
A Generative Grammar Approach for Action-Adventure
Map Generation in The Legend of Zelda

Becky Lavender1 and Tommy Thompson2

Abstract. In this paper we present an approach towards procedu-
ral generation of maps for 2D action-adventure games akin to those
found within the classic Nintendo series The Legend of Zelda. Maps
are generated through courtesy of a two-phase constructive approach,
expanding upon existing research in the composition of missions and
spaces for the action-adventure genre. Having completed the‘mission
graph’ in the first phase, we are reliant upon a constraint-based ap-
proach to build geometry that faithfully represents the original mis-
sion structure. We investigate the effectiveness of this approach and
the playable levels it can generate by creating dungeons within the
open source game The Legend of Zelda: The Mystery of the Solarus.

1 Introduction

Procedural content generation (PCG) is a popular problem area in
both games research and development given the opportunities present
in crafting artefacts for player consumption. However, there are risks
when building in-game spaces such as levels or maps that require
emphasis to be placed not just on consistency and validity of the con-
tent, but the context which dictates players’ exploration and sense of
progression. The generation of ‘quests’ - stories or structure that dic-
tate context - alongside maps has been suggested as means to realise
the broader goals of PCG research and expand the potential of the
field [24].

In this paper we summarise a body of work aimed at using the
aforementioned two-tier approach to overcome problems inherent
in action-adventure dungeon generation. By adopting the model of
mission structure as distinct from the physical interpretation of the
in-game world, we can build each component independently of one
another. The contributions of this paper are aimed at highlighting
the effectiveness of decoupling the challenge and macro-level puzzle
structure challenges players face from the topology of the in-game
environment.

We begin this paper with a short introduction to the action-
adventure genre and the Zelda series in particular in section 2. This
is followed by an investigation of existing research in the area of
action-adventure games and the challenge of procedural generation
for connected gameplay spaces such as dungeons in section 3. We
provide an overview of our two-phase generative system in section 4
followed by an analysis of its effectiveness against a series of metrics
in section 5, concluding with some final thoughts on the current state
of the work and future avenues for this research.

1 University of Derby, Derby, UK, email: becky@beckylavender.co.uk
2 Anglia Ruskin University, Cambridge, UK, email:

tommy@t2thompson.com

Figure 1: A dungeon room in The Legend of Zelda: A Link to the
Past [15], where a special item can be found in the treasure chest.

2 The Legend of Zelda & Action-Adventure Games

The action-adventure (AA) genre is distinct in the taxonomy of video
game genres given that it is typified by use of mechanics and tropes
typically found in action games in addition to adventure titles. The
core underpinning of AA games is adopted from adventure games
such as Zork [9] and The Secret of Monkey Island [12] in which play-
ers must explore carefully crafted environments, typically requiring
the solving of puzzles in order to progress to new areas. However,
these mechanics are supplemented by the use of combat mechanics
from action games; providing the player with means to attack en-
emies in the game world as well as finite resources to ensure their
own survival. This typically requires dynamic and responsive control
of the player’s avatar in order to maintain a smooth gameplay expe-
rience. Despite the combination of elements from these two subsets,
the AA genre is arguably one of the broadest found in all of gaming
given the range of possible games that can be achieved by merging
these genres. The AA genre is popularised in modern gaming cour-
tesy of titles such as Tomb Raider [4], Resident Evil [3] and God of
War [19]. However, as a genre in itself, it has been largely established
by tropes and mechanics found within The Legend of Zelda [18].

The Legend of Zelda is a series of games developed by Nintendo
starting with the first title released in 1986. The series places empha-
sis on players’ progression through several enclosed areas or ‘dun-
geons’: constrained groupings of rooms and corridors comprised of



Figure 2: The topology of the first dungeon players visit in The Leg-
end of Zelda. The player enters from the central square in the bottom
row and must progress in a non-linear fashion to the top-right corner.

monsters and treasures [7]. As shown in figure 2, dungeons in Zelda
are typically structured into rooms, with specific patterns of game-
play using locked doors, switches, keys and traps. A full list of
dungeon-specific tropes that the Zelda series adopts can be found
in [5]. Each dungeon contains three key elements that are now estab-
lished series tropes:

A Special Item: A hidden treasure is guaranteed to be found within
each dungeon that provides the player with new-found agency.

Item-Specific Puzzles: Challenges hidden throughout the dungeon
that can only be solved after the player has found the special item.

Boss Monster: A dungeon can only be completed once the boss
monster has been defeated. This monster will typically be found
in a locked room requiring a specific ‘boss key’ to unlock it.

3 Related Work

As research in procedural content generation has continued to grow,
the range of topics it aims to address has gradually diversified. While
level generation is not a new topic - with arguably the research based
upon the 2D platforming game Super Mario Bros. [17] being the
most widely recognised [20] - research into AA games and specifi-
cally dungeons has only recently gained traction. As detailed in sec-
tion 2, AA games carry their own qualities that would distinguish
them from 2D platforming games. As such, we focus our review
solely on methods relevant to the task at hand.

3.1 Grammar-Driven Generation

One means by which to achieve procedural content while adhering to
structures or constraints can be found in the use of generative gram-
mars. Grammars allow for the use of a structured set of symbols with
rules that not only dictate how the grammar can be adopted, but also
enforce constraints to ensure consistency. This approach has proven
popular in the field of narrative generation, with notable works such
as Facade [13] and Prom Week [14] and parallel research in the cre-
ation of quest storylines detailed in [10].

Our focus is on work detailed in [6], in which the author identified
that AA levels can be divided into two distinct structures: the ‘map’

Figure 3: Dormans mission and space diagrams of the ‘Forest Tem-
ple’ in The Legend of Zelda: Twilight Princess from [6].

and the ‘mission’. The former is the geometric shape and topol-
ogy of the gameplay space whereas the latter represents the ordered
sequence of tasks the player must complete within said space. As
shown in figure 3, the mission structure can be modelled as a graph.
While this particular mission is derived from assessing a specific lo-
cation from The Legend of Zelda: Twilight Princess [16], it is not
dependent on the map from which it was derived; allowing for the
creation of linear or non-linear missions to be subsequently trans-
posed onto linear or non-linear maps. An example of how a high-
level dungeon structure could be generated is given in [6], with rules
(figure 4a) and an alphabet (figure 4a).

The final alphabet for the mission grammar, shown in figure 5,
combined with the series of rules for transforming non-terminal
(upper-case) literals to terminal (lower-case) in [6] allows for a range
of mission graphs to be established. This work follows with a sub-
sequent explanation of a shape grammar for creation of maps, using
the grammar in figure 6 as a basic example. Figure 6a shows an al-
phabet consisting of an unresolved connection, a door, and a wall re-
spectively. Figure 6b describes rules which determine what any un-
resolved connection can be replaced with, and figure 6c displays a
possible map result which could be generated using this grammar.
Dormans later applied these maps to a 2D game [1], but not with the
typical tiled room layout found in The Legend of Zelda.

3.2 Dungeon Generation
The generation of dungeons is one of the first examples of procedural
content generation in commercial games with Rogue [25]. Since then
algorithmic construction of dungeons has continued to be adopted in
modern game development such as Diablo III [2]. However from
an academic perspective, research in dungeons is still in its rela-
tive infancy. A notable contribution is the MiniDungeons domain,
originally designed for modelling decision-making habits of play-
ers [8]. It has subsequently been adopted as a test-bed for generative
approaches in dungeon creation [11]. However, recent research in es-
tablishing core design patterns of dungeon construction is aimed at
fostering further research in this area [5].

At present, procedural generation research of action-adventure
maps that adhere to the design tropes of The Legend of Zelda, is still
relatively unexplored academically. To-date, the sole other body of
research in this area is focussed on the adoption of bayesian net-
works aimed at generalising level topology structure having been fed



(a) Rules. (b) Results.

Figure 4: Dormans’ high-level example of how a grammar could be used to generate dungeons. [6]

Figure 5: The mission grammar detailed in [6].

Figure 6: The shape grammar detailed in [6].

existing Zelda levels [23].

4 System Design
In this section we give a brief overview of the PCG system adopted
for this experiment. We begin by replicating the mission and space
grammars denoted in [6] in order to build our generator. This
proves ideal given that these grammars are designed to reflect tra-
ditional Zelda dungeon structures. However, several issues were en-
countered when attempting to transcribe the space grammar ap-
proach detailed in [6] directly to map generation for a 2D tiled game.

4.1 Mission Generation
Here, Dormans’ described method of using graph grammars to create
dungeon missions was followed exactly. A graph with nodes repre-
senting rooms of different types (eg. entrance, key, lock) was iterated
on according to the rules prescribed in [6], with sections of the graph
being swapped out accordingly. A variety of mission graphs were
produced, such as that shown in figure 7.

Figure 7: A completed mission graph.

4.2 Map Generation
Here, the general shape grammar approach described in [6] was used
as the basis to lay rooms out in a grid, similar to the dungeons in The
Legend of Zelda: A Link to the Past [15]. Each room type as described
from the original mission grammar has one or more corresponding
room templates built within the Solarus engine. When generating a



(a) Test Item (ti): Bombs are required to reach cer-
tain items as well as use secret doors.

(b) Item Quest (iq): Treasure room with a specific
dungeon item inside.

(c) Multi Lock (lm) Room. Four monsters (keys)
must be killed in the dungeon for the lamps (locks)
to light and the door to open.

Figure 8: Interpretations of specific mission items from figure 5 to room templates that are used as part of the generated maps.

specific room type one of these rooms would be selected. (See figure
8). The maps produced were applied to Mystery of Solarus [22] : an
open-source game designed to replicate the mechanics and aesthetic
of The Legend of Zelda: A Link to the Past [15].

Some additional constraints to Dormans’ original approach were
needed for this particular generation approach to work, and were
added to the dungeon generator. These included:

Compromised Structure: Some rooms need to be placed consec-
utively in a chain for mission structure to make sense. To honour
these chains while preserving the layout of keys and locks so the
map was completable, it was necessary to use a combination of
topological sort and depth-first expansion of the grammar traver-
sal when generating dungeons.

Dead Ends: When rooms were placed in a grid, a consecutive chain
of rooms might hit a dead end. Therefore, a process was imple-
mented in which the generator tested formations, reserving spots
for every room in a chain before actually placing any down.

However, our implementation still imposes some limitations. For
example, all rooms had to be of a fixed size and shape in order to
fit the generation grid. Furthermore, it was necessary to design some
rooms symmetrically, given our inability to pre-empt which direction
the player would come from or be headed to.

5 Analysis

Given the focus of this research to evaluate the feasibility of the map
and shape grammars, we elect to assess the expressive range of the
generator. This is achieved by adopting metrics discussed in [21], and
assessing the range of content that can be produced. For our dungeon
generator, we establish four key metrics:

Mission Linearity: A continuum ranging from highly-linear mis-
sions to those with a high branching factor.

Map Linearity: A continuum ranging from highly-linear maps to
those with a high branching factor.

Leniency: Scale of the danger represented to the player throughout
the map: ranging from maps with zero threat to player to maps
where each room poses a threat.

Path Redundancy: Scale measuring the number of rooms with
‘purpose’: either presenting players with reward/information or
leading them to one that does.

In accordance with the expressivity studies conducted in [21], we
provide representative samples of 1000 generations for each test. Our
tests were focussed on a series of predefined rule-sets which help
dictate how certain aspects of map design are considered in the gen-
erator. These are summarised in Table 1.

Table 1: Rule sets to control specific aspects of the mission and map
generators.

Mission Rules
Rule Set Description
Branching Mis-
sions

Favours branching rules with multiple paths of ac-
tions.

Linear Missions Favours linear rules with a single path of actions.
Long Missions Favours longer rules containing more actions.
Short Missions Favours shorter rules containing less actions.
Control Balances all parameters described above.

Map Rules
Rule Set Description
Few Exits Generates a more linear map layout: one exit rooms

are given the highest weight.
Many Exits Generates branching map layouts: 3-exit rooms are

given the highest weight.
Control Balances all parameters described above.

Mission linearity was found to be limited to central values, with
few results at the high or low end of the spectrum. This can be ex-
plained when looking at the generation rules used. For example, the
main mission flow rules dictate that some forks are mandatory, so a
completely linear mission is impossible to achieve. Leniency of mis-
sions tended towards the more difficult but this can also be explained
by the ruleset used: there were 16 hazardous room templates and only
9 safe ones.

Meanwhile, one of the most prominent biases found in map gener-
ation was high map linearity. This can be explained when analysing
the generation algorithm used. For example, even if branching rooms
with 3 exits are always chosen, its more likely that these will be
closed than successfully link to another room; either because they
were next to another wall or because they remained unconnected at
the end of the generation process. In general, our expessivity results
were successful in that appropriate patterns were seen: more linear
rulesets produced more linear results, and so on. There were some
gaps in the expressive range but this was to be expected as only one
base ruleset and alphabet were tested. Our mission generation analy-
sis suggests that gaps were due to limitations of the sample grammar,
not the generation algorithms themselves.



Figure 9: One of the 2D Histograms used to analyse the expressiv-
ity of 1000 dungeons. This graph compares mission linearity and
leniency with a normal control set of rules.

6 Conclusion

In this paper we have highlighted the use of a two-phase gener-
ative system that enables dungeon generation for action-adventure
games. This is achieved by adopting existing research detailed in [6]
where we distinguish the overall gameplay experience or mission
from the actual environment that this experience takes place within.
Ultimately, this is aimed at providing context for the players actions.
As detailed in section 5, the system maintains a reasonable expressive
range as modelled through metrics defined in [21] albeit constrained
by the rules of the grammar itself. The final maps built by the gener-
ative system are completely playable within the open-source Mystery
of the Solarus game. The given method of ensuring that a core mis-
sion or structure is retained to the gameplay experience could yield
interesting effects in other problem domains.

Given our use of the expressivity metrics detailed in [21], it would
be interesting to compare our maps against those from actual Legend
of Zelda games. While this would be relatively easy to achieve when
considering the maps themselves, this would require more effort to
develop means to reverse-engineer the missions within them: easily
a project in itself. Furthermore, at present one major limitation of our
generator is that it is reliant upon hand-crafted rooms within the So-
larus engine. It would be of interest to adopt principles from recent
analysis of design patterns in dungeons [5] and approach pattern-
driven generation to create unique permutations of rooms that ad-
here to the constraints imposed by the mission grammar. Lastly, the
current implementation of our generator is reliant upon iteration of
our own grammar/rule-driven system. This is certainly scope for the
adoption of search-based procedural content generation that adopts a
subset of these rules - not to mention the metrics employed in sec-
tion 5 to act as fitness criteria.

REFERENCES
[1] Sander Bakkes and Joris Dormans, ‘Involving player experience in

dynamically generated missions and game spaces’, in Eleventh In-
ternational Conference on Intelligent Games and Simulation (Game-
On2010), pp. 72–79, (2010).

[2] Blizzard Entertainment. Diablo III. Blizzard Entertainment, 2012.
[3] Capcom. Resident Evil. Capcom, 1996.
[4] Core Design. Tomb Raider. Eidos Interactive, 1996.

[5] Steve Dahlskog, Staffan Björk, and Julian Togelius, ‘Patterns, dungeons
and generators’, in Proceedings of the 10th International Conference on
the Foundations of Digital Games, (2015).

[6] Joris Dormans, ‘Adventures in level design: generating missions and
spaces for action adventure games’, in Proceedings of the 2010 Work-
shop on Procedural Content Generation in Games, p. 1. ACM, (2010).

[7] Gygax, Gary and Arnseon, Dave and Mentzer, Frank. Dungeons and
Dragons Set 1: Basic Rules [Role-playing Game], 1983.

[8] Christoffer Holmgård, Antonios Liapis, Julian Togelius, and Geor-
gios N. Yannakakis, ‘Generative agents for player decision modeling
in games’, in Poster Proceedings of the 9th Conference on the Founda-
tions of Digital Games, (2014).

[9] Infocom. Zork. Infocom, 1977.
[10] Boyang Li and Mark O Riedl, ‘An offline planning approach to game

plotline adaptation.’, in AIIDE, (2010).
[11] Antonios Liapis, Christoffer Holmgård, Georgios N. Yannakakis, and

Julian Togelius, ‘Procedural personas as critics for dungeon gener-
ation’, in Applications of Evolutionary Computation, volume 9028,
LNCS, Springer, (2015).

[12] Lucasfilm Games. The Secret of Monkey Island. LucasArts, 1990.
[13] Michael Mateas and Andrew Stern, ‘Façade: An experiment in building

a fully-realized interactive drama’, in Game Developers Conference,
volume 2, (2003).

[14] Joshua McCoy, Mike Treanor, Ben Samuel, Aaron A Reed, Michael
Mateas, and Noah Wardrip-Fruin, ‘Prom week: Designing past the
game/story dilemma.’, in Proceedings of the 2013 Foundation of Digi-
tal Games (FDG), pp. 94–101, (2013).

[15] Nintendo EAD. The Legend of Zelda: A Link to the Past. Nintendo,
1991.

[16] Nintendo EAD Group No. 3[a]. The Legend of Zelda: Twilight
Princess. Nintendo, 1991.

[17] Nintendo R&D 4. Super Mario Bros. Nintendo, 1985.
[18] Nintendo R&D 4. The Legend of Zelda. Nintendo, 1986.
[19] SCE Santa Monica Studio. God of War. Sony Computer Entertainment,

2005.
[20] Noor Shaker, Julian Togelius, Georgios N Yannakakis, Ben Weber,

Tomoyuki Shimizu, Tomonori Hashiyama, Nathan Sorenson, Philippe
Pasquier, Peter Mawhorter, Glen Takahashi, et al., ‘The 2010 mario ai
championship: Level generation track’, Computational Intelligence and
AI in Games, IEEE Transactions on, 3(4), 332–347, (2011).

[21] Gillian Smith and Jim Whitehead, ‘Analyzing the expressive range of
a level generator’, in Proceedings of the 2010 Workshop on Procedural
Content Generation in Games, p. 4. ACM, (2010).

[22] Solarus. Zelda mystery of solarus dx, 2008.
[23] Adam J Summerville, Morteza Behrooz, Michael Mateas, and Arnav

Jhala, ‘The learning of zelda: Data-driven learning of level topology’.
[24] Julian Togelius, Alex J Champandard, Pier Luca Lanzi, Michael

Mateas, Ana Paiva, Mike Preuss, Kenneth O Stanley, Simon M Lu-
cas, Michael Mateas, and Mike Preuss, ‘Procedural content generation:
Goals, challenges and actionable steps.’, Artificial and Computational
Intelligence in Games, 6, 61–75, (2013).

[25] Toy, Michael and Wichman, Glenn. Rogue, 1980.


