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Abstract.

First Person Shooter (FPS) games are a popular genre in the games
industry, yet Al routines used for Al controlled enemies or ’bots’ of-
ten rely on techniques that allow little to no adaptation to different
players’ play styles and that do not scale well as the complexity of
the game world increases. While previous Al research has shown
that more believable bot Al can be created through a variety of tech-
niques, much of the bot learning research has been performed offline
in training scenarios rather than in real time as the game is being
played.

A bot was developed to play matches in Unreal Tournament 2004,
using the Pogamut middleware. The project saw the development of a
decision tree structure to govern the bot’s high level decision making
processes. Memory structures were defined to allow the bot to keep
track of its experiences which, together with environmental informa-
tion, provided the knowledge basis for the bot’s decision making. A
reinforcement learning algorithm was used to provide feedback to the
bot based on the outcome of its decisions. The Al code was used in
two bots - one with an active learning mechanism, the other identical
in all aspects save a learning rate of zero - which were then tested by
playing against Al controlled opponents in a deathmatch scenario.

Results showed that the bot with learning demonstrated evidence
of planning and of reaction to the environment and developed charac-
teristic behaviour traits, thereby establishing proof of concept. Com-
parison with a non-learning bot, and performance analysis of the bot
using different learning rates, indicated that the reinforcement feed-
back mechanism played an important part. There was little perfor-
mance cost, and the bot learned to outperform the standard bots that
come with the game.

1 Introduction to FPS bots

First-person shooter (FPS) games are a popular genre of computer
games. They have players shooting other players in the virtual world,
seen in the screen as a first-person perspective. When other players
are not available, or not enough of them to make enough enemies,
the computer can play bots as Al characters.

As far back as 1999 Woodcock noted that game Al was assuming
greater importance in game development [13]. More powerful hard-
ware, even at that time, allowed more resources to be devoted to Al
— although Woodcock also acknowledges that players expect high
standards of graphics which have traditionally consumed most of the
available hardware resources.

However, while advances in graphics have been astonishing since
1999, AI has not seen a similar progress in development. Graphics
still consume the vast majority of CPU cycles, and remain a selling
point. Yet while the need for better Al is evident in many reviews,
techniques used for the non-player character (NPC) opponents or
bots have not progressed as much as graphics or physics simulations,
often leading to NPC behaviour which is predictable and unrealistic
[11].

Reasons for the lag in Al development may include the cost of
Al algorithms, and another may be the difficulty of deriving effec-
tive ones. Bots in FPS games still depend on relatively simple pro-
gram schemes, such as finite state machines, or some variant of them.
While convenient to program, and fast to execute, these techniques
can result in predictable behaviour, that does not adapt to the player.

Adaptive learning is a technique proposed by Bakkes et al [1],
where the Al agent uses existing knowledge of the world available to
it to develop a strategy in real time, allowing it to adapt to continu-
ously changing situations. They applied their technique to a bot in a
Real-Time Strategy (RTS) game, and concluded that given appropri-
ate initial knowledge the Al is able to adapt.

This paper reports an attempt to apply simple learning techniques
to FPS bots, to make them able to adapt to different opponents, and
learn how to beat them. A new bot is designed, based on existing
technology, for the game UT2004, but with the addition of a rein-
forcement learning component to modify its decision tree architec-
ture. Whether the learning algorithm can learn quickly enough to
adapt to the opponent in a reasonable time is one question; and per-
formance is another. If the new algorithms are also quick to execute,
they might form the basis of a new generation of FPS bots.

Unreal Tournament 2004 (also referred to as UT2004) is a first-
person shooter game made by Epic Games. The game has native
bots of various difficulty settings which provide opponents for play-
ers when no other human players are available. Unreal Tournament
2004 has been used in a number of research projects, such as those
carried out by van Hoorn [12] and by Esparcia-Alcazar [3].

What makes UT2004 outstanding as a research environment is
the availability of APIs and IDE plug ins through the Gamebots and
Pogamut projects, which facilitates the development of Al-controlled
agents to a great degree. Gamebots as an Al research framework was
first proposed by Addobati et al in 2001 [8] who set out to provide
a research infrastructure which combined an FPS game environment
and its dynamic characteristics with a module that allows Al agents
to be connected to a server and controlled via network messages. En-



vironmental information is sent from the Gamebots server to the bot,
while the bot’s actions are sent back.

The Gamebots framework was developed further [2], and used
with UT2004 to provide the arena for contestants in the 2008 Bot
Prize competition [6]. The software framework was developed into
Pogamut 3, which software provides a Java library, integration with
the Netbeans IDE and a number of data gathering and visualisation
tools [5]. Various sample bots are available, one of which, ’Hunter’
was used for some of the bot opponents. The Pogamut agent is cre-
ated in the Netbeans IDE and connects to the UT2004 server using
the network protocol provided by the GameBots 2004 API.

Although the game UT2004 is ten years old now, we used it as our
testbed because the Pogamut system was built to allow bot Al to be
developed experimentally with that game. This makes such research
easier to do, but it also ensures a higher degree of realism, because
the Pogamut approach means that bots are client-side to the game,
and so do not have easy access to information in the game world that
give them an unfair advantage over human players.

2 A bot that learns

The bot is programmed using the Pogamut system, which gives it ac-
cess to the same basic library functions that the other bots in Pogamut
and in UT2004 all have.

Above those functions, the structure of our bot is coded as a de-
cision tree, with three different levels. It has an upper architecture
shown in Figure 1, which incorporates a degree of learning from
experience. The three levels are where decisions are taken to select
firstly which emotion or mood (select behaviour); then which goal to
plan for, such as to attack or run away (set goal); and finally which
action to take, such as to choose a weapon (take action). These three
levels might also be thought of as levels for strategy, tactics and ac-
tion.
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Experience
Evaluate
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Take Action - Set Goal

Figure 1. Architecture of the agent

At each level, the decisions are taken depending on thresholds for
key variables, and it is these thresholds that can change with experi-
ence. The most important variable is the bot’s own threat-level, which
expresses how threatening it is to other bots. It is a function of several

basic variables (equation 1), that are available from the Pogamut pro-
gramming layer, including the bot’s own health £, its current armour
a, and its own history of kills and deaths.

threat = h/100 + a/150 + (ka—da)/25 + (ke—de)/25 (1)

The kills are the total kills of all other bots ka added to those of
the current enemy bot ke. Likewise the deaths caused by any other
bot. da, and by the enemy bot de. The factors are normalised so that
they are at comparable levels, and can each reach a maximum of
one. The maximum health in the game is 110, the maximum armour
in most circumstances is 150, and a match is complete when the first
bot reaches 25 kills, which is where the numbers n the equation come
from.

This threat level determines the behaviour (mood) of the bot,
which is the first decision the bot makes, at its top level. The mood
corresponds to the branch taken at the top of the decision tree, and
the lower tree below that correspond to goals and actions selected.
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Figure 2. Top-level behaviour selection of mood

The goals associated with these two behaviours are to score a kill
(if aggressive), or to improve strength (if cautious). See Table 1. They
will be used to evaluate the effectiveness of the bot’s decisions, and
thus learn to make better decisions in future.

Table 1. The bot’s desired outcomes for each behaviour

Behaviour  Desired outcome Goal
aggressive  score a kill KILL
cautious improve own threat level =~ STRENGTHEN

When it is cautious, then, the bot is more likely to withdraw, in or-
der to find health kits or ammunition pickups, to build up its strength
before it fights later on. When the bot is aggressive, it is more likely
in the next decision, for tactics, to go on the offensive. It will not try
to improve its own strength, but will start to hunt for an enemy to
fight, as shown in 3.

At this level of tactical planning, there are more goals available, as
shown in Table 2

The decision tree continues to lower layers where things like
weapon choice are decided, or different methods to improve strength,
whether that be to search for health or armour or ammunition, which
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Figure 3. Top-level behaviour selection of mood

Table 2. The bot’s desired outcomes for each plan

Behaviour  Desired outcome Goal

attack score a kill KILL

retreat avoid being killed NOT DIE

hunt none — form new plan when target found

improve improve own threat level STRENGTHEN

may all be found at appropriate locations. There are more than thirty
nodes in the entire decision tree.

When there is an outcome to the planning cycle, the possible val-
ues returned (see Table 3) are used in the learning algorithm.

Table 3. The outcome values for goals

Outcome Description Value
KILL bot scores a kill 1
STRENGTHEN  own threat level improved 0.5
NONE No significant change to threat level 0
WEAKEN own threat level worsened -05
DIE bot is killed -1

These reward valued then modify the decision thresholds, with a
separate learning rate for each level of the decision tree. For example,
if the bot had selected the aggressive behaviour, wanting to kill the
enemy, and it then succeeded in doing so, then its desired outcome
value (of D = 1) would exactly match the outcome achieved (A = 1),
giving a net error of zero (E = A — D = 0). On the other hand, if it
got killed itself, then the error (E = —2) would cause the behaviour
threshold to decrease, as in equation 2.

aggressive' = aggressive+ 0B x E 2)

The learning rate for behaviours is ¢ B, which might be set to 0.1
for the bot, say. When the bot starts, it may have a threshold of 0.5,
so if the first thing it tries to do is to kill the enemy, but it fails and
is itself killed, then the new threshold for aggression will be 0.5 +

0.1 x —2 = 0.3, and so the bot will be significantly more cautious in
future.

There are separate learning rates for the planning decisions, and
for the actions chosen (¢ P and oA respectively). In pilot testing of
the bot, against a version of itself that did not learn at all (with its
learning rates all set to zero), a good set of value for the three learning
rates was found tobe o B= o P =0.2 and €A = 0.15. These were the
values used for the bot in the experiments to evaluate its performance.

3 Experiment

Both the UT2004 server and the Netbeans project connecting the bot
client were run on the same computer. The Al bot was observed and
developed using two existing game levels or *maps’ of UT2004 de-
signed for the deathmatch game mode. In this game mode, a number
of players fight against each other in order to gain the highest num-
ber of kills. A kill is scored when an opponent’s health is reduced to
0, whereupon the opponent respawns. This game mode is fast paced
and provides a large number of encounter opportunities for the bot to
gain experience.

Performance analysis was done by comparing the bot’s kill and
death statistics with those of other players. The bot’s evaluations of
its own threat level was one variable logged against the encounter
index. An encounter is defined as a battle from the time when the bot
meets its opponent to the point when one of them dies. Decision out-
come was also logged against the encounter index to show how deci-
sion accuracy developed as the game progressed, with the intention
of determining whether the modification of the learning algorithm in
response to feedback produced the desired result.

As this project was intended as a proof of concept, it was expected
that while results will show a conclusive change in bot behaviour,
these changes may only become evident through statistical evalua-
tion.

The map chosen for the evaluation trials was DM-DE-OSIRIS2,
a large map with an ancient Egyptian theme. This map features a
large number of pick-ups, a complex layout, and few lifts where the
pathfinding algorithm might encounter problems, and no damage in-
flicting environments.

In order to test the Al and gather data for evaluation, two instances
of the bot are spawned in the selected map — "Dec" is the learning bot,
with non-zero learning rates, and "Cas" is an identical bot except that
its learning rates are set to zero. The bots are thus both the same to
start with, but as they play, one of them learns from its experience
and should change its behaviour.

Data are gathered for both bots in order to determine any differ-
ences in behaviour caused by the learning algorithm. The map is then
further populated with a selection of native UT2004 of varying lev-
els (e.g. "godlike’ and ’novice’) as well as instances of the "Hunter’
Pogamut bot. The range of bot opponents allowed a comparison of
Dec the bot’s performance against other standard bots, as well as
against itself in the non-learning form of Cas. The deathmatch tour-
nament was run with all the bots in the level, until both Dec and Cas
had experience at least a hundred encounters (kills or deaths).

4 Results

By the end of the tournament, Dec had had 102 encounters, and Cas
104. Some of these were "default” encounters meaning that the other
bot was not selected as a target to fight, because there were multi-
ple other bots and only one at a time can be a target. The remaining



majority of encounters were either aggressive or cautious ones, de-
pending on the behaviour that the bot chose to adopt. The two bots
Dec and Cas were clearly different, as Dec was aggressive 19 times,
and cautious much more often, at 69 times; but Cas was aggressive
46 times, and cautious only 28 times. It appears that Dec must have
learned that caution was wise in this environment, while Cas per-
sisted in rash aggression.

This appearance is borne out in the tournament results that show
which bots killed more, or died the most. See Figure 4
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Figure 4. Kills and deaths per play: worst performing bots at left

The standard bots are name GbxN, which are the ones that come
with UT2004. Stronger are the bots from the Pogamut software
framework, called RemoteM, and they kill more often than the GbxN
bots, and do not die as much. Cas and Dec are greatly different from
each other in effectiveness, with Dec learning how to kill many more
bots (24 against 6), and dies on fewer occasions (7 against 17). This is
a clear result in favour of the effectiveness of the learning algorithm,
which Dec has but Cas does not.

It is also interesting to see the performance against the other bots
in the tournament. Cas performs at a level comparable to the stan-
dard UT2004 bots, which are the weaker ones in the tournament.
Dec performs as the Pogamut bots, on the ohter hand, which are the
strongest. In fact Dec is by a small margin the strongest performer of
all.

The bot therefore has achieved a good performance. It remains to
ask how it does this; and whether the computational cost is accept-
able.

The logs of the tournament show howthe key bot variables change,
and one of them is for the engagement threshold. This threshold de-
termines the goal for the bot when it is being attacked: whether it will
fight or retreat depends on its health value being above the threshold.
The threshold is fixed at 50 for the bot Cas, and so it starts there as
well for bot Dec. As he tournament progresses though, Dec’s thresh-
old increases steadily, under the influence of the learning process. by
the end of the tournament it is over 56, meanint that it has put on
12% of its original value, making it less likely that Dec will engage
with enemies, unless its own health is high. This would have led to

Dec breaking off combat engagements earlier, and so increasing his
chances of surviving a fight, as indeed the data seems to support. The
difference in Dec’s success can thus be accounted for by learning to
raise this engagement threshold, and presumably by the other deci-
sion thresholds also changing.

Finally, the frame-rate of the system was recorded when the bots
were running as Dec or Cas in a tournament as above. It was then
recorded again with exactly the same conditions, except that both
Dec and Cas were substituted by two native GbxN bots. The Al bots
did cause a slight slow-down of the frame-rate, but it was only about
0.5%, from 90.49 frames per second, to 90.08 frames per second.

5 Related work

Other researchers have used the same software framework to develop
new Al for bots in the game UT2004. The chief efforts have been
done as part of the annual Botprize competition for video game Al
[6, 71.

Notable work in this competition includes the neural network
training for bots’ weapon selection [10]. The training algorithm was
back-propagation, and the bots were able to perform at a higher level
because of learning to make better choices of weapon.

Decision trees were used by Ferndndez Leiva et al [4], to drive
the bots’ decisions, and they were evolved to make the quality of
decisions improve over time. The aim of this research was a little
different than our own approach, in that the bots were intended to
learn to behave in ways that would be more enjoyable for the player.

Patel et al [9] evolved more intelligent bots by using a different
machine learning technique: Q-learning. They applied this to make
the bots learn how to fight better. Q-learning is typically a simpler
and more efficient algorithm than neural nets with back-propagation,
and yet the bots’ performance was still improved by it. This was
partly because Patel et al limited the operation of the learning al-
gorithm to small parts of the bots” behaviour, rather than letting it
operate over the whole behaviour repertoire in one scope. They chose
Q-learning over reinforcement learning because of a concern that re-
inforcement learning would be overwhelmed by the range of possi-
bilities.

Our research reported here was intended to improve the perfor-
mance of the bots in the game, in terms of score, survival and win-
ning. These other researchers also took the view, as did we, that the
commercial bots in the game were conventionally programmed as
specially crafted code directly written by programmers themselves.
They investigated ways to help automate the process by giving the
bots some kind of learning. Our own approach has been similar, in
that we limited the scope of learning to three small points (includ-
ing weapon selection), as layers of a decision tree; but we did use a
simple reinforcement learning scheme. However we found that the
learning was not overwhelmed, and the bots were able to perform at
a fairly high level, with only a small cost in computation time.

6 Conclusion

Al bots in FPS games can be made to learn, and as the experiment
shows their performance can then improve significantly. The learning
bot here became the best performer, compared with native UT2004
bots and with other Pogamut bots that were specially coded. This
comparison should be cautious, however. UT2004 bots are intended
to be fun to play against, and not necessarily to be high performers.
Nevertheless it seems that it is quite feasible to make even the stan-
dard FPS style of bot or non-player character perform at a high level,



or otherwise adjust its play to the circumstances of the level, and es-
pecially of other players. The performance of the learning scheme,
using reinforcement learning over a decision tree, was good, cost-
ing only a little extra computation time, and allowing the game to
maintain almost the same frame-rate as it achieved with the learning
algorithm turned off. However this was only a comparison between
the algorithm with and without learning, and not a fuller evaluation
that compared the bots with the other bots in the game. Such a com-
parison could need a more involved evaluation scheme because the
bots would behave in quite different ways.

It is possible that similar techniques as ours could be used to make
a bot adapt to players in ways that make for a fun opponent rather
than an overpowering one; although we did not attempt to do that.

The techniques were not very difficult to program, using a decision
tree together with a learning function that adapts its threshold values,
simultaneously at multiple layers. This is a generalisable technique,
and suggests that the evolution of FPS bots is not over yet. The code
does not take a lot of computer power either, which is often a problem
with Al in games. We conclude that giving learning algorithms for
FPS bots, and probably other kinds of Al non-player character in
games, is a promising line of research.
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