‘needs’ dimension of needs only analysis. We 

need to analyse more in order to cope with the new 

ideas and structures we encounter, and this influences 

what we know of the language and what we can do 

with it. In addition, general western-style education 

will invite us to perceive the whole as a product of its 

parts, further influencing our belief that the way to 

master language is to master its smallest components. 

In adult language learners, this compulsion is, I have 

elsewhere concluded, virtually irresistible, even 

where it specifically interferes with effective com-

munication (Wray 2004). In contrast, NOA predicts 

                                                 
3 NOA explains why our language use is different from our lin-

guistic insight. The former is subject to NOA, while the latter can 

be marshalled to judgements about what is logically possible too. 

NOA can also explain why our judgements about what words 

mean and what they can combine with do not match how we use 

them (see Wray 2002a: 276-7). 

that children, being preliterate and uneducated, will 

overlook even quite explicit linguistic regularities, if 

those patterns do not map onto something they need 

for the extraction of meaning. In line with this predic-

tion, Bergen (2001) found that child native speakers 

of Esperanto introduced irregularities into the per-

fectly regular system. This is something that would 

not be predicted by a model of language acquisition 

that entailed the principled pursuit of fully systematic 

patterns (see Wray & Grace forthcoming for a full 

exploration of these issues). 

 

4.3 Cultural inheritance  

 
Needs only analysis naturally entails that we can in-

herit linguistic material that we have not ourselves 

analysed. This is comparable to being able to drive a 

car that you couldn’t build or fix, though you might 

be able to dabble with more or fewer components, 

such as filling up the water reservoir, putting air in 

the tyres, replacing a light bulb, or changing the 

spark plugs. The analogy is useful here, since our 

ability to do such maintenance jobs on our cars is 

also determined by need. Leaving aside going to car 

maintenance classes or training as a mechanic – the 

equivalent of taking language classes in school – one 

will tend not learn how to change the plugs until the 

plugs need changing, and only then if there is no al-

ternative to doing it oneself. In the same way, the 

extent to which we manipulate language depends on 

the situations we find ourselves in, and what the al-

ternatives are. In ordinary educational settings we 

may learn to manipulate the language sufficiently to 

recognise and command different styles for different 

purposes. In a poetry class we would learn to analyse 

and create novel formulations that push at the 

boundaries of customary semantic (and in some cases 

grammatical) practice. A professional writer would 

learn to hone text to create subtle effects. And, at the 

most extreme end, someone who does cryptic cross-

words crosses the boundary into the bizarre mis-

analysis of what appear to be normal linguistic for-

mulations. This would be the equivalent of melting 

down a car tyre to extract the chemical components, 

perhaps. 

That we can also duck out of analysis if the op-

portunity exists is exemplified by Rehbein’s (1987) 

observation that Turkish guest workers in Germany 

did not raise their linguistic skills to meet their com-

municative need, but rather curtailed their communi-

cative need (by avoiding certain situations) to match 

their existing linguistic skills. Many more people 

demonstrate the same choice when, on holiday in a 

foreign country, they elect self-service shopping over 

counter- or market-stall transactions. 

One particular consequence of NOA is of signifi-

cance here. It relates to the potential for the inherited 
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language to carry material that is not – and in due 

course could not come – under the control of its cur-

rent users. In what we might term the ‘local’ conse-

quence, an originally regular formulation will, if not 

subject to paradigmatic variation in the input – and 

this might be for no other reason than that the mes-

sages expressed by that paradigmatic variation are 

never needed – fail to be analysed. Where users do 

not activate the compositional structure of a word-

string, they will be less likely to update it in the light 

of diachronic or other language change, or to correct 

phonologically conditioned errors. Additionally, 

there may be semantic drift as the meaning is no 

longer grounded through its component parts. Thus, 

over time, idiomatic expressions can become 

stranded as fossils, maintaining lexical and/or gram-

matical forms that are no longer active in the lan-

guage (e.g. curry favour; rather thee than me; direc-

tor general), or phonological indeterminacy (e.g. 

streaks/streets ahead; off his own back/bat). The 

more irregular an item becomes, the more it resists 

analysis, until the individual encountering it has no 

choice but to accept it holistically and assign a global 

meaning to it (e.g. by and large). 

 

4.4. Corollaries for modelling language 

evolution 

 
From this local consequence, longer-term scenarios 

become logically possible, and these have a direct 

bearing in how language processing (in evolution or 

acquisition) is modelled. For clarity, it must be noted 

that while NOA is proposed to be an identical proc-

ess in both the phylogenetic and ontogenetic acquisi-

tion of language, there is, of course a key difference, 

in that children apply NOA to input deriving from an 

existing linguistic system (albeit not a fully specified 

one), while language itself either emerged spontane-

ously, or evolved from something that was not itself 

language. The mechanisms by which language is 

acquired by the individual have been adequately cov-

ered above, so we shall focus now on NOA in lan-

guage evolution. 

One scenario for how irregularities arise under a 

rule-based system requires us to envisage some par-

ent language starting out perfectly formed, with no 

irregularities. Although implausible in all but certain 

kinds of catastrophic account, this scenario is worth 

briefly considering because a good test of NOA 

would be the modelling of its effects on regular ini-

tial input. In models of linguistic knowledge that as-

sume humans to seek a fully specified grammar that 

will work optimally on fully regular input, it is diffi-

cult to explain why, if a language was, at some point 

in the past, fully regular, it should ever have ceased 

to be so. In contrast, as demonstrated in sections 4.2 

and 4.3 above, under NOA irregularity is predicted to 

emerge, even if the starting place is one of perfect 

regularity (Bergen 2001).  

However, there may never have been perfect 

regularity from which human languages have strayed. 

An alternative scenario is that language has always 

been irregular, either entirely or at least at the edges. 

Various explanations might be offered for this, in-

cluding some vagary in the fundamental operations 

of the human mind on linguistic material, and the 

accumulation of complexity under the gradual emer-

gence of fully formed language out of precursor sys-

tems. NOA is consistent with all such scenarios, but 

also with one in which the building blocks of the 

languages we manipulate today are the – albeit much 

changed – descendents of forms extracted through 

post hoc rationalisation from a phonetically ex-

pressed holistic protolanguage (Wray 1998, 2000, 

2002b)
4
.  

In this account, the emergence of language is pre-

ceded by the capacity to use ‘large words’ – that is, 

holistic sound- or gesture-strings – to express com-

mon manipulative messages. These messages might 

reasonably be envisaged to be more numerous than 

those in other animals, and to be the product of more 

intricate and controlled articulatory movements. But 

they are still holistic units associated with specific 

messages used to signal within a narrow functional 

range. Also pre-specified is semanticity, in the spe-

cific sense of a capacity to discern and interpret 

things in the world. This seems uncontroversial, since 

(a) such discernment is fundamental for survival in 

numerous species, and (b) there is no implication that 

what is discerned can be labelled, nor that individuals 

would, if they could label, share judgements about 

what to label (compare Steels & Kaplan 2002 ex-

perimenting with AIBO). The holistic units, of 

course, must have their own semantic representa-

tions, but, as with animal calls, these are grounded in 

observable action
5
 and if not so-grounded they will 

cease to be viable. This give the process of NOA, 

when it kicks in
6
, the scope to itself fuel the emer-

gence of semantic categories, based mostly on exist-

ing perceptual preferences but partly on pure chance.  

In modern first language acquisition, variation in 

the input is a product of the rule-based flexibility in a 

system that is being manipulated by those who al-

                                                 
4 The holistic protolanguage story as I have framed it to date has 

focussed on a phonetic realisation. However, as Arbib (2005) 

demonstrates, a gestured protolanguage is also plausible and, I 

think, presents no major problems to my overall thesis.  
5 Animals seem to vary in the extent to which their holistic cries 

for basic communicative functions are innate versus learned. In the 

case of the precursor of human language, the signals must, of 

course, be learned. This in itself will narrowly constrain the mes-

sages to certain kinds of groundable meanings. 
6 Kirby’s (2001) bottleneck account goes some way to providing a 

rationale for the use of NOA, though we cannot avoid the need to 

explain how our ancestors became equipped to do so, nor why they 

had not applied analysis before.  
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ready command it. As a result, the child has many 

clues about what can change and what can’t and what 

the effect is on meaning. In contrast, in the evolu-

tionary context, the dividing up of holistic forms with 

complex meanings will be down to coincidental re-

peated mappings of sub-forms and sub-meanings, 

supported by pragmatically-motivated contingencies 

such as hyper-correction and semantic fission
7
 (Wray 

1998, 2000, 2002b). 

So much for words. What of grammar, though? 

Why is language grammar the way it is? Neither 

NOA theory not the holistic protolanguage model as I 

have framed it to date directly explains why gram-

matical patterns are what they are. However, what we 

can now do is separate out the origination of a system 

from its perpetuation. NOA in child language acqui-

sition acts on an existing system. It maintains and 

perpetuates the parts that work. Anything that has no 

productivity is not analysed and so ends up on the 

irregular periphery. NOA acts, in fact, as a filter that 

ensures a good mapping between what can be said 

and what needs to be said, while maintaining the 

edge necessary to meet unexpected additional de-

mands. Since the system extrapolated by an individ-

ual on the basis of NOA is a product of (a) mapping 

the material of actual input onto the communicative 

need of the individual and (b) the principle of econ-

omy (that is the principle of linguistic analysis ac-

cording to need), it also follows that the active 

grammar can be subject to reformulation in the minds 

of individuals, something that easily accounts for 

phenomena such as grammaticalization. Because 

there is no underlying template to demand that exem-

plars of this or that be found, such changes in a lan-

guage’s make up are, indeed, much easier to account 

for under NOA than in theories that attribute to hu-

mans a fully specified linguistic system. 

This may explain how grammar is perpetuated 

and managed once it exists, but one must still ask 

how grammar arose. Once it is there, pass the parcel 

is all very well. But how did the parcel get wrapped 

up in the first place? If Newmeyer and others are 

right, we can exclude certain features of modern lan-

                                                 
7 That is, pragmatics (or expediency) might fuel an assumption that 

two not quite identical forms that apparently mean the same 

probably are supposed to be identical (hypercorrection). In another 

case, it might be concluded that two non-identical forms appar-

ently meaning the same must in fact mean different, but related 

things (semantic fission, or ‘the splitting of the semantic space’). 

The first will precipitate the fixing of form-meaning pairs while 

the latter provides an impetus for the creation of new meanings to 

match forms, e.g. hyper- and hyponyms, restricted collocations etc. 

For instance if forms X and Y are both thought to mean, say, ‘not 

fit to eat’, the context may be over-interpreted, so that X is taken to 

be the term used with food A while Y is used with food B. If A 

and B have different properties, what begins as a semantically-

neutral collocational restriction will easily lead to new nuances of 

meaning, as we see in English with rancid butter, sour milk, over-

ripe cheese. Modern examples are not an adequate parallel for ab 

initio semantic fission but they do indicate that we can handle it. 

guage grammars from consideration, because they 

are only encoded in response to later cultural condi-

tions. But whatever a child can work out in the early 

years of acquisition must surely be fundamental to 

how the human mind works, and must have played a 

role in why all human languages have turned out to 

have certain common properties. NOA in language 

evolution places the burden entirely on independently 

evolved cognitive mechanisms, exapted to find a way 

of representing not only entities, properties and ac-

tions, but also relationships between them. The NOA 

account does not require latent specific language ca-

pabilities (though it can accommodate them). All it 

needs is independently evolved mechanisms for per-

ception, thought and memory management. Whether 

such mechanisms can really account for language 

grammar is a question that many linguists who favour 

the ‘general cognitive mechanisms’ approach are 

presently engaged in answering.  

 

4.5. Nicaraguan Sign Language and NOA 

 

Since the proposed scenario considerably downplays 

the role of an underlying drive to find linguistic 

structure for its own sake, it is worth considering the 

issue of creolisation, and in particular the case of 

Nicaraguan Sign Language (NSL) (e.g. Kegl 1994; 

Senghas 1995; Senghas & Coppola 2001). A fa-

voured interpretation of the progression of NSL is 

that, as Bickerton (1988) suggests, children look for 

evidence of realisations of UG in their input, and if 

they fail to find any (as with pidgin input) they will 

impose UG, using default settings. Whilst it is still 

premature to judge whether the NSL data supports 

Bickerton’s proposal, it does seem to me that there 

are other factors involved, and that the emerging pat-

terns are, so far, equally consistent with NOA (Wade 

2004). As outlined earlier, NOA operates in response 

to communicative need. In fully formed languages 

the input of adults offers ample guidance for the child 

to establish the points of variation and the tendencies 

to fixedness that are characteristic of the language in 

use in the speech community. That is, the language 

can be relied on to furnish a means of expressing key 

concepts and relations that the human brain perceives 

and that the individual will want to use language to 

articulate. Beyond that, the child will presumably 

develop its preferences for semantic differentiation in 

tandem with the development of awareness of how its 

language varies to convey different meanings. Fur-

thermore, the child may tend to trust that it will not 

be confronted by the need to say something that the 

adults around it cannot also say – a supposition 

which if not true in the first instance will soon be-

come so. 

In the case of an emerging language, however, 

things are different. If the child is unable to access an 

effective means for expressing basic concepts and 
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relations, then either the child must remain mute (e.g. 

Schaller 1995) or it must establish a means of making 

good the shortfall of expressive material. NOA will 

be sufficient to propel the child into looking for an 

opportunity to extract manipulable parts, and rela-

tionships between them, from anything it has access 

to, be it spoken pidgin, home sign or an emerging 

language (Wade 2004). That is, communicative need 

will, if able to, drive the establishment of sufficient 

material to create exactly those meanings that are 

needed (and by default, but not design, some others).  

However, it must be recognised that the process 

of establishing a database of such manipulable forms 

and structures will certainly be influenced and pre-

cipitated by any independently developing awareness 

on the part of the child of what language has the po-

tential to do, such as would arise under exposure to 

secondary, culturally-based input – literacy, general 

education – or to a fully-fledged language. Although 

NSL evolved in the playground and school bus, it did 

so precisely because communication the classroom 

was not based around signing, but around Spanish. 

That is, we should not overlook the role that the 

classroom might have played in determining the 

needs of the children to express certain kinds of mes-

sages in certain kinds of ways. In short, it is reason-

able to conjecture that NSL has been – and continues 

to be – shaped by other kinds of input than the sign-

ing itself. The effect might be, generally, to guide the 

language towards the development of particular kinds 

of features, and/or to engage Spanish, or other lan-

guages in the environment such as ASL, as sub-

strates. 

 

5.0 Conclusion: the potential of the 

short cut approach 
 

Needs only analysis predicts that individuals might 

appear to command a range of complex linguistic 

functions while actually not having full command of 

them – though they would retain the capability to 

develop a fuller command of them should the need 

arise. Insofar as configurations can used before they 

are analysed (if they ever are), it remains possible 

that some – particularly those that require an arcane 

rule to generate them – might not be under the gen-

erative control of anyone other than linguists and 

pedants (Grace 2002a-c, 2003). This is in line with 

our undoubted ability to use foreign phrases appro-

priately without having a command of the grammar 

underlying them. However, it potentially extends 

well beyond this, to, at the extreme end, the possibil-

ity that judgements about relationships between ele-

ments (or gaps) in embedded clauses are not innately 

specified, but rather are developed in the course of 

cultural linguistic training, on the basis of institution-

alised post hoc rationalisation. 

Two key component of the NOA model can be 

separated out in the context of computational sys-

tems. The first is the handling of unanalysed chunks.  

That a surprising amount of effective communication 

can be achieved entirely formulaically has been dem-

onstrated by artificial systems such as TALK – a 

communication aid for non-speaking people (Tod-

man et al 1999a,b; Wray 2002c) and TESSA – a lim-

ited English-BSL translation system for the British 

Post Office (Wray et al 2004). Both of these are 

based on the handling of predicable, holistically ma-

terial, and each has a limited capacity to generate 

new messages, either through on-line editing (TALK) 

or partially lexicalised frames (TESSA). However, 

neither system has the second element of NOA: a 

dynamic learning component. 

NOA with the dynamic component is most 

closely exemplified in the modelling of Dominey, 

Vogt, Kirby and others. Kirby (2001) found that ho-

listic input will, when broken down, not necessarily 

resolve everything into consistent unit types or sizes. 

Islands of non-compositional material will remain. It 

might be tempting for such modellers to aim to find a 

set of parameters that removes this ‘problem’, since 

we have come to expect that full systematicity is the 

goal. But NOA suggests that this is not necessary. 

Not only does the input not need to be structured in 

order for structure to be extracted; neither does the 

output have to be fully structured for the process to 

be in some way representative of what humans do 

with language. An NOA based model will be adept at 

dealing with novel strings (albeit only after catch-up 

analysis), but, usefully, it will not overgenerate. 

Overgeneration is a consequence of over-

specification relative to the target model. It is time 

that we expected a good model of language to be able 

to simultaneously handle novelty and predict the 

shortfall between what it is theoretically possible to 

say and what we actually do say (Pawley & Syder 

1983). 

Needs only analysis offers an alternative ap-

proach, which could have far-reaching consequences 

for language-focussed AI research. NOA minimises 

unnecessary actions, but enables the system to extract 

additional components when it needs to. A system 

that is fed a plausible approximation of contextual-

ised normal human language will never need to iden-

tify the full complement of potential atomic units, 

assign them to categories and generalise about their 

potential to appear elsewhere. That is, the system will 

remain underspecified, and in that regard, unstable – 

or, to put it more positively, continually open to 

modification in response to new evidence. Such dy-

namism is attractive as a basic characteristic in a 

model of human behaviour. 

As I hope I have shown, under NOA, the model-

ling of language acquisition and language evolution 

are essentially the same thing. Ontogeny does, in this 
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case, recapitulate phylogeny (other than that in evolu-

tion there was no system to find, whereas today there 

is). Since input will vary in response to the system 

possessed by those that produce it, it follows that 

language emerged in the species somewhat more 

gradually than it emerges in the modern child. How-

ever, that might well mean a few generations rather 

than thousands, and we can still reasonably construe 

the emergence of modern human language in our 

species as a relatively swift event. Significantly, we 

are not bound to propose that language arose, and 

then everything became stable. NOA offers a plausi-

ble vehicle for the continuing directional changes that 

Newmeyer (2002) reviews. It also draws in the sec-

ondary variables of culture and social organisation, to 

also play their part in the continuing evolution of 

language. 
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