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1 Motivation

Do-Form is motivated by the long-term vision of making information systems depend-
able. In the past even mis-represented units of measurement caused fatal engineering
disasters. In economics, the subtlety of issues involved in good auction design may
have led to low revenues in auctions of public goods such as the 3G radio spectra.
Similarly, banks’ value-at-risk (VaR) models — the leading method of financial risk
measurement — are too large and change too quickly to be thoroughly vetted by hand,
the current state of the art; in the London Whale incident of 2012, JP Morgan claimed
that its exposures were $67mn under one of its VaR models, and $129 under another
one. Verifying a model’s properties requires formally specifying them; for VaR models,
any work would have to start with this most basic step, as regulators’ current desiderata
are subjective and ambiguous.

We believe that these problems can be addressed by representing the knowledge
underlying such models and mechanisms in a formal, explicit, machine-verifiable way.
Contemporary computer science offers a wide choice of knowledge representation lan-
guages well supported by verification tools. Such tools have been successfully applied,
e.g., for verifying software that controls commuter rail or payment systems. Still, do-
main experts without a strong computer science background find it challenging to



choose the right tools and to use them. Do-Form aims at investigating ways to sup-
port them. Some problems can be addressed now, others will bring new challenges to
computer science.

2 Topics
The call for papers listed the following topics of interest:

o for domain experts: what problems in application domains could benefit from
better verification and knowledge management facilities? As possible fields we
suggested:

— Example 1 (economics): auctions, VaR, trading algorithms, market design
— Example 2 (engineering): system interoperability, manufacturing processes,

product classification

o for computer scientists: how to provide the right knowledge management and
verification tools to domain experts without a computer science background?

— wikis and blogs for informal, semantic, semiformal, and formal mathemat-
ical knowledge;
— general techniques and tools for online collaborative mathematics;

— tools for collaboratively producing, presenting, publishing, and interacting
with online mathematics;

— automation and computer-human interaction aspects of mathematical wi-
kis;

— ontologies and knowledge bases designed to support knowledge manage-
ment and verification in application domains;

— practical experiences, usability aspects, feasibility studies;

— evaluation of existing tools and experiments;

— requirements, user scenarios and goals.

3 Programme

The symposium is designed to bring domain experts and formalisers into close and
fruitful contact with each other: domain experts will be able to present their fields and
problems to formalisers; formalisers will be exposed to new and challenging problem
areas. The programme combines talks, system demos, and tutorials to ensure close
interaction among participants from both sides.

For the tutorials we are delighted to have three world-class economists, who will
be presenting the following domains:



e Matching markets (M. Utku Unver, Boston College): These include matching
students to schools, interns to hospitals, and kidney donors to recipients. See
the documentation for the 2012 Nobel Memorial Prize in Economic Sciences for
more background informationﬂ

e Auctions (Peter Cramton, University of Maryland): Peter has been working on
auctions for Ofcom UK (4G spectrum auction), the UK Department of the En-
vironment and Climate Change, and others — and most recently on the “applicant
auctions” for the new top-level Internet domains issued by the I[CANN.

¢ Finance markets regulation (Neels Vosloo, Financial Services Authority, UK):
It is currently impossible for regulators to properly inspect risk management
models. Test portfolios are a promising tool for identifying problems with risk
management models. To what extent can techniques from mechanised reasoning
automate some of the inspection process?

Further information about the speakers and their tutorials is available from the sym-
posium homepage.

4 Submission and Review Process
We ran a novel two-stage submission process:

Stage 1: problem & tool (“nail & hammer”) descriptions to be reviewed and matched
with each other

Stage 2: regular extended abstracts, with a normal conference-like peer review

In stage 1 we solicited ...

e from domain experts: descriptions of canonical models and problems in their
domain that might benefit from better verification and knowledge management
facilities. Descriptions should focus on aspects of these models that domain
users find particularly problematic, and suspect might be aided by formalisation
tools

e from computer scientists: descriptions of formalisation, verification and know-
ledge management tools, with an emphasis on how they could be applied in a
concrete real-world setting, or tailored to such application domains.

The symposium chairs, assisted by the PC members, reviewed and initially pub-
lished commented versions of the stage 1 submissions on the symposium homepage
(reproduced below), to provide orientation for stage 2. Where we identified match-
ing problems and tools, we notified the respective authors. Excluding one withdrawal,
we received seven stage 1 submissions, out of which two classified as nails, three as
hammers, and two covered both aspects.

http://www.nobelprize.org/nobel_prizes/economics/laureates/2012/


http://www.nobelprize.org/nobel_prizes/economics/laureates/2012/

In stage 2, with a later deadline, we solicited regular submissions on any of the
topics outlined initially. We encouraged submissions that specifically addressed topics
identified in stage 1; for a tool description paper, this could, e.g., have been done
by motivating the tool with a stage 1 problem, and sketching how the tool could, or
will, be applied in this domain. We also encouraged the stage 1 authors to revise and
expand their initial submissions. The referees were advised to judge submissions based
on the PC’s views of the likelihood of contributing to a better matching of hammers
(formalisation and verification tools) to nails (domain problems).

We invited research and position papers, as well as tool and system descriptions,
and finally formalised knowledge representations with human-readable annotations.

In addition to the revised and expanded versions of the stage 1 submissions, we
accepted four new submissions in stage 2. These included two tool and system de-
scriptions, one description of a formalised knowledge representation and one research
paper.

The submission and review process was supported by the EasyChair system.

S Matchmaking

To provide orientation for submission stage 2, we published for each stage 1 submis-
sion a summary of their hammer/nail aspects and gave advice on how they could be
matchedE] Several authors followed this advice and made explicit references to stage 1
submissions in their papers, using the submission numbers given below.

Submission 1 (nail)

SAsSy - Scrutable Autonomous Systems (Nava Tintarev, Nir Oren, Roman Kutlak,
Matt Green, Judith Masthoff, Kees van Deemter and Wamberto Vasconcelos)

Failure to understand complex (e.g. distributed) autonomous systems may lead to
unrealistic expectation or lack of trust (e.g. in dangerous environments), and thus lim-
its their adoption. The authors discuss the importance of making them scrutable, i.e.
adding to them a mechanism that can explain the alternatives for actions and its de-
cisions, so that it can communicate with humans in an understandable way on a level
that allows users to cope with potentially large amounts of data. Making autonomous
systems scrutable rests on four foundations:

1. arepresentation for planning

2. human-understandable reasoning mechanisms

3. translating logical statements into natural language

4. techniques that enable the user to cope with a deluge of information

Each of them requires formalisation and has its own unique challenges, as does the
integration of all of these into a single system.

ZMost stage 1 submissions have subsequently been revised for stage 2.



The SAsSy project aims at developing a hammer for this nail but is in an early stage
and could therefore (re)use existing hammers. Respondents to this work can be found
on two different ends: non-trivial applications as well as contributions to the different
parts (1-4). The authors have so far identified the following possible hammers, and
studied relevant literature:

e 1. knowledge acquisition
e 1. and 2. argumentation theory
e 2. and 3. natural language generation

e 4. diagrams, user modelling, user evaluation

Submission 2 (nail and hammer)

Transparency of Environmental Computer Models (Martine de Vos, Jan Top, Willem
Robert van Hage and Guus Schreiber)

The environment is complex to model: long-term processes, complex mechanisms,
lots of variability, not everything well understood, lack of empirical data. Current
computer models of this, as well as the process of their development, lack transparency:
What is incorporated in the model and what not, how trustable are the results? This
restricts their applicability and reusability by outsiders/non-developers. The following
is needed to make them more transparent:

1. make their underlying conceptual model explicit

2. encourage model developers (i.e. domain experts) to do (1), using formalisation
3. encourage them by incentives

The following previously existing solutions are not yet completely sufficient:

e teaching best practice to modellers (when they don’t see an urgent need for trans-
parency, while society has this need)

e high-level annotation of scientific models and workflows, and provenance an-
notation of scientific data

The authors present the approach of explicitly describing the conceptual models
themselves (concepts and relations) as ontologies, and using the latter to

o facilitate reviews of the model

e communicate the model and its underlying scientific knowledge

Respondents to this work can help to address requirements (1-3), or apply ontolo-
gies as a means of review and communication in other application settings.



Submission 3 (hammer)

A Vision of Collaborative Verification-Driven Engineering of Hybrid Systems (Stefan
Mitsch, Grant Olney Passmore and Andre Platzer)

Hybrid systems with both discrete and continuous dynamics are an important model
for real-world physical systems. The key challenge is how to ensure their correct
functioning w.r.t. safety requirements. Promising techniques to ensure safety seem
to be model-driven engineering to develop hybrid systems in a well-defined and trace-
able manner and formal verification to prove their correctness, forming the vision of
verification-driven engineering. Despite the remarkable progress in automating formal
verification of hybrid systems, the construction of proofs of complex systems often re-
quires significant human guidance, since hybrid systems verification tools work over an
undecidable theory and cover different fields of mathematics. It is thus not uncommon
for verification teams to consist of many players with diverse expertise (e.g. on sev-
eral fields of mathematics, verification, machine-supported theorem proving, etc.) This
paper presents a verification-driven toolset for collaboratively engineering large-scale
hybrid systems, which supports

e modeling hybrid systems
e exchanging and comparing models and proofs, and

e managing verification tasks
Particular strenghts include

e decomposition of hybrid systems (so that they can be verified by verifying prop-
erties of their subsystems),

e cfficiently solving multivariate polynomial inequalities (by integrating existing
provers; work in progress),

e collaborative development of models and proofs (in a generic language and in
domain-specific ones)

Respondents to this work can offer new application domains.

Submission 4 (hammer)

Interacting with Ontologies and Linked Data through Controlled Natural Lan-
guages and Dialogues (Ronald Denaux, Vania Dimitrova and Anthony Cohn)

Ontologies play an important role in many different appication areas. Although the
languages in which they can be speficied look superficially simple, domain expert have
problems to apply them appropriately. This paper presents three steps to enable domain
experts to build ontologies:

1. Rabbit, a controlled natural language frontend for OWL, which has been suc-
cessfully tested with domain experts in cartography



2. ROO, an editor that helps domain experts to avoid modelling mistakes by guiding
them through the ontology authoring process

3. afacility that enriches this editor with interactive feedback on logical consequences
of new facts to be added to an ontology, i.e.:

(a) the fact already is in the ontology
(b) can be derived from it,
(c) contradicts it,

(d) is new (and if so whether anything follows from it)

So far this makes authors aware of problems, but does not really yet help to
resolve them.

4. adialogue-based user interface for giving more differentiated feedback while the
author is building an ontology (but useful beyond ontology authoring)

Respondents to this work could evaluate whether the tools presented here are really
independent of the application domain, or try to scale the techniques to more expressive
logics.

Submission 5 (hammer)

Explaining the Outcome of Knowledge-Based Systems; a discussion-based ap-
proach (Martin Caminada, Mikotaj Podlaszewski and Matt Green)

Nonmonotonic reasoning is a framework for analysing the construction of argu-
ments based on rules of thumb which are subject to exceptions. This submission
proposes such a discussion-based approach for explaining the outcome of knowledge-
based systems that use nonmonotonic (defeasible) inference. An interactive Python-
based frontend is available, which aids in the process of constructing arguments. A key
feature is the ability not only to establish an argument, but also to give a (one hopes)
explanation of the justification of the argument suitable for human users to digest.

Respondents could apply this technique in their respective domains; it seems par-
ticularly promising in the social sciences.

Submission 6 (hammer and nail)

Developing an Auction Theory Toolbox (Christoph Lange, Colin Rowat, Wolfgang
Windsteiger and Manfred Kerber)

Auctions allocate trillions of dollars in goods and services every year. Auction
design can have significant consequences, but its practice outstrips theory. The authors
aim at advancing auction theory with help from mechanised reasoning. To that end
they are developing a toolbox of formalised representations of key facts of auction the-
ory, which will allow auction designers to have relevant properties of their auctions
machine-checked. In the starting phase of this effort, they are investigating the suit-
ability of different mechanised reasoning systems (Isabelle, Theorema, and TPTP) for



reproducing a key result of auction theory: Vickrey’s celebrated 1961 theorem on the
properties of second price auctions — the foundational result in modern auction theory.
Based on their formalisation experience, they give tentative recommendations on what
system to use for what purpose in auction theory, and outline further steps towards a
complete auction theory toolbox.

Respondents could apply a similar toolbox building methodology in other domains,
or could contribute additional mechanised reasoning know-how to the authors’ auction
theory toolbox building effort.

Submission 7 (nail)

Model Validation and Test Portfolios in Financial Regulation (Neels Vosloo)

Modern finance relies on software, whether to price assets (‘valuation models’)
or to compute portfolios’ riskiness (‘capital models’). Given the quantities of money
involved, errors in financial software can lead to tens or hundreds of millions of dollars
of losses. At the same time, model validation and checking is typically performed using
traditional, manual methods. This constellation of observations has led to high-level
concern about whether the modern financial system is overly reliant on computational
models, whose possibilities for failure are not well understood or controlled (q.v. the
2012 Beddington/Foresight report).

In the midst of this clearly very large domain area, Vosloo outlines a tractable start-
ing point for the consideration of formal methods/mechanised reasoning: how can reg-
ulators develop minimal ‘test portfolios’, capable of efficiently ensuring that capital
models incorporate relevant risk factors, benchmarking those capital models against
each other, and stress testing them under a variety of market conditions.

Respondents could outline how to apply verification techniques to this problem.

6 Organisation

Do-Form had the following programme committee:
1. Bill Andersen, Highfleet, Baltimore, US
2. Rob Arthan, Lemma 1, Reading, UK
3. Christoph Benzmiiller, Mathematics and Computer Science, Free University of
Berlin, Germany
4. Peter Cramton, Economics, University of Maryland, US
5. James Davenport, Computer Science and Mathematical Sciences, University of
Bath, UK
6. Michael Griininger, Mechanical and Industrial Engineering, University of Toronto,
Canada
7. Manfred Kerber, Computer Science, University of Birmingham, UK (co-chair)
8. Michael Kohlhase, Computer Science, Jacobs University Bremen, Germany
9. Christoph Lange, Computer Science, University of Birmingham, UK (co-chair)
10. Till Mossakowski, DFKI and University of Bremen, Germany
11. Colin Rowat, Economics, University of Birmingham, UK (co-chair)
12. Todd Schneider, Raytheon, Sterling, VA, US



13. Richard Steinberg, London School of Economics, UK
14. Geoff Sutcliffe, Computer Science, University of Miami, US
15. Theodore L. Turocy, Centre for Behavioural and Experimental Social Science,
University of East Anglia, UK
16. Makarius Wenzel, Formal Testing and System Exploration, University of Paris
Sud, France
17. Wolfgang Windsteiger, RISC / JKU Linz, Austria
The three chairs are running ForMaRE, an effort to apply Formal Mathematical
Reasoning in Economicﬂ ForMaRE is supported by EPSRC grant EP/J007498/1
(“Formal Representation and Proof for Cooperative Games: A Foundation for Com-
plex Social Behaviour™).
Do-Form web page: http://www.cs.bham.ac.uk/research/projects/
formare/events/aisb2013/

3http://www.cs.bham.ac.uk/research/projects/formare/
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SAsSy — Scrutable Autonomous Systems

Nava Tintarev, Roman Kutlak, Nir Oren, Kees Van Deemter
Matt Green, Judith Masthoff, Wamberto Vasconcelos
University of Aberdeen, email: n.tintarev@abdn.ac.uk

Abstract. An autonomous system consists of physical or virtual
systems that can perform tasks without continuous human guidance.
Autonomous systems are becoming increasingly ubiquitous, rang-
ing from unmanned vehicles, to robotic surgery devices, to virtual
agents which collate and process information on the internet. Ex-
isting autonomous systems are opaque, limiting their usefulness in
many situations. In order to realise their promise, techniques for mak-
ing such autonomous systems scrutable are therefore required. We
believe that the creation of such scrutable autonomous systems rests
on four foundations, namely an appropriate planning representation;
the use of a human understandable reasoning mechanism, such as ar-
gumentation theory; appropriate natural language generation tools to
translate logical statements into natural ones; and information pre-
sentation techniques to enable the user to cope with the deluge of in-
formation that autonomous systems can provide. Each of these foun-
dations has its own unique challenges, as does the integration of all
of these into a single system.

1 Introduction

An autonomous system consists of physical or virtual systems that
can perform tasks without continuous human guidance. Autonomous
systems are becoming increasingly ubiquitous, ranging from un-
manned vehicles, to robotic surgery devices, to virtual agents which
collate and process information on the internet. Such systems can po-
tentially replace humans in a variety of tasks which can be dangerous
(such as refuelling a nuclear reactor), mundane (such as crop pick-
ing), or require superhuman precision (as in robotic surgery). Note
that some of these tasks could be safety critical, in the sense that hu-
man life can be at risk if the autonomous system does not behave
as intended. The reasoning processes driving an autonomous system
can range from reactive mechanisms (potentially interacting to cre-
ate complex behaviours c.f. [1]), to rule based systems such as [4, 12]
which are widely studied in the agents literature to very complex for-
malisms capable of dealing with uncertainty, online planning, and
the like (see [13] for an overview). While increasing reasoning com-
plexity can enable an autonomous system to handle a wider range
of situations, modelling and verifying the operation of such systems
becomes increasingly difficult.

A distributed autonomous system (DAS) consists of multiple au-
tonomous components (often referred to as agents), which can com-
municate with each other while cooperating or competing to achieve
some set of goals. The complexities of autonomous systems, particu-
larly when distributed, means that humans struggle to establish why
a system chose to behave as it did, to identify what alternative actions
the system considered, and to determine why these alternatives were
not selected for execution by the system. In other words, such sys-

tems are opaque. Such opacity is exacerbated by the formal models
typically used to drive the reasoning behaviour in such systems —
a human (and particularly a non-expert) often struggles to commu-
nicate with an autonomous system. This lack of understanding can
lead to unrealistic expectations of an autonomous system, or alterna-
tively to a lack of trust in it, causing inefficiencies at best, and leading
to dangerous outcomes in the worst cases. Such problems limit the
adoption of these types of systems.

The SAsSy project! proposes to investigate computational mech-
anisms for providing transparency to humans regarding the internal
workings of a DAS. More specifically, we seek to utilise formal ar-
gumentation techniques to explain (to a human) why some plan was
chosen for execution by the system, and to allow the human to pro-
vide additional information which can be used to modify the plan.
We also aim to identify the best ways to present the explanations
(primarily as text, but also in diagrammatic form) to a human oper-
ator, based on extensive knowledge acquisition, user modelling and
user evaluation.

2 Example

Let us provide a simple example from the railway domain that il-
lustrates some of the issues. In this scenario multiple stakeholders
have to agree on a plan for maintaining railway lines. We assume
two actions are possible: Move (equipment, from, to) and
Repair (equipment, location). Repair is performed using
equipment, or more specifically a crane ¢ or c2, and the crane has to
be moved to a location before repair of that location can take place.
Two locations, a and b need to be repaired. Location b has to be
repaired before location a (an example of a constraint; cannot be vi-
olated). Each of the stakeholders is represented by an agent and each
agent has different preferences and requirements. In our scenario,
agent « prefers not to use crane c2 (an example of preference; can be
violated). Now assume the following starting ‘state of the world” Sp:
Locations a and b need to be repaired, crane c; is at location a and
crane co is at location b. S¢ is the goal state — the desired state of the
world where both locations a and b are fixed and all constraints are
fulfilled.

There are many plans that achieve the goal. Figure 1 shows the
two simplest plans. Suppose the system recommends plan A and a
human user has to decide whether to follow the plan.

The user may ask why the system chose plan A over plan B. Plan
A contains more steps (an extra Move action). We note that the ques-
tion can be asked and answered at different levels of granularity.
For example, a user may request an explanation for the transition

I http://www.abdn.ac.uk/ncs/computing/research/ark/

projects/current/sassy/
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Figure 1.

is the final (goal) state. The plan can be verbalised as, e.g.: “Move crane cy to location b and fix it. Then move the crane to location a and fix location a.

so — s1 (“Why did you move c1 first?”) or for the plan itself (“Why
did you select a plan with more steps?”). It is also possible to argue
against competing plans, or for the winning plan.

A possible explanation for the transition may be: “So that ¢ could
repair location b.” (why plan A) or “Using c2 at b goes against o’s
preference.” (why not plan B) . For the plan, the explanation may
be: “Because this means that we respect o’s preference not to use
crane cz (why plan A), or “B involves the use of crane c2, which
goes against the preference of agent o.” (why not plan B).

We have presented a very simple example, that is limited to a sin-
gle decision or choice point. A more complex plan might involve a
large number of decisions (as well as a larger number of competing
plans). However we believe it to be sufficient to illustrate the major-
ity of challenges scrutability of plans and arguments bring forward.
In the next section we elaborate on these challenges.

3 Challenges

Agents execute actions in order to achieve goals. Within a distributed
system, the choice of actions to execute depends on both the envi-
ronment and the actions of other agents. Goals usually require more
than one action to be executed before they are achieved, and agents
therefore generate plans, either individually, or through interactions
with other agents. We therefore believe that in order to understand a
distributed autonomous system, a human must be able to understand
the plans within the system — including constraints, dependencies,
and why a given plan may have been chosen over other plans. Given
such an understanding, the human can critique the plans if necessary,
providing the agents with additional information which they can use
to modify their plans. The example in Section 2 described a scenario
where a person was supported in making a choice between two plans
where there is both a preference in terms of which resources to use
and a constraint in terms of the order in which certain things can
happen.

Recent research has investigated using formal argumentation to
perform distributed planning [16]. Much of the literature in argu-
mentation theory concerns itself with the status of an argument, that
is, whether the argument licenses certain conclusions. This work as-
sumes the existence of a static set of arguments, and computes an ar-
gument’s status based on this set. Intuitively, arguments can be seen
as a debate, or reasoning for and against a course of action. The psy-
chology of human reasoning as validation for argumentation seman-
tics is a largely unexplored area [11], but a recent strand of work
takes its inspiration from human dialogue to find intelligible expla-

>

>
>

An example of two possible plans. A plan can be viewed as a sequence of transitions changing the state of the world. S is the initial state and S

»

nations of an argument’s status [2]. A popular approach to the use
of argumentation in planning requires the identification of appropri-
ate argumentation schemes — common templates for argument —
which are able to describe the planning process [6, 10].

Formal argument theory represents arguments using a logical
language. In order to make arguments accessible to non-technical
users, a system must be able to translate formulas of this formal log-
ical language into natural language. Natural Language Generation
(NLG) is the study of computer algorithms which produce under-
standable and appropriate texts in English or other human languages,
from some underlying non-linguistic representation of information.
Surprisingly little work in NLG has considered how such logical
statements can be expressed in a clear and understandable manner.
Substantial work on proof presentation exists, but this tends to focus
on the proof structure (e.g., by omitting easily inferable information
[5]) rather than the individual propositions. Despite useful early
work in the 1980’s [18], what is largely missing is an algorithm that
converts complicated input formulas into more accessible forms.
NLG researchers have typically simplified by departing from a fixed
logical form in which crucial presentation decisions have already
been made (e.g., [7, 15]). For example, suppose the system produces
the following argument in support of an action A:

(—success — —q) & (g — —p) & (—p — —A).

This formula is unnecessarily complex, and existing NLG systems
that express this “word-by-word” would tend to generate something
like: “If success is not achieved then q is false. If q is false then
p is false. If p is false then Action A is not performed”. A much
simpler presentation would be possible, however, e.g. “q guarantees
success; p implies q; Action A results in p”. To allow natural
language to do this, however, the formula above first needs to be
converted into the equivalent

(¢ — success) & (p — q) & (A — p).

There are two challenges here: Firstly, one needs to find out what is
an optimally understandable format for expressing a given proposi-
tion. This is an empirical question that can only be solved using ex-
tensive experimentation with human subjects. Secondly, one needs
to find algorithms for actually finding that optimal form. This can
be extremely challenging computationally, particularly if the logic is
very expressive.” This is a famous open problem in NLG, known as

2 Logical formulas are typically equivalent to infinitely many other formu-



the Logical Form Equivalence problem ([14], [17]). We shall attack
the problem by relaxing the requirement that it is always necessary
to find the unique optimal form, settling for heuristics that give good
results in most situations. That is, find heuristics for expressions that
are “good enough” rather than necessarily the “best” form. A simple
example of a heuristic that might prove to go a long way is: shorter
formulas are easier to understand than longer ones. Finding the most
useful heuristics is an important challenge for the experimental work
in this area.

Making the language understandable is a crucial one for system
adoption. It could be possible to ask the system to reformulate a
statement, or to confirm a given interpretation, as one would a human
conversational partner. However, a system that requires too many ad-
ditional interactions is less likely to be adopted by users.

Other Information Presentation (IP) issues that our application
gives rise to include aggregation and summarisation of information.
For example, if a large number, say n, of locations need to be re-
paired, it would be cumbersome to spell this it in n separate steps
(“First move to location 1 and repair it; then move to location 2 and
repair it; ...; finally move to location n and repair it.”). It is much
better to combine these events in one phrase (saying “each location”)
and to leave out any obvious information. For instance, the system
might simply say “Repair each location, starting with the nearest
one and ending with the one furthest away”, which aggregates the
repairs actions and leaves out the ‘move’ actions because they are
inferable.

Beyond the elucidation of an individual plan, it is important to be
able to explain why one plan is superior to another, and this raises
Information Presentation (IP) challenges of its own. Consider Figure
1, for example. In an initial interaction it may be suitable to give a
high-level explanation of the choice between the plans A and B, as in
“A is proposed because we wish to respect a’s preference not to use
crane c2”. However, the user may also want to ask questions about
particular actions, such as why a certain crane was used or moved
first, and this may require more detailed explanations. Since differ-
ent users may have different information requirements, the system
should make use of adaptation and user modelling, to decide about
the level of abstraction, and the level of detail, that is required in
a given situation. Managers, for example, may only require a small
amount of high-level information, whereas others may need to scru-
tinise the plan in more detail, for example to make sure they agree
with the assumptions on which it is based. It also seems plausible
that there is a need to combine multiple levels of abstraction. For ex-
ample, a user may want to begin with a more high-level description
for which they then request a more detailed description, or scrutinise
aspects of.

Traditionally, diagrams have played an important role in argumen-
tation, with diagrams expressing networks of arguments supporting
and attacking each other [3]. These diagrams, however, become clut-
tered when networks are large and would benefit from aggregation
and summarisation as well. Given that each modality has its own ad-
vantages [8, 9], we shall explore how language can complement these
diagrams, for instance by placing text inside a diagram, or by using
one modality at a meta-level with respect to the other. For example, a
caption may be generated that highlights an important aspect of a di-
agram, for instance “Several arguments attacked this claim, but each
proved contentious” .

Given that the dialogue occurs as dynamic process involving
inter-dependent components, evaluation of these components is dif-

las, and finding out if two formulas are equivalent is undecidable in many
logics, or else computationally very expensive.

ficult, but critical. For example, it may be necessary to evaluate the
scrutability on multiple levels of abstraction such as an entire plan,
the argumentation in favour of a plan, and individual facts or argu-
ments. The evaluation therefore forms a final challenge in this pro-
gram of work.
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Transparency of Environmental Computer Models
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Abstract. Environmental computer models are considered essential
tools in supporting environmental decision making, but their main
value is that they allow a better understanding of our complex en-
vironment. Despite numerous attempts to promote good modelling
practice, transparency of current environmental computer models is
limited, which hinders progress in both science and policy making.
An important cause is that the structure, meaning and context of en-
vironmental computer models is often not clear for other people than
the model developers. In the proposed research project we would like
to find out whether it is possible to increase the transparency of envi-
ronmental computer models by making their underlying conceptual
model explicit. In preliminary research we identified the following
challenges: 1) many model developers are mainly focused on the
computational instead of the descriptive aspects of computer mod-
els 2) many environmental modellers may not consider the lack of
transparency a big problem nor do they see computer scientists as
natural partners in cooperation. However, we think that both environ-
mental and computer science could benefit from an interdisciplinary
or even a totally integrated approach. We expect that experimenting
with tools and methods from computer science could teach us impor-
tant lessons on the practice of environmental modelling and hope-
fully guide us to this novel, integrated way of performing e-science.

1 Introduction
1.1 Environmental Computer Models

Current environmental issues have features that distinguish them
from traditional scientific problems. They are universal in their scale
and long-term in their impact, their mechanisms are complex, vari-
able and not well understood and empirical data are scarce or inade-
quate [5L 118} 21]]. In addition there is an urgent need to find strategies
to cope with these issues and political pressure on the research com-
munity is high [21].

Environmental computer models are simplified and controllable
representations of natural systems, developed by scientists. These
models include knowledge and data on the key mechanisms and fac-
tors that explain the behaviour of natural systems in a certain context.
Although it is hardly possible to validate the results of environmental
computer models [[13], they are essential tools in supporting environ-
mental decision making by exploring the consequences of alternative
policies or management scenarios [S} [18]. They are used to support
important political decisions and national investments like the con-
struction of dikes and the design of the future energy system. But
the main value of environmental models is that they allow a better
understanding of our complex environment [13].
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1.2 Problem Description

Both the developing process and the computer model itself need to be
transparent, in order to enable stakeholders and colleague scientists
to understand and use environmental computer models. They need to
be able to trace model results and insights through the model struc-
ture to the underlying choices and assumptions made by the devel-
oper [[13,21]]. Despite numerous attempts to promote good modelling
practice, transparency of current environmental computer models is
limited [[18}|1] As a consequence: 1) model results and insights may
be used in applications without respecting and discussing their un-
derlying choices and assumptions, and 2) learning from model re-
sults and insights is difficult, which hinders progress in both science
and policy making.

An important cause is that the structure, meaning and context of
environmental computer models is often not clear for other people
than the model developers [22]. In the development process mod-
ellers inevitably make choices on which processes and concepts to
include and which to simplify or neglect [Sl 21], but they do not
make these assumptions explicit. This, in turn, is caused by the lack
of short-term incentives for modellers to provide structure, meaning
and context to their models, [2} (18 [7] and the size and complexity of
their models [9].

2 Related work

Many authors in the field of environmental modelling advocate stan-
dardization of the modelling process and information, summarized
to as Good Modelling Practice, to enhance transparency of environ-
mental models [[14, 15} [17]. The question is whether providing guide-
lines is sufficient, as the difficulty is not that the elements of Good
Modelling Practice are not known or shared, but that the modelling
community lacks the urge to act accordingly [[1} 18} [16].

In recent years significant progress has been made in the seman-
tic annotation of scientific models, data work flows and publications.
In scientific model development ontologies are used to facilitate con-
ceptualization and to achieve shared understanding among model de-
velopers and stakeholders [6]. Ontologies are also widely used to se-
mantically annotate scientific models, datasets and publications, i.e.,
to connect measurements and terms to the identity of observable en-
tities they quantify [[11} [19] [8]. A higher level of abstraction that is
being investigated is the semantic annotation of scientific practice as
a whole. Annotation of work flows supports scientists to integrate
and analyse data in a correct and meaningful way [20]. The open
provenance model, PROV, developed by the W3C provenance work-
ing groupﬂhelps scientists to document and process provenance in-
formation to ensure reproducibility of their analyses [10].

2 W3C Provenance Working Group/http://www.w3.org/2011/
prov/
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However, in the described annotation methods the models them-
selves remain largely black-boxes. As a consequence, we may miss
out on valuable information on the developers’ understanding and
interpretation of the system of interest, which is captured in, for ex-
ample, the used modelling paradigm, the chosen concepts and their
interrelations, and the mathematical equations [22].

3 Approach

This research aims to enable developers and stakeholders to cooper-
ate in the development and use of computer models, and to discuss
real-world issues not only on the level of model results but also on
the level of functioning of the corresponding natural system.

The main central concept of his study is ‘transparency’. We define
transparency of a computer model as the connections between model
concepts, underlying datasets, related publications and knowledge of
the model developer. A transparent computer model, with these con-
nections in place, enables peers and stakeholders to 1) understand
the knowledge captured in the computer model and 2) to trace back
model results and insights through the model structure to this knowl-
edge.

The second important concept of this study is ‘conceptual model’.
We define the conceptual model of environmental computer mod-
els as a knowledge level model [12] containing the concepts that
are included, their definitions and their interrelations. The concep-
tual model represents the basic premises and knowledge about the
working of the system being modelled [5] [14].

The main research question of this research is: Is it possible to in-
crease the transparency of environmental computer models by mak-
ing their underlying conceptual model explicit?

3.1 Preliminary results

We did preliminary research on representing the knowledge underly-
ing environmental computer models. In two case studies on existing
environmental computer models we manually reconstructed the un-
derlying conceptual model and formally described it in an ontology.

In the first case study [3] we analysed a computational model
that determines the energy use by Indian households. The model
specifically addresses the socio economic factors influencing energy
uses and includes knowledge on consumer behaviour, public health
and sustainable development. We used the model documentation, the
model source code and personal communication with the model de-
veloper to list and define the concepts and their interrelations and
represented them in an OWL ontology ﬂ We used this ontology in a
peer reviewed model evaluation. Scientists representing different dis-
ciplines, viz., economics, sustainable development, energy and pub-
lic health, were asked to determine if the model consisted of the right
elements to achieve its goal, or that elements should be added or
deleted. They were provided with a visual representation of the on-
tology (figure[T), i.e. a UML like diagram, and a glossary of the terms
in the ontology, as well as the model documentation and source code.
We found that the ontology helped these peers to obtain more infor-
mation on the model and to gain more insight in its structure. How-
ever, they lacked time to get a clear overview of the model and were
confused by the different sources of information. We concluded that
a better balance between different types of model documentation and
explicit links between them are needed to really improve the under-
standing of the model by the peers. An ontology could be useful in

bridging the gap between formal documentation, like source code,
and documentation in natural language, like reports and papers.

In the second case study [4] we analysed a spreadsheet model
that enables policy analyses concerning the Dutch energy system.
We studied the design of the tables and the formulas in the spread-
sheets [ﬂ and semantically characterized the underlying concepts and
their interrelations (figure [2). We represented these as an instantia-
tion of an existing ontology, the OM Ontology for units of Measure
and related concepts [[15], and verified our findings with the model
developers. We found that the both the spreadsheet design and the
formulas contain implicit knowledge about the semantics. The main
concepts and their interrelations as we identified them in our ontol-
ogy did not conflict with the developer’s views. But we found that
representing the conceptual model in an ontology represented a dif-
ferent perspective, as the developers were primarily focussed on the
calculation work flow. The developers may see environmental com-
puter models mainly as instruments to perform simulation studies,
and therefore focus on the computational aspects, while we see them
as tools to communicate scientific knowledge and therefore focus
mainly on the descriptive aspects.

MicroEV

InvestmentCost € 2000

Unit of Measure

Figure 2. Example, in outline, of the semantic characterization of terms in
a spreadsheet table.

3.2 Future work

In future work we intend to perform several case studies on existing
environmental computer models. We intend to perform experiments
with stakeholders to investigate to what extent reconstructing con-
ceptual models is helpful in understanding and reusing these models.
In more detail, we would like to test which form of (visual) presen-
tation of the conceptual model works best to achieve transparency,
which aspects of transparency are influenced and to what extent.

The reconstructions in our first case studies were performed man-
ually. During the project we intend to investigate to what extent it
is efficient and effective to automatize the process of reconstruction
and visual presentation.

We also plan to analyse written (scientific) publications on envi-
ronmental computer models and the results of their analyses. These
publications are often the only way of access to computer models for
stakeholders. We would like to find out to what extent it is possible to
derive the underlying conceptual model from the written publication
and to relate it to the actual content of the computer model.

3 W3c Web Ontology Language,
owl-features/

http://www.w3.0rg/TR/

Spreadsheet
edesign/
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Population Group

has residential area : rural / urban

has expenditure: low / lowmiddle / middle / highmiddle / high
has household : Household

has nr of households : (integer)

has net yearly energy use for cooking and waterheating: (MJ)
has gross yearly energy use for cooking and waterheating: (MJ)

Household

has residential area : rural / urban

has expenditure : low / lowmiddle / middle / highmiddle / high (US Dollar)
has person : Person

has nr of persons : (integer)

has Stove : Stove

has sensitivity for indoor air pollution: low/high

has total cost for owning and using a stove : (US Dollar)

has indoor air pollution caused by fuel use: ( US Dollar)

has perceived total cost for owning and using a stove : (US Dollar)

has net yearly energy use for cooking and waterheating : (MJ)

db

has net daily energy use for cooking : (MJ)
has net daily energy use for water heating : (MJ)

Person

§ has stove: Stove
has population group : Population Group

T\ | has fuel : Fuel

1 has share in total capital stock of stoves : (float)
has technical lifetime :(years)

Stove Capital Stock

has number of stoves : (integer)

Stove

has economic lifetime :(years)
has efficiency : (float)

Fuel

has type: biogas / coal / electricity / improved fuelwood/
kerosene / Ipg / natural gas / traditional fuelwood
has price per unit : (US Dollar)

Figure 1. Simplified, visual representation of the ontology of a computational model that determines the energy use by Indian households.

4 Discussion

Our preliminary research gave rise to some additional questions
and challenges. Considering our finding that model developers are
mainly focused on the computational instead of the descriptive as-
pects of computer models, we could question whether ontologies are
the right method of representing the underlying conceptual knowl-
edge. Analysis and representation of the calculation work flow might
also be an option to make the content of a computer model more ex-
plicit, but it is not clear to what extent it will contribute to the trans-
parency of computer models. A combined approach is also possible,
for example by relating formulas in calculation work flow to concepts
in the ontology. An important benefit of ontologies is that they are
formal representations and subsequently are amenable to computer
processing. (Semi)Automatic analysis of model content and corre-
sponding data and publications could be helpful to achieve trans-
parency of environmental computer models in a more efficient and
effective way.

Besides, the request for more transparency is mainly coming from
society. Many environmental modellers may not consider the lack
of transparency a big problem nor do they see computer scientists as
natural partners in cooperation. We think that both environmental and
computer science could benefit from an interdisciplinary or even a
totally integrated approach. We expect that experimenting with tools
and methods from computer science could teach us important lessons
on the practice of environmental modelling and hopefully guide us to

this novel, integrated way of performing e-science.

5 Matches with other submissions

We see some parallels between our study and submissions 1 and 7.
The researchers of submission 1 aim to increase the transparency,
which they call scrutability, of autonomous systems. They intend to
develop a clear and understandable way to represent formal reason-
ing models in these systems to humans by translating them into natu-
ral language expressions. It would be interesting to compare their and
our ways of reconstructing and presenting the conceptual knowledge
underlying computer models. Furthermore, their approach could be
applicable to the analysis and representation of the calculation work
flow in environmental computer models.

The problems concerning computational models in the financial
system described by researcher of submission 7 are quite similar to
the problems we encounter with environmental computer models.
The reliability of these models is questioned and there is a lack of
suitable validation/verification techniques. We wonder whether (the
lack of) transparency is an issue for these models. Should these mod-
els be understandable for non-experts? What type of assumptions and
choices are made in these models and to what extent do they influ-
ence model results?
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Abstract. Hybrid systems with both discrete and contin-
uous dynamics are an important model for real-world physi-
cal systems. The key challenge is how to ensure their correct
functioning w.r.t. safety requirements. Promising techniques
to ensure safety seem to be model-driven engineering to de-
velop hybrid systems in a well-defined and traceable manner,
and formal verification to prove their correctness. Their com-
bination forms the vision of verification-driven engineering.
Despite the remarkable progress in automating formal verifi-
cation of hybrid systems, the construction of proofs of com-
plex systems often requires significant human guidance, since
hybrid systems verification tools solve undecidable problems.
It is thus not uncommon for verification teams to consist of
many players with diverse expertise. This paper introduces a
verification-driven engineering toolset that extends our previ-
ous work on hybrid and arithmetic verification with tools for
(i) modeling hybrid systems, (ii) exchanging and comparing
models and proofs, and (iii) managing verification tasks. This
toolset makes it easier to tackle large-scale verification tasks.

1 Introduction

Motivation Computers that control physical processes, thus
forming so-called cyber-physical systems (CPS), are today
pervasively embedded into our lives. For example, cars equip-
ped with adaptive cruise control form a typical CPS, responsi-
ble for controlling acceleration on the basis of distance sensors.
Further prominent examples can be found in many safety-
critical areas, such as in factory automation, medical equip-
ment, automotive, aviation, and railway industries. From an
engineering viewpoint, CPSs can be described in a hybrid
manner in terms of discrete control decisions (the cyber-part,
e. g., setting the acceleration of a car) and in terms of differen-
tial equations modeling the entailed physical continuous dy-
namics (the physical part, e.g., motion) [28]. More advanced
models include aspects of distributed hybrid systems [32] or
stochasticity [31], but are not addressed in this paper.

Challenge The key challenge in engineering hybrid systems is
the question of how to ensure their correct functioning in order
to avoid incorrect control decisions w.r.t. safety requirements
(e. g., a car with adaptive cruise control will never collide with
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a car driving ahead). Especially promising techniques to en-
sure safety seem to be model-driven engineering (MDE) to
incrementally develop systems in a well-defined and traceable
manner and formal verification to mathematically prove their
correctness, together forming the vision of verification-driven
engineering (VDE) [20]. Despite the remarkable progress in
automating formal verification of hybrid systems, still many
interesting and complex verification problems remain that are
hard to solve in practice with a single tool by a single person.
Because hybrid systems are undecidable, hybrid systems
verification tools work over an undecidable theory, and so
verifying complicated systems within them often requires sig-
nificant human guidance. This need for human guidance is
true even for decidable theories utilized within hybrid sys-
tems verification [5], such as the first-order theory of non-
linear real arithmetic (also called the theory of real closed
fields or RCF), a crucial component of real-world verifica-
tion efforts. Though decidable, RCF is fundamentally infea-
sible (it is worst-case doubly exponential in the number of
variables [6]), which poses a problem for the automated ver-
ification of hybrid systems. Much expertise is often needed
to discharge arithmetical verification conditions in a reason-
able amount of time and space, expertise requiring the use
of deep results in real algebraic geometry. It is thus not un-
common for serious hybrid systems verification teams to con-
sist of many players, some with expertise in control theory
and dynamical systems, some in software engineering, some
in mathematical logic, some in real algebraic geometry, and
so on. Hence, well-established project management techniques
to coordinate team members are crucial to achieve effective
collaborative large-scale verification of hybrid systems. Suc-
cessful examples of team-based large-scale verification of non-
hybrid systems include the operating system kernel sel4 [19]
in Isabelle/HOL and the Flyspeck project [15], and show, that
indeed collaboration is key for proving large systems.
Vision This paper introduces a VDE toolset (including a
backend deployment for project management and collabora-
tion support) and sketches our vision on further enhancing
this toolset. It applies proof decomposition in-the-large across
multiple verification tools, basing on the completeness of dif-
ferential dynamic logic (dC [28, 33]), which is a real-valued
first-order dynamic logic for hybrid programs, a program no-
tation for hybrid systems. The VDE toolset Sepnx extends our
previous work on the deductive verification tool KeYmaera
[36] and on the nonlinear real arithmetic verification tools
RAHD [26] and MetiTarski [27] with modeling tools for (i)
modeling of hybrid systems in dC, (ii) exchanging and com-



paring models and proofs via a central source repository, and
(iii) exchanging knowledge and tasks through a project man-
agement backend.

Structure of the paper In the next section, we give an
overview on related work. In Sect. 3 we introduce our architec-
ture of a verification-driven engineering toolset, and describe
implementation and features of its components, including a
vision of further work. Section 4 introduces an autonomous
robotic ground vehicle as application example. Finally, in
Sect. 5 we conclude the paper with an outlook on real-world
application of the toolset.

2 Related Work

Model-driven engineering in a collaborative manner has been
successfully applied in the embedded systems community.
Efforts, for instance, include transforming between different
UML models and SysML [16], modeling in SysML and trans-
forming these models to the simulation tool Orchestra [2], in-
tegration of modeling and simulation in Cosmic/Cadena [13],
or modeling of reactive systems and integration of various
verification tools in Syspect [10].

Recent surveys on verification methods for hybrid systems
[1], modeling and analysis of hybrid systems [8], and modeling
of cyber-physical systems [9], reveal that indeed many tools
are available for modeling and analyzing hybrid systems, but
in a rather isolated manner. Supporting collaboration on for-
mal verification by distributing tasks among members of a
verification team in a model-driven engineering approach has
not yet been the focus. Although current verification tools for
hybrid systems (e.g., PHAVer [11], SpaceEx [12]), as well as
those for arithmetic (e.g., Z3 [7]) are accompanied by mod-
eling editors of varying sophistication, they are not yet par-
ticularly well-prepared for collaboration either. Developments
in collaborative verification of source code by multiple com-
plementary static code checkers [4], modular model-checking
(e.g., [22]), and extreme verification [17], however, indicate
that this is indeed an interesting field. Most notably, usage
of online collaboration tools in the Polymath project has led
to an elementary proof of a special case of the density Hales-
Jewett theorem [14].

3 The VDE Toolset Spnx

In order to integrate different modeling and verification tools,
the verification-driven engineering toolset Seonx' proposed in
this paper follows a model-driven architecture: metamodels
for different modeling and proof languages form the basis for
manipulating, persisting, and transforming models. The no-
tion of a model here denotes an instance of a metamodel,
i.e., it comprises models, proofs, and strategies. Following the
definition of the OMG?, a metamodel defines a language to
formulate models: one example for a metamodel is the gram-
mar of dC, which, among others, defines language elements for
non-deterministic choice, sequential composition, assignment,
repetition, and differential equations. An example for a model
is given in Sect. 4: it is a set of formulas, differential equations,
and other d language elements. It conforms to the grammar
of dC, and thus is an instance of the d metamodel. Figure 1
gives an overview of the toolset architecture. As can be seen,

! http://www.cis.jku.at/sphinx/ 2 http://www.omg.org

the dZ, KeY, arithmetic, and arithmetic proof metamodels
represent interfaces between tools and to the backend.

dC metamodel The hybrid modeling components (textual
and graphical editors for d, as well as model comparison)
manipulate models that conform to the d£ metamodel. A
transformation runtime transforms between models in dC
and their textual form read by KeYmaera.

KeY proof metamodel The proof comparison component
reads proofs that conform to the KeY proof metamodel.
These proofs may either be closed ones (completed proofs,
nothing else to be done) or partial proofs (to be contin-
ued). A transformation runtime transforms between proofs
in KeY and their textual form as generated by KeYmaera.

Arithmetic metamodel Arithmetic editors (not yet imple-
mented) manipulate arithmetic models. Again a transfor-
mation runtime transforms between models expressed in
terms of the arithmetic metamodel and the correspond-
ing textual input (e.g., SMT-LIB syntax [3]) as needed by
arithmetic tools, such as RAHD, MetiTarski, or Z3.

Arithmetic proof metamodel Finally, the proof compar-
ison component reads arithmetic proofs expressed in terms
of the arithmetic proof metamodel, and transformed to and
from the arithmetic tool’s (textual) format by a transfor-
mation runtime.

Let us exemplify the toolset with a virtual walk-through
a collaborative verification scenario. We begin with model-
ing a hybrid system using textual and graphical dC editors.
As both operate on the same model, changes in either edi-
tor are reflected instantly in the other. The resulting model,
which conforms to the d€ metamodel, is transformed on-the-
fly during editing by the transformation runtime to a textual
input file, and loaded into KeYmaera. In KeYmaera, we ap-
ply various strategies for proving safety of our hybrid system
model, but may get stuck at some difficult arithmetic prob-
lem. We mark the corresponding node in the partial proof
and save it in KeYmaera’s textual output format. The proof
collaboration tool transforms the partial proof text file into
a model of the partial proof. We persist the hybrid model
and the model of the partial proof in the model and proof
repository, respectively. Then we create a request for arith-
metic verification (ticket) in the project management reposi-
tory using the task planning component. The assignee of the
ticket accesses the linked partial proof, and extracts an arith-
metic verification model from the marked proof node. Then
a transformation runtime creates the textual input for one of
the arithmetic verification tools. In this tool, a proof for the
ticket can be created, along with a proof strategy that docu-
ments the proof. Such a proof strategy is vital for replaying
the proof later, and for detecting whether or not the arith-
metic proof still applies if the initial model changed. Both
proof and proof strategy, are imported into the proof collabo-
ration tool and persisted to the corresponding repository. The
ticket is closed, together with the node on the original proof
(if the arithmetic proof is complete; otherwise, the progress
made is reported back). We fetch the new proof model version
from the repository and inspect it using the proof comparison
component. Then we transform the proof model into its tex-
tual form, load KeYmaera and continue proving our hybrid
system from where we left off, but now with one goal closed.
In case the corresponding arithmetic prover is connected to
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Figure 1: Overview of components in the verification-driven engineering toolset

KeYmaera, we could even load the proof strategy from the
strategy repository and repeat it locally.

3.1 KeYmaera: Hybrid System Verification

KeYmaera® [36] is a verification tool for hybrid systems that
combines deductive, real algebraic, and computer algebraic
prover technologies. It is an automated and interactive theo-
rem prover for a natural specification and verification logic for
hybrid systems. KeYmaera supports differential dynamic logic
(dC) [28, 29, 30, 33], which is a real-valued first-order dynamic
logic for hybrid programs, a program notation for hybrid
systems. KeYmaera supports hybrid systems with nonlinear
discrete jumps, nonlinear differential equations, differential-
algebraic equations, differential inequalities, and systems with
nondeterministic discrete or continuous input.

For automation, KeYmaera implements a number of auto-
matic proof strategies that decompose hybrid systems sym-
bolically in differential dynamic logic and prove the full sys-
tem by proving properties of its parts [30]. This composi-
tional verification principle helps scaling up verification, be-
cause KeYmaera verifies a big system by verifying properties
of subsystems. Strong theoretical properties, including rela-
tive completeness results, have been shown about differential
dynamic logic [28, 33] indicating how this composition prin-
ciple can be successful.

KeYmaera implements fixedpoint procedures [34] that try
to compute invariants of hybrid systems and differential
invariants of their continuous dynamics, but may fail in
practice. By completeness [33], this is the only part where
KeYmaera’s automation can fail in theory. In practice, how-
ever, also the decidable parts of dealing with arithmetic may
become infeasible at some point, so that interaction with other
tools or collaborative verification via S¢pnx is crucial.

3 http://symbolaris.com/info/KeYmaera.html

At the same time, it is an interesting challenge to scale to
solve larger systems, which is possible according to complete-
ness but highly nontrivial. For systems that are still out of
reach for current automation techniques, the fact that com-
pleteness proofs are compositional can be exploited by inter-
actively splitting parts of the hybrid systems proof off and
investigating them separately within Senx. If, for instance,
a proof node in arithmetic turns out to be infeasible within
KeYmaera, this node could be verified using a different tool
connected to S¢pnx.

KeYmaera has been used successfully for verifying case
studies from train control [37], car control [24], air traffic
management [35], and robotic surgery [21]. These verification
results illustrate how some systems can be verified automat-
ically while others need more substantial user guidance. The
KeYmaera approach is described in detail in a book [30].

In order to guide domain experts in modeling discrete and
continuous dynamics of hybrid systems, the case studies, fur-
ther examples, and their proofs are included in the KeYmaera
distribution. When applying proof strategies manually by se-
lection from the context menu in the interactive theorem
prover, KeYmaera shows only the applicable ones sorted by
expected utility. Preliminary collaboration features include
marking and renaming of proof nodes, as well as extraction of
proof branches as new subproblems. These collaboration fea-
tures are used for interaction with the arithmetic verification
tools and the collaboration backend described below.

3.2 Arithmetic Verification

Proofs about hybrid systems often require significant reason-
ing about multivariate polynomial inequalities, i.e., reasoning
within the theory of real closed fields (RCF). Though RCF
is decidable, it is fundamentally infeasible (hyper-exponential
in the number of variables). It is not uncommon for hybrid
system models to have tens or even hundreds of real variables,



and RCF reasoning is commonly the bottleneck for nontrivial
verifications. Automatic RCF methods simply do not scale,
and manual human expertise is often needed to discharge a
proof’s arithmetical subproblems.

RCF infeasibility is not just a problem for hybrid sys-
tems verification. Real polynomial constraints are pervasive
throughout the sciences, and this has motivated a tremen-
dous amount of work on the development of feasible proof
techniques for various special classes of polynomial systems.
In the context of hybrid systems verification, we wish to take
advantage of these new techniques as soon as possible.

Given this fundamental infeasibility, how might one go
about deciding large RCF conjectures? One approach is to
develop a battery of efficient proof techniques for different
practically useful fragments of the theory. For example, if an
3 RCF formula can be equisatisfiably transformed into an
AV-combination of strict inequalities, then one can eliminate
the need to consider any irrational real algebraic solutions
when deciding the formula. Tools such as RAHD, Z3 and
MetiTarski exemplify this heterogeneous approach to RCF,
and moreover allow users to define proof strategies consisting
of heuristic combinations of various specialised proof meth-
ods. When faced with a difficult new problem, one works to
develop a proof strategy which can solve not only the prob-
lem at hand but also other problems sharing similar struc-
ture. Such strategies, though usually constructed by domain
experts, can then be shared and utilised as automated tech-
niques by the community at large.

3.3 Modeling and Proof Collaboration

In order to interconnect the variety of specialized verification
procedures introduced above, Spnx follows a model-driven en-
gineering approach: it introduces metamodels for the included
modeling and proof languages. These metamodels provide a
clean basis for model creation, model comparison, and model
transformation between the formats of different tools. This
approach is feasible, since in principle many of those proce-
dures operate over the theory RCF, or at least share a large
portion of symbols and their semantics. One could even imag-
ine that very same approach for exchanging proofs between
different proof procedures, since proofs in RCF, in theory, can
all be expressed in the same formal system. Currently, proofs
in Spnx are exchanged merely for the sake of being repeated
in the original tool (although KeYmaera already utilizes many
such tools and hence is able to repeat a wide variety of proofs).

In the case of textual languages, S¢pnx uses the Eclipse
Xtext* framework to obtain such metamodels directly from
the language grammars (cf. Figure 2, obtained from the dC
grammar [28]), together with other software artifacts, such as
a parser, a model serializer, and a textual editor with syntax
highlighting, code completion, and cross referencing.

These metamodels are the basis for creating models in d_,
as well as for defining transformations between dC and other
modeling languages. The models in dC make use of mathe-
matical terms, and are embedded in KeY files since KeYmaera
uses the KeY [25] format for loading models and saving proofs.
In the following sections, we introduce dZ in more detail and
describe the support for creating dC models and working on
proofs in S¢pnx.

4 yww.eclipse.org/Xtext
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8.8.1 Differential Dynamic Logic

For specifying and verifying correctness statements about hy-
brid systems, we use differential dynamic logic dC [28, 30, 33],
which supports hybrid programs as a program notation for hy-
brid systems. The syntax of hybrid programs is summarized
together with an informal semantics in Table 1; it reflects the
metamodel introduced in Figure 2. The sequential composi-
tion <a; B> expresses that 3 starts after « finishes (e. g., first
let a car choose its acceleration, then drive with that acceler-
ation). The non-deterministic choice <o U > follows either
a or B (e.g., let a car decide non-deterministically between
accelerating and braking). The non-deterministic repetition
operator <a*> repeats « zero or more times (e.g., let a car
choose a new acceleration arbitrarily often). Discrete assign-
ment <z := 0> instantaneously assigns the value of the term
0 to the variable x (e.g., let a car choose a particular acceler-
ation), while <z := %> assigns an arbitrary value to z (e.g.,
let a car choose any acceleration). <z’ = 0 & F> describes
a continuous evolution of z within the evolution domain F
(e. g., let the velocity of a car change according to its acceler-
ation, but always be greater than zero). The test <?F> checks
that a particular condition expressed by F' holds, and aborts
if it does not (e. g., test whether or not the distance to a car
ahead is large enough). A typical pattern that involves as-
signment and tests, and which will be used subsequently, is
to limit the assignment of arbitrary values to known bounds
(e.g., limit an arbitrarily chosen acceleration to the physical
limits of a car, as in x := ; 7z > 0). The deterministic choice
<if(F) then « else B> executes « if F' holds, and f otherwise
(e. g., let a car accelerate only when it is safe; brake otherwise).
Finally, <while(F') do a elihw> is a deterministic repetition
that executes a as long as F' holds.

To specify the desired correctness properties of the hybrid
programs, differential dynamic logic (d£) provides modal op-
erators [a] and (), one for each hybrid program a. When ¢ is
a dC formula (e.g., a simple arithmetic constraint) describing
a safe state and « is a hybrid program, then the d formula
[a]¢ states that all states reachable by a satisfy ¢. Dually,
dL formula ()¢ expresses that there is a state reachable by
the hybrid program « that satisfies dC formula ¢. The set
of dC formulas is generated by the following EBNF grammar
(where ~ € {<,<,=,>,>} and 01,0, are arithmetic expres-
sions in +, —, -, / over the reals):

pu=01~02 0| dANY |V |Izd | [ad | (o)

Thus, besides comparisons (<, <,=, >,>), dC allows one to
express negations (—¢), conjunctions (¢ A1), universal (Vze)
and existential quantification (Jz¢), as well as the already
mentioned state reachability expressions ([a]@, (a)¢).

3.3.2  Creating Models

For creating models of hybrid and cyber-physical systems,
Senx currently includes dZ as generic modeling language. The
concrete textual syntax and dC editor created from the d
metamodel is shown in Figure 3, together with a concrete
graphical syntax and the KeYmaera prover attached through
the console. In order to facilitate creation of textual models in
dL, Senx includes templates of common model artifacts (e. g.,
ODEs of linear and circular motion). These templates, when
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Figure 2: The dC metamodel extracted from the input grammar of KeYmaera

Table 1: Statements of hybrid programs

Statement Metamodel element Effect
a; B Chop sequential composition, first performs « and then § afterwards
a U g Choice nondeterministic choice, following either o or 8
o Star nondeterministic repetition, repeating a n > 0 times
x:=10 Assign (term) discrete assignment of the value of term 6 to variable z (jump)
T = % Assign (wild card term) | nondeterministic assignment of an arbitrary real number to x
(x’l =0,..., ContinuousEvolution continuous evolution of z; along differential equation system

z, =60, & F) DiffSystem x; = 0;, restricted to maximum domain or invariant region F
F Quest check if formula F' holds at current state, abort otherwise
if(F) then « else 8 | If ThenElse perform « if F' holds, perform 3 otherwise
while(F') do a end | WhileSym perform « as long as F' holds
) BoxModality dL formula ¢ must hold after all executions of hybrid program «
() DiamondModality dC formula ¢ must hold after at least one execution of hybrid program «

instantiated, allow in-place editing and automated renaming
of the template constituents. As usual in the Eclipse platform,
such templates can be easily extended and shared between
team members.

Since generic modeling languages, such as dC for hybrid sys-
tems, tend to incur a steep learning curve, the S¢nx platform
can be extended with dedicated domain-specific languages
(DSL). Such DSLs should be designed to meet the vocabu-
lary of a particular group of domain experts. They can be in-
cluded into S¢nx in a similar fashion to the generic modeling
language d_, i.e., in the form of Eclipse plugins that provide
the DSL metamodel and the modeling editor. In order to be
processable in a verification tool, such as KeYmaera, a model
transformation specification (e. g., using the Atlas transforma-
tion language ATL [18]) from the DSL to the tool’s modeling
language (e.g., d£) must be provided by these plugins.

For modeling hybrid systems, an interesting opportunity
for inspecting the behavior of such a system prior to verifica-
tion is provided by Mathematica® 9, which is able to simulate

5 www.wolfram.com/mathematica

and plot hybrid system behavior. Specifically, hybrid systems
behavior can be plotted using a combination of NDSolve and
WhenFEvent. We envision transforming corresponding excerpts
of dC to Mathematica for visualizing plots of the dynamic be-
havior and their hybrid programs over time in S¢nx.

3.3.83 During the Proof

Collaboration support in Senx currently comprises model as
well as proof comparison, both locally and with the model and
proof repositories maintained in a central source code repos-
itory. For this, not only textual comparison is implemented,
but also structural comparison of models expressed in terms
of the d€ metamodel, as well as of proofs expressed in terms
of the KeY metamodel is supported (cf. Figure 4). Especially
for collaboration, exchanging proofs and inspecting updates
on partial proofs is vital. For example, highlighted changes
between different versions of a partial proof lets one easily
spot and adopt proof progress made by other team members,
go back and forth between versions, and detect conflicts.
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To further facilitate knowledge and expertise exchange, spe-
cific unsolved subproblems of a proof (e.g., complex arith-
metic problems) can be flagged in KeYmaera and extracted to
other tools. Thereby, division of verification work is achieved.
An open question, however, concerns the merging of the
partial verification results into a coherent proof. In a first
step, we plan to extend KeYmaera to let experts close proof
branches in the same manner as it currently trusts mathemat-
ical solvers. To avoid unintentionally closing a proof goal with
a proof that may no longer apply in case the original model
changed, Senx checks that the statement remained the same
(textually) when replaying an arithmetic proof. Later, actual
proof certificates and proof strategies will be exchanged to
further increase trust, and more sophisticated comparisons of
proof goals are envisioned to better support replaying proofs.

3.4 The Collaboration Backend

The S¢pnx modeling tool uses existing Eclipse plugins to con-
nect to a variety of backend source code repositories and on-
line project management tools. As source code repository we
utilize Subversion® and the Eclipse plugin Subclipse’. Cur-
rently, Mylyn® and its connectors are used for accessing on-
line project management tools (e. g., Bugzilla®, Redmine!®, or
any web-based tool via Mylyn’s Generic Web templates con-
nector) and exchanging tickets (i. e., requests for verification).
These tickets are the organizational means for collaborating

6 subversion.apache.org 7 subclipse.tigris.org
8 www.eclipse.org/mylyn 9 www.bugzilla.org
10
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on verification problems and tasks within a working group.
Exchange of models and proofs may then be conducted either
by attaching files to tickets, or by linking tickets directly to
models and proofs in the source code repository. In the latter
case, one benefits from the model and proof comparison capa-
bilities of S¢nx. Verification tools (currently KeYmaera), are
linked to the modeling tool by implementing extensions to the
Eclipse launch configuration. These extensions hook into the
context menu of Eclipse (models in dC and proof files in KeY
in our case) and, on selection, launch an external program.

As a vision of extending collaboration support, it is planned
to integrate Wikis and other online collaboration tools (cur-
rently, we use Redmine both as project management reposi-
tory and for knowledge exchange) for exchanging knowledge
on proof tactics. Additionally, collaboration with experts out-
side the own organization can be fostered by linking to Web
resources, such as MathOverflow'! and Amazon Mechanical-
Turk!?. Especially interesting, in this respect, is the possibil-
ity to create a social-network-like expert platform. In such a
platform, requests could be forwarded to those experts whose
knowledge matches the verification problem best.

4 Application Example

With the increased introduction of autonomous robotic
ground vehicles as consumer products—such as autonomous
hovers and lawn mowers, or even accepting driverless cars on
regular roads in California—we face an increased need for en-
suring product safety not only for the good of our consumers,
but also for the sake of managing manufacturer liability. One
important aspect in building such systems is to make them
scrutable, in order to mitigate unrealistic expectations and in-
crease trust [38]. In the design stage of such systems, formal
verification techniques ensure correct functioning w.r.t. some
safety condition, and thus, increase trust. In the course of this,
formal verification techniques can help to make assumptions
explicit and thus clearly define what can be expected from
the system under which circumstances.

We discuss a model of an autonomous robotic ground vehi-
cle and its proof (to increase trust), and describe how we can
derive bounds on the behavior of that vehicle. The sample au-
tonomous robotic ground vehicle used in this paper operates
on predefined tracks and, thus, cannot steer freely (i. e., single
wheel drive with angular velocity zero). The control options of
such vehicles are limited to choosing the value of acceleration
and result in sequences of straight lines as trajectories. The
trajectories are thus akin to those produced by our previous
car models [23],[24].

In this example, navigation of autonomous robotic ground
vehicles is considered safe, if such vehicles are able to stay
within their assigned area (e.g., on a track) and do not ac-
tively crash with obstacles. Since we cannot guarantee rea-
sonable behavior of obstacles, however, autonomous ground
vehicles are allowed to passively crash (i.e., while obstacles
might run into the robot, the robot will never move into a
position where the obstacle could not avoid a collision).

11 12
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swd = (ctrl; dyn)*
ctrl = (ctrly || ctrly)
ctrly = (ar := —b)
U (?safe; ar :=%; 7—b<ar, < A)
U (?vr =0; ar :=0; or := x; ‘7or_1)
safe = xp, + 1-or (UE + <A+1) . (A.52+e~vw)> <zp < xp—
- 2 2b b 2 2

~ o~~~
= W
T D D O —

1+ o,

<Zi+(f+1),(§.g+g.vr)> ©)

2 A A 2 'UTJFA'f
=zl > 2 £ B = oy . brrAe
Allz Jc||_2b+(b+1> (2 e +e v)—i—V (E-‘r A ) (7)

ctrl, = (?vo =0; 0o := *; 70(2, = 1)
U (vo :=%; 70 < v, < V)

— / / ’
dyn=(t:=0; . =0y - Uy, UV = ar, T, = 0o

oy ' =1 & v, 20NV >0AE < g) (10)

4.1 Modeling

Model 1 shows the model of a hybrid system comprising the
control choices of an autonomous robotic ground vehicle, the
control choices of a moving obstacle, and the continuous dy-
namics of the system. The system represents the common
controller-plant model: it repeatedly executes control choices
followed by dynamics, cf. (1). The control of the robot is ex-
ecuted in parallel to that of the obstacle, cf. (2).

The robot has three options: It is always allowed to brake,
as expressed by cf. (3) having no test condition. If its current
state is safe (defined by (6)), then the robot may accelerate
with any rate within its physical bounds, cf. (4). For this,
we utilize the modeling pattern introduced above: we assign
an arbitrary value to the robot’s acceleration state (a, := %),
which is then restricted to any value from the interval (—b, A)
using a test (7—b < a, < A). Finally, if the robot is stopped, it
may choose to remain in its current spot and may or may not
change its orientation while doing so, cf. (5). This is expressed
again by arbitrary assignment with subsequent test: this time,
the test ?02 = 1, however, restricts the orientation value to
either forwards or backwards (o, € {1, —1}).

For always remaining safely inside its area, the robot must
account for (i) its own braking distance (3 ) (ii) the distance
it may travel with its current velocity (e- vr) until it is able to
initiate braking, and (iii) the distance needed to compensate
the acceleration A that may have been chosen in the worst
case, cf. (6). Note, that the safety margin applies to either the
upper or the lower bound of the robot’s area, depending on
the robot’s orientation: when driving forward (i.e., towards
the upper bound), we do not need a safety margin towards
the lower bound, and vice versa. This is expressed by the
factors 1=2= and 1+2°* , which mutually evaluate to zero (e. g.,
1‘% = 0 when driving forward with o, = 1). The distance
between the robot and the obstacle must be large enough to
(i) allow the robot to brake to a stand-still, (ii) compensate its
current velocity and worst-case acceleration, and (iii) account
for the obstacle moving towards the robot with worst-case
velocity V' while the robot is still not stopped, cf. (7). Note,
that w.r.t. the obstacle we have to be more conservative than
towards the bounds, because we want to be able to come to

a full stop even when the obstacle approaches the robot from
behind.

The obstacle, essentially, has similar control options as the
robot (with the crucial difference of not having to care about
safety): it may either remain in a spot and possibly change
its orientation (8), or choose any velocity up to V, cf. (9).

4.2 Verification

We verify the safety of acceleration and orientation choices as
modeled in Model 1 above, using a formal proof calculus for
dC [28, 30]. The robot is safely within its assigned area and
at a safe distance to the obstacle, if it is able to brake to a
complete stop at all times®. The following condition captures
this requirement as an invariant that we want to hold at all
times during the execution of the model:

2
r stoppable (0,b) = ||z, — zo|| > %+Ubv

PTIR Sl APPSR . i

s 2 20 7T TR 2 2b

/\v,-ZO/\ole
ANO2=1A0<0v, <V

The formula states that the distance between the robot to
both the obstacle and the bounds is safe, if there is still enough
distance for the robot to brake to a complete stop before it
reaches either. Also, the robot must drive with positive veloc-
ity, the chosen directions of robot and obstacle must be either
forwards (o, = 1) or backwards (o, = —1), and the obstacle
must use only positive velocities up to V.

Theorem 1 (Safety of single wheel drive). If a robot is in-
side its assigned area and at a safe distance from the obstacle’s

13 The requirement that the robot has to ensure an option for the
obstacle to avoid a collision is ensured trivially, since the obstacle in
this model can choose its velocity directly. In a more realistic model
the obstacle would choose acceleration instead; then the robot had
to account for the braking distance of the obstacle, too



position x, initially, then it will not actively collide with the
obstacle and stay within its area while it follows the swd con-
trol model (Model 1), as expressed by the provable dC formula:

r stoppable (0,b) — [swd]((v >0 = |[pr — po| > 0)
Nxp < xr < a:g)

We proved Theorem 1 using KeYmaera. With respect to
making autonomous systems more scrutable, such a proof
may help in a twofold manner: on the one hand, it may in-
crease trust in the implemented robot (given the assumption
that the actual implementation can be traced back to the ab-
stract model). On the other hand, it makes the behavior of the
robot more understandable. In this respect, the most interest-
ing properties of the proven model are the definition of safe
and the invariant, which allow us to analyze design trade-
offs and tell us what is always true about the system regard-
less of its state. As an example, let us consider the distance
between the robot and the obstacle that is considered safe:
2, —ol) > 35+ (4 +1)- (4 2% o) + V- (e + 2542),
This distance can be interpreted as the minimum distance
that the robot’s obstacle detection sensors are required to
cover; it is a function of other robot design parameters (max-
imum velocity, braking power, worst-case acceleration, sen-
sor /processor/actuator delay) and the parameters expected
in the environment (obstacle velocity). ||z — x,|| can be op-
timized w.r.t. different aspects: for example, to find the most
cost-efficient combination of components that still guarantees
safety, to specify a safe operation environment given a par-
ticular robot configuration, or to determine time bounds for
algorithm optimization.

With respect to the manual guidance and collaboration
needed in such a proof, we had to apply knowledge in hy-
brid systems and in-depth understanding of the robot model
to find a system invariant, which is the most important man-
ual step in the proof above. We further used arithmetic in-
teractions, such as the hiding of superfluous terms to re-
duce arithmetic complexity, transforming and replacing terms
(e. g., substitute the absolute function with two cases, one for
negative and one for positive values).

4.3 Model Variants and Proof Structure

Since it is hard to come up with a fully verifiable model that
includes all the details right from the beginning, the models
discussed in the previous section are the result of different
modeling and verification variants. In the process of creating
these models, different assumptions and simplifications were
applied until we reached the version in Model 1. For example,
one can make explicit restrictions on particular variables, such
as first letting the robot start in a known direction (instead of
an arbitrary direction). Such assumptions and simplifications,
of course, are not without implications on the proof. While
in some aspect a proof may become easier, it may become
more laborious or more complex in another. In this section, we
discuss five variants of the single wheel drive model (without
obstacle) to demonstrate implications on the proof structure
and on the entailed manual guidance needed to complete a
proof in KeYmaera.

The following model variants are identical in terms of the
behavior of the robot. However, assumptions on the starting
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direction were made in the antecedent of a provable dl for-
mula, and the starting direction as well as the orientation of
the robot were explicitly distinguished by disjunction or non-
deterministic choice, or implicitly encoded in the arithmetic,
as described below.

Assumed starting direction, orientation by disjunction
In the first variant, the robot is assumed to start
in a known direction, specified in the antecedent of
or = 1... = [swd](zy < zr < z3). Also, the orientation
of the robot is explicitly distinguished by disjunction in
safe=(or =—1Axp+...<zp)V(or =1AZr < xp—...),
and the robot had an explicit choice on turning during
stand-still (?v, = 0; or := —0r;...) U (v, =0;...).

Orientation by arithmetic In the second variant, we kept
the assumed starting direction of the first variant. However,
the orientation by disjunction in the definition of safe was
replaced by using o, as discriminator value encoded in the
arithmetic, as in safe = x5 — H’% () <ap<apt+ i

Arbitrary starting direction by disjunction The third
variant relaxes the assumption on the starting direction
by introducing a disjunction of possible starting directions
in the antecedent of the provable formula (o, = 1V o, =
—1)... = [swd(zp < zr < 7).

Arbitrary starting direction by arithmetic The fourth
variant replaces the disjunction in the antecedent by stating
the two orientation options as 02 = 1 in 0?2 = 1... —
[swd](xp < zr < 7).

Replace non-deterministic choice with arithmetic
Finally, we replace the non-deterministic turning choice
with (?v, = 0; o, :=*; 202 =1;...).

Table 2 summarizes the proof structures of the five vari-
ants. Unsurprisingly—when considering the rules of the dC
proof calculus [29] as listed in Table 2—disjunctions in the
antecedent (VI) or in tests of hybrid programs, as well as
non-deterministic choices ([U]) increase the number of proof
branches and with it the number of manual proof steps. The
number of proof branches can be reduced, if we can replace
disjunctions in the antecedent (but also conjunctions in the
consequent) or non-deterministic choices in the hybrid pro-
gram by an equivalent arithmetic encoding. Conversely, this
means that some arithmetic problems can be traded for easier
ones with additional proof branches.

5 Conclusion

In this paper, we gave a vision of a verification-driven engi-
neering toolset including hybrid and arithmetic verification
tools, and introduced modeling and collaboration tools with
the goal of making formal verification of hybrid systems ac-
cessible to a broader audience. The current implementation
features textual and graphical modeling editors, integration
of KeYmaera as a hybrid systems verification tool, model and
proof comparison, and connection to various collaboration
backend systems. The VDE toolset is currently being tested in
a collaborative verification setting between Carnegie Mellon
University, the University of Cambridge, and the University
of Edinburgh.
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Table 2: Nodes, branches, and manual proof steps of variants

Variant Nodes Branches Manual steps Avoids
(i)  Assumed starting direction, orientation by disjunction 387 34 24
(i)  Orientation by arithmetic 331 28 25 (V1)
(iii)  Arbitrary starting direction by disjunction 650 56 44
(iv)  Arbitrary starting direction by arithmetic 185 17 22 (Vi)
(v) Replace non-deterministic choice 160 14 29 ([U)(Ar)
oA T,iFA [a]o A [b]é IF¢,A THy,A
Vi T A
LoV A V) [aUblo () FEoAY, A (Ar)
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Interacting with Ontologies and Linked Data through
Controlled Natural Languages and Dialogues

Ronald Denaux, Vania Dimitrova and Anthony G. Cohn !

Abstract. This paper describes a suite of tools developed at the
University of Leeds which aim to make it easier for domain experts
to be involved in the creation and use of ontologies. The paper sum-
marises the main features of the tools and gives a short summary of
our evaluations and experiences using the tools with domain experts.

1 Expressing Knowledge through a Controlled
Natural Language

At the core of our suite of tools for supporting domain experts when
using ontologies is the use of a Controlled Natural Language (CNL)
as the main way to express knowledge in a way that:

e is easy to understand and write by domain experts and
e can be automatically translated into a logical form, in particular
an ontology language

‘We have adopted Rabbit, a CNL designed by the Ordnance Survey
— the mapping agency of Great Britain — to enable domain experts
(e.g. cartographers) to contribute to the development of ontologies
for describing the Ordnance Survey’s topographic data [7]]. Although
inspired by the topographical domain, Rabbit has been designed to
be domain independent. The language is designed to be directly map-
pable to OWL, the web ontology language.

1.1 Tool Support

As part of our adoption of the Rabbit CNL, we have collaborated
with the Ordnance Survey to build a parser for the language that
translates textual inputs into OWL constructs. This parser uses Nat-
ural Language Processing (NLP) techniques to improve the recog-
nition of Rabbit sentences. These techniques are used, for example,
to recognise that concepts tend to be expressed as nouns (or noun
phrases); similarly, relationships tend to be expressed as verbs. An-
other example of the use of NLP techniques is in recognising that the
same concept may be expressed as either a singular noun or a plural
noun.

An important aspect of the Rabbit parser is that, when the input
text is not syntactically correct, it is often able to generate error
messages that are easy to understand and help the domain expert
to correct the input (see for example, Figure E]) We refer to [2] for
more information about the Rabbit parser.

Finally, other Rabbit tool support we provide is automatic trans-
lation of valid Rabbit sentences into OWL constructs and gener-
ation of Rabbit sentences to show the contents of existing ontolo-

1 University of Leeds, England, email: r.denaux @leeds.ac.uk

< Confluence Rabbit Sentence Editer A x

Every Lake is connected to one or more River, Stream, Canal, Lake
or Reservoir.

Every Lake enables Inland Navigation.

Every Lake has a current.

Every Lake contains Water.

Every Lake is a kind of Topographic Object.

Every Irrigation Canal contains Water for Irrigation.

CONCEPT 'Irrigation’ has not been added to the ontology yet

[Rabbit_errors (0][Rabbit warnings (0)][Rabbit Patterns|

COMCEPT 'lIrrigation' has not been added to the ontology yet

| Accept errors | | Cancel |

b

Figure 1. Rabbit Editor component showing various Rabbit sentences, syn-
tax highlighting and error feedback.

giesﬂ Since we have developed the tool support in house, we are able
to adapt and extend the tools if necessary.

1.2 Conclusion

The Ordnance Survey has studied how easy the Rabbit language is to
understand [7] and to write [6] with positive results. In the next sec-
tions, we will discuss our experiences using the language to support
ontology authoring and use of linked data.

Although we are using Rabbit as the CNL in our tools, there are
other CNLs which provide comparable tool support and expressivity.
We refer to [11] for a comparison to the main alternative CNLs for
OWL.

2 Ontology Authoring Methodology Support for
Domain Experts

After developing Rabbit, the Ordnance Survey found that domain
experts were able to create ontologies using Rabbit, but these ontolo-
gies contained modelling errors due to the lack of knowledge about
ontology modelling processes by domain experts [7]]. The Ordnance
Survey adapted existing ontology engineering methodologies to give
the domain experts a central role in the ontology authoring process,
and we developed tool support to guide domain experts through this
methodology. This resulted in an ontology editor called ROO (Rabbit
to OWL Ontology authoring).

2 This only works if the ontologies provide labels for their classes and prop-
erties.



ROO provides an alternative user interface for Protege, one of the
leading ontology editors. The main advantage of ROO is that it is
designed for domain experts:

e knowledge is entered and presented using the Rabbit CNL
e the interface has been simplified to

1. guide the user through the ontology authoring process: the main
interface consists of three tabs, one for defining the scope and
purpose of the ontology, a second tab for defining knowledge
sources and a third tab to define the ontology concepts and re-
lationships.

2. avoid OWL specific terminology: for example by using the
term ’concept’ instead of the OWL specific ’class’. As another
example, OWL provides options to use annotations with lan-
guage tags and various XML types; ROO uses defaults for var-
ious annotations to simplify the input by domain experts.

Another feature of ROO for guiding domain experts through the
ontology authoring methodology is the Guide Dog: when the do-
main expert is unsure about what to do next, the Guide Dog analyses
the current ontology and suggests a next task to perform. Example
tasks are: to define the purpose of the ontology, to add a natural lan-
guage definition for a concept or to add a Rabbit sentence to define a
concept.

We performed a comparative evaluation study comparing ROO to
a similar CNL-based ontology authoring tool called ACE-View [9].
In the study, Geography and Environmental Studies students and re-
searches at the University of Leeds were given a task to create an
ontology about Hydrology and Water Polution. The results were en-
couraging, showing that domain experts with no previous exposure
to ROO were able to create an initial ontology. The results validated
our approach for providing tool support for editing CNL sentences
and following an ontology authoring ontology [5} 3]

ROO is open sourc{] and has more than a 1000 downloads. The
ontology editor has successfully been used by several staff members
and students at the University of Leeds to build ontologies. For ex-
ample as part of an EU—projecﬂ ROO was used by a staff member of
the Leeds University Business School to create an ontologies about
Activity Theory and Interpersonal Communication.

3 Feedback about Logical Aspects of Ontology
Authoring

While Rabbit enables domain experts to directly contribute their
knowledge to an ontology and ROO guides them through the pro-
cess of building ontologies, the problem of modelling errors in the
resulting ontologies remained. In practice, this means that the contri-
butions made by domain experts have to be evaluated and corrected
by knowledge engineers who have training in the formal logics of
ontology languages. However, finding and evaluating such ontology
bugs can be difficult, especially if the knowledge engineer is not an
expert of the domain at hand. To alleviate this problem, we added
tool support for providing semantic feedback: interactive feedback
about the logical consequences of integrating a new fact into an
existing ontology.

In order to provide semantic feedback, we have defined a frame-
work that extends the syntactic analysis performed by the Rabbit

3 The project site is
confluence/
4lhttp://imreal-project.eu/

http://www.comp.leeds.ac.uk/
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parser with an integration analysis based on various existing ontol-
ogy reasoning services. When the domain expert enters a valid Rabbit
sentence, the resulting new ontological fact is classified into one of
the following categories:

o the fact is already in the ontology: this can be because the syntax
of the sentence differs from the syntax used in the ontology;

o the fact is implied by the ontology: ontologies consist of a num-
ber of stated facts, but those facts can combine and imply new
facts that have not been explicitly stated. Knowing about such in-
ferences can be useful to domain experts to detect unwanted infer-
ences but also to avoid redundancy in the ontology;

e the fact is inconsistent with the ontology: in this case the new
fact contradicts other facts in the ontology. Domain experts typi-
cally are not aware of such logical contradiction, thus getting feed-
back helps them to become aware of existing parts of the ontology
and to avoid introducing bugs into the ontology.

o the fact is novel, but no ’relevant’ implications can be found:
this case helps the domain expert to realise that the ontology needs
to be more interconnected in order to make more inferences possi-
ble. The domain expert may also be expecting the system to make
inferences, getting this type of feedback helps them to realise the
limitations of the ontology language and its reasoning capabilities.

o the fact is novel and has ’relevant’ implications: in this case,
the system can provide a list of new implications that follow from
the new fact. This helps the domain expert to become aware of
existing facts in the ontology and to get a feeling for the reasoning
capabilities of the ontology languages. Furthermore, it helps to
avoid unwanted inferences.

An example input Rabbit sentence with the corresponding feed-
back is shown below:

Rabbit Input: Every Teaching Hospital is a kind of Hospital.

Axiom category [Novel Axiom with new Relevant Implications]

ROO Feedback: This assertion is novel: it has not been added to the ontology yet.
This input implies 6 new relevant facts. Have a look at the list of implications to make
sure you agree with the implications. If you do not agree, it may be that you are using
the wrong terminology.

Check the new implications:

Every Teaching Hospital has footprint a Footprint.

Organisation and Teaching Hospital are mutually exclusive.

Training Centre and Teaching Hospital are mutually exclusive.

Every Teaching Hospital is a kind of Topographic Object.

Every Teaching Hospital is a kind of Place.

Teaching Hospital and University (Institution) are mutually exclusive.

A full description of the integration analysis performed as well as
of the semantic feedback provided for each of the categories is pro-
vided in [4]]. We have integrated the semantic feedback in ROO and
we performed an evaluation to find out what novice users without
prior knowledge in ontologies found about the feedback. We com-
pared their impressions of the feedback with experienced knowledge
engineers and we found that both novice users as well as experts find
the interactive semantic feedback informative, timely and useful [4].
We are not aware of another semantic system that provides this type
of information in a manner that is understandable to domain experts.

A current limitation of this tool support is that the feedback helps
domain experts to become aware of possible problems, but it does
not provide sufficient information to resolve the problems as this re-
quires further analysis of the problem. Also, the evaluation study was
performed in a controlled environment; we look forward to evalute
the semantic feedback in a production-like context.


http://www.comp.leeds.ac.uk/confluence/
http://www.comp.leeds.ac.uk/confluence/
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4 CNL-Based Dialogue Interface to Ontologies and
Linked Data

The final tool in our suite to support domain experts is an ontology
and CNL-based dialogue manager. The need for such a dialogue
manager came from the realisation that CNL-based ontology author-
ing is similar to a dialogue where the domain expert is telling facts
about the domain to the ontology editor, which responds with syntac-
tic or semantic feedback as described above. While our experiences
with such an approach for ontology authoring are promising, one lim-
itation is that — depending on the situation — the feedback provided
can be repetitive, overwhelming, redundant or insufficient. The dia-
logue manager enables us to define different feedback strategies for
different situations in order to provide more appropriate feedback.
The dialogue manager is based on years of research in the field of
dialogue systems [[10] and can be seen as an extension to the syntac-
tic analysis provided by the Rabbit parser and the semantic analysis
described in Section [3] The dialogue manager adds a level of input
analysis in which each input by the domain expert is assigned an
intention: in ROO until now, the intention is assumed to be to inform
the system about facts about the domain, but other intentions may be
to query the system about existing facts in the ontology or to tell the
system that the domain expert disagrees with an existing fact in the
ontology. The dialogue manager also keeps track of the dialogue
history, which enables the definition of alternative interaction strate-
gies based on the previous inputs. For example, if the domain expert
has informed the system about a new fact that is novel without ’rel-
evant’ implications, the dialogue manager can now elicit new facts
that can make new inferences possible, as shown in turn 10 belowﬂ

1 ROO: Tell me a new fact to add to the ontology.
2 ROO: You can do one of the following:

e Enter a new fact or
e Enter Skip if you do not want to tell a new fact or
o Enter Help to receive a hint.

DE: Bus Line 95 has end point Bodington Hall.

ROQO: This fact is indeed new.

ROO: Normally, entering a new fact enables me to make further inferences but I
cannot do this in this case.

ROO: Can you tell me something that I should be able to infer?

ROO: You can do one of the following:

N Nk W

e Enter a new fact or
o Enter Skip if you prefer not to answer this question or

e Enter Help to receive a hint.

8 DE: Bus Line 95 stops near Bodington Hall.

9 ROO: Actually, “Bus Line 95 stops near Bodington Hall” is a new fact.

10 ROO: Tell me more general facts about Bus RouteorHall of Residence
orhas end point or stops near.

At the moment, the dialogue manager has been implemented and
can be used to simulate the ontology authoring interaction in ROO,
as well as to perform simple elicitations as shown above. In the near
future we are planning to perform evaluations to determine the ben-
efit of such a dialogue interface for ontology authoring.

4.1 Beyond Ontology Authoring

The dialogue manager makes it possible to establish dialogues for
other purposes than ontology authoring. For example, in the context
of the ImReal project’| we are using the dialogue manager to assess
the cultural exposure of learners based on countries they have visited.

5 The example dialogue session is in the domain of Points of Interest in Leeds
6lhttp://imreal-project.eu/

We are reusing a service that determines a list of visited countries of
a user based on their Flickr and Twitter profiles[8].

Instead of letting the domain expert build an ontology, in this case
we have extracted various ontologies from DBPedia E] containing
general facts about countries (currency, languages, income inequal-
ity and human development) as well as cultural facts, in particular
gestures that occur in specific countries. We use these ontologies to
generate a quiz that is presented to the user in the form of a dialogue.
Based on the user’s anwers, the dialogue attempts to determine how
much cultural exposure the learner had to the visited countries. We
encourage the reader to see [[1] for more details on this dialogue, the
data sources used and, in particular, a video showing an example di-
alogue session.

5 Conclusion

We have presented a suite of tools for enabling the interaction of do-
main experts with ontologies and linked data. Our line of research has
focused on CNL-based interaction between domain experts and on-
tologies as well as interaction to facilitate ontology authoring. How-
ever, the various techniques described can be adapted to other tasks
where domain experts need to interact with logic systems as shown
with in our latest work on a dialogue for assessing the cultural expo-
sure of learners, where we have successfully reused linked data (i.e.
DBPedia) to drive the dialogue.
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Explaining the Outcome of Knowledge-Based Systems;
a discussion-based approach

Martin Caminada' and Mikolaj Podlaszewski’ and Matt Green®

Abstract. Many inferences made in everyday life are only valid in
the absence of explicit counter information. This has led to the de-
velopment of nonmonotonic logics. The kind of reasoning performed
by these logics can be difficult to explain to the average end-user of a
knowledge based system that implements them. Although the system
can still give advice, it is hard for the user to assess the rationale be-
hind this advice. In this paper we propose an argumentation approach
that enables the advice to be assessed through an interactive dialogue
with the system much like the discussion one might have with a col-
league. The aim of thie dialogue is for the system to convince the
user that the advice is well-founded.

1 NONMONOTONIC REASONING

Human-style common sense reasoning is inherently nonmonotonic.
When new information becomes available, some of our previous be-
liefs and inferences might no longer be warranted. An often cited
example of philosopher and Al researcher John Pollock is that from
the fact that an object looks red one might reasonably infer that the
object really is red. However, if one later obtains the additional in-
formation that the object was in fact illuminated by a red light, one
should block the conclusion that the object really is red (unless one
also has other reasons to believe so). This kind of reasoning contrasts
strongly with the approach taken by formalisms like classical logic.
Here, the notion of entailment is essentially monotonic, meaning that
whenever one adds new facts, one can only obtain more (possibly the
same) and never fewer conclusions.*

The need for nonmonotonic reasoning (NMR) comes from the fact
that many inferences made in everyday life are defeasible. That is,
they are only valid in the absence of explicit counter information.
The need to accommodate this type of reasoning in formal logic has
led to the field of nonmonotonic logics, of which Default Logic and
Circumscription are some well-known examples.

One of the purposes of nonmonotonic logics was to be imple-
mented in knowledge-based systems, which would then be able to
assist its users in things like diagnosis and decision making. One of
the difficulties, however, was that the kind of reasoning performed
by nonmonotonic logics can be notoriously difficult to explain to the
average end-user, who has no explicit background in how these for-
malisms function. Although the resulting system could still give ad-
vice, it would be hard for the user to assess how this advice came
about, why it is indeed the right advice and whether any objections

1 University of Aberdeen, Scotland

2 University of Luxembourg, Luxembourg
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4 Formally, when ®; and ® are sets of formulas in a particular logic of
which Cn stands for the consequence relation, then monotonicity means
that if &; C &5 then Cn(@l) C Cn(@z).

that the user might have are indeed taken into account. That is, the
challenge would be for the system to justify its advice in a way that
can actually be understood by the user. The failure to address this
issue could be seen as one of the reasons why the field of nonmono-
tonic logics did not manage to come up with any widely used com-
mercial applications.’

2 ARGUMENT-BASED REASONING

A new impulse was given in the 1990s, with the development
of formalisms for argument-based reasoning (see for instance
[17, 13, 14, 19]) which culminated in the landmark paper of Dung
[6]. In this paradigm, an argument is essentially an aggregation of
reasons that, when taken together, supports a particular conclusion.
An argument can be attacked by other arguments (like the argument
“the object is red because it looks red” is attacked by the argument
“the object is illuminated by a red light, so the fact that it looks red
is not a reason for it actually being red”). The idea is that, given
the information that is available, one can construct the relevant
arguments and examine which arguments attack which other argu-
ments. The result can be visualised in a graph, in which the nodes
represent arguments and the arrows represent the attack relation.
Given such an argumentation framework (as this graph is called in
[6]) one should then determine (using a formal criterion) which of
the arguments should be accepted, rejected or abstained from having
an explicit opinion about. As an example, consider the following
hypothetical situation involving three arguments:

A: “We should give the patient aspirin, because he’s in pain.”

B: “We should not give him aspirin, because he’s diabetic and exist-
ing research indicates that providing aspirin leads to complications
for patients who are diabetic.”

C': “The research on which this claim is based has been proven to be
flawed and has been refuted by clinical evidence.”

L. T e S —
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Figure 1. Simple argumentation framework

This situation is graphically depicted in the graph in Figure 1,

5 One notable exception is Answer Set Programming (ASP). ASP, however,
is mainly aimed at providing efficient computation for problems involving
constraint satisfaction, instead of tackling the original NMR challenge of
how to reason with rules of thumb that are subject to exceptions.
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where the nodes represent arguments and the arrows represent attacks
between the arguments. Here, the idea is that at least argument C'
should be accepted, because it is not attacked by any other argument.
Argument B, however, should be rejected because it is attacked by
an argument (C) that is accepted. Argument A is the most interesting
case. Its only attacker (B) is rejected and therefore cannot be a valid
ground anymore against the acceptance of A. Since there is no other
argument attacking A, A should therefore be accepted. This is in line
with the general approach of formal argumentation: an argument is
accepted unless there are valid grounds against doing so. In this sim-
ple example it can be seen that the status of an argument depends
on the status of its attackers, which in its turn depends on the status
of their respective attackers, etc. However, in more complex graphs
(especially those containing cycles) things are not that obvious. In
that case, a formal criterion for acceptance and rejection (called an
“argumentation semantics”) is needed. An example of such a crite-
rion is that of a complete labelling [1, 3]. Here, the idea is to assign
each argument exactly one label, which can be in (indicating accep-
tance), out (indicating rejection) or undec (indicating that there are
insufficient grounds for either acceptance or rejection).

Existing results in formal argumentation theory state that each
graph (“argumentation framework™) has at least one complete la-
belling (that is, an assignment of in, out and undec that satisfies the
above three conditions). If the graph contains cycles, more than one
complete labelling can exist. Informally, the concept of a complete
labelling can be seen as a reasonable position one can take based on
the conflicting information encoded in the argumentation framework.

The popularity of argument-based inference formalisms® can
partly be explained by the facts that:

1. these have been shown to be powerful enough to model a wide
range of existing formalisms for nonmonotonic reasoning (like
Default Logic [16] and logic programming under various seman-
tics [7, 8, 18]),

2. efficient proof procedures and algorithms are available, and

3. formal argumentation can be seen as a step forward to making
formal nonmonotonic inference understandable to end-users

The traditional approach to formal argument-based inference con-
sists of a three-step process. The first step is, given a particular
knowledge base, to construct the relevant arguments and examine
how they attack each other (that is, to construct the argumentation
framework). The second step is to evaluate the resulting argumenta-
tion framework (for instance, to determine the complete labellings).
The third step is then to examine what this means at the level of con-
clusions (recall that each argument has at least one conclusion). That
is, for each complete labelling of arguments, one determines the as-
sociated complete labelling of conclusions (for instance by applying
the procedure described in [20]).

One of the things that is missing in the above process is the dialec-
tical aspect. The traditional argumentation process (as for instance
formalised in ASPIC [2, 15, 11]) aims at putting all arguments on
the table and then simply computing which of them should be ac-
cepted. However, in natural argumentation one also encounters the
concepts of dialogue and discussion. Where do these concepts fit in
when it comes to formal argumentation theory?

6 Another application of argumentation theory can be found in the field of
game theory (see [6] for details). However, in the current paper we focus
on argumentation for (nonmonotonic) inference.

3 ARGUMENTATION AS DIALOGUE

A complete labelling can be achieved by assigning a single label to
each argument. The following rules show the possible labels:

1. if the argument is labelled in (accepted) then all its attackers have
to be labelled out (rejected)

2. if the argument is labelled out (rejected) then it has at least one
attacker that is labelled in (accepted)

3. if the argument is labelled undec (abstained) then not all its at-
tackers are labelled out (so there are insufficient grounds to ac-
cept it) and it doesn’t have an attacker that is labelled in (so there
are insufficient grounds to reject it)

A dialogue game consists of the following moves:

claim This is the first move in the dialogue. The proponent claims
that a particular argument has to be labelled in. This creates a
commitment that the proponent enters into.

why The opponent asks why a particular claim holds — why a par-
ticular argument has to be labelled a particular way

because A party explains why the label of a particular argument has
to be the way it was earlier claimed to be.

concede With this move, a party concedes part of the statements
uttered earlier by the other party

A dialogue takes place under the following rules:

e The proponent (P) and the opponent (O) take turns. Each turn of
P consists of a single move: claim or because. O plays one or
more moves in a turn. O’s turn starts with an optional sequence
of concede moves and finishes (when possible) with a single why
move.

e P gets committed to arguments used in claim and because
moves; O gets committed to arguments used in concede moves.

e P starts with claim in (A) where A is the main argument of the
discussion: claim cannot be repeated later in the game.

e In consecutive turns P provides reasons for the directly preceding
why (£) move of O by moving because (£’) where £’ is a reason
of £.7

e P can play because only if the reason given does not contain any
arguments already mentioned (i.e., in P’s commitment store) but
not yet accepted (i.e., not in O’s commitment store). We call such
arguments open issues.

e O addresses the most recent open issue £ (in(A) or out(A)) in
the discussion. If O is committed to reasons for £ it must concede
L otherwise O starts to question all reasons that O is not commit-
ted to with why.

e O can question with why only one argument at a time.

e The moves claim, because and concede can be played only if
new commitments do not contradict a previous one.

e The discussion terminates when no more moves are possible. If O
conceded the main argument then P wins, otherwise O wins.

Given the argumentation framework in Figure 2 the interaction be-
tween a proponent and an opponent may look as set out in Table 1.
Recent research has indicated that it is perfectly possible to use the
above-sketched dialogue as a basis for formal argumentation theory.
The idea is that an argument is accepted iff it can be defended in
rational (structured) discussion. The fully specified theory described
in [4] together with the with associated implementation [5] allows

7 A reason for {(A, in)} is {(B1, out) ...(By,, out)} where By ... B,, are
all the attackers of A in the argumentation framework
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Figure 2. An argumentation framework with more than one path. Nodes
represent arguments and arrows indicate attack relations. The dialogue in
Table 1 shows how this argumentation framework is traversed, and how the
status of argument A is determined by observing that it has to be labelled in
by every complete labelling.

Table 1. Table shows the interaction between Proponent and Opponent for
the argumentation framework in Figure 2

Commitment stores

Proponent Opponent
move in out in out
P:claim in (A) A - - -
O:why in (A) A - - -
P:because out (B,C) A B,C - -
O:why out (B) A B,C - -
P:because in (D) AD B.C - -
O:why in (D) AD B,C - -
P:because out (F) AD B,C,F - -
O:why out (F) A,D B,C,F - -
P:because in (G) AD,G B,C,F - -
O:why in (G) AD,G B,C,F - -
P:because out (H) A,D,G B,CCFH - -
O:why out (H) AD,G B,CCEH - -
P:because in (I) AD,GI B,CCEH - -
O:concede in (I) A,D,G,I B,CEH 1 -
O:concede out (H) AD,G,I B,CEH 1 H
O:concede in (G) A,D,G,I B,CCEFH LG H
O:concede out (F) AD,G,I B,CCEH IG H,F
O:concede in (D) AD,GI B,CCEH IG,D H,F
O:concede out (B) A,D,G,I B,CCEFH [IG,D H,EB
O:why out (C) AD,G,I B,CCEH IG,D H,EB
P:because in (E) AD,GI B,CCEH IG,D H,EB
O:concede in(E) ADGILE B,CFH IGD,E H,FB
O:concede out (C) ADGLE BCFH IGD,E H,EB,C
O:concede in(A) ADGLE BCFH IGDJEA HFEB,C
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participants to discuss whether a particular argument has to be ac-
cepted by every reasonable position (complete labelling) that can be
taken based on the available information (argumentation framework).
The rules of the structured discussion are such that the ability to win
the discussion against a maximally sceptical opponent coincides with
the argument in question being labelled in by each and every com-
plete labelling of the argumentation framework. The structured dis-
cussion proposed in [4] is based on Mackenzie-style persuasion dia-
logue [9, 10], where one can apply moves like claim, why, because
and concede as described above.

The associated implementation [5] uses a command-line interface,
and is written in Python. The argumentation framework can either be
loaded from a text file or entered manually. At the highest level, the
user has eight commands at his disposal: question, claim, load,
save, af _cat, af _define, and quit. With question the user asks
the system about the status of a particular argument (say A). The
system then responds either with claim in(A), meaning that A has
to be labelled in by every complete labelling, with claim out(A),
meaning that A has to be labelled out by every complete labelling or
with no commitment A, meaning that neither is the case. In the first
two cases, the associated claim move is the start of a persuasion di-
alogue as described in [4], which the user could choose to bypass by
immediately conceding the main claim. When the user does a claim
command, the system responds either by conceding (if it holds the
claim that a particular argument has to be labelled in or out to be
correct) or by holding a persuasion dialogue (if the system holds the
claim to be incorrect). Although in the latter case, the discussion will
in the end always be won by the system (since the ability to win
the persuasion dialogue for a particular argument coincides with the
argument being labelled in by every complete labelling of the ar-
gumentation framework [4]) the discussion might still lead the user
to valuable insight about why his initial position was wrong. With
the load, save, af_cat and af_define commands one respectively
loads, saves, displays or manually defines an argumentation frame-
work. The dialogue game follows the rules described in [4], with the
exception that parties can terminate the dialogue at any point by con-
ceding or withdrawing the main claim.

The source code (GPL) and other necessary files can be down-
loaded at the project page ®. The plan is to keep developing it and in-
tegrate it with ArguLab [12]. Furthermore, we are currently working
on a theory in which arguments are more than just abstract entities,
but have an internal structure consisting of a number of reasons that
collectively support a particular claim (conclusion). This would re-
sult in a richer formalism, and the resulting discussion could be more
natural than is the case when (like in the above example) arguments
are completely abstract.

4 CONCLUSION

In general, the ability to express formal inference as the ability to win
a particular type of structured discussion can be helpful for providing
explanation to end users about why the system derived a particular
outcome. If the user disagrees with the system, then one would es-
sentially do the same as when disagreeing with a colleague: start a
discussion.
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Developing an Auction Theory Toolbox

Christoph Lange'and Colin Rowat?’and Wolfgang Windsteiger>and Manfred Kerber*

Abstract. Auctions allocate trillions of dollars in goods and ser-
vices every year. Auction design can have significant consequences,
but its practice outstrips theory. We seek to advance auction theory
with help from mechanised reasoning. To that end we are developing
a toolbox of formalised representations of key facts of auction the-
ory, which will allow auction designers to have relevant properties of
their auctions machine-checked. As a first step, we are investigating
the suitability of different mechanised reasoning systems (Isabelle,
Theorema, and TPTP) for reproducing a key result of auction theory:
Vickrey’s celebrated 1961 theorem on the properties of second price
auctions — the foundational result in modern auction theory. Based
on our formalisation experience, we give tentative recommendations
on what system to use for what purpose in auction theory, and outline
further steps towards a complete auction theory toolbox.

1 MOTIVATION

Auctions are a widely used mechanism for allocating goods and
services (trillions of dollars each year®), perhaps second in import-
ance only to market mechanisms. Auctions are used to allocate elec-
tromagnetic spectrum, airplane landing slots, bus routes, oil fields,
bankrupt firms, internet domains [5], works of art, eBay items, as
well as to establish exchange rates, treasury bill yields, and opening
prices in stock exchanges. Auction design can have significant con-
sequences. Klemperer attributed the low revenues gained by some
governments when auctioning their 3G radio spectrum in 2000 (€20
per capita vs. €600 in other countries) to bad design [11].

Further, the practice of auction design outstrips theory, especially
for more complex modern auctions, such as combinatorial auctions
in which bids may be submitted on subsets of items (e.g. collections
of spectrum, bus routes, landing slots). Important auctions often run
‘in the wild’ with few formal results [10].

We aim to advance auction theory with help from mechanised
reasoning: representing the knowledge underlying auction mechan-
isms in a formal, explicit way, and verifying these formalisations us-
ing computer support. Mechanised reasoning has been successfully
applied, e.g., for verifying software that controls commuter rail or
payment systems [27]. It has also been applied in economics [9], par-
ticularly to social choice theory (cf., e.g., [7]) and game theory (cf.,
e.g., [22]). However, all of this work has been done by computer sci-
entists, not by economists. The formalisation of (mathematical) the-
ories and the application of mechanised reasoning tools remain novel
to economics. Ultimately, we aim to make such techniques more fa-
miliar to auction theorists by providing them with a toolbox of basic
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2 Department of Economics, University of Birmingham, UK

3 RISC, Hagenberg, Austria

4 School of Computer Science, University of Birmingham, UK

5 Extrapolated from the figure of $268.5 billion reported by the US National
Auctioneers Association for 2008 [2].

auction theory formalisations, on top of which they can formalise and
verify their own auction designs.

2 REQUIREMENTS

From the perspective of a domain expert, i.e. an auction designer, the
auction theory toolbox (ATT) should satisfy the following require-
ments:

D1 Provide ready-to-use formalisations of basic concepts of auction
theory, including their definitions and their essential properties
D2 Allow for extension and application to custom-designed auc-
tions without requiring expert knowledge of the underlying mech-

anised reasoning system

From a computer scientist’s perspective, these requirements translate
to the following, more technical ones:

C1 Identity the right language to formalise auction theory, i.e. a lan-
guage that is sufficiently expressive for capturing relevant con-
cepts, while supporting efficient proofs for the majority of relevant
problems.

C2 Identify a mechanised reasoning system that allows for formal-
ising auction designs in a way that is close to the textbook style
economists are used to, and that facilitates reuse of any existing
formalisations in the toolbox.

These two requirements cannot be treated independently of each
other: a language that is adequate w.r.t. requirement C1 may not be
supported by any mechanised reasoning system that satisfies require-
ment C2.

3 APPROACH

We are building the ATT in parallel to identifying suitable languages
and mechanised reasoning systems to avoid a chicken-and-egg prob-
lem. The right ‘hammers’ can only be identified when there are
‘nails’, i.e. concepts of the application domain to be formalised. In
the case of a successful choice of language and system, these initial
formalisations will form the core of the future toolbox.

3.1 The Nail: Vickrey’s Theorem and Beyond

As the first nail, we chose William Vickrey’s 1961 theorem on the
properties of second price auctions of a single, indivisible good
whose value is not publicly known. In such an auction, each par-
ticipant submits a sealed bid; one of those with the highest bids
wins, and pays the highest of the remaining bids; the losers pay noth-
ing.® Vickrey proved that ‘truth-telling’ (i.e. submitting a bid equal to

6 Wikipedia provides further background, including a discussion of variants
used by eBay, Google and Yahoo! [25].



26

one’s actual valuation of the good) was a weakly dominant strategy.
This means that no bidder could do strictly better by bidding above
or below its valuation whatever the other bidders did. Thus, the auc-
tion is also efficient, awarding the item to the bidder with the highest
valuation. Vickrey was awarded economics’ Nobel prize in 1996 for
his work.

We have several reasons for starting our work by redoing an old
proof: its formalisation will enable us to prove properties of contem-
porary related auctions as well; the underlying mathematical theory
can be formalised in contemporary systems with reasonable effort;
finally, we assume that domain experts being introduced to mechan-
ised reasoning would rather trust this technology, which is new to
them, if it is first applied to known results.

Eric Maskin collected high level versions of Vickrey’s theorem
and 12 others in his 2004 review [13] of Paul Milgrom’s influential
book on auction theory [14]. This review guides us in building the
toolbox; here, however, we focus on Vickrey’s theorem (restated as
proposition 1 in Maskin’s review), as it is the only one we have fully
formalised so far.

3.2 Wielding the Hammer

We are formalising auction theory, starting with Vickrey’s theorem,
in three systems, which differ in logic, syntax and user experience.
Before discussing these categories in detail, we discuss how we pre-
pared ourselves for machine formalisation by refining the original
paper source; we then introduce the three systems we are using.

3.2.1 Preparing the Paper Formalisation

Maskin’s paper states Vickrey’s theorem in two sentences of high-
level text and proves it in another six sentences. On paper, we elab-
orated the theorem and its proof into a version that made the de-
tails explicit, resulting in eight definitions.” Mechanised reasoning
systems generally require much more explicit statements than com-
monly found on paper: Automated theorem provers (cf. the detailed
discussion in section 3.2.2) require them to find proofs without run-
ning out of search space, whereas proof checkers require proofs to be
at a certain level of detail, which in turn requires detailed statements.

An initial attempt to formalise our elaborated proof distinguished
cases on the basis of bidders’ bids. This generated a multi-level case
distinction with nine mostly straightforward leaf cases for Isabelle to
check. While feasible, this was tedious, encouraging us to to re-write
the cases on the basis of whether a participant won or lost the auction,
whether by truthful bidding or otherwise. This resulted in four cases,
once more largely straightforward.

We conjecture that such an extra step of elaborating the original
paper source will typically be helpful before starting a machine form-
alisation. The history of proving Arrow’s impossibility theorem on
the non-existence of a fair aggregation of the preferences of a group
of individuals, a central result of social choice theory, supports this
claim: Nipkow’s Isabelle formalisation [17] as well as Wiedijk’s
Mizar formalisation [24], both based on Geanakoplos’ widely known
paper version [6], required such elaborations where the paper source
was imprecise. Beyond these formalisations, Tang and Lin obtained
insights on the general structure of impossibility results in social
choice theory only by studying and formalising a novel, induction-
based proof [21].

7 This ‘paper formalisation’ is available from the ATT homepage [12].

3.2.2 Choosing a Mechanised Reasoning System

In terms of logic, it is not immediately clear whether Vickrey’s the-
orem is inherently a higher-order statement. It does make a statement
about the maximum of an arbitrary number n of bids. Defining such
an n-vector and proving essential properties of the maximum opera-
tion requires induction and thus goes beyond first-order logic. How-
ever, if one takes n-vectors and a maximum operation on them for
granted, the rest of the formalisation does not require higher-order
logic. That is, first-order logic suffices to formalise the concepts that
are actually relevant from the perspective of the application domain:
single good auctions, second price auctions, and the statement of
Vickrey’s theorem. First-order logic has the computational advant-
age that its statements are semi-decidable, and that sound and com-
plete calculi exist. In practice, this means that a number of efficient
automated theorem provers are available.

In terms of synfax, we assume that our domain experts, i.e. auction
designers, will prefer a language that looks like the textbook math-
ematics they are used to, rather than one that has the flavour of a
programming language. We assume that a typed language will sup-
port them in defining types for domain concepts (such as bids) and
avoiding mistakes in formalisation.

In terms of user experience, one has to distinguish between fully
automated proving, where systems are given a theorem and a know-
ledge base and they try to automatically find a proof of the theorem
w.r.t. the given knowledge base, and interactive proving, where the
author has to write a proof and have it checked interactively by the
system. There are systems that confine themselves to one of these
paradigms, but there are also systems that try to combine them.

We roughly describe the features of the languages and systems that
we are using:

Isabelle/HOL [8]: higher-order logic (typed), supported by the Isa-
belle interactive theorem prover, accessible via the ProofGen-
eral [1] and jEdit [23] text editor interfaces

Theorema [26]: first-order logic with set theory®, implemented as
an add-on package for the Mathematica computer algebra system
with its document-oriented notebook interface

TPTP FOF [19, 18]: untyped first-order logic, a machine-oriented
language supported by several automated theorem provers, ac-
cessible for human authors and developers via the many-sorted
first-order logic language CASL® [4], which the Hets inter-
face [15] can translate to TPTP and send to provers.m

4 STATE, AND EXPERIENCES SO FAR

We performed the first complete formalisation of Vickrey’s theorem
in Isabelle.!! We redid the same formalisation in CASL (to obtain
TPTP) and thus showed that first-order logic is sufficiently express-
ive for Vickrey’s theorem. Here, the full proof is still work in pro-
gress. Finally, we are redoing the formalisation once more in Theor-
ema 2.0. The purpose of redoing the formalisation from scratch is to
understand the specific advantages and disadvantages of the different

8 The Theorema language is actually based on higher-order logic, but in our
case we use FOL + set theory.

9 CASL has a few higher-order features, such as inductive datatypes.

10 TPTP has a typed (sorted) first-order form (TFF) as well [20]. As Hets is
not currently capable of translating CASL to TPTP TFF, we are not using
the latter. Note that CASL is more expressive than TPTP TFF in that it
supports subsorts.

11 There was no specific conceptual reason for starting with Isabelle.



languages and systems and to obtain a formalisation that is as idio-
matic as possible.'” The formalisations are available from the ATT
homepage [12].

4.1 Theory Structure

Formalising further theorems from Maskin’s review paper, some of
which make statements about similar types of auctions, should reuse
as much of the Vickrey formalisation as possible. To enable this, we
have therefore organised them into modular theories. Four of them
are essential from the domain perspective:

Single good auctions (basic concepts): the auction as a mechan-
ism that maps bids to an outcome (i.e. uniquely allocating the good
to one participant, and defining the participants’ payments).

Properties single good auctions may have: efficiency and weak
dominance of a given bidding strategy (cf. section 3.1).

Second price auctions: the definition (cf. section 3.1) and some
lemmas one can infer from them, e.g. that if there is exactly one
highest bidder, that bidder wins; functions to compute the payoff
of a winner and a loser.

Vickrey’s theorem: truthful bidding in a second price auction is a
weakly dominant and efficient strategy.

4.2 Library Coverage

All of our formalisations are structured in terms of the theories listed
above.'* Depending on the system, we had to provide further math-
ematical foundations as additional theories. Theorema has a built-in
tuple datatype which we used to formalise vectors of bids, and sup-
ports a maximum operation on such tuples. CASL supports inductive
datatypes, and its standard library provides a number of them, in-
cluding arrays [3, 16], but there is no built-in n-argument maximum
operation. The Isabelle/HOL standard library provides a Max opera-
tion on finite sets; however, given Isabelle’s functional programming
style syntax, we found it most intuitive to model our own vectors
as functions N — R evaluated for arguments up to a given n. Thin
wrappers make the set maximum operator usable for these vectors
and prove the properties required subsequently.

4.3 Level of Detail Required by the Machine

Even the elaborated paper version introduced in section 3.2.1 turned
out to be insufficient for direct machine formalisation. The Isabelle
formalisation of the four theories listed above comprises 4 additional,
auxiliary definitions, and 7 auxiliary lemmas. We estimate that a sim-
ilar number of auxiliary statements will be required to guide the auto-
mated provers of Theorema and those that support TPTP. On the
other hand, our initial steps of extending the formalisation beyond
Vickrey’s theorem suggest that the auxiliary material makes it easier
to formalise further notions.

12 Hets is, for example, capable of translating CASL to Isabelle, but the res-
ulting Isabelle code would not make use of higher-order features other than
inductive datatypes.

13 In Theorema, which does not support a formal notion of theory, we chose
to use notebook sections for structuring. Once further reuse will be re-
quired, we may change this to archives: collections of definitions, theor-
ems, etc., which a notebook can load for reuse.
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4.4 User-friendliness of Input Syntax

While we have not yet collected feedback from actual domain ex-
perts, we assume that they will find Theorema’s input syntax most
accessible. The two-dimensional symbolic notation of Mathematica
notebooks is similar to textbook notation; additionally, large parts of
our target audience are familiar with Mathematica already. The ap-
pearance of Isabelle and CASL is closer to programming languages;
however, both allow for defining operators with a custom ‘mixfix’
notation. The ProofGeneral and jEdit interfaces of Isabelle display
the operators built into the language or defined in the standard lib-
rary in a one-dimensional approximation of textbook style, using the
appropriate Unicode characters. Finally, TPTP’s pure ASCII syntax
is not extensible by custom symbols.

4.5 Interactive or Automated?

Our tentative verdict on interactive vs. automated approaches is that it
does not matter: What matters, instead, is that the systems give good
error messages, which allow the user to tell where exactly the form-
alisation is wrong or insufficient, and why exactly the system failed
to check or to find a proof. Given that the user provides a proof that
proceeds in sufficiently small steps, the jEdit interface for Isabelle
gives localised feedback on errors. When Theorema tries to prove a
theorem, it develops a structured textbook-style proof at a configur-
able level of verbosity. The user can navigate it via a tree view and
thus quickly identify where Theorema failed to proceed. For CASL,
Hets itself performs a type check, and otherwise relies on the output
of the theorem provers it invokes.

4.6 Community Support

Community support is another criterion that facilitates adoption of
a system. The user communities of the systems considered here
mainly comprise computer scientists and therefore may not be ready
to answer questions that a domain expert with little computer sci-
ence background may have, as they often assume previous know-
ledge about mechanised reasoning, mathematical formalisation, and
the specific reasoning approach underlying the respective system.
Therefore we simply compare the sizes of the communities for now,
assuming that domain experts can expect better assistance from a lar-
ger community. [sabelle is developed by multiple institutions and has
a large user community; more than 100 posts per month are made to
its user mailing list. CASL has been standardised in an international
effort and has been the subject of several hundred scientific public-
ations but does not currently have a functional mailing list. Hets is
mainly developed and used within a single institution; its user mail-
ing list receives less than 10 posts per month. TPTP has been the
subject of more than a thousand publications but does not have a
mailing list. Theorema does not have a mailing list either and has so
far been developed as closed source software within a single institu-
tion, but this is expected to change soon with the open source release
of Theorema 2.0.

5 CONCLUSION AND OUTLOOK

Auctions allocate trillions of dollars in goods and services every year,
but still it is not well understood how to design a ‘good’ auction. Our
auction theory toolbox (ATT) currently formalises key results about
single good second price auctions, a simple, well-understood type of
auction. It does so in a modular way, which makes us confident that
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we will be able to build formalisations of more complex and new auc-
tion types on top of the existing core, ultimately enabling computer-
supported verification of auction designs. We are planning to put this
hammer right into the hand of domain experts, i.e. auction designers.
To that end we are, at the same time as we are building the tool-
box, identifying those mechanised reasoning languages and systems
whose user experience is closest to the domain experts’ mindset.
The logics, languages and systems studied so far satisfy our tech-
nical requirements C1 and, thanks to their support for modular the-
ories, C2 as well. Our Isabelle formalisation, the most complete one
so far, satisfies the domain expert’s requirement D1 for second price
auctions but needs to be expanded to other types of auctions. An as-
sessment of how well the ATT satisfies requirement D2 can only be
made once there is a larger core ATT, on top of which we — or rather:
auction designers themselves — will have formalised new auctions.
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Model VValidation and Test Portfolios in Financial
Regulation

Neels Vosloo®

Abstract. We describe the problem of test portfolio selection
and construction that arises in the context of regulators’ use of
test portfolios to validate and benchmark the models that
financial firms use to determine their regulatory capital
requirements. We provide an example and discuss whether
Mechanised Reasoning might be used to help provide a more
structured approach to this problem.

1 INTRODUCTION

Regulators allow the use of financial firms’ own (“internal”)
models for calculation of regulatory capital requirements for
several risk types and business areas — the focus of this note is on
market risk in the trading book, i.e. fluctuations in value of
assets held with “trading intent”. Such assets are required to be
re-valued (“marked to market”) daily, it is therefore implicitly
assumed that a reliable market price is available every business
day, and market risk is broadly defined as the uncertainty in the
future value of the product due to changes in market prices.

Regulated Firms with trading books are required to hold
capital against this risk, to absorb “unexpected” losses due to
market moves, and under the under the so-called Basel accords
are allowed to use their own (“internal”) models to calculate this
capital requirement, subject to regulatory approval. This option
is mainly used by large investment banks, and the markets and
investment banking divisions of large financial groups.

Regulators’ model approval approach typically relies on
firms’ internal model validation and control functions, but this is
increasingly being supplemented by hypothetical portfolio
exercises (where several firms are given the same portfolios to
evaluate), as concerns increase over variability of capital
requirements and adequacy of risk capture following the
experience of the most recent financial crisis. The importance of
test portfolios will increase, as regulators are becoming more
interested in the cross-industry benchmarking of models and
capital — this is very likely to be reflected in future versions of
regulatory requirements.

2 MODELS

The term “model” is used in two distinct ways in the present
context: “valuation” models and “capital” models.

Valuation models are used to calculate the value of financial
products given a state of the market — note that the values of
complex financial instruments are calculated as functions of the
(more readily observable) values of simpler instruments, also
called “risk factors”, for example currency exchange rates.

Capital models are used to calculate capital requirements, and
are based on estimating a future distribution of market values (or
equivalently, changes in market values from the current value, or

“profit & loss”) over a given time horizon, and calculating a
metric (VaR, Expected Shortfall) from this distribution.

Capital models calculate future distributions of product
valuations by first modelling a joint distribution of future values
of risk factors, and then using appropriate valuation models for
each product, taking the modelled risk factor distribution as
input.

3 MODEL VALIDATION

For the validation of capital models, the set of financial products
to which the model applies is assumed to be known; the values
of these products are in turn dependent on a set of known risk
factors.

Test portfolios for the model will therefore be defined either
by subsets of the set of products in scope, or by subsets of the set
of all risk factors, which will in turn define test portfolios of
(potentially simplified) products.

As a simple example, consider a product scope of interest rate
swaps and FX forwards. The associated risk factors are the FX
spot rate and the interest rate curve, the latter represented by a
set of interest rates at different maturities. A test portfolio for
this scope could consist of some combination of swaps and FX
forwards, or, when analysed in terms of risk factors, might
consist of portfolios of FX forwards and zero coupon bonds, the
latter having exposure to just one point on the curve.

The validation of capital models can usefully be thought of as
having three distinct (although obviously related) objectives.

First, we need to verify that risk factors for individual traded
products are appropriately defined, and that the valuation model
used for the product in the capital model is sufficiently accurate.
There are typically two issues in this regard: one, not all risk
factors for the product are included in the capital model, and
two, the capital model could be using an approximation of the
product’s valuation function (for efficiency and infrastructure
reasons Taylor series approximations are often used). This aspect
is typically verified by comparing the actual historical profit and
loss (P&L) series for the product with the corresponding P&L
calculated by the capital model, i.e. via a form of back testing.

Second, we need to verify that risk factor data used in the
capital model is complete and sufficiently granular, i.e. risks that
are similar but not the same should be recognised by the model.
This aspect is typically verified through test portfolios consisting
of simple strategies that give exposure to the risk factors being
tested but have little or no exposure to other risk factors. The
capital model should not give a zero capital requirement for such
a strategy — this would indicate that the model does not
distinguish between these risk factors, and therefore misses
“basis risk”.



Third, the impact of risk factor covariance and distributional
assumptions should be tested, to establish whether the model
will give sufficiently conservative capital levels for all plausible
product combinations (portfolios) and market conditions
(normal, stressed). This is determined by properties of the capital
model, including the type of metric (e.g. VaR, Expected
Shortfall), the amount of data used to calibrate the model, the
framework (Historical, Monte Carlo, weighted or un-weighted).

The main test used for this aspect is — again — back testing of
capital against historical P&L time series for test portfolios,
ideally compared across different model types. The additional
dimension in this instance is of course test portfolio selection.

4 EXAMPLES

Products and strategies run by a typical Credit Trading business
can be used to illustrate the three aspects of model validation
discussed above.

A “high-yield” corporate bond has a low credit rating and
therefore a high probability of default. An appropriate valuation
model will recognise the fact that, for large moves in the bond’s
credit spread, corresponding price moves should be limited so
that the position cannot lose more than the assumed loss given
default indicates. A capital model using only the credit spread
delta (“CS01”) to price the bond will not measure the risk of the
position correctly, as it will linearly extrapolate price moves
from spread moves.

A “negative basis trade” is a strategy where the trader owns a
bond, and also buys protection on it via CDS, when the CDS
spread is low relative to the bond’s own credit spread. Many
capital models use the CDS spread as a proxy for both the CDS
and bond spreads, and will therefore not measure the risk of this
strategy correctly.

The capital calculated for a portfolio of CDS contracts on
highly correlated names will be highly sensitive to both small
changes in position and small changes in risk factors (credit
spreads), potentially giving an unstable capital measure.

5 CONCLUSIONS & FUTURE WORK

The crux of the test portfolio problem is that, while back testing
individual products and strategies across different models and
time periods arguably provide most of the information required
to validate pricing and risk factor selection for the purpose of
capital modelling, the “portfolio effect” means that not all
portfolios are equally well capitalised at all times in all models.

This effect is more pronounced during periods of stress, as the
usual relationships between products (and asset classes) break
down.

All three aspects discussed in Section 3 are (or should be)
individually validated by firms, using a range of approaches
including test portfolios. Regulatory test portfolios necessarily
need to test all three, interrelated, aspects. The problem is to
design a set of portfolios that does this efficiently, and is further
complicated by the fact that information on valuation models and
data is typically limited.

There is also a significant additional problem: regulators
typically cannot directly verify the correctness of the actual
implementation of a firm’s capital model, i.e. whether it is

implemented according to documented specifications in software
and hardware.

Given the particular requirements of regulatory test portfolios,
we think that Mechanised Reasoning could provide model
validators with new procedures to discover efficient test
portfolios beyond traditional portfolio replication and
optimisations techniques, particularly given that regulatory test
portfolios will have a range of success criteria, or that the
determination of success criteria might even be part of the test.
This contrasts with other techniques where a desired level of
risk, return, or exposure is typically first specified.
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A contribution to an Auction Theory Toolbox through
code and discussion

Marco B. Caminati

Abstract. [ am contributing a further mechanization of Vickrey’s
theorem on weak equilibrium in second price auctions. Submission
6 of stage 1 is an invitation to discuss on early developments in for-
malizing a toolbox for auction theory, and I wish to add a further
viewpoint. My formalization is in Mizar, which is nearer than other
systems to the common mathematical language. Auctions being not
yet present in the library, there is the chance of taking the first design
decisions: one should put effort into making them suitable to build
a large future library on them, and at the same time try his best to
reduce as much material as possible to the most common mathemat-
ical objects, which are well supported in the existing library. I will
illustrate how I faced this task.

1 What has been formalized

This AISB submission provides the Mizar formalization of a theorem
by Vickrey about weak equilibrium in second price auctions. The
mathematics is simply and clearly exposed in [3]. A quick summary
follows. The initial data is a vector b, containing the bids of each
participant. Given this vector, the dynamics of the auction is simply
modeled by assuming that each participant has, in his mind, a precise
valuation of the auctioned good, which may or may not coincide with
the amount of money he bids. The theorem in question says that, in
this regard, the best strategy is to make them coincide, in the ‘weak’
sense: given a random b, changing the bid of a participant to his
valuation, the payoff of that participant does not decrease.

1.1 Defining the payoff to express the theorem

The best possible payoff for a single participant would be given by
winning the whole auctioned good without paying anything, in which
case it can be quantified by the subjective valuation v he deems the
good worth. Given that, generally, any participant gets a fraction
ranging from O (for losers) to 1 of the auctioned good, and that, of
course, any decent auction scheme will impose at least to the win-
ner(s) to disburse an amount of money, such payoff is defined by
vx — p; here v is the valuation, x the fraction of the good obtained,
and p the amount paid.

z and p depend on all the participants’ bid, and as such each of
them is a component of two distinct vectors having the same length as
b; x and p are respectively termed the allocations and the payments,
and are calculated from b according to the auction algorithm. Thus,

the theorem’s wordy statement above can be put into this inequality:'
v AT () =Pl (i) S v Xgd (i) = Par (1), (1)
where

1. X' and P! calculate, from the bids vector b, the allocations
and payments vectors respectively, according to the second price
auction algorithm;

2. 4 indexes the considered participant;

3. a! is the vector obtained by changing the i-th component of a

into y.

2 An overview of Mizar

The Mizar project (http://www.mizar.org) delivers a few
provisions:

1. The Mizar language permits to write formulas in first-order set
theory which read close to common mathematical language. For
example, the formula

X # 0 = Fz(z € X)
is written
X <> {} implies ex x st x in X;

In addition to the few reserved words pertaining to the first-order
alphabet of set theory, the language specifies grammar and re-
served words to invoke the verifier (see point 2) and to exploit
advanced features of the system.

2. The Mizar verifier (PC Mizar) is a piece of software certifying
whether one such formula can be deduced (according to some for-
mal system for classical logic, see sections 2.2.1 and 3.5 of [2])
from other given formulas, specified via the keyword by of the
Mizar language:

Al: x in X;

A2: for y being set holds y in X\/Y iff
(y in X or y in Y);

x in X\/Y by Al, A2;

3. The Mizar Mathematical Library (MML) builds on the compo-
nents (1) and (2) above to provide a mass of Mizar language for-
mulas certified, by Mizar verifier, to be derivable from a handful

1 Consistently with the fact that a vector is a function with a special domain
(compare this with the beginning of section 3), we indicate the ¢-th com-
ponent of vector a as a (7), reserving the use of sub- and superscripts for
other cases.


http://www.mizar.org

of set-theoretical axioms affine to ZFC (Zermelo-Fraenkel with
the axiom of choice) . The set theory resulting from these axioms,
Tarski-Grothendieck (TG), is an extension of ZFC, and more on it
can be found in [5].

MML is made up of Mizar source files called articles, and
its latest version is always browsable at http://mizar.uwb.
edu.pl/version/current/mml/. In the following, we will
be using typewriter font for referencing articles and results inside
MML: for example, XBOOLE_1: 4 denotes the fourth theorem ap-
pearing in the MML article xboole_1.miz, which is thus viewable
athttp://mizar.uwb.edu.pl/version/current/mml/
xboole_1.miz. We will also adopt typewriter font for Mizar code,
as already done in point (1) of the numbered list above.

3 Formalization choices

In this section we pass from common mathematical language of sec-
tion 1.1 to the corresponding Mizar definitions and statements.

We have to encode the objects appearing in (1): X! and P It
turns out that a first convenient step is to relax the requirement on
b: we just ask that it is a relation (not even a function) rather than a
natural-indexed vector. A second convenient choice is to restrict the
bids to be natural (as opposed to rational or real) numbers. This is not
a hindrance, since in real world currency is indeed a positive integer.
These choices allow to give the wanted definitions in simple terms of
very general, low-level (from a set-theoretical point of view) objects;
given a relation R representing our ‘vector’ of bids:

1. union rng Ris the highest bid. rng R is the range of R, and
union rng Risthe union of all the elements of the set rng R.
This works thanks to our requirement that the bids are natural, be-
cause of the so-called Von Neumann encoding of ordinals, which
means that 0 is represented as the empty set, 1 is the set {0}, 2 is
the set {0,1}, and n + 1 is the set {0, 1,...,n}.

2. Then R" (union rng R), aptly named topbiddersof R,
is the set of the participants having placed the highest bid. Indeed,
R"Y is the Mizar rendition of the preimage of the set Y under the
relation R. So that

3. winnerof R, defined as

the Element of (R" (union rng R))

is the winner of the auction. Note that, in Mizar, the construct
the Element of refers to a fixed element of a set without
actually specifying it, hence implicitly employing the axiom of
choice. In the present case, this gives a very quick way to ran-
domly extract a winner in case of more than one top-bidder.

4. At this point, losersof R is trivially defined as
dom R \ {winnerof R}. Here, dom R is the domain
of the relation R and X\ Y is the set-theoretical difference of X and
Y, also called the relative complement of Y in X.

5. Note that R| (losersof R) is still a bid ‘vector’: this is
true exactly because we gave up the requirement of it being a
proper vector (i.e., having a domain like {1,2,...,n}). Hence,
we can repeat the calculation as from point 1., and conclude
that union (rng (R| (losersof R)) is the highest non-
winning bid, that is, the price to be paid by the winner, by def-
inition of second-price auction. It is aptly named priceof R.
Here, R | X is the restriction of the relation R to the set X.

Now the needed objects PZ! and X! are easy to express in Mizar
(where, of course, the argument b becomes a generic relation R),
respectively as
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[:dom R, {0}:]+*[:{winnerof R}, {priceof R}:]
and as
[:dom R, {0}:]+*[:{winnerof R}, {1}:],

whose names are R-pay and R-allocations.

Only two further set-theoretical definitions are involved here:
first, the cartesian product X x Y, which in Mizar is written
[:X,Y:]. Recalling that, in set theory, relations and functions are
their own graph, this means that [:dom R, {0}:] is the func-
tion constantly evaluating to 0 on the whole domain of R, and
[:{winnerof R}, {y}:] is the function associating the sin-
gle element of its domain, winnerof R, to the value y. Finally,
£ +* g ‘pastes’ the functions £ and g, evaluating to g on the inter-
section of their domains.” So that R-pay is a function evaluating to
0 for all the participants, except the winner, for which it evaluates to
priceof R.Similarly, R-~allocations is a function evaluating
to 0 for all the participants, except the winner, for which it evalu-
ates to 1. This last occurrence of 1 reveals the simplified case we
limit ourselves to: that of an indivisible auctioned good (we had not
mentioned this limitation yet).

Luckily, the object ++ just introduced naturally permits to define
also the last operation we need to pass from the definitions to the the-
orem statement: the single-component alteration introduced in point
3. on page 1. Indeed, fY is easily given by £ +x [:{x}, {y}:],
so that (1) has been formalized and proved in Mizar as:

(vx (f-allocations.i)) - ((f-pay).i) <=
vx ((£ 4% [:{1i},{v}:])-allocations).i -
(f +x [:{i},{v}:])-pay.i,

where the reader only needs to know that g.x is the function g
evaluated in the point x: it is the Mizar way of denoting g (z). Of
course, having been so slack with the requirements on the bids R
implies that some additional hypotheses are needed. The first one is
already present in the code snippet above, hinted by the change of
R into £: the bids is no longer only a relation, but a function. The
remaining ones make the theorem actually read as:

for f being Function st
(rng £ c= NAT\{0} & rng f is finite
& dom f is non trivial) holds

(vx (f-allocations.i)) - ((f-pay).i) <=
vk ((f +x [:{i},{v}:])—-allocations).i
- (£ +x [:{i},{v}:])-pay.i

A byproduct of this approach is that it makes the points of the
proof in which each additional hypothesis is needed self-evident:
for example, the requirement of the bids being a relation is to be
strengthened into the one that they are a function exactly in lemma
Lm7 (referring to the full Mizar source or to its essential version on
page 6). We conclude with few last clarifications: NAT is N, c=is the
set-theoretical inclusion (so that the rng £ c= NAT\{0} means
that £ is ZT-valued), and a set is trivial iff it has cardinality smaller
than 2.

Table 1 sums up some Mizar notation for reader’s convenience.

2 Note that this still results in a function.


http://mizar.uwb.edu.pl/version/current/mml/
http://mizar.uwb.edu.pl/version/current/mml/
http://mizar.uwb.edu.pl/version/current/mml/xboole_1.miz
http://mizar.uwb.edu.pl/version/current/mml/xboole_1.miz
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Table 1.

Summary of Mizar notations.

Mizar notation description blackboard rendition

X c=Y set inclusion XCY

X c< Y strict set inclusion XCY

{} the empty set 1]

X\/Y, X/\Y pairwise union, inter- XUY,XNY
section

x\Y difference of sets X\Y

union X arbitrary union U=z

rzeX

[:X,Y:] cartesian product X XY

NAT natural numbers N

R"X preimage of set X R™![X]
through relation R

R|X restriction of R to X R|y

dom R, rng R domain, range of R

f.x f evaluated in = f(z)

f +x g
+, =, *, /
b-allocations
b-pay

pasting of functions
arithmetic operations
allocations vector
payments vector

f‘domf\domg Ug
+, =
II

X,
]

4 Principles behind the formalization choices

Some points of this formalization expose a clash between two needs:
that of writing Mizar code in a novice-friendly, closer-to-natural-
language style, versus that of reducing the bloat and the coding time;
the latter goal implies exploiting the features of both the Mizar sys-
tem and its foundational axioms to create lean and efficient code.
While Mizar language is reputedly among the ones which most re-
semble common mathematical language [6], and thus one of the most
accessible to a novice to the field of mechanized proving, a proficient
Mizar user will easily have priorities leading him to sacrifice this as-
pect.

We point out three of them, as seen useful to discuss the present
matters:

1. Evaluating which are the most convenient mathematical objects to
reduce the examined objects to.

2. Escaping the typing system when it is a hindrance.

3. Reformulating statements in a style more liable to automations,
though possibly farther from natural language.

Let us deepen each point in a dedicated section.

4.1 Which objects to base on?

One of the referees stated a poignant observation which can be a very
good starting point for this discussion:

Aspects of the foundations of Mizar (which is a version of un-
typed set-theory with ‘soft’ type system on top) are leaking into
the application: e.g., properties of natural numbers that happen
to be encoded in the manner of von Neumann are used to ex-
press the idea of the maximum of a set. Do mathematicians do
this in real life?

In a sense, yes: if they accept ZF as a foundation (as most do),
they do such things all the time, albeit generally without thinking
(or even knowing) about the underlying set-theoretical machinery.
Indeed, the point in introducing all the ‘higher level’ encodings (as
Von Neumann ordinals) is to be able to hide the complexities of ZF
modeling, while keeping the comforts given by a solid, time-tested
foundation as ZF, and this is usually very convenient in traditional

mathematics. When doing mechanized mathematics, things change a
bit, though: reasoning in terms of the underlying sets of course does
not change the essence of the mathematical objects, and permits to
get rid of typing when it is a hindrance (see section 4.2). Moreover,
doing a formalization in terms of the encoded mathematical objects
rather than in terms of the encoding sets usually prevents from tak-
ing advantage of the range of canned proofs in the library, which
is unavoidably broader in the latter case. Even when a result is not
available in the existing library, proving it for sets rather than for
the particular objects one is dealing with is of course overall more
desirable.

Thus how one encodes the new objects he need is no longer a
mere matter of style; it is crucial to how effective and maintainable
a formalization will be. The time initially spent to figure out how
to translate the involved mathematical object into those already well
supported (which typically means low-level with respect to the par-
ticular foundations) is a labor usually well repaid, both in terms of
how easy the work will result and of the work’s impact with regard
to the global usefulness of the system’s library. In the present case,
as already illustrated, we used few general objects, like union, \, ",
I, /\, [, :1, rng, +x*; this reflects in a somewhat long introduc-
tory section of vickrey.miz, containing general lemmas regard-
ing those objects which are of wider interest. As a bottom line, con-
siderations of a software engineering flavor as the ones above suggest
that, in mechanized proving, there are occasions in which, opposedly
to standard mathematics, it is convenient forgetting ‘higher level” en-
codings and working on the underlying entities (sets, in the case of
set theory).

As an example, let us dwell back on the definition of priceof R
(see point 5 of page 2):

func priceof R equals
union rng (R | losersof R);

union is a universal set-theoretical operations, but in our cases it
does exactly what we need, i.e. taking the maximum, thus obtaining
the wanted second price. We focus on this last step, where two cru-
cial choices emerge: first, rather than using the operator max, which
Mizar provides, we use union. It should be noted that in our case
the two operate in exactly the same way, with the big difference that
max is only defined on numerical sets: this would imply constrain-
ing R|losersof R to be numerical-valued, which limits general-
ity and invariably leads to additional work in the proofs involving
this object. This work would be spent on something that is mathe-
matically irrelevant, since max and union do exactly the same: we
are discarding the typing because it is limiting us, in this case. Addi-
tionally, we would be obliged to import all the definitions regarding
max and its operands, while union is such a basic operation that it
needs much less dependencies.

Implicit in such a definition is the second choice: that of limiting
the bids to natural numbers. Indeed, the identification of max and
union only holds for natural numbers. This is not accidental: natu-
ral numbers are simple objects in most formal frameworks, and hence
admit simple encodings in term of low-level objects. Thus, this is a
symptom of a more general issue: integer, rational and real numbers
present escalating complexity in definitions and proofs. Correspond-
ingly, assessing which of these numerical families one will base fu-
ture code should occur early in the endeavour. In the present case,
the first consideration was that currency has always an atomic quan-
tum even on financial exchanges where ‘sub-pennying’ is allowed.
The second consideration was that even if, for some currently un-
foreseen reason, the case of fractional or even continuous ‘currency’



were needed, definitions and theorems could be generalized by em-
bedding them into the correspondent enlargements.

4.2 How much typing?

Contrary to most other systems, typing has no foundational role in
Mizar (and in set theory). Assigning a type to each term one talks
about was an early response to the foundational crisis of naive set the-
ory. However, although type systems subsequently found extremely
widespread application in programming language design to catch er-
rors in software, in its original goal they were largely displaced by
ZF set theory, which fixed naive set theory in other ways.

But while programming languages are used to produce executa-
bles, formalization languages are used to verify correctness mathe-
matics: correspondingly, the role of a type system changes. In the
case of Mizar, this role is twofold: to make the text read more nat-
ural (e.g., to be able to write n is natural number instead of
the equivalent, plainly set-theoretical statement n in NAT) and to
embed several automation mechanisms in it. When these two aspects
are not top-priority, typing should be reduced to a minimum. For
a concrete example, let us go back once again to the definition of
priceof, and assume we ignored the considerations above, con-
ceding a more immediate and typed definition:

let R be REAL-valued Relation;

func priceof R equals max rng (R|loserof R);

This version would probably be slightly more intelligible than ours
for a newcomer, because it saves him to be warned about the proviso
that taking the union over finitely many natural numbers equates to
taking the maximum. On the other hand, to make such a definition be
accepted by Mizar, one first of all has to look for and import all the
results making all the types right: one has to know that

e R|losersof Risstill REAL-valued
e the range of a REAL-valued is a subset of REAL, and thus
e max can be applied

This burden is faced every time one invokes priceof R in subse-
quent proofs, while it is utterly bypassed by breaking the abstraction
layer and looking down at the sets embodying it.

4.3 Automatically accepted statements

Due to how automations work in Mizar, often there are mathemati-
cally equivalent statements presenting different amounts of justifica-
tion needed to have them accepted by the checker. Usually, the most
natural and readable rendition (i.e., the one closest to natural lan-
guage and easiest to digest for a layman) is not the one minimizing
the justifying effort.

We review here few concrete cases, while a general treatment of
these kinds of custom exploitation of Mizar automation mechanisms
is exposed in [1]. The simplest and most common case is that of
statements about the equality of two sets. The equality symbol, =,
can be rendered through the set theoretical operation \+\ and the
attribute empty, via the result FOMODELO : 29:

for X, Y being set holds
X \+\ Y is empty iff X=Y;

This means that for every theorem whose statement has the form

Bl: terml = term2; 2)
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one can produce a translation like

terml \+\ term2 is empty; 3)

This latter version presents the advantage of being usable without
justification in subsequent proofs, while the former ones require the
user to explicitly refer to the label B1. This implies consuming a
substantial amount of time to locate this label inside the huge MML.
For this reason, in the present formalization, the second form prevails
over the first, which is nonetheless much more immediate to read. For
example, one finds

dom £ \/ dom g \+\ dom (f +% g) ={};
in lieu of
dom(f +*x g)=dom f \/ dom g by FUNCT_4:def 1;

along with more intricate schemes (all documented in [1]) which
permit to save lookups to MML at the expense of clarity (because
the formula reads less natural and because an explicit justification is
missing). On the other hand, these developer’s shortcut schemes tend
to be applied to such trivial passages that the reader, once he is aware
of the base idea, should have no problem with them.

5 Formal proof

The Mizar source is organized into three thematic sections®: the first
one, as mentioned in section 4.1, contains those results which could
be induced down to low-level objects, thanks to the approach dis-
cussed in section 4.1. For example, union {x} = x;,or

y<>0 implies
(x=z 1ff ([:X,{0}:]+*[:{z},{y}:]).x<>0);

which says that the function constantly zero except in a point 2
yields a non-zero value exactly when evaluated in z.

Given their triviality, this whole first section can be omitted when
illustrating the proof. The second sections defines a second price auc-
tions and the related concepts, also stating few simple characterizing
properties. Third section contains the significant results. Stripping off
the proofs, second and third section fit on one single page, attached
here (page 6) for the reader to have an overview of the proof design.
This make sense because each single Mizar lemma results quite ele-
mentary, having proof never exceeding thirty lines.

As already remarked, in most theorems the hypotheses on the bids
‘vector’, denoted with R or £, are restrictions which restore some
very natural properties we gave up in name of generality and sim-
plicity of definitions. They are usually implicitly assumed in standard
treatments, and require, for example, that the bids are numerical, that
they are finite and finitely many, or that the participants are more than
one.

The key result is Lm21. The subsequent theorem, Lm20, is intro-
duced only to translate the hypotheses of Lm2 1 on the bids in a more
direct and usable form, thus producing Lm22.

3 The Mizar keyword begin permits starting a new section for the writer’s
convenience; it is ignored by the verifier.
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6 Informal proof

The proof mechanism is slightly different from the ones found in
[3, 4]. Here, the cases are parsed not on, e.g., whether the given par-
ticipant ¢ wins or loses in the original and modified auction. Rather,
we focus on the sign of left-hand side (LHS) of inequality (1): if it
is non positive, then (1) is obviously true because of lemma 1. Thus,
we reduced to the case LHS being positive, which means that ¢ is the
winner of the auction b and that v > P{’ (i) > 0. Then,

Poi (i) =Py’ (i) >0 )

by lemma 2. This also implies the equality X,f;{ (G) =X 6) =1,
which, reusing (4) with it, yields4 LHS=RHS in (1).

This concludes the proof, leaving only the following couple of
lemmas to be justified; in what follows, the winner and the number
representing the price (given in Mizar by winnerof and priceof,
respectively) of a second price auction starting with input b will be
denoted with b and b.

Lemma 1 (Lm4). RHS of (1) is not negative.
Proof. Consider the function
7:=(v—"bY)- Xblfl.

The only possible point at which such a function can yield a negative
value is b7, and this happens if and only if v < b;’. Since RHS is

7 (4), if thesis were false we should then assume ¢ = b; and v < bY,
which leads to contradiction: by < b} (b}) = v. O

Lemma 2 (Lm5). Changing the bid of the winner of a second price
auction into a value strictly higher than the auction price does not
change the payments vector:

¢>0="Py . =P
b

Proof. As long as the winner bids strictly more than the second
price, he will remain the winner, so that the allocation vector will
not vary; moreover, changing the winner’s bid will not change the
second price, by definition. Hence the thesis, because the payments
vector is the allocations vector scalar-multiplied by the price. O

The reader can compare these informal lemmas with their Mizar
counterparts, whose labels are reported bracketed.
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(v (£
v+ ((f

Lm20:
impli

Lm22:
impli
(v (£
v+ ((f

priceof R=0 or priceof R=union rng (R|losersof R)

(rng R<>{} & rng R c= NAT & rng R is finite)
es winnerof R in topbiddersof R

winnerof f in topbiddersof f
es f.(winnerof f)=union rng f &
of £ ¢c= f. (winnerof f)

:::the core theorems

R-pay. (winnerof R)=priceof R

union rng (P| (dom P \ dom Q)) c< union rng Q

es topbiddersof (P +x1 Q) = Q"{union rng Q}
union rng (P | (dom P\{x})) c< X implies
ddersof (P +x1 [:{x},{X}:])={x}

(priceof R<>0 & i=winnerof R & R-pay.i c< vy)

es (R +%1 [:{i},{y}:])-pay.i = R-pay.i

f is NAT-valued & rng f is finite implies
c{i},{v}:])-pay.i <= vx((f+x[:{1i},{v}:])-allocations.i)

:::Vickrey’s theorem, version 1

NAT-valued & rng f is finite & priceof £ <> 0 implies
—allocations.i)) - ((f-pay).i) <=
+x [:{i},{v}:])-allocations).i - (£ +x [:{i},{v}:])-pay.1i
(rng R ¢= NAT & rng R is finite & dom R is non trivial)
es priceof R in rng R
rng £ c= NAT\{0} & rng f is finite & dom f is non trivial
es :::Vickrey’s theorem, version 2
—allocations.i)) - ((f-pay).i) <=

+% [:{i},{v}:])-allocations).i - (£ +x [:{i},{v}:])-pay.i

v for Nat;
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Mathematical specification of an agend-based
model of exchange

Nicola Botta! and Antoine Mandel? and Mareen Hofmann® and

Sibylle Schupp? and Cezar Ionescu

1 Introduction

Agent-based computer models are becoming increasingly pop-
ular in economics, both as a toolbox for theoreticians [12] and
for policy advise [7].

All science nowadays relies on computer models. For an
interesting analysis of just how much, see ”Simulation and
its Discontents” [13]. But a distinguishing feature is that, in
computational economics, computer models are often the only
kind of models we have.

The situation is completely different from physics and en-
gineering where computer models are secondary to mathe-
matical ones. It is the latter which embody the theories and
serve as object of discussion between scientists: computer code
rarely makes its way in scientific publications.

In physics and engineering a computer model is judged to
be correct if it faithfully implements its mathematical coun-
terpart. Prominent computer model failures — from 1996 Ar-
iane 5 flight 501 [1] to 2010 “flash crash” at the New York
Stock Exchange — remind us that, sometimes, it is difficult to
formulate exactly what counts as “faithful”. But, at least in
principle, mathematical models provide a “golden standard”
for the correctness of computer models in physics and engi-
neering.

But what is “golden standard” against which to judge
the correctness of agent-based models for computational eco-
nomics 7 When can we trust the outcome of multi-agent sim-
ulations designed to study viable decarbonization options or
to inform politicians on the effect of green building subsidies
on unemployment ?

Such models are usually accompanied by a narrative, an
informal description of the ideas behind their development.
But a narrative is too blunt an instrument to help us decide
whether a computer implementation of it is correct or not,
whether the results of a simulation are trustworthy or flawed
by programming errors.

In a nutshell, the current state of affairs in computational
economics can be summed up as follows: we can limit our-
selves to informal narratives, or we can use simulations of
computer models which we do not understand [10] and whose
correctness we cannot guarantee.

I Potsdam Institute for Climate Impact Research
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In agent-based simulations of financial markets, the deploy-
ment of proprietary toolkits and platforms makes this situa-
tion even worse.

1.1 Gintis’ model

In 2006, Herbert Gintis [5] announced the discovery of a mech-
anism that would explain price formation and disequlibrium
adjustment without requiring the presence of a central au-
thority as is currently assumed in mainstream economics.

Gintis’ results were, as he put it “empirical rather than
theoretical: we have created a class of economies and investi-
gated their properties for a range of parameters.” They were
obtained by computer simulations.

The results were relevant — understanding price formation
is a long-standing puzzle in economic theory — and intriguing;:
which class of economies is actually specified by the model
presented in [5] ? Can one express the properties investigated
in [5] formally ?

In 2009 two groups of researchers, one at PIK, the other
at Chalmers [4], independently attempted to do something
which should perhaps be routine, but is hardly ever done: to
reimplement the model and reproduce the results reported in
[5].

After initial attempts failed and Gintis graciously provided
the source code, both groups discovered several ways that his
implementation diverged from the description in the paper,
one of which could be called a “bug”. Much more problematic,
however, was the ambiguity left open by the narrative given
in [5]. This is quite typical in computational economy and
econophysics: scientists tend to believe that the mathemati-
cal equations and the narrative used to describe a model are
sufficient specifications for the implementation of that model
but this is rarely the case.

1.2 Owur contribution

In [3] we proposed a functional framework for the specifica-
tions of computer models of exchange. The framework pro-
vides, among others, the notions of bilateral exchanges, bilat-
eral trades, trading policies and games and dynamical models
of exchange.

There, we addressed the question of how to describe and
specify computer-based dynamical models of exchange in a
language which is more accessible to non-programmers than



program listings and yet less ambiguous than narrative de-
scriptions.

In this contribution, we apply that framework and derive a
complete mathematical specification of Gintis’ model [5]°.

We first derive a bona-fide specification of the model on
the basis of [5] and of the model implementation kindly made
available by the author. From this specification, we derive a
first model reimplementation. This fails to reproduce the re-
sults reported in [5]. This is not really surprising: in the orig-
inal model, exchanges between agents are rationed. In con-
trast, the results presented in [8] suggest that convergence of
agent-specific prices towards the “special” equilibrium prices
discovered in [5] depend on a “no strategic rationing condi-
tion”.

Then, we show how the model specification can be relaxed
for the corresponding implementation to reproduce the orig-
inal results. The relaxed specification is consistent with the
results reported in [8]. It suggests that trade resolving poli-
cies that yield convergence of agent-specific prices (towards
equilibrium prices at large times) cannot grant convergence
of allocations (towards equilibrium allocations, at fixed equi-
librium prices).

2 Notation

In this section we introduce the basic notation used through-
out this paper. The presentation is intentionally terse, details
and motivations are discussed in [3].

We use A and G to denote finite sets of agents and goods.

Stocks are formulated as functions of type G — Rx¢. Prices
are formulated as functions of type G — Rs( and utilities
are formulated as functions of type (G — R>p) — R. For
convenience, we introduce the abbreviations Q@ = G — Rxo,
P =G — Rspand U = Q@ — R. Allocations and utility
profiles are formulated as functions of type A — @ and A —
U, respectively.

We write ¢ : @ to posit that ¢ is a stock that is, a function
of type G — R>q. We denote function application by juxta-
position: if x: A — @, = a : Q is the stock of a : A according
to x and = a ¢ : R>o the quantity of ¢g : G’ according to x a.

This notation is standard in mathematics and computing
science but not quite common in engineering and computa-
tional economics’. For a discussion of the advantages and dis-
advantaged of the two notations we refer the reader to [3].

In the next section we apply the framework presented in [3]
to derive a complete mathematical specification of the model
presented in [5]. Terms that denote notions specified in [3] are
introduced in italics and the relevant sections of [3] are given
in footnotes, e.g., bilateral exchange®.

3 A mathematical specification of [5]

In a nutshell, the model presented in [5] is a dynamical model
of exchange® for so-called private prices. These are agent-

6 By complete specifications we mean specifications that describe
the model entirely and from which model implementations can
be derived without ambiguity.

7 In economics, stocks, for instance, are often formulated in terms
of vectors in Ry where n = |G| and one writes ¢ € RZ, and g;
instead of ¢ : G — R>p and q g

8 Section 3.3 of [3].

9 Section 3.6 of [3].
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specific prices. At each iteration step, the agent-specific prices
are updated according to an evolutionary algorithm. This is
driven by a trading fitness. The trading fitness is measured
in a trading game® which, in turn, is controlled by the actual
prices. Strictly speaking, the trading game is not a model of
exchange: in [5], agents are not only trading but also produc-
ing and consuming.

We formulate time-dependent agent-specific prices as a
function y : N — A — P. In the model, y 0 is given and
y 1,y 2,... are computed by iterating an evolutionary algo-
rithm [11]. This is obtained by folding a copy-mutate rule ¢m
on a copy-mutate schedule:

y 0 =10

- (1)
y (t+1)=fold em (y t) (ems t)

In the above specification, ¢ms t is a random list of pairs

ems t @ List ((Ax A) x (G —[0,1])) .
According to the signature of fold'°, em maps agent-specific
prices and pairs of type (A x A) x (G — [0,1]) into agent-
specific prices:

em @ (A—=P)—= (AxA)x(G—10,1]) — (A— P)

In the rest of this section, we refine (1) by putting forward
specifications for ¢m and cms. We start by formulating the
model setup. Then, we specify ¢m in terms of a trading fitness
function f : A — R and explain how random copy-mutate
schedules are drawn. Finally, we specify the trading game
which defines f. This completes the specification of the model
presented in [5].

3.1 Model setup

The copy-mutate rule cm and the random schedules cms t,t €
N depend on a number of functions and parameters. These
are:

e a sector'' function s. Its specification (equation 20 of [3])
reads

s:A—G
VgeG shg#0.
e An initial allocation zo : A — Q.
e A utility profile u: A — U.
o A sector-to-sector number of peers'’ mp. Its specification
(equation (23) of [3]) reads
np:G—G—N
Vg9 €G npgg <|s'd|.

10 fold is a polymorphic function. Its type depends on two pa-
rameters: fold : (X =Y - X) — X — ListY — X. Fold
reduces lists of arbitrary type Y to a single value of (another
arbitrary) type X: it takes a binary function, an initial value
(the accumulator), and a list. It first calls this binary func-
tion with the initial value and the rightmost element of the
list, to obtain a new accumulator, and then repeats for the re-
maining elements; in the end, it returns one single value, e.g.,
fold + 0 [3,2,1] = (((04+1)+2)+3) = 6. For a definition of fold
see [3] or standard computing science textbooks.

11 Section 3.5 of [3].
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e A copy-mutate fraction c¢mf € [0,1] C R.

e A mutation probability mp € [0,1] C R.

e A mutation factor mf € (0,1) C R.

e A number of trading rounds'?® n, € N.

The model is based on a number of specific assumptions.
These are:

(a) The number of goods is greater than one: |G| > 1.
(b) Sectors are not empty and equally populated. The number
of agents per sector is denoted by n, € N:

VgeG |s gl =|Al/|G] =na >0

(¢) The sector-to-sector number of peers is constant. The num-
ber of peers is denoted by n, € N:

Vg9 €G npgg =ny

(d) The initial allocation x¢ is sector-wise constant. Moreover,
in any sector, zo is different from zero only in the sector-
specific good:

Vma'eA sa=sd = zoa=uz0d
roag#0 = g=sa.

(e) The utility profile is constant. The utility function of each
agent is the Scarf utility function'® with A = 1/|A|:

VaeA uay=min(yg) / (wg) (2)
geG
1
where : w = — * To a
A2 ¥

3.2 The copy-mutate rule

In the prices iteration (1), the copy-mutate rule ¢m instanti-
ates a replicator dynamic [11]:

2 =cm z ((a1,a2),§)

=

z'a#za = a=ai1Va=as
A

fal < f a2

=

!
Z a2 =z azx N

zazg if&g<mp
darg=q(zazg)/mf HEg>mpAEg<O05
(zazg)xmf if&g>mpAEg>05
A
far>fa
=

!
zZ a1 =2za1 N

zai g if £ g<mp
2 a2 g=1{ (za1 g)/mf fEg>mpAEg<0b
(zar g)xmf f&g>mpAEg>05

12 Section 3.5 of [3].
13 Section 3.1 of [3].

As mentioned above, cm depends on a trading fitness f. Thus,
the specification of cm is, strictly speaking, incorrect. While
mf, mp are constant values provided by the model setup
given in section 3.1, f is an undefined function of the sys-
tem’s state®. We specify the computation of f in section 3.4.

3.3 The copy-mutate schedule

Each copy-mutate schedule cms t is defined in terms of two
random functions. The first one is an inverse numbering'* of
G

7 [01G) -G

There are |G|! such numberings. The second random function
provides, for each sector g € G, cmf *n, random pairs'®. The
first element of each pair is itself a pair of agents in s~ ! g.

The second element are |G| random numbers in [0, 1] C R
B : G—[0,emf xn,) — (Ax A) x (G—]0,1]) .

Thus, § g k is a partial function and fulfills the specification
YgeG,Vkc[0,emfxng)'®

ran(B g k) = ((s™ g)x (57" ¢)) x (G —[0,1]) .

Each draw is assumed to be equally probable. Given a draw
(7, B), the schedule is defined by the list comprehension'”

[8(v3) k15— 1[0,]G]), k—[0,cmf xna) ]

Thus, the schedule is the list of pairs 8 (v j) k obtained by
drawing j and k from [0, |G|) and [0, emf *ng ), respectively.
It consists of |G| * (emf * ng) elements.

3.4 The trading fitness

The trading fitness f : A — R is computed in a trading game
of the kind formulated in section 3.6 of [3]:

f =h (map (fold (cp.tr) (fo,zo) ) tss) . (4)

In the above expression, map : (X —Y) — List X — List Y
is a function that transforms lists: it takes a unary func-
tion and applies it element-wise to the list. For instance,
map negate [1,2,3] = [-1, —2, —3]. The function cp.tr repre-
sents the composition of ¢p and tr: (¢p.tr) a b = cp (tr a b).
The target of h is equal to A — R. The game consists of n,
rounds. The elements of tss are random trading schedules,

14 3 numbering of a finite set X is a bijective function of type

X — [0,]X]|). It associates to each element of X exactly one
number between 0 and | X| — 1. There are | X|! such functions.
15 For sake of simplicity, we just write cmf#*n, to denote the natural
number obtained by rounding the product between cmf € R and

ng € N.

we could make 3 ¢ k total by introducing dependent types. With

dependent types, one could express the specification for 8 g k

through the type system. Applying dependent types for specifi-

cations is a natural approach but goes beyond the scope of this
paper.

17 Informally, comprehension on lists is analog to set compre-
hension. For instance {2 = ¢ | ¢ € {0,...,n}} translates to
2% ] ¢« [0.n]] on lists. This constructs the list of integers
[0,2,...,2xn] from [0..n]. The latter denotes the list of integers
0, 1, ...until n. The expression a < as is read “for a drawn from
as”. It represents the action of iterating over the elements of as
in the order defined by as.

16



one schedule per round. The outcome of a round is a fitness-
allocation pair:

h:List ((A—=R)x (A—=Q)) — (A—R). (5)
In every round, the initial fitness fo is zero for all agents:
YVaeA foa=0.

The initial allocation xo (and the number of rounds n,) are
given by the model setup, see section 3.1. We specify the com-
putation of f by giving h, c¢p, tr and by describing how the
random schedules of tss are drawn.

3.4.1 The random schedules

Each schedule in t¢ss is defined in terms of three random func-
tions. The first one is an inverse numbering of G like the one
introduced above for the copy-mutate schedules. For the sake
of simplicity we call this function +y, too. There are n, = |G|!
such numberings. The second function provides |G| inverse
numbering, one for each sector

a: G—[0n,)— A.

The idea is that a g is an inverse numbering of s~* g. There-
fore « g fulfills

-1

VgelG ran(aag) = s g (6)
There are n, = (na!)‘G‘ such numberings. The third function
gives, for each pair of sectors g, ¢’ # g and for each agent in

_1 . _1
s~ g, a random draw of n, agents in s~ ¢’

n: G—-G—-A—-N—-A.
Thus, 17 g ¢ is a partial function and fulfills the specification'®

Vg9 €G g #g = dom(ngg) =s'g, (7
1 7

Vg9 €G g #g = ran(ngg) = [0,na) —s g .
(8)

There are n, = (na!/(na — np)!)”“*(‘c‘_l)‘c‘ such random
draws. Thus, at each round, there are n:“*n" ways to define
a random trading schedule, each one represented by a draw
(7, a, m) satisfying (6)-(8). Each draw is assumed to be equally
probable. Given a draw (7, i, n7), the schedule is defined by the
list comprehension

[(a (v 4)im (v3) (v3) (a (v i) i) k) |5 [0,]G]),
i —10,1G]),
i # 7
1 —[0,nq),
k—[0,np) ]
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8.4.2 The trade function tr and the function cp

As mentioned above, the trading game (4) is not a model
of exchange in the sense made clear in [3]: after a trade, the
two agents may undergo a consumption-production step. This
is represented by the function c¢p. This function is composed
with an extended elementary bilateral trade tr°. We start with
the specification of tr:

tr:(A->R)x(A—-Q)— AxA—
(A—=R)x (A—Q)) x (Ax A) 9)

tr (f,z) (a1,a2) = ((f/7$/)7 (a/17a/2))
=

f'=fANdi=a A ady=az

z(Xe a1 a2 g2 gl)x'

!
x a1 —xai) g2 =0

!
' az —x az) g1 = 2

(10)

(11)
( (12)
( (13)
(61,02) = trp p1 p2 (01,91) (d1,92) (02,92) (d2,91)  (14)
(01,d1) = odp a1 p1 g2 (15)
(02,d2) = odp a2 p2 g1 (16)
g1=sa1 (17)
g2 = s a2 (18)
pr=yta (19)
p2=ytaz (20)

The types of the two arguments taken by tr, a fitness-
allocation pair and a pair of agents, is dictated by equations
(4) and (5). The result of applying tr to (f,x), (a1,a2) is a
pair ((f,2), (a1,a2)), see (10). The new allocation, z’, is re-
lated to x through an elementary bilateral exchange of goods
s a2 and s a1. The specification of elementary bilateral ex-
changes is given in section 3.3 of [3]. One could replace equa-
tion (11) with specifications (11), (12) of [3]*° with g1 = s a2
and g2 = s a1.

Equations (12)-(20) are refinements of (11). They com-
pletely define the outcome of the trade 2’ in terms of the offer
and demand policies®® of a1, az — the function odp — and of
an agent-independent trade-resolving policy trp. These func-
tions depend on the actual allocation x, on the model setup
functions u, xo, s and on the actual prices y ¢ of the iteration
in which the trading game is played. As we will see, trp and,
therefore, the elementary bilateral trade ¢r are not symmetric.
In general,

tr (f,z) (a1,a2) # tr (f,z) (az2,a1) .

In [5], the first agents in the pairs of a trading schedule are
called demanders. The second agents are called responders.
In the following, we will use the same terminology.

The offer and demand policy is demand-based and value-
preserving'®. With u, zo as in the model setup of section 3.1
and according to equation (8) of [3], the demand of a under

18 As for the random function /3 introduced for the specification of
the copy-mutate schedules, we could make 7 g g’ total by intro-
ducing dependent types.

19 Or, equivalently, with (9), (10) and (12) of [3] with g1 = s a2
and g2 = s aj.
20 Section 3.4 of [3].
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the agent-specific prices of the t-th iteration y ¢ is

(zoa)-(yta)
(X moa) (yta) Zxoa
acA

Thus, for fixed xo, u (model setup) and time dependent prices
y t (we are considering a trading game at fixed prices), the
excess demand profile for z : A — @ is

edr :A—Q
ed x a= (zoa) (yta) Zm a) — (za)
T (X woa)-(yta) 0
aea acA

The offer and demand policy is defined in terms of such excess
demand

odp: A— P — G — Rsg X Rxg
g#(sa) N odpapg=(od) =
0 ifedzag<o0
ed x ag ifedzag>0
A
pPg
_ ed x a g) * <za(sa
d = ( g) p(sa) ( )
(xa(sa)*28Y ifedzag>0
N
(ed z a g) * I()Sga)>xa(sa)
pPg
0o = d=x*
p (s a)

and by requiring the value of the offer to equal the value of the
demand. Notice that odp a g is only defined for g # (s a)*!
and fulfills specification (13) of [3].

The description of the trading mechanism given in [5] does
not yield an unambiguous specification of trp. However, the
author has provided a complete implementation of the model
presented in [5] in Delphi. This is an extension of Object Pas-
cal which provides primitives for implementing applications
based on graphical user interfaces on Microsoft Windows op-
erating systems. The implementation is consistent with the
following specification:

trp: P —-P —=RsoxG —=Rsgx G —=RsogxG—
RZOXG*}RZOXRZO

g1 # g2 A trp p1 p2 (01,91) (d1,92) (02,92) (d2,91) = (61, 62)
=
if d
(61,62) = (0,0)  if o1 * (.p2 g1) < di * (p2 g2) (21)
(61,03) otherwise
P1 91 3 4
@0 = 4@ *mg yd2) if dy < & (22)
(67,64) otherwise
”1 "2) if 0o < 87’
(5//7 6// _ (02: 02 * 91 23
(91, 32) {(5'”, 5'”) otherwise (23)
(5;//7(%//) _ (x2 g2, T2 g2 * Zi Zi) if 2o g2. < di (24)
(d1,01) otherwise

21 as discussed for the random functions which define the trading

schedules, we could make odp total by introducing dependent
types.

In section 4 we provide some experimental support for this
claim. As anticipated, trp is not symmetric: if the value of
the demander’s offer meets or exceeds the value of its demand
(according to the responder’s prices), the outcome of the trade
is liable to be the demander’s offer and demand, see equation
(21). For this to be the case, three further conditions have to
be met.

The first one, equation (24), is a budget condition. It re-
quires the amount of g2 to be exchanged not to exceed the
stock of the offerer. If this happens, the demander’s demand
is capped to the responder’s stock. This ensures that, after
exchange, the responder’s stock of g2 does not turn negative.

The second and the third are rationing constraints. They
require the amount of g2 exchanged not to exceed the offer
(of g2) of the responder, equation (23) and the amount of g;
to be exchanged not to exceed the demand of the responder,
equation equation (22). We will discuss the effects of these
conditions on the dynamics of prices in section 4.

Notice that, with trp defined as above, the outcome of a
trade does not, in general, fulfill specification (14) of [3]. On
the other hand, odp, trp ensure that tr is value-preserving: if
p1 = p2, the exchange of §; and d2 does not modify the value
of the stocks of both agents.

Let’s now turn our attention to the consume-produce func-
tion cp. The type of c¢p can be inferred from the type of tr
(9) and from equation (4):

cp:((A—=R)x(A—Q))x (A—-Q)

The consume-produce function cp takes the outcome of tr —
a fitness-allocation pair and a pair of agents — and returns a
new fitness allocation pair. The rationale of cp is twofold.

On one hand, it accounts for successful trades — trades
which have modified the stocks of the interacting agents — in
the new trading fitness. Remember that all agents compute
their offer and demand according to the same policy odp. In
other words, two agents with equal initial and actual stocks
and with the same (agent-specific) prices issue equal offers
and demands. Thus, since initial allocations are sector-wise
constant, the trading fitness is, within a given sector, a mea-
sure of the fitness of the agent-specific prices. This explains
why prices, in [5] are sometimes referred to as strategies.

On the other hand, cp rewards successful agents by provid-
ing them with even more goods to trade (production). From
the listing made available by Gintis, we deduce the specifica-
tion:

p ((f,7), (a1, a2)) =

=

(AxA) - (A—-R)x

(f,2")

flfatfa=>a=a1Va=as

!
raFtrxa=a=a Va=a

a€{a,at = fa=fatua (za) (25)
a € {a1,a2} =
x'az{xoa ifua(.:va)zl (26)
(xa)*(1—wa(xa)) otherwise

This specification is puzzling in a number of ways. The new
stocks — or, from a modeling perspective, production pro-
cesses — depend on the utility in a very discontinuous fash-
ion. Agents which have achieved levels of utility near but be-
low one are forced to reduce their stocks — to consume —



proportionally to the achieved utilities. No production takes
place. With little stocks left to trade, such agents are not
likely to improve their utilities in later interactions. Their
stocks will be further reduced albeit at increasingly slower
rates. On the other hand, the stocks of agents which have
managed to achieve utilities equal or greater than one are set
back to their initial stocks. This resetting can be interpreted
as a consumption-production step. After such step, agents
enter the next trade with zero utility and full budget. It is
not obvious (to us) what is the motivation behind the utility
threshold and why such threshold is set to one. Notice, how-
ever, that, with zo, v and A as defined in the model setup 3.1,
one has

(z0 (s @) * (p (s a)) (27)

S
(z,p)€(zo,u) = wa(xa)=
’ ar* 2 (@ g)*(pg)

g'eqG
where z(, : G — Rxq is the function that defines a sector-wise
constant initial allocation xp which complies with assumption

3 from section 3.1:

o g = o g
0 otherwise .

i o=
ifg=sa (28)

The numerical results presented in [5] suggest that, at large
times, the prices

p:P

) 1 A G

pg=—L A __ 1G] (29)

wg Y (zoag) w9
acA

are, under (1), more stable than any other prices. Specifi-
cally, the author has observed that, independently of the ini-
tial prices yo, the price iteration tends to “converge”, at long
times, towards the “special” prices (29)22. For p = p equation
(27) becomes

(z,p)€(z0,u) = uwa(ra)=1

Thus, in [5], the utility threshold in the consume-produce
function cp has been set to match the (agent-independent)
utility of equilibrium stocks under “special” prices.

8.4.8 The function h

The function h computes, for each agent, its average trading
fitness

k=n,
B asan ) a= 2% 3 fua. (30)
T k=1

Remember that, at the t-th prices iteration, the fitness
achieved by an agent in a trading round is a random event:
the set of interactions which take place in a round is defined
by the random trading schedule of that round. At each round,
the trading schedule is drawn from the set of all feasible trad-
ing schedules with equal probability. Moreover, each round is
played starting from the same initial allocation xo, zero fitness
and constant agent-specific prices y t.

Therefore, h a can be interpreted as an approximation of
the expected trading round fitness obtained with the prices
yta.

22 In [8], we study a simple class of models and suggest an expla-
nation for this behavior.
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4 Model implementation, numerical
experiments

We have implemented the prices iteration (1) on the basis of
the specification presented in the previous sections.

The implementation has been done in C++. It relies on
standard libraries and on the collection of generic software
components SC [2]. C++ is a statically typed programming
language. Thus, when developing programs from specifica-
tions, one has to choose which specifications to enforce at
compile time and which at run time.

In practice, the capabilities of expressing specifications at
compile time are limited by the lack of explicit language sup-
port for higher order functions, constrained genericity and
non-integer value genericity. Concept-based language exten-
sions [6] are a promising approach but need to be practiced
and substantiated with a better understanding of dependent
types.

We have taken a pragmatic approach and enforced most
specifications at run time. This has been done mainly
through pre- and post-conditions clauses following a design-
by-contract (DBC) [9] approach.

Of course, such approach can not guarantee that the imple-
mentation is correct that is, that it fulfills the specification.
We turn back to this problem in section 4.2. In the rest of
this section we discuss a number of results obtained with this
implementation. All results have been obtained for 6 goods
G ={g1,...,96} and 600 agents A = {a1,...,ae00}. Thus,
the number of sectors is equal to 6 and the number of agents
per sector n, is 100. The other parameters are defined accord-
ing to section 3.1 and to the following setup:

e the sector function s is
sai = g;, j=1+(i—1)/100, i=1,...,600 .

e The sector-to-sector number of peers, np, is 5.
e The initial allocation z¢ is defined by equation (28) with
G|

xégj:m*(1+j)y j=1...,6.

The correspondent special prices (29) normalized by g1 are

po; _ 2 (31)
pgr j+1

The copy-mutate fraction emf is 0.05.
The mutation probability mp is 0.1.
The mutation factor mf is 0.95.

The number of trading rounds per prices iteration n, is 10.

For any agent a € A, the initial price yo a g1 is set to one.
All other prices are drawn randomly from (0, 1] with uniform
probability distribution.

The above setup is, to the best of our knowledge, the one
used to compute the results shown in figures 1 and 2 of [5]%.
These results suggest that, under (1)

e the standard deviations of y t rapidly decline in the first
1500 trading rounds that is, at 10 rounds per iteration, for
t between 0 and 150.

23 In [5] the mutation probability is reported to be 0.01 that is,
one tenth of mp. However, the value used in the original Delphi
implementation is equal to mp.
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e at large times — for numbers of trading rounds (iterations)
of the order of 10° (10*) — the agent-specific prices tend
to converge®* towards the special prices (31).

In the next sections we compare these results with those ob-
tained with our implementation. Two caveats are at place:

First, as it turns out, the dynamics of prices at large times
depends critically on the conditions upon which the trading
fitness f is incremented. In Gintis’ original program, this is
done only upon “successful” trades. The source code provided
by Gintis shows that trades are taken to be be “successful”
even when the amounts of goods actually exchanged by the
two interacting agents are zero. This seems to be inconsistent.
In our implementation, the trading fitness f is incremented if
(and only if) an elementary bilateral trade between two agents
yields non zero exchanges. More precisely, cs is executed only
if trp returns non zero exchanges or, equivalently, if ' # z in
(11):

01 >0 V 62 >0 (32)

Second, in the original implementation exchanges are al-
ways rationed according to specifications (22) and (23). Ra-
tioning or, in other words, demand-limited trade resolving
policies are certainly necessary?® for sequences of elementary
bilateral exchanges at fixed equilibrium prices to yield equi-
librium allocations, see [3]. On the other hand, the analy-
sis presented in [8] suggests that, at large times, rationing
might prevent the convergence of agent-specific prices towards
stochastically stable equilibrium prices. As anticipated, our
implementation allows for rationing (and, in fact, production
and consumption) to be disabled.

4.1 Short times price dynamics

In [5], the dynamics of prices at short times is described in
terms of three standard deviations: a “cross-period standard
deviation of mean private prices” and “inter-agent standard
deviations of private producer and consumer prices”.
Unfortunately, [5] does not define operational rules for com-
puting these quantities and the vertical scale in figure 1 of [5]
suggests that these quantities are not standard deviations or
that the probability distribution for the initial prices is not
uniform. Here, we describe the dynamics of prices at short
times in terms of two mean squared deviation functions. The
first one simply computes, for any price, the mean squared
deviation over all agents for that (normalized) price:

msd : (A— P)—G—R
2

yag _
E, (s nvo)
A ’

pyg="—
|A

msd y g =

The second function computes, for any sector, the sector mean

24 of course, modulo stochastic mutations as effected through the
copy-mutate rule ¢m.
25 But, in general, not sufficient.

of the mean squared deviation of the prices of that sector:

msd : (A— P)—G—R

, 2
1 yag 1/ /
g%G*<Slg*a6sz:19(yagl ﬂy99)>

msd y g =

Gl -1 '
(33)
1 ag
Wygyg =——=x yves
|s=1 gl —~ yagq
a€cs g

Notice that, because of the normalization, the mean and the
mean squared deviation of g; are 1 and 0 on any subset of
|A|. This is why, in (33), the sum over ¢’ € G is divided by
|G| — 1 and not by |G|.

In figure 1 we report the graphs of msd y (top) and msd’ y
(bottom). Thus, the curves on the top are mean squared de-
viations (over all agents) of prices, one curve for each price.
Since the prices are normalized, the mean squared deviation
for g1 is identically zero.

In contrast, the curves on the bottom are averages (over
prices) of the mean squared deviations of the prices of a
given sector, one curve for each sector. As one would expect,
the sector-specific average mean squared deviations decrease
faster than the mean squared deviations taken over all agents,
especially at very short times. This is because the copy-mutate
rule em is applied sector-wise, see section 3.3.

Notice that the rates at which mean squared deviations
decrease for increasing number of trading games are different
for different prices (top) and sectors (bottom). We do not have
an explanation for this behavior. Also, notice that the results
of figure 1 seem qualitatively different from those reported
in figure one of [5]. We come back to this point in the next
section.

4.2 Large times price dynamics

In [5], the dynamics of prices at large times is described in
terms of the relative deviations of average prices from the
special prices (31). Such deviations are:

pyg— L
1y g

Again, dev y g1 is identically zero. Figure 2 shows the mean
squared deviations msd (top) and the deviations of the mean
prices from the special prices dev (bottom) at large times. The
results shown in figure 2 do not confirm those presented in [5].
While [5] does not report mean squared deviations at large
times, the graphs of the deviations of the mean prices from
the special prices on the right of figure 2 do not suggest that
agent-specific prices tend to “converge” towards the special
prices at large times.

Let us pause for a moment. We have derived a specification
for the prices iteration (1) on the basis of [5] and of an origi-
nal model implementation made available by the author. We
have implemented (1) from such specification. Our numerical
results fail to reproduce those presented in [5]. There are three
logically possible reasons for such failure:

dev:(A—P)—G—R, devyg=—

1. Our specification is a good description of the model pre-
sented in [5] but our implementation does not fulfill the
specification, that is, it is not correct.
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Figure 1. Standard setup: msd (top) and msd’ (bottom).

2. Or, our implementation is correct but our specification is
not a good description of the model presented in [5].

3. Or, our model specification is a good description of the
model presented in [5]. The results presented in [5], how-
ever, have been obtained with an implementation which
does not fulfill such specification.

While 1 and 2 and 2 and 3 are mutually exclusive, it can of
course be that both 1 and 3 are true: implementational errors
never can be ruled out.

We can explain the inconsistencies between our numerical
results and those presented in [5] by looking at the mecha-
nisms that control the dynamics of prices at large times. We
start by noticing that the results presented so far are robust
with respect to perturbations of the copy-mutate rule c¢m?®
and focus the attention on the functions that define a trading
game: tr and cp.

As anticipated above, the analysis presented in [8] suggests
that, at large times, rationing might prevent the convergence

26 of course, the speed at which the mean squared deviations of
the prices decrease at short times and the amplitude of the high
frequency oscillations in the graphs of dev depend on the values
of emf, mp and mf. In a number of numerical experiments (not
reported here) designed to study how the dynamics of prices at
large times depends on the values of ecmf, mp and mf, however,
we never observed small perturbations of these parameters (or
of the function e¢m) to yield dramatic changes in the dynamics
of prices. These results are consistent with those reported in [5].
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Figure 2. Standard setup: msd (top) and dev (bottom).

of agent-specific prices towards stochastically stable equilib-
rium prices. Thus, an obvious experiment is to run a sim-
ulation in which rationing is disabled that is, (21)-(24) are
replaced by

trp: P—-P —=Rsgx G —=RsgxG—=RsogxG—
RZQXGﬁRzoxRZO

g1 # g2 N trp p1 p2 (01,91) (di,g2) (02,92) (d2,g1) = (01, 02)
=

if
(51752) _ (0; 0)/ i o1 * §p2 gl) < dy* (p2 92) (34)
(61,05) otherwise
AR (z2 g2, 22 g2 * ﬁ) if 22 g2 < da (35)
b (d1,01) otherwise

Except for this modification, the setup is the same as the
of figure 2. Figure 3 shows the usual mean squared devia-
tion (top) and relative deviations (bottom) graphs. As in [5]
agent-specific prices appear to converge, at large times, to-
wards the special prices. In fact, figure 3 bottom and figure
2 of [5] are quite similar. Before attempting at drawing any
conclusions, let us consider the impact of two more controls
on the dynamics of prices at large times.

First, remember that the consume-produce function cp is
responsible for updating the trading fitness of interacting
agents and for modeling consumption and production. As dis-
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cussed in section 3.4.2, consumption and production depend
on a utility threshold which we find difficult to motivate. In
a first experiment, we switch off consumption and production
that is, we replace (26) with

a€f{a,ax} =2 a=za

Figure 4 reports the results obtained for the same setup of
figure 2 but without consumption and production. The effect
of switching off consumption and production is clearly visible
in the graphs of the mean squared deviation of prices. As the
number of iterations increases, the mean squared deviation of
prices decrease remarkably. The prices, of course, tend to sta-
bilize (again, modulo stochastic mutations) but not around
the special prices (31): the deviations of the mean prices from
the special prices (figure 2, bottom) do not tend towards zero
as the number of iterations increases. On the other hand, dis-
abling both consumption and production and rationing brings
back the large times behavior of figure two with, not surpris-
ingly, significantly lower mean squared deviations, see figure 5.
Second, the conditions upon which the fitness of the interact-
ing agents is incremented — the notion of “successful” trade
discussed above — has of course an impact on the result of a
trading game, the agents trading fitness f. A natural question
is therefore whether such conditions critically affect the dy-
namics of prices at large times. Figures 6, 7 shows the results
obtained with the same setups of figures 2, 3 but with modified
conditions for incrementing the trading fitness. Specifically, in
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Figure 4. Standard setup but without
consumption/production: msd (top) and dev (bottom).

figures 6, 7 the trading fitness of the two agents entering an
elementary bilateral trade is incremented if

02>0ANd2>0Ax2 g2>0A 01%(p2 g1) > dix(p2 g2) (36)

This condition can be easily derived from the original imple-
mentation. It is necessary for a non-trivial exchange to take
place but, of course, not sufficient. Thus, the modified condi-
tion weakens our specification. A comparison between figure
2 and 6 suggests that, when bilateral trades are rationed, the
conditions upon which the fitness of the interacting agents is
incremented affect the dynamics of prices at large times sig-
nificantly. In contrast, when bilateral trades are not rationed,
the same conditions appear to impact the dynamics of prices
less severely, see figures 3 and 7.

We have discussed the outcome of numerical experiments on
the dynamics of prices at large times in terms of the graphs of
msd and dev during the first 15000 iterations or 150000 trad-
ing games. Each computation, however, has been carried out
for 1500000 iterations (15000000 trading games). The results
(not shown here) confirm the observations done for the first
15000 iterations.

5 Conclusions, future work

We have applied the functional framework proposed in [3] to
derive a “bona fide” mathematical specification of the model
discussed in [5].
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The specification is based on the model description pre-
sented in [5], on the original model implementation in Delphi
kindly made available by the author and on the Java / MA-
SON model re-implementation presented in [4].

The specification is complete in the sense that it allows
unambiguous model implementations. We have written one
such implementations in C++.

We have used this implementation to run a number of nu-
merical experiments on the dynamics of prices. These exper-
iments partially confirms the results presented in [5]. In par-
ticular, we were able to independently reproduce the price
dynamics reported in figure 2 of [5], see section 4, figure 3.

On the other hand, the numerical results reported in fig-
ure 2 and figure 3 suggest that the emergence of the special,
quasi-public equilibrium prices (31) from agent-specific prices
(the “private” prices of [5]) under evolutionary (imitation-
mutation) dynamics is by no means a robust feature of the
model presented in [5]. Price convergence critically depends
on properties of the underlying trading game, in particular,
of the trade resolving policy.

When bilateral exchanges between agents are rationed,
agent-specific prices do not seem to converge towards the
quasi-public equilibrium prices (31). This behavior is consis-
tent with the analysis proposed in [8].

A comparison of figures 3, 4 and 5 also suggests that pro-
duction and consumption induce higher price volatility but
do not essentially affect the convergence of prices.

47

0.1
91 -

0.08 3§ A
= }
< 006 | Sg 1
S 9
> 0.04 1
3
e 0.02 1

0 4
0 50000 100000 150000 200000
n [number of trading rounds]

0.4 | 91 - |
02} 82 -
&) 0 . 94 - |
Z 95
e -027¢ s 1
\>) _0.4 WM\/ 7
5 W
- -06r 1

-0.8 t 1

-1

0 50000 100000 150000 200000
n [number of trading rounds]
Figure 6. Standard setup but the trading fitness of the

interacting agents is incremented if condition (36) (in contrast to
(32)) is fulfilled: msd (top) and msd’ (bottom).

Moreover, figures 2, 6 and 3, 7 suggest that the notion of
successful trade or, in other words, the conditions under which
the trading fitness of the interacting agents is incremented can
have a significant impact on the dynamics of prices. This is
particularly true for the case in which bilateral trades are
rationed.

Of course, the above “conclusions” can only be preliminary.
They need to be confirmed by independent numerical exper-
iments and substantiated by analytical results. On the other
hand, the model specification derived in section 3 and, in par-
ticular, the specification of the trading policies odp and trp
allow one to draw logical consequences which are independent
of numerical results.

One consequence is that rationing constraints are necessary
(but certainly not sufficient) for sequences of elementary bi-
lateral trades tr at fixed, constant equilibrium prices to drive
20 towards the equilibrium allocation correspondent to the
given prices. We have discussed this issue in detail in section
4.2 of [3] but the reason why rationing is necessary is obvi-
ous: if the amounts of good exchanged in a trade exceed, e.g.,
the demand of the responder, this is going to be left with an
amount of good in excess of its optimal value. Since elemen-
tary bilater trades only allow agents to decrease the amount
of their sector specific “offer” good, there is no way for the
responder to achieve its optimal stock.

In other words, under elementary bilateral trades, optimal
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allocations can only be reached “from below” in the demand
goods and “from above” in the offer good. Over-shootings
(under-shootings) in the demand (offer) goods cannot be bal-
anced by further interactions.

On the other hand, if rationing turns out to prevent conver-
gence of agent-specific prices (as the numerical results shown
in figure 2, 4 and 6 seem to suggest), we are forced to conclude
that, in the model of exchange proposed in [5], convergence
of allocations?” and convergence of prices?® are mutually ex-
clusive.

This would mean that, even under the assumptions at the
basis of the model presented in [5]? we still do not know sim-
ple and plausible rules of bilateral interaction which guarantee
emergence of equilibrium prices under imitation-mutation dy-
namics and, for fixed, exogenous equilibrium prices, conver-
gence of allocations towards the correspondent equilibrium

27 Towards equilibrium allocations, through sequences of elemen-
tary bilateral trades at fixed, given equilibrium prices.

28 Towards quasi-public equilibrium prices, under imitation-
mutation dynamics driven by the trading fitness achieved in
sequences of elementary bilateral trades at fixed agent-specific
prices.

29 That is, offer and demand policies based on utility maximiza-
tion, perfect knowledge of the stocks that maximize an agent’s
utility for every agent for arbitrary prices, fully deterministic
elementary bilateral trades between agents.

allocations.

A final word of precaution is needed. The numerical results
presented in [5], [4] and in this paper have all been obtained
with a constant utility profile and with the utility function (2),
(3). This utility function supports infinitely many equilibrium
prices-allocation pairs, see section 3.1 of [3].

To substantiate numerical conjectures on the dynamics of
prices, numerical experiments of the kind reported in section
4 and in [5] should be run for less accommodating utility
functions.

In particular, the dynamics of agent-specific prices at large
times should be investigated for utility functions which sup-
port unique equilibrium prices and for the case in which the
utility function is different in different sectors. Such investi-
gations go beyond the scope of this paper.
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Embedding ACL2 Models in End-User Applications

Jared Davis’

Abstract. Formal verification, based on mechanical theorem prov-
ing, can provide unique evidence that systems are correct. Unfortu-
nately this promise of correctness is, for most projects, not enough to
justify its high cost. Since formal models and proof scripts offer few
other direct benefits to system developers and managers, the idea of
formal verification is abandoned.

We have developed a way to embed functions from the ACL?2 the-
orem prover into software that is written in mainstream programming
languages. This lets us reuse formal ACL2 models to develop appli-
cations with features like graphics, networking, databases, etc. For
example, we have written a web-based tool for hardware designers
in Ruby on top of a 100,000+ line ACL2 codebase.

This is neat: we can reuse the supporting work needed for formal
verification to create tools that are useful beyond the formal verifi-
cation team. The value added by these tools will help to justify the
investment in formal verification, and the project as a whole will ben-
efit from the precision of formal modeling and analysis.

1 INTRODUCTION

ACL2 [16] is an interactive theorem prover. It combines a Lisp-
based programming language for developing formal models of sys-
tems with a reasoning engine that can prove properties about these
models. It has been used to formally verify hardware at companies
like AMD [25]], IBM [26], and Rockwell Collins [30]], and software
like compilers [23]], virtual machines [20], and operating system ker-
nels [24]. ACL2’s authors were awarded the 2005 ACM Systems
Award for “pioneering and engineering a most effective theorem
prover... as a formal methods tool for verifying safety-critical hard-
ware and software.” An ACL2 team shared the gold medal with a
KIV team in the 2012 VSTTE Software Verification Competition.

Normally ACL2, or any other interactive theorem prover, is used
to formally verify an artifact—a hardware design, a C program, an
algorithm, a protocol, etc. This work is usually done by a team of
experts and largely consists of three interrelated activities:

1. Modeling. A model of how the artifact behaves is developed in
the theorem prover’s logic. This is often a large undertaking. For
instance, to model a program we may need to develop translation
tools like preprocessors, parsers, etc., and may also need to for-
malize how the programming language behaves.

2. Specification. A specification for the artifact is written down as
logical formulas. This is easy for some artifacts, e.g., it may only
take a few lines to say what a particular operation of an arithmetic
hardware unit is to compute. Other cases are much more difficult,
e.g., what does it mean for an operating system to be secure?

3. Proof. The theorem prover is guided to show that the model meets
its specification. Usually this is quite hard. Just how hard depends

1 Centaur Technology Inc. 7600-C N. Capital of Texas Hwy, Suite 300.
Austin TX, 78731, email: jared @centtech.com

on the scale and nature of the model and specification, on the
team’s skill in developing effective proof automation, etc.

Why would anyone go to all this trouble? Formal verification usu-
ally reveals subtle bugs in the artifact (which, once exposed, can be
fixed). It leads to mathematical proofs, checked by machine, that
serve as evidence that the artifact has been designed correctly. The
strength of this evidence depends on the precision of the model,
the correctness of the specification, and the soundness of the prover.
These concerns can often be addressed very convincingly.

1.1 Reusing Formal Models and Specifications

Unfortunately, due to the time and expertise it requires, formal ver-
ification is expensive. From a simple economic viewpoint, it only
makes sense to formally verify artifacts whose failures could be very
costly or tragic. This is still the case despite a lot of good work to
reduce the costs of theorem proving by improving proof automation,
interfaces, and pedagogy.

A different way to improve the cost/benefit situation is to increase
the benefit. One way to do this, and the focus of this paper, is to
reuse the modeling and specification efforts from formal verification
in useful ways. Here are some examples.

Example 1: Processor Simulators. Normally, long before a pro-
cessor design is to be manufactured, a program called a golden model
is written to explain how the hardware is supposed to behave. As the
hardware design evolves, it is continually simulated on test cases and
compared against the golden model. This is often the primary way
that bugs are found in the design. Since writing a golden model is
much like the Specification activity of formal verification, an idea is
to reuse the formal specification as the golden model. [12} [14]

This is not without challenges. A golden model needs to be some-
thing that the hardware design team can understand and practically
use. A basic requirement is that the model should run at high speeds;
fortunately ACL2 models and specifications are typically executable
as programs, and ACL2 has many features [13] that allow for effi-
cient execution. Other challenges include, e.g., how to connect the
model to simulation tools for hardware design languages so that the
design can be tested against the model.

When these challenges can be overcome, what does reuse accom-
plish? It avoids the need to separately develop the golden model and
formal specification, directly reducing costs. It improves confidence
in the formal verification effort, since the designers will have exer-
cised the specification in their simulations. It also allows for formal
analysis of the golden model, itself.

Example 2: Push-Button Analyzers. The Modeling activities
needed for formal verification may be even more amenable to reuse.
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At Centaur Technology we design an X86 processor. As part of
our formal verification effort [27], we wrote an ACL2-based Ver-
ilog parsing and translation tool that builds formal ACL2 models of
our hardware modules. Since then, we have reused this code in other
tools like a linter and an equivalence checker.

These tools can be used by hardware designers with no back-
ground in formal verification. They have been quite useful: the linter
has found many bugs that testing missed, and circuit designers are
frequently using the equivalence checker to check their work.

1.2 The Right Language for the Job

We want it to be very easy to reuse ACL2 models and specifications
to develop useful, related applications for end-users outside of our
formal verification team. A basic question toward this goal is: what
programming language should we use to write these programs?

If the tool we want to write is, say, a simple command-line utility
that only needs to read some files and produce some output, then we
might just use ACL2 itself as the programming language. This makes
it trivial to reuse functions in our formal model.

Unfortunately, ACL2 is a poor platform for developing almost any
other kind of program. For instance, it has very little support for
working with the file system, limited multi-threading, no networking
support, and no graphical interface. It also has no libraries for gen-
erating parsers, connecting to databases, working with widely-used
data formats like JSON, XML, or YAML, and so on.

Instead, we might write our program in Common Lisp. The ACL2
system itself is a Common Lisp program, and ACL2 models and
specifications are compiled into Lisp functions, so it is easy to call
ACL2 functions from Lisp. Using Lisp also makes up for some of
the deficiencies of ACL2 as our development platform, e.g., Clozure
Common Lisp (CCL) has nice threading and networking support.

But frankly, Lisp is a niche language. It lacks the depth of mod-
ern, actively developed, well-documented libraries and frameworks
enjoyed by mainstream languages. When development time and cost
are at a premium, this may limit the kinds of tools we can develop.
Using Lisp can also be deterrent to working with developers from
other groups since usually they don’t know the language.

What we really want, then, is a good way to embed ACL2 mod-
els into programs written in other languages—say Ruby, Java, or
Python—that are widely known and have plentiful libraries to sup-
port working with files, graphics, networks, threads, databases, and
so forth. Ideally, we should be able to choose whatever language we
think is the best fit for the kind of application we want to develop,
and then incorporate our ACL2 models into this language.

This leaves us with a practical problem: how can we effectively
integrate ACL2 models into programs written in other languages?

1.3 Contributions

This paper describes the ACL2 Bridge, which solves this problem in
a general way.

We extend ACL2 with an ACL2 Bridge server that accepts con-
nections from client programs. Clients may be local or remote, and
may be written in any practical language. Each client interacts with
ACL2 through a kind of read-eval-print loop. Multiple clients can
simultaneously interact with the same ACL2 instance. (Section[2).

We describe a Ruby interface to the ACL2 Bridge. We show how a
client program can abstract away the details of communicating with
the server. Our Ruby interface can execute ACL2 commands in an
atomic style. It turns Lisp errors into proper Ruby exceptions, and

allows output from ACL2 commands to be streamed as it is pro-
duced or collected for analysis. We show how to translate between
Ruby and ACL2 data structures. These approaches can be followed
to develop clients in other programming languages. (Section[3).

We give a concrete example of a real, end-user program based
on the ACL2 Bridge. VL-Mangle is a web-based Verilog refactor-
ing tool. It makes use of a large (100,000+ line) ACL2 codebase
for Verilog parsing and transformation. A hardware designer with
no knowledge of ACL2 can use the tool, through an attractive GUI,
to manipulate sets of Verilog hardware designs and ensure that his
changes are correct. (Section ).

2 THE ACL2 BRIDGE

The ACL2 Bridge works by extending an ACL2 with a server that
can respond to client programs. The server code can be loaded with

(include-book "centaur/bridge/top" :dir :system)

Afterward, a server can be started with the bridge::start com-
mand. The server listens for connections on a socket. If clients will
be run on the same machine, we can listen on a Unix domain socket,
which provides some security. For this, we just give the file name for
the socket, e.g.,

(bridge::start "./my-socket")

To support clients on different machines, TCP sockets can be used
instead. For this, we just give the port number to use, e.g.,

(bridge::start 13721)

But TCP sockets have security risks. Any client that can connect to
the Bridge can execute arbitrary Lisp commands, including, for in-
stance, running arbitrary programs via system calls. The Bridge has
no authentication or encryption mechanisms, so you should never run
it on a TCP socket without appropriate firewalls.

2.1 Soundness Considerations

Normally, ACL2 books introduce some new logical definitions and
prove some theorems, but they do not alter the actual code of the
ACL2 system. Unless there is some kind of bug in ACL2 itself, load-
ing a book is sound, i.e., it will not allow ACL2 to say it has proved
formulas that are not theorems.

The ACL2 Bridge book, however, necessarily extends ACL2 with
Common Lisp code for capturing output, starting threads, dealing
with sockets, and so forth. Once a server has started, its clients will
be allowed to run arbitrary Lisp commands. There are no protections
to prevent clients from unsoundly tampering with ACL2’s state, e.g.,
a client could add bad formulas as axioms.

Because of this, loading the Bridge book “infects” ACL2 with a
trust tag. In short: any ACL2 proofs carried out after the Bridge book
is loaded are marked as less trustworthy.

Fortunately, this Common Lisp code is only necessary when you
want to start a server and allow clients to connect. To avoid any
soundness concerns, our recommended approach (Figure[T) is to not
even include the Bridge book during the formal verification effort;
the Bridge should only be loaded in the derived application.

It is easy to imagine also using the Bridge to help formal veri-
fication engineers develop ACL2 proofs, e.g., by writing graphical
tools that make it easier to understand what the prover is doing. It
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should be similarly easy to separate the ACL2 Bridge and such a tool
from the formal verification effort. That is, the tool could be used
while the proof is being developed, but not when the proof is certi-
fied (checked).

2.2 Communication

When a client program connects to the ACL2 Bridge, the server’s
listener thread creates a new worker thread to process its requests.
The worker thread provides the client with a kind of read-eval-print
loop for executing commands.

At the lowest level, all communication between a worker and its
client is carried out using a simple message format which is meant to
be easy to produce and parse in any language. In short:

type len\n
contents\n

To be more precise:

e type is a label that matches [A-2] [A-Z0-9_]+ and describes
what kind of message this is,

e [en matches [0-9]+ and says how many bytes are in contents so
that no escaping is necessary,

e contents are arbitrary bytes of length len which are the main part
of the message,

e exactly one space separates type and len, and

e \n represents the newline character.

Upon startup, the worker sends the client a HELLO message with
its own thread-name as the contents. (Some clients might want to
remember the name of their worker to implement interrupts.) Then,
the work loop begins. The loop has four steps:

Ready. The worker sends an empty READY message to indicate it
is ready for a command. It then awaits input from the client.

Read. The client sends a command message to the worker. The
type of this command can vary, and governs how the return value
will be encoded (Section 2.3). The contents should always contain a
single Lisp command (an S-expression) for the worker to evaluate.

Eval. If the command is well-formed, the worker runs it. During
execution, the worker sends the client STDOUT messages with any
printed output. These messages are sent as they are generated. A
client might choose to display these messages to the end-user as they
become available, or to collect them, or to ignore them.
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Print. If the command completes successfully, the worker sends a
RETURN message with the return value, encoded as requested by the
client’s command. In case of any run-time error, an ERROR message
containing a description of the problem is sent, instead.

After sending the RETURN or ERROR message, the loop starts over
again with a new READY message. The client continues to interact
with the same worker until it disconnects.

2.3 Result Encoding

The ACL2 Bridge is intended to make it easy to embed ACL2 models
into programs written in other languages. An important part of this
is to allow the client to understand return values as proper objects in
the client’s programming language, not just as text.

In ACL2 and Lisp, objects are printed as S-expressions [21]. There
is nothing especially bad about S-expressions, but they are not very
popular and few programming languages have a standard library for
parsing them. Because of this, if we want to write a client program
that does something interesting with an ACL2 return value—say vi-
sualize some ACL2 structures, or compare our ACL2 model’s an-
swers against those from a hardware simulator—we would first need
to write an S-expression parser.

‘While this would not be too bad, a much more convenient alterna-
tive is to have the Bridge encode return values in JSON [9] format.
JSON libraries are readily available for any major programming lan-
guage, and can be especially easy to use. To tie into these facilities,
we added a JSON encoder for ACL2 objects to the server.

Clients can choose what kind of encoding should be used for the
RETURN message on a per-command basis. The choice is just encoded
into the command message type. We have four command types. The
suffix Mv here means “multiple values.”

Command Type Result Format

LISP First return value as an S-expression
LISP.MV List of all return values as an S-expressions
JSON First return value as JSON text

JSON_MV List of all return values as JSON text

Dealing with encoding on the ACL2 side, rather than on the client-
side, makes each encoding available to clients from all programming
languages. We might add other encoding options in the future.

3 A RUBY CLIENT

With the ACL2 Bridge server in place, how much work is it to
connect ACL2 to another programming language? To see, we now
walk through a Ruby client to the ACL2 Bridge. We first develop an
ACL2Bridge class that deals with all aspects of messages and the
work loop (Section [3.I). We then develop a mechanism for easily
translating structured data between the two languages (Section [3.2).

3.1 Client-Side Communication

The AcL2Bridge class contains the actual socket and deals with
the low-level aspects of communication. Its constructor establishes
a connection to the ACL2 Bridge server. Its lowest-level routines im-
plement our message scheme:

® send._command (type, cmd) sends the ACL2 server a message
with the given type and with cmd as the contents.
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e readmessage () parses the next message from the server. It re-
turns the type and content for a valid message, or throws an ex-
ception for a malformed message.

Higher-level routines bundle up the details of the read-eval-print
loop to make it straightforward to just execute a command and get
the result as a single step. A nice function is:

raw_command (type, cmd, stream=nil)

The syntax stream=nil means the stream argument is optional,
and defaults to ni1 when omitted. What does this function do?

e It calls send_command (type, cmd) to send the command to the
server.

e It reads messages from the server until a READY message is en-
countered. As each message is read, if an output stream (any
object with a << method) has been provided, any STDOUT mes-
sages will be forwarded to this stream. This is useful for long-
running ACL2 commands that print progress messages; you can
show these messages to the user as they are generated, instead of
having to wait for the command to complete.

e After READY has been read, it checks whether any ERROR mes-
sage was encountered. If so, it throws the error as an exception. It
then ensures that a RETURN message was encountered or throws an
exception. Finally, it returns the contents of the RETURN message
(i.e., the result of executing the ACL2 command, encoding accord-
ing to type), and the concatenation of all STDOUT messages.

This sort of wrapper is very convenient when writing an end-user
application. Instead of using raw_command directly, we usually use:

json_command (cmd, stream=nil),

a simple wrapper that calls raw_command with JsoN as the command
type, and then bundles up the result and all of the standard output into
a single, JSON-encoded string.

Altogether the ACL2Bridge class comes to only 250 lines (of
which 140 are blank or comments). It bundles up the details of mes-
sages and the work loop so that the client application simply submits
commands and gets back the results and printed output. It converts
any communication errors or ACL2-level errors into real Ruby ex-
ceptions, which can be caught and dealt with at the appropriate level
of the client application. Porting this code from Ruby to other lan-
guages like Java, Python, C#, etc., would be quite easy.

3.2 Data Translation

The ACL2Bridge class abstracts away the message scheme and work
loop, but still leaves us with an interface that is entirely string based.
That is, the commands we send to the server need to be strings con-
taining S-expressions. Likewise, the replies we get back are strings
that contain printed S-expressions or JSON text.

Strings are fine in limited cases, but they are not a good represen-
tation for structured data. What we would ideally like, instead, is an
easy way to translate between Ruby structures and ACL2 objects.

From Ruby to S-Expressions. Ruby has many kinds of objects. It
makes sense to translate some of these (integers, symbols, arrays of
strings, . . .) into ACL2 objects. But for other kinds of Ruby objects
(functions, sockets, its garbage collector, its Math package, . . .) there
is no sensible equivalent.

An especially nice translation from sensible Ruby objects into
S-expressions can be implemented using Ruby’s duck-typing and
monkey-patching features.

e We start by extending (monkey patching) classes like Integer
and string with a to_1isp method.

e We then similarly extend classes like Array and Hash with
to_-lisp methods that build suitable S-expressions using the
to_lisp methods of their elements (duck typing). With just this,
we can convert arrays/hashes whose elements are basic types, sub-
arrays/hashes of basic types, etc., into S-expressions.

e As we write new Ruby classes for our application, we can add
them to our translation scheme just by defining a t o_1isp method.
This immediately extends to arrays and hashes that contain these
new objects.

This approach would not be directly portable to more strict lan-
guages like Java. In such a language, you might instead have a class
with encoders for basic types, and use a LispEncodable interface
with a toLisp function for new classes.

From ACL2 to Ruby Objects. In the other direction, we would
like a way to convert ACL2 replies into Ruby objects. Using JSON
encoding makes this particularly easy: in Ruby, we can convert some
JSON-encoded string, text, into a native Ruby object, ob 5, like this:

obj = JSON.parse (text)

This approach works well for basic structures involving lists, al-
ists, etc., but is not suitable for all ACL2 objects. For instance, if our
data is represented as some special cons-tree, its JSON representa-
tion may end up being an bizarre nesting of two-element arrays. In
these cases, it may be best to write a custom encoding function in
ACL2, and explicitly run the encoder in your Lisp command.

4 EXAMPLE APPLICATION: VL-MANGLE

Connecting ACL2 to other languages lets us reuse a formal ACL2
codebase to develop modern applications for end-users beyond the
formal verification group. As a concrete example, we have used the
ACL2 Bridge to develop a web-based Verilog refactoring tool called
VL-Mangle. VL-Mangle allows a hardware designer to mechanically
transform sets of Verilog modules in certain ways. For instance, it can
be used to:

Inline away all uses of particular modules,

Rewrite gate-level constructs into assignment statements,
Remove excessive intermediate wiring,

Eliminate unused wires and unnecessary expressions,
Perform basic logical simplifications,

Merge bidirectionally connected wires into a single wire, and
Vectorize compatible sets of assignments.

These sorts of edits are tedious and error-prone to carry out on a large
scale by hand. To support a particular design effort, we wanted a tool
that hardware designers could use to automate these tasks.

A high-level picture of VL-Mangle’s architecture is shown in Fig-
ure [2] The backend is written in ACL2. It reuses VL, our large
(100,000+ line) ACL2 codebase for Verilog parsing and transforma-
tion. VL was originally developed to support our formal verification
effort. To prove anything about our processor’s modules (which are
written in Verilog) we first needed a way to model these modules
in ACL2, so we developed a parser and then translation code. Since
then, we have significantly extended VL and used it to develop vari-
ous command-line tools like a linter and equivalence checker.

The frontend of VL-Mangle is a web application written in the
Ruby framework Sinatra [29] on the server side, and a typical mix
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of HTML, CSS, Javascript/JQuery for the client. The end-user inter-
acts with the tool using a graphical interface within his web browser.
To give you a sense of the user experience, some screenshots of are
shown in Figure

4.1 VL-Mangle Architecture

The frontend follows the Model-View-Controller MVC) [7] design
pattern. In brief, this means it is divided into three parts. The Model
includes the actual data and the ways of operating on this data. The
Views are responsible for displaying data from the model to the user.
The Controller is responsible for interpreting user input and translat-
ing it into operations on the model.

This architecture is very typical for web applications. In fact, there
is almost nothing to say about our views and controller except that
they are entirely conventional. Our controller is written using the
Sinatra framework for routing and forms handling. Our views use
libraries like HAML, Sass, and JQuery. All of this is separate from
ACL2 except that we reuse some of the VL library’s routines for
pretty-printing Verilog modules.

The model is more interesting. Typical web applications might use
an SQL database to hold their data. In VL-Mangle, most of the model
is implemented within the ACL2 backend. The frontend, however,
hides this behind a Ruby Model class that also regards certain files
on a shared networked file system (NFS) as part of the model.

The ACL2 Backend. We think of the entire ACL2 backend as
part of VL-Mangle’s Model. The backend represents almost all of
our application’s data using ordinary ACL2 data structures. We reuse
the Verilog representation from the VL library. The most interesting
other data structures are frames and the global szate.

A frame contains a list of Verilog modules and some other in-
formation. Each kind of automated edit (e.g., “inline modules”) is
implemented as a frame transformation. That is, given some starting

frame, it produces a new frame that has updated modules. These are
just ordinary ACL2 functions.

The global state has two stacks of frames: an undo stack and a
redo stack. The top frame on the undo stack is the current frame.
Basic undo and redo support is simple: to undo we move a frame
from the undo stack to the redo stack; to redo we do the reverse.

Since the state is an ordinary ACL2 object, it is easy to implement
progress saving/reloading that preserves the full undo/redo history.
Interestingly, none of this code needs to involve the ACL2 Bridge;
we only need the Bridge when we want to connect our ACL2 model
to the Ruby web application.

The Ruby Model Class. To connect the ACL2 model to our web
application, we load the ACL2 Bridge book on the ACL2 side and
load our Ruby AcL2Bridge class, S-expression encoding code, and
the Ruby JSON library on the Ruby side.

Instead of exposing the ACL2Bridge instance to the rest of the
Ruby application, we keep it within a Model class. In some ways
this feels like overkill: there’s not much to this class, and it might be
simpler to just do without it. On the other hand, there are some nice
features of this approach.

Having a Model class in Ruby allows us to treat data outside of
ACL2 as part of the model. Our main use of this in VL-Mangle is
for equivalence checking. To make equivalence checking faster, we
set up a separate job to check each module, and run these jobs on
a cluster. The VL-Mangle interface lets the user see the progress of
these jobs and inspect failures. The data for these views are the log
files from the equivalence checking tool. From an MVC perspective,
then, it makes sense to regard these log files as part of the model. (Ap-
plications other than VL-Mangle might also want to consider various
non-ACL2 resources like databases as part of their model.)

Another advantage of having a Model class is that it makes
caching ACL2 queries quite easy. A particular view might be as-
sembled out of independent parts. These different parts might each
need to know, say, what the current module names are. We could just
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separately query the Bridge each time we need to answer a question
like this, but that is not very efficient since each query requires a
round-trip to the ACL2 backend. Since the answer to this questions
won’t change during a single page load, a simple improvement is to
cache the answers in the Mode1 class so that we only need to consult
ACL2 once, for the first query. In the particular case of VL-Mangle,
this caching isn’t necessary or important—we normally have a single
user interacting with a single backend and performance is just not an
issue—but for applications other than VL-Mangle, caching might be
useful.

4.2 Connecting ACL2 to the Web

A very nice part of this whole system is just how easy it is to transfer
input from HTML forms to the ACL2 backend and work with ACL2
replies. The user enters their input into ordinary HTML forms, with
input names like this:

<input name="clean|[parameters]" ... />
<input name="clean[wires]" el />
<input name="clean[assigns]" el />

Using the Sinatra framework, the corresponding handler in our con-
troller can refer to params[:clean], a Ruby hash that binds input
names to their values. This makes it trivial to send these inputs di-
rectly to our Ruby Mode1 instance:

reply = @model.clean (params[:clean], out)

The model just converts the arguments into an S-expression and runs
the corresponding ACL2 command:

class Model
def clean(args, out)
@bridge. json_command (
" (mpost-clean ’#{args.to_lisp})", out)
end
end

When we want to add new options and arguments to the cleaning
transform, we can just extend the HTML form and its ACL2 imple-
mentation, without any changes to the Ruby model or controller.

Implementing an API for use in AJAX queries is also very simple.
For instance, in the Ruby Model class we have a method to query
ACL2 for the current module names.

class Model
def get_modnames_json ()
@bridge. json_command (" (mget-modnames) ")
end

end

Since get_modnames_json is already returning JSON-encoded
data, we can just send this string directly to the web browser to re-
spond to AJAX requests. All that is needed is an appropriate route in
our controller. In Sinatra, this is just:

get "/get_modnames" do
connect
content_type :json
@model.get_modnames_json
end



4.3 Threading Considerations

Most ACL2 functions can be thought of as pure, functional programs
with no side-effects. These functions are especially well-behaved and
no special care needs to be taken to make them thread-safe.

But not everything in ACL2 is pure. For greater execution effi-
ciency, ACL2 models can also make use of certain non-pure idioms.
For instance, they can use “single-threaded objects” that are updated
destructively. At Centaur we actually use ACL2(h) [6], an extended
version of ACL2 with hash-consing and memoization features. Un-
fortunately, its implementation of memoization is not thread-safe,
and its implementation of hash-consing is most efficient when only a
single thread is creating new hash-conses.

These sorts of features pose challenges when we are developing
a multi-client applications where each client is served by a separate
worker thread. Two clients might, for instance, simultaneously try to
update the same single-threaded object, or both make use of memo-
ized computations. The bridge does not do any automatic locking, so
when we develop client programs, we must be aware of these issues
and add the appropriate protections.

As a blunt solution, the Bridge does have a special “main thread”
feature which is especially useful in the context of ACL2(h). In short:
any computation can be wrapped in in-main-thread to ensure that
it is run only by the main thread. This has the obvious disadvantage
that a client may need to wait until the main thread becomes avail-
able. Another command, try-in-main-thread, is similar but just
fails immediately if the main thread is not available. In VL-Mangle,
we use this as our main locking mechanism.

5 OTHER APPROACHES

Getting separate programming languages to work together is a well-
fought problem. Depending on the kinds of languages involved, we
might combine the codebases into a single program by developing a
foreign-function interface (FFI) or by sharing a multi-language plat-
form like the Java Virtual Machine (JVM) or the Common Language
Runtime (CLR). Alternately, we might keep the separate codebases
as independent programs that simply process each others’ files, or
that communicate over pipes or sockets using anything from mes-
sages to elaborate protocols like COM and CORBA. Some of these
approaches could perhaps be used, instead of the ACL2 Bridge, to
connect ACL2 to other languages.

Common Lisp implementations like CCL and SBCL have for-
eign function interfaces that can call C functions from Common Lisp
code, which could provide access to libraries for graphical interfaces,
databases, etc. This can be particularly efficient. Calls through the
ACL2 bridge have some communication overhead: the server con-
verts return values into S-expressions or JSON representations, and
the client generally has to parse this text into a sensible object. With
an FFI, you may be able to directly construct or modify structures of
interest in memory, without any parsing or printing. Unfortunately,
while an FFI usually makes it reasonable to interface with C, con-
necting to higher-level languages like Java or Ruby is more difficult.

ACL2 does not run on any Common Lisp implementation that tar-
gets a platform like the JVM or CLR. However, there is at least one
Common Lisp implementation on the JVM (ABCL) and languages
like Clojure are similar to Lisp. Porting ACL2 to these platforms
might open up interesting ways to connect it to the other languages
that also run on the JVM, but would be a significant undertaking.

Instead of using separate programs that communicate in a cooper-
ative way over a socket, we could perhaps use a pipe to run ACL2
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as a sub-process and capture its standard input/output streams. This
approach is used in the ACL2 Sedan [11]], an Eclipse-based IDE for
ACL2. This approach avoids the need to extend ACL2 with a server,
which is nice since socket/threading code is not standard across Lisp
implementations. Unfortunately, there are many practical difficulties
for the client. The client must deal with invoking the process and cap-
turing its streams, which is difficult in some programming languages.
It must invent some way to tell when ACL2 is ready for more input,
and to distinguish between output, return values, and error messages
that are all printed to a single output stream. This approach is also
limited to a single client, interacting with ACL2 via a single thread,
on the same machine.

6 CONCLUSIONS

The ACL2 Bridge provides a straightforward way to embed formal
ACL2 models and specifications into software written in any main-
stream language. This allows us to reuse the work of formally model-
ing and specifying artifacts to develop full-featured applications that
can be valuable beyond the verification team.

6.1 Related Work

In closely related work, Greve, Hardin, and Wilding [[12} [14] explain
how they have developed formal processor models that can be ex-
ecuted efficiently. This allows the formal model to be reused as a
traditional processor simulator.

A unique reuse of executable formal hardware models is described
by Albin, Brock, and Hunt [1]. They have reused a formal model
of the FM9001 processor for post-fabrication testing. Test programs
were run on the actual FM9001 chip while it was attached to a logic
analyzer that recorded the values of its interfacing pins. These values
were then compared against a gate-level formal model of the hard-
ware design to show the physical device was behaving correctly.

To reuse formal models in other software, we need to be able to ex-
ecute the formal model. ACL?2 is unusual among theorem provers in
that its logical definitions (i.e., for formal models and specifications)
are directly executable as Common Lisp functions. In many other
systems, logical definitions are often developed using, e.g., quanti-
fiers, predicates, and relations that are not directly executable.

Even so, many provers have a mechanism for executing models.
The Coq [3]] system features a program extraction [19|] capability
that can translate subsets of Coq into OCaml programs. This capa-
bility has been used to develop some impressive standalone appli-
cations. For instance, Leroy [18]] describes CompCert, a formally
verified C compiler; Koprowski and Binsztok [17] present TRX, a
verified parser generator. In each case, the programs extracted from
these Coq developments could be useful to a wide audience.

A similar mechanism [3]] for translating Isabelle/HOL specifica-
tions into ML has been used by Berghofer and Strecker [4] to create
a verified compiler for a simplified Java. (It also has other uses within
the theorem prover, e.g., Chaieb and Nipkow [8]] have developed ver-
ified proof procedures for more efficient arithmetic reasoning.)

Similar to program extraction are schemes to animate [22| formal
models in languages like Z and B, e.g., by translation into Prolog
programs. Animation is ordinarily used to build confidence in the
formal model by allowing it to be tested on examples. We are not
aware of applications based on these animated models, but the ability
to execute the model may serve as a useful step in this direction.

Less closely related, there are many cases where theorem provers
have been connected to external programs like SAT solvers|28l [10],
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SMT solvers [2], symbolic algebra systems [15], and so on, which
are usually written in languages like C or C++. These efforts allow
formal verification engineers to automatically prove certain kinds of
goals, but are not aimed at reusing formal models in applications.

6.2 Availability

The ACL2 Bridge, including for both the server-side ACL2 source
code described in Secti0n|Z| and the Ruby client described in Section
Bl is freely available under the GNU General Public License. It is
included in the ACL2 Community Books for ACL2 6.0,

http://acl2-books.googlecode.com/}

under books/centaur/bridge. The Verilog library used in VL-
Mangle, including parsing and many transformations, are also avail-
able under books/centaur/vl. However, the VL-Mangle web
frontend is not publicly available.
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Proof-Guided Ontology Development using Pattern Rules

Liwei Deng and Alan Bundy and Fiona McNeill and Alan Smaill !

Abstract. In this paper we present a proof-based method of devel-
oping ontologies that satisfy requirements, where the proof process
guides the development of the ontology. We formally define our pro-
cedure and illustrate it with examples.

1 INTRODUCTION

Ontologies are (formal) models of some aspect of the real world,
with applications such as information sharing, semantic search and
interoperability. There are various ontologies in use, including many
business and biomedical ones.

Developing (and maintaining) such ontologies involves many ac-
tivities, sources of knowledge and people. The experience over the
years have been analysed, organised and developed into methodolo-
gies, describing the whole process of developing an ontology; see [2]
[1] for meta-surveys.

Generally there are three main stages:

1. first, purpose and requirements are identified, relevant knowledge
gathered, and an informal ontology may be built;

2. then, the formal ontology is created;

3. finally, the ontology is evaluated against the purpose and require-
ments, modified accordingly, and maintained as long as necessary.

We aim to find good methods for stages 2 and 3 above, that of cre-
ating the formal ontology that satisfies formal requirements. Such
ontologies have the quality of relative correctness, correct relative to
the requirements.

Establishing the satisfaction of some formal requirements can take
the form of proofs: if the (statements of the) formal ontology are seen
as a set of axioms, these formal requirements are conjectures on the
ontology to be proved.

For example, for an anatomy ontology, we could have a require-
ment

The human body is left-right symmetric externally;
which can be formalised as
external_symmetric(human_body).

We will be able to deduce this from the ontology if, for example,
the ontology had, for each external component, both a left part and a
right one, or is designated self-symmetric.

This approach of formally proving satisfaction of requirements
by ontologies was first introduced in TOVE (TOronto Virtual Enter-
prise) [3], and we will discuss this later in Section 3, Related Work.

L University of Edinburgh, Scotland, email: {L.Deng-2@sms.ed.ac.uk,
bundy @staffmail.ed.ac.uk, f.j.mcneill@ed.ac.uk, A.Smaill@ed.ac.uk}

In this paper we are only interested in formal requirements that
could be stated as conjectures on and proved to follow from the for-
mal ontology and henceforth we will be using the term formal re-
quirements to mean only these ones.

For creating formal ontologies where formal requirements could
be proved, we propose Proof-Guided Ontology Development, where
we use the formal requirements to guide the development of the on-
tology. We start with the formal requirements and use their proof
attempts to guide the user on the relevant classes, relations and rules
to add to the ontology so that it reflects the user’s view of the do-
main, at the same time as giving proofs of the statements. When the
development of the ontology is finished, all the requirements should
be proved, so we know that they are all satisfied.

This use of formal requirements to guide the development of the
ontology is different from existing approaches.

The rest of the paper is structured as follows: in Section 2 we show
the use of certain pattern rules in guiding the development of the on-
tology, starting with a simple example in Section 2.1, followed by a
formal description of our procedure as an algorithm in Section 2.2,
which is then applied to a more complicated example in Section 2.3,
then a brief discussion in Section 2.4, and a brief description of the
implementation of the example in Section 2.5, followed by its eval-
uation in Section 2.6; we then discuss related work in Section 3, de-
scribed on-going and planned work in Section 4, before concluding
in Section 5.

2 USING PATTERN RULES

Our development process aims to end in an ontology where all the
formal requirements are satisfied, and to get there we aim to go
through an iterative series of states in each of which an intermediate
ontology satisfies an intermediate set of formal requirements (which
could be a subset of the final ones).

We start with a state with no formal requirements and an empty
ontology (with no classes, relations, properties, etc.), so that trivially
the ontology satisfies the requirements. The user who is building the
ontology then changes the state by adding formal requirements, and
classes, relations and properties to the ontology. The resulting inter-
mediate ontology is checked to see if it satisfies the requirements. If
not, then we aim to use the formal requirements to guide the user to
make changes to the current ontology to arrive at a state where the
requirements are all satisfied (again). We carry on like this until we
get to the ontology we want.

Note from the above description that we are not starting from com-
plete scratch, but assume that the user has some idea of the require-
ments, and hence classes, relations and axioms, for the ontology and
will be providing them.

A key part of this process is the guidance we provide to the user
in cases the intermediate ontology does not satisfy the requirements.
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We said above that we will use the formal requirements to provide
guidance, but on their own usually they will not be enough. In this
paper we will show the use of certain pattern rules as rules of impli-
cation in giving guidance to the user.

We first illustrate the idea with a simple example.

2.1 A Simple Example

Our simple example is that of a car ontology, where we are trying to
model the structure of a car. We start with no formal requirements
and an empty ontology, as described above. The user then adds the
requirement

The engine is connected to the wheels;
which could be formalised as
connected(engine, wheels).

Now if the requirement is added to the ontology, we would have
immediate (and trivial) satisfaction of the requirement by the ontol-
ogy, but there are various reasons for not doing this. One is that we
want to use the requirement to guide the development of the details
of the ontology, in a specific way, which we will see below soon. An-
other is that eventually we want to prove generalised versions of the
above requirement and these cannot be axioms of the ontology.

Instead, the above requirement would simply imply the addition of
the classes engine, wheels and the relation connected to the ontology.

To these, the user might further add the axioms

connected(engine, axle), connected(axle, wheels)

to the ontology to model how the engine is connected to the wheels.
Now a check can be performed to see if the current ontology sat-
isfies the above requirement. It is clear that we will not be able to
deduce it: it is not an axiom of the ontology, but it cannot be implied
by the other axioms either as we do not have any rules to use for
implication. Now we note that if we had properties for the relation
connected such as transitivity, which could be formalised as

connected(X, Z), connected(Z,Y) — connected(X,Y), (1)

for example, then it could be used as a rule of implication, with the
two atoms on the left implying the one on the right.

So suppose we can have such properties, the question is then which
ones should we use? A natural first try is the commonly occurring
ones, such as transitivity, symmetry, etc. But where do we get such
properties from if they are not there?

One possibility is to have a generic versions of these commonly
occurring properties, which could be instantiated with any particular
relation we might want. For transitivity such a generic property could
be formalised as follows

P(X,2), P(2,Y) = P(X,Y), 2

with P a variable over relations. If P were instantiated to connected,
we would get (1) above. In this way, we get rules to try in a proof
attempt of the formal requirement; these are our pattern rules. A list
of some commonly occurring generic properties as pattern rules is
shown in Figure 1; this is not intended to be exhaustive.

Our guidance then proceeds by backward reasoning. We start our
attempted proof of the formal requirement

connected(engine, wheels)

as the goal by first noting that it is not an axiom of the ontology, so
will need to be deduced. Then we look for a rule that could be used
to break down the goal into subgoals. We note that properties such as
(1) could be used as rules, and first look for a rule of this form, but
find none. So next we look for a generic rule of the form (2) to obtain
an instantiated rule of form (1), where the relation variable in (2) is
instantiated to the relation in our goal. So from (2) we obtain (1); the
conclusion of this implication is removed by resolution leaving only
the two premises,

connected(engine, Z), connected(Z, wheels) 3)

as subgoals. We note that they could be unified with the axioms in
the ontology, thus giving a derivation of our original goal. This trig-
gers a notification to the user of a potential derivation of our goal,
depending on the use of the instantiated rule (1), which could be a
property for the relation connected. The user is asked if (1) is indeed
a property for the relation, with the successful derivation providing
evidence in its favour. If the user accepts, the property is added to
the ontology, and we have guided the user to a state where all formal
requirements could be derived.

Having given the example, we can now state our hypothesis for
this paper:

Proof-Guided Ontology Development using pattern rules can
be used to provide guidance in the development of real ontolo-
gies.

We will come back to the hypothesis when we discuss evaluation in
Section 2.6, but next we present a formalisation of the above proce-
dure.

2.2 The General Algorithm

Our procedure takes formal requirements and applies them to ontolo-
gies using pattern rules, to provide guidance. So before presenting a
formalisation of this procedure as an algorithm, we first give formal
definitions for each of the three involved elements. Our formalisation
is in the style of logic programming, see e.g. [7].

2.2.1 Requirements and Axioms

We first give a basic definition, that of atoms, that will allow us to
define formal requirements and atomic axioms.

Definition 1 (Atoms) An atom is a formula P(Th,...,Ty,), where
P is a predicate and the T;s are terms, which can only be constants
orvariables. If P is a constant then P(T1, . .., T,) is a regular atom;
if the T;s are also constant then it is a ground atom. If P is a variable
then P(T1,...,T,) is a pattern atom.

Remark 1 The restriction of terms to constants or variables in the
above definition has implications for the size of the search space, see
Remark 4.

Example 1 (Atoms) connected(X, Y) and connected(engine, Y) are
both regular atoms, where connected is the predicate in both cases,
with X and 'Y the terms for the first atom, engine and Y the ones
for the second.

We can now define .



Definition 2 (Formal Requirements) A formal requirement is a
ground atom, where the predicate is a relation and the terms are
classes of the ontology.

Definition 3 (Atomic Axioms) An atomic axiom is a ground atom,
where the predicate is a relation and the terms are classes of the
ontology.

Remark 2 For this paper formal requirements and atomic axioms
have the same definition, but in future work this is unlikely to be
the case, as we expect to have e.g. more general requirements (cf
discussion about why requirements are not just added to ontologies
as axioms at the start of Section 2.1).

Example 2 (Formal Requirements, Atomic Axioms)
connected(engine, wheels) is a formal requirement;
has_part(wheels, frontwheels) is an atomic axiom (these
are taken from our example ontology in Section 2.3 that we will see
later).

2.2.2 Pattern Rules

Having defined atoms, we can use them to define (Horn) clauses of
various types, including pattern rules.

Definition 4 (Horn Clauses) A Horn clause is either a rule clause
or a goal clause. A rule clause is a formula Body — Head,
where Head is an atom and Body is a (possibly empty) set of atoms,
where all the terms in each atom are variables. A goal clause is a set
of atoms. If the goal clause is the empty set it is called the empty
clause.

A rule clause is a regular clause iff it contains only regular atoms;
it is a pattern clause if it contains pattern atoms.

A regular rule clause where the predicate is a relation of the on-
tology is a property of the relation.

Remark 3 We could have said first order instead of regular and sec-
ond order instead of pattern in the above definition, but we wanted to
emphasise the notion of pattern rules.

Definition 5 (Pattern Rules) A pattern rule is a pattern clause with
only one predicate variable.

Example 3 (Horn Clauses)
connected(X, Z), connected(Z,Y) — connected(X,Y)

is a regular clause; it is also a property of the relation connected if
connected is a relation of an ontology;

P(X,2), P(Z,Y) — P(X,Y)
is a pattern rule (pattern clause), as is
connected(X, Z), P(Z,Y) — P(X,Y);

{connected(X, Y)} and {connected(engine, Y)} are goal
clauses.

Definition 6 (Ontologies) An ontology contains (non-exhaustively)
a set of classes, relations, atomic axioms and regular rules.

Example 4 (Ontologies) See Figure 2.
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2.2.3  Proof Guidance Algorithm

Next, we use the various types of clauses to define search spaces, and
finally our formal algorithm, the Proof Guidance Algorithm.

Definition 7 (Search Spaces) A search space is an OR-tree® in
which the nodes are labelled by goal clauses and the arcs are la-
belled by rule clauses. Exactly one of the atoms of each goal clause
is called its selected goal.

Suppose {A1, Az, ..., Ay} is the goal clause labelling a node
with Ai the selected goal, and the rule clause Body —> Head
labels one of the arcs descending from this node. Then the daugh-
ter node at the other end of this arc is labelled with Bodyo U
{Asz, ..., An}o, where o is the unique most general unifier of A1
and Head.

A proof of the goal clause labelling the root of a search space
corresponds to a branch in which the leaf node is the empty clause.
A regular proof is one that only uses regular rules. A pattern proof is
one that uses at least one pattern rule.

Example 5 (Search Spaces) If {connected(engine, wheels)} is
the goal clause labelling a node and the rule clause

connected(X, Z), connected(Z,Y) — connected(X,Y)

labels one of the arcs descending from this node, then the
daughter node at the other end of this arc is labelled with
{connected(engine, Z), connected(Z, wheels)}.

Definition 8 (Proof Guidance Algorithm) Given a formal require-
ment, (ground regular goal clause with one atom), a set of regular
rules and a set of pattern rules, the search space is grown depth first
in two passes. On the first pass only the regular rules are used. On
the second pass, both regular and pattern rules are used. Thus only
regular proofs will be found on the first pass and only pattern proofs
on the second pass.

If a pattern proof is found, then the pattern rules used in the proof
will have their predicates instantiated to the one in the unifier; these
instantiated pattern rules are presented to the user to ask if they are
all true.

Example 6 (Proof Guidance Algorithm) If

P(X,2),P(Z,Y) = P(X,Y)

is a pattern rule used in the proof and the unifier is connected then
the instantiated pattern rule is

connected(X, Z), connected(Z,Y) — connected(X,Y).

Remark 4 The restriction of terms to constants or variables in the
definition of atoms (Definition 1) means that if the predicate and
terms of an atom in a goal clause are instantiated to relations and
classes of a finite ontology, there are only finitely many possibilities;
so the search space is finite.

The algorithm does not specify how it is to be applied to ontolo-
gies, e.g. how goal atoms are instantiated; this is a deliberate design
decision to make it general, so that different search strategies can be
applied on top of it; we will see an example in the next section.

2 OR-trees contrast with AND-trees. In an OR-tree, you can choose one
branch and stick with it; in an AND-tree, all branches must be solved. The
analogy is with goals of the form P V @ versus P A Q. Since we will be
using depth first search (see Definition 8), our search space is an OR-tree.
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2.3 A More Complicated Example

Having presented our algorithm formally, we now apply it to a more
complicated version of the previous example of a car ontology; al-
though it is small it is non-trivial.

2.3.1 Pattern Rules for Our Example

As before, we start with no formal requirements and an empty on-
tology, but this time with a list of generic properties as pattern rules,
shown in Figure 1.

This is not meant to be an exhaustive list, but a list of what we re-
gard as among the most commonly occurring properties. Apart from
the first, the other three are composed of pattern atoms only and have
their familiar meanings. As for the first, we called it upward inher-
itance as it describes the situation where a relation that holds be-
tween two classes Z and Y is inherited upwards along hierarchies of
has_part for one of the classes, Y, so that it also holds between Z
and X, the superclass of Y. We singled out inheritance along hierar-
chies of has_part, rather than a generic relation, as we feel that this
is a very common situation, making this generic property a mixture
of pattern and regular atoms. We further note that the relation that is
inherited upwards must not be has_part, so that if it is instantiated
then it will have two relations, unlike the other three.

These properties are not requirements to be proved and are not
part of any ontology, so we still have the (trivial) satisfaction of the
requirements.

Type Generic Property
upward inheritance  has_part(X,Y), P(Z,Y) — P(Z, X)
transitivity P(X,Z),P(Z,Y) - P(X,Y)
symmetry PY,X) = P(X,Y)
reflexivity P(X,X)

Figure 1. A list of generic properties.

2.3.2 Starting the Development Process

The user developing the ontology then adds the requirement
The engine is connected to the wheels;

formalised as
connected(engine, wheels)

and some axioms to the ontology; the classes and relations in these
are also added to the ontology, which are shown in Figure 2.

We first check that the ontology is consistent. In this case, our
atomic axioms are clauses with no negation, so they are consistent. In
general, this would involve searching for the empty clause; if we fail
then the ontology is consistent. The restriction of terms to constants
or variables in the definition of atoms (Definition 1) means the search
will terminate, so we will a definite answer.

Having done this, we next check (or the user could initiate the
check) if the requirement can be derived from the ontology; we can
do this by applying the Proof Guidance Algorithm, since the first pass
using only regular rules does exactly this, and has termination. In this
case, we have the answer that it cannot be derived. Therefore we use
the (second pass of the) Proof Guidance Algorithm to guide the user
on the additions to the ontology to make it satisfy the requirement.

Classes Relations  Atomic Axioms
car has_part has_part(car, engine)

has_part(car, wheels)
engine connected  connected(engine, axle)
axle connected(axle, leftfrontwheel)
wheels has_part(wheels, frontwheels)
frontwheels has_part(frontwheels, leftfrontwheel)
leftfrontwheel

Figure 2. The more complicated car ontology example.

2.3.3 Heuristics for the Algorithm

We have already noted that the algorithm does not specify how it is
to be applied to ontologies; to do so we use the following heuristics.

Definition 9 (One Atom Heuristic) If {A1, A2, ..., Ay} is not the
formal requirement (initial goal clause), we require the existence of
a unifier o such that all but at most one of { A1, Aa, ..., An}o are
axioms of the ontology; these are then removed from the goal clause,
leaving a goal clause with at most one atom; otherwise the node is a
leaf node.

Example 7 (One Atom Heuristic) For example, if
{connected(engine, Z), connected(Z, wheels)}

is the goal clause labelling a node, then Z could be unified with
(instantiated to) axle to make the first of the two goals an axiom
of the ontology (in Figure 2), which is then removed from the goal
clause, leaving

{connected(azle, wheels)};
on the other hand if
{connected(leftfrontwheel, Z), connected(Z, wheels)}

is the goal clause labelling a node, then we do not have any unifiers
which could make one of the goals in the clause an axiom of the
ontology, so the node is a non-empty leaf node (hence does not give
a proof).

The idea here is to use the ontology to cut down the search space,
hopefully in a way that directs the search towards a proof. If we start
with a goal of one atom then when we grow the search space using
the Proof Guidance Algorithm then we are unifying the atom with
rule clauses to produce goal clauses, usually of more than one atom.
Now, if all the atoms in one such goal clause were unifiable with
axioms in the ontology, then we would have a proof of the original
goal, as in the simple example in Section 2.1.

However, this will rarely be the case; so for our first heuristic, we
aim for the next best thing, trying to unify all except at most one of
the atoms. This leaves a subgoal of at most one atom to be proved,
for which we again attempt to reduce to a subgoal of at most one
atom, and so on, until we find a proof or fail.

This heuristic hugely cuts down the search space, though we are
aware that it sometimes prevents proofs from being found (see dis-
cussion in Section 4).



Definition 10 (Instantiated Pattern Rule Heuristic) In the second
pass of the Proof Guidance Algorithm, instead of using the patterns
rules directly, we will have their predicates instantiated to the pred-
icate in the atom of the formal requirement (initial goal clause) and
use these instantiated pattern rules (the same kind as the ones in Def-
inition 8).

We also split the second pass into subpasses. On the first subpass
only one pattern rule is used; on the next subpass we can use one
more pattern rule, and so on, until there are no more pattern rules.

With the Proof Guidance Algorithm, the pattern rules labelling the
arcs leading from the formal requirement (initial goal) effectively
have their predicates unified with (instantiated to) the one in the re-
quirement, so this is minimal in the number of pattern rules used if an
order is imposed on the pattern rules (as is indeed the case in our im-
plementation, see Section 2.5), with the effect on goal clauses lower
down the search tree.

By splitting the second pass into subpasses we make our search
space small at the start and only grow it if no proof is found.

We can now give a summary of the running of the algorithm with
the heuristics. As before, the search space is grown depth first in two
passes. On the first pass only the regular rules are used. Each time
a new node is grown, its goal clause is reduced using the One Atom
Heuristic to give either

1. an empty clause, which shows a proof of the original goal has been
found;

2. aclause with one atom, which is a leaf node if it has already ap-
peared;

3. aclause with more than one atom, which is a leaf node.

The search space is finite If a proof is not found on the first pass,
we go to the second pass, which is split into subpasses. On the first
subpass, we obtain an instantiated pattern rule as per the Instantiated
Pattern Rule Heuristic, which together with the regular rules is used
to grow the search space, and then proceed as on the first pass.

If a proof is not found, we go to the next subpass, where we obtain
one more instantiated pattern rule, and carry on as before. This goes
on until either we find a proof or run out of pattern rules to instantiate.

2.3.4 The Running of the Algorithm

Given these two heuristic we can now give an overview of the run-
ning of our algorithm on the car ontology in Figure 2.

We are trying to guide the user on the additions to the ontology to
make it satisfy the requirement

connected(engine, wheels),

which is our initial goal.

The first pass using only regular rules is just the check on the
derivation of the requirement from the ontology from earlier, which
fails, so we need the second pass.

On the second pass, without loss of generality the first subpass
uses the first pattern rule from Figure 1,

has_part(X,Y),P(Z,Y) — P(Z,X),
the upward inheritance property, which we instantiate to

has_part(X,Y), connected(Z,Y) — connected(Z, X)
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using the Instantiated Pattern Rule Heuristic, giving us the upward
inheritance rule for connected, then unify with the requirement to
give

has_part(wheels, Y), connected(engine, Y)

— connected(engine, wheels). 4)

The two terms on the right hand side are the subgoals of the initial
goal, proof of which will give us the proof of the requirement. We
now apply the One Atom Heuristic to the subgoals and note that we
can instantiate Y to frontwheels to make the first of the two goals
an axiom of the ontology, leaving us to prove

connected(engine, frontwheels).

One further application of the above steps reduces us to proving con-
nected(engine, leftfrontwheel).

But now it is easy to see that with only this rule we will run out of
possibilities quickly; further unifications with the upward inheritance
rule will bring goals that could not be unified with axioms in the
ontology.

So we go to the second subpass, and get another instantiated pat-
tern rule

connected(X, Z), connected(Z,Y) — connected(X,Y), (5)

the transitivity rule for connected. Applying this to con-
nected(engine, leftfrontwheel) gives us

connected(engine, Z), connected(Z, le ft frontwheel), (6)

and instantiating Z to axle makes both axioms of the ontology, thus
completes the proof.

We then present the two instantiated pattern rules used in the proof
to the user for approval.

2.4 Discussion

In this paper, to prove our formal requirements we needed to come up
with rules of implication which are also a properties of relations. We
believe it is advantageous for an algorithm running on a computer to
do this job, for the following reasons:

1. arguably, it is easier for a human to understand such rules than to

design them, particularly as they have formal logical formulations
such as (1);

2. arelation could have many properties, designing them is a diver-

sion from the modelling of the domain, so getting a program to
suggest them is a good division of labour;

3. many relations could have similar properties to be added, so to-

gether with the above two points this makes the task tedious and
repetitive for a human, but computers are well suited to such tasks
and can help to reduce the workload.

However, it is outside the scope of this paper to investigate these
claims, empirically or otherwise.
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2.5 Implementation

The Proof Guidance Algorithm, the two heuristics and example on-
tology have been implemented in a Prolog [7] program. One of the
advantages of using Prolog is that it allows easy meta-programming;
and indeed our programs are written as meta-interpreters. Addition-
ally, Prolog’s declarative style and logic-based semantics allow it to
be used as a ontology language.

Prolog imposes orders on goals and rules, so the sets of atoms in
goal clauses become lists (see Definition 4), as do the sets of regular
and pattern rules (see Definition 8).

Implementation Note: So that pattern atoms can be uni-
fied with other atoms using only first-order unification, an atom
P(Tu,...,T,) is represented internally as atom(P,Th, ..., Ty).

This means

connected(engine, axle)
becomes

atom(connected, engine, axle).
The command

suggest(atom(connected, engine, wheels), Proof, GoalList)
is used to try to prove

connected(engine, wheels)

(here Proof is the variable holding the final proof obtained, and Goal-
List holds the current list of goals to catch looping). The command
succeeds, with the proof printed out at the end.

Proof = atom(connected, engine, wheels) :-
(atom(has_part, wheels, frontwheels) :- True), (atom(connected,
engine, frontwheels) :-
(atom(has_part, frontwheels, leftfrontwheel) :-
(atom(connected, engine, leftfrontwheel) :-
(atom(connected, engine, axle) :- True), (atom(connected,
axle, leftfrontwheel) :- True)))

True),

2.6 Evaluation

Our hypothesis for this paper is as follows:

Proof-Guided Ontology Development using pattern rules can
be used to provide guidance in the development of real ontolo-
gies.

The evaluation of our hypothesis is on-going, as we are looking for
example ontologies where our method is applicable.

One interesting example we found is the OWL-Time Ontology
[5]. This ontology has a relation before, which is defined to be anti-
reflexive, anti-symmetric, and transitive on intervals. For example,
the anti-reflexive axiom is given as

before(Ty,T>) — T1 # Ts.

Given the axioms in OWL-Time, the following is a theorem of the
ontology:

begins(ti,T) & ends(t2,T) & before(ti,t2)

— ProperInterval(T).

This says that if an interval 7" begins at instant ¢; and ends at instant
to and such that ¢, is before to, then it is a proper interval, which is
itself defined as

(YT')(ProperInterval(T) < interval(T')
& (Vt1,t2)(begins(t1,T) & ends(t2, T) — t1 # t2)).

This theorem is mentioned in the predecessor ontology of the OWL-
Time Ontology, the DAML-Time Ontology [4], which has the same
basic axioms and same axioms on the relation before as OWL-Time.

To prove this theorem, it seems to us that the anti-reflexive axiom
on intervals for the relation before is needed, though the proof we
could see is somewhat complicated.

OWL-Time does not have an anti-reflexive axiom on instants for
the relation before,

before(ti,ta) — t1 # to;

if it did, the proof of the theorem would be much easier.

We would like to use our method of using a proof attempt of the
theorem to suggest the anti-reflexive axiom on instants for before; but
as it is, we cannot as we are not yet able to deal with quantification
and negation. Assuming that we can, and that we have a pattern rule
for anti-reflexivity, then it should be quite straightforward to make
the suggestion.

We are currently working to extend our method to deal with quan-
tification and negation.

3 RELATED WORK

In terms of overall approach to ontology development, TOVE
(TOronto Virtual Enterprise) [3] is the most similar to us, in fact it is
TOVE who first introduced the idea of formally proving satisfaction
of requirements by ontologies.

In TOVE, requirements are called competency questions, a term
and notion taken up by several subsequent methodologies.

Competency questions arise and are used in the following way.
First, usage scenarios for the proposed ontology are identified; then
from these a set of natural language questions, called competency
questions, are derived. These are questions that the ontology should
be able to answer given the usage scenarios.

These questions and their answers are then used to extract the
main concepts, their properties, relations and axioms of the ontol-
ogy, which are then used in the development of the latter.

Usually, the finished ontology is evaluated to check that it is able
to answer the competency questions. In TOVE, this is done formally,
with formalised competency questions (which are in the form of log-
ical statements) proved to follow from the (formal) ontology; if the
ontology is seen as a set of axioms, the formalised competency ques-
tions conjectures on the ontology to be deduced.

The difference between TOVE and our approach is that even
though TOVE also intends that the competency questions are used to
develop the ontology (axiomatize the ontology) in an iterative way,
it is vague about how this is actually to be done. In fact, it [3] states
that:

There may be many different ways to axiomatize an ontology,
but the formal competency questions are not generating these
axioms.



In contrast, we use (the proof attempt) of formal requirements to
(guide the) generation of the axiomatization the ontology, and gave
an example of a specific way of doing this.

In terms of our example, of the specific way of (guiding the) gen-
erating the axiomatization the ontology, [6] is the most similar to us.
The authors also propose a way of adding properties such as transi-
tivity or symmetry to relations in ontologies, including automatically
generated ontologies such as DBPedpia where this information tends
to be lacking, though their method is rather different.

In [6], parts of ontologies of interest are matched with Ontology
Design Patterns which already contains the properties, using an algo-
rithm that takes into account both structural and lexical information,
and which is configurable by the user. These Ontology Design Pat-
terns are analogous to our Pattern Rules, in that they are also generic
versions of commonly occurring constructions in ontologies, where
these constructions are collections of related classes, relations and
axioms. The algorithm first finds parts of ontologies that structurally
match Ontology Design Patterns, e.g. the hierarchies match, then use
lexical information such as synonyms to confirm the match. When a
match is found, the properties in the Ontology Design Patterns are
added to the matched items in the ontology.

In [6] the authors presented a feasibility study though there is no
evaluation.

4 CURRENT AND FUTURE WORK

Work is on-going on the usage of pattern rules to provide guidance
for ontology development, and we have further work planned.

4.1 Providing Guidance

On the basis of existing definitions for formal requirements, atomic
axioms and pattern rules, we are developing more examples of re-
quirements, axioms and more pattern rules, and the associated heuris-
tics needed to deal with these.

We already have an example ontology, which is a more compli-
cated version of the car ontology presented in this paper, for which
the current heuristics are insufficient, in that they prevent proofs
from being found. For this we have developed and implemented new
heuristics.

We are also working on and planning for more general definitions
of formal requirements and atomic axioms, for example variables in
formal requirements, and the ability to deal with quantification and
negation, which will allow us to deal with the OWL-Time Ontology
example in full. For these more complicated ontologies heuristics
may be insufficient and we will consider other measures.

In all cases, we will be testing our method on 3rd party ontologies.

4.2 Other Aspects of Ontology Development

In this paper we focused on providing guidance for ontology devel-
opment, and did not consider or simplified other aspects of ontology
development. We will consider these aspects in future, including:

e reuse of existing ontologies to provide requirements and axioms,
and the issues this brings, such as dealing with equivalence of re-
quirements and axioms;

o the ontology language used and how existing languages like OWL
and CL could be used with our approach;

e use of existing tools for e.g. checking consistency.
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We have discussed our proposal with a few ontology designers,
but we are not currently working with any; this is something we will
consider in future.

5 CONCLUSION

In this paper, we introduced the notion of Proof-Guided Ontology
Development, and the use of pattern rules to guide the development
of ontologies. We gave formal definitions of the notions involved, in-
cluding formal requirements, atomic axioms and pattern rules, and
gave a formal description of our algorithm. Our procedure is illus-
trated with an example, which has been implemented in Prolog pro-
grams.

We presented a hypothesis for this paper, the evaluation of which
is on-going. We gave the example of the OWL-Time Ontology, to
which our method does not yet apply, but noted the problems to
be dealt with. These problems are to do with aspects of First Or-
der Logic; though they would bring difficulties it seems reasonable
that they could be dealt with. Assuming that they are, we noted that
our method could potentially be applied.

Overall, we expect that our method is definitely useful for ontol-
ogy development, and we are working to extend and evaluate it.
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