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Abstract. A significant part of the short history of social com-
puting is related with the more recent part of the history in wel-
fare economics, about the notion and the theory of the so-
called “social welfare function (SWF)”. It is intended as a 
function ranking social states as less, more, or indifferently de-
sirable, for every pair of them, with respect to individual wel-
fare measures and/or preferences.  

One of the main uses of SWF is aimed, indeed, at represent-
ing coherent patterns (effectively, structures) of collective and 
social choices/preferences as to alternative social states.  
The essential limitation of SWF’s, also when considered as a 
subclass of the wider domain of the so-called “collective 
choice rules (CCR)”, is that they are defined on finite sets, in 
the framework of an approach to the study of social and eco-
nomic systems stable at equilibrium, because originally in-
spired from Samuelson’s pioneering based on Gibbs’ statisti-
cal thermodynamics of gases. We propose in this paper an al-
ternative modelling based on the principle of dual equivalence 
algebra-coalgebra. This approach was born during the last 
twenty years from the initially independent, but now conver-
gent research programs, on one side, for the mathematical 
modelling of condensed matter thermodynamic systems, sta-
ble in far from equilibrium conditions, in the framework of 
quantum field theory. On the other side, in theoretical com-
puter science, for dynamic computation on infinite data 
stream, and for testing program security in functional pro-
gramming. In this paper, we present some previous results for 
applying fruitfully such an approach also to social computing 
of CCR’s, in the very “liquid” and complex actual social situ-
ation, where the necessity of fast and efficient computational 
models on infinite data streams is ever growing. 
Keywords: social computing, social welfare functions, collec-
tive choice rules, semantic information, quantum field theory, 
quantum mechanics, quantum computations, coalgebraic 
modal logic, local truth, category theory, concurrent computa-
tions. 

1 SOCIAL WELFARE FUNCTIONS AS COLLEC-
TIVE CHOICE FUNCTIONS 

1.1 Two main types of social welfare functions (SWF) 
Generally, in economic literature, there are two main types of 
SWF’s, as far as they are defined respectively, either on  
1. Some support (domain-codomain) of real valued econom-

ical magnitudes (cardinal numbers) for one only social 
group, or  

2. On orders, i.e., domains-codomains of rankings (ordered 
sets) of preferences, and of rankings (ordered sets) of social 
states.  
Now, when we are speaking about “orders” effectively we 

are considering a SWF like a particular type of collective (so-
cial) choice function (CCF), relating ordered sets of individual 
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preference/utilities, with ordered sets of individual social/eco-
nomical states.  

This means that, mathematically, we are moving from real 
valued (cardinal) functions, to set theoretic logic functions – 
effectively we are moving to set theoretic semantics (order the-
ory) applied to social entities, i.e., to “social computing”. The 
initial representatives of these two types of SWF theories gen-
erally quoted in literature are, respectively, “Bergson-Samuel-
son SWF” and “Arrow SWF”.  

1.2 Bergson-Samuelson SWF 
Abram Bergson first introduced in economics the SWF notion 
as real-valued differentiable functions, aimed at formally rep-
resenting “the conditions of maximum economic welfare” for 
the society as a whole. Bergson’s SWF then includes as func-
tion arguments several quantities of different commodities 
produced and consumed, and of resources, labour included [1]. 

The fundamental contribution of the 1970 Nobel Prize in 
Economics Paul Samuelson – founder of the prestigious “MIT 
School of Economics” counting among its members an im-
pressive lists of Nobel Prizes – is synthesized in what is com-
monly called the “Bergson-Samuelson SWF”. It aims at rep-
resenting (in the maximization calculus) all real-valued eco-
nomic measures of any belief system – “that of a benevolent 
despot, or a complete egotist, or ‘all men of good will’, a mis-
anthrope, the state, race, or group mind, God, etc.” – required 
to rank consistently different feasible social configurations in 
an ethical sense as "better than", "worse than", or "indifferent 
to" each other [2].   

What is essential for our aims is, anyway, that Samuelson’s 
modelling of the equilibrium stability for economic systems 
explicitly depends on Willard Gibb’s statistical mechanics in-
terpretation of thermodynamic systems, as he explained in the 
first two chapters of his masterpiece Foundations of economic 
analysis, of which eighth chapter is dedicated to welfare eco-
nomics and then to his SWF interpretation in such a framework 
[2].  

Such a presupposition is generally shared by all models of 
equilibrium stability for economic systems, Kenneth J. Ar-
row’s modelling included, even though in his approach this is 
explicitly related with Adam Smith’s classical vision of an 
economic system, as guided by an intrinsic principle of funda-
mental balance between goods and services produced and con-
sumed. Such a belief in the “Adam Smith invisible hand” is 
difficult to suppose for granted so easily today, because in a 
complex global market like ours where the “real time” infor-
mation exchanges among “virtual” and “real” economic and 
social actors make hard (effectively, impossible) to suppose 
the usage of classical notion and measures of probability, nec-
essary for studying economic systems as stable at equilibrium 
(see below, )2.   

2 In fact, Arrow was first to emphasize the role of the so-called “infor-
mation asymmetry” sellers-buyers in the market dynamics [59], and 



1.3 Arrow SWF 
The second type of SWF is, indeed, related with the work of 
Kenneth J. Arrow, awarded with the Nobel Prize in economics 
on 1972. Since the first version of his theorem (1948), indeed, 
he transformed effectively Bergson SWF into a CCF, as the 
same title of his fundamental book Social choice and individ-
ual value exemplifies. That is, whereas the Bergson-Samuel-
son SWF rules the mapping from any set of individual order-
ings of preferences/utilities into one only set of ordering of so-
cial states, Arrow SWF rules the mapping from any set of in-
dividual orderings of preferences/utilities into a set of social 
states, among many alternative ones [3]. As Arrow himself 
emphasizes the interpretation of SWF as a CCF is effectively 
a restriction over SWF, because it requires that for any indi-
vidual ordering, for some sufficiently wide but finite range of 
them, the SWF “give rise to a true social ordering” among fi-
nitely many.  
Arrow’s CCF effectively poses other conditions to SWF giv-
ing rise to the famous “Arrow’s impossibility theorem”. Fol-
lowing the later version of Arrow’s theorem [3] they can be 
synthesized as follows: 
x Let A be a set of alternatives of social states, N a number 

of individuals or preferences i, and L (A) the set of all lin-
ear orderings of A. The SWF, intended as an individual 
preference aggregation rule, is a function F: 
L (A)N → L (A) which aggregates individual preferences 
Ri on N into a single order on A. The N-tuple (R1, …, RN) 
of Ri is called a “(individual) preference ordering”. The 
theorem states that for N at least of 2 individuals and for 
A at least of three alternatives the follow four conditions 
are incompatible – particularly the fourth as to the oth-
ers:     

1. U*: Unrestricted domain. The domain of the function (rule) 
F must include all logically possible individual orderings 
for a finite set of them; 

2. P*: Pareto efficiency or “unanimity”. All individual order-
ings have the same possibility of determining the social 
state ordering, i.e., if alternative x is ranked strictly higher 
than y for all orderings R1, …, RN, then also for F(R1, …, 
RN); 

3. I*: Independence of irrelevant alternatives. F depends 
strictly on the pairwise relations associating subsets of A 
and N, i.e., if for two different individual preference order-
ings R, S the alternatives x and y have the same order in R 
and R’, then also in F(R1,…, RN) and F(S1,…, SN). 

4. D*: Non-dictatorship. There is no individual i �{1,…N} 
such that for �(R1,…, RN) � L (A)N x ranked strictly higher 
than y implies that x is ranked strictly higher than y, for all 
x,y.  
Now the “Arrow impossibility theorem” states that “there 

is no SWF satisfying simultaneously conditions U*,P*,I* and 
D*”. Roughly speaking, given the condition P, for any indi-
vidual set ordering there must be one pivotal individual that 
orders the alternatives. Now because of the transitivity and 
asymmetry of the strict individual orderings supposed in Ar-
row’s construction, it is possible to demonstrate that this piv-
otal individual is unique for all individual orderings, so violat-
ing the condition D*. The theorem had a tremendous impact 
overall in political sciences because, if taken for granted, it 

                                                                 
the consequent “principal-agent problem” that is perfectly coherent 
with the outcome of his “impossibility theorem”. Effectively, infor-
mation asymmetry is fundamental in any communication process ac-
cording to Shannon’s statistical notion and measure of information, 
and not casually obtained the Nobel Prize in 2001 to George Akerlof, 
Michael Spence, and Joseph E. Stiglitz for their “analyses of markets 
with asymmetric information”. However, it is highly significant for 
our aims that the impact of the growing role of AI agents in global 

would demonstrate the irrationality of vote systems in democ-
racy, as far as based on the principles of “majority” and of 
“representativeness”. Anyway, two are the main ways for 
avoiding the outcome of Arrow’s theorem:  
1. Working on infinite sets of individuals and not on finite 

ones like in Arrow’s SWF. In such a case, however, the ag-
gregation rules are of limited interest because they are 
based on ultrafilters that are non-constructive mathematical 
objects, so as to suppose practically as many “invisible dic-
tators” [4]. And, in fact, such rules violate also Turing com-
putability [5], so to result practically useless in social com-
puting applied to economics and to social sciences. 

2. Working on finite sets pre-orders instead of strict orderings 
only, like in Arrow’s SWF, so to define another type of ra-
tional CCF, the social decision function (SDF). For SDF’s 
Arrow’s impossibility theorem does not generally hold, 
even though it holds for SWF’s as special cases of SDF’s, 
as we see below. This approach was firstly proposed by an-
other Nobel Prize in Economics (1998), Amartya Kumar 
Sen, who gave another essential contribution of clarifica-
tion to our discussion [6]. We can anticipate, however, that 
also in his approach the “challenge of infinity” and hence 
of effective computability on infinite sets, e.g., data streams, 
represents itself as an unsolvable computational problem. 
At least till we are working in standard set theory and not 
in non-standard ones, like in the theory of non-well founded 
sets, as we see below.       

1.4 Amartya Sen logic of preferences and SWF as 
SDF 

Formally, his contribution to the discussion consists in a rigor-
ous clarification of what “preferences/evaluations among al-
ternatives” (e.g., “better than”, “as good as”, “at least good as”, 
etc.) means in the framework of the logic (algebra) of relations, 
for solving ambiguities and inconsistencies that often appear 
in SWF theories interpreted as CCF. We illustrate Sen’s con-
tribution essentially following his outstanding book Collective 
choice and social welfare [6], in which he outlines a mathe-
matical logic of preference/utility in economic and social sci-
ences. 

Whichever preference/evaluation binary relation R over a 
set S consists in specifying a subset R of the Cartesian Product 
S u S, defined as the set of all ordered pairs (x, y) such that 
¢(x, y) � S ². 

Following the standard order theory in set theoretic logic, 
Sen defines rigorously the following relations R: 
1. Reflexivity: �x � S: xRx 
2. Completeness: �x,y � S: (x z y) → (xRy � yRx) 
3. Transitivity: �x,y,z � S: (xRy � yRz) → xRz 
4. Anti-symmetry: �x,y � S: (xRy � yRx) → x = y 
5. Asymmetry: �x,y � S: xRy → � (yRx) 
6. Symmetry: �x,y � S: xRy → yRx 

For logical and computational aims, it is worth to notice that 
asymmetry implies anti-symmetry, but not vice versa, so that 
the implication connective is logically correct only in the case 
of anti-symmetry. Now, Sen can define furtherly and newly in 
a standard way different types of “ordering relations”, accord-
ing to the different 1-5 relations they satisfy: 
7. Pre-ordering: 1, and 3; 
8. Complete pre-ordering: 1, 2, and 3; 

markets has been recently studied as reducing information asym-
metry, and then increasing market efficiency, because reducing the 
overall amount of exchanges related with information asymmetry 
distortions [58]. At the same time, such a situation makes increas-
ingly difficult, if not despairing, the usage of classical statistical tech-
niques of market analysis and previsions, as far as based on the “sta-
bility at equilibrium (or near-equilibrium)” principle. 



9. Partial ordering: 1, 3, and 4; 
10. Complete ordering: 1, 2, 3, and 4; 
11. Strict ordering: 2, 3, and 5. 

Sen defines thus the ordering relations, 7, 8, and 9 as “quasi-
orderings” that is the key-notion of his logic of preferences, 
evidently based on the notion of “pre-orders” [6]. Then, Sen 
notices, in the case of Arrow’s SWF, the “ordering” must ef-
fectively satisfy 1, 2, and 3, but it is, per se, irrespective of 4 
and then of 5 [6]. In such a way, we can avoid, under some 
conditions explicated by Sen in the rest of the book that we 
only summarize here, the uniqueness of the “pivotal individ-
ual” for all social orderings, as depending on some rational 
CCF on social states he defined as “social decision function” 
(SDF). This opens the possibility of satisfying the condition P 
and D simultaneously of Arrow’s theorem as characterizing 
any CCF, and then a SDF too, even though at the price of a 
social state organization much more “fluid”, than in Arrow’s 
vision.   

In other terms, the core of Sen’s approach consists in 
demonstrating formally that we can obtain suitable CCF’s such 
as SDF’s, satisfying all Arrow’s conditions, without supposing 
strict orderings, but only “quasi-orderings”.  

Therefore, for the mathematical logic of CCF, according to 
Sen, it is important to distinguish three types of “preferences”, 
characterizing “quasi-orderings”, starting from the key-notion 
of “weak preference” R (“it is at least ___ as”, e.g., “it is at 
least good as”, or with a quantitative meaning, “it is at least 
great than”)3, which is the relation characterizing all quasi-or-
derings, and with respect to which the other two key-notions 
of “strict preference” P and “indifference” I of his logic derive. 
Indeed, given that the binary relation R of “weak preference” 
satisfies the relations 1, 2, and 3, but not 4, 5, and 6, Sen de-
fines P and I as to R as follows: 
12. P: Strict preference. xPy l (xRy � � (yRx); 
13. I: Indifference. xIy l (xRy � (yRx). 

Where “indifference” recalls here the notion of “anti-sim-
metry” for a generic relation R (see def. 4 above), i.e., of equal-
ity as to R of its arguments, evidently staying here as “indif-
ference” of its arguments as to a weak preference R. 

Other definitions significantly derived by Sen in its logic of 
preferences for a CCF are the followings: 
14. Maximal element. The elements of a set that are not domi-

nated by any others in the set can be called the maximal 
elements of the set as to a given relation R. I.e.,   
An element x in a set S is a maximal element of S as to a 
binary R, iff:  
                   � (�y (y � S � yPx)).  
The set of maximal elements in S is called its maximal set 
and denoted as M (S, R). 

15. Best element. An element x can be called a “best” (“great-
est”) element of S if it is “at least good (great) as” every 
other element in S, and as to the relevant preference rela-
tion R for such a set. I.e.,  
An element x in S is a best element of S as to a binary rela-
tion R iff:  
                         �y: (y: (y � S → xRy)  
The set of best elements in S is called its choice set, and is 
denoted as C (S,R). 
Of course, any best element is also a maximal element, but 

not vice versa, so that C (S,R) � M (S, R). From this, the notion 
of “choice function” derives, as defined on a choice set and on 
all its subsets: 

                                                                 
3 To use the same symbol R for denoting a generic relation deriving 
from general order theory as effectively used till now in the defini-
tions 1-11, and from this point on as denoting a weak preference re-

16. Choice function. A choice function C (S, R) defined over X 
is a function relation such that the choice set C (S, R) is 
nonempty for every nonempty subset S of X.  
What is important to emphasize is that while completeness 

and reflexivity are two essential conditions to be satisfied for 
granting a choice function because granting that no non-empty 
set will exist in X, the same does not hold for transitivity, so to 
open the possibility of weaker transitivity sufficient conditions 
for a C (S, R)  [6] such as the following two:   
17. Quasi-transitivity. If for all x,y,z � X xPy � yPz → xPz, 

then R is quasi-transitive. 
Where we recall that R is a weak-preference relation, of 

which P is a special case. 
18. Acyclicity. R is acyclical over X iff the following holds: 

� �� �1 1 2 2 3 1 1,..., ...j j j jx x X x Px x Px x Px x Rx�� � � � � o    

From this the following lemma A* holds: 
19. Lemma A. If R is reflexive and complete, then a necessary 

and sufficient condition for C (S,R) to be defined over a fi-
nite X is that R be acyclical over X. 
Where it is to be noticed that quasi-transitivity implies acy-

clicity, where the converse does not follow. At this point, we 
can pass to define the essential notion of collective choice 
function. For this aim, it is important to introduce two proper-
ties generally characterizing any generic (not necessarily gen-
erated by a binary relation R) rational choice function C (S), 
defined by Sen as following: 
20. Property α:  

� �1 2 2 1( ) ( ) ,  for all � � o � o �x S S x C S x C S x   
that is another way for stating the condition of “independ-
ence of irrelevant alternatives”. 

21. Property β:  
� � � �1 1 2 2 2, ( ) ( ) ( )  for all ,� � � l � l �x y C S S S x C S x C S x y  

With respect to a choice function C (S,R), it must always 
satisfy property α, but not necessarily property β. Indeed, there 
is a close relation between a choice function satisfying the 
property β and a particular notion of weak transitivity defined 
by Sen PI: 
22.  PI-transitivity. A relation R is PI-transitive over X iff for 

all x,y,z in X, xPy � yIz o xPz 
From this, the following Lemmas B*-D* hold for some 

C (S,R). 
23. Lemma B. A choice function C (S,R) generated by a binary 

relation R satisfies property β iff R is PI-transitive. 
Avoiding some steps of Sen’s demonstration that can be 

found in [6], we arrive at the fundamental Lemmas: 
24. Lemma C. If a binary relation R generates a choice func-

tion, then PI-transitivity implies that R is an ordering. 
This holds essentially because PI-transitivity implies tran-

sitivity. Therefore: 
25. Lemma D: A choice function C (S,R) derived from a binary 

relation R satisfies property β  iff R is an ordering. 
If a choice function satisfies the Pareto condition P* of una-

nimity as an expression of social consensus, then we can de-
fine a collective choice rule (CCR) as follows [6]:  
26. A CCR is a functional relation f such that for any set of n 

individual orderings R1, …, Rn (one ordering for each in-
dividual), one and only one social preference relation R is 
determined, R = f (R1, …, Rn). 
Where it is to be emphasized that the resulting R is not a 

social ordering. Therefore, 
27. A CCR is decisive iff its range is restricted to complete 

preference relation R.  

lation, say R*, can determine some ambiguity in the symbolism. Nev-
ertheless, we follow Sen in this usage of the symbol R without any 
substantial problem with the only advertising that in Sen theory on 
CCR, that is, from this point on it has always the sense of R*. 



It is essential to emphasize that a CCR is a SWF iff all social 
preferences are orderings, satisfying conditions 1, 2 and 3 
above. Transitivity (i.e., (3)), indeed is essentially condition on 
“triples”, given that acyclicity could hold over all triples, and 
yet may violate acyclicity over the entire set [6]. 

However, Sen notices, given that “impossibility theorem” 
holds only for SWF, if the aim, as Arrow himself stated, is only 
to ensure that “from any environment, there will be a chosen 
alternative” [3], a CCR able to grant only social preferences 
sufficient for the existence of choice functions would be suffi-
cient. Such a CCR is defined by Sen as social decision function 
(SDF) [6]: 
28. A SDF is a CCR f, the range of which is restricted to those 

preference relations R, each of which generates a choice 
function C (S,R) over the whole set of alternative X.  
It is evident that all SWF are SDF, but the converse is not 

true. Indeed, for SDF’s no “impossibility result” holds. Indeed, 
a SDF satisfies simultaneously all four conditions U*, P*, I*, 
D* defined above of Arrow’s “possibility theorem” [6]. Nev-
ertheless,  
29. For an infinite set X there is no SDF satisfying conditions 

U* and P*. 
In other terms, both for SDF and SWF the condition of fi-

niteness of X holds, because in the case of an infinite chain of 
subsets S of X no best element can exist. On the other hand, if 
both SDF and SWF satisfy the property D (20) of a rational 
social choice, nevertheless any SDF generating choice func-
tions satisfying also the property E (21) is a SWF, because, for 
Lemma D (25), R in such a case becomes an ordering relation. 
In such a case, for a SDF that is also a SWF, the “impossibility 
theorem” holds [6].  

Finally, other two interesting consequences derive from the 
finiteness of CCR’s, is the possibility of representing in it also 
judgements about values, shared by a homogeneous social 
group because characterized by strong interpersonal ex-
changes of information [6]. These topics were the main object 
of a more recent essay of Sen, with the significant title: “The 
Informational Basis of Social Choice”. However, when we 
study social and economic systems, taking into account also 
the motivational social forces acting within them, and vehicu-
lated in real time by social media, internet before all, the chal-
lenge of infinity represents itself because making untenable 
that either a SDF or a SWF can range over a finite set of social 
state alternatives, chosen by individual preference orderings. 
Such a “liquid” situation of our society and of our economy 
requires a modelling more based on fluid thermodynamics, 
than on gas thermodynamics. 

All this requires a paradigm shift in representing social 
and/or economical systems and in modelling their always 
changing stability conditions, from Gibbs’ statistical ap-
proach of gas thermodynamic systems stable at equilibrium 
(see before §1.2), to a dynamic approach of condensed matter 
systems, stable in far from equilibrium conditions. In a word, 
the shift from the thermodynamic paradigm of classical statis-
tical mechanics, to the thermodynamic paradigm of the ther-
mal field theory.   

1.5 The challenge of infinity in social computing and 
the paradigm shift in quantum computing 

Recently in an essay published on a collective book dedi-
cated at a balance about Arrow’s impossibility theorem, al-
most seventy years after its first publication, and edited by E. 
Maskin and A. Sen, K. Arrows himself focused, in his reply to 
other discussants, which is the main challenge of social com-
puting today: 

When you are dealing with infinite dimensional ele-
ments, can you really compute the results? Some things 

are simply quite extremely difficult to compute. They 
are not constructible in the sense that there is no finite 
process that will enable an individual to carry out the 
calculation. This applies to a lot of problems, not just 
those that are social in nature, such as climate change, 
but also to individual as well as social choice problems 
[7]. 

It is paradoxical, but significant that just the condensed 
matter physics and the related Quantum Field Theory (QFT), 
interpreted as a thermal field theory, and its mathematical for-
malism developed during the last twenty years by theoretical 
physicists is, able to give, at least in principle an answer to the 
issue of Arrow. Simultaneously, but independently, theoretical 
computer scientists developed a model of concurrent compu-
tations, based on the same principle of the duality algebra-
coalgebra of QFT. We dedicate the next two Sections to illus-
trating such an approach deeply different from Quantum Me-
chanics (QM) paradigm in quantum computing. 

In the next Section we sketch some fundamental concepts 
of QFT, while in the fourth one we discuss QFT formalism in 
the framework of theoretical computer science, for synthesiz-
ing in the conclusions the main results that we could obtain 
from such an approach when applied to social computing is-
sues.    

2 FROM QM TO QFT IN FUNDAMENTAL PHYS-
ICS 

2.1 From mechanical vacuum to quantum vacuum 
In the official conference press for announcing to the world 

that the 2015 Nobel Prize in Physics was awarded to the phys-
icists T. Kajita and A. B. McDonald for their observational 
discovery of the neutrino mass, the Academy stated that “the 
new observations had clearly showed that the Standard Model 
cannot be the complete theory of the fundamental constituents 
of the universe” [8]. From the theoretical standpoint, the best 
candidate to such a shift of paradigm in fundamental physics 
is QFT. Till now it was conceived as an extension of QM, i.e., 
the so-called “second quantization” of P. Dirac and R. Feyn-
man. In this interpretation, in the study of the fundamental 
electromagnetic interactions of the “Quantum Electrodynam-
ics” (QED) and of the color charge interactions of the strong 
force of “Quantum Cromodynamics” (QCD), it continues to 
work according to the mechanistic scheme of the Newtonian 
Mechanics (particles isolated from forces in the mechanical 
vacuum) that, from Laplace on, in the study of many body dy-
namic systems, uses systematically the so-called “perturbation 
methods”.  

They study the particle behaviour using systematically the 
so-called “asymptotic condition”, i.e., they represent the sys-
tem by separating the objects at infinite spatio-temporal dis-
tances, so to isolate the particles from interactions “cutting-
off” them, and re-create artificially the condition of particle 
isolation of the Newtonian Mechanics. The supposition is that 
such a modelling does not falsify the observed phenomena. 
The consequence of such an approach is the absolute distinc-
tion between particles and interaction force fields, constituting 
the core also of the Standard Model.  

In other terms, in the Standard Model the ontological dis-
tinction particle-force is introduced by interpreting the distinc-
tion, in itself only statistical, between fermions and bosons like 
the difference between particles constituting the “building 
bricks” of ordinary matter (quarks and leptons (electrons, neu-
trinos, etc.)), divided into three families or generations (the 
first three columns of the figure below), and quanta of the three 
fundamental quantum forces electromagnetic and nuclear 



strong and weak (photons, gluons and bosons Z and W, respec-
tively), with the addition of the Higgs field with the relative 
boson. Anyway, the empirical evidence of neutrino mass, 
united to the growing disaffection of physicists for the pertur-
bative methods in quantum physics because it is impossible to 
considerate a quantum system as isolated from the QV fluctu-
ations in which it is immersed from within, are the deep rea-
sons for the growing interest to the alternative paradigm of 
QFT, “QFT can be recognized as an intrinsically thermal 
quantum theory” [9]. 

According to this alternative picture of QFT, every particle, 
both fermionic or bosonic, is considered as the quantum of the 
relative force field. Roughly speaking, there exist material 
force fields (fermionic) and interaction force fields (bosonic). 
In this framework, the suggestion as to the neutrino oscilla-
tions is that they consist in as many phase transitions of the 
same neutrino field.  

On the other hand, the association of whichever mole of 
matter to a force field, and therefore the existence of the QV 
as the totality of the quantum force fields is an immediate con-
sequence of the Third Principle of Thermodynamics. It affirms 
that for whichever physical system it is impossible to reach the 
absolute 0°K. This means that near the absolute 0°K, there is 
a mismatch between the variation of the body content of en-
ergy, and the supply of energy from the outside. We can avoid 
such a paradox, only by supposing that such a mysterious inner 
supplier of energy is the vacuum. Intuitively, the QV can be 
interpreted as a sort of universal “energy reservoir” of all en-
ergy forms in the universe(s) (the temperature of the QV is in-
deed >0°K, even though it is bounded energy, for the lack of 
any “ordering”), as something including and connecting dy-
namically everything. In this framework, any physical system 
at whichever degree of complexity is immersed “from within” 
into the QV.  

From the mathematical standpoint, the main difference be-
tween QM and QFT is that in the latter the fundamental Stone-
Von Neumann theorem [10] does not hold. This theorem states 
that, for system with a finite number of degrees of freedom, 
which is always the case in QM, the representations of the ca-
nonical commutation relations4 are all unitarily equivalent to 
each other.  

On the contrary, in QFT systems, the number of the degrees 
of freedom is not finite, so that infinitely many unitarily in-
equivalent representations of the canonical commutation (bos-
ons) and anti-commutation (fermions) relations exist. Indeed, 
through the principle of the Spontaneous Symmetry Break-
down (SSB) in the vacuum ground state, infinitely (not denu-
merable) many, quantum vacuum conditions, compatible with 
the QV ground state, there exist. Moreover, this holds not only 
in the relativistic (microscopic) domain, but also it applies to 
non-relativistic many-body systems in condensed matter phys-
ics, i.e., in the macroscopic domain, and even on the cosmo-
logical scale [9].    

Indeed, starting from the discovery, during the 60’s of the 
last century, of the dynamically generated long-range correla-
tions mediated by the Nambu-Goldstone bosons (NGB) 
[11,12], and hence for their role in the local gauge theory by 
the Higgs field, the discovery of these collective modes 
changed deeply the fundamental physics.  

Of course, because of the intrinsic character of the thermal 
bath, the whole QFT system can recover the classical Hamil-
tonian character, because of the necessity of anyway satisfying 
the energy balance condition of each QFT (sub-)system with 

                                                                 
4 It is useful to recall here that the canonical variables (e.g., position 
and momentum) of a quantum particle do not commute among them-
selves, like in classical mechanics, because of Heisenberg’s uncer-
tainty principle. The fundamental discovery of D. Hilbert consists in 
demonstrating that each canonical variable of a quantum particle 

its thermal bath ('E = 0), mathematically formalized by the 
“algebra doubling”, between a q-deformed Hopf algebra and 
its “dual” q-deformed Hopf co-algebra, where q is a thermal 
parameter [13].  

Therefore, in QFT an uncertainty relation holds, similar to 
the one of Heisenberg, relating the uncertainty on the number 
of the field quanta to the one of the field phase, namely: 

� �M M' ' tn =  

Where n is the number of quanta of the force field, and M is 
the field phase. If ('n = 0), M is undefined so that it makes 
sense to neglect the waveform aspect in favour of the individ-
ual, particle-like behaviour. On the contrary if ('M = 0), n is 
undefined because an extremely high number of quanta are os-
cillating together according to a well-defined phase, i.e., 
within a given phase coherence domain. In this way, it would 
be nonsensical to describe the phenomenon in terms of indi-
vidual particle behaviour, since the collective modes of the 
force field prevail.  

In QFT there is duality between two dynamic entities: the 
fundamental force field and the associated quantum particles 
that are simply the quanta of the associated field that is differ-
ent for different types of particles. In such a way, the quantum 
entanglement does not imply any odd relationship between 
particles like in QM, but simply it is an expression of the uni-
tary character of a force field. To sum up, according to such 
more coherent view, Schrödinger wave function of QM ap-
pears to be only a statistical coverage of a finest structure of 
the dynamic nature of reality. 

2.2 Order and vacuum symmetry breakdowns 
It is well-known that a domain of successful application of 

QFT is the study of the microphysics of condensed matter, that 
is in systems displaying at the macroscopic level a high degree 
of coherence related to an order parameter. The “order param-
eter”, that is the macroscopic variable characterizing the new 
emerging level of matter organization, is related to the matter 
density distribution. In fact, in a crystal, the atoms (or the mol-
ecules) are “ordered” in well-defined positions, according to a 
periodicity law individuating the crystal lattice. 

Other examples of such ordered systems in condensed mat-
ter realm are the magnets, the lasers, the super-conductors, etc. 
In all these systems the emerging properties related to the re-
spective order parameters, are neither the properties of the el-
ementary constituents, nor their “summation”, but new prop-
erties depending on the modes in which they are organized, 
and hence on the dynamics controlling their interactions.  In 
this way, at each new macroscopic structure, such a crystal, a 
magnet or a laser, corresponds a new “function”, the “crystal 
function”, the “magnet function”, etc. 

Moreover, all these emerging structures and functions are 
controlled by dynamic parameters, that, with an engineering 
terminology, we can define as control parameters. Changing 
one of them, the elements can be subject to different dynamics 
with different collective properties, and hence with different 
collective behaviours and functions. Generally, the tempera-
ture is the most important of them. For instance, crystals be-
yond a given critical temperature — that is different for the 
different materials — lose their crystal-like ordering, and the 
elements acquire as a whole the macroscopic structure-func-
tions of an amorphous solid or, for higher temperatures, they 
lose any static structure, acquiring the behaviour-function of a 
gas. 

commutes with the Fourier transform of the other (such a relationship 
constitutes a canonical commutation relation), so to allow a geomet-
rical representation of all the states of a quantum system in terms of 
a commuting variety, i.e., the orthonormal finite basis of a per se in-
finite dimensional “Hilbert space”.     



So, any process of dynamic ordering, and of information 
gain, is related with a process of symmetry breakdown. In the 
magnet case, the QV “broken symmetry” is the rotational sym-
metry of the magnetic dipole of the electrons, and the “mag-
netization” consists in the correlation among all (most) elec-
trons, so that they all “choose”, among all the directions, that 
one proper of the magnetization vector. 

To sum up, whichever dynamic ordering among many ob-
jects implies an “order relation”, i.e., a correlation among 
them. What, in QFT, at the mesoscopic/macroscopic level is 
denoted as correlation waves among molecular structures and 
their chemical interactions, at the microscopic level any corre-
lation, and more generally any interaction, is mediated by 
quantum correlation particles, i.e., NGB’s [14,11,12], with 
mass — even though always very small (if the symmetry is not 
perfect in finite spaces) —, or without mass at all (if symmetry 
is perfect, in the abstract infinite space). Less is the inertia 
(mass) of the correlation quantum, greater is the distance on 
which it can propagate, and hence the distance on which the 
correlation (and the ordering relation) constitutes itself. 

However, an important caveat is necessary to do about the 
different role of the “Goldstone bosons” as quantum correla-
tion particles, and the “bosons” of the different energy fields 
of quantum physics (QED and QCD). These latter are the so-
called gauge bosons: the photons J of the electromagnetic 
field; the gluons g of the strong field, the bosons Wr and the 
boson Z of the electroweak field; and the scalar Higgs boson 
H0 of the Higgs field, common to all the precedent interactions.  

The gauge bosons are properly mediators of the energy ex-
changes, among the interacting elements they correlate, be-
cause they are effectively quanta of the energy field they me-
diate (e.g., the photon is the quantum of the electromagnetic 
field). Therefore, the energy quanta are bosons able to change 
the energy state of the system. For instance, in QED of atomic 
structures, they are able to change the fundamental state (min-
imum energy), into one of the excited states of the electronic 
“cloud” around the nucleus. 

On the contrary, NGB correlating quanta are not mediators 
of the interactions among the elements of the system. They de-
termine only the modes of interaction among them.  Hence, 
any symmetry breakdown in the QFT of condensed matter of 
chemical and biological systems has one only gauge boson 
mediator of the underlying energy exchanges, the photon, 
since they all are electromagnetic phenomena. Therefore, the 
phenomena here concerned, from which the emergence of 
macroscopic coherent states derives, implies the generation, 
effectively the condensation, of correlation quanta with negli-
gible mass, in principle null: the NGB, indeed.  This is the ba-
sis of the fundamental “Goldstone theorem” [15,16]. There-
fore, despite the correlation quanta are real particles, observa-
ble with the same techniques (diffusion, scattering, etc.), not 
only in QFT of condensed matter, but also in QED and in QCD 
like the other quantum particles, wherever we have to deal with 
broken symmetries [12], nevertheless they do not exist outside 
the system they are correlating. For instance, without a crystal 
structure (e.g., by heating a diamond over 3,545 °C), we have 
still the component atoms, but no longer phonons. Also and 
overall in this aspect, the correlation quanta differ from energy 
quanta, like photons. Because the gauge bosons are energy 
quanta, they cannot be “created and annihilated” without re-
siduals.  

Better, in any quantum process of particle “creation/annihi-
lation” in quantum physics, what is conserved is the en-
ergy/matter, mediated by the energy quanta (gauge bosons), 
not their “form”, mediated by the NGB correlation quanta. 
Also on this regard, a dual ontology (matter/form) is funda-
mental for avoiding confusions and misinterpretations in quan-
tum physics.  

Moreover, because the mass of the correlation quanta is in 
any case negligible (or even null), their condensation does not 
imply a change of the energy state of the system. This is the 
fundamental property for understanding how, not only the sta-
bility of a crystal structure, but also the relative stability of the 
living matter structures/functions, at different levels of its self-
organization (cytoskeleton, cell, tissue, organ…), can depend 
on such basic dynamic principles. In fact, all this means that, 
if the symmetric state is a fundamental state (a minimum of the 
energy function corresponding to a quantum vacuum in QFT 
of dissipative systems), also the ordered state, after the sym-
metry breakdown and the instauration of the ordered state, re-
mains a state of minimum energy, so to be stable in time. In 
kinematics terms, it is a stable attractor of the dynamics. 

2.3 The Doubling of Degrees of Freedom (DDF) in 
QFT and in neuroscience 

We said that the relevant quantum variables in biological sys-
tems are the electrical dipole vibrational modes in the water 
molecules, constituting the oscillatory “dynamic matrix” in 
which also neurons, glia cells, and the other mesoscopic units 
of the brain dynamics are dipped. The condensation of mass-
less NGB (polarons) — corresponding, at the mesoscopic 
level, to the long-range correlation waves observed in brain 
dynamics — depends on the triggering action of the external 
stimulus for the symmetry breakdown of the quantum vacuum 
of the corresponding brain state. In such a case, the “memory 
state” corresponds to a coherent state for the basic quantum 
variables, whose mesoscopic order parameter displays itself as 
the amplitude and phase modulation of the carrier signal. 

At this point emerges the principle of the doubling of the 
degrees of freedom (DDF) between a quantum system and its 
thermal bath as a general principle of all QFT systems, which, 
however, we illustrate here as to QFT brain dynamics, because 
closer to our computational aims. This principle emerges as a 
both physical and mathematical necessity of QFT modelling. 
Physical, because a dissipative system, even though in non-
equilibrium, must anyway satisfy the energy balance. Mathe-
matical, because the 0 energy balance requires a “doubling of 
the system degrees of freedom”. The doubled degrees of free-
dom, say A�  (the tilde quanta, where the non-tilde quanta A 
denote the brain degrees of freedom), thus represent the envi-
ronment to which the brain state is coupled. The environment 
(state) is thus represented as the “time-reversed double” of the 
brain (state) on which it is impinging. The environment is 
hence “modeled on the brain”, but according to the finite set 
of degrees of freedom the environment itself elicited in the 
brain.  
What is relevant for our aims, is that to each set of degrees of 
freedom A and to its “entangled doubled” A� is relative a 
unique number &, i.e. ,A A�& &  that in module, |&K|, identi-
fies univocally, i.e., it dynamically labels, a given phase co-
herence domain, i.e., a quantum system state entangled with 
its thermal bath state, in our case, a brain state matching its 
environment state. This depends on the fact that generally, in 
the QFT mathematical formalism the number &�is a numeric 
value expressing the NGB condensate value from which a 
phase coherence domain directly depends. In an appropriate 
set theoretic interpretation, because for each “phase coher-
ence domain” x, effectively |&K| identifies univocally such a 
domain, it corresponds to an “identity function Idx” that, in a 
“finitary” coalgebraic logical calculus, corresponds to the 
predicate satisfied by such a domain because identifying uni-
vocally it. In other terms, Vitiello’s reference to the predicate 
“magnet function” or “crystal function” we quoted at the be-
ginning of sect. 2.2 are not metaphors, but are expressions of 



a fundamental formal tool – the “co-membership notion” – of 
the coalgebraic predicate calculus (see below sect. 3.2). 
Therefore, of the DDF applied to the quantum foundation of 
the cognitive neuroscience we have illustrated elsewhere its 
logical relevance, for an original solution of the reference 
problem (see [17,18]). 

There exists a huge amount of experimental evidence in 
brain dynamics of such phenomena, collected by W. Freeman 
and his collaborators. This evidence found, during the last ten 
years, its proper mathematical modelling in the dissipative 
QFT approach of Vitiello and his collaborators, so to justify 
the publication during the last years of several joint papers on 
these topics (see, for a synthesis, [19,20]).  

2.4 QFT systems and the notion of negentropy 
Generally, the notion of information in biological systems 

is a synonym of the negentropy notion, according to E. Schrö-
dinger’s early use of such a term. Applied, however, to QFT 
foundations of dissipative structures in biological systems, the 
notion of negentropy is not only associated with the free en-
ergy, as Schrödinger himself suggested [21], but also with the 
notion of organization, as the use of this term by A. Szent-
György first suggested [22]. The notion of negentropy it is thus 
related with the constitution of coherent domains at different 
space-time scales, as the application of QFT to the study of 
dissipative structures demonstrates, since the pioneering H. 
Frölich works [23,24].  

On this regard, it is important to emphasize also the key-
role of the notion of stored energy that such a multi-level spa-
tial-temporal organization in coherent domains and sub-do-
mains implies (i.e., the notion of quantum vacuum “foliation” 
in QFT ), as distinct from the notion of free energy of classical 
thermodynamics [25]. Namely, as we know from the precedent 
discussion, the constitution of coherent domains allows chem-
ical reactions to occur at different time-scales, with a conse-
quent energy release, that so becomes immediately available 
exactly where/when it is necessary. For instance, resonant en-
ergy transfer among molecules occurs typically in 10-14 sec., 
whereas the molecular vibrations themselves die down, or 
thermalize, in a time between 10-9 and 101sec. Hence, it is a 
100% highly efficient and highly specific process, being deter-
mined by the frequency of the vibration itself, given that reso-
nating molecules can attract one another. Hence, the notion of 
“stored energy” is meaningful at every level of the complex 
spatial-temporal structure of a living body, from the single 
molecule to the whole organism. 

This completes the classical thermodynamic picture of L. 
Szilard [26] and L. Brillouin [27] according to which the 
“Maxwell demon”, for getting information so to compensate 
the entropic decay of the living body must consume free en-
ergy from the environment. This means an increasing of the 
global entropy according to the dictate of the Second Law. 
However, this has to be completed in QFT with the evidence 
coming from the Third Law discussed in this paper.  

3 COALGEBRAIC SEMANTICS OF QUANTUM 
SYSTEMS 

3.1 Category theory logic and coalgebraic semantics 
To illustrate the fundamental principles of QFT computing, 

let us start from the fundamental observation that in QFT, be-
cause of the dynamic field reinterpretation of the particle-wave 
quantum duality introduced in §2.1, the probabilities of the 

                                                                 
5 We recall that typical example of function composition is a recursive, 
iterated function: xn+1 = f (xn). 

quantum states follow a Wigner distribution, based on the no-
tion and the measure of quasi-probability where regions inte-
grated under given expectation values do not represent mutu-
ally exclusive states. This means that a computing agent, either 
natural or artificial in QFT, against the Quantum Turing Ma-
chine paradigm, is able to change dynamically the representa-
tion space of its computations for matching dynamically (au-
tomatically) the hidden degrees of freedom of the data set 
(thermal bath). This depends on the possibility of interpreting 
the QFT system computations within the framework of the 
Category Theory (CT) logic and its principle of duality be-
tween opposed categories, such as the algebra and coalgebra 
categories of the QFT. 

This justifies in principle the interpretation of the maximal 
entropy in a QFT “doubled” system as a semantic measure of 
information, i.e., as a statistical measure of maximal local truth 
in the CT coalgebraic logic. In the QFT mathematical formal-
ism this maximum of the entropy measure is formally obtained 
when the above illustrated DDF principle (far from equilib-
rium energy balance) between a system (algebra) and its ther-
mal bath (coalgebra) is dynamically satisfied. This means that 
we are allowed to interpret the QFT qubit of such a natural 
computation as an “evaluation function” in the semantic sense. 
Indeed, in the QFT “composed Hilbert space” including also 
the thermal bath degrees of freedom, A� , i.e. 

 �� �   , AA A A , for calculating the static and dynamic en-
tropy associated with the time evolution generated by the free 
energy, i.e., � � � �,t tI \ , of the qubit mixed states ,I \
, one needs to double the states by introducing the tilde states 
0  and 1 ,� � relative to the thermal bath, i.e., 

0 0 0 , and 1 1 1o � o �� � . This means that such a 

QFT version of a qubit implements effectively the CNOT 
(controlled NOT) logical gate, which flips the state of the 
qubit, conditional on a dynamic control of an effective input 
matching [28,9].  

What is highly significant for our aims is that in a way com-
pletely independent from quantum physicists – at least till the 
very last years  – logicians and computer scientists developed 
in the context of CT logic a coalgebraic approach to Boolean 
algebra semantics that only recently started to be applied also 
to quantum computing. Let us start from some basic notions of 
the CT logic (for a survey, see [29]).  

The starting point of such a logic as to set theory is that the 
fundamental objects of CT are not “elements” but “arrows”, in 
the sense that also the set elements are always considered as 
domains-codomains of arrows or morphisms – in the case of 
sets, domains-codomains of  functions.  

In this sense, any object A, B, C, characterizing a category, 
can be substituted by the correspondent reflexive morphism 
A o A constituting a relation identity IdA. Morover, for each 
triple of objects, A,B,C, there exists a composition map 

 f gA B C��o ��o , written as g fD  (or sometimes: f ; g), 
where B is the codomain of f and domain of g5.  Therefore, a 
category is any structure in logic or mathematics with struc-
ture-preserving morphisms. E.g., in set theoretic semantics, all 
the models of a given formal system because sharing the same 
structure constitute a category. In this way, some fundamental 
mathematical and logical structures are as many categories: 
Set (sets and functions), Grp (groups and homomorphisms), 
Top (topological spaces and continuous functions), Pos (par-
tially ordered sets and monotone functions), Vect (vector 
spaces defined on numerical fields and linear functions), etc.  



Another fundamental notion in CT is the notion of functor, 
F, that is, an operation mapping objects and arrows of a cate-
gory C into another D, F: C o D, so to preserve compositions 
and identities. In this way, between the two categories there 
exists a homomorphism up to isomorphism. Generally, a func-
tor F is covariant, that is, it preserves arrows directions and 
composition orders (e.g., in the QM attempt of interpreting 
thermodynamics within kinematics [30]), i.e.:  
if  : ,  then ;  
if , then ( ) ;  if ,  then .A A FA

f A B FA FB
f g F f g Ff Fg id Fid id

o o
  D D D

  

However, two categories can be equally homomorphic up to 
isomorphism if the functor G connecting them is contravari-
ant, i.e., reversing all the arrows directions and the composi-
tion orders, i.e. G: C o Dop: 
if  : ,  then ;  if , then ( ) ;   
but if ,  then .A A GA

f A B GB GA f g G g f Gg Gf
id Gid id
o o  

 
D D D

 

Through the notion of contravariant functor, we can intro-
duce the notion of category duality. Namely, given a category 
C and an endofunctor E: C o C, the contravariant application 
of E links a category to its opposite, i.e.: Eop: C o Cop. In this 
way it is possible to demonstrate the dual equivalence between 
them, in symbols: CUCop. In CT semantics, this means that 
given a statement D defined on C D is true iff the statement Dop 
defined on Cop is also true. In other terms, truth is invariant for 
such an exchange operation over the statements, that is, they 
are dually equivalent. In symbols: D R Dop, as distinguished 
from the ordinary equivalence of the logical tautology: D l E, 
defined within the very same category. We can anticipate here 
that the physical basis of this notion is precisely the energy 
balance between a system and its thermal bath, as far as inter-
preted as the duality between an algebra and its coalgebra, 
given that it is standard in modern physics to model physical 
systems through algebraic (and now, more effectively, coalge-
braic) structures.  

A particular category, indeed, that is interesting for our 
aims is the category of Algebras, Alg. They constitute a cate-
gory because any algebra �, can be defined as a structure de-
fined on sets characterized by an endofunctor projecting all the 
possible combinations (Cartesian products) of the subsets of 
the carrier set, on which the algebra is defined, onto the set 
itself, that is, � Ä � o �. The other category interesting for 
us is the category of coalgebras Coalg. Generally, a coalgebra 
can be defined as a structure defined on sets, whose endofunc-
tor projects from the carrier set onto the coproducts of this 
same set, i.e., � o � Ä �. Despite the appearances, an alge-
bra and its coalgebra are not dual. This is the case, for instance, 
of a fundamental category of algebras in physics, that is, the 
Hopf Algebras, Halg, generally used in dynamic system theory 
both in classical and in quantum mechanics, as we know.  Each 
HAlg is essentially a bi-algebra because including two types 
of operations on/to the carrier set, where – because used to rep-
resent energetically closed systems – products (algebra) and 
coproducts (coalgebra) can be defined on the same basis, and 
therefore commute among themselves. That is, there exists a 
complete symmetry between a HAlg and its HCoalg so that 
they are equivalent and not dually equivalent. In this sense any 
Hopf algebra is said to be self-dual, that is, isomorphic with 
itself. To make dually equivalent a Hopf algebra with its 

                                                                 
6 We recall here that by an “ultrafilter” we intend the maximal partially 
ordered set defined on the power-set of a given set ordered by inclu-
sion, and excluding the empty set. 

7 Two corollaries of the Lövenhiem-Skolem theorem, demonstrated by 
Skolem himself in 1925 are significant for our aims, i.e., 1) that only 

coalgebra, as we know from QFT, we have to introduce a q-
deformation, where q is a thermal parameter.  

More generally, indeed, it is possible to define a dual equiv-
alence between two categories of algebras and coalgebras by a 
contravariant application of the same functor. This is particu-
larly significant whereas it is meaningless that both are defined 
on the same basis, and therefore products and coproducts do 
not commute among themselves. Two are the examples that 
we might give of this notion, the former in mathematics and 
computability theory concerning Boolean algebras, the second 
in computational physics concerning QFT.  

3.2 Coalgebraic semantics of a Boolean logic for a 
contravariant functor 

The first example concerning Boolean algebras depends es-
sentially of the fundamental representation theorem for Bool-
ean algebras demonstrated in 1936 by the American Mathema-
tician M. Stone, five years after having demonstrated with 
John Von Neumann the fundamental theorem of QM we 
quoted in sect. 2.  Indeed, the Stone theorem, associates each 
Boolean algebra B to its Stone space S(B) [31]. Therefore, the 
simplest version of the Stone representation theorem states that 
every Boolean algebra B is isomorphic to the algebra of par-
tially ordered by inclusion closed-open (clopen) subsets of its 
Stone space S(B), effectively an ultrafilter6 of the power set of 
a given set (interval) of real numbers defined on S(B). The ul-
trafilters constituting an insuperable computational problem 
for both SDF and SWF as defined on infinite sets but necessary 
for the actual states of social and economic modelling (see 
above §1.5).   

Because, each homomorphism between a Boolean algebra 
A and a Boolean algebra B corresponds to a continuous func-
tion from S(B) to S(A), we can state that each endofunctor : 
in the category of the Stone spaces, Stone (where the objects 
are Stone spaces and the arrows are continuous functions), in-
duces a contravariant functor :* in the category of the Bool-
ean algebras, BAlg (where the objects are Boolean algebras 
and the arrows are recursive functions). In CT terms, the theo-
rem states the dual equivalence between them, i.e., 
Stone(:)UBAlg(:*). 

It is difficult to exaggerate the fundamental importance of 
the Stone theorem that, according to the computer scientists, 
inaugurated the “Stone era” in computer science. Particularly, 
this theorem demonstrated definitively that Boolean logic se-
mantics requires only a first-order semantics because it re-
quires only partially ordered sets and not totally ordered sets. 
This result is particularly relevant for the foundations of com-
putability theory. Indeed, the demonstration of the fundamen-
tal Lövenheim-Skolem theorem (1921) blocked the research 
program of E. Schröder of the so-called “algebra of logic” in 
the foundations of mathematics and of calculus [32], because 
it demonstrated that algebraic sets are not able to deal with 
non-denumerable sets, e.g., with the totality of real numbers. 
For this reason, and the subsequent fundamental demonstra-
tions of Tarski’s theory of truth as correspondence (1929) [33], 
and of Gödel’s incompleteness theorems (1931) [34], the set-
theoretic semantics migrated to higher-order logic, so to grant 
the total ordering of sets, by some foundation axiom, e.g., the 
axiom of regularity in ZF. In this way, no infinite chain of in-
clusions among sets is allowed in standard set theory, so to 
separate the semantic “set ordering” from the complete “set 
enumerability”7.  

complete theories are categorical, and 2) that the cardinality of an 
algebraic set depends intrinsically by the algebra defined on it. Think, 
for instance at the principle of induction by recursion for Boolean 
algebras, allowing a Boolean algebra to construct the sets on which 
its semantics is justified, blocking however Boolean computability 



Therefore, the further step for making computationally ef-
fective the Stone theorem for a Boolean first-order semantics, 
avoiding the limits of the Turing-like computation scheme 
strictly dependent on Gödel and Tarski theorems, is the defi-
nition of non-standard set theories without foundation axioms. 
In this way, we allow infinite chains of set inclusions, accord-
ing to the original intuition of the Italian mathematician E. De 
Giorgi [35,36]. The most effective among the non-standard set 
theory is Aczel’s set theory of non-wellfounded (NWF)sets 
based on the anti-foundation axiom (AFA) [37]. AFA, indeed, 
allowing set self-inclusions and therefore infinite chains of set 
inclusions, makes also possible to define the powerful notion 
of set co-induction by co-recursion, dual to the algebraic no-
tion of induction by recursion, both as formal methods of set 
definition and proof [38,39,36] (See below Appendix 5.1). 
This immediately suggests us the coalgebraic solution of Ar-
row’s issue in §1.5 about the impossibility of a constructive 
(i.e., algebraic) approach to infinite data streams in social com-
puting. Using two concurrent coalgebraic (co-inductive) and 
algebraic (inductive) computations implemented in a QFT 
computing device (e.g., a quantum optical computer), using 
the dynamic measure of maximum entropy, and the associated 
dynamic qubit, as an evaluation function of the happened con-
vergence between the bottom-up/top-down concurrent compu-
tations. Let us deepen more accurately this essential point.    

In this context, the key-role of the AFA axiom is threefold.  
1. Before all, it grants the compositionality of the set inclu-

sion relations by prohibiting that the ordinary transitivity 
rule (TR), ¢�u,v,w  ((uRv � vRw)ouRw)², – where R is 
the inclusion relation and u, v, w are sets – holds in set 
inclusions, because TR supposes the set total ordering. In 
this way, because only the “weaker” transitivity of the 
Euclidean rule (ER) ¢�u,v,w  ((uRv � uRw)ovRw)² be-
tween inclusions is here allowed, this means that the rep-
resentation of sets ordered by inclusion as oriented 
graphs, in which the nodes are sets and the edges are in-
clusions with one only root (in our case the set u), satisfies 
always an “ascendant-descendant relationship” without  
“jumps” (each descendant has always its own ascendant, 
i.e., they form a tree). This is the core of the “composi-
tionality” of the inclusion operator of a coalgebra defined 
on NWF sets, i.e., the basis of the so-called “tree-unfold-
ing” of NWF sets, starting from an “ultimate root” similar 
to the universal set V – which is here allowed, because of 
the possibility of set self-inclusion8 –, i.e., the disjunction 
of all sets forming the universe of the theory, like the 
“join” of a Boolean lattice. All this is the basis for extend-
ing the dual equivalence between the category Stone and 
the category BAlg, to the dual equivalence between the 
category of the coalgebras Coalg and the category of the 

                                                                 
on finite sets. It is evident that Zermelo’s strategy of migrating to 
second-order set-theoretic semantics grants categoricity to mathe-
matics on an infinitistic basis.  

8 Recall that set self-inclusion is not allowed for standard sets because 
of Cantor’s theorem. This impossibility is the root of all semantic 
antinomies in standard set theory, from which the necessity of a sec-
ond-order set-theoretic semantics ultimately derives. 

9 This depends on the trivial observation that a coalgebra 
C = ¢C,J : C o :C², where J is a transition function characterizing 
C, over an endofunctor :: C o C can be seen also as an algebra in 
the opposite category Cop, i.e., Coalg(:) = (Alg(:op)op  [40] 

10 The fundamental property of . is that it is the counterpart of the 
power set functor � in the category of the topological spaces (i.e., 

algebras Alg, for an induced contravariant functor :*, 
i.e., Coalg(W) q Alg(W*) [40]9. 

2. Secondly, the AFA axiom and the “final coalgebra theo-
rem” justify the coalgebraic interpretation of modal logic 
in the framework of first-order logic (see the fundamental 
Van Benthem’s Theorem on this regard [41]) because the 
principle of set unfolding for partially ordered sets within 
an unbounded chain of set inclusions gives us an algebra-
ically “natural” interpretation of the modal possibility op-
erator “¡”, in the sense that <¡D> means that “D is true 
in some possible worlds”  [42,43,44,45], so to give a com-
putationally effective (first-order logic, where the predi-
cate calculus is complete) justification to Thomason’s 
early program of “reduction of the second-order logic to 
the modal logic” [46], made effective by another cele-
brated theorem, the Goldblatt-Thomason Theorem. Be-
cause any set tree can be modeled as a Kripke frame, this 
theorem defines rigorously which elementary classes of 
frames are modally definable (for a deep discussion of 
this theorem, see [47]. For an intuitive treatment of these 
notions, see sect. 5.2 in the Appendix). Because modal 
logic is the proper logic of deontic systems, this solves in 
principle A. Sen’s problem of how implementing value 
systems in CCR’s, both in economy and social computing 
(see §1.4)  

3. Thirdly, in the fundamental paper of 1988 [48] Abramsky 
first suggested that the endofunctor of modal coalgebras 
is the so-called “Vietoris functor” . 10. In this way we can 
extend the duality between coalgebras and algebras for 
the induction of a contravariant functor :*, to the dual 
equivalence between modal coalgebras and modal alge-
bras for the induction of a contravariant functor .*, i.e., 
Coalg(.) q Alg(.*) [40]. This depends on the fact that 
. is a functor defined on a particular category of topolog-
ical spaces, the category of the vector spaces Vect. Vector 
spaces are fundamental in physics: also the Hilbert spaces 
of the quantum physics mathematical formalism belong 
to such a category. The morphisms characterizing the 
vector space category are, indeed, linear functions, so if 
we apply to modal coalgebras Van Benthem’s “corre-
spondence theorem” [49] and the consequent “corre-
spondence theory” [41] between the modal logic and the 
decidable fragments of the first order monadic predicate 
calculus, associating each axiom of modal calculus with 
a first order formula (see in Appendix 5.2 some exam-

for continuous functions) such as the Stone space category, Stone. 
This functor maps a set S to its power set �(S) and a function f 
: S o S’ to the image map �f given by 
(�f) (X) ≔ f [X] (= { f(x) | x � X}). Applied to Kripke’s relational 
semantics in modal logic, this means that Kripke’s frames and models 
are nothing but “coalgebras in disguise”. Indeed, a frame is a set of 
“possible worlds” (subsets, s) of a given “universe” (set, S) and a bi-
nary “accessibility” relation R between worlds, R � S u S. A 
Kripke’s model is thus a frame with an evaluation function defined 
on it. Now R can be represented by the function R[x]: S o �(S), 
mapping a point s to the collection R[s] of its successors. In this way 
frames in modal logic correspond to coalgebras over the covariant 
power set functor�. For such a reconstruction see [40].   



ples), we obtain the following amazing result that Abram-
sky first suggested [48], and Kupke, Kurz & Venema de-
veloped [45].  

4. Namely, we can formally justify the modal coinduction 
(tree-unfolding) of predicate domains – also of SWF and 
of SDF, indeed – of set pre-orders that with respect to 
Sen’s CCR’s arrives till the definition of class equiva-
lence in social and economic rational choices, and not 
simply of “indifference between preferences” (see §1.4), 
also in infinite data streams (see §1.5). This is essentially 
due to the “Euclidean rule” 
¢�u,v,w  ((uRv � uRw)ovRw)², as substituting the “tran-
sitive rule” in NWF set inclusions. This allows us, in the 
coalgebraic simulation of dynamic social/economic sys-
tems, to define class equivalences, also for specific 
CCR’s (see Appendix 5.1), on pre-orders among triples 
of sets (see def. 7 in §1.4 with the Euclidean rule substi-
tuting the transitive one). We can indeed justify the modal 
operators of the “possible converse membership” or 
“possible co-membership”, 
 , and of the “actual co-

membership”, i.e., > @,  that is, � � 
 
 , where the angu-

lar and square parentheses are reminders of the possibil-
ity-necessity, “¡-,” operators, respectively [40].  

5. For social computing, this means that we are in principle 
able to model in real time on the data flow, the for-
mation/dissolution of coherent domains of CCR’s, ac-
cording to definite criteria of social/economic motiva-
tions, interests, values, beliefs. They correspond to the 
constitution/dissolution of new social collective actors, as 
far as the boundary conditions in the social/economic en-
vironment allow their far from equilibrium stability.     

What, intuitively, all this means for our aims is that, be-
cause modal coalgebras admit only a stratified (indexed) usage 
of the necessity operator , and of the universal quantifier �, 
a set actually exists as far as effectively unfolded by a co-in-
ductive, concurrent procedure – not “constructed” by an induc-
tive, algebraic one. For this reason, we are able to deal with 
infinite data streams, and finally to conceive realistic social 
and economic models! 

In this framework, the semantic evaluations in the Boolean 
logic effectively consist in a convergence between an induc-
tive “constructive” procedure, and a co-inductive “unfolding” 
procedure, also over unbounded chains of set inclusions.  

Namely, they effectively consist in the superposition 
limit/colimit between two concurrent inductive/coinductive 
computations (see Appendix 5.1). This is the core of Abram-
sky notion of finitary objects as “limits of finite ones”, defina-
ble only on NWF sets These finitary objects are indeed, ac-
cording to him, the most proper objects of the mathematical 
modelling of realistic computations, also in social computing, 
we can add [48].  

This is also the core of the related notion of duality between 
an initial algebra, starting from a least fixed-point, x = f (x), 
and its final coalgebra, starting from a greatest fixed-point 
(see Appendix 5.1), at the basis of the notion of Universal 

                                                                 
11 However, see the fundamental remarks about the limits of decida-
bility and computability in this first-order modal logic semantic ap-
proach in [47], in which it is said, just in the conclusion, that one of 
the most promising research program in this field is related with the 
coalgebraic approach to modal logic semantics. 

Coalgebra as a “general theory of both computing and dy-
namic systems” [39]. This theory allows to justify a formal se-
mantics of computer programming as satisfaction of a given 
program onto the states of a computing system, outside the Tu-
ring paradigm. Indeed, this approach systematically avoids the 
necessity of referring to an UTM for justifying formally the 
universality in computations, because of the possibility of re-
ferring to the algebraic and co-algebraic universality11. At the 
same time, this theory is able to give a strong formal founda-
tion to the notion of natural computation, as far as we extend 
such a coalgebraic semantics to quantum systems and quantum 
computation. This research program has been inaugurated by 
S. Abramsky and his group at Oxford only few years ago, both 
in fundamental physics [50], and in QM computing [51], even 
though it has its most natural implementation in a QFT foun-
dation of both quantum physics and quantum computation 
[52]12. 

Finally, this gives a logical interpretation as a predicate 
(e.g., “being horse”) of the “doubled number”, i.e., ,A A�& & , 
as identity functions relative to two mirrored (doubled) sets of 
degrees of freedom, A and A� ,  one relative to a logical realm 
(the Algebra(:*)), the other to its dual input realm (the 
Coalgebra(:)), the latter satisfying (making true) naturally – 
i.e., dynamically in this QFT implementation – the former (see 
above, sect. 2.3). The co-membership relation in the coalge-
braic half has its physical justification in QFT by the general 
principle of the “foliation of the QV” at the ground state, and 
of the relative Hilbert space into physically inequivalent sub-
spaces”, allowing “the building up” via SSB of ever more 
complex phase coherence domains in the QV, given their sta-
bility in time. They do not depend, indeed, on any energetic 
input (they depend on as many NGB condensates |& |, each 
correspondent to a SSB of the QV at the ground state), but on 
as many “entanglements” with stable structures of the environ-
ment [53]. This justifies Freeman and Vitiello in suggesting 
that this is the fundamental mechanism of the formation of the 
so called “long-term memory” traces in brain dynamics [54], 
i.e., the formation of the “deep beliefs” in our brains by which 
each of us interprets the world, based on her/his past experi-
ence, using the AI recent diffused jargon in the artificial neural 
network computing [55].       

Anyway, apart from this “ontological” exemplification, 
useful however to connect the present discussion with the rest 
of this paper, all this means extending to a Boolean lattice L of 
the monadic predicate logic the modal semantics notions of co-
induction and/or of “tree unfolding”, so to give the formal jus-
tification of the modal notion of “local truth” also in a compu-
tational environment.  Indeed, because such a co-inductive 
procedure of predicative domains justification is defined on 
NWF sets supporting set self-inclusion, i.e., xo{x}, for each 
of these co-induced domains also the relative Idx, i.e., the rela-
tive predicate M is defined, without any necessity of referring 
to Fregean second-order axioms, such as the comprehension 
axiom of ZF set-theory, i.e.: <�x�y x�y { Mx>. This justifies 
the general statement that in CT coalgebraic semantics there 
exists a Tarski-like model theory [29], without, however, the 
necessity of referring to higher order languages for justifying 
the semantic meta-language [56], according to Thomason’s re-
duction program.  

12 This depends on the fact that contravariance in QM algebraic rep-
resentation theory can have only an indirect justification, as Abram-
sky elegantly explained in his just quoted paper. QM algebraic for-
malism is, indeed, intrinsically based on Von Neumann’s covariant 
algebra, so that only Hopf algebras’ self-duality are “naturally” (in 
the algebraic sense of the allowed functorial transforms) justified.  



Quoting the first concluding remark of V. Goranko and M. 
Otto contribution to the Handbook of modal logic devoted to 
model theory of modal logic [57], we can conclude too: 

Modal logic is local. Truth of a formula is evaluated at a 
current state (possible world); this localization is 
preserved (and carried) along the edges of the 
accessibility relations by the restricted, relativized 
quantification corresponding to the (indexed) modal 
operators.      

3.3 Coalgebraic semantics of quantum systems  
As a final step, let us apply to our QFT model of quantum 

computing system the coalgebraic model of computation over 
infinite data streams in terms of a particular abstract machine: 
the infinite state black-box machine.  

In the light of the precedent discussion it is necessary and 
sufficient for such an aim to demonstrate that the collections 
of the “q-deformed Hopf algebras” and the “q-deformed Hopf 
coalgebras” of the QFT mathematical formalism constitute 
two dually equivalent categories for the contravariant applica-
tion of the same functor T, that is, the contravariant application 
of the so-called Bogoliubov transform [9]. This is the classical 
QFT operator of “particle creation-annihilation”, where the ne-
cessity of such a contravariance depends on the constraint of 
satisfying anyway the energy balance principle. I.e., q-
HAlg(T) U q-HCoalg(T*).  

The complete justification of a coalgebraic interpretation of 
this mathematical formalism is given elsewhere [52], because 
we cannot develop it here. Nevertheless, at least two points of 
such a justification are important to emphasize, for justifying 
the interpretation of the maximal entropy in a QFT system as 
a semantic measure of information, i.e., as a statistical measure 
of maximal local truth in a CT coalgebraic logic for QFT sys-
tems. 

Firstly, the necessary condition to be satisfied in order that 
a coalgebra category for some endofunctor :, i.e., Coalg(:), 
can be interpreted as a dynamic and/or computational system, 
is that it satisfies the formal notion of state transition system 
(STS). Generally, a STS is an abstract machine characterized 
as a pair (S, →), where S is a set of states, and ((→) � S u S) 
is a transition binary relation over S. If p, q belong to S, and (p, 
q) belongs to (→), then (p → q), i.e., there is a transition over 
S. For allowing that a dynamic/computational system be rep-
resented as a STS on a functorial coalgebra for some functor 
: it is necessary that the functor admits a final coalgebra [40]. 
I.e.: 

Definition 1: (Definition of final coalgebra for a functor). A 
functor : : C → C is said to admit a final coalgebra 
iff the category Coalg(:) has a final object, that is, a coalge-
bra ' such that from every coalgebra � in Coalg(:),  

there exists a unique homomorphism, !� : � → '.   
This property has a very intriguing realization – and this is 

the sufficient condition to satisfy for formalizing a QFT sys-
tem as a computing system – into the final coalgebra associ-
ated with a particular abstract machine, the so-called “infinite 
state black-box machine” �¢M,P² [40]. It is characterized by 

                                                                 
13 In parenthesis, in the machine � the general coalgebraic principle 
of the observational (or behavioral) equivalence among states holds 
in the following way. Indeed, for every two coalgebras (systems) 

� � � � � �1 2 1 21 2, , ! ! ! ! .C c c x x� u  �  Coalg       !  All the 

the fact that the machine internal states, x0, x1, …, cannot be 
directly observed, but only some their values (“colors”, cn) as-
sociated with a state transition P. I.e., P (x0) = (c0, x1), 
P (x1) = (c1, x2), … In this way, the only “observable” of this 
dynamics is the infinite sequence of behaviors or stream 
beh (x0) = (c0, c1, c2, …) � CZ of value combinations or 
“words” over the data set C.  The collection CZ forms a labeled 
STS for the functor C u !, where !�is the set of all the identity 
functions (labels), as far as we endow CZ  with a transition 
structure J splitting a stream u = c0c1c2, … into its “head” 
h(u) = c0, and its tail t(u) = c1c2c3… . If we pose 
J (u) = (h(u),t(u)), it is possible to demonstrate that the behav-
ior map x 6 beh (x) is the unique homomorphism from  ��to 

this coalgebra ¢C,J ², that is the final coalgebra ' in the cate-

gory Coalg(C u !)13.   

The abstract machine ��is used in TCS for modelling the 
coalgebraic semantics of programming relatively to infinite 
data sets – the so-called data streams: think, for instance,at in-
ternet and more generally at all the ever-growing databases 
(“big data”) [39]. The application of ��for characterizing the 
QFT dynamics as a “computing dynamics” is evident in the 
light of the precedent discussion because we are allowed to 
interpret the thermodynamic functor T (Bogoliubov transform) 
characterizing the category q-HCoalg(T) as a functor able to 
associate the observable c of each “word” (phase coherence 
domain) of the QFT infinite dataset C, i.e., the infinite CCR’s 
characterizing the QV, with the correspondent  Ic, so that T = 
(C u !). Indeed, each Ic corresponds in the QFT formalism to 
the NGB condensate numerical value |&K| identifying univo-
cally each phase coherence domain, i.e. a “word” of the QV 
“language”.  In this way, the QV, because endowed with the 
SSB state-transition – effectively a phase-transition – structure 
J, selecting every time one CCR (head) as to the rest of the 
others (tile), corresponds to the final coalgebra ' of the cate-

gory q-HCoalg(T). Moreover, the dynamics of the �QFT is a 
thermo-dynamics, i.e., its state (phase) transition is “moved” 
by the II Principle (energy equipartition), in a way that must 
satisfy, on one hand, the “energy arrow contravariance” related 
to the I Principle, and, on the other one, without consuming all 
the QV energy “reservoir” as requested by the III Principle14. 
All this implies the necessity of doubling the behavior map, 
i.e., � �,x beh x x�6 , and all the related objects and structures 
– i.e., the necessity of “echoing” each word of the QV lan-
guage –, so to satisfy finally the “dual equivalence” character-
izing the QFT categorical formalism, i.e., q-HAlg(T) U q-
HCoalg(T*). In logical terms, the functor induction T m T* 
means that the semantics (coalgebra) induces its own syntax 
(algebra). This, if justifies, on one hand, the computer scientist 
interest toward a coalgebraic approach to quantum computa-
tion for managing streams, on the other one, it demonstrates 
that the QFT interpretation of this approach is the more prom-
ising one. In fact, what we intended using the metaphor of the 

scholars agree that this has an immediate meaning for quantum sys-
tems logic and mathematics, as a further justification for a coalge-
braic interpretation of quantum systems. 

14 A condition elegantly satisfied in the QFT formalism by the fractal 
structure of the systems phase space and, therefore, by the chaotic 
character of the macroscopic trajectories (phase transitions) defined 
on it, generally, and specifically in the dissipative brain dynamics 
[60] 



“word echoing” within the model of the �QFT is effectively the 
DDF principle determining the dynamic choice, observer-in-
dependent, of the structure (syntax) of the “composed Hilbert 
space” of a QFT system as based on the dual equivalence (se-
mantics) of one pair q-HAlg(T) U q-HCoalg(T*) representing 
the system.       

All this is related, with the second, final, observation,  

4 CONCLUSIONS 

In this paper, we started from the analysis of the notion of 
“social welfare functions” as “collective choice functions” in 
social computing. We analysed the main computational prob-
lems of these notions, related mainly to the usage of a model-
ling of social and economic systems inspired at the statistical 
mechanics’ study of systems stable at equilibrium, according 
to the principle of Gibbs’ gas thermodynamics, from pioneer-
ing Samuelson’s studies on.  

We proposed, on the contrary, a modelling of social/eco-
nomic systems inspired at condensed matter thermodynamics 
for far from equilibrium stability conditions, as fa as based on 
QFT fundamental physics, interpreted as a thermal field the-
ory. 

The common coalgebraic dynamic modelling developed in-
dependently in QFT and in TCS for dealing with otherwise non 
computable semantic problems, such as computations on (in-
finite) data streams and program security in functional pro-
gramming, can be fruitfully applied also to the study of CCR’s 
in dynamic social computing.  

Particularly, we showed that we can formally justify the 
modal coinduction (tree-unfolding) of predicate domains – 
also of SWF and of SDF, indeed – of set pre-orders that with 
respect to Sen’s CCR’s arrives till the definition of class equiv-
alence in social and economic rational choices, and not simply 
of “indifference between preferences” (see §1.4), also on infi-
nite data streams (see §2.5). The limitation to finite sets is in-
deed the non-realistic limitation of social and economic com-
puting in the actual complex and “liquid” scenario. A limita-
tion that can be in principle avoided by the definition of the 
principle of dual equivalence between algebras and coalge-
bras, defined on NWF sets, allowing by hypotheses unbounded 
chains of set inclusions on which Abramsky’s notion of 
“finitary computations” can be formally defined, freeing TCS 
from the false dichotomy between finitistic and non-finitistic 
computations.  

This initial result opens the way to new promising scenarios 
in quantum natural, social and artificial computation to be ex-
plored in the next future. 

5 APPENDIXES 

5.1 Induction and coinduction as principles of set 
definition and proof for Boolean lattices  

The collection of clopen subsets of a Stone space, as to which 
a Boolean algebra is isomorphic, according to the Stone theo-
rem is effectively an ultrafilter U (or the maximal filter F) on 
the power-set, �(S), of the set S. Namely, it is the maximal 
partially ordered set (maximal poset) within �(S) ordered by 
inclusion, i.e., (�(S), �), with the exclusion of the empty set. 
Any filter F is dual to an ideal I, simply obtained in set (or-
der) theory by inverting all the relations in F, that is, x ≤ y 
with y ≤ x, and by substituting intersections with unions. 
From this derives that each ultrafilter U is dual to a greatest 
ideal that, in Boolean algebra, is also a prime ideal, because 
of the so-called prime ideal theorem, effectively a corollary 

of the Stone theorem, demonstrated by himself. All this, ap-
plied to the Stone theorem, means that the collection of par-
tially ordered clopen subsets of the Stone space to which a 
Boolean algebra is isomorphic, corresponds to a Boolean 
logic complete lattice L for a monadic first order predicate 
logic. From this, the definition of induction and coinduction 
as dual principles of set definition and proof is immediate, as 
soon as we recall that the fixed-point of a computation F is 
given by the equality x = F(x) [36]: 

Definition 2 (sets inductively/co-inductively defined by F). 
For a complete Boolean lattice L whose points are sets, and 
for an endofunction F, the sets 

^ `
^ `

: | ( )
: | ( )

ind

coind

F x F x x
F x x F x

 d
 d
�
*  

are, respectively, the sets inductively defined by a recursive F, 
and co-inductively defined by a co-recursive F. They corre-
spond, respectively, to the meet of the pre-fixed point and the 
join of the post-fixed points in the lattice L, i.e., the least and 
greatest fixed-points, if F is monotone, as required from the 
definition of the category Pos (see above, sect. 3.1). 

Definition 3 (induction and co-induction proof principles). In 
the hypothesis of Definition 2, we have: 
 

( ) (induction as a method of proof)
( ) (co-induction as a method of proof)

ind

coind

if F x x then F x
if x F x then x F

d d
d d

 

These two definitions are the basis for the duality between 
an initial algebra and its final coalgebra, as a new paradigm 
of computability, i.e., Abramsky’s finitary one, and henceforth 
for the duality between the Universal Algebra and the Univer-
sal Coalgebra [39]. 

5.2 The extension of coinduction method to the defi-
nition of a complete Boolean Lattice of monadic 
predicates 

The fundamental result of the above quoted Goldblatt-
Thomason Theorem and Van Benthem Theorem is that a set-
tree of NWF sets – effectively a set represented as an oriented 
graph where nodes are sets, and edges are inclusion relations 
with subsets governed by an Euclidean rule – corresponds to 
the structure of a Kripke frame of his relational semantics, 
characterized by a set of “worlds” and by a two-place accessi-
bility relation R between worlds. E.g., the second graph from 
left below corresponds to the graph of the number 3, with 
u = 3, v = 2, w = 1. Therefore for understanding intuitively the 
extension of the coinduction method to the domains of mo-
nadic predicates of a Boolean lattice, let us start from 1) the 
“Euclidean rule (ER)” ¢�u,v,w  ((uRv � uRw)ovRw)² (see the 
second from left graph below), driving all the NWF set inclu-
sions and that is associated by Van Benthem’s Correspondence 
Theorem to the modal axiom E (or 5): ¢¡Do,¡D², of the 
modal propositional calculus, and 2) from the “seriality rule 
(SR)” ¢�u�v (uRv)² (an example of this axiom is given by the 
fourth or the fifth graph below) – that has an immediate phys-
ical sense, because it corresponds to whichever energy conser-
vation principle in physics, e.g., the I Principle of Thermody-
namics –, and that is associated to the modal axiom D: 
¢,Do¡D². The straightforward first order calculus, by which 
it is possible formally justifying the definition/justification by 
co-induction (tree unfolding) of an equivalence class as the 
domain of a given monadic predicate, through the application 



of the two above rules to whichever triple of objects ¢u,v,w², is 
the following.  

For ER, ¢�u,v,w ((uRv � uRw) o vRw)²; hence, for serial-
ity, ¢�u,v (uRv o vRv)²; finally:  
¢�u,v,w  [((uRv � uRw) o (vRw � wRv � vRv � wRw)) l 
((v{w) � u)]². I.e., (v{w) constitutes an equivalence class, say 
Y, because a “generated” transitive15-symmetric-reflexive re-
lation holds among its elements, which are therefore as many 
“descendants” of their common “ascendant”, u. More intui-
tively, using Kripke’s relational semantics graphs for modal 
logics, where ¢u,v,w² are as many “possible worlds” (models) 
of a given universe W, and where R is the two-place “accessi-
bility relation” between worlds, the above calculus reads:   

 
The final graph constitute a Kripke-like representation of 

the KD45 modal system, also defined in literature as “second-
ary S5”, since the equivalence relationship among all the pos-
sible worlds characterizing S5 here holds only for a subset of 
them, that . In our example, the subset of worlds {w,v}. 
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