
Directional Arc Pruning in BLJPS Version 5
? 1

Abstract. Improving search speed is critical for many areas, such as
game AI and robotics. This paper presents substantial improvements
on the Boundary Lookup Jump Point Search (BLJPS) algorithm. The
paper presents increased utilization of pre-processing time and mem-
ory to increase search speed. We present an overview of the over-
all algorithm and details of the pruning mechanism. Performance of
variants of this algorithm are evaluated.

A comparison with a node pruning algorithm is also presented.
The paper shows the given approach out performs the node pruning
approach in three out of four cases.

1 Introduction
Many path finding algorithms currently exist that are capable of
searching grid space [2, 6, 10]. The goal of these algorithms is gen-
erally to search for an optimal path between two points on a map.
Pathfinding is used within many applications such as game AI and
robotics. When such applications can rely on lower search times they
become more responsive and can further utilise the saved CPU over-
head for their own purposes.

However, this speedup of search time generally comes at the cost
of pre-processing time, memory and storage space. Such as Com-
pressed Path Databases (CPD) [2, 3] which takes hours to pre-
process maps and takes gigabytes of storage to perform extremely
fast queries. However, because of the large amount of memory and
storage requirements these algorithms are not well suited for mobile
devices and certain applications. These requirements increase sub-
stantially when multiple maps are required and/or they consist of a
high level of detail.

The swamps algorithm identifies areas that paths are unlikely to
travel through, and speeds up run time searches by ignoring these
areas [7, 8]. Hierarchical approaches such as [4] trade off path op-
timality in return for speed by pre-processing the environment into
hierarchical regions and interconnecting paths.

Other algorithms such as BLJPS [10] and SubGoal [11] do very
well within a smaller memory, storage and pre-processing footprint.
SubGoal has been shown to be very efficient at pruning a maps nodes
to improve search speed.

With this design in mind we present an arc pruning algorithm de-
signed to exploit the direction expanding nature of BLJPS. We show
how such an approach can achieve higher search speeds with a trade-
off on memory and pre-processing time. Our results show higher
search speeds for this approach named BLJPS5 and it has superior
search speeds on three out of four map datasets relative to SubGoal
Optimal (2013).

Section 3 gives a brief description of the variants of the BLJPS al-
gorithm, and how they achieve greater search speeds relative to their
predesessor. Note that each version is built on the previous version

1 ?, ?, email: ? @?.edu

Figure 1. Forced Neighbours. White cells (Natural Neighbours). Grey cells
(Culled nodes). Black cells (Blocked). Striped cells (Forced Neighbours).

so a steady increase in search speed is found with increasing cost of
memory and pre-processing time.

2 Jump Point Search (JPS)
Jump Point Search (JPS) [6] is a path finding approach that achieves
excellent speedup results without pre-processing the environment.
JPS expands only certain nodes called jump points during searches,
drastically reducing the cost of the search. JPS is a path finding algo-
rithm that exploits path symmetry in uniform-cost grid maps in order
to prune search paths at runtime. It returns optimal paths significantly
faster than A* search [5].

JPS starts by considering all neighbouring nodes from the starting
point. If JPS identifies a neighbour in a particular direction as the start
of a possible path, it continues to extend that path in that direction
until it is blocked by an obstacle or identifies a jump point. If a path
is blocked, then all nodes along that expansion direction are pruned
from further consideration.

While JPS is extending a path in a particular direction, it identifies
a set of natural neighbours for a node under evaluation. A natural
neighbour is defined by the direction of expansion. Expansions in
a cardinal direction define their natural neighbour as the next node
in the same direction (The Eastern natural neighbour is to the East).
When expansion is diagonal, the set of natural neighbours includes
only 3 nodes: the next node along the diagonal of the expansion, and
the next vertical and horizontal nodes, also in the direction of expan-
sion. Nodes are expanded in diagonal directions after considering the
vertical and horizontal expansions until they are either blocked or a
forced neighbour is found. A forced neighbour is identified when a
neighbouring cell is blocked, which allows for a change of expanding
direction that is not within the set of natural neighbours (see exam-
ples of Figure 1). If a forced neighbour is found then the node is
identified as a jump point. This point represents the first node in a
particular search direction from the original node that must consider
expanding in other directions. [6].

Figures within figure 1 show how natural and forced neighbours
are evaluated given the direction of travel (Diagram modified from



Table 1. Maps used in experiments. DAO maps vary in size, ranging from the smallest and largest map sizes given. Each map is associated with a varying
number of paths, the average for each map set is given.

Map Number of Maps Map Size Average Number of paths per map
Baldur’s Gate (BG) 75 512x512 1242

Dragon Age Origins (DAO) 156 Smallest:28x22 Largest:104x1260 1022
Rooms (Rooms) 10 512x512 1928

Adaptive Depth (AD) 12 100x100 1000

[6]). Forced neighbours are striped cells, natural neighbours are clear
white cells and blocked cells are black. All the grey cells represent
nodes culled from search. Figure 1(a) shows that with no blocked
cells then only the natural neighbour is expanded (East to 5). Figure
1(b) shows that a blocked cell to the North creates a forced neighbour
at (North-East 3) in addition to the natural neighbour. Figure 1(c)
demonstrates that diagonal directions have 3 natural neighbours, 1
diagonal and 2 respective cardinal (NE 3, North 2 and East 5). Figure
1(d) demonstrates that a forced node exists at (NW 1) in addition
to its natural neighbours. These cases are symmetrical and can be
rotated/flipped to generalize to all local scenarios.

3 Boundary Lookup Jump Point Search (BLJPS)
Improvement over Jump Point Search (JPS) [6]. Instead of iteratively
searching over grid locations it pre-processes the horizontal and ver-
tical axis into boundary lists to be accessed directly. Thus each diag-
onal step requires three axis look ups on the horizontal and vertical
axis. Further details on BLJPS can be found at [10].

3.1 BLJPS2, BLJPS3 and BLJPS4
BLJPS2 improves speeds by storing the jump point locations along
the cardinal directions. This modification reduces the number of ver-
tical and horizontal axis lookups to 1 each per diagonal step.

BLJPS3 stores the locations of jump points along the diagonal di-
rections. Thus it requires only a single lookup for a diagonal expan-
sion, once again moving away from iterative stepping.

BLJPS4 creates a node corresponding to each forced neighbour on
the map. Each of these nodes stores a list of nodes it is connected to
in each possible direction of travel which are referred to as arcs. A
search starts by adding all the relevant forced neighbours reachable
from the start point to an open list. As each node is popped from
the list it performs a quick check to determine if that node can move
directly to the destination position, if it can be then the solution has
been found. Otherwise it expands the node’s arcs in the direction of
travel and iterates until the open list is empty or the solution is found.

3.2 BLJPS5
This algorithm creates a backwards lookup table for incoming arcs
from jump points. It also prunes arcs between nodes in a process that
will be described below. When a search is initiated all the start nodes
are added, like BLJPS4, but in addition all the identified end nodes
are flagged. Now as the search takes place a trivial check against a
node’s flagged state will determine if a goal state has been reached.
Thus this approach incurs a one off cost of determining the end nodes
at the start of the search relative to BLJPS4 that incurs this cost at
check every node expansion (thus causing it to run slower on longer
more complex paths but faster on simpler paths).

BLJPS5 prunes arcs between nodes, which works in contrast to
SubGoal’s approach of pruning entire nodes from the graph. BLJPS5

uses two copies of the arcs for this pruning method. One acts as a read
only list of all the original arcs while the second is modified during
the following process. For each arc in the read only list a series of
possible following arcs are identified. Where an arc comes to a node
it is expanded by its natural and forced neighbour directions. If the
originating node of the tested arc can connect to all the identified
outgoing arcs, the arc is pruned and all the identified outgoing arcs
take its place on the originating node. Thus in essence skipping the
tested node and moving directly onto the next nodes during a search.

All nodes that have an arc pruned have the arc added to an incom-
ing pruned arc list. This is used when flagging end nodes at the start
of a search. Due to the pruning process an end node may have been
pruned from the graph in a given direction. Therefore all directly
connected end nodes are expanded in forced neighbour directions
adding nodes from the incoming pruned arc list. So search can find
an end-node whether it was pruned or not. Due to this process, many
unnecessary nodes are skipped during search and determining if the
destination has been reached is simplified to a flag check.

4 Experimental Approach
The experiments evaluate the improvements of the BLJPS algorithms
and secondarily evaluates the BLJPS5 arc pruning algorithm against
SubGoal. SubGoal Optimal (2013) [11] was chosen because of its
quick search times and relatively small memory and pre-processing
imprints using a node pruning approach. SubGoal’s source was taken
from [1]. The experiments of JPS [6] were replicated, using the freely
distributed datasets from the Grid-Based Path Planning Competition
(GPPC) [1]. The source code for these experiments is publicly avail-
able on GitHub [9]. Each map includes a set of predefined problem
paths that are used to benchmark the algorithms.

The experiments were conducted using diagonal unblocked mode
so SubGoal and BLJPS variants would have comparable results. This
mode differs from the earlier explanation of JPS where in both car-
dinal directions associated with a diagonal step must be obstacle free
to be legal. This unblocked mode is used in the GPPC [1] but differs
from the original implementation of JPS [6].

Table 1 lists the maps used in the experiments. They were consis-
tent in size except for the DAO maps which varied, ranging between
the specified smallest and largest sizes. Each map was associated
with a varying number of paths. The average number of paths for
each map set is listed.

1. Adaptive Depth (AD): Relatively small and have relatively few
obstacles.

2. The Baldur’s Gate (BG): Large size and generally have very sim-
ple layouts with large open areas.

3. The Dragon Age Origins (DAO): Diverse in size and obstacle den-
sity.

4. The Rooms maps are large (Rooms): Extremely high density of
obstacles.

The performance of BLJPS, BLJPS2, BLJPS3, BLJPS4, BLJPS5 and



Table 2. Experimental Results: BLJPS5 vs SubGoal.

Map Algorithm Total Average Average Average
Search Time(ms) Pre-Processing Time(ms) Starting Memory(Kb) Max Memory(Kb)

AD BLJPS5 109 16 553 583
SubGoal 119 9.2 157 186

BG BLJPS5 591 99 2660 2703
SubGoal 2174 178 1347 1422

DAO BLJPS5 6685 47 3518 3668
SubGoal 10378 142 1741 1858

Rooms BLJPS5 8737 415 16330 17955
SubGoal 5596 42 2562 2863

SubGoal were evaluated. On each map, all paths provided in the data
set were executed giving paths of varying lengths. Optimal paths be-
tween start and end points were then generated repeatedly until each
had been calculated at least 100 times or the run had taken at least
5ms, whichever took longer. This method allowed for accurate eval-
uation of the time taken to find a path. Taking into account finding
short paths where 100 solutions were processed in too small a time
window to accurately measure were repeated until 5ms passed. In
contrast long paths that took an extended time to process (particu-
larly in the case of the A* algorithm) were capped after 100 repeti-
tions. The time taken to find a path was then calculated as the average
search time over the number of iterations.

The time spent pre-processing the maps, was measured, the mem-
ory usage after completing pre-processing and the maximum mem-
ory used after completing all searches was recorded. These results
are summarized in Tables 2 and 3.

5 Results and Discussion
A brief summary of the Tables 2 and 3 are as follows:

1. BLJPS5 has a faster search time than SubGoal in 3 out of 4 cases.
2. BLJPS5 is faster than BLJPS.
3. BLJPS5 occasionally pre-processes maps faster than SubGoal.
4. BLJPS5 is more memory intensive than SubGoal.

The results from Table 2 show an overall faster search speed in the
maps AD, BG and DAO in favour of BLJPS5. It however does not
perform as well as SubGoal on the obstacle dense map set of Rooms.

Table 3 shows BLJPS5 was substantially superior in search speed
relative to BLJPS. It is worth remarking that BLJPS4 outperformed
BLJPS5 on the maps AD and BG due to the relatively simple paths on
these maps that didn’t require the computational overhead of BLJPS5
(see section BLJPS5). On more complex maps, DAO and Rooms, the
performance improvement is clearly seen.

Figure 2 shows a detailed graph of the performance of each algo-
rithm relative to A* with respect to path lengths. The large spikes
in performance for BLJPS3, 4 and 5 at shorter distances represent
paths that pass around only a single corner. A function finds and
returns these paths before a search takes place. The check is inex-
pensive and substantially speeds up searches that only have a sin-
gle corner between start and end points. This performance gain was
found throughout the BG testing maps, which resulted in the rela-
tively quick search times.

BLJPS5 incurs a larger memory footprint relative to SubGoal but
remains within a 20mb boundary, which is generally adequate for
most applications. In respect to pre-processing time, SubGoal pre-
processed faster within Rooms and AD maps, while BLJPS5 pre-

processed the maps BG and DAO quicker. However, as the average
pre-processing time for all cases is under 0.5 seconds it is again us-
able for most applications.

6 Conclusion and Further Work
The presented algorithm BLJPS5 substantially increased search
speed and was able to outperform SubGoal in three out of four data
sets. Future work may look to extending the BLJPS5 algorithm to
further prune connections between forced neighbours. Further effort
could also be made into reducing the search speed on obstacle dense
maps such as the Rooms data set.

REFERENCES
[1] ‘Grid-based path planning competition’. http://movingai.com/GPPC.
[2] Adi Botea, ‘Ultra-fast optimal pathfinding without runtime search.’, in

Artificial Intelligence and Interactive Digital Entertainment (AIIDE),
(2011).

[3] Adi Botea, ‘Fast, optimal pathfinding with compressed path databases.’,
in Symposium on Combinatorial Search (SOCS), (2012).

[4] Adi Botea, Martin Müller, and Jonathan Schaeffer, ‘Near optimal hi-
erarchical path-finding’, Journal of Game Development, 1(1), 7–28,
(2004).

[5] Xiao Cui and Hao Shi, ‘A*-based pathfinding in modern computer
games’, International Journal of Computer Science and Network Se-
curity, 11(1), 125–130, (2011).

[6] Daniel Damir Harabor and Alban Grastien, ‘Online graph pruning for
pathfinding on grid maps.’, in Association for the Advancement of Arti-
ficial Intelligence (AAAI), (2011).

[7] Nir Pochter, Aviv Zohar, and Jeffrey S Rosenschein, ‘Using swamps to
improve optimal pathfinding’, in Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 2,
pp. 1163–1164. International Foundation for Autonomous Agents and
Multiagent Systems, (2009).

[8] Nir Pochter, Aviv Zohar, Jeffrey S Rosenschein, and Ariel Felner,
‘Search space reduction using swamp hierarchies’, in Third Annual
Symposium on Combinatorial Search, (2010).

[9] Jason Traish, ‘Bljps source code’. https://github.com/narsue/BLJPS5,
(2015).

[10] Jason Traish, James Tulip, and Wayne Moore, ‘Optimization using
boundary lookup jump point search’, IEEE Transactions on Compu-
tational Intelligence and AI in Games, PP(99), 1–1, (2015).

[11] Tansel Uras, Sven Koenig, and Carlos Hernández, ‘Subgoal graphs for
optimal pathfinding in eight-neighbor grids.’, in International Confer-
ence on Automated Planning and Scheduling (ICAPS), (2013).



Table 3. Experimental Results: BLJPS variations. Bold represents the best result.

Map Algorithm Total Average Average Average
Search Time(ms) Pre-Processing Time(ms) Starting Memory(Kb) Max Memory(Kb)

AD BLJPS 546 0.25 8 36
BLJPS2 331 0.67 20 56
BLJPS3 225 7.3 174 209
BLJPS4 79 12 280 316
BLJPS5 109 16 553 583

BG BLJPS 8270 3.4 60 110
BLJPS2 4371 4.6 127 177
BLJPS3 2030 51 556 610
BLJPS4 569 90 1766 1800
BLJPS5 591 99 2660 2703

DAO BLJPS 78743 1.8 49 124
BLJPS2 51927 2.9 119 193
BLJPS3 41753 21 665 745
BLJPS4 9839 34 2304 2342
BLJPS5 6685 47 3518 3668

Rooms BLJPS 105053 5.6 365 572
BLJPS2 64421 38 605.2 807
BLJPS3 61036 194 7466 7684
BLJPS4 10335 314 11105 11219
BLJPS5 8737 415 16330 17955

Figure 2. DAO Experiment: Average speedup relative to A* against path length.


