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Musical Synthesis by means of Cellular Automata 
and Gestalt Patterns

 

Luca Danieli
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Abstract  In order to emulate a composer-based approach to musical 
writing, the paper aims to to create of a new musical synthesis model 
based on gestalt matrices.
The approach is described in three different levels:
- a sound model: all instruments have their own interface and have 
specific  roles  within  a  musical  composition.  Every  instrument 
typology is  unique,  and  composers  write  for  specific  instrumental 
characteristics;
-  an action model: every performer has different ways to interact with 
the instrument itself. Each instrument is a powerful sound provider. 
The action performed on the instrument has the function of “choosing” 
which particular sound model to play;
-  a score model: every musical staff has specific functions in the score 
and represents a certain contribution to the outcome which is related to 
macro-structure analysis.
A self-generating matrix, described by use of patterns, is applied to 
these basic concepts, thus giving them personal stochastic behaviors 
and creating a comparison system to reduce data processing.

Keywords  Perception, cognition, cellular automata, musical writing, 
gestalt patterns, emotional model.
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1 Introduction

This paper presents a new sound synthesis approach based on cellular automata (CA) 

application.

Since the creation of the famous Game of life by John Conway [1], interest on this topic 

has grown, finding applications in many fields of the scientific research. Conway's work 

consisted  in  two-state  cells  (on/off)  relating  to  each  other  through  a  set  of  rules 

previously conceived.

The reason behind the popularity of CA can be traced to their simplicity, and to the 

enormous potential they hold in modeling complex systems, in spite of their simplicity 

[2].

Furthermore, A. Smith underlined how CA algorithms are efficient in self-reproduction, 

showing how the integration of different parallel-working microautomata is possible in 

order to create a larger macroautomaton, improving the general behavior of the system 

[3]. 

More complex CA types have been created, like the Banks' 4 states per cell [4], Codd's 

8 states per cell [5] and Von Neumann's 29 states per cell [1], [3].

In other fields of scientific research, differently from the models above, the simplest two 

state per cell type has been implemented in a more complex structure to enlarge the 

variety of the outcome, as for Celerina [6]. This Cellular Automaton uses a recursive 

comparison, at the position t-1, between a CA array and a chosen pattern of 5 cells, 

thereby changing continually the state of the cell at the position t. A similar comparative 

approach was already faced also by Stephen Wolfram [7]. 

The model proposed in this paper, to enrich both the outcome and the execution of the 
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instrument in electronic musical performance, is based on the combination of different 

parallel-working  CA.  A  basic  self-generating  CA  sound,  obtained  by  use  of 

mathematical series, is lead by controlling CA patterns.

Many researches have been pursued to make CA computing models more practically 

oriented. To achieve this goal, researchers should be able to predict the global behaviour 

from the local CA rules. Once this goal is achieved, one should be able to design the 

local rules/initial conditions from a given prescribed global behavior [2].

Here the controllers are supposed to be simple recursive patterns, acting on the spectrum 

as self-generating matrices, to reduce the computing and to simplify the implementation 

of the algorithm. These controllers represent the main four envelopes used in musical 

writing: crescendo, diminuendo, tenuto and the impulse function. Theoretically, since it 

is  possible  to  predict  the  CA behavior,  it  is  possible  to  foresee  also  the  general 

development of a system integrating more CA algorithms.

2 Background Considerations

Instruments have their own characteristics that are perceived by people as “invariants” 

and related to particular functions to music. This music constitutes an ideal. It does not 

really exist  in the interaction with the player,  but the latter  has an image of it,  and 

through this he can relate with the instrument in a personal way called interpretation. It 

is important underlining this because we can thus define an essential characteristic for 

our model: the physical (usual) behavior of an instrument is different from the person's 

use of it. In particular the contemporary composition was characterized by strict studies 
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on  instrumental  expressiveness,  searching  for  ways  to  use  instruments  in  order  to 

produce new sounds. 

If we have a piano, its function to music will be, for example, the physical behavior of 

the vibrating strings (particularly, for a composer, it focuses on the “modifications” of 

the sound caused by the vibrating strings) and once this relationship is defined, a person 

is able to imagine what interruptions, modifications, and deformations on this function 

would produce.  The main observation remains that manipulations do not change the 

idea  the  user  has  of  the  instrument,  and  his  method  of  interacting  changes 

consequentially  to  what  the  action  produces  on  the  instrumental  function.  In  other 

words, when the user has an idea of what his action will produce on the sound, he can 

choose his own method of interaction.

So we have to divide the synthesis in two different parameters: function and action, 

which must remain related to each other. For this purpose we will make use of two 

principles: physical modeling synthesis and cellular automata.

Physical modeling synthesis is a synthesis technique which uses mathematical models 

in order to synthesize the physical behavior of an instrument by the description of its 

physical properties. The method has shown its power in naturalness and precision in 

sound reproduction despite of a relevant heaviness in computing.

Most attempts to  synthesize sounds based on a physical model have been based on 

numerical integration of the  wave equation  [8]. A general wave equation for an ideal 

vibrating string is given by a second order derivative equation:

Ky'' = eÿ                                                        (1.1)
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where K is the string tension, y is the string displacement, e is the linear mass density, 

y'' is the second order derivative in the x axis, and ÿ is the second order derivative in the 

time axis [9].

The  problem  for  live  musical  performance  applications,  other  than  the  high 

computational requirements, is that “gestures” which are implemented in the vibration 

model equation force the interaction in a gesture/gesture-vibration chain. This means 

that the  model based on the sub-actions' summation is avoided in favor of a finished 

execution pattern. Another problem is that computer-based sounds in most of the cases 

sound artificial [9]. So, in order to solve these obstacles, it is important to find a method 

to relate these vibration models to a re-framed action model.

3 Sound, Action and Score patterns

A technique is given by cellular automata based on recursive patterns.

An instrument is normally a complex body determined by its resonating properties. For 

example, if we consider a piano, the whole spectrum is given by the resonator and the 

relations arising between the various vibrating strings (sympathetic resonances, beats, 

etc).  Once  the  sound  model  is  defined  (strings,  membranes,  electronic  synthesized 

sounds),  it  is  possible  applying  a  recursive  pattern  to  it,  which  will  enhance  the 

stochastic behavior as if the instrument was “alive”. 

We  can  so  relate  spectrum  portions  or  particular  frequencies  by  means  of  simple 

recursive patterns. Previous studies [2] on CA show that these patterns can be traced 

back to the function typologies they refer to (such as the impulse functions, crescendo 
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and diminuendo envelopes), thus creating relationships between different patterns and 

allowing their comparison during the musical structuring process.

For example, considering a FFT of a complex sound, the spectrum, multiplied by the 

same-length array filled of ones, gives simply the spectrum itself.  But, if  we take a 

matrix sampled with frequencies on the y-axis and time on the x-axis and we change the 

various  amplitudes  during the synthesis,  we will  obtain  modulations  of  the original 

sound.

Knowing  the  behavior  of  the  vehicle  (e.g.  the  specific  string  proprieties)  and  the 

relationship between its  various  frequencies,  we can create  recursive patterns  which 

relate these frequencies to each other.

If the pattern describing the harmonic succession  f, 2f, 3f, 4f, …,  is applied to all the 

partials of a chosen frequency f, the resulting amplitudes a are given by:

K=n                             

a(nf) =   Σ   a(nf)*a(nf/k)       for n > 0, n integer                        (1.2)
k=1                                

where  n is  the  factor  representing  the  ratio  between  the  partial  and  fundamental 

frequency.

Figure 1: Frequency relationships in array form.
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So the amplitude of the frequency 8f, in Figure 1, depends by different weights of f, 2f,  

4f.

If these frequencies change, the relative derivation  8f changes its behavior in relation 

both to its own movement and to the functions describing its relation with the moving 

frequencies all around like in Figure 2.

Figure 2: Matrix model for amplitude modulation.

In case we want to avoid a numerical approach and get closer to a gestalt representation, 

which is more flexible, the ratio matrix can be transformed in the  gestalt matrix,  by 

increasing and decreasing symbols:

I = 3    K=n                                                                                                       

α(s, nf) =   Π    Π   α(s-i, nf)*α(s-i, nf/k)       for n > 0, n, s integers          (1.3)
i=1      k=1                                                                                                      

where α represents the difference between the amplitudes in a(s, nf) and a(s-1, nf) and s 

is the sample variable. A schematic representation is in Figure 3:

7
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Figure 3: Gestalt matrix representation.

Here we can see how modifications in  2f are followed by changes in  4f and  8f in the 

later control sample.

It is possible to search for patterns which lead movements outside the harmonic series, 

relating them to the surrounding frequency values.                                               

The grouping in families with simpler description takes the name of  sound patterns¶. 

This lets us describe in a synthetic form the development of the sound used in the time 

domain and consider its properties to influence the use and choice of particular sounds 

during the performance.

The computation, in real-time synthesis, is between the sound model (spectrum) and the 

first  incoming array (the column s-5 in Figure 3),  which lightens the computational 

process and lets the following patterns to be “initialized” after that the current array is 

processed.

Given the sound patterns describing sound models, it is simple to create action patterns 

¶ We will refer by means of the word sound pattern, at risk of confusing the theoretical explanation of 
the model, to both the simpler family description and the complex family subtrees, because what is 
interesting for us is their reflection of the ideal approach to their function to music (impulse, flat or 
decreasing envelope, …), common, by choice, to all the subtrees associated.
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which lead the self-generating sound patterns in choosing which sound typology has to 

be extracted from the potential set of the instrument used. And this is possible because a 

sound model (e.g. a guitar) can be played in many different ways. It can be left vibrating 

or it can be stopped. The latter choice should be thought as an action simulating an 

impulsive movement with a certain duration, rather than a rest following a note. The 

matrix model is particularly useful because of the fast computation and the preexisting 

theories on matrices, which help the development of the system.

If we replace a pattern as the following:

I = 3     K=n                                                                                                             

α(s, nf) =   Σ     Σ    α(s-i, nf)+α(s-i, nf/k)        for n > 0, n, s integers         (1.4)
i=1       k=1                                                                                                            

                 

with these proprieties:      “+” + “-” = 0, “+” + “+” = “+2”, “2” * ”+” = “+2”

if   α(s, nf) <= “+”   ----->     α(s, nf) = “-”

the  sound  action will  tend  generally  to  decrease.  We  can  then  select  a  decreasing

ratio using different matrix lengths or even simple scalars .

An impulsive action pattern can be written as the following:

                ______
α(s, nf) = α(s-9, f)

9
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with the original gestalt matrix in Figure 4.

Figure 4: Impulsive gestalt matrix representation.

In general an impulsive pattern is given by:

                      ______
α(s, nf) = k * α(s-i, f)                                              (1.5)

where  k is the scalar determining the gradient and  i  is the number of columns of the 

original  gestalt  matrix chosen.  Modifications  of  these  parameters  will  give  various 

behaviors in similar actions.

This model permits simplifications in musical writing. A composer normally relates to 

the principles analyzed before:  function of an instrument  to music  and  action of the 

player.

Let's  make  an  example.  A violin  has  commonly two  functions  to  music (bowed  or 

plucked). Regarding the bow, ideally its function should be represented like in Figure 5.
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        α(s, nf) = α(s-2, f)                           (1.6)

Figure 5: String's bow function.

But how to consider a violin playing an eight note in offbeat position on the score?

Figure 6: Score example no. 1.

Is it regarded, by the composer, as an impulse or as a tied sound? And, in Figure 7, are 

the timpani and violin staffs thought as impulses or as long sounds?:

Figure 7: Score example no. 2.

In order to solve this problem it is necessary to introduce another stream of patterns: the 

score  patterns which  have  the  same  properties  of  the  previous  ones  and  describe 

musical actions in the score.

Musical actions are substantially four: staccatos, legatos, crescendo, diminuendo.
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Since the approach in Figures 4 and 5, the four actions can be described like these:

Staccato:

Legato:

Crescendo:

Diminuendo:

α(s, nf) = α(s-2, f)        (1.7)

α(s, nf) = α(s-2, f)        (1.8)

α(s, nf) = α(s-2, f)        (1.9)

α(s, nf) = α(s-2, f)      (1.10)

Figure 8: Primary musical actions table.

The basic idea is that each of these actions can make use of a different instrumental 

function, but keeping the same musical approach.

Therefore, the violin line in Figure 6 can be thought as a succession of impulses creating 

a musical sustain, which correlate it with the timpani score. Instead, in Figure 7, the 

timpani has a legato musical function¶, but of course, for the nature of the instrument, it 

has to be led back to a sum of impulses. In Figure 6 also, in the violin session, the 

musical  action  can  use  different  instrumental  functions  depending  from  which  the 

composer requires (e.g. pizzicato or bowed).

Musical Actions are used usually in conducting. In fact, often, specific gestures activate 

specific patterns without the direct modification on the sound. A pattern can be activated 

and executed continuously until the presentation of a new gesture. An example could be 

the suspension of a whole orchestra, where the sound decays according to the room 

¶ We want to clarify the use of “function to music” instead of “musical function”. “Function to music” 
is the ideal approach a performer has on the “message” he wants to transmit. More concretely, it can 
be seen as the sound potential of an instrument in creating different sounds. “Musical function” 
instead will be used in relation to the score writing and it has the meaning of reflecting compositional 
intentions. Also here, it can be seen as all the instructions in order to bring out a particular sound from 
the whole set given by the instrument. Thus, the composer uses “musical functions”  in order to create 
or to research well-defined “functions to music”.
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properties.  Here  a  gap  arises  between  this  gesture  and  the  following  hypothetical 

position. In other cases, specific gestures give directions to a small part of the orchestra 

performing, to move to another orchestra's session later on.

The question is: how a specific musical action has to be chosen? In this proposal, the 

best solution to this question is pursued by comparison of different gestalt patterns.

In  chapter  6  we discuss,  with  the  use  of  generative  models,  the  properties  of  this 

proposal when applied to automatic score generation.

4 An aesthetic model

In this chapter we take into consideration the creation, by use of gestalt patterns, of an 

aesthetic algorithm to direct the writing process, by referring to the four main properties 

of a sound: attack, sustain, release and timbre.

Figure 9: Instrument description model.

Since we established that functions to music are produced by the use of modern physical 
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modeling algorithms, their description cannot be given only by gestalt patterns. If it's 

true  that  the  sound pattern  describing a plucked violin is  not  far  from the impulse 

representation, it's also true that this gives no information about its timbre. But probably 

it can give information about the evolution of its spectrum or its general development in 

time.

The  function  to  music has  to  answer  these  questions:  how  a  particular  instrument 

sounds? What is its behavior in time? In synthesis: how to use it and when (qualitative).

The musical function instead, must answer these other questions: what sound should be 

used in a particular score fragment? Has it to be stopped or to be tied to other notes? In 

synthesis: when to use it and why (quantitative).

Therefore, we have to create a comparative interface by means of  feature extraction 

algorithms.

Defined the  action concept and assuming that each performer plays as he prefers, the 

musical outcome should be ideally unique but shared between performers. Through the 

use of sound analysis algorithms it is possible to determine and, sometimes, to foresee 

the contribution of each instrument to the overall musical execution. The purpose is of 

giving  feedback  about  the  right  execution  of  the  forming  score,  as  the  following 

example. There are four musical staffs to generate (for example our violin and timpani 

staffs).  Through  comparison  between  the  sound  pattern and  sound  model some 

functions  to  music are  chosen  automatically.  When  a  function  to  music shows  a 

crescendo  pattern  the  total  spectrum  of  the  musical  fragment  is  little  under  the 

maximum threshold  permitted,  the  algorithm is  able  to  predict  the  crossing  of  the 

threshold chosen previously.  Through a comparison between the  instrumental model 
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and the performing feature extraction algorithm the aesthetic algorithm proposed is able 

to adjust or to modify the musical development by changing the patterns used. Knowing 

the instrumental model  selected and their singular contribution on the total spectrum, 

the model should be able to choose if to modify some or all of the instrumental parts of 

the score. In this way, we create an “alert” which tells when a musical line has to be 

modified.

Figure 10: Aesthetic model.

In case the violin is playing pp and the timpani musical action is similar to Figure 5, the 

suggested amplitude for  the  timpani  line is  pp. Regarding a  timpani  musical  action 

similar to Figure 4, the system could, instead, interpret it like a ff. Similar behaviors can 

be obtained through the substitution of musical actions with musical functions.

5 Structures by means of Data-Oriented Parsing model
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We have  seen  in  chapter  2  how to  compare  musical  functions  thus  choosing  what 

characteristics the instrument needs in order to be implemented in the score. But what is 

the proceeding of the structuring process? How are instruments coupled up?

To solve this problem we advert to generative grammar theories. 

We will face at first the structuring topic based on the methodology approach of the 

DOP (Data-Oriented Parsing) model. A DOP model is a tree model extracting subtrees 

from a given treebank and combining subtrees of arbitrary size [10].

As Rens Bod writes [10]:

“The  phenomenon  that  the  same  input  may  be  assigned  different  structural 

organizations  is  known as  the  ambiguity  problem.  This  problem is  one  of  the 

hardest  problems  in  modeling  human  perception.  Even  in  language,  where  a 

phrase-structure  grammar  may  specify  which  words  can  be  combined  into 

constituents, the ambiguity problem is notoriously hard (cf. Manning & Schütze, 

1999) [11].” 

An example of the constructive process is given in Figure 11. We have to create a score 

for 4 instruments. The first step must choose a constituent musical action for the staff 1. 

After the comparison of different  gestalt  patterns, in step 1 and 2,  in the third step 

(marked by the  symbol  “*”)  is  chosen the  function  to  music  (sound pattern)  of  an 

hypothetical piano part which helps to show how sound patterns are involved in musical 

organization.  The vibrating strings of the piano are interpreted by the algorithm as a 

decay. This can be used by the first line in order to adjust its behavior.
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Figure 11: Structural algorithm example.

If we add a similar melodic model to the score, as in Figure 12,

Figure 12
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a possible outcome could be:

Line 4:

Line 1:

Line 3:

Line 2:

Figure 13: Score outcome example by means of structural model.

At the same time the use of subtrees with different sizes gives us a powerful mean for 

musical structuring. As we said in chapter 2 (Figure 4), an  action pattern (and sound 

and score patterns as well) can be identified by the description of its generative gestalt  

matrix and the associated scalar.

This means two things: Firstly, the melody of a musical fragment can be composed as a 

sum of different patterns. A semibreve bass line can be associated to a melodic line 

formed of two consequent sessions. These can have different patterns both related to the 

constituent one (the bass line). Secondly, each pattern can be associated to a  certain 

musical action's length. For example, if an eight note is represented by an action pattern 

of size two (i=2), the proportioned size of a whole note is sixteen. A pattern can repeat 

itself 3 times, making the system more flexible.

By use of other probability theories, such as Markov's Chains, it is possible to connect 

each line development to the previous pattern model in order to give continuity to the 

entire system. 

18



23

6 Likelihood-DOP probability model

The use of Likelihood-DOP probability model [10] seems to enrich the system behavior 

to give unity to the score development and to create appropriate relationships between 

patterns, permitting models, or part of them, to be suggested during the performance.

The probability of a subtree t, P(t), is computed as the number of occurrences of t,  |t|, 

divided by the total number of occurrences of treebank-subtrees that have the same root 

label as t. Let r(t) return the root label of t. Then we may write:

                      |t|          
 P(t) =    ________________                                                                               (1.11)

             Σt': r(t')=r(t) |t'|

Set tn  the nth instrument treebank-subtree, time by time, thanks to the enrichment of the 

score treebank, the probability of an incoming musical fragment  t1ᴑ...ᴑtn is given by 

[10]:

  

P(t1ᴑ...ᴑtn ) =  Πi      P(ti)                                         (1.12)

The variance and originality of the score is given by the balance of new pattern relations 

and Likelihood-DOP probability feedback.

Finally  but  nonetheless  importantly,  because  of  the  tree-family

typology  it  belongs  to,  every  score  fragment  and  each  involved  pattern

can  be  reduced  or  stretched,  thus  creating  micro  and  macro  variation

similarities during the construction. 

Defined  so  the  creation  of  one  or  more  score  actions, the  interaction  between  the 
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various  instrumental  staffs  permits  the  modification/reconstruction  of  sub-patterns 

(sound  and  action  ones), and  the  association  of  different  score  patterns  creates 

relationships between sub and super-tree levels.

The research of an emotional application can be pursued by use of Likelikihood-DOP 

probability model.

Emotions  derive  from big  or  small  changes  in  the  musical  structure.  The more  the 

following  sessions  are  far  from the  most  predictable,  the  more  the  listener  will  be 

brought to feel some emotion.

After a  crescendo score pattern,  it is probably more common to think that the next 

incoming fragment will  have a  score pattern similar to the precedent  or a  flat  one, 

represented in Figure 5. But if a succession ending with a dominant chord is presented, 

it is possible to lead the algorithm to choose the less probable continuation of the pattern 

exposed. Thus,  ff can be transformed in  p or  pp. At the same way a rhythm on long-

value notes  can be opposed to a fast execution and the number of instruments can be 

reduced from tutti to one or two.  

In Figure 14 is shown the simplified application of the general model proposed. 
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Figure 14: Model application.

In Figure 14, from the assumption that a musical fragment is already given, the musical  

structure is the score fragment which the instrument is going to perform. The execution 

block  gives  to  the  algorithm  (whenever  an  efficient  model  is  implemented  in  the 

algorithm) the property of applying musical deviations on the instruments playing to 

make the execution as real as possible. The two steps encircled by the blue dotted line 

have to be multiplied by the total number of musical lines used and, to strengthen the 

system response, the aesthetic model has to be applied to the final outcome. The pattern 

descriptor is the theoretical model reported in Figure 10. 
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6 Conclusions

Musical  actions  can  easily  be  applied  to  the  score  during  the  execution  by  a 

synchronized substitution of the matrix. The fast changing of musical actions, in real 

time application (whenever is possible a real-time execution), appears useful if related 

to gesture recognition algorithms.

It is impressing the theoretical richness the outcome could give, by means of the idea 

that the same sound can be chosen or described by different paths.

It seems that the model can be applied to most of the musical properties describing the 

piece. For example, a harmonic construction, associated with an impulsive pattern, can 

be translated in a harmonic fragment where the tonality is left, to be back at the end of 

the fragment, if no alerts are compiled.
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Abstract

We undertook a study of the use of a memristor network for mu-
sic generation, making use of the memristor’s memory to go beyond
the Markov hypothesis. Seed transition matrices are created and pop-
ulated using memristor equations, and which are shown to generate
musical melodies and change in style over time as a result of feedback
into the transition matrix. The spiking properties of simple memristor
networks are demonstrated and discussed with reference to applica-
tions of music making. The limitations of simulating composing mem-
ristor networks in von Neumann hardware is discussed and a hardware
solution based on physical memristor properties is presented.

1 Introduction

The human universals [1] are traits found in all human cultures since the Up-
per Paleolithic and are unique to humanity; music is on this list of around 370
concepts and behaviours including examples like: dance, hope, language, fire,
fear of death, cooking, prohibition of murder, hairstyles and other behaviours
both similarly dramatic and banal. Music’s role in human culture is related
to sexual attraction, social cohesion, relaxation and communication (see [2]
for a recent review from the anthropological context). It is believed that, like
some other human universals, music may be a product of the structure of the
mind [1], and thus a by-product of human evolution. However, the popular

∗Corrosponding author
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idea that music is a universal language or pre-language has been resoundly
disproved, as far back as 1940 [3], by cross-cultural studies that showed that
the emotional resonance of music is a culturally learned response.

The combination of two human universals, anthropomorphisation and
tools, would suggest that the best tool would be human-like and thus it’s
not surprising that, after the invention of computers, artificial intelligence,
A.I., (namely the desire to create an intelligent machine) would be an area
of active research. A.I. has had some successes such as learning-classifying
systems and neural networks, however the creation of creative A.I.s has had
fewer successes, and the harder problem of creating a self-aware and conscious
machine intelligence has suffered from even less progress.

Music generation is a good problem to tackle if one is interested in making
a creative A.I., furthermore, if music does arise as a result of brain structure,
then it might be fruitful to approach the problems of neuromorphic engi-
neering (that of making brain-like computers) by creating a composing brain
utilising a human-selection process on the output music: it’s easier to recog-
nise a melody than brain-like activity in a neural network. This approach
will have the added drawback (or perhaps benefit) of adding a cultural bias
to the music.

The study of creativity is a large and multidisciplinary area, with com-
peting definitions and a lack of consensus, however, a recent attempt at for-
malising creativity and describing the actions of creative A.I. agents requires
two modes of learning: A. an adaptive predictor or model of the growing data
history and B. a reinforcement learner [4]. The agent learns about the world
around it, compresses and stores that data and as such makes predictions
about the future, this model encodes the known structure of a certain style
of music, thus making the output similar to music in the same style, but
by using reinforcement learning tuned to novelty, the new music is different
enough to be interesting.

Markov chains have been well exploited in music generation [5]. The
Markov Hypothesis states that a future state of a sequence depends only on
the last state. Usually a matrix of note transitions is seeded with a corpus of
music of a particular style and music is generated via a random walk. While
often effective, it has a number of drawbacks; the biggest is that music has
an underlying structure and requires long-term order which contravenes the
Markov Hypothesis [6].

Unconventional computing is a branch of computing that aims to go be-
yond the von Neumann models of computation and includes, but is not lim-
ited to, methods like chemical computation, biological computation, cellular
automata, quantum computing, neuronal computing [7]. Various unconven-
tional computing approaches have been applied to music generation, such as
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cellular automata music generation, sonifying Physarum polycephalum and
sound synthesis using a neuronal network (wetware). Using memristors is
considered a unconventional computing approach due to their novel commu-
nication interactions [8] and similarity to the neurons [9, 10].

Memristors are the recently discovered [11] 4th fundamental circuit ele-
ment [12]. The memristor changes its resistance as a function of the amount
of charge that has passed through it (which is also proportional to voltage).
Unlike the other three fundamental circuit elements (the resistor, capacitor
and inductor) the memristor is non-linear and possesses a memory. Mem-
ristors have also been compared to neurons in the brain due to their spiking
response to changes in input.

For the auto-generation of music, we are interested in four properties of
memristors: their non-linearity, their time-dependence, their memory and
their spiking response. As a network of memristors would necessarily possess
a memory that goes beyond the previous state 1, music generation using a
memristor networks offers us a route to go beyond Markov chaining.

Memristors have been used as synapse analogues in STDP (Spiking Time
Dependent Plasticity) neural networks [13]. Here, we plan to use memristors
as the connections between a graph of musical notes, where the memristors
can modify their connection weight non-linearly with the number of times
one musical note follows on from another in a piece of seed music. This
will create a weigthed graph, which can be built in the lab by connecting
memristors. In this paper, we shall simulate such a graph by simulating the
memristor connections, as in [14].

A network of memristors can spike, and these spikes are believed to be
deterministic and related to the change in voltage across a memristor. These
voltage changes and spikes can propagate across a network through time in
a complex manner (as the voltage change from one spike will cause a voltage
change in memristors further along the network, causing further spikes and
so on). Thus, the spike interactions can be used to ‘play’ music by choosing
which notes follow on from one another (in a Markov chain approach).

There are two timescales that interact in a memristor network and which
can give rise to altering tempo of played notes. The first is the relaxation
time of a memristor after its spike (this is related to the memristors memory).
The second is related to the length of the wires between the memristor and
the time taken for a signal to propagate from one spiking memristor to the
rest of the network.

These three aspects: the seeded network, the spikes and the time depen-

1technically the memristor’s memory is dependent on its entire history from −∞ to
now, in practice it is possible to ‘zero’ a memristor’s memory
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dence can interact to give complex behaviour. However, each spike will alter
the structure of the network, allowing the system to change over time, lead-
ing to developing new patterns in its musical style to ‘evolve’ (or possibly
allowing it to get stuck in a stable attractor).

In this paper, we will discuss the methodology and challenges for building
such a network, by simulating a demo network, demonstrating the spikes
responses in a simple real memristor network, simulating a simplified version
of the spiking seeded network and finally discussing whether such a spiking
seeded network can be fully simulated in a computationally tractable way
using standard von Neumann architecture.

2 Building the Memristor Network

2.1 Setting up the graph

For this work we will consider a musical range of only two octaves, stretching
from C4 to B[5, for a total of 24 notes. As any note could potentially
follow on from any other, the graph of all possible links would be a reflexive
directed k-graph of 24 nodes and 576 vertices. We show, as an example, a
fully connected directed k-graph for 12 notes (an octave) in figure 1. For
comparison, a network for a full standard piano would require 88 nodes,
requiring 7744 memristors to model, as shown in figure ??. In the real
network, a transition (e.g. A5→B[5) would be recorded by an ammeter in
series with the memristor).

Similarly, the timing of the notes was also constructed by a network. In
the actual device, we would expect the memristor spikes to provide the tempo
information, for out simplified model a second (much simpler) network built
for the tempo analogously as for the notes in the melody. The tempo was
broken down into 9 components: semiquaver, quaver, crochet, minim, their
dotted versions and the breve.

The memristor network would be held at a constant voltage and as the
memristor spikes, these spikes then propagate around the network, each spik-
ing memristor is transiently the source of the ∆V perturbation and each other
memristor is the drain. In our simulation, this will be modelled by moving
the source to the node associated with the previously played note at each
step.
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Figure 1: A self-linked, complete directed k-graph. Note that the forwards
and backwards connections are drawn to overlap here.
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Figure 2: Complete k-graph connected for the 6 octaves of a piano. The
self-connections have not been drawn for clarity.
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2.2 Memristive Connections

The ‘probability’ of a transition between two notes occurring will be related
to the connection weight of that vertex. In the memristor network, the
connection weight is the conductivity of the memristor. Figure ?? shows
the conductivity of am memristive connection increasing under a constant
voltage (with a linear conductivity profile shown for comparison). As each
transition is either heard or created, the memristor conductance moves up
this curve. As music is a directed graph (it matters whether we go from
C→A or A→C) there will be a second memristor, wired up the other way
round, which goes down the curve. This property means that the reverse
transition is less likely if the melody has just performed the transition.

Memristance is defined [12] as:

V = M(t)I ,

we will use the Mem-Con model of memristance [15]

M(t) = Me(t) +Rcon(t)

which has the advantage of having been fit to the devices in our lab, so
we can later use measured experimental values as in [16]. In this paper,
we use reduced units, i.e. the conductance is measured in terms of device
properties such as the size and resistivity of the material. The conductivity
of a memristor, G(t), is given by

G(t) =
1

M(t)
,

and as the connection weight in the graph is simply the conductivity, it is
also represented by G(t).

2.3 Seeded graphs

To seed the melody network, we converted several different pieces of musical
melody to a list of notes in the key of C Major, transposing to the key of C
and mapping them to the two octave range we have available. To seed the
tempo network, the tempo was converted to reduced units where a time of
‘1’ is equal to 1 crochet, this allowed us to normalise for beats-per-minute
variations between the seed music. This approach divorces the tempo from
the notes, which we felt was accurate as melody rarely correlates the speed
of the note to its pitch (however as many a base singer will say, the backing
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Figure 3: Conductance profile for a continuously charged memristor. This is
also how the connection weight for a memristor-based connection.

baseline of harmonising choral pieces is usually the beat and thus includes
less variations in the tempo).

From a frequency analysis of the number of times a transition happened,
a transition matrix was populated with the expected conductance values as
based on the memristor conductivity curve in figure ??. Different musical
seeds created networks with different structures. We chose to investigate
three distinct styles of musical melody, namely jazz standards, rock’n’roll
as exemplified by Elvis (his faster tracks) and light opera as exemplified
by Gilbert and Sullivan. The three Jazz standards were: ‘How high the
moon’,‘Ain’t that a kick in the head’, ‘I’ve got the world on a string’. The
Elvis tunes were: ‘All shook up’, ‘Burning love’ and ‘Jailhouse rock’. The
chosen Gilbert and Sullivan classics were three solos taken from Pirates of
Penzance: ‘Modern Major General’, ‘When a felon’ and ‘Better far to live and
die’. Specifically, the primary vocal line was taken for each as the melody.

For example fig 4 shows example graphs for the melody lines for the three
jazz standards, specifically. The graphs tend to be sparse as a single melody
is repetitive and does not cover a huge note-space. The largest connection
weights tend to be on or close to the diagonal due to the fact that repetition
of a note is common when singing a phrase, and because the further from
the diagonal the larger the jump between the notes and the human voice has
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Figure 4: Example connection matrices for memristor networks seeded with
the melody line of jazz standards: A, How high the moon, B, One for my
baby, C Ain’t that a kick to the head. The darker the colour, the more often
that transition is heard.

difficulty with larger jumps.

3 Music Generation

Having seeded our network, we will now discuss how to use it to create music.
We shall start by examining how memristor networks act, and then consider
the approximations that must be made to model them in simulation.

3.1 Memristor Networks

Fig 5 shows an example of memristor spikes. There are a recovery time when
the system relaxes to it’s long term value. This takes around [20]s and may
be tunable by varying device parameters. Generally, the larger ∆V the larger
the spike.

Intriguingly, these spikes give rise to complex behaviour. Consider the
circuit in figure [?] A d.c. voltage source is applied from a Keithley 2400
sourcemeter (drawn as a battery, as is standard in such circuits), for a single
memristor this would apply a sharp step function from 0V to the set voltage
at the first step and then hold it there. Figure 5 shows the response of
a memristor to such a voltage. When there are multiple memristors in a
circuit, the spike from the voltage application isn’t there, instead you get
complex behavior like that seen in figure 6, this is response of ammeter
AT. We suspect that this is due to the sudden voltage step occurring at
slightly different times across the 3 memristors. Each current spike causes a
change in resistance across the memristor it reaches, which causes a change
in voltage ∆V which then causes another current spike, this can bounce
around the network indefinitely if provided with an energy source (namely
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Figure 5: Example positive and negative spikes.
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Figure 6: An example of spike patterns through a very simple memristor
network
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Figure 7: A scheme for two note transitions as an example.
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Figure 8: The process of spike creation and continuation.

the applied constant voltage). There are two routes by which the memristors
can interact, the first is the creation and movement of current spikes, ∆qe− ,
as in extra charge, q, is drawn from the source, and this alters the resistance.
The second is a change in resistance, δR which causes a change in voltage
(as 1

1
VA+VB

+ 1
VC

, which itself causes a current spike. Figure [?] summarises this

interrelation.

3.2 Time dependence

The time dependence due to the delay in signal (current) propagation in a
memristor network has been discussed. The other relevent time is the relax-
ation time, τr. When a memristor representing a transition from X → Y ,
where X, Y ∈ {CD[DE[EFG[GA[AB[B}, spikes and alters its resistance,
the reverse transition, that of Y → X is slightly inhibited because both
memristors between nodes X and Y have been altered. The lifetime τr de-
fines how long the memristors take to equilibrate. Before that point, the
spikes are smaller if in the same direction and larger if in the opposite way.

These interactions in timing will also cause the spikes to occur at a non-
regular rhythm, avoiding boring musical tempo. However, the interactions
that give rise to the oscillations lead to concept of a beat.
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4 Modelling a spiking memristor network for

music creation

If we have a seeded memristor network and turn on a constant voltage, we
should create spiking network. If each spike is taken as making a transition
from one note to another, then the network’s activity will generate music.
Also, as the network generates music, it is also learning, so the network will
respond to the music it creates and alter the connectivity of the k-graph and
thus the music created by the network.

4.1 Problems with attempting to model a memristor
network

There are two main problems with modelling such a network. The first is the
problem of modelling transient δV . This is relatively easy to solve. In the real
network we would set the wired network up and record what it produces. In
the simulation, we don’t need a background voltage to power the simulation
and can thus set the current note as the source (and itself and all others as
a possible drain).

The second problem is more intractable. We need to know when and
if a memristor will spike. It is not known if the spikes are probabilistic or
deterministic in nature; this is a current area of investigation. To model to
the system as deterministic, we would need to descretise time very finely
and model the state of everything in the network at once. If the system is
chaotic or near the edge of chaos (a very real possibility) any approxima-
tions or course-graining of the system will result in an extremely inaccurate
simulation. Furthermore, it is not currently known what causes the spikes,
we suspect that those measured in fig 6 are the addition of spikes from the
individual memristors. But we don’t know what causes these individual mem-
ristors to spike or not spike. Also, the network as drawn in part one of this
paper, is not a standard electronic circuit that can be entirely resolved into
series and parallel relationships, making the network as a whole non-simple
and difficult to model.

Finally, for a one octave memristor network we require 144 memristors, to
do an entire piano’s range we would need 7,744 (plus 81 for the tempo). We
can not necessarily make the approximation of considering one memristors
against a ‘mean-field’ background of the other memristors, due to the almost
instantaneous 2 ∆V , thus even with our simplified version we have a 576-body

2As energy can not be created or destroyed, a change in voltage should change the volt-
age drop across the rest of the network instantaneously. Whether this change is actually
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problem to attempt to calculate. We suggest that solving such a problem
with standard von Neumann computer architecture will be computationally
intractable (although it is not theoretically impossible).

Our obvious solution to these issues is to build a non-von Neumann com-
puter architecture, i.e. to actually build a network of 576 memristors. How-
ever, before undertaking such an endeavour, it’s worth doing a preliminary,
highly simplified simulation to check that a seeded memristor network would
be of use to generating music and to see if the non-linearity of the mem-
ristor model by itself does not offer interesting aspects to procedural music
composition.

4.2 Using a simplified memristor network model to
perform non-Markovian music generation on a pre-
seeded network

As described in the previous section, the ‘roving’ ∆V will be modelled as
V against a background of 0V , in that each note will be set to the voltage
source in turn. This is a gross simplification of the laws of physics but will
serve to course grain the effects of a network. The drain will be connected to
the drain of all other nodes (including the drain of that node, which allows
for a self→self transition.

There is a function p(t) which controls whether a memristor will spike or
not. We suspect that the memristor network is deterministic and chaotic in
form, but have no current knowledge of this function. Therefore, we shall
take the simplification of assuming that the pseudo-random chaos can be
coarsely representated as the pseudorandom values from a Gaussian random
number generator. Thus, we will talk about the probabilities of a transition
between X and Y occurring, p(X→Y ) as being a product of the connection
weight and our unknown function p(t), which is itself set as a pseudorandom
number, p(x). Thus,

p(X→Y ) = G(X→Y )p(x) .

And the next note, n+ 1, is determined by the maximum of this product
over the set of all a possibilities, i.e.:

p(n→+n) = Max[{p(X→Y ) : X, Y ∈ {C4 : B[5}{p(x)T}] ,

where T is the set of all 576 possible transitions.
After a given connection has fired, we slightly increase it’s state along the

memristive curve (to reflect the current that flowed through it as part of the

instantaneous or proceeds at the speed of light is a question for relativity physicists
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Figure 9: Generated music based on the ’How high the moon’ connectiv-
ity matrix. Top is without feedback into the connectivity matrix, bottom
included feedback, both have the same pseudorandom number input. The
connectivity matrix is altered and the alteration is slow.

spike) and use this new state for calculating future transitions. To model
the relaxation time, the memristor that has spiked on step n is artificially
moved down the memristor curve to a quarter of it’s value for step n+ 1 and
half for step n + 2, this substantially reduces the likeliness of it firing again
until step n + 3 where it is set to its new (increased) weight. To model the
reverse note connections (and prevent the over-occurance of the odd musical
structure of X → Y → X → Y → X...∞, X, Y ∈ {C4 : B[5}, the reverse
transitions are decremented rather than incremented at step n and similarly
reduced to a quarter and half their new value on steps n+ 1 and n+ 2. The
music is started on note C4 and the first note of the tune taken from the
first transition from that note. 100 notes were generated for each tune.

Figure 9 shows an example of generated music from the connectivity
matrix seeded with ’How high the moon’. Despite the simplicity, it sounds
like music rather than random notes. The top subfigure shows music output
from a static matrix, the bottom shows the effect of allowing the transition
matrix to be seeded by the musics it’s generating, and thus can only be seen
at the end. This is what we want, as we don’t want the music generator to
change too quickly.

Figure 10 shows further examples of the plasticity of the transition matrix.
This figure clearly shows the strong effect of the transition matrix on the
music generated, but we can see that over time and repeated generated notes,
the melody is changing.

4.3 Results from our modelled network

The combined connection matrices for the note connections and note lengths
are shown in figures 11 and 12 respectively. Simple examination of these
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Figure 10: The effect of feedback into the transition matrix. Here the matrix
used was the combination which was seeded by all three jazz standards. In
order, they are melodies generated by the original triple matrix, and those
generated after 1,000,10,000 and 100,000 notes generated respectively.

matrices can tell us a few things about the differences between these musi-
cal styles. Looking at the tempo changes in figure 12 we see that the jazz
standards make the most use of different length notes with the crochet and
quaver being the most popular. Both the rock’n’roll and the light classical
are ‘faster’ as they use quavers overwhelmingly (note that this doens’t apply
to all music in this genre, we chose rather fast classical and Elvis’ more dan-
cable tunes). Oddly, the light classics had less variation than rock’n’roll in
the timing.

As the graphs shown in figure 11 are less easy to understand at a glance.
Elvis’s rock’n’roll tracks tend to focus on either the lower notes or the higher
ones. Both the jazz and the light opera avoids the higher notes. We can
look at the reducibility of the connection matrices, which is a measure of
the minimum number of connections to represent this music (i.e. pruning
the unused connections). For light opera melodies we only need 16, 19 for
the rock’n’roll and 20 for the jazz standards (perhaps reflecting that the jazz
standards were not the product of a single composer or composition team).
The matrices are not symmetrical, but are not far off it and the symmetry can
be measured by taking the difference between the transpose and the original
matrix. All three styles have a similar symmetry, with the light opera being
83% symmetrical, the jazz standards are 83.3% and the rock’n’roll is the
least symmetrical at 85.4%.
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Figure 11: The connection matrices as seeded from three pieces of music
in each genre: A. is Jazz standards, B is the Elvis rock’n’roll and C is the
Gilbert and Sullivan light opera.

Figure 12: The tempo connection matrices for seeded with three melodies
from three separate genres: A is Jazz standards, B is the rock’n’roll and C
is light opera.
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Figure 13: The composed music, output as a result of different seeded con-
nection matrices. A. How high the moon, B. Ain’t that a kick in the head, C.
The world on a string, D. seeded with all three jazz standards, E, All shook
up, F. Burning love, G. Jailhouse rock, H seeded with all three Elvis tunes,
I. Modern Major General, J. When a Felon, K. Better far to live and die, L
connection matrix seeded with all three gilbert and Sullivan melodies

Figure 13 shows the output music from memristor networks as seeded
by single songs (on the top three rows) and connection matrices seeded by
all three input songs. Each of these graphs was generated with the same
pseudo-random generated numbers.

Note, that the system we have set up has been only used to generated
the melody, however the system as set-up can allow multiple simultaneous
connections, i.e. chords. In a real memristor network, we would expect
multiple connections to spike at the same time, creating chords.

The separation of tempo from note, allows us to compose music (using
both) and change the performance of the piece using the tempo matrix.

5 Time variance of this system

As explained, the time dependence and spiking behaviour will feedback into
the structure of the network and thus alter the system over time. This should
make a robust and interesting music generating system, but may produce
static solutions such as a dead network (no spikes), epilectic network (many
spikes in utter synchrony), resting network (spikes in a repetitive, boring,
oscillation). As these solutions have not yet been observed in memristor
lab tests, we are optimistic about avoiding such solutions. Nonetheless, all
three of these stable state solutions can be reset by wiping and reseeding the
network.
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6 Conclusions

We have demonstrated a novel approach to music generation networks that
relies on non von Neumann hardware and is computationally intractable to
solve. We have shown with our simplifications that it is worth pursuing. We
have identified properties of memristors which are useful for such a network
and tested simple 3 memristor proof-of-concept prototypes.

The problem of building a memristor-based music composer is an inter-
esting one as it involves many of the same challenges as building a memristor-
based brain. Perhaps the creation of recognisable music is a good test of the
creation of a working brain. Furthermore, the problem of creating music is
far more tractable than that of creating a brain, as every human can recog-
nise a good end solution (’Does it sound like music or noise?), whereas no
one can really recognise a working intelligence from looking at the spikes in
a neuronal network.

The creation of a 7,744 memristor network is a little beyond the current
state of the art. In our lab, memristors are synthesised by the hundred and
have to be wired together by hand. However, such a network is not that far
off at places like HP where they have successfully synthesied many thousands
of memristors in a neural memristor chip. It is currently outside of the price
range of a music composer, but we anticipate the price to come down in the
future.
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Abstract. This paper provides a proposal for a tone-based programming/scripting 

language called MUSIC (the name is an acronym for Music-Utilizing Script Input 

Code). In a MUSIC program input and output consists entirely of musical tones. 

Computation can be done through musical transformations of notes and melodies. 

MUSIC can be used for teaching the basics of script-based programming, computer-

aided composition, and provided programming access to those with limitations in sight 

or physical accessibility.  As a result of MUSIC’s approach to tone-based programming 

and computation, it also allows for a development environment that utilizes computer 

expressive performance for highlighting structure, and emotional transformation to 

highlight bugs.  
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1   INTRODUCTION 

In this paper a new scripting language is proposed called MUSIC, standing for Music-

Utilising Script Input Code. MUSIC is a language whose elements and keywords consist of 

groups of tones or sounds, separated by silences. The tones can be entered into a computer by 

whistling, humming, or “LA-LA”ing. Non-pitched sounds can be generated by clucking, 

tutting or tapping the table top for example. The keywords in MUSIC are made up of a series 

of non-verbal sounds, sometimes with a particular pitch direction order. MUSIC utilizes a 

simple script programming paradigm. It does not utilize the MAX/MSP-type or visual 

programming approach often used by computer musicians, as its tone-based input is designed 

to help such programmers access and learn script-based approaches to programming.    

The purpose of MUSIC is to fivefold: to provide a new way for teaching script 

programming for children, to provide a familiar paradigm for teaching script programming 

for composition to non-technically literate musicians wishing to learn about computers, to 

provide a tool which can be used by blind adults or children to program, to generate a proof 

of concept for a hands-free programming language utilizing the parallels between musical 

and programming structure, and to demonstrate the application of musical emotion and 

computer expressive performance to software sonification.  

Although the primary purpose of MUSIC is in the areas of education, accessibility 

and computer music, it also utilizes new non-standard computation [1] approaches based on 

musical transformations. Thus as well as being an application of these methods of non-

standard computation, it provides a framework within which to investigate them. The 
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provided in this paper involves a common musical transformation in music composition when 

a single note in a musical motive is replaced by multiple notes. Familiar examples include 

Mozart String Quartet K.465, Allegro, and Beethoven Symphony No. 7, Movement 2. This 

method is utilized as a command in MUSIC. It will be demonstrated how it can be used as a 

multiplicative computation tool.  

The fact that computation with these transformations is possible is what makes 

MUSIC feasible, and this also makes the creation of innovative development and debugging 

environments possible too. It will be seen that these environments allow the structure of a 

MUSIC program to be aurally emphasized using computer expressive musical performance; 

and also provide a way of highlighting bugs through tempo and key-mode transformations.   

 

 

2  RELATED WORK 

There have been musical languages constructed before for use in general (i.e. non-

programming) communication – for example Solresol [2]. There are also a number of 

whistled languages in use including Silbo in the Canary Islands. There are also whistle 

languages in the Pyrenees in France, and in Oacaca in mexico [3, 4].  

A rich history exists of computer languages designed for teaching children the basics of 

programming. LOGO [5] was an early example, which provided a simple way for children to 

visualize their programs through patterns drawn on screen or by a “turtle” robot with a pen 

drawing on paper. Some teachers have found it advantageous to use music functions in 

LOGO rather than graphical functions [6].  

A language for writing music and teaching inspired by LOGO actually exists called 

LogoRhythms  [7]. However the language is input as text. The language was developed so as 

to teach non-programming-literate musicians to write scripts. Although tools such as 
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MAX/MSP already provide non-programmers with the ability to build musical algorithms, 

their graphical approach lacks certain features that a scripting language such as Java or 

Matlab provide.  

As well as providing accessibility across age and skill levels, sound has been used in the 

past to give accessibility to those with visual issues. Emacspeak [8] for example makes use of 

different voices/pitches to indicate different parts of syntax (keywords, comments, identifiers, 

etc). There are more advanced systems which sonify the Development Environment for blind 

users [9] and those which use music to highlight errors in code for blind and sighted users 

[10].  

The use of music in unconventional computation can be found in slime-mould-based [11] 

and in vitro neuron-based [12] synthesizers. In these cases the computations in the substrate 

are used to generate novel compositional tools. The direct use of music as a computational 

tool can be found in [13] and [14] in which tunes are used as inputs to a form of “Logic Gate” 

and “Musical Neuron” to perform emotion-based processing.  

 

3  “MUSIC” INPUT 

A MUSIC input string can be an audio file or a MIDI file, consisting of a series of sounds. If 

it is an audio file then simple event and pitch detection algorithms [15] are used to detect the 

commands. The command sounds are made up of two types of sound: dots and dashes. A dot 

is any sound less than 300mS in length, a dash is anything longer. Alternatively a dot is 

anything less than 1/9 of the longest item in the input stream.  

A set of input sounds is defined as a “grouping” if the gaps between the sounds are 

less than 2 seconds and it is surrounded by silences of 2 seconds or more. Note that these 

time lengths can be changed by changing the Input Tempo of MUSIC. A higher input tempo 
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setting will reduce the lengths described above. Figure 1 shows two note groupings. The first 

is made up of a dash and 4 dots, the second grouping is made up of 4 dashes. 

 

Figure 1: Examples of input types 

 

 

 

 

4  COMMANDS 

Table 1 shows some basic commands in MUSIC. Each command is a note grouping made up 

of dots and/or dashes, hence it is surrounded by a rest. The second column gives what is 

called the Symbol notation. In Symbol notation a dot is written as a period “.” and a dash as a 

hyphen “-“. Note grouping gaps are marked by a forward slash “/”. The symbol notation is 

used here to give more insight to those who are unfamiliar with musical notation. 

Although MUSIC’s commands can be entered ignoring pitch there are pitched 

versions of the commands which can be useful either to reduce the ambiguity of the sonic 

detection algorithms in MUSIC or to increase structural transparency for the user. The basic 

protocol is that a “start something” command contains upward movement or more high 

pitches, and a “stop something” command contains lower pitches and more downward pitch 

movement. This can create a cadence-like or “completion” effect (an example of this is 

shown later). 

For example Print could be 4th interval above the End Print pitch. A Repeat command 

could be two pitches going up by a tone, and End Repeat the same two notes but in reverse 

pitch order. The rhythm definitions all stay the same and rhythm features are given priority in 

the sound recognition algorithms on the input in any case. However using the pitched version 
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of MUSIC is a little like indenting structures in C++ or using comments, it is good practice as 

it clarifies structure. In fact it is possible to change the MUSIC input interface to force a user 

to enter the pitched version should they wish. In addition it turns a music program into an 

actual tune, rather than a series of tunes bounded by Morse Code type sounds. This tune-like 

nature of the program can help the user in debugging (as will be explained later) and to 

perhaps understand the language from a more musical point of view. 

 

Table 1: Core MUSIC Commands 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Grouping Symbols Name 

 

/-/ Print 

 
/./ End Print 

 

/--/ Repeat 

 

/../ End Repeat 

 

/…-/ Define Object 

 

/…./ End Object 

 

/.-/ Use Object 

 

/..-/ Operator 

 

/…/ End Operator 

 

/..--/ Linear Operator 

 
/-./ Input 

 

/--./ If Silent 
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 There is also an input mode called Reverse Rhythm, in which the start and stop 

command rhythms are reversed. In the default input mode shown in Table 1, a command 

starts with a longer note (a dash), and ends with a shorter note (a dot). However it is quite 

common in musical cadences to end on a longer note. So it a user prefers they can reverse the 

rhythms in the stop and start commands in Table 1 by switching to Reverse Rhythm mode. 

 

5  EXAMPLES 

The Print command in Table 1 will simply treat the sounds between itself and the Stop Print 

command as actual musical notes, and simply output them. It is the closest MUSIC has to the 

PRINT command of BASIC. For example suppose a user approximately whistles, hums and 

/or clicks the tune shown in Figure 2 (Symbols “/-/BCCD/./”).  Then MUSIC will play back 

the 4 notes in the middle of the figure (B,C,C,D) at the rhythm they were whistled or 

hummed in. 

The Repeat command in Table 1 needs to be followed in a program by a note 

grouping which contains the number of notes (dots or dashes) equal to the number of repeats 

required.  Then any operation between those notes and the End Repeat note grouping will be 

repeated that number of times. There are standard repeat signs in standard musical notation, 

but these are not very flexible and usually allow for only one. As an example of the Repeat 

command Figure 3 starts with a group of 2 dashes, indicating a Repeat command (Symbols: 

“/--/…/-/BCCD/./../”). Then a group of 3 dots – indicating repeat 3 times. The command that 

is repeated 3 times is a Print command which plays the 4 notes at the start of the second line 

in Figure 3 (B,C,C,D). So the output will be that shown in Figure 4,that motif played three 

times (BCCDBCCDBCCD). 
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Figure 2: A Print Example 

 

 

Figure 3: A Repeat Example 

 

 

Figure 4: MUSIC Output from Fig. 3 Repeat 

 

 

 

5  OBJECTS 

The previous example, in Figures 3 and 4, shows a resulting output tune that is shorter than 

the tune which creates it – a rather inefficient form of programming! Functionality is 

increased by allowing the definition of Objects. Examples will now be given of an Outputting 

object and an Operating object. An outputting object will simply play the piece of music 

stored in it. An example of defining an outputting object is shown in Figure 5. The Define 

and End Object commands can be seen at the start and end of Fig 5.’s note stream, take from 

Rows 5 and 6 of Table 1.  

The motif in the middle of the top line of Fig. 5 (B,D,B) is the user defined “tone 

name” of the object, which can be used to reference it later. The contents of the object is the 7 
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note motif at the start of the second line in Figure 5 (B,C,C,D,C,D,B). It can be seen that this 

motif is surrounded by Print and End Print commands. This is what defines the object as an 

Outputting object. Figure 6 shows a piece of MUSIC code which references the object 

defined in Figure 5. The output of the code in Fig. 6 will simply be to play the tune 

BCCDCDB twice, through the Use Object command from Table 1. 

 

Figure 5: An Outputting Object 

 

 

Figure 6: Calling the object from Figure 5 twice 

 

 

The next type of object - an operating object – has its contents bordered by the Operator and 

End Operator commands from Rows 8 and 9 in Table 1. Once an operator object has been 

defined, it can be called, taking a new tune as an input, and it operates on that tune in the 

common compositional method described earlier in this paper: it can replace each single note 

by a group of notes. An example is shown in Figure 7. 

Figure 7 is the same as Figure 6 except for the use of the Operator and End Operator 

commands from Table 1, replacing the Print and End Print commands in Fig. 6. The use of 

the Operator command turns the BCCDCDB motif into an operation rather than a tune. Each 

pitch of this tune is replaced by the intervals input to the operation. To see this in action 

consider Figure 8. The top line starts with the Use Object command from Table 1, followed 
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by the name of the object defined in Figure 7. The final part of the top line of Fig. 8 is an 

input to the operation. It is simply the two notes C and B. 

 

Figure 7: Defining an Operator object 

 

  

Figure 8: Calling an Operator object, and the resulting output 

 

 

 

The resulting much longer output shown in the bottom line of Fig. 8 comes from MUSIC 

replacing every note in its operator definition with the notes C and B. So its operator was 

defined in Figure 7 with the note set BCCDCDB. Replacing each of these notes with the 

input interval CB we get BACBCBDCCBDCBA which is the figure in the bottom line of 

Figure 8. Note that MUSIC pitch quantizes all data to C Major by default (though this can be 

adjusted by the user).  

 

5  OTHER COMMANDS AND COMPUTATION 

It is beyond the scope of this proposal paper to list and give examples for all commands. 

However a brief description will be given of the three remaining commands from Table 1. 
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The Linear Operation command in Table 1 actually allows a user to define an additive 

operation on a set of notes. It is a method of adding and subtracting notes from an input 

parameter to the defined operation. When an Input command (in the last-but-one row of 

Table 1) is executed by MUSIC the program waits for the user to whistle or input a note 

grouping and then assigns it to an object. Thus a user can enter new tunes and 

transformations during program execution. Finally the If Silent command in the last row of 

Table 1 takes as input an object. If and only if the object has no notes (known in MUSIC as 

the Silent Tune) then the next note grouping is executed.  

Although MUSIC could be viewed as being a simple to learn script-based 

“composing” language, it is also capable of computation, even with only the basic commands 

introduced. For example Printing two tunes T1 and T2 in series will results in an output tune 

whose number of notes is equal to the number of notes in T1 plus the number of notes in T2. 

Also, consider an operator object of the type exemplified in Figures 6-8 whose internal 

operating tune is T2. Then calling that operator with tune T1 will output a tune of length T1 

multiplied by T2. Given the Linear Operator command which allows the removing of notes 

from an input tune, and the If Silent command, there is the possibility of subtraction and 

division operations being feasible as well.   

As an example of computation consider the calculation of x3 - the cube of a number. 

This is achievable by defining operators as shown in Figure 9. When executed by the user,  

they can whistle a note grouping of x notes, and have x3 notes played back. To understand 

how this MUSIC code works it is shown in pseudocode below. Each line of pseudocode is 

also indicated in Figure 9. 

 

1 Input X       
2 Define Object Y      
3 Operator       
4  Use Object X     
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5 End Operator      
6 End Object       
7 Print        
8  Use Object(Y, Use Object(Y,X)))   

 9 End Print       

 

Figure 9: MUSIC Code to Cube the Number of Notes Whistled/Hummed 

 

 

Note that MUSIC always auto-brackets from right to left. Hence line 8 of the pseudocode 

is indeed instantiated in the code shown in Figure 9. Figure 9 also utilizes the pitch-based 

version of the notation discussed earlier.  

 

6  MUSICO-EMOTIONAL DEBUGGING 

Once entered, a program listing of MUSIC code can be done in a number of ways. The 

musical notation can be displayed, either in common music notation, or in a piano roll 

notation (which is often simpler for non-musicians to understand). A second option is a 

symbolic notation such as the Symbols of ‘/’, ‘.’ and ‘-‘ in column 2 of Table 1. Or some 

combination of the words in column 3 and the symbols in column 2 can be used. However a 
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more novel approach can be used which utilizes the unique nature of the MUSIC language. 

This involves the program being played back to the user as music.  

 One element of this playback is a feature of MUSIC which has already been 

discussed: the pitched version of the commands. If the user did not enter the commands with 

pitched format, they can still be auto-inserted by the development environment and played 

back in the listing in pitched format - potentially helping the user understand the structure 

more intuitively.  

In fact a MUSIC development environment is able to take this one step further, 

utilizing affective and performative transformations of the music. It has been shown that 

when a musician performs they will change their tempo and loudness based on the phrase 

structure of the music composition they’re performing. These changes are in addition to any 

notation marked in the score by the composer. The changes emphasise the structure of the 

piece [16]. There are computer systems that can simulate this “expressive performance” 

behaviour [17], and MUSIC utilizes one of these in its debugger. As a result when MUSIC 

plays back a program which was input by the user, the program code speeds up and slows 

down in ways not input by the user but which emphasise the hierarchical structure of the 

code. Like the pitch-based notation this can be compared to the indenting of text computer 

code.  

Figure 9 can be used as an illustration. Obviously there is a rest between each note 

grouping. However at each of the numbered points (where the numbers represent the lines of 

the pseudocode discussed earlier) that rest would be played back as a longer rest by the 

MUSIC development environment, because of the computer expressive music performance. 

This has the perceptual effect of dividing the program aurally into “groupings of note 

groupings” as well as note groupings, to the ear of the listener. So what the user will hear is 

that when the note groupings are related to the same command instantiation, they will be 
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compressed closer together in time – and appear psychologically as a single meta-grouping. 

Whereas the notes groupings between separate command sections of code (the numbered 

parts of Figure 9) will tend to be separated by a slightly longer pause. This is exactly the way 

that musical performers emphasise the structure of a normal piece of music into groupings 

and meta-groupings and so forth; though the musician might refer to them as motives and 

themes and sections.  

Additionally to the use of computer expressive performance: when playing back the 

program code to the user, the MUSIC development environment can transform it emotionally 

to highlight errors in the code. For good syntax the code will be played in a “happy” way – 

higher tempo and major key. For code with syntax errors, it will be played in a “sad” way – 

more slowly and in a minor key. Such musical features are known to express happiness and 

sadness to listeners [18]. The Sadness not only highlights the errors, but also slows down the 

playback of the code, which will make it easier for the user to understand. Taking the code in 

Figure 9 as an illustration again, imagine that the user had entered the program with one 

syntax error, as shown in Figure 10. Four notes in the boxed area have been flattened in pitch 

(the “b” sign) in Figure 10, the reason for which will be explained below. 

The note grouping at the start of the highlighted area should have been a ‘Use Object’ 

command from Table 1. However by accident the user sang / whistled / hummed the second 

note too quickly and it turned into an ‘End Repeat’ command instead. This makes no sense in 

the syntax, and confuses the meaning of all the note groupings until the end of the boxed 

area. As a result when music plays back the code it will play back the whole boxed area at 

two-thirds of the normal tempo. The four notes in the boxed area which have been flattened 

in pitch (the “b” sign) are marked to indicate how the development environment plays back 

the section of code effected by the error. These flats will turn the boxed area from a tune in 

the key of C major to a tune in the key of C minor. So the error-free area is played back at 
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full tempo in a major key (a “happy” tune) and the error-affected area is played back at two-

thirds tempo in a minor key (a “sad” tune). Not only does this highlight the affected area, it 

also provides a familiar indicator for children and those new to programming: “sad” means 

error.  

 

Figure 10: MUSIC Code from Figure 9 with a Syntax Error 

 

 

 

7  CONCLUSIONS 

A new scripting language called MUSIC has been proposed whose elements and keywords 

consist of groups of tones or sounds, separated by silences. Computation can be done through 

musical transformations of notes and melodies. The purpose of MUSIC is fivefold: to provide 

a new way for teaching script programming for children, to provide a familiar paradigm for 

teaching script programming for composition to non-technically literate musicians wishing to 

learn about computers, to provide a tool which can be used by blind adults or children to 

program, to generate a proof of concept for a hands-free programming language utilizing the 
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parallels between musical and programming structure, and to demonstrate the application of 

musical emotion and computer expressive performance to software sonification.  

It has been demonstrated how MUSIC utilizes new non-standard computation 

approaches based on musical transformations; and suggested that MUSIC could provide a 

framework within which to investigate more such transformations. The fact that computation 

with these transformations is possible is at the heart of what makes MUSIC feasible, and thus 

what makes the investigation of innovative development and debugging environments for 

tone-based programming possible. These aural environments highlight the program structure 

of MUSIC using simulations of human expressive performance, and highlight syntax errors 

by performance emotional-musical transforms on the code in the areas where the errors 

occur. 

One element of future work in investigating MUSIC is: how well will people who 

learned script-programming approaches using MUSIC be able to utilize their learned skills in 

programming languages such as Visual Basic or C, that use standard computation 

approaches, as opposed to musical transform-based computation? Another key element is 

investigating the flexibility of the Operator and Linear Operator commands in Table 1 to 

perform calculations. They can be viewed as roughly analogous to multiplicative and additive 

calculations. Are there more flexible or powerful musical transformations that can be 

borrowed from composers and musicologists which can fulfill these functions more 

efficiently? Or which can extend the practical or theoretical computational power of MUSIC? 

Investigating these questions will also provide further answers about the utility of musical 

transforms as a non-standard form of computation. 
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Self-Assembly of Musical Representations in
MGS
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In this paper, we apply morphogenetic processes, namely self-
assembly processes, to compute automatically various abstract
spaces that can be used to represent and analyze several well-
known musical objects (sequence of chords, interval series, etc.).
These constructions have been implemented in MGS, an uncon-
ventional programming language belonging to the family of spa-
tial computing languages.

Key words: self-assembly, abstract cellular complexes, MGS, rewriting,
pattern matching, Hamiltonian and Eulerian path, pitch space, chord
space, tonnetz, all interval series.

1 INTRODUCTION

The algebraic nature of many musical formalizations has been very early as-
sessed: from the equal temperament to canon, algebraic objects have been
used to study combinatorial properties and classify musical structures. Re-
cently, a fresh look on these structures has emerged focusing on topological
or geometrical representations. For example, one can characterize harmonic
paths in orbifolds [25, 5] or build topological spaces embedding musical re-
lationships in their neighborhood relationships [14].

Following this line of research, we are interested to harness natural mor-
phogenetic processes for building spatial representations of musical objects.

? email: louis.bigo@ircam.fr
† email: antoine.spicher@u-pec.fr
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To this aim, our work rely on the use of MGS, a domain specific program-
ming language dedicated to the modeling and the simulation of dynamical
systems with a dynamical structure [12]. Numerous applications in system
and synthetic biology have been developed in MGS and proved that it is a
fruitful unconventional tool for (re-)designing algorithms tackling problems
embedded in space or having a spatial extension.

In this paper we propose the use of a self-assembly process for study-
ing two paradigmatic problems in theoretical music. This paper is organized
as follows. Section 2 provides a brief introduction to the MGS spatial pro-
gramming language. Section 2.3 exemplifies the use of the MGS concepts
by specifying a self-assembly of polymers. This self-assembly process is
then hijacked for musical purpose. In Section 3 a combinatorial space is
built up enabling the enumeration and the topological classification of All-
Interval Series (AIS). Section 4 describes a spatial representation of collec-
tions of chords. The paper ends with a conclusion and a discussion about
future works.

2 THE MGS PROGRAMMING LANGUAGE

MGS is a spatial computing programming language developed to enlighten
the importance of space in computations [7, 21, 2]. MGS concepts are based
on well established notions in algebraic topology [17] and relies on the use
of rule based functions, called transformations, to compute declaratively with
spatial data structures, called topological collections.

2.1 Topological Collections
In MGS, all data structures are unified under the notion of topological collec-
tion: an abstract combinatorial complex (ACC) labeled with arbitrary values.
The ACC acts as a container and the labels as the elements of the data struc-
ture.

More precisely, an ACC K = (C,≺, [·]) is a set C of abstract elements,
called cells [24], provided with a partial order≺ called the boundary relation,
and with a dimension function [·] : C → N such that for each c and c′ in C,
c ≺ c′ ⇒ [c] < [c′]. We write c ∈ K when a cell c is a cell of C.

A cell of dimension p is called a p-cell: 0-cells are points, 1-cells are edges,
2-cells are polygons (e.g., facets in a mesh), etc. For example, a graph is an
ACC composed of 0- and 1-cells. Another example is pictured in Figure 1.

The (p − 1)-cells c′ lower than a p-cell c for the boundary relation ≺ are
called the faces of c and we write c′ < c or c > c′; c is called a coface of cells

2
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Figure 1
On the left, the Hasse diagram of boundary relationship of the ACC given in the mid-
dle: it is composed of three 0-cells (c1, c2, c3), of three 1-cells (e1, e2, e3) and of a
single 2-cells (f ). The three edges are the faces of f , and therefore f is a common
coface of e1, e2 and e3. On the right, a topological collection associates data with the
cells: positions with vertexes, lengths with edges and area with f .

c′. We call closure of c in K the sub-complexes c̄ = (C′,≺ ∩ C′ × C′, [·])
where C′ = {c′ ∈ C | c′ � c}.

Two n-cells are (n, p)-neighbor if they have a common border of dimen-
sion p when p ≤ n or if they are in the boundary of a p-cell of higher di-
mension. A (n, p)-path is a sequence of cells such that two consecutive cells
are (n, p)-neighbor. For example, the notion of (0, 1)-path coincides with the
usual notion of path in a graph (a sequence of nodes following a route along
some edges of the graph.) We call a (n, p)-Hamiltonian path a (n, p)-path
visiting each n-cell of an ACC exactly once. Similarly a (n, p)-Eulerian path
is a (n, p)-path visiting each p-cell of an ACC exactly once.

Finally, a topological collectionC is a function that associates a value with
a cell in an ACC, see Figure 1. Thus the notation C(c) refers to the value of
C on cell c. We write |C| for the set of cells for which C is defined. The
collection C can be written as a formal sum

∑
c∈|C| vc · c where vc

df
= C(c).

With this notation, the underlying ACC is left implicit but can usually be
recovered from the context. By convention, when we write a collection C as
a sum C = v1 · c1 + · · ·+ vp · cp, we insist that all ci are distinct. Notice that
this addition is associative and commutative. This notation is directly used in
MGS to build new topological collections on arbitrary ACC of any dimension.

2.2 Transformations
Topological collections are transformed using sets of rules called transforma-
tions [22]. A rule is a pair pattern => expression. When a rule is applied
on a topological collection, a sub-collection matching with the pattern is
replaced by the topological collection computed from expression. There ex-
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ist several ways to control the application of a set of rules on a collection
called rule application strategies. The present work uses solely the maximal-
parallel strategy: rules are applied as many times as possible without inter-
section between matched sub-collections.

A formal specification of topological rewriting is given in [22]. We only
sketch here the part of the patterns language necessary for the comprehension.
A pattern variable specifies a cell to be matched in the topological collection
together with some optional guard: the expression x / x = 3 matches a cell
labeled with the value 3. The guard is the predicate after the symbol /. The
variable x can be used in the guard (and elsewhere in the rule) to denote the
value of the matched cell or the cell itself, following the context (in case of
ambiguity, the variable always denotes the associated value). A pattern is a
composition of pattern variables. The composition denoted by a simple jux-
taposition (e.g., “x y”) does not constraint the arguments of the composition.
Variables can be composed using the (co)face operator: a pattern “x < y”
(resp. “x > y”) matches two cells cx and cy such that cx < cy (resp. cx > cy).
Patterns are linear: two distinct pattern variables refer to two distinct cells.

2.3 Illustration: Self-Assembly of Cellular Complexes
MGS is a vehicle used to investigate the notions of topological collections and
transformations and to study their adequacy to the simulation of various phys-
ical, chemical and biological processes [9, 10, 11, 15]. As an example, (local)
rewriting rules are particularly adequate to specify self-assembling processes
since they mimic closely the incremental and distributed building mechanism
of the real phenomenon.

Let illustrate this idea by considering a generic self-assembling process on
cellular complexes allowing the building of elaborated spatial structures from
a population of basic elements. This process consists in identifying topolog-
ically equivalent elements (i.e., cells with the same boundary) in some ACC.
This operation is not elementary because the identification must occur at ev-
ery dimension. A simple way to achieve such computation is to iteratively
apply the merge of topological cells that exactly share the same faces until
a fixed point is reached. The corresponding topological surgery can be ex-
pressed in the MGS syntax as follows:
trans Self-Assembly[Pred, Label] = {

x y / (Pred x y) and (faces x = faces y)
=> let c = new_cell (dim x) (faces x)

(union (cofaces x) (cofaces y))
in (Label x y) * c

}
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x y
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x y
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y
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Figure 2
Self-assembly of cellular complexes using transformation Self-Assembly: at first it-
eration, two matching pair of nodes are merged; then the resulting edges are identified;
finally the fixed point is reached.

where the primitive new_cell p f cf returns a fresh p-cell with faces f and
cofaces cf . The rule specifies that two elements x and y whose labels check
some arbitrary predicate Pred (given as a parameter) and having the same
faces in their boundaries, merge into a new cell c (that has the union of the
cofaces of x and y as cofaces) labeled by a value computed from some arbi-
trary function Label (given as a parameter). Figure 2 illustrates the process.

Figure 3 illustrates the use of transformation Self-Assembly to model a
polymerization process. Polymers are long-chained molecules with repeating
units called monomers. Monomers react with each other to form polymers
in a process called polymerization. Addition polymerization is a particular
class of polymerization where monomers combine with polymers in an ac-
cretive growth process. Here we consider monomers with two binding sites.
A monomer is represented by a rectangular shaped ACC, that is a 2-cell with
four edges and four vertices in its boundary. The binding sites correspond to
two opposite edges labeled as active. Considering that two active cells can be
merged (predicate Pred) and that they become inactive after merging (func-
tion Label), transformation Self-Assembly builds up polymers as shown in
Figure 3. This toy model does not refer to any natural phenomenon but it
could be easily extended to manage with real biological data (e.g., modeling
the 3-dimensional structure of some DNA strand.)

3 SPATIAL INTERPRETATION OF ALL-INTERVAL SERIES

In this section we are interested in the very basics musical notions of pitch
and interval. Some 2D ACC is then elaborated by the self-assembly of spatial
representation of the twelve interval classes. The combinatorial structure of
this space is finally used to enumerate and classify All-Interval Series (AIS).

5
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Figure 3
Self-assembly of polymers: on the left, the initial population of monomers; on the
right, the final polymer seen from two different points of view.

3.1 Backgrounds in Music Theory
In the present work, we are interested in symbolic representation of music.
In standard Western music, the usual notation is based on the concept of staff
where notes are represented in two dimensions? : vertical height is associated
with the pitch of the notes (i.e., how high is the associated sound) and hori-
zontal ordering corresponds to time flow (i.e., when notes have to be played.)

In musical analyses, pitches are often considered up to an octave letting
us work with only twelve classes called pitch classes. For example, the pitch
class C = {C0, C1, C2, . . . } gathers all the possible Cs. From now on, the
term “note” will refer to pitch classes. It is then usual to identify pitch classes
to elements of Z12 (C = 0, C] = 1, etc.) such that the difference modulo
12 between two pitch classes exactly corresponds to the number of semitones
between the corresponding two notes. All the possible differences constitute
the intervals. For example between G = 7 and D = 2, the interval is a
perfect fifth corresponding to 2 − 7 = −5 ≡ (7 mod 12) semitones. In
the following, intervals are refered using the usual notation: P1 = 0 (perfect
union), m2 = 1 (minor second or semitone), M2 = 2 (major second), m3 =

3 (minor third), M3 = 4 (major third), P4 = 5 (perfect forth), TT = 6

(tritone), P5 = 7 (perfect fifth), m6 = 8 (minor sixth), M6 = 9 (major
sixth), m7 = 10 (minor seventh), M7 = 11 (major seventh).

The identification with intergers of Z12 provides the set of intervals with an
additive group structure, and the natural action of (Z12,+) on itself coincides
with the transposition operation in music. As an example, the action of the
perfect forth transpose A into A + P4 = 9 + 5 ≡ (2 mod 12) = D. The
action of each interval on the notes is composed of a variable number of
orbits. For an interval i it is well known that the number of orbits is di =

? We drop here the consideration of duration.
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Figure 4
Spatial representation of AIS. On the left, complete graph topology with A. Berg’s
AIS in bold. On the top right, spatial representation of the perfect fourth and minor
third interval classes (2-cells are filled in light gray). On the bottom right, spatial
representation using interval classes of the five first elements of A. Berg’s AIS.

gcd(i, 12). For instance, there are dm3 = gcd(3, 12) = 3 orbits for the minor
third:

(C −D]− F]−A) (C]− E −G−A]) (D − F −G]−B)

These cycles can be uniquely identified by an integer between 0 and di − 1

corresponding to the least note of the cycle (e.g., C, C] and D for the three
cycles above).

3.2 Spatial Representation of Interval Classes
In this section, we propose to give a combinatorial construction of the previ-
ous formal elements. A usual representation consists of the all-interval circle
which is a complete graph with twelve nodes, one for each pitch class. Each
edge represents the possible transposition from a note to another under the
action of an interval. This structure is represented on left of Figure 4. The all-
interval circle has two main drawbacks: (1) it does not distinguish intervals
and their inverses (e.g., the edge betweenC and F represents at the same time
a perfect fourth a perfect fifth); (2) each interval is represented many times
(one for each note).

We propose to elaborate a more complex structure which exhibits these
properties by assembling a population of pieces of space called interval classes.
The interval class Ii is a topological collection representing interval i. The
underlying ACC is composed of a unique 2-cell labeled by i. The faces of
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this cell include twelve 1-cells also labeled by i. Finally twelve 0-cells la-
beled by the pitch classes constitute the faces of the 1-cells in such a way
that two vertices are connected by an edge if their labels are related by the
action of i. Top right of Figure 4 illustrates the interval classes associated to
perfect fourth and minor third. Note that the boundary of an interval class
exibits topologically the orbits of the interval: the number of orbits equals the
number of holes + 1.

The eleven interval classes – perfect unison is not considered – are then
glued together by transformation Self-Assembly which will identify the note
(only 0-cells are concerned) with

Pred x y = (x = y)
Label x y = x

The resulting space is not easily visualizable. Nevertheless, its 1-skeleton
(that is the the sub-ACC composed of the n-cells with n ≤ 1) coincides with
the all-interval circle.

3.3 Application to All-Interval Series
The interval class space has interesting properties which allow the study of
musical objects from the point of view of combinatorial topology. It is illus-
trated in next paragraphs with a study of All-Interval Series (AIS).

All-Interval Series. An AIS is a twelve-tone series including the eleven
different intervals. Such series exhibit many notable properties [16]. One of
them is that the first and the last notes are always separated by a tritone inter-
val. One of the most famous use of this particular kind of series is probably
on the Lyric Suite of Alban Berg:

& n n# n n# n n n# n n# n n# n

& n n n n n n n# n# n# n# n# n

!"#$%&''''''(''''''')''''''*'''''''+'''''',''''''-''''''.'''''''/'''''0'''''''1''''')(''''))'
23#$4567%&'''''')'''''')''''''')'''''')'''''')'''''')''''''')'''''')'''''')'''''')''''''')'

!"#$%&''''''-''''''',''''''(''''''1''''''/'''''''*''''''0'''''')''''''+'''''''.''''')(''''))'
23#$4567%&'''''))'''''0''''''1''''')('''''/'''''''.''''''-''''''*''''''+'''''',''''''')'

Chromatic scale 
All-interval series of the Lyric Suite of Alban Berg 

Other composers like Luigi Nono (e.g., Il canto sospeso) or Karlheinz Stock-
hausen (e.g., Grüppen, Klavierstück IX) used this material in their composi-
tions.

Beyond the simple enumeration of the 46 272 AIS, composers and music
analysts have been interested in finding relevant criterions to classify them.
André Riotte proposed a classification considering the harmonic content of
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the AIS. It consists for example in grouping together AIS containing a sub-
sequence corresponding to the notes of particular scales or chords [19]. El-
liot Carter investigated a classification enumerating all AIS containing in se-
quence the complete set of notes included in the All-Triad Hexachord (this
6-chord is the only one containing the twelve possible triads) [20]. We can
also mention an original classification from Franck Jedrzejewski based on
knot theory [13].

The enumeration and the classification of AIS is a widely known problem
in the computing music community. Several computing approaches, more
and more optimized, have been used to enumerate all the AIS. One of the first
enumeration was done by André Riotte [19] with the help of a FORTRAN
program. This enumeration problem has quickly become a classical problem
in Constraint Programming [23] and is now part of the 50 problems of the
CSPLib [8]. Some previous works have been based on the enumeration of the
All-Interval Chords, which is a similar problem [18].

Spatial Structure of AIS. A naive procedure to collect all the AIS consists
in enumerating all the possible permutations of the twelve notes and keep-
ing those exibiting the eleven different intervals. A spatial interpretation of
permutation is to look for an Hamiltonian path in the all-interval circle as
illustrated in Figure 4 with A. Berg’s AIS.

With such a search the 46 272 AIS are lost in the set of 12! candidates.
(0, 1)-Hamiltonicity is not a sufficient condition for specifying AIS. An in-
teresting feature of AIS is they are at the same time a permutation of notes
and a permutation of intervals. Translated in structural terms, an AIS is a path
of the interval class space which is at the same time (0, 1)-Hamiltonian and
(0, 2)-Eulerian. It is characterized in a MGS pattern as follows:
n0 < i1 < I1 > i1 > n1

< i2 < I2 > i2 > n2
...
< i11 < I11 > i11 > n11

Two consecutive notes np′ and npwith p′ = (p−1) have to be (0, 1)-neighbors
by some interval ip and (0, 2)-neighbors by some interval class Ip such that
the interval ip belongs to (i.e., is in the boundary of) interval class Ip. Lin-
earity of patterns ensures Hamiltonicity. Figure. 4 on bottom right illustrates
the instantiation of this pattern.

Topological Classification of AIS. Each AIS visits only one 1-cell in the
boundary of each 2-cell and this 1-cell belongs to one of the different orbits

9
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associated with the interval class. Let then consider the cyclic vector V =

(vm2, . . . , vi, . . . , vM7) of an AIS which associates the visited cycle vi with
each interval i. For example, the cyclic vector VB of the A. Berg’s AIS is

interval class i m2 M2 m3 M3 P5 TT P5 m6 M6 m7 M7

di 1 2 3 4 1 6 1 4 3 2 1

VB C D] C D C D C C C C] C

AIS can then be classified by gathering in the same class all the AIS sharing
the same cyclic vector. This classification has proved to be of great musical
interest [4]. For instance, it allows to find AIS including some specific sub-
sequence of notes [19, 20]. As an example, the interval content of the har-
monicC minor scaleC DE[ F GA[B invites us to search for some interest-
ing AIS related to that scale with cyclic vector (C,C],D,E,C, F,C,C,C],

C,C). For example, this class contains the AIS

E D[ G[ F B D C A[ E[ G A B[

which exhibits consecutively the seven notes of the scale.
Finally, the proposed classification also allows an easy study of AIS up to

the standard algebraic operations [16]: transposition, homothety, retrograde
and circular shift. The geometry of the

∏
i di = 3 456 possible classes can be

folded into a smaller space of only 72 well identified classes.

4 SPATIAL REPRESENTATION OF CHORD COLLECTIONS

Chords play an important role in music theory. In this section, we propose to
use the self-assembly process of Section 2.3 to build a combinatorial space
representing some collections of chords. We first describe this construction,
then we show how various spaces investigated in music theory are recovered.

4.1 Self-Assembly of Chords
A chord is a collection of pitches played simultaneously. Depending on the
context the collection may have different structures: a set of pitches (e.g., an
event of a staff), a sequence of pitches (e.g., in a choral), an ordered set of
pitch classes (e.g., chord progressions in Jazz), etc. In the following we will
consider chords as set of pitch classes and we call p-chord a chord composed
of p notes (p > 0).

10
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Figure 5
A chord represented as a simplex. The complex on the right corresponds to first degree
IC of the C major tonality and all 2-chords and notes included in it.

Chords as Simplicial Complexes. Since a p-chord includes 2p − 2 sub-
chords, a p-chord can be represented by a topological collection relying on
a (p − 1)-simplex. A n-simplex is an ACC of dimension n composed of a
unique n-cell c which has exactly n + 1 faces such that for each face c′ the
closure of c′ is a (n − 1)-simplex. The 0-cells are labeled by a single note
and other p-cells by the corresponding (p + 1)-chords. Simplices are often
represented geometrically as the convex hull of their vertices as shown in
Figure 5 for p-simplices with p ∈ {0, 1, 2, 3}.

Self-Assembly of Chords. Transformation Self-Assembly may act on a
given set of chords by identifying n-cells with common labels:

Pred x y = (x = y)
Label x y = x

Although these parameters are similar to the previous example, the identifica-
tion occurs here at any dimension and will result in a simplicial complex (i.e.,
an ACC made of simplices only).

The following sections give three applications of self-assembly of chords.

4.2 Analysis of a Musical Piece
The self-assembly process is generic enough to represent any set of chords.
We propose here to elaborate some space for the study of a piece from its
harmonic progression.

Figure 6 shows the simplicial complex resulting from the assembly of
chords from the eight first measures of Chopin’s Prelude 4 Op.28. The com-
plex exhibits neighborhoods between chords but does not give any informa-
tion about how these chords are ordered in the prelude. A remarkable fact of
this ordering is that only one note differs between two consecutive chords.
This property holds on the fourteen chords starting from the second one.
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Figure 6
Chords of height first measures of Chopin’s Prelude 4 Op.28. On the left its simplicial
representation. On the right, a path represents the order of chords in a region of the
complex.

Being composed of three-note chords, such a progression corresponds to a
(2, 1)-Hamiltonian path in the associated simplicial complex: 1-cells neigh-
borhood between two 2-cells represents the two common notes between the
chords. This path is partially presented by black arrows for the five first
chords, starting from the second one, in Figure 6. The enumeration of all
the possible (2, 1)-Hamiltonian paths in the complex, shows that there exist
exactly 120 possible ordering of the chords. But among all these possibili-
ties, the original order used in the Prelude is the one with the smallest dis-
tance between chords. Indeed, the interval characterizing the moving note
in two consecutive chords is a semitone for all transitions. This example il-
lustrates the topological translation of a well-known compositional strategy
called parsimonious voice leading. Chord sequences corresponding to other
(2, 1)-Hamiltonian in the complex have been generated with MGS and are
available in MIDI format at
http://www.lacl.fr/~lbigo/aisb13#analysis.

4.3 Tonality Representation
In tonal music, a piece is frequently characterized by the use of successive
tonalities. A tonality is defined by a set of notes, each having a particular role.
Triadic chords (stacked thirds 3-chords) composed by notes of the tonality are
called the degrees of the tonality. As an example, the seven degrees of the C

12
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Figure 7
Simplicial representation of C major tonality resulting in a Möbius strip.

major tonality are:

IC = {C,E,G} IIC = {D,F,A} IIIC = {E,G,B} IVC = {F,A,C}

VC = {G,B,D} V IC = {A,C,E} V IIC = {B,D, F}

The self-assembly provides a combinatorial space associated with the tonal-
ity. Guérino Mazzola presents in [14] this topological representation of the
diatonic tonality which appears to be a Möbius strip (see Figure 7.)

Such a self-assembly process may seem trivial but the elaboration of a
space based on chords of higher dimension is difficult by hand. For example
tonality may be defined through 4-chords instead of triads (e.g. for C major
IC = {C,E,G,B}, IIC = {D,F,A,C}, etc.) After computing the Euler
characteristic and the orientability coefficient of the obtained complex for
C major characterized by 4-chords, its topology appears to be a toroid (the
volume bounded by a torus) which is definitively different from a Möbius
strip (e.g., the torus is orientable and the Möbius strip is not.)

4.4 Computer Aided Analysis and Composition using Self-Assembled
Spaces

In the context of Music Set Theory chords are studied from an algebraic point
of view [1]. They are then classified as orbits under the action of some group
of transformations. We are here interested in the classification induced by the
action of the dihedral group.

Chord Classes and Generalized Tonnetze. The dihedral group D12 al-
lows to gather chords up to transposition and inversion. While transposition
Ti consists of the action of some interval on the notes of a chord as men-
tioned above, inversion S considers the inverse of the notes. As an example,
(TM3 ◦ S) {C,E,G} = {−C +M3,−E+M3,−G+M3} = {C,E,A}.
This action defines 224 equivalent classes of chords.
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Figure 8
Assembly of chords equivalent up to transposition and inversion toC Major (C,E,G)
(top) and to C7 (C,E,G,B[) (bottom).

Using the self-assembly process, we propose to represent each chord class
by a simplicial complex. The topology of these classes differ widely from
one to another depending on the size of the considered chords and their
interval contents. A complete mathematical study of the topologies for 3-
chords can be found in [6]. Figure 8 illustrates unfolded representations
of the self-assembled structures 1-skeleton for the classes of {C,E,G} and
{C,E,G,B[}.

A remarkable fact is that the 1-skeletons of chord class spaces are partic-
ular graphs known in music theory as Generalized Tonnetze. Tonnetz stands
for tone network and consists in a regular graph labeled by pitch classes and
generated by the action of a subset of intervals. Nevertheless higher dimen-
sional cells of chord class spaces provide additional informations not present
in original tonnetze and open new analysis and composition possibilities.

Transformations on musical trajectories. A musical sequence can be rep-
resented as a moving object evolving in a space, as the ones illustrated on fig-
ure 8. The static representation of this evolution is a trajectory inside the com-
plex, which consists of sub-complexes representing successive played notes.
Figure 9 illustrates two trajectories in a chord class space. Discrete counter-
parts of some euclidean transformations can be applied on such trajectories.
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Figure 9
A discrete π rotation is applied on a trajectory representing the first measures of
J.-S.Bach’s choral BWV 256. The underlying space is the chord class complex built
from the assembly of minor and major chords.

Figure 9 illustrates a discrete π rotation applied on a trajectory representing
the first measures of J.-S. Bach’s choral BWV 256. The underlying space is
the chord class complex built from the assembly of minor and major chords.
Moreover a spatial transformation can be applied on the underlying space,
rather than on the path. These transformations occur on the labels of the
elements only, which means that the topological structure of the underlying
space stays unchanged. This property ensures that the aspect of the trajectory
is conserved.

Some of these spatial transformations have a musical interpretation. For
example, a translation leads to a transposition or a modal transposition, de-
pending on the underlying space. A π rotation leads to an musical inversion.
Other available transformations lead to alternative musical operations.

Audio results of rotations, translations and transformations of the underly-
ing space, applied to some pieces from various composers (J.-S. Bach, W.A.
Mozart, M. Babbit, The Beatles,. . . ) are available in MIDI format at
http://www.lacl.fr/~lbigo/aisb13#transformations . Ex-
ample 5 of the online page corresponds to the transformation illustrated on
figure 9.

HexaChord and PaperTonnetz Software. The previous theoretical consider-
ations have been implemented in two original software based on the notions

15
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of generalized Tonnetz and chord class: HexaChord† and PaperTonnetz‡ .
HexaChord is a computer-aided music analysis environment based on the

previous spatial representation of chord classes. Beyond the simple visualiza-
tion of the different 12 2-dimensional simplicial complexes, HexaChord pro-
vides musicologists with three main functionalities on imported midi files: (1)
HexaChord computes automatically the best Tonnetze for representing some
piece; it is based on the computation of a compliance measure defined at gen-
eral level on cellular complexes. (2) Giving a particular Tonnetze, HexaChord

is able to produce a trajectory from a piece to show interesting geometric
properties. (3) Harmonization by spatial criteria is available by adding an
extra voice to a set of voices (e.g., a choral) to maximize compliance mea-
surement.

PaperTonnetz [3] is a tool that lets musicians explore and compose music
with Tonnetz representations by making gestures on interactive paper. It al-
lows composers to discover, improvise and assemble musical sequences in a
Tonnetz by creating replayable patterns that represent pitch sequences and/or
chords. Figure 10 shows GUI of PaperTonnetz and HexaChord.

5 CONCLUSION

A notable contribution of this paper is to show that the same generic self-
assembly process can be used to build abstract spaces representing various
well-known musical objects: the all-interval series, the simplicial representa-
tions of chord sets and the associated Tonnetze.

The generic self-assembly process has been implemented in MGS¶ provid-
ing a formal and very concise specification. The corresponding MGS trans-
formation has been effectively used to compute and enumerate these spaces.
Then, topological invariants can be computed to investigate and classify them,
especially when they have a high dimension.

Works presented here are related to the unconventional computing field
in many aspects. First of all, the different computations presented here are
specified using topological rewriting, an extension of term rewriting to ab-
stract cellular complexes. Such extension subsumes chemical computing à
la Gamma (as commutative-associative rewriting), Lindenmayer systems (as
string rewriting) and cellular automata (as a kind of constrained array rewrit-
ing). Secondly, the algorithms used are directly inspired by mechanisms in-

† http://vimeo.com/38102171
‡ http://vimeo.com/40072179
¶ http://mgs.spatial-computing.org

16
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Figure 10
Graphical User Interface of PaperTonnetz (top) and HexaChord (bottom) .

vestigated in the field of unconventional computing. These mechanisms are
used as a very effective heuristic to devise new representations of well known
musical objects and processes. For instance, we use self-assembly to build a
space associated with a set of chords and we use computations in space to rep-
resent and extend musical transformations. Last but not least, from a musical
perspective the transformations presented here are highly non conventional.
As a matter of fact, the topological framework has been used only very re-
cently to formalize musical notions, while the standard approach relies solely
on algebraic structure, e.g., for pitch classes in Set Theory. The topological
framework renews our point of view on musical problems and suggests some

17



85

alternative musical transformations. It also suggests new generative processes
to produce music, an area not covered in this paper.

We believe that this preliminary work shows the interest of an expressive
and generic framework making possible the systematic building and process-
ing of abstract spaces that appear in musical analysis and theory. Our frame-
work is based on spatial notions developed and studied in algebraic topology,
and then amenable to a computer implementation due to their algebraic na-
ture. Initially developed for the modeling and the simulation of dynamical
systems, it appears well suited for the musicologist.

Designing original interesting spaces is a first step work. We are currently
working on unconventional approaches (e.g., cellular automata, random walk
algorithms, etc.) for taking advantage of these spaces for compositional pur-
poses.
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Abstract. Pulsed Melodic Affective Processing (PMAP) is a method for the processing 

of artificial emotions in affective computing. PMAP is a data stream which can be 

listened to, as well as computed with. The affective state is represented by numbers 

which are analogues of musical features, rather than by a binary stream. Previous 

affective computation has been done with emotion category indices, or real numbers 

representing positivity of emotion, etc. PMAP data can be generated directly by sound 

(e.g. heart rates or key-press speeds) and turned directly into into music with minimal 

transformation. This is because PMAP data is music and computations done with 

PMAP data are computations done with music. Why is this important? Because PMAP 

is constructed so that the emotion which its data represents at the computational level, 

will be similar to the emotion which a person “listening” to the PMAP melody hears. 

So PMAP can be used to calculate “feelings” and the result data will “sound like” the 
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feelings calculated. Harmonic PMAP (PMAPh) is an extension of PMAP allowing 

harmonies to be used in calculations. 

Keywords: Communications, Human-Computer Interaction, Music, Affective 

Computing, Boolean Logic, Neural Networks, Emotions, Multi-Agent Systems, 

Robotics, Harmony, Computation 

1   INTRODUCTION 

Previous work on unconventional computing and music has focused on using unconventional 

computation methods as engines for new modes of musical expression. For example using in 

vitro neural networks [1] or slime molds [2] to drive a sound synthesizer. The research has 

not focused on studying the computational properties of the underlying unconventional 

computation, but on examining the feasibility of the sound generation for compositional 

purposes, and of applying some control to the generation. In the current paper, music is 

utilized not as an output of unconventional computation but as a method of unconventional 

computation. It has been said that almost any set of symbols with some structural interaction 

rules can be used to compute. However music holds a unique place as a form of emotional 

expression [3]. Thus if the symbols and rules of music can be used in computations related to 

affective (emotional) processes, then the possibility arises of a symbol set which expresses 

the results of its own computational result.  

This paper is based on the idea of using melodies as a tool for affective computation 

in artificial systems. Such an idea is not so unusual when one considers the data stream in 

spiking neural networks. Spiking neural networks (SNNs) have been studied both as artificial 

entities and as part of biological neural networks in the brain. These are networks of 

biological or artificial neurons whose internal signals are made up of spike or pulse trains that 
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propagate through the network in time. [4] has actually developed a back-propagation 

algorithm for artificial SNNs. Back-propagation is one of the key machine learning 

algorithms used to develop neural networks which can respond intelligently. In SNN’s it is 

usually the spike rate (or “tempo”) that encodes information, not the spike height, though 

there has been some biological work suggesting spike height, in addition to spike rate, may 

encode information in SNNs in the brain [5,6]. It is interesting to note that a series of timed 

pulses with differing heights can be naturally encoded by one of the most common musical 

representations used in computers: MIDI (the musical instrument digital interface). In its 

simplest form MIDI encodes a melody, which consists of a note timing and note pitch height. 

In this paper it is argued that melodies can be viewed as functional as well as recreational – 

they can fulfill the function of encoding an artificial emotional state in a form which can be 

used in affective computation directly expressible to human beings (or indeed to other 

machines). The basis of the data stream used in this paper for processing is a pulse stream in 

which the pulse rate encodes a tempo, and the pulse height encodes a pitch. This is extended 

here to include the use of harmonies to encode and compute affectivity.  

1.1 Uses and Novelty of PMAP  

Before explaining the motivations behind PMAP in more detail, an overview of the 

useful functionality will be given. Similarly the novel functionality which PMAP provides 

will be summarized. In terms of functionality PMAP provides a method for the processing of 

artificial emotions, which is useful in affective computing – for example combining 

emotional readings for input or output, making decisions based on that data or providing an 

artificial agent with simulated emotions to improve their computation abilities. In terms of 

novelty, PMAP is novel in that it is a data stream which can be listened to, as well as 

computed with. The affective state is represented by numbers which are analogues of musical 
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features, rather than by a binary stream of 1s and 0s. Previous work on affective computation 

has been done with normal data carrying techniques – e.g. emotion category index, a real 

number representing positivity of emotion, etc.  

This element of PMAP provides an extra utility – PMAP data can be generated 

directly by sound and turn directly into sound. Thus rhythms such as heart rates or key-press 

speeds can be directly turned into PMAP data; and PMAP data can be directly turned into 

music with minimal transformation. This is because PMAP data is music and computations 

done with PMAP data are computations done with music. Why is this important? Because 

PMAP is constructed so that the emotion which a PMAP data stream represents in the 

computation engine, will be similar to the emotion that a person “listening” to PMAP-

equivalent melody would be. So PMAP can be used to calculate “feelings” and the result data 

will “sound like” the feelings calculated. This is will be clarified over the course of this 

paper. 

In the previous subsection it was described how this paper is motivated by similarities 

between MIDI-type structures and the pulsed-processing [7] computation found in artificial 

and biological systems. It is further motivated by three other key elements which will now be 

examined: (i) the increasing prevalence of the simulation and communication of affective 

states by artificial and human agents/nodes; (ii) the view of music as the “language of 

emotions”; (iii) the concept of audio-display of non-audio data. 

1.2 Affective Processing and Communication 

It has been shown that affective states (emotions) play a vital role in human cognitive 

processing and expression [8]: 

 



91

1. Universal and Enhanced Communication – two people who speak different languages 

are still able to communicate basic states such as happy, sad, angry, and fearful.  

2. Internal Behavioral modification - a person’s internal emotional state will affect the 

planning paths they take. For example affectivity can reduce the number of possible 

strategies in certain situations – if there is a snake in the grass, fear will cause you to 

only use navigation strategies that allow you to look down and walk quietly. Also pre- 

and de-emphasising certain responses: for example if a tiger is chasing you, fear will 

make you keep running and not get distracted by a beautiful sunset, or a pebble in 

your path.  

3. Robust response – in extreme situations the affective reactions can bypass more 

complex cortical responses allowing for a quicker reaction, or allowing the person to 

respond to emergencies when not able to think clearly – for example very tired, or in 

severe pain, and so forth.  

 

As a result, affective state processing has been incorporated into robotics and multi-agent 

systems [9]. A further reason in relation to point (1) above and Human-Computer Interaction 

studies is that emotion may help machines to interact with and model humans more 

seamlessly and accurately [10]. So representation of simulation affective states is an active 

area of research.  

The dimensional approach to specifying emotional state is one common approach. It 

utilizes an n-dimensional space made up of emotion “factors”. Any emotion can be plotted as 

some combination of these factors. For example, in many emotional music systems [11] two 

dimensions are used: Valence and Arousal. In that model, emotions are plotted on a graph 

(see Figure 1) with the first dimension being how positive or negative the emotion is 

(Valence), and the second dimension being how intense the physical arousal of the emotion is 
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(Arousal). For example “Happy” is high valence, high arousal affective state, and “Stressed” 

is low valence high arousal state.  

 

Figure 1: The Valence/Arousal Model of Emotion 

 

 

 

 

 

 

 

 

1.3 Music and Emotion 

There have been a number of questionnaire studies done which support the argument that 

music communicates emotions [12]. Previous research [13] has suggested that a main 

indicator of valence is musical key mode. A major key mode implies higher valence, minor 

key mode implies lower valence. For example the overture of The Marriage of Figaro opera 

by Mozart is in a major key; whereas Beethoven’s melancholic “Moonlight” Sonata 

movement is in a minor key. It has also been shown that tempo is a prime indicator of 

arousal, with high tempo indicating higher arousal, and low tempo - low arousal. For 

example: compare Mozart’s fast overture above with Debussy’s major key but low tempo 
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opening to “Girl with the Flaxen Hair”. The Debussy piano-piece opening has a relaxed feel – 

i.e. a low arousal despite a high valence.  

1.4 Sonification 

Sonification [14] involves representing non-musical data in audio form to aid its 

understanding. Common forms of sonification include Geiger Counters and Heart Rate 

monitors. Sonification research has included tools for using music to debug programs [15], 

sonify activity in computer networks [16] and to give insight into stock market movements 

[17]. In the past, sonification has been used as an extra module attached to the output of the 

system under question.  

A key aim of PMAP is to allow sonification in affective systems at any point in the 

processing path within the system. For example between two neurons in an artificial neural 

network, or between two agents in a multi-agent system, or between two processing modules 

within a single agent. The aim is to give the engineer or user quicker and more intuitive 

insight into what is occurring within the communication or processing path in simulated 

emotion systems by actually using simple music itself for processing and communication.  

There are already systems which can take the underlying binary data and protocols in 

a network and map them onto musical features [18]. However PMAP is the only data 

processing model currently which is its own sonification and requires no significant mapping 

for sonifying. This is because PMAP data is limited to use in affective communications and 

processing, where music can be both data and sonification simultaneously. PMAP is not a 

new sonification algorithm, it is a new data representation and processing approach which is 

already in a sonified form. 

 This means that no conversion is needed between the actually processing / 

communication stream and the listening user - except perhaps downsampling. It also allows 
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the utilization of such musical features as harmony and timing synchronization to be 

incorporated into the monitoring, when multiple modules / agents are being monitored 

simultaneously. 

 

2  PMAP REPRESENTATION OF AFFECTIVE STATE 

In the original monophonic PMAP [19] the data stream representing affective state is a 

stream of pulses. The pulses are transmitted at a variable rate. This can be compared to the 

variable rate of pulses in biological neural networks in the brain, with such pulse rates being 

considered as encoding information. In PMAP this pulse rate specifically encodes a 

represention of the arousal of an affective state. A higher pulse rate is essentially a series of 

events at a high tempo (hence high arousal); whereas a lower pulse rate is a series of events at 

a low tempo (hence low arousal).  

Additionally, the PMAP pulses can have variable heights with 10 possible levels. For 

example 10 different voltage levels for a low level stream, or 10 different integer values for a 

stream embedded in some sort of data structure. The purpose of pulse height is to represent 

the valence of an affective state, as follows. Each level represents one of the musical notes 

C,D,Eb,E,F,G,Ab,A,Bb,B. For example 1mV could be C, 2mV be D, 3mV be Eb, etc. We 

will simply use integers here to represent the notes (i.e. 1 for C, 2 for D, 3 for Eb, etc). These 

note values are designed to represent a valence (positivity or negativity of emotion). This is 

because, in the key of C, pulse streams made up of only the notes C,D,E,F,G,A,B are the 

notes of the key C major, and so will be heard as having a major key mode – i.e. positive 

valence. Whereas streams made up of C,D,Eb,F,G,Ab,Bb are the notes of the key C minor, 

and so will be heard as having a minor key mode – i.e. negative valence.  

For example a PMAP stream of say [C,C,Eb,F,D,Eb,F,G,Ab,C] (i.e. [1,1,3,5,3,4,5,6,7]) 

would be principally negative valence because it is mainly minor key mode. Whereas 
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[C,C,E,F,D,E,F,G,A,C] (i.e. [1,1,4,5,2,4,5,6,8]) would be seen as principally positive valence. 

And the arousal of the pulse stream would be encoded in the rate at which the pulses were 

transmitted. So if [1,1,3,5,3,4,5,6,7] was transmitted at a high rate, it would be high arousal 

and high valence – i.e. a stream representing ‘happy’ (see Figure 1). Where as if 

[1,1,4,5,2,4,5,6,8] was transmitted at a low pulse rate then it will be low arousal and low 

valence – i.e. a stream representing ‘sad’. 

Note that [1,1,3,5,3,4,5,6,7] and [3,1,3,5,1,7,6,4,5] both represent high valence (i.e. are 

both major key melodies in C). This ambiguity has a potential extra use. If there are two 

modules or elements both with the same affective state, the different note groups which make 

up that state representation can be unique to the object generating them. This allows other 

objects, and human listeners, to identify where the affective data is coming from. 

In non-simulated systems the PMAP data would be a stream of pulses. In fact in the first 

example below, a pulse-based data stream (MIDI) is used directly. However in performing 

the analysis on PMAP for simulation, it is convenient to utilize a parametric form to represent 

the data stream form. The parametric form represents a stream by a Tempo-value variable 

and a Key-mode-value variable. The Tempo-value is a real number varying between 0 

(minimum pulse rate) and 1 (maximum pulse rate). The Key-mode-value is an integer 

varying between -3 (maximally minor) and 3 (maximally major).  

 

3  PREVIOUS PMAP RESULTS 

Monophonic PMAP has been applied and tested in a number of simulations. As there is no 

room here to go into detail, these systems and their results will be briefly described. They are: 

 

a. A security team multi-robot system [19, 20, 21] 

b. A musical neural network to detect textual emotion [19, 20, 21] 
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c. A stock market algorithmic trading and analysis approach [19, 22] 

d. A multi-layered affective protocol for robust communication [20] 

 

The security robot team simulation involved robots with two levels of intelligence: a higher 

level more advanced cognitive function and a lower level basic affective functionality. The 

lower level functionality could take over if the higher level ceased to work. A new type of 

logic gate was designed to use to build the lower level: musical logic gates. PMAP 

equivalents of AND, OR and NOT were defined, inspired by Fuzzy Logic. Brief descriptions 

of these are given later in this paper. It was shown that using a circuit of such gates, PMAP 

could provide basic fuzzy search and destroy functionality for an affective robot team. It was 

also found that the state of a three robot team was human audible by tapping in to parts of the 

PMAP processing stream. 

 As well as designing musical logic gates, a form of musical artificial neuron was 

defined. A simple two layer PMAP neural network was implemented using the MATLAB 

MIDI toolbox. The network was trained by gradient descent to recognise when a piece of text 

was happy and when it was sad. The tune output by the network exhibited a tendency towards 

“sad” music features for sad text, and “happy” music features for happy text. The stock 

market algorithmic trading and analysis system involved defining a generative affective 

melody for a stock market based on its trading imbalance and trading rate. This affective 

melody was then used as input for a PMAP algorithmic trading system. The simple system 

was shown to make better profits than random in a simulated stock market.  

 The multi-layered affective protocol utilized ideas from human expressive 

performance of music which supports that there are two levels of communication in a 

human’s musical performance, both of which can separately communicate emotion. They are 

the compositional level and the expressive performance level. By applying computer 
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expressive performance simulations to a PMAP data stream, it was shown that the affective 

state of the data stream could be communicated between computer nodes even when the 

underlying PMAP data was greatly distorted by simulated communications errors. A key 

element of this approach to PMAP comms robustness was that the expressive performance 

overlay would “sound like” its affective content when listened to by a person, in the same 

way that the underlying PMAP data would “sound like” the affectivity it contained.  

 

4  PMAPh: PROPOSED PMAP HARMONIC EXTENSIONS 

An addition is now proposed to this previous work – the utilization of harmony in PMAP. 

Before doing this, the basics of PMAP logic and connectionism will be re-iterated from 

previous papers.  

 

4.1 Music Gates 

Three possible PMAP gates were examined in [19] based on AND, OR and NOT logic gates. 

The PMAP versions of these are respectively: MAND, MOR and MNOT (pronounced 

“emm-not”), MAND, and MOR. So for a given stream, the PMAP-value can be written as mi 

= [ki, ti] with key-value ki and tempo-value ti. The definitions of the musical gates are (for 

two streams m1 and m2): 

 

MNOT(m) = [-k,1-t]       (1) 

m1 MAND m2 =  [minimum(k1,k2), minimum(t1,t2)]   (2) 

m1 MOR m2 = [maximum(k1,k2), maximum(t1,t2)]   (3) 

 

These use a similar approach to Fuzzy Logic [23]. MNOT is the simplest – it simply inverts 

the key mode and tempo – minor becomes major and fast becomes slow, and vice versa. The 
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best way to get some insight into what the affective function of the music gates is it to utilize 

music “truth tables”, which will be called Affect Tables here. In these, four representative 

state-labels – based on the PMAP-value system - are used to represent the four quadrants of 

the PMAP-value table: “Sad” for [-3,0], “Stressed” for [-3,1], “Relaxed” for [3,0], and 

“Happy” for [3,1]. Table 1 shows the music tables for MAND and MNOT. The columns 

marked KT-Value refer to the PMAP-value system. 

 

Table 1: Music Tables for MAND and MNOT 

MAND MNOT 
State 
Label 1 

State 
Label 2 

KT-
value 
1 

KT- 
value 
2 

MAND 
value 

State 
Label 

State 
Label 

KT-
value 

MNOT 
value 

State 
Label 

Sad Sad -3,0 -3,0 -3,0 Sad Sad -3,0 3,1 Happy 
Sad Stressed -3,0 -3,1 -3,0 Sad Stressed -3,1 3,0 Relaxed 
Sad Relaxed -3,0 3,0 -3,0 Sad Relaxed 3,0 -3,1 Stressed 
Sad Happy -3,0 3,1 -3,0 Sad Happy 3,1 -3,0 Sad 
Stressed Stressed -3,1 -3,1 -3,1 Stressed 
Stressed Relaxed -3,1 3,0 -3,0 Sad 
Stressed Happy -3,1 3,1 -3,1 Stressed 
Relaxed Relaxed 3,0 3,0 3,0 Relaxed 
Relaxed  Happy 3,0 3,1 3,0 Relaxed 
Happy Happy 3,1 3,1 3,1 Happy 

 

 

 

Taking the MAND of two melodies, the low tempos and minor keys will dominate the 

output. Taking the MOR of two melodies, then the high tempos and major keys will dominate 

the output. Another perspective: the MAND of the melodies from Moonlight Sonata (minor 

key) and the Marriage of Figaro Overture (major key), the result would be mainly influenced 

by Moonlight Sonata.  However if they are MOR’d, then the Marriage of Figaro Overture key 

mode would dominate. The MNOT of Marriage of Figaro Overture would be a minor key 

version. The MNOT of Moonlight Sonata would be a faster major key version. It is also 
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possible to construct more complex music functions. For example MXOR (pronounced 

“mex-or”): 

 

m1 MXOR m2 = (m1 MAND MNOT(m2)) MOR (MNOT(m1) MAND m2)  (4) 

 

4.2 Musical Neural Networks 

The use of timed pulses in Spiking Neural Networks supports an investigation into using 

PMAP pulses in Artificial Neural Networks. In particular in a neural network application in 

which emotion and rhythm are core elements. A form of learning artificial neural network 

which uses PMAP is now given. These artificial networks take as input, and use as their 

processing data, pulsed melodies. A musical neuron (muron – pronounced MEW-RON) is 

shown in Figure 2.  

The muron in this example has two inputs, though a muron can have more than this. 

Each input is a PMAP melody, and the output is a PMAP melody. The weights on the input 

w1 and w2 are each two element vectors which define a key mode transposition, and a tempo 

change. A positive Rk will make the input tune more major, and a negative one will make it 

more minor. Similarly a positive Dt will increase the tempo of the tune, and a negative Dt will 

reduce the tempo. The muron combines input tunes by superposing the spikes in time – i.e. 

overlaying them. Any notes which occur at the same time are combined into a single note 

with the highest pitch being retained. This retaining rule is fairly arbitrary but some form of 

non-random decision should be made in this scenario (future work will examine if the “high 

retain” rule adds any significant bias). Murons can be combined into networks, called musical 

neural networks, abbreviated to “MNN”. The learning of a muron involves setting the 

weights to give the desired output tunes for the given input tunes. Applications for which 
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PMAP is most efficiently used are those that naturally utilize temporal or affective data (or 

for which internal and external sonification is particularly important). 

 

Figure 2: A Muron with two inputs. 

 

 

 

 

 

 

 
4.3 Harmonic Extensions for PMAP 

One key element of music which is not shared necessarily by other areas such as visual 

display, is the ability for two musical streams to combine in a single stream which has its own 

gestalt meaning: i.e. a harmony. This allows the potential for auditory display of multiple 

streams of data. For example a major PMAP stream at a medium tempo would tend to 

communicate happiness, whereas a minor PMAP stream at a medium tempo would tend to 

communicate sadness. If the two are synchronized and combined together as a harmony this 

will probably cause it to sound quite unpleasant, since 4 of the pitches in a major key clash 

harmonically with 3 of the pitches in a minor key. This harmonic “clashing”, known as 

dissonance – indicates that the two streams have very different keys and thus - by the original 

PMAP definition - very different valences.  

 In Monophonic PMAP the harmonic effects of multiple streams are only detectable by 

humans who listen to the streams simultaneously. This property was discussed in [20] as 

being useful for a human commander tapping into the processing of the robot team. An 

extension is now proposed to PMAP, called Harmonic PMAP, or PMAPh (pronounced “pee-

w1 = [R1, D1] 

w2 = [R2, D2] 
 

Output 
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maff”). In PMAPh the arousal of a data stream is still defined by its tempo. However PMAPh 

also allows for polyphonic data streams, with up to two simultaneous notes occurring at any 

one time in the data stream. In polyphonic PMAPh data streams the valence of a polyphonic 

data stream when there are simultaneous pitches is based on the consonance as calculated 

using Table 2. Consonance in PMAPh is equivalent to Key-value in monophonic PMAP. A 

low consonance means that the two simultaneous notes clash harmonically (are dissonant), 

and a high consonance means they sound pleasant together. In monophonic PMAP a high 

Key-value means more of the melody notes are in a major (more positive sounding) key, 

whereas a low Key-value means more of the notes are in a minor (less positive sounding) 

key. 

 

Table 2: Reference table for PMAPh valence 

Note MIDI Difference in 
same octave 

Name PMAPh Consonance 

0, 4, 7 unison / 3rd / 5th  3 
5, 9 4th / 6th  1 
2,3,8,10 2nd / minor 2nd / minor 

6th / minor 7th  
-1 

1, 6, 11 minor 2nd / minor 5th / 
major 7th  

-3 

  

 

So the unison, 3rd and 5th intervals have the highest valence, and the semitone, tritone and 

major 7th intervals have the lowest valence. The values in the first two columns of this table 

come from a Genetic Algorithm harmony system developed for a system for emotional 

expression by algorithmic harmony composition [25]. This table allows the musical logic 

gates and musical neural networks defined in PMAP to be used in PMAPh with polyphonic 

inputs.  

The implementation of a musical neuron in [19] and [21] was originally defined as 

selecting the highest of two pitches when two pitches occurred simultaneously in time. In 
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PMAPh it is defined as an interval made up of the highest and lowest simultaneous pitches. 

Once again this is fairly arbitrary it means that a unitary musical neuron (i.e. with unitary 

weights) can be used to combine two monophonic PMAPh streams into a polyphonic PMAPh 

stream. 

 To examine the differences between PMAP and PMAPh consider the MAND music 

gate. In a PMAP MAND gate both input melodies have to be major key for the output to have 

a major key, otherwise the output has a minor key. The tempo output is the minimum tempo 

of the two inputs. It implies that both inputs have to have high valence for the output to have 

high valence, and both inputs have to have high arousal for the output to have high arousal. In 

PMAPh when the stream is not monophonic, its valence is positively correlated to the 

consonance defined in Table 2. Table 3 shows the functioning of a MAND gate in PMAPh 

for just the most consonant and least consonant intervals. (Note that because simple 

harmonies are more to do with pitch than with rhythm, the following discussion does not go 

into detail about tempo in PMAPh.) 

 

Table 3: MAND table for Maximum Consonances 

MAND (maxima only) 
Input 
Interval 
1 

Input 
Interval 
2 

Consonance 
1 

Consonance 
2 

MAND 
value 

Valence  

1, 6, 11 1, 6, 11 -3 -3 -3 Low 
1, 6, 11 0, 4, 7 -3 3 -3 Low 
0, 4, 7 1, 6, 11 3 -3 -3 Low 
0, 4, 7 0, 4, 7 3 3 3 High 

 

 

Figure 3 gives an example application that differentiates PMAPh from monophonic PMAP. 

The circles in Figure 3 are unitary musical neurons (i.e. with weights that do not change the 

input tunes features). Suppose the 4 inputs are monophonic and time-quantized. The time 
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quantized element is important here, as it increases the likelihood that two pitches in two 

separate melodies could occur at the same time, thus creating harmonies. Suppose first that 

the tunes on I1, I2, I3 and I4 are melodies which have no notes that coincide in time. Then the 

output of the circuit in Figure 3 will be the same for monophonic PMAP and for PMAPh by 

the definition of the musical neuron discussed above. However the more notes that coincide 

in time, the more different the outputs for PMAP and PMAPh will be.  

 

Figure 3: A PMAPh demonstration circuit 

 

 

 

  

 

 

 

 

 

 

Suppose that all notes coincide in time. In monophonic PMAP the outputs of murons 

A and B (J1 and J2) will work as “pitch gates”, only allowing through the highest of the two 

pitches, without changing the timing. Then the MAND gate will work as described in 

previous PMAP work [19] and Table 3 – i.e. if the keymodes of J1 and J2 are both major the 

output key will be major, but if one or more is minor, the output will have a minor key mode. 

In PMAPh however the murons will output harmonies to J1 and J2, where J1 contains the 

intervals made up by simultaneous notes in I1 and I2; and J2 made up of I3 and I4 notes. In 

PMAPh the tempo behavior is the same as in PMAP, and since all notes in I1 and I2  (and I3 

MAND 

I1 

I2 

I3 

I4 

output 

muron A 

muron B 

J1 

J2 
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and I4) are simultaneous, they must have the same tempo. Hence the final output of the circuit 

in Figure 3 will have the same tempo as the initial inputs.  

However the valence / consonance behavior of a MAND gate in PMAPh is defined 

using Tables 2 and 3, in a way analogous to the MAND gate in monophonic PMAP is for 

Key-mode. In PMAPh the MAND gate gives a very consonant (“pleasant sounding”) output 

harmony when the two input harmonies are consonant, and a dissonant (“clashing”) output 

when the two input harmonies are dissonant.  

 So what is the overall effect of this circuit when the four input melodies are 

synchronized? If the music table is calculated for Figure 3, it is seen that the output is 

consonant (pleasant sounding) when the inputs are all the same key-mode, or are pair-wise 

the same by muron. Affectively this means that the output will be high valence when all the 

inputs have the same valence, or inputs for both murons have individually the same valence. 

To describe this more iteratively, suppose all inputs initially have the same valence – the 

output valence will be high. Now suppose one input deviates from the others, then the output 

valence will go low. However suppose an input on the same muron as the deviating muron 

also deviates from the original valence – then the output will go high again.  

This is a very different functionality to the monophonic PMAP version and allows for 

selective detection of non-pairwise valence deviations. If each input came from a robot and 

the robots were paired into two teams, then the system would help to monitor that both robot 

teams were matched in how positive or negative they were “feeling”. The more their valences 

deviated pair-wise – the lower the output valence would become. For the security robots 

application [19] this could be used to detect if paired robots were moving too far apart – since 

being close together would increase the likelihood that they were experiencing the same 

environment and thus had similar valences. As with monophonic PMAP this state detection 

output can be used for further calculations, but furthermore if it is probed and heard by a 
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human being, it will be aurally significant: the more the paired robots deviate from each 

other, the more “clashing” the PMAPh stream harmonies sound to a human ear. Thus the 

PMAPh stream can be used for audio display as well as computation. 

To demonstrate this in action, a new simulation from the multi-robot system in [19] 

was run. Note that the PMAPh approach is not being used here for the robots to communicate 

with each other. It is being used to allow each individual robot to process affective 

information internally. The PMAP equations used in [19] are shown in equations 5 and 6, but 

will not be explained in detail here.  

 

WEAPON = DetectOther MAND MNOT(FriendFlag)    (5) 

MOTOR = WEAPON MOR MNOT(DetectOther)    (6) 

 

The short melodies which robots use as the building blocks for their PMAP 

calculations are called “identives”. The identives used in [19] have been updated here so as to 

maximize the harmonic effects. This is because identives only interact harmonically in 

interesting ways if the “key” notes are in similar positions. Thus is two identives are such that 

the main notes identifying the differences between C major and C minor never coincide in 

time, then there will rarely be significant dissonance (or consonance).  

The first 500 notes of the WEAPON object are shown in Figure 4 at the end of this 

paper. Tempo is fixed in this example so as to emphasize the harmonic effects. Security 

robots 1, 2, 3, and 4 are shown respectively in the figure rows. The simulation is run so that 

Robots 1 and 2 start off close to each other in the environment, as do robots 3 and 4. Figure 5 

shows the consonance of the outputs of the two neurons and the resulting MAND output. In 

Figure 5, three sections of the MAND output have been marked up. These are the areas with 

the lowest valence (i.e. highest dissonance). Anyone tapping in to this PMAP stream and 
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listening to it will hear a more dissonant tune. The three sections of the Robot’s PMAP 

WEAPON stream which cause these periods have been marked up as well in Figure 4. A 

major key stream in WEAPON causes the robot’s weapon to fire, whereas a minor key 

stream means the weapon is not firing. It can be seen that during the first marked-up period in 

Figure 4, Robot 4 is firing and Robot 3 is not. During the second period Robot 1 is firing and 

Robot 2 is not. During the third period Robot 4 is firing and Robot 3 is not. Thus if the robots 

are considered as being paired off into teams of 1 and 2, and 3 and 4, then the output of the 

PMAPh circuit in Figure 3 becomes dissonant when one or more of the two robot teams are 

mismatched in their weapon behaviour, as discussed earlier.    

 

5  CONCLUSIONS AND FUTURE WORK 

This paper has given an overview of the concept of Pulsed Melodic Affective Processing, a 

complementary approach in which computational efficiency and power are more balanced 

with understandability to humans; particularly where computation addresses rhythmic and 

simulated emotion processing. Previous work on PMAP has demonstrated the utilization of 

musical logic gates, and musical artificial neurons.  

A key contribution of PMAP is at the research interface between non-standard computation 

and human-computer interaction. In normal circuit and network sonification, a probe needs to 

be placed at the node we desire to sonify, and that data then needs to be fed into a sonification 

algorithm to be converted into meaningful sounds for the user. However if, in the case of 

affective circuits and networks, the underlying data uses the PMAP representation, then no 

sonification algorithm is needed. The data is already in the form of a melody which 

represents the affective state of the data – in other words the data representation is its own 

sonification. There are systems which allow the sonification of network data through separate 

data sonification algorithms. These systems will take the underlying binary data and 
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protocols, map them onto features, and then play these features. However PMAP is the only 

data processing and transmission model currently which is its own sonification and requires 

no significant mapping. This is because PMAP is limited to use in affective communications 

and processing, and such affective states can be represented and computed in many cases by 

musical data anyway.  

Because of music’s special ability to turn two separate streams into a single harmonic 

gestalt with its own affective implications, it is argued that extensions of PMAP into 

polyphony should be investigated. An extension of PMAP to PMAPh has been proposed, 

together with an example that demonstrated some significant functionality differences.  

There are a significant number of issues to be further addressed with PMAP in general. For 

example the actual application of the music gates discussed depends on the level at which 

they are to be utilized. The underlying data of PMAP (putting aside for a moment the PMAP-

value representation used for simplicity earlier) is a stream of pulses of different heights and 

pulse rates.  At the digital circuit level this can be compared to VLSI hardware spiking neural 

network systems [26] or VLSI pulse computation systems. As has been mentioned, a key 

difference is that the pulse height varies in PMAP, and that specific pulse heights must be 

distinguished for computation to be done. But assuming this can be achieved, then the gates 

would be feasible in hardware. It is probable that each music gate would need to be 

constructed from multiple VLSI elements due to the detection and comparison of pulse 

heights necessary.  

The other way of applying at a low level, but not in hardware, would be through the use of 

a virtual/simulated machine. So the underlying hardware would use standard logic gates or 

perhaps standard spiking neurons. The idea of a virtual/simulated machine may at first seem 

contradictory, but one only needs to think back twenty years when the idea of the Java 

Virtual Machine would have been unfeasible given current processing speeds then. In 5-10 
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years current hardware speeds may be achievable by emulation; and should PMAP-type 

approaches prove useful enough, would provide one possible implementation. 

Other issues to be further examined include: is the rebalance between efficiency and 

understanding useful and practical, and also just how practical is sonification - can 

sonification more advanced than Geiger counters, heart rate monitors, etc. really be useful 

and adopted? The valence/arousal coding provides simplicity, but is it sufficiently expressive 

while remaining simple? Similarly it needs to be considered if a different representation than 

tempo/key mode would be better for processing or transparency. Furthermore PMAP also has 

a close relationship to Fuzzy Logic and Spiking Neural Networks – so perhaps it can adapted 

based on lessons learned in these disciplines.  
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ABSTRACT
This paper presents Telebrain, a browser-based performatization platform invented for 
organizing real-time telematic performances.

Performatization is the human performance of algorithms. When computers and humans 
performatize cooperatively, the human-computer interaction (HCI) becomes the location of 
computation. Novel modes of machine-human communication are necessary for organizing 
performatizations. Telebrain is designed to facilitate machine-human languages.

Capitalizing on the ubiquity and cross-platform compatibility of the Internet, Telebrain is an 
open-source web application supporting PerPL (Performer Programming Language), a human-
interpreted configurable language of multi-media instructions used to program performers.

Telebrain facilitates a variety of performance disciplines such as music, theater, dance, 
computational performance, networked scoring (image and audio), prompted improvisation, real-
space multi-player gaming, collaborative transdisciplinary karaoke and quantum square-dancing. 
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INTRODUCTION

Visualization, sonification, and auralization are established practices for representing data and 

computational outputs. This paper develops performatization as the practice of performing data, 

and of performing computation on data, through music, theatre, dance, improvisation, and other 

transdisciplinary frameworks. A multi-performer, real-time, browser-based telematic platform for 

distributing a large volume of  performatization cues is introduced for creating large scale 

human-performed computations through the arts. This telematic performatization platform is 

called Telebrain.

My recent work has involved the iterative design of performatization systems, entangling 

research and development with a collaborative artistic practice. This has resulted in a non-linear 

history of complex intersections between performance and computation. Heuristic methods of 

performatization originated from the analysis of improvised music and theater games. Both used 

rules to organize improvisations facilitating simple translations between performance instructions 

and computer algorithms. Creative experiments distributing performance instructions culminated 

with the invention of Telebrain.

Telebrain is a web-based performatization platform for collectively developing and 

distributing PerPL (Performer Programming Language), pronounced purple. A multi-media, 

multimodal programming language for machine-human communication, PerPL integrates 

language, logic, and art into a single symbolic instructional paradigm. Allowing evolutionary 

specification, PerPL relies on syntax and context plasticity provided by human interpretation, 

adapting its rules through implementation.

PerPL programs are typically distributed by a computer to parallel human brains. PerPL 
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executes traditional SIMD (Single Instruction, Multiple Data) and MIMD (Multiple Intruction, 

Multiple Data) processing when multiple performers interpret the instructions — instructions are 

interpreted by vectors of performers.

By expanding computational architecture to include performance, the human-computer 

interaction (HCI) becomes a location for computation. As PerPL programs are interpreted by 

performers, computation emerges as artistic expression. Revolutionalized modes of 

communication, between creator, process, output, and observer, unleashes novel paradigms of 

creative potential yet to be fully conceived.

Although any type of performance can performatize, music functions doubly as 

performatization and as a mode of instruction. Music’s ability to signify, encapsulate, sequence, 

and coordinate simultaneity contributes to a computational paradigm where perceivable machine 

transmissions are required. 

In addition to serving as the launching point for conceiving performatization, sonification 

and auralization provide a scientific basis for applying the semiotic agency of music and sound 

to an audio-based human-interpreted programming language. 

BACKGROUND

Sonification, Auralization and Performatization

Sonification is the mapping of data into the audio domain. For thousands of years sound has been 

used to represent information heard as striking clocks and bell towers. Pythagoras used 

measurements of the stars and planets to define a musical scale. The stethoscope, geiger counter, 

and telegraph are all sonification inventions.1
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Since the birth of Information Theory, the capacity for sound to transmit information has 

been researched to greater depths. Perceptual thresholds have been tested to determine the 

amount and types of multivariate data discernible through sound.2 Some sonification techniques 

encode data into the acoustic parameters of sound waves while other techniques map data into 

culturally-determined systems of musical organization.3 

Auralizations, also called Auditory Displays, are a special type of sonification where sound 

represents the output of a computer process.4 Considered the audio equivalent of a computer 

monitor, auralization is used to communicate hierarchical and navigational information to blind 

computer users.5

Auralization research has also focused on warning signals in airplane cockpits, since pilots 

are inundated with information and certain data needs to make itself known in high-stress 

conditions.6 Different types of warning signals have been developed and tested for effectiveness 

in relation to the types of data needing to be communicated and the cognitive response to the 

sounds.7 The performance of piloting a plane is aurally-informed by audio representations of the 

plane’s internal systems in addition to the atmospheric systems through which the plane is flown.

Extending sonification and auralization, performatization is the human performance of 

algorithms. Unlike visual displays and auralizations, where pixels and sounds illustrate the 

output of a computer process, performatizations are the algorithmic process. Performatizations 

compute.
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Performatizing Bubble Sort

The following description of a hypothetical performatization refers to a sorting algorithm found 

in most introductory algorithm textbooks. 

The Bubble Sort algorithm begins by comparing the first two values in a list. If the values are 

out of order, Bubble Sort swaps the positions of the two values before comparing the next two 

values. When the end of the list is reached, Bubble Sort performs another iteration by returning 

to the beginning of the list and repeating the comparison process. If no further swapping is 

necessary at the end of an iteration, the sort is complete. Performatizing a Bubble Sort algorithm 

involves performing the individual comparisons and iterations of the algorithm. 

To prepare, each performer wears a different number on their shirt. The performance begins 

by randomly shuffling a group of performers into a single line — into an array. An additional 

performer named Deictor functions as an array pointer and binary flag. Deictor begins each 

iteration by literally pointing to the first performer in the line. If the number worn by the 

performer to the left is less than the number worn by the performer, the two performers swap 

positions in line. Deictor steps through the list by pointing to the next performer in line and 

performing additional comparisons. 

To indicate when the sort is complete, Deictor raises one arm at the beginning of each 

iteration, lowering the arm when a swap occurs. The raised arm functions as a binary flag 

signaling if additional iterations are required. If Deictor’s arm is down at the end of an iteration, 

the list is not sorted and requires another iteration. If Deictor’s arm is raised at the end of an 

iteration, the sort is complete and the performers are in numerical order from left to right.

This example can be extended to singing. Instead of numbers worn on clothing, each 
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performer is assigned a unique pitch to sing. The performers sing their notes to compare pitches. 

If the pitches are out of order, the performers swap positions in line. Each iteration through the 

line produces a unique melodic contour and the sorting process is heard as melodic lines 

gradually developing toward an ascending pattern of notes.

Generally, computer science is concerned with algorithm efficiency, linking the qualitative 

value of an algorithm to the amount of resources a computational process requires. When 

performatizing, efficiency is overridden by the aesthetic quality and experiential value of the 

performance. In experimental performance, breaking rules reveals novel performance potential 

— malfunction leads to success, to change. Relieving algorithms of their need to achieve may 

expand the cultural applications of computation. 

In Bubble Sort, the predetermined outcome is the sorted state of the list, and the algorithmic 

process produces this desired outcome. In traditional performance, the predetermined outcome is 

the performance itself. Performatizations regard performances as processual, and therefore a 

location where algorithms compute, as shown in Image 1.
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Image 1. Architecture Comparisons

Removing the goal-state of the Bubble Sort performatization undermines the necessity for 

accurately evaluated comparisons. Now, an individual comparison can result in two players 

swapping positions because they want to. Performers have brains. Introducing human decision-

making into an algorithmic process results in an algorithmic process capable of self-determining 

its outcome.

From an aesthetic standpoint, an ascending pattern of notes is not necessarily the preferred 
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outcome of a Bubble Sort performatization. The experience of singing and listening to the 

melodic contours of previous iterations informs the swapping decisions of subsequent iterations, 

systematically democratizing aesthetic decisions of collaboration. Boolean probabilities correlate 

to applications of aesthetic criteria. Logic gates built from human personality and interaction 

self-organize patterns of melodic contour iterations, entangling computation, game theory, and 

aesthetics.

Rules of performatizations must be communicated to and understood by performers. 

Everyday language can explain simple algorithms, but performatizing complex processes 

requires a configurable language optimized for communicating real-time processes to multiple 

performers.

Cobra

… the pieces slowly evolved into complex on-and-off systems … I eliminated the timeline. What remained
were scores that did not refer to sound or time — two parameters traditionally inseparable from the art of
music — but were a complex set of rules that, in a sense, turned players on and off like toggle switches to
such a complicated degree that it didn’t really matter what the content was.

— John Zorn, “The Game Pieces”

John Zorn’s improvised music game Cobra serves as a key model for performing a system using 

a configurable metalanguage to organize performances. The rules of Cobra enable self-

organizing performance interactions to collectively embody a complex configurable system. 

Cobra is played using color-coded cue cards inscribed with symbols. Players use hand 

signals to indicate desired cues to a prompter. The prompter presents the requested cue card to 

the ensemble before activating the cue by lowering the card. Cues are often called in quick 

succession causing sudden shifts in improvised material to create a fragmented musical 

experience. Cobra includes an embedded game allowing guerrilla factions to subvert the 
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prompter/player relationship and subsequent music. 

Cues initiate new musical information or modify existing musical information. Some cues 

require everyone to play while others require specific player assignments or sequence. Memory 

Cues associate played music with placeholders so previous musical states of the game can be 

recalled.

Cobra illustrates an efficient and practical communication system for organizing music 

improvisation, but not without limitations. Since Cobra relies on musical material improvised by 

experienced musicians, the cues designate imprecise qualities of music bypassing deeper levels 

of specificity. A performatization language designed to maximize its potential applications 

necessitates a capacity to communicate between extremities of precision. Since cue cards require 

continual eye contact between player and prompter, the system is impractical for performances 

involving body movement. To resolve the performance constraints of Cobra’s visual cueing 

system, audio cueing systems were investigated for communicating further gradations of 

instruction specificity.

M.T.BRAIN

M.T.Brain (Music Theater Brain) is a Max/MSP patch developed for distributing real-time audio 

instructions to multiple performers. Using an audio routing matrix, parallel channels of audio are 

sent to performers through a ten-channel sound card, long cables, and headphones. Performers 

wear large numbers because performer interactions are indicated by channel number, as shown in 

Image 2.
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Image 2. M.T.Brain Performance

A prompter operating M.T.Brain routes preset and real-time audio instructions to performers, as 

shown in Image 3. Typed instructions are spoken by an artificial text-to-speech voice. During a 

performance, new instructions can be saved for repeated use. A collection of easily-identifiable 

non-speech sounds are used to represent learned instructions or to indicate precisely when to 

perform an instruction. Like components of a configurable symbolic language, audio cues are 

concatenated with text-to-speech outputs to construct longer instructions, a prototype of PerPL.
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Image 3. M.T.Brain Max/MSP Prompter Interface

Adjusting to the number of performers, M.T.Brain provides shortcuts for performer routing 

configurations including: all channels, one channel, odd or even channels, randomly selected 

groups of channels, and unselected complementary channels. 

A metronome and four sine tones with frequency presets can be routed concurrently with 

audio instructions. Ten microphone inputs can be routed through M.T.Brain enabling real-time 

spoken instructions to be heard during a performance, as shown in Image 4.
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Image 4. M.T.Brain Architecture

Preset audio cues inspired by improvised music and theater games can be used to organize live 

collaborative transdisciplinary improvisation. Styles of M.T.Brain performances are influenced 

by the prompter’s approach to cueing and routing. Prompters can extend traditional modes of 

performance organization by configuring M.T.Brain to support the desired outcome. 

For musical results, a prompter can take advantage of the temporal accuracy resulting from 

M.T.Brain’s hard-wired parallel audio connections. By algorithmically scattering time-dependent 

instructions between multiple channels, so each performer receives 1/10th of the instructions 

constituting a complete gesture, the immediate link from computer-to-audio-to-ear-to-brain gives 

rise to tight rhythmic precision and multi-performer gestures to be heard — with little or no 

rehearsal. M.T.Brain performers can function like hammers on a player piano.

A prompter can provoke a spontaneous song and dance routine by routing lyrics to a lead 

vocalist who improvises the melody of a song. Simultaneously, the four sine tones are routed to 

the remaining performers who sing an accompaniment based on the four-voice chord presets the 

prompter triggers. M.T.Brain’s parallel in-ear sine tones simplify singing dissonant and 
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microtonal harmonies and changes. The sine tones are layered with a metronome and audio 

instructions for synchronizing choreography instructions distributed according to channel 

number.

For theatrical performance, the dialogue and stage directions of a play, prewritten or 

prompter-improvised, are individually routed to each character. One of the audio channels is used 

to cue a lighting engineer while two other audio channels are routed to an amplification system 

for stereo sound effects and incidental music to be heard, timed with theatrical action.

Despite an abundance of potential applications spanning disciplines, the long cables 

connecting the sound card to the performers’ headphones are a serious physical obstacle. As 

performers move through the space, they constantly wrangle their cables to minimize tripping 

hazards. The cables tangle with every movement into more complicated knots. M.T.Brain’s 

overall aesthetic emerged as an web of wires ensnarling performers wearing large numbers.

M.T.Brain iOS

The M.T.Brain iOS app replaced cumbersome cables with wireless communication. The Max/

MSP patch routes OSC (Open Sound Control) messages through a local wireless network to 

trigger text-to-speech audio and prerecorded audio files stored in the iOS application, as shown 

in Image 5. 
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Image 5. M.T.Brain iOS Max/MSP Interface

The iOS app includes an AM synthesizer to support instructions requiring pitch information. 

Audio is heard through the device’s built-in speakers or headphone output. 

Although wirelessly distributing OSC data through a network introduced inconsistent latency 

limiting the rhythmic accuracy available in the hard-wired M.T.Brain, the iOS app expanded 
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existing M.T.Brain functionality with a user interface allowing each performer to contribute 

instructions during a performance, as shown in Image 6. The updated Max/MSP brain can run as 

a background OSC server while M.T.Brain performers prompt each other. 

Image 6. M.T.Brain iOS App Interface

M.T.Brain iOS performances explore new modes of collaborative organization brought to light 

by performers participating in the prompting process. Decentralizing the role of the prompter 

replaced the aesthetic of wrangling cables with the equally pervasive aesthetic of staring at 

glowing phones. Nonetheless, I wrote two pieces using the M.T.Brain iOS app for audience 

members to perform.

In the first piece Icebreaker, the Max/MSP patch randomly assigns each phone’s OSC output 

to another phone’s OSC input by associating the local IP addresses. Each performer controls the 
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frequency and modulation rate of an AM synthesizer on a randomly assigned phone. The 

participants walk around listening for the phone they control by sending contours recognizable 

over the hum of multiple modulated sine tones. When most of the participants have identified the 

phones they control, the Max/MSP patch is manually triggered to reassign new partners and 

begin again — telematic do-si-do.

The second piece Garbledygook utilizes the send-to-all text-to-speech function written into 

the iOS app. Standing on the edges of the room, each participant types a message, one at a time 

around the room. The text-to-speech artificial voice interpreting the message is heard on the 

built-in speakers of all of the phones with varying amounts of latency. After sending a message, 

each player takes one step towards the center of the room. 

In multiple performances of Garbledygook, similar patterns of performance emerged. 

Performers type real language at first, inevitably discovering that random patterns of letters and 

differing amounts of letter repetitions yields unexpected audio results from the iPhone text-to-

speech utility. When participants are surprised by new sounds, the messages that follow emulate 

and extend the discovered technique. The communication becomes more garbled and alien with 

every step towards the center of the room. By the end, the participants are huddled together, 

typing as fast as they can, giggling while their phones semi-simultaneously spit out a strange and 

new collective language. 

Apple’s licensing and distribution restrictions complicate the development and testing of 

applications intended for creative telematic collaboration. To bypass the limitations of 

developing for proprietary hardware, M.T.Brain was rewritten in JavaScript as an open-source 

browser-based application called Telebrain.
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TELEBRAIN

Telebrain is an internet performatization platform for creating and distributing real-time 

performance instructions to multiple performers using wireless web-enabled mobile devices and 

computers. ( http://telebrain.org ) 

Telebrain implements the performer programming language PerPL. Dependent on Telebrain 

functionality, PerPL is programmed using multi-media Content Objects, performer Role Objects, 

performance Venue Objects, Collections of stored associations, Multi-Role and Fractional 

instruction Assignments, Interface Objects, OSC Objects, timing Algorithms and instruction 

distribution Algorithms. The collective development of PerPL is facilitated online through 

Telebrain, where programmers store, organize, share and implement PerPL elements and 

instructions.

A complete description of Telebrain functionality is found in Appendix I. The priorities of 

Telebrain design are as follows:

◆ Ensure cross-platform and cross-browser compatibility

◆ Maintain a robust and extensible real-time performance infrastructure

◆ Create a platform for the collective development of PerPL

◆ Make PerPL instructions available to all users

◆ Protect PerPL elements and instructions from alteration or deletion

◆ Keep Telebrain design open to unforeseen applications and uses

http://telebrain.org
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PerPL instructions are distributed inside of instantiated Performance Venues that function like 

multi-media chatrooms. Instantiated Performance Venues enable complex patterns of PerPL 

instructions, represented as multi-media Content, to be distributed to designated performers in 

the Venue. PerPL is interpreted when performers receive and perform the instructions. Educating 

performers about PerPL syntax, semantics, grammar and data is the process of building a PerPL 

interpreter. Interpreter design evolves through iterative implementations of shared PerPL 

instructions.

Telebrain Functionality

Telebrain Content Objects include audio files, text-to-speech audio, images, and visually 

formatted texts. Telebrain programmers link to online media, upload media from local devices, 

or manually enter texts. Content Objects saved to Telebrain are organized into longer instructions 

using Collections, Associations, Assignments and Algorithms.

Content Objects are used to represent programming language elements such as variables, 

objects, operators, expressions, functions, assignments, conditionals, statements, and scope. 

Content Objects can also function as data, signifying preexistent meaning(s) of sounds, images, 

and words. An audio recording of a cat’s meow can represent a variable or operator in PerPL, or 

the same audio file can be used as data representing a cat, a meow or a frequency contour.

Telebrain Collections organize associations and constraints. Folders group unordered content 

of any type. Audio-Image Pairs link Audio Objects with Image Objects simplifying distributions 

to multiple receivers with varying receive settings, or simultaneously distributing Audio and 

Image Objects to individual receivers. Audio Sentences are sequences of Audio Objects 
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concatenated and saved as new audio files. The start and end times of the Audio Objects in an 

Audio Sentence are used to reorder Audio Sentences after being served to client devices. Image 

Phrases are sequences of Image Objects, incremented manually or by timing Algorithms during a 

Performance.

Role Objects determine the functionality of a performer’s mobile device limiting the types of 

information performers can send and receive. Interface Objects are buttons, menus, and inputs 

associated with Objects, Collections, and Algorithms for customizing the layout and 

functionality of a performer’s user interface.   

Assignments simultaneously distribute unique instructions to multiple performers, an 

implementation of MIMD processing. Multi-Role Assignments associate PerPL instructions with 

specified Roles. Fractional Assignments associate PerPL instructions with fractional subgroups 

of performers. 

Telebrain’s default timing delivers Content as soon as possible, but the time required for 

Content to arrive on wireless clients cannot be accurately predicted. For messages to arrive on 

multiple wireless devices at the same time, a short delay is added to all instructions 

accommodating for differing speeds of delivery. Content received on client devices is held until a 

particular tick of the internal clock. Since the client clocks can be synchronized to Telebrain’s 

server clock, previously served instructions can be executed simultaneously after compensating 

for network delays.

Telebrain Algorithms associate Timers, Metronomes, and programming logic with Content, 

Collections, Roles, and Assignments. The Timers and Metronomes control when images are 

displayed and audio is played. Algorithms allow OSC addresses to be associated with Telebrain 
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functionality. External software can contribute to Telebrain Performances and external devices 

can receive OSC messages in response to Telebrain Performance activity.

Performing on Telebrain requires Roles and a Venue to be defined in advance. The first 

performer instantiates and names a Performance Venue, selects a Role, enters a nickname, and 

begins the Performance. Subsequent performers join the instantiated Performance Venue to 

participate in the Performance. Depending on Role definitions and associated Interface Objects, a 

Performance interface is rendered featuring lists of Content, Collections, Associations, and 

Algorithms available for execution. In the Performer List, checkboxes appear next to the names 

of performers and Roles. Instructions are routed according to Performer List designations. The 

Activity Log lists a record of timestamped performance instructions distributed during a 

Performance. 

Performers in an instantiated Performance Venue can be in the same physical space as other 

performers or connected remotely through the Internet. Performances in multiple physical 

locations can occur within the same instantiated Performance Venue. Performers can leave and 

return to instantiated Performance Venues, but when the last performer leaves, the instantiated 

Performance Venue is destroyed. 

As shown in Image 7, a screenshot of an active performer interface indicates the 

Performance is called Free-For-All, the performer’s nickname is Nick, and Nick is performing a 

Receiver Role. Nick has sent the F#4 Image Object to ALL performers including himself. A 

performer named Bruno is playing a Lead Role and Bruno previously sent Audio and Image 

Content to Nick.
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Image 7. Telebrain Performance Interface Example
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In addition to device memory, Telebrain performers function as memory. Like the Memory Cues 

in John Zorn’s Cobra, Telebrain instructions can assign the current state of a performance to a 

Content Object, recalled by triggering the Content Object. Performer memory utilizes human 

memory capabilities and can be extended using external memory, such as writing information 

down on a piece of paper. Performers carrying a calculator or abacus can facilitate 

performatizations requiring accurately computed results from individual performer interactions.

PerPL (Performer Programming Language)

PerPL and Telebrain are designed to maximize configurability — operative as both specialized 

tools for specific applications and pliant tools for open-ended applications. Homologous with the 

Integrated Development Environments (IDEs) and language-aware text editors commonly used 

in computer programming, Telebrain governs the ways instructions are input, organized and 

delivered to PerPL interpreters. For each performance, protocols of PerPL syntax and semantics 

are agreed upon by PerPL programmers and Telebrain performers. PerPL’s freely assignable 

syntax and semantics are informally stipulated through heuristic design, formed through 

Telebrain’s infrastructure and performer capacity.  

Explaining the execution of PerPL instructions to performers is the process of building 

multiple parallel PerPL interpreters. Training routines programmed in PerPL elucidate intended 

performance behavior and establish the meaning of shorthand instructions. Training can happen 

during warm-up routines prior to performing or training portions can be scattered throughout a 

Performance, introducing new protocols or shifting current rules mid-performance. 

In Telebrain's Performance architecture, programmers can be performers, and vice versa. 
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Performances including instructions written by multiple programmers may introduce conflicting 

rules of syntax. When instructions are sent by the performers, for the performers, each training 

routine and its related instructions must indicate an association.

PerPL programmers must reinvent programming conventions to optimize human 

interpretation according to implementation. Techniques for indicating syntax, semantics, parsing, 

and scheduling require explicit definition and explanation for every Performance. Hidden, low-

level programming conventions must be brought to the surface to enable high-level instructions 

to be performed.

In computer programming, quotation marks are often used to delimit strings. In PerPL, when 

devising string-delimiting techniques, the technique definition and an explanation of its function 

must be interpreted by the performer prior to its first use. In the following example, opening and 

closing quotations marks are assigned to Audio Objects. The actual quotation marks used in the 

example indicate phrases spoken by a text-to-speech voice. 

//Quotation Mark PerPL Pseudocode

QuotationTraining = “When you hear this sound” + <<BEEP>> +
“vocally imitate what you hear next” + 
“When you hear this sound” + <<BLEEP-BLOOP>> +
“stop imitating”;

QuotationPractice = “Walk to the middle of the room” + 
<<BEEP>> + “Jump up and down” + <<BLEEP-BLOOP>> +
“Look left” + 
<<BEEP>> + “Now I will do it” + <<BLEEP-BLOOP>> +
“Jump up and down” + 
<<BEEP>> +
  <<(Sung)I am jumping up and down>> + “I will stop” + 
<<BLEEP-BLOOP>> + 
“Stop jumping” + “Look right” + “Walk out the door”;

The sounds <<BEEP>> and <<BLEEP-BLOOP>> indicate if a performer jumps up and 

down, says the words “Jump up and down,” or jumps up and down while singing the words “I 
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am jumping up and down.”

Performers have varying response times to different types of instructions. Some performers 

act as soon as they begin to understand an instruction, while other performers wait for the entire 

instruction before acting. By incorporating sound-triggers into instructions, performer actions 

can synchronize. 

Two-part sound-triggers provide preparatory timing clues for imminent actions. As an audio 

equivalent of seeing a conductor raise her baton before a downbeat, two-part sound-triggers 

contain audible preparation and ictus conducting gestures. To implement Two-part Sound-

Trigger Training, the programmer uploads a two-part sound <<shaa-CHUNK>> into an 

Audio Object and then uploads the second half of the two-part sound <<CHUNK>> into another 

Audio Object. <<CHUNK>> is only used during the training routine to illustrate the sound of the 

ictus, the downbeat of the two-part sound-trigger.

//Two-Part Sound-Trigger Training

SoundTriggerTraining = “When you hear this sound” + <<shaa-CHUNK>> + 
“Clap your hands at the exact moment you hear the” + 
<<CHUNK>> + “portion of the sound”;

//Two-Part Sound-Trigger Practice

<<shaa-CHUNK>> [pause: 1000ms] 
<<shaa-CHUNK>> [pause: 8000ms] 
<<shaa-CHUNK>> [pause: 600ms]
<<shaa-CHUNK>> [pause: 400ms]
<<shaa-CHUNK>> [pause: 200ms]
<<shaa-CHUNK>> [pause: 100ms]
<<shaa-CHUNK>> [pause: 50ms] 
<<shaa-CHUNK>> 
<<shaa-CHUNK>> 
<<shaa-CHUNK>> 

PerPL Audio Objects can function as continuous data controllers. As specifiable characteristics 

of a sound change through time, the contours can be correlated to the parameters of a 
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performance. To illustrate, seven tap dancers receiving audio from Telebrain are instructed to 

change the speed of their tapping according to the fluctuating frequency of a sine tone 

instruction. In the following PerPL pseudocode, <<(sine)__/~~~\_/\/~~~~~~\____/

\/\/\/\/~~~~~~~~~>> is used to represent a sine tone with a fluctuating frequency 

contour. The underscores, slashes, tildes and backslashes represent low, rising, high and falling 

frequency, respectively. 

//Frequency-to-Tap-Dance Training

FreqTapTraining = “When you hear a sine tone” + <<(sine)>> +
“listen to its frequency” +
“When the frequency is high, tap fast” + 
“When the frequency is low, tap slow” +
“As the frequency fluctuates between high and low
adjust your dancing speed according to the changes” +
“When there is silence, freeze”;

//Frequency-to-Tap-Dance Practice

<<(sine)______~~~~~~~~~___/\___~~~~~~>> [pause: 500ms]
<<(sine)___\_/~~~\/~___\_/\_/~~~\____________>> [pause: 1000ms]
<<(sine)____/~~~~~>> [pause: 500ms]
<<(sine)____/~~~~~____/~~~~~>> [pause: 2000ms]
<<(sine)__/~~~\_/\/~~~~~~\____/\/\/\/\/\\\\////~~~~~~~~~>>

Audio Objects and Image Objects are characterized by inherent differences when communicating 

PerPL instructions. Audio Objects are finite, time-dependent representations requiring 

subsequent Audio Objects to be concatenated or scheduled. Image Objects are instantaneous, 

infinitely static representations requiring subsequent Image Objects to be manually triggered or 

scheduled. Interrupted Audio Objects risk obscuration when instruction information is 

incomplete. Image Objects always render complete information and risk obscuration when the 

human processing the image is interrupted.

Audio instruction timing depends on the length of the audio instruction relative to how the 



137

26

audio communicates meaning: words, sounds, contour, transients, associations, music or 

patterns. Audio instruction length and efficiency must perpetually balance with the time required 

to perform the instruction. Rapid performance changes require succinct audio instructions to 

indicate the changes as fast as they are performed. Triggering new audio instructions before 

performers have completed previous instructions shifts the balance in the other direction. 

Harnessing tighter isomorphic relationships between the process-describing characteristics of 

audio instructions and the processual qualities driving performatizations will enhance timing 

stability.

Image Object timing is determined by human interpretation capacity relative to the image’s 

function in PerPL. An Image Object of music notation may require each note to be slowly 

performed. The same image of music notation can come and go in a flash provoking a fleeting 

notion of music before boots, arrows, and popsicles are seen. An Image Object of only red may 

cue a sudden gesture before a green image is displayed cueing a different gesture. The same red 

image can function as an indefinite temporal marker for performing a deep introspective 

consideration of the color red.

Performatized Branching

The appropriate strategy for programming a conditional statement in PerPL relies on the nature 

of its impelementation. Imagine 50 performers either sitting or standing. All of the performers 

receive the same audio instructions from Telebrain, an implementation SIMD processing. The 

PerPL programmer wishes to send the following conditional statement:

if (standing) sit;
else stand;



138

27

The simplest solution is to save the above pseudocode as a Text-To-Speech Audio Object named 

Stand/Sit-Switch. Since the pseudocode is understandable in everyday language, the 

instruction needs no translation. When Stand/Sit-Switch is distributed during a 

performance, all performers hear the same spoken text instructing the standing performers to sit 

and the sitting performers to stand. 

Sending Stand/Sit-Switch several times in a row toggles the performers between states 

of sitting and standing, regardless of their initial state. If a PerPL programmer plans to use an 

instruction repeatedly during a performance, the programmer can assign the instruction to a 

sound, as follows:

<<BLEEEEP>> =  if (standing) sit; 
else stand;   

The programmer creates the Uploaded Audio Object Bleeeep by uploading the sound 

<<BLEEEEP>> to Telebrain. The text, “When you hear this sound,” is saved as a Text-To-

Speech Audio Object named When. To build an assignment training instruction, the programmer 

concatenates several Audio Objects into an Audio Sentence named BleeeepTraining.

BleeeepTraining  =  When + Bleeeep + Sit/Stand-Switch;

Prior to using Stand/Sit-Switch in a Performance, the programmer sends the 

BleeeepTraining instruction. Later, when the programmer wishes a Stand/Sit-Switch 

to be performed, only Bleeeep is sent. Assigning functions to sounds contributes to timing 

precision by clarifying when instructions are performed and allowing subsequent instructions to 

follow in quicker succession.

If “sit” and “stand” are used in conjunction with “spin once,” “spin twice,” “squat while 

raising your right arm” and “touch your toes,” then an alternate programming strategy is 
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preferred. With training, performers can learn to associate the six actions with six sounds. 

According to research in sonification and auralization, associating data, or an action, with the 

semiotic meaning of a sound contributes to learning and retention.8 

To implement the new strategy, the PerPL programmer uploads six sounds into Audio 

Objects and saves descriptions of the six actions into Text-To-Speech Audio Objects. The 

pseudocode representing the uploaded sounds are delimited by double angle brackets. The texts 

within the double angle brackets are onomatopoeic representations of how the Audio Objects 

sound, illustrating semiotic associations with the actions they represent.

//6-Actions Training

6-ActionsTraining = “When you hear each sound” +
“perform the action that follows” +
<<SHLOOEEP>> + “stand” +
<<PLEEOOSH>> + “sit” +
<<SHWISH>> + “spin once” +
<<SHWISHWISH>> + “spin twice” + 
<<BRAAMFDING>> + “squat while raising your right arm” +
<<WEWAWOWU>> + “touch your toes”;

//6-Actions Practice

“While each sound plays, perform its action”  [pause: 3000ms]
<<SHLOOEEP>> [pause: 1000ms] 
<<PLEEOOSH>> [pause: 1000ms]
<<SHWISH>> [pause: 1000ms]
<<SHWISHWISH>> [pause: 1000ms]
<<BRAAMFDING>> [pause: 600ms]
<<WEWAWOWU>> [pause: 600ms]
<<BRAAMFDING>> [pause: 600ms]
<<SHWISHWISH>> [pause: 3000ms]
<<PLEEOOSH>> [pause: 2000ms]
<<SHLOOEEP>> [pause: 5000ms]
<<SHWISH>> [pause: 500ms]
<<WEWAWOWU>>

To integrate 6-Actions with Stand/Sit-Switch, additional sounds are associated with 

if and else. The programmer assigns if to a 1000Hz sine tone. To implement an if 

statement, the sound of an action is understood as a comparison because it is overlaid with a 
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1000Hz sine tone — the sound of the action under evaluation and the 1000Hz sine tone are heard 

at the same time. To implement Stand/Sit-Switch, <<SHLOOEEPP>> will represent both 

the state of standing and the instruction to stand. To test if a performer is standing, the sound 

<<SHLOOEEPP>> is played simultaneously with a 1000Hz sine tone. The next sound played 

represents the action to perform in the first branch of the conditional statement.

To implement the else branch of the conditional statement, else is assigned to the sound 

<<CLUNK>>. Since else does not require a comparison, the sound is played unlayered. The 

sound that follows <<CLUNK>> represents the action to perform in the second branch of the 

conditional statement.

PerPL programmers can layer audio by saving Audio Objects into an Audio Layer Object. In 

the example below, the pseudocode LAYER [ AudioObject1, AudioObject2 ] is 

used to represent an Audio Layer Object. 

//If-Else Training 

If-ElseTraining = “if you hear the sound for an action” +
“overlaid with this sound” + <<1000HZ SINE TONE>> +
“ask yourself if you are performing the action” +
“if you are” +
“perform the action for the next sound you hear” + 
“if you are not” + 
“do not perform the next sound you hear” +
“when you hear the sound” + <<CLUNK>> + 
“if you did not perform the previous sound” +
“perform the action for the next sound you hear”;

//If-Else-Practice

LAYER [ <<1000HZ SINE TONE>>, <<SHLOOEEP>> ] 
<<PLEEOOSH>>
<<CLUNK>>
<<SHLOOEEP>>

LAYER [ <<1000HZ SINE TONE>>, <<PLEEOOSH>> ] 
<<SHLOOEEP>>
<<CLUNK>>
<<PLEEOOSH>>
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LAYER [ <<1000HZ SINE TONE>>, <<SHLOOEEP>> ] 
<<SHWISH>>
<<CLUNK>>
<<BRAAMFDING>>

LAYER [ <<1000HZ SINE TONE>>, <<BRAAMFDING>> ]  // if(a){b} if(c){a} else{d}
<<WEWAWOWU>>
LAYER [ <<1000HZ SINE TONE>>, <<SHWISH>> ]
<<BRAAMFDING>>
<<CLUNK>>
<<SHWISHWISH>>

LAYER [ <<1000HZ SINE TONE>>, <<BRAAMFDING>> ] 
<<SHLOOEEP>>
<<CLUNK>>
<<PLEEOOSH>>

Limiting performatizations to conditionals and actions can generate complex results. If-Else-

Practice illustrates the use of PerPL instructions made entirely from non-speech sounds. As 

PerPL instructions become more complex, PerPL intepreters and their training routines develop 

as well. 

At which point will PerPL audio instructions be repurposed as music?

THE FUTURE

The future of Telebrain is divided into immediate goals of increased functionality and distant 

glimpses of what could become.

Immediate Future

The immediate goals of Telebrain extend current functionality, stimulate PerPL development, and 

incorporate potent research from other fields. Future Telebrain developments are listed as 

follows:
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◆  Add sound synthesis - A browser-based sound synthesis engine reduces the latency of 

serving audio files in real-time. Greater varieties of modifiable sound will augment 

meaning transmission potential. Currently on hold until robust, cross-platform libraries 

are available.

◆  Implement spearcons9 - Spearcons are time-compressed words or phrases that are played too 

fast to be recognized. Developed for auralization, spearcons outperform regular speech in 

experimental data. Since they are lexical, they exploit the language processing centers of 

the brain. Currently on hold until a free, variable-speed, cross-platform text-to-speech 

solution is available. The current text-to-speech implementation resolves compatibility 

issues that arise with the variable-speed alternatives. 

◆  Utilize built-in client device features - Most computers and mobile devices include GPS, 

accelerometers, built-in microphones, built-in cameras, text-to-speech utilities and the 

ability to vibrate. Future implementation depends on cross-platform browser access to 

these features.

◆  Improve usability and explainability - To maximize potential uses and users, emphasize 

user-centered development by making clear and simple interfaces for complex processes. 

Advocate Telebrain’s use across disciplines.

◆  Simulate evolutionary dynamics in PerPL's development architecture - Rebuild the the 

PerPL instruction programming architecture to capitalize on existing evolutionary 

dynamics of human social systems. Investigate evolutionary algorithms appropriate for 

network-based collective language development and model the processes into Telebrain’s 

PerPL development architecture.
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◆  Automate PerPL instruction generation - Implement user-definable Telebrain templates for 

automatically generating generic performatization schemes. Performance architectures 

defined by network topologies of programmer/performer relationships can be preset. 

Using commonly implemented PerPL syntax and semantic rules to automatically 

generate PerPL instructions will simplify the programming process — limiting 

configurability when desired. Templates invite new PerPL programmers to experience 

Telebrain with less investment. Advanced PerPL programmers can develop templates for 

reusable performance architectures and PerPL rules.

◆  Develop interfaces for isomorphic transference - Implement sonification and auralization 

techniques for generating PerPL instructions. Develop interfaces for easy translations 

between datasets and algorithms into PerPL instructions. 

◆  Create a text-based version of PerPL - Design a Telebrain text editor for a specified, 

extensible text-based PerPL. Text-based PerPL statements and codeblocks will be 

automatically translated into multi-media PerPL instructions. Incorporate schemes for 

converting text-based PerPL into the grammar of spoken language, and vice-versa.

◆  Integrate models of human cognition - Model the neurobiological timing thresholds of the 

human listening process into parameters of PerPL instructions. Focusing, aiming, or 

distributing heirarchies of algorithmic processes into specified temporal ranges of aural 

perception will enhance the interpretability of audio instructions.

◆  Incorporate principles of ABL (A Behavior Language) - ABL is an artificial behavioral 

programming language used to control digital autonomous agents in virtual interactive 

environments.10 Making artificial interactions seem real, behavioral programming 
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languages are primarily used in virtual environments and video games. Applying 

principles of ABL to real-time, real-space, real-human performances may reveal new 

techniques for organizing performance instructions. ABL supports joint action by 

systematically coordinating the behavior of multiple performers.11 Future actions of 

performers depend on the results of current performer actions. The following is an 

example of ABL code implemented when there is a knock at the door:

sequential behavior AnswerTheDoor() { 
WME w;

with success_test { w = (KnockWME) } wait; act sigh();
subgoal OpenDoor();
subgoal GreetGuest();
mental_act { deleteWME(w); } 

}

sequential behavior OpenDoor() { 
precondition { (KnockWME doorID :: door)

(PosWME spriteID == door pos :: doorPos) 
(PosWME spriteID == me pos :: myPos) 
(Util.computeDistance(doorPos, myPos) > 100) 

}
specificity 2;
// Too far to walk, yell for knocker to come in subgoal 
YellAndWaitForGuestToEnter(doorID);

}

sequential behavior OpenDoor() {
precondition { (KnockWME doorID :: door) } 
specificity 1;
// Default behavior - walk to door and open

}12

Distant Future

Continuous integration of heterogeneous configurations fuels the locomotion towards the 

boundary of imaginations. Communication is the medium — where signals signal signals. 

Communication as computation, literally conceived as metaphor, is elaborated into the future 

using vibrational computation.

Historically, proof of artificial intelligence is thought to manifest in conversations between 
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human and machine.13 When the conversation is unsatisfactory, half of the conversation is 

physically reconfigured to dictate a different conversation. 

Human symbolic language co-evolved with paralinguistic prosodic capabilities. Equivalent 

paralinguistic functions are rarely found in artificial symbolic languages such as mathematics 

and computer programming languages. In contrast, the artificial symbolic languages used to 

notate music represent parameters of sound that correlate with paralinguistic characteristics. 

Musical expression, often changes in volume, rhythm and pitch, can provoke internal 

experiences considered difficult to describe with words. 

The space between language and music is an area of underutilized capacity where current 

modes of communication can expand. Due to the tight evolutionarily entanglement between our 

hyper-sensitive oral-aural capacity, cognitive infrastructure and language facility, sound is a 

logical nursery for growing fresh branches of communication. Since sound is carried by waves, a 

future computational paradigm is imagined as intersecting vibrations.

Vibrational computation occurs when waves co-compute midstream. The intersection of 

computing waves outputs interference pattern results. A multiplexed wave embodying program, 

data, interpreter, and self-describing co-signal-processing ability intersects with a similarly data-

enriched wave. Always containing incomplete information, each signal relies on interaction to 

fill in the gaps. As the waves intersect, the combined instructions interlock. Through 

superimposed micro-interference, canceling and reinforcing as they perpetually go, the 

multiplexed waves co-interpret each other.

The evolution of symbolic language distanced humans from their subjective experiences. 

Once experiences were untethered from experiencer, they could be interpreted, shared and 



146

35

reconfigured — recursively filtered through generations of brains. 

Vibrational computation places interpretation in the space between communicators, creating 

actual interpretive distance. The external interpreter is conjured by the act of communication — 

as if each signal contained the genetic information for creating an instantaneous brain at every 

shared intersection. Vibrational computation resonates through self-describing wave-driven 

zippers interlocking patterns like gamelans through space.

CONCLUSION

Telebrain is a platform for entangling systems of meaning, a place where paradoxes self-resolve 

through the evolutionary potential introduced by incorporating human interaction into the 

computational process.

Computers evolved due to generations of humans externalizing their internal cognitive 

structures.14 Holding up a labyrinthian mirror, Telebrain externalizes the computer's internal 

cognitive structures into novel paradigms of human performance. Communication is the common 

thread, where incongruous systems of logic, language and art commingle, configure, and 

transform.
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Appendix I. Telebrain Functionality ( http://telebrain.org )

CONTENT OBJECTS

Audio Objects

Web-Based Audio: Web-based audio allows online audio files to be available during a performance. 
Copyrighted material is not allowed. When saving Web-Based Audio Telebrain makes a local MP3 
copy of the audio on the Telebrain sever. Currently, only audio file types supported by the user’s 
browser are supported. 

Uploaded Audio: Audio uploads copy audio content from a client device to the server. Only MP3 audio 
files are supported at this time.

Text-To-Speech Audio: Text-To-Speech audio can be saved in advance or generated in real-time during a 
performance. To make Text-To-Speech audio in advance, choose a language and then save up to 100 
characters of text. When the save button is pressed, Telebrain saves an mp3 of the Text-To-Speech 
audio to the server. Text-To-Speech audio can be accessed during a performance or concatenated with 
other audio using the Audio Sentence functionality.

Audio Collections: Since Audio Sentences and Audio Layers generate a new audio files when saved, these 
Collections function as Audio Objects. Audio Sentence and Audio Layers can be incorporated into new 
Collections, however altering the original Audio Objects after they are used in Audio Sentences or 
Audio Layers does not ensure that preexisting Collections will be updated. Generally, new audio files 
are generated at the time the Collections are saved to Telebrain - re-saving the referencing Collections 
updates the audio files to the current version. This may be automated in future versions of Telebrain. 

Image Objects

Web-Based Images: Web-based images allow graphic internet content to be made visible during a 
performance. To save a web-based image, find a valid URL linking directly to online image content. A 
valid image URL with end with ‘.jpg’ or ‘.png’, and should not be a link to an html page containing the 
image. The easiest way to obtain a valid image URL is to right-click on the desired image in order to 
open the image in a new tab or window

Uploaded Images: Image Uploads allow content uploaded from a computer or mobile device to be available 
during a performance. The upload functionality is currently suspended. In the meantime, email the 
image to Telebrain and the image will be uploaded manually.

Teleprompts: (Text-To-Image) Teleprompts graphically display text during a performance. Parameters such 
as font, size, text color, and background color can be assigned to each Teleprompt Object.

COLLECTION OBJECTS

Folder Objects: Folders are unordered collections of Telebrain Content and Programs. Folders are an 
organizational tool and allow associated data to be assigned to particular Roles during a performance. 
Folders can be used to filter content used in a particular performance and can also be used in Timed 
Organization Algorithms.

Audio-Image Pairs: Audio-Image Pairs allow Image Objects and Audio Objects to be distributed 
simultaneously to a Role during a performance. Audio-Image Pairs function similarly to other Telebrain 
Content and automatically adjust to Roles with limited Audio / Image receiving functionality.

Audio Sentence Objects: Audio Sentences are ordered collections of Audio Objects that are concatenated into 
a single audio file. Audio Sentence create a new concatenated audio file in order to reducing the timing 
inconsistencies of delivering multiple smaller audio files individually. The start times of individual audio 
files in a generated Audio Sentence can be used to quickly change the order the Audio Sentence is played 
after the audio is delivered to the performers. When a new Audio Sentence is saved, the Collection can be 
used as an Audio Object.

Audio Layer Objects: Audio Layers allow Audio Objects to be played simultaneously during a performance. 
Each Audio Object layer requires an assigned start-time and relative volume level. The Audio Objects in an 
Audio Layer are mixed and saved to a new audio file. When new Audio Layers are saved, the Collection 
can be used as an Audio Object.

Image Phrase Objects: Image Phrases are ordered Collections of Image Objects available for use during a 

http://telebrain.org
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performance. Image Phrases can be stepped through manually during a performance or used in 
Organization Algorithms.

PROGRAMS

Program Setup

Role Objects: Roles organize possible performance functions allowing each performer or performer group 
to have their send/receive capabilities and interface layout assigned in advance. Multiple performers 
can play the same role in a performance. The maximum number of performers per Role can be limited 
in the Venue model. Checkboxes turn the following visibility and functionality on or off for each Role: 
Telebrain Menu, Performance Title, Send Text, Send Text-To-Speech (live), Send Image, Send Audio, 
Send Association, Send Fraction, Send OSC, Receive Text, Receive Text-To-Speech (live), Receive 
Image, Receive Audio, Receive Interface, Receive OSC, Role List, Performer List, Performer Activity 
Log, Global Activity Log, Change Role, Change Interface, Change Functionality, Test Functionality. 
See Performance Functionality for more information

Venue Objects: Venues are models of performance architecture. The parameters assigned to each venue will 
determine how Roles interact in a performance. When performing, a new instance of the venue model 
is loaded allowing performers to join by selecting a Role with predetermined functionality. Venue 
models may need to be declared before creating Associations, Algorithms, and Content assignments 
depending on the interrelational requirements of a particular performance. Venue declarations can limit 
the number of performers allowed per Role. The type of information needed when joining a 
performance is determined such as requiring a nickname, local IP address, or passcode.

Interface Objects: Interfaces allow Content, Collections, Associations, and Algorithms to be assigned to 
user interface elements such as buttons, pull-down menus, text inputs, and display areas. Interfaces can 
be dynamically rendered, associated with Roles, and/or incorporated into Collections, Associations, 
and Algorithms.

Assignments

Multi-Role Assignments: Multi-Role Assignments allow Content to be associated with multiple Roles in 
advance. Multi-Role Assignments can distribute a variety of Content simultaneously to different Roles 
during a live performance. Multi-Role Assignments can be used in Timed Organization Algorithms in 
order to construct other multi-performer distribution presets. Multi-Role Assignments are dependent on 
a pre-existing venue because the available roles must be known in advance. Multi-Role Assignments 
are also dependent on the functionalities assigned to each Role, because the associated roles must be 
able to receive the assigned content.

Fractional Assignments: Fractional Assignments associate different Content with fractions of a group or 
Role (unlike Multi-Role Assignments where different content is assigned to different roles). Fractional 
Assignments default to having ALL performers as the group to be divided, but the assignments can 
also be associated to a particular Role or Roles. Fractional Assignments have two modes of dividing a 
performer group. Persistent Mode remembers the Fractions performers are assigned to throughout the 
performance. Dynamic Mode randomly divides performers into new Fractions each time the Fractional 
Assignment is called.

Algorithms

Timers: Timers of particular lengths of time can be saved in advanced for use during a performance. Timers 
are necessary for synchronizing events on multiple devices due to latency inconsistencies encountered 
delivering data from the server to multiple clients. Telebrain timers are self-adjusting and continually 
synchronize to the server clock in order to assure time-accuracy. Although immediately synchronized 
events cannot be guaranteed, events can be triggered simultaneously after a predetermined amount of 
delay.

Metronomes: Metronomes allow multiple performance events to be triggered at a regular timed interval. 
Multiple Metronomes can be synchronized to the server or run at varying tempi without 
synchronization.

OSC Objects: OSC (Open Sound Control) Objects allow incoming and outgoing OSC address parameters 
to be associated with Telebrain Content, Collections, and Programs. OSC Objects allow Telebrain to 
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interface with external OSC-capable hardware and software, and control information to be routed to 
clients through a local network bypassing the remote Telebrain server. 

Timed Organization: Timed Organization Algorithms allow Timers and Metronomes to be assigned to OSC 
Objects, Content, Collections, Roles, Venues, Interfaces, and Associations. This is where timing 
functions can be assigned to algorithmically organize all other Telebrain functionality.

Distribution Organization: Distribution Organization Algorithms allow OSC Objects, Content, Collections, 
Roles, Venues, Interfaces, and Associations to algorithmically organized without timed restriction. 

PERFORMANCE

Start Performance: To start a new Performance, the first performer must instantiate a Venue model by 
selecting from a list of Venues and naming the Performance. Once the first performer has chosen a Role and 
provided a nickname and/or IP address, if required, the Performance exists and becomes available for 
additional performers to join. The Performance can be protected by an associated passcode allowing only 
performers with the correct passcode to join.

Join Performance: If a Performance exists, a “Join Performance” pull-down menu listing current Performances 
is rendered allowing performers to select the Performance to join. The performer selects a Role and if 
required, enters a unique nickname and/or their local IP address.

Performance Functionality

Telebrain Menu: Show or Hide the Telebrain Navigation menu. Hiding creates a larger display area for 
Image Content and Interface, but limits Telebrain navigation during a Performance.

Performance Title: Show or Hide the name of the current Performance. Hiding allows more display area for 
Image Content and Interface, but multi-Venue Performances may require performers to be aware of 
their current Performance name.

Send Text: Show or Hide text input interface for typing and sending real-time text during a Performance. 
Send Text functions as a chatroom text input and can be routed to some or all performers depending on 
routing assignments and the receiving Roles’ functionality.

Send Text-To-Speech (live): Show or hide text input interface for typing and generating real-time Text-To-
Speech Audio during a Performance. The Send Text-To-Speech functions as a chatroom text input, 
except the received text is received as Text-To-Speech Audio. The Text-To-Speech audio can be routed 
to some or all performers depending on routing assignments and the receiving Roles’ functionality.

Send Image: Show or hide a pull-down menu listing the Image Content available to a particular Venue and/
or Role. If no Image Content has been assigned, then all Telebrain Image Content is listed. When 
selected, the Image Content is immediately sent to some or all performers depending on routing 
assignments and the receiving Roles’ functionality.

Send Audio: Show or hide a pull-down menu listing the Audio Content available to a particular Venue and/
or Role. If no Audio Content has been assigned, then all Telebrain Audio Content is listed. When 
selected, the Audio Content is immediately sent to some or all performers depending on routing 
assignments and the receiving Roles’ functionality.

Send Multi-Role: Show or hide a pull-down menu listing the Audio Content available to a particular Venue 
and/or Role. If no Audio Content has been assigned, then all Telebrain Audio Content is listed. When 
selected, the Audio Content is immediately sent to some or all performers depending on routing 
assignments and the receiving Roles’ functionality.

Send Fraction: Show or hide a pull-down menu listing the Fractional Assignments available to a particular 
Venue and/or Role. If no Fractional Assignments have been associated, then all Telebrain Fractional 
Assignments appropriate to the Venue model will be listed. When selected, the Content associated to 
each Fraction is immediately sent to the performers divided into Fractions. Fractional Assignments 
send Audio and/or Image Content to associated performers.

Send OSC: Show or hide a pull-down menu listing the OSC Presets available to a particular Venue and/or 
Role. When selected, the preset OSC message is immediately sent to the local IP addresses associated 
with some or all performers depending on routing assignments and the receiving Roles’ functionality.

Send Algorithm: Show or hide a pull-down menu listing the Algorithms available to a particular Venue and/
or Role. If no Algorithms have been associated, then all Telebrain Algorithms appropriate to the Venue 
model will be listed. Depending on the selected Algorithm, new Interface elements may appear 
depending on the input requirements of the Algorithm. Control of the Algorithm will be made available 
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to the sender.
Receive Text: Allow received text  to be displayed.
Receive Text-To-Speech (live): Allow the received audio file generated from real-time Text-To-Speech text 

to be played on the local device. 
Receive Image: Allow received Image Content to be displayed.
Receive Audio: Allow received Audio Content to be played on the local device.
Receive Interface: Allow received Interface Content to be displayed and used.
Receive OSC: Allow received OSC messages to trigger other Telebrain functionality.
Role List: Show or Hide the list of Roles associated with the Venue model of the Performance. Checkboxes 

are displayed next to each Role in the list to indicate the Roles to which Content will be routed. 
Associations, Fractions, and Algorithms override Role Routing Assignments.

Performer List: Show or Hide the nicknames of current performers and indicate their Role. Checkboxes are 
displayed next to each Nickname in the list to indicate the specific Performers to which Content will be 
routed. Associations, Fractions, and Algorithms override Performer Routing Assignments.

Performer Activity Log: Show or Hide a list of the times all Instructions Sent or Received by the 
Performer .

Global Activity Log: Show or Hide a list describing all Instructions Sent or Received by all Performers.
Change Role: Show or Hide a pull-down menu of Roles associated with the Venue. The performer switches 

to the selected Role.
Change Interface: Show or Hide a pull-down menu of Interfaces associated with the Role and/or Venue. 

The display shows or hides the selected Interface.
Change Functionality: Show or Hide a pull-down menu of Performance Functionalities, allowing the 

current Performance Functionalities to changed during a Performance.
Test Functionality: Show or Hide the necessary interface elements for Testing currently assigned 

Functionalities. When Testing, the performers can send themselves Content to test their receive settings 
or receive Content to test their send settings.Test functionalities can be controlled by a master prompter 
in the form of a Sound Check Algorithm or Image Check Algorithm.

Leave Performance: A link that reads “X Leave Performance” is displayed in the top-left corner of all live 
Performances. Clicking on this link removes the performer from the current Performance and returns 
to the Telebrain website. 

Audio Required: If a Role indicates Audio Receive functionality is required, a link that reads “Audio 
Required” is displayed to the right of the “X Leave Performance” link. Clicking the “Audio Required” 
link turns Audio On if the audio is turned off and turns Audio Off if the audio is already on. The 
Speaker in the upper-right corner of the Telebrain navigation menu indicates the current Audio state as 
well, but may not be visible if Telebrain Menu is hidden. When Audio is switched from off to on, the 
“Telebrain” audio file is played. 

GENERAL FUNCTIONALITY

Speaker Icon: The icon in the top-right corner of the Telebrain Navigation Menu is red when Audio is Off and 
green when Audio is On. When Audio is switched from Off to On, the “Telebrain” audio file is played. The 
Speaker Icon must be green indicating that the Audio is On for Audio Content to be played by Telebrain.

Lock/Unlock: Content, Collections, and Programs can be locked and unlocked in order to protect user-
generated data. A passcode is required when locking saved data and can only be unlocked and therefore 
edited when the same passcode is entered. Since all data stored on Telebrain can used in any Performance, 
locking and unlocking data protects the information from being altered or deleted by another user. 
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Abstract 

This paper introduces Die Lebensfreude, a pioneering piece of 
music composed with the aid of an amoeba-like plasmodial slime 
mould called Physarum polycephalum. The composition is for an 
ensemble of five instruments (flute, clarinet, violin, cello and 
piano) and six channels of electronically synthesises sounds. 
The instrumental part and the synthesised sounds are 
musifications and sonifications, respectively, of a multi-agent 
based simulation of Physarum foraging for food. The slime 
mould, its simulation, and musifications and sonification methods 
are introduced in this paper. The rational for using Physarum in 
music is also discussed. 
 
Keywords:  Physarum polycephalum music, unconventional 
computing for music, sonification of slime mould, future of music 
technology. 

 
 
1 INTRODUCTION 
 
Physarum polycephalum, hereafter referred to as Physarum goo, inhabits 
cool, moist, shaded areas over decaying plant matter, and it eats nutrients 
such as oat flakes, bacteria and dead organic matter. It is a biological 
computing substrate, which has been enjoying much popularity within the 
Unconventional Computing research community for its astonishing 
computational properties [1]. Whilst scientists are looking into the possibility 
of harnessing Physarum goo’s behaviour in order to build biological 
computers, I am interested in harnessing its behaviour to produce music.  
 
The motivation to compose this piece emerged after a painting by German 
prolific artist Max Ernst, Die Lebensfreude (translated into English as The Joy 
of Living), from 1936, which I observed at the Scottish National Gallery of 
Modern Art in Edinburgh. I learned that this work is a twist on a painting by 
Matisse with the same name. In contrast to the joyous nature of Matisse’s 
painting, Ernst spreads entangled leaves and tendrils across the picture and 
populates it with praying mantises. Lost in this sinister world is a diminutive 
human being alongside a crouching beast. This predatory jungle is an 
expression of the Ernst’s outrage at the worsening political situation in 
Europe during the 1930s.  This piece is an attempt at conveying musically the 
feeling that this painting elicited on me.  
 



154

The composition is for an ensemble of five instruments (flute, clarinet, violin, 
cello and piano) and six channels of electronically synthesised sounds 
(Figure 1). The instrumental part and the synthesised sounds are 
musifications and sonifications, respectively, of a computer simulation of 
Physarum goo foraging for food. A visual animation of the simulation that 
generated the materials for the composition is displayed during the 
performance, but the images are twisted by the musicians as they play: the 
music controls software that manipulates the animations in real-time. Each 
instrument holds a microphone, which relays the sound to a system that 
controls the images. 
 

 
 

Figure 1: Performance of Die Lebensfreude by Sond’Ar-te Electric 
Ensemble, conducted by Guillaume Bourgogne, at Cascais Cultural Centre, 

Portugal. In addition to the musicians on stage, the piece involves six 
loudspeakers distributed in the concert hall (not show in this photo) to relay 

six channels of electronically synthesised sounds. 
 
Die Lebensfreude has two movements: Machina Vita and Machina est 
Finitum. This paper concerns mostly the first movement, albeit the second 
movement also embodies similar concepts. 
 
The paper starts with a discussion on the rational for using Unconventional 
Computing in music. Then, it introduces Physarum goo, followed by a method 
for sonifying its behaviour, which was used to generate the electronic sounds 
of the composition. Next, it presents a simulator of Physarum goo’s 
behaviour, which forms the core of a music sequencer that is presented next. 
Finally, it introduces the system that was put together to compose the music, 
followed by an explanation of how the composition method works. The paper 
ends with concluding remarks on using Physarum goo to compose music and 
the future of Unconventional Computing in music. 
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2 WHY MUSIC WITH UNCONVENTIONAL COMPUTING? 
 
Computers have been programmed to generate music as early as the 
beginning of the 1950’s [2]. Nowadays, they are ubiquitous in many aspects 
of music, ranging from software for musical composition and production, to 
systems for distribution of music through the Internet. Therefore, it is likely 
that future developments in computing technology will continue to impact on 
the music industry. The relatively new field of Unconventional Computing [3] 
is no exception.  
 
My research is looking into the development of new approaches to musical 
composition with computers. I am particularly interested in establishing ways 
in which computers can aid creativity. During the course of my research I 
have built a number of software systems that generate music materials, 
which I subsequently used in my compositions [4, 5, 6].  Generally speaking, 
computers have aided my creativity by generating musical materials 
automatically for my pieces, which I would not have produced on my own 
manually. These materials include riffs, sequences, rhythms, melodies, entire 
sections lasting for several minutes, and indeed synthesised sounds. 
 
Technically, there are two approaches to designing computer systems to 
generate music, which I refer to as the Artificial Intelligence (AI) and the 
algorithmic approaches, respectively. The AI approach is concerned with 
embedding the system with musical knowledge to guide the generative 
process. For instance, computers have been programmed with rules of 
common practice for counterpoint and voicing in order to generate polyphonic 
music [7]. As a matter of fact, machine-learning technologies have enabled 
computers to learn musical rules automatically from given musical scores, 
which are subsequently used to generate music. The algorithmic approach is 
concerned with translating data generated from seemingly unmusical models 
onto music. Examples of this approach abound, including computers that 
have been programmed to generate music from chaotic functions [8], fractals 
[9] and cellular automata [10]. 
 
Aesthetically, the algorithmic approach tends to generate highly novel and 
unusual music, whereas the AI approach tends to generate imitations of 
certain types of music. Both approaches have their own merits and pitfalls. It 
is important, however, to include in this discussion how composers make use 
of computer-generated materials in their work. Again, I suggest two 
approaches here, which I refer to as the purist and utilitarian approaches, 
respectively.  
 
The purist approach to computer-generated music tends to be more 
concerned with the correct application of the rules programmed in the 
system, than with the musical results per se. In this case, the output of the 
computer tends to be considered as the final composition. That is, the 
composer would not normally modify the music in this case, as this would 
meddle with the integrity of the model or system. At the other end of the 
spectrum is the utilitarian approach, adopted by those composers who 
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consider the output from the computer as raw materials for further work.  
Here composers would normally tweak the results to fit their aesthetic 
preferences, to the extent that the system’s output might not even be 
recognisable in the final composition. Obviously, there is a blurred line 
dividing these two approaches, as practices combining aspects of both are 
commonly found.  
 
It is important to acknowledge these different practices in computer music in 
order to widen our appreciation of the aforementioned impact of computing 
technologies on music.  
 
By way of related research, I cite the development of a granular synthesiser 
using models of reaction-diffusion chemical computing [11] and a method to 
sonify of the behaviour of in vitro neural networks [12]. As far as I am aware, 
my collaborators and I are pioneers in using Physarum goo to generate 
music. 
 
 
3 PHYSARUM POLYCEPHALUM  
 
Prototypes of novel computational devices that have been recently developed 
include DNA computers, reaction-diffusion chemical computers, molecular 
machines and bacterial computers [13]. However, these are costly to build 
and maintain.  
 
Conversely, Physarum goo is a biological computing substrate, which is 
comparatively easier to handle and more cost-effective than those other 
approaches mentioned above.  
 
A picture of Physarum goo is shown in Figure 2.  The blob is a huge single 
cell, but unlike most cells, which have only one nucleus, this cell contains 
millions of nuclei. This giant cell moves like an amoeba, propagating over the 
surface as it ingests bacteria, leaves and rotten wood, but only pictures taken 
over several days can show its progress. 
 
The main phase, and the one that holds most interest for us here, is the 
plasmodium phase, which forms streams of slime moulds in search of 
nutrients. The goo surrounds nutrients and secretes enzymes to digest it. 
Physarum goo will enter in a dormant stage when the environmental 
conditions became unsuitable. In this case it forms a protective hardened 
tissue referred to as sclerotium. When conditions are favourable, it reverts 
into plasmodium and continues its quest for nutrients. Physarum will enter in 
reproductive state if there are no longer nutrients in the environment. Spores 
are formed and released into the air to be spread by wind. Those spores 
might remain dormant for years, until favourable conditions make possible it 
to germinate and release swarm cells that fuse together to form a new 
plasmodium. 
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Figure 2: Physarum polycephalum (Physarum goo) is a huge single cell, but 

it contains millions of nuclei. (Source Wikimedia Commons, photo by J. 
Kirkhart.) 

 
Physarum goo can be cultured in the laboratory by placing it on a dish with 
scattered sources of nutrients; e.g., oat flakes. All being well, it goes on to 
form a network of protoplasmic tubes connecting the nutrient sources (Figure 
3). Physarum goo is an attractive candidate for research into biological 
unconventional computers because its behaviour is controllable: it reacts to 
attracting (e.g., food and humidity) and repelling (e.g., light and salt) sources. 
By placing repellents and attractors in the environment one can prompt the 
goo to behave in specific ways. 
 

 
 

 
Figure 3: Physarum goo in a dish with scattered sources of nutrients. 

(Source: http://physarum.wordpress.com/) 
 
 
It has been demonstrated on various occasions that a Physarum goo-based 
machine is able to perform computational tasks. There are published reports 
that computing devices based on Physarum goo were capable of solving 
classic computational problems such as execution of basic logical operations 
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[14], spatial logic and process algebra [15].  A typical example of its problem-
solving capacity is its ability to find the shortest path to a target destination 
through a maze. [16]. Adamatzky and Jones reported that Physarum goo was 
able to optimise routes between ten points on a hypothetical map. They 
placed nutrients on each of the points to attract the goo and salt crystals on 
areas where it should not cross. Physarum goo’s solution was comparable to 
that of a conventional computer programmed to solve the same problem [17]. 
For an overview of computing devices built with Physarum goo please refer to 
[1]. 
 
 
4 SONIFICATION OF PHYSARUM GOO  
 
The movement of intra-cellular components inside Physarum goo’s body and 
its protoplasmic tubes, and migration of the slime over a substrate, produce 
electricity that can be measured with electrodes strategically placed on the 
surface where the slime is being cultured. Figure 4 shows a typical setup 
using an electronic circuit that converts the electrodes’ reading into digital 
format for further processing.  
 
 

 
 

Figure 4: The electrical activity of Physarum goo can be recorded with 
electrodes. (Courtesy of  Andy Adamatzky, University of the West of 

England.) 
 
 
A recent study reported patterns of electrical activity that uniquely 
characterise Physarum goo’s spatial dynamics and physiological states [18]. 
Different measurements of electrical potentials, or voltages, indicated when 
the plasmodium occupied and left specific sites. They also indicated when the 
organism entered into dormant stage.  
 
In a previous collaboration with Adamatzky and Jones [19], we placed eight 
electrodes coated in non-nutrient agar gel in a petri dish, separated by a non-
conductive material. To begin with, we placed Physarum goo on only one of 
the electrodes. Then, we placed an oat flake on top of each agar blob to act 
as attractors, or nutrients. During the course of one week, the goo colonized 
the other seven electrodes.  
 
The electrodes measured the activity of the plasmodium, and the voltage 
readings were relayed to a synthesiser that translated them into sounds. 
Figure 5 plots the electrical activity of the first four electrodes with oat flakes 
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over the week. For a discussion on the meaning of these graphs in terms of 
spatial dynamics and physiological states please refer to [18, 19]. 
 

 
 

Figure 5: The electrical activity of Physarum goo measured by four 
electrodes over one week. The staggered beginning of electrical activity 

represents the goo reaching one electrode after another. (First published in 
http://arxiv.org/abs/1012.1809) 

 
 
The goo spread amongst electrodes rather slowly. We recorded the voltages 
every second during the course of one week. This generated an excessively 
huge amount data, which would result in a rather long and slowly changing 
monotonous sound. To circumvent this problem, we devised a method to 
compress the data in order to render them suitable to produce a few minutes 
of sound. The compressed data still represented the overall behavior of the 
goo. 
 
We rendered Physarum goo’s voltages into sounds by means of an additive 
granular synthesizer. Granular synthesis works by generating a rapid 
succession of short sound bursts referred to as sound granules. A sound 
granule is normally composed of partials, each of which is a sine wave 
generated by an oscillator. An oscillator needs two parameters to produce a 
sine wave: frequency and amplitude; phase information is sometimes 
needed, but we did not use phase information on this occasion.  
 

 
 

 
Figure 6: A sound formed of five granules lasting 30 ms each. 

 
In our case, each granule is composed of seven partials: each of the seven 
electrodes generated data for a different oscillator. Voltage measurements 
from each electrode were converted into frequency and amplitude values for 



160

oscillators. In standard granular synthesis the duration of each granule is 
typically set in terms of tens of milliseconds. We produced sounds with 
granules ranging from 30 to 150 ms. Indeed, depending on how the 
synthesiser is programmed, such value can change dynamically as the sound 
is being synthesised. Figure 6 plots a 150ms long sound containing five 
granules of 30 ms each.   
 
 
5 COMPUTER SIMULATION: JEFF JONES’ PIXIEDUST 
 
Jeff Jone’s PixieDust is a multi-agent system simulator, which is able to 
simulate the behavior of Physarum goo [21]. This realistic simulator is useful 
because it is not tied to the time that the real Physarum goo would take to 
develop. PixieDust can generate reasonably credible data in a matter of 
minutes rather than weeks. In addition to being able to simulate behavior, 
PixieDust can also simulate the electrical activity measured by electrodes in 
vitro. 
 
The interface of the simulator provides a window that displays a pre-loaded 
image representing the environment in which a population of agents 
representing Physarum goo would evolve (Figure 7). The image should 
normally be greyscale with 256 shades of grey, ranging from black to white. 
Each scale of grey has a meaning for the simulator; for example, completely 
white pixels are regarded as nutrients. The agents are released into this 
environment and act according to simulation parameters specified on a 
control panel. 
 

 
 

Figure 7: PixieDust’s interface with a pre-loaded image representing the 
environment for the simulated Physarum goo. The crosses with a blob in the 

middle represent electrodes. 
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Figure 8: Snapshots of PixieDust simulation, where t represents the 
simulation time steps the snapshots were taken.  

 

 
 
Figure 9: Plotting of the values of each electrode during the simulation over 

70 secs. Each line corresponds to one of the five electrodes. 



162

 
A detailed explanation of the simulation parameters is beyond the scope of 
this paper. It suffices to say that a simple stimuli-response algorithm governs 
the behavior of the agents. An agent occupying a certain location of the 
environment will move according to environmental stimuli, which determine 
the direction of its course. In reality, Physarum goo is indeed sensitive to the 
gradient of concentration of nutrients, thus in the simulation agents are 
attracted to locations with pixels representing food. The simulator allows for 
placement of virtual electrodes anywhere on the image representation of the 
environment, to collect virtual electrical potentials.  
 
In order to probe PixieDust, we simulated an experiment described in [18]. 
We set the environment with five areas holding nutrients. An electrode was 
placed on each area. A cross in a circle represents an electrode. The radius 
of the circle defines the electrode’s sensitivity. The value of an electrode at a 
given instant is given by the amount of agents inside the circle. Agents were 
initialized on the leftmost area, with electrode number one. As in the 
experiment with the real Physarum goo the agents in our simulation went to 
colonize the other areas. After all the all areas were eventually colonized, 
food was withdrawn and the agents gradually gathered around area with 
electrode number two (Figure 8). Figure 9 plots the values of each electrode 
during the simulation, showing that it is consistent with the paper. One can 
observe an overall oscillatory phenomenon, which is characteristic of the flow 
of cytoplasm inside the plasmodium. In conclusion, we were satisfied that the 
simulation provides data that is realistic enough for the purposes of this 
project. 
 
 
6 PHYSARUM MUSIC SEQUENCER 
 
The ability of Physarum goo to solve mazes, find shortest paths, and so on, 
informed the design of a music sequencer. More specifically, the sequencer 
takes advantage of the capacity of Physarum goo to develop networks linking 
sources of nutrients.  
 
A music sequencer is a device that triggers elements from a programmed 
sequence of sounds, music notes and/or musical operations on a step-by-
step basis at regular time intervals. The Physarum Music Sequencer was 
implemented as follows: eight electrodes were placed on the environment 
forming a circle. Each electrode is associated to an event of a sequence of 
events; e.g., a sound sample.  The system reads the level of activation of the 
electrodes clockwise in sequence according to the tick of an imaginary 
metronome. If an electrode’s activity is above a specified threshold, then the 
respective event associated to the electrode is triggered; e.g., a sound is 
played. Otherwise, nothing is triggered. After the activity of the eighth 
electrode of the circle is read, the system proceeds to read the activity of the 
first again, and so on, forming a continuous loop. Therefore, the eight 
electrodes yield a sequence of eight musical events; for example, eight 
sounds played in loop, some of which might be skipped when the electrode’s 
activity is below the triggering threshold. An example is shown in Figure 10, 
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where all electrodes hold nutrients at the beginning of the simulation. 
Physarum goo forms a circle binding all eight nodes. Then, when electrodes 
one, four, six and eight are void of nutrients, only electrodes two, three, five 
and seven remain populated with agents, yielding in a rhythmic sequence. 
 

 
Figure 10: Physarum Music Sequencer. 

 
 
7 THE COMPOSITION 
 
For the composition Die Lebensfreude, six copies of the sequencer were 
arranged on the environment to form a shape resembling a flower with six 
petals. The composition is for flute, clarinet, piano, violin and violoncello, and 
six channels of electronic sounds. Therefore, each sequencer of the flower 
arrangement generated a sequence of notes for a different instrument; the 
piano, however, required two petals, one stream of musical notes for each 
hand. Each flower also generated information for a synthesizer to produce a 
channel of electronic sounds using the sonification method introduced in 
section 4.  The flower’s stem also contains nodes with nutrients for the 
simulation but it does not generate music. 
 
Each cycle of the sequencer generated eight notes for each measure of the 
music at four beats per measure; i.e., time signature of 4/4.  The tempo was 
fixed to120 beats per minute. 
 
The simulation worked as follows: a few agents representing Physarum goo 
were placed at the bottom of the flower’s steam. Then, gradually the agents 
evolved through the stem towards the petals.  
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The note sequences allocated to the petals are shown in Figure 11. As the 
electrodes on the stem do not produce any musical information, the 
generative music process per se started to take place when the agents 
reached the petals (Figure 12). Figure 13 shows an excerpt of the score 
generated by the system. Each measure corresponds to one cycle of the 
sequencer. For instance, the first measure of the flute part shows two notes, 
the first and the seventh notes of the flute’s scale shown in Figure 11.  
 

 
 

Figure 11: Each petal of the flower corresponds to a sequencer, which 
generates notes for one instrument.  

 

 
 
 
Figure 12: The system generates the musical score as the agents colonises 

the sites with the electrodes, represented by crosses, and consume the 
flower. 

 
 
This means that at those particular moments only the first and the seventh 
electrode of the flute petal held enough agent activity to trigger the notes. The 
other notes remained silent. Another example, the second measure of the 
violin part has the second, fourth, sixth, seventh and eighth notes of the 
respective scale shown in Figure 11. In this case, the agents were active on 
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the second, fourth, sixth, seventh and eighth electrodes of the violin petal, 
respectively. As the simulation runs, Physarum goo gradually consumes the 
flower (Figure 14). The composition terminates when the flower is totally 
consumed. 
 

 
 
Figure 13: An excerpt of a musical score generated by the system from the 

sequences of notes shown in Figure 11. 
 
 

 
 
Figure 14: In the simulation, the flower is gradually eaten by Physarum goo. 
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8 FINAL REMARKS 
 
Earlier in this paper I briefly discussed approaches to using computers in 
composition. Clearly, in the composition Die Lebensfreude I adopted the 
generative utilitarian approach: I considered the output from the system as 
raw materials for my piece. However, the changes I made to the materials 
are not global changes, but local ones. The overall form of the music 
generated by the simulation was not changed. The rhythmic structure 
remained largely the same. What I changed most were the pitches of the 
notes. Also, I added articulation to the materials; that is, I specified the way in 
which the notes are to be played, their loudness, and so on. For instance, 
sometimes the strings of the violins a plucked rather bowed, and the flute 
makes key slaps noise rather than a clean pitch, and so on. Moreover, I 
occasionally altered the speed of the music; it occasionally went faster or 
slower than the original120 beats per minute. An excerpt of the actual score 
is shown in Figure 15. The flutist is instructed to produce the sounds of key 
slaps whereas the pianist is asked to pluck the strings of the piano rather 
than play with the keyboard. The violinist and cellist are asked to play 
tremolando behind the bridge of the instrument. 
 
In a recent book chapter [20], I offered a discussion on the role of the 
computer in my compositional practice, which is relevant to the work 
presented in this paper. In a nutshell, the role of the computer in my 
compositions has oscillated between two extremes: on the one hand, I have 
simply assumed the authorship of compositions that were entirely generated 
by a computer, albeit programmed to follow my instructions. On the other 
hand, I have composed with pencil on stave paper, using the computer only 
to typeset the final score. I shall argue that both approaches to composition 
are not incompatible, but manifestations of creative processes that are 
becoming progressively more polarized for me due to increasingly 
sophisticated technology. One side of me is very methodical and objective, 
keen to use automatically generated music, computers systems, formalisms, 
models and so on. Conversely, another side of me is more intuitive, 
emotional and metaphorical. Each side has it own agenda, so to speak, but 
they are not unrestrained, in the sense that they tend to inhibit each other: 
the more I attempt to swing to the objective side, the stronger is the intuitive 
force that pulls me to the opposite side. And vice-versa. I believe that the 
further my objective side pushes me to approach music according to its 
agenda, the stronger the pull of my intuitive side to approach it differently.  
 
Hence, computer technology is of foremost importance for my métier, 
because it allows me to stretch my objective musical side far beyond my 
ability to do so by hand, prompting my intuitive side to counteract 
accordingly. However, I feel that the experience I gained from composing Die 
Lebensfreude with Physarum polycephalum has somehow bent this 
dichotomy. Yes, I am still using a machine. But it is a different kind of 
machine; it is a living organism. Indeed, the piece was generated by a 
computer model, but this might certainly not be the case in the future. As we 
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move on to work with living matter, essentially we will be harnessing the 
intelligence of such organisms to compose music with.  Undoubtedly, new 
forms of music making will emerge from Unconventional Computing. Die 
Lebensfreude is only a glimpse of what is to come. 
 

 
 

Figure 15: A sample page of the score for Die Lebensfreude.  
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I would like to thank Jeff Jones and Andy Adamatzky for their valuable 
contribution to this work. The simulation for the composition was developed 
by Dimitri Papadimitriou using Jone’s software [22] as part of his placement 
at ICCMR. A movie of the premiere, which took place at Cascais Cultural 
Centre, Portugal, in June 2012, by Sond’Ar-te Electric Ensemble, conducted 
by Guillaume Bourgogne, is available: 
http://vimeo.com/channels/miranda/55536077 
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