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Abstract. The authors present an artificial neural network model 

of human perception of natural numbers. Evidence from 

experimental psychology and neuroimaging data has been used 

to set the parameters and the structure of the model. A new 

architecture, Magnitron, has been designed to implement how 

human agents perceive magnitudes both in analogue format with 

the inherited system and in symbolic format with the culturally-

recycled system. The results demonstrate the model’s ability to 

simulate human perception of quantities in both analogue and 

symbolic format. The model presented in this paper is, at the best 

of our knowledge, the first spiking neural network model of 

numerical cognition and thus offers a new avenue for all 

scientists interested in numerical cognition. 

1 INTRODUCTION 

One of the greatest achievements of mankind has been to put a 

man on the moon. Without millenaries of progress in 

mathematics such performance, like many others, would not 

have been possible. At the core of all mathematical abilities and 

intuitions lies the notion of quantity [8]. Neuroimaging evidence 

[13] has shown that numerical cognition is taking place in the 

intraparietal sulci (IPS). Yet, only recently did scientists explore 

how the numerical value is extracted from the stimulus. The 

process whereby the information from the visual display on the 

retina is turned into a quantity in the IPS has been termed 

number mining [4]. 

 

 

1.1. Inherited and cultural numerical cognition 

Natural numbers can be coded in two different formats: analogue 

and symbolic. Whereas the analogue format implies that the 

quantity is a perceptually accessible feature (e.g., four dots:), 

the symbolic format implies an arbitrary relation between 

symbol and quantity (e.g., 4). Though trivial at first sight, the 

difference between the two systems reflects the evolution of 

numerical cognition from animals to humans. 

Perceptual discrimination of quantities in analogue format is 

surprisingly efficient. It has soon been shown that animals are 

able to process natural numbers [17]. In parallel, developmental 

and anthropologic evidence demonstrates that infants and adults 

with no training in mathematics are able to perform well with 

small natural numbers [11, 16]. The processing of small 

quantities leads to similar performance in infants, non-educated 

adults and animals, suggesting that the analogue system is shared 

across species [13]. The symbolic format is the result of 

enculturation. In most societies, the first training in mathematics 

comes when individuals learn to pair symbols with small natural 

numbers. Such a symbolic format increases our capacity to 

represent and manipulate magnitudes. Dehaene and Cohen have 

put forward the idea that additional neural networks have been 

recruited during the course of evolution to cope with language 

demands [7]; in other words the visual system has evolved to 

detect quantities. 

 

1.2. Number mining 

The way in which the value is extracted from the 

analogue/inherited system and the cultural/symbolic system has 

been the focus of Chassy and Grood’s [4] study. They used 

fMRI to map the neural pathways that carry out number mining 

in analogue and symbolic format.  

 

 
Figure 1 - Two neural paths for number mining 

Referring to Figure 1, from the retina to early visual areas the 

neural signals takes the same route for both types of format. 

There a hub, in charge of detecting the nature of the signal, 

forwards it to either the symbolic or the analogue route. Both 

routes process number mining and forward their result to the 

third subdivision of the right IPS (termed right hIP3, see [4]), 

wherein neurons code exact quantities such as natural numbers. 

Number mining is processed by partly different networks; the 

difference reflecting the evolution of our visual system. 

 

1.3. Neural constrains on the computer implementation 

The fact that both systems are served by neural routes that partly 

differ suggests that learning effects are autonomous to each 

route. Neural plasticity, the mechanisms whereby biological 

neural networks are reorganized to store memories [12], would 
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take place independently in the ventral and dorsal pathways. 

Therefore, number mining should be implemented as two 

different neural networks. Both analogue and symbolic systems 

have in common the network between the retina and the neural 

hub. Accordingly, the same spiking neural network will be used 

to implement common early visual processing.  The hub has 

been designed as a spiking neural network (SNN) that detects the 

format of the input and adequately routes the signal to the 

appropriate path. Recent research suggests that the neural hub is 

located in visual area 3 (i.e., hOC3v) [5]. 

The implementation of the IPS is more challenging. Due to the 

limit in spatial resolution of fMRI measurements, the anatomy of 

IPS is not well known. The inner structure of the hIP3 subsection 

is not understood to a fine degree of detail and thus it is 

impossible at the moment to implement the processing inside the 

IPS. For the present work we assumed that the quantity held in 

hIP3 is coded as a cell assembly [10, 17]. One layer of neurons 

will implement units and one output neuron will represent the 

final quantity. 

2 METHOD 

2.1 Architecture 

Our model simulates quantity perception along the two routes 

and its final representation in the IPS. It is termed Magnitron 

(standing for electronic perception of magnitudes) and its 

structure, presented in Figure 2, reflects current knowledge on 

number mining. The model is made of five components: the 

retinal input, the neural hub, the two number mining pathways 

and the final representation in the IPS. 

 

 
Figure 2 - The architecture of Magnitron 

 

The input layer of Magnitron is composed of a matrix of 5*5 

cells that encode the visual field. The input is a simplified 

version of the retina. Since the experiments carried out in 

numerical magnitude do not manipulate colour we considered 

that the input layer would only implement the retina’s sensitivity 

to light. The hub is a neural network determining whether the 

input is in analogue or digital format. 

To reflect the dichotomy between the neural networks 

performing magnitude estimation in analogue and digital format, 

we designed two separate SNNs. Magnitron(A) is the SNN 

carrying out number mining in the analogue format and 

Magnitron(S) is the SNN carrying out number mining in the 

symbolic format. Both neural networks had the same 

architecture: a 25 element input and a 5-element output. The 

weights connecting the two layers reflected the neural 

connections that are in charge of performing number mining. 

Both networks directly connect to the IPS module. The output 

made of five neurons represents the neurons in the IPS that are 

coding quantities; the sum of these was then fed into the final 

neuron implementing the ability to represent a natural number 

that is accessible to consciousness. 

To illustrate the computational power of spiking neural networks 

we also designed a comparable traditional neural network model 

of the analogue and symbolic number mining pathways. These 

networks were made of three layers of sigmoid neurons. For the 

comparison to be compatible with the Retina, the input was 

made of 25 neurons. Similarly, the output reflected the entry of 

the IPS and thus was made of 5 neurons. The hidden layer was 

made of 10 neurons. Two Feedforward neural networks were 

thus designed to implement the two number mining pathways. In 

total, we thus designed two models of number mining, each 

implementing the two number mining pathways: 

(1) A Feedforward neural network model: FN(A) and FN(S).  

(2) A SNNs model : Magnitron(A) and Magnitron(S). 

 

2.2 Neural level 

At the neural level, we implemented a signal that is close to 

the biological reality. We used the integrate-and-fire neuron, 

which allowed an implementation that was less demanding on 

resources than Hodgkin-Huxley neurons [14] but reflects the 

neurons’ ability to process time and space integration of the 

inputs. Similarly to previous models of neural activity [1-2], we 

have implemented the connection between two neurons with 

several synaptic terminals. Each connection can be regarded as a 

“sub-synapse” with its own transmission delay and efficacy. 

Learning, actual neural plasticity at the cell level [12], was 

implemented with Booij’s version of the backpropagation 

algorithm [3]. Equation 1 provides the level of activity of a 

neuron at every moment and Equation 2 shows the calculation of 

the correction of a weight in the SNNs. 

Eq(1) Activity:  

 
where j is the set of neurons pre-synapstic to neuron j, Fi is the 

set of firing times of neuron i, Dij is the set of delay values 

between neurons i, dk is the kth delay value in that set, t is the 

current simulation time and (x) is an exponential function 

approximating biological spike response. 

 

Eq(2) learning:  

 

where wji
k is the weight change of the kth sub-synapse 

between neurons i and j,  is the learning rate, ti
(g) is the gth 

spike time of neuron i and tj
(1) is the first spike time of neuron j.

 

2.3 Stimuli 

The stimuli were a digitalised version of those used in fMRI 

experiments [4, 9]. Their relevance to simulate human 

performance and their credibility as ecologically valid stimuli is 

thus ensured. In Figure 3, the left panel shows four examples of 

analogue stimuli wherein the natural numbers are encoded as 
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sets of dots. The right panel shows the corresponding numbers in 

symbolic format. We have limited our simulation to numerals up 

to five since both behavioural and neural evidence suggest a 

specific, inherited capacity to process these quantities [15]. To 

be fed in Magnitron, the stimuli were converted into a one-

dimensional vector. 

  

  
Figure 3 - Examples of analogue and symbolic stimuli 

 

 

2.4 Training algorithms 

 

The input display is coded as a spike train into the input neurons. 

Encoding of the spike train is by constructing (relative) early and 

late spikes (resp. 0 and 20ms for resp. white and black pixels). 

The encoded input is selected from a shuffled set of values. The 

spikes then propagate through each input synapse according to 

the concomitant sub-synaptic delays. The total membrane 

potential, vi, arriving at each hidden layer neuron, i, is therefore 

given in Equation 3: 

Eq(3):  

 

where the weight is set at a constant 1.5 for this input layer only. 

If vi >  (where =threshold) then i spikes and likewise transmits 

m spikes to each output neuron j. At the points when vj>, j 

spikes, and its time-to-first-spike is taken as that neuron’s output. 

An early (resp. late) output spike time, tj
(1), is decoded as binary 

0 (resp. 1). The output layer thus forms a binary vector, whose 

Hamming weight is taken as the integer output of the SNN. 

Using spike times of all hidden and output neurons, Eq(3) is 

used to calculate the weight change of each respective sub-

synapse. The SNN then continues to the next training epoch. 

For each epoch, the Hamming weight of the output vector is 

subtracted from the expected output to give the error for the 

present epoch, and the mean squared error (MSE) is calculated 

for the previous n epochs, where n is the number of training sets. 

The simulation runs for 1000 epochs. Each time a new global 

minimum MSE is found the state of the SNN is saved to a file. 

The final saved SNN is the optimum solution. 

3 RESULTS 

The performance of the hub in classifying inputs as analogue or 

symbolic was 100%. Hence, the results will focus on the actual 

performance of the networks implementing the pathways. 

 

3.1 Ideal visual conditions  

3.1.1 Analogue system 

The two neural networks, FN and Magnitron, were trained as 

indicated in §2.4 and tested with 10 sets of 5 stimuli. FN 

performed at 68.00% (SD = 16.87%) with increasing error when 

the number of dots in the set increased. In comparison, after 

training (see figure 4), Magnitron performed at 76.00% (SD = 

18.38). The difference in performance between the two networks 

was not statistically significant, t(18) = -1.01, p = .32. 

 

 
Figure 4 - Error as a function of epoch 

 

3.1.2 Symbolic system 

The two neural networks, FN and Magnitron, were trained as 

indicated in §2.4 and tested with 2 sets of 5 stimuli. FN 

performed at 100% with increasing error when the number of 

dots in the set increased. In comparison, after training (see figure 

4), Magnitron performed at 100%. 

 

3.2 Testing flexibility  

The perfect performance of Magnitron with a reduced set of 

symbols has led us to test Magnitron’s ability in different visual 

conditions. To implement the case wherein objects are partly 

occluded, we altered the quality of the image by deleting some 

bits in each display. Also, research in reading has indicated that 

better readers tend to centre the gaze on a specific place of the 

word. To reflect such form of expertise we shifted some displays 

to the left or to the right and tested Magnitron’s ability to 

classify this data. The network was then trained with a new set of 

stimuli (See figure 5) and then tested. 

 

 
Figure 5 - Error as a function of epoch 

 

After training, the network was asked to classify 5 sets of digits 

that displayed either distortions or shifts. The network 

performance dramatically dropped to an average of M = 80.00 % 

(SD = 14.14). 

4 DISCUSSION 

In this work we attempted to simulate human numerical 

cognition with a SNN-based architecture termed Magnitron. 

Magnitron’s performance was tested with information coded in 

both analogue and symbolic formats and then compared to 

performance of human agents and feedforward neural networks. 

Magnitron did not perform at 100% with analogue stimuli, a 

level of performance that human agents reach easily. The 

performance, though disappointing, is indicative of the 

complexity of the human visual system. It further suggests that 
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the neural networks that have evolved to support the counting of 

elements in a visual display carry out a sophisticated operation. 

In stark contrast, Magnitron displays perfect performance with 

centred symbols. This result points to the superiority of symbols 

over non-formalised displays and thus supports the point of view 

that language has facilitated the development of mathematical 

abilities. We have shown that performance drops by as much as 

20% if the stimuli are altered or shifted. Even though Magnitron 

retains some discriminatory power when the 5*5 retina is not 

centred on the target digit, we consider 80% a correct 

performance for a first implementation. The centring of an image 

on the retina is due to occulo-motor corrections; the 

implementation of which is out of the scope of Magnitron. 

When comparing the performance of Magnitron in processing 

analogue and symbolic displays, our work suggest the 

counterintuitive result that the symbolic, culturally-based, coding 

of natural numbers is more easily implemented. The work also 

shows that the Magnitron performs better than FN for analogue 

stimuli. We interpret such a result as evidence that symbolic 

processing is less metabolically demanding that analogue 

processing, an interpretation that is also consistent with fMRI 

findings [4]. 

Beyond the limits of the implementation of the analogue mining 

network, the implementation of the IPS might also require 

improvements. Most of the scanners performing fMRI research 

are not sufficiently powerful (e.g., 1.5-3T) to investigate low 

level anatomical details. We were thus left to decide the structure 

of the IPS without much information. The new generation of 

powerful scanners (e.g., 9.4T) will shed a new light on the 

functional neuroanatomy of the horizontal segment of the IPS. 

With respect to the information processing at the neurons level, 

it has been suggested that they respond as ‘Gaussian’ detectors 

[6], a notion that was not compatible with the architecture of the 

networks (notably the FN). The combination of detailed fMRI 

research and modelling of mathematical cognition will 

undoubtedly lead us to a more sophisticated implementation of 

information processing in the IPS. 

5 CONCLUSION 

Our model has shown that numerical magnitudes can be 

implemented with a spiking neural network. Crucially, we 

managed to implement successfully the analogue and the 

symbolic route. The results have revealed that the neural 

machinery performing number mining in analogue format should 

be more sophisticated. Though the average performance of 

Magnitron is inferior to other models [18], it also is much closer 

to the biological reality and realizes the first step towards a 

biologically-inspired model of numerical cognition. 
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Communication Success in Vague Category Games
Henrietta Eyre1 and Jonathan Lawry

Abstract. The category game is a language game which models the
communication protocols between two agents who aim to match cat-
egory labels with objects encountered in a simulated or real world.
We present a multi-agent category game in which category defini-
tions explicitly incorporate semantic uncertainty and typicality. Fur-
thermore, our model considers a mixed assertion set using a language
where both basic labels and their negations are permitted. We ar-
gue that this conceptual framework is expressive and naturally gen-
erates robust assertion and concept updating models. Simulation re-
sults show that communication success increases to the highest value
when a mixture of positive and negative assertions are used.

1 INTRODUCTION
In classical AI, communication between agents is often based on a
fixed language and set of procedures. However within a complex and
changing environment agents can better communicate and perform
tasks if they can evolve their own semantic structures by adapting
conceptual models depending on their interactions with other agents.

Steels has argued that in order to be more realistic, language
models must take into account the evolutionary nature of language
learning[16], and has proposed multi-agent systems as a useful
research tool. In such systems, the syntactic and semantic structures
may be individual to each agent, but groups of agents may then
cooperate to evolve common structures and methods of commu-
nication. In [15] Steels defined a language game, building on the
definition of Wittgenstein [19], to describe a full communicative
interaction between two embodied agents. One agent, acting as
a speaker, formulates a linguistic utterance to describe an object
the environment. The speaking agent passes this utterance to the
listening agent who then interprets its meaning and updates their
conceptual model to satisfy any constraints implied by the assertion.

1.1 The Category Game
In this paper we investigate a formulation of the category game.
The category game is language game which focuses on the set of
all objects within a given attribute space. Category formation and
mechanisms of categorisation are investigated by measuring the
evolution of a system where agents have a set of communication
rules and concepts which are updated through learning. Through
the course of the game concepts emerge and evolve through basic
communication between agents.

The category game was first proposed by Steels and Belpaeme

1 Department of Engineering Mathematics, University of Bristol, Mer-
chant Venturers Building, Woodland Road, BS8 1UY, UK, email: henri-
etta.eyre@bristol.ac.uk,

[17], demonstrating that there are models according to which a pop-
ulation evolves so that agent concept definitions become sufficiently
similar so as to allow for effective communication. As in [17], the
category game is often performed on colour categories modelled
on a continuous space (e.g. CIELAB or RBG). Such investigations
can make use of the World Color Survey (WCS) [4], a catalog
of language data from 110 unwritten languages. Berlin and Kay
presented data from the WCS in support of the hypothesis that al-
though different cultures use a different number of colour terms, the
structure of colour categories is hierarchical, and colour categories
demonstrate a cross-cultural universality [3]. Similar arguments have
been presented using category game models. Work in [1] shows the
emergence of universal colour categories in independent populations
based on simulations using data from the WCS. Puglisi et al [13]
have modelled the emergence of colour terms in a system modelling
cultural input. Their results show remarkable agreement with the
WCS. In addition, [6] shows the robustness for the evolutionary
process of the language system under random noise. By applying a
Bayesian inference procedure the system evolved to replicate typical
patterns seen in modern languages.

1.2 Semantic Uncertainty

The category game typically uses a category model which may be
mapped onto the unit interval, partitioned into discrete intervals for
each concept. This approach results in a set of categories exclusive
and exhaustive and does not allow for any explicit representation
of uncertainty. An object cannot be represented by two categories,
so a colour could not be both pink and red. Furthermore there
cannot be an object which is not within the scope of any known
category, and so richer linguistic structures such as label negations
cannot be chosen as an appropriate communicative strategy. Both
of these restrictions may seem counter-intuitive in some situations.
Indeed vagueness is common in natural language. Situations where
a lexical structure does not determine a unique interpretation may
leave a collection of possible interpretations of meaning. In [18] Van
Deemter provides a number of ways in which vagueness may be a
positive feature of language. For instance, he suggests that risk may
be minimised by using a vague assertions in the presence of conflict.

A conceptual model incorporating typicality was adopted in
the category games literature [2] where the membership function
of a category was taken to be the inverse Euclidean distance to
the category prototype. This model was criticised in [13] on the
grounds that you can define an equivalence relation between this and
a rigid boundary model. In the following we introduce a category
game model where concepts are modelled as uncertain regions of a
metric space, providing agents with a conceptual model explicitly
representing semantic uncertainty (the uncertainty associated with
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the definition of concept labels resulting from the empirical manner
in which we all learn to use language [10]) using a random set and
prototype theory based neighbourhood model. Although uncertainty
is modelled explicitly, this model is not subject to the criticism
presented to [2] in [13].

2 MODELLING CONCEPTS
The classical theory of categorisation requires that all members of a
given category satisfy a set of shared properties. Psychologists have
criticised this model [14] arguing that a richer, more flexible repre-
sentation is required for natural categories. The classical requirement
that category membership be defined in terms of necessary and suf-
ficient conditions renders the approach a highly inflexible process.
Elements of the space which technically violate the category defini-
tion may in fact be very similar to category members.

2.1 Prototype Theory
Prototype theory is an alternative model of categorisation which was
proposed by Rosch [14] and developed by Lakoff [9] and more re-
cently Hampton [8]. Prototype theory demands that rather than satis-
fying a set of necessary and sufficient conditions, category members
are categorised according to similarity to a prototypical member, or
prototype. This model naturally results in a typicality ordering on
category members.

2.2 Conceptual Spaces
A measure of conceptual distance is a necessary tool for prototype
theory, and similarity spaces have been a topic of discussion over
the last several decades [12, 14]. More recently Gärdenfors has pro-
posed conceptual spaces [7] as a geometrical framework for concept
representation. A conceptual space is a metric space where each di-
mension quantifies a certain property or feature, so that a given ob-
ject is fully described by a point in this space. Categories within
a conceptual space are represented as convex regions which may
be generated by a Voronoi tessellation based around prototypical
points. A Voronoi-based approach incorporating uncertainty in cat-
egory boundaries was introduced in [5]. This model explicitly rep-
resents uncertain boundaries, but still provides a model which is ex-
haustive in its category definitions.

2.3 A Random Set and Prototype Neighbourhood
Model

We use a neighbourhood concept model based on the label semantics
framework [10, 11]. We define a conceptual space Ω and a finite set
of n labels LA from which a compound set of expressions LE can
be generated through recursive applications of logical connectives
to labels in LA. Each label represents a word which may be used to
represent elements of the conceptual space Ω, so that “x is Li” is
meaningful (although not necessarily appropriate) for any x in Ω.
For example in CIELAB space, LA may be the labels “red”, “blue”
etc, and LE would be the expressions “red and blue”, “not red” etc.

We assume a distance function d defined on Ω. A label Li is
then deemed to be appropriate to describe an element x if x is
sufficiently close to the prototype for label Li. More formally we say
Li is appropriate to describe x if d(x, Pi) ≤ εi where εi is a distance
threshold. We capture semantic uncertainty in εi, so εi is modelled as

a random variable on R+.

Each agent is defined by an interpretation I = (Ω, d,−→P ,−→ε ) of
LA, where −→P is a vector of prototypes and −→ε is a vector of threshold
variables. Given an interpretation, the constraint d(x, Pi ≤ εi may
be used to define a neighbourhood region of Ω within which all
points may be appropriately used to describe x. We can define
N I

Li
, the neighbourhood for Li given interpretation I, and N I

¬Li
, the

neighbourhood for ¬Li given interpretation I, as follows:

N I
Li

= {x : d(x, Pi) ≤ εi} (1)

N I
¬Li

= (N I
Li

)c (2)

The neighbourhood for a basic label Li can be thought of as the
closed ball with radius εi center which is a convex region with an
uncertain boundary. Neighbourhoods may overlap with other neigh-
bourhoods in the conceptual space, and there may be regions of the
conceptual space where no neighbourhood is defined.

3 A MULTI-AGENT CATEGORY GAME
MODEL

We consider a population of 100 agents, each of whom has an
interpretation of 11 basic labels in a conceptual space. We take and d
to be the Euclidean norm. This choice of metric space was originally
inspired by other work done on colour spaces such as the RGB
cube. Here, while we are not focussing on a specific application,
considering a higher-dimensional space allows for a more general
investigation of the proposed framework than, for example, the real
line [1].

Each agent has an associated weight w in the range [0.1, 0.9]
quantifying the level of importance other agents give to their
assertions (we do not use the range to prevent singularities occurring
in the updating algorithms with division by 0). The simulations
progress in discrete time steps, and at each time step every agent
interacts with another in a pairwise manner in a language game (so
50 interactions take place at each time step), where interactions are
determined at random modelling the population on a fully connected
network. The weights of the agents are distributed uniformly in the
range [0.1, 0.9] at time step 0, and at each time step the weight of
each agent increases by 0.8T−1 where T is the number of time steps
in the simulation. If an agent’s weight surpasses the maximal value
of 0.9 then it is reset to 0.1.

3.1 Assertion and Updating Algorithms
For each interaction the two agents are presented with the same
element x sampled from a uniform density on Ω. The speaker
then asserts “x is θ” according to an assertion model based on
their current interpretation I of the labels in LA. This listener then
calculates an appropriateness measure µθx, a subjective belief that
the expression θ is appropriate to describe x, according to their
interpretation I. If µθ(x) < w where w is the weight of the speaking
agent, then the listener updates their interpretation of LA so that the
inequality µθ(x) ≥ w holds. The set of possible assertion expressions
is made up of “x is Li” (positive assertion) where Li is a label
in LA, and “x is ¬Li” (negative assertion) where Li is a label in
LA. We define probability p to be prior probability of an agent
asserting a positive assertion, and the probability 1 − p of being
the probability of asserting a negative assertion. A speaking agent
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x

? ?

Speaking Agent Listening Agent-

Assertion
“x is θ”

If µθ(x) < w, then update I → I′

Figure 1. The Category Game Model

asserts an expression for x which gives maximal probability over a
probability density on assertion expressions.

If an update is performed given an assertion of a basic label,
then the listening agent must update their interpretation of LA so
that µLi (X) ≥ w holds. In this case the agent moves the prototype
Pi along the vector −−→Pi x to a new prototype P′i and increases the
boundary variable εi to αεi, where α ≥ 1.

εi

ε′i = αεi

P′i = Pi + λ(x − Pi)

x

λ ∈ [0, 1], α ≥ 1

Figure 2. A Positive Updating Rule

If a negative assertion is given to the listening agent, then an
update must satisfy the constraint µ¬Li (x) ≥ w or µLi (x) < w. In this
case the agent moves the prototype along the vector −−−→Pi x to a new
prototype P′i , and decreases the boundary variable εi to αεi where
α ≤ 1. Note that the convexity of the category neighbourhoods is
retained through these updating rules.

3.2 Measuring Communication Success

To be a true measure of population agreement a measure of commu-
nication success should remain independent from the learning pro-
cess taking place at each time step through the category game. So
at each time step after the set of pairwise category games has taken
place, a new set of 50 agent pairs is selected at random from the
population. Each pair of agents is presented with 10 objects selected
uniformly from Ω. Both agents select the label arg maxLi {µLi (x) : i =

1, ..., n}, the label with maximal appropriateness measure, for each
object presented to the agents. The proportion of objects for which

Pi

P′i = Pi − λ(x − Pi)

x

εi

ε′i = αεi

λ ∈ [0, 1], α ≤ 1

Figure 3. A Negative Updating Rule

the agents agree on this label gives a measure of agreement in inter-
pretation of LA for these two agents. An average of this measure over
all agent pairs gives our measure of communication success.

4 SIMULATION RESULTS
We ran simulations on a population of 100 agents for 10000 time
steps. Different assertion priors were tested and each result is
averaged over 25 runs. At time step 0 agents are given an inter-
pretation of 11 labels with prototypes distributed according to a
uniform distribution on Ω, and boundaries εi are each modelled by
a uniform distribution on [0, b] where b is given at time step 0 by
a random number between 0 and 2.5. Figure 4 shows population

Figure 4. Communication Success over time with p ∈ {0, 0.25, 0.5, 0.75, 1}

communication success across time for p ∈ {0, 0.25, 0.5, 0.75, 1}.
Initially the population shows average communication success of
just below 0.1 which is to be expected as this corresponds to agents
choosing a label at random for any presented object. We see an
increase in communication success for all priors tested in figure 4,
but the increase is greatest when p = 0.75 and p = 1. The plots here
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do not suggest continuous behaviour of our performance metric with
p.

Figure 5. Communication Success at time step 10000 for priors p ∈ [0, 1]

Figure 6. Communication Success at time step 10000 for priors
p ∈ [0.5, 0.6]

As we see an increase in communication success for all priors
we may consider the value of communication success at time step
10000 as a measure of performance for a simulation. Figure 5 shows
this result for priors in increments of 0.05. We see that the best result
is observed for p = 0.55. It is still not clear that there is continuity
in out metric as a function of p, and so we focus on the range
p ∈ [0.5, 0.6]. We see in figure 6 that for this range the highest value
of communication success is seen when p = 0.54.

Figure 7 shows the average communication success across time
when p = 0, when we see the smallest increase in communciation
success. The error bars suggest that the increase is not greatly
significant across time. Figure 8 shows the average communication
success across time when p = 0.54, the best result recorded at the
end of simulations. Error bars suggest that the average communi-
cation success is in this case significantly different at the end of
simulations to the beginning of simulations.

Figure 7. Communication Success over time with p = 0

Figure 8. Communication Success over time with p = 0.54
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5 CONCLUSION
Using a neighbourhood category representation we allow agents to
model categories which allow for semantic vagueness. The range of
language expressions generated using the label semantics framework
here provide a richer description of the conceptual space.

Experimental results show that the average communication
success in the population reaches the highest value when a mixed
prior is used, allowing agents to assert both basic labels and their
negations. This suggests that full use of these richer expressions can
be the best choice of an agent to describe a simulated environment
rather than a set of basic descriptions. Considering the communi-
cation success across time for the population, we see a significant
difference in the metric at the beginning and end of simulations using
a mixed asssertion prior. This suggests that the proposed framework
is effective in allowing agents to develop a shared interpretation,
allowing for successful communication in a population.
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The Utility of Hedged Assertions in the Emergence of
Shared Categorical Labels

Martha Lewis and Jonathan Lawry 1

Abstract. We investigate the emergence of shared concepts in a
community of language users using a multi-agent simulation. We
extend results showing that negated assertions are of use in devel-
oping shared categories, to include assertions modified by linguistic
hedges. Results show that using hedged assertions positively affects
the emergence of shared categories in two distinct ways. Firstly, us-
ing contraction hedges like ‘very’ gives better convergence over time.
Secondly, using expansion hedges such as ‘quite’ reduces concept
overlap. However, both these improvements come at a cost of slower
speed of development.

1 INTRODUCTION
An evolutionary approach to semantics enables the development in
robots and autonomous agents of flexible, mutable concepts that
could be learnt through interaction and can change over time [12].
This approach is investigated by Eyre and Lawry in [2], in which
they develop a model of language evolution based in the label se-
mantics framework. They show that using a mixture of positive and
negated assertions enables the development of languages that are
both shared, and discriminate effectively between elements within
the environment. We extend this work to include assertions modified
by the words ‘very’ and ‘quite’, and show that doing so improves
performance in two ways. Use of the hedge ‘very’ improves levels of
convergence attained. Using the hedge ‘quite’ reduces the amount of
overlap within an agent’s label set. We describe in detail the theoreti-
cal approach to concepts taken and linguistic hedges in the remainder
of this section. Section 2 gives details of the mathematical and com-
putational model used in the simulations. Section 3 gives results of
the simulations which are discussed in section 4. Lastly, section 5
gives conclusions and further avenues of research.

1.1 A representation model for concepts
We model concepts within the label semantics framework [7, 8],
combined with prototype theory [10] and the conceptual spaces
model of concepts [3]. Prototype theory offers an alternative to the
classical theory of concepts, basing categorization on proximity to
a prototype. This approach is based on experimental results where
human subjects were found to view membership in a concept as a
matter of degree, with some objects having higher membership than
others [10]. Fuzzy set theory [14], in which an object x has a graded
membership µL(x) in a concept L, was proposed as a formalism
for prototype theory. However, numerous objections to its suitability
have been made [9, 11, 6, 4, 5].

1 University of Bristol, England, email: martha.lewis@bristol.ac.uk,
j.lawry@bristol.ac.uk

Conceptual spaces theory renders concepts as convex regions of a
conceptual space - a geometrical structure with quality dimensions
and a distance metric. Examples are: the RGB colour cube, pictured
in figure 1; physical dimensions of height, breadth and depth; or the
taste tetrahedron. Since concepts are convex regions of such spaces,
the centroid of such a region can naturally be viewed as the prototype
of the concept.

Figure 1. The RGB cube represents colours in three dimensions of Red,
Green and Blue. A colour concept such as ‘purple’ can be represented as a

region of this conceptual space.

Label semantics [7] is a random set approach to concepts which
quantifies an agent’s uncertainty about the extent of application of
a concept. We refer to this as subjective uncertainty [8] to empha-
sise that it concerns the definition of concepts and categories, in con-
trast to stochastic uncertainty which concerns the state of the world.
Lawry and Tang [8] combine the label semantics approach with con-
ceptual spaces and prototype theory, to give a formalisation of con-
cepts as based on a prototype and a threshold, located in a conceptual
space.

Within this framework, agents use sets of labels LA =
{L1, L2, ..., Ln} to describe an underlying conceptual space Ω with
distance metric d(x, y) between points. The conceptual space could
be, as mentioned, the RGB colour space. Labels Li would then be
concepts such as ‘red’, ‘blue’, ‘purple’, ‘orange’ and so on. These
labels are viewed as regions of the conceptual space. So the concept
‘blue’ is represented by the blue region in the colour cube. Within
label semantics, these regions are specified by prototypes Pi and
thresholds εi. This is in contrast to Gärdenfors’ original approach
which is to view the space as partitioned by a Voronoi tessellation. If
this latter approach is taken, each individual point in the conceptual
space is allocated to exactly one label. With a prototype-threshold
approach, it is easy to accommodate the idea of an object being ac-
curately described by more than one concept, or conversely, some
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points within the space not being assigned to any concept. This dif-
ference is illustrated in figures 2 and 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Figure 2. Conceptual space divided into concepts according to a Voronoi
tessellation around prototypes. Each part of the space corresponds to exactly

one concept.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Figure 3. Conceptual space divided into concepts according to a
prototype-threshold approach. Some points in the space correspond to more

than one concept, and some correspond to none.

In this model, however, agents are uncertain as to exactly where
the thresholds lie. To illustrate this, consider the concept ‘tall’. It is
easy to point out a tall person, and to point out a person who is not
tall, but it is difficult to specify the exact threshold between ‘tall’ and
‘not tall’. This uncertainty concerning where the threshold lies is rep-
resented in the label semantics framework by saying that a threshold
εi is drawn from a probability distribution δi. Labels Li are associ-
ated with neighbourhoods N εi

Li
= {~x ∈ Ω : d(~x, Pi) ≤ εi}, i.e. the

region within the threshold. These ideas are represented in figure 4.

Pi
εi

x2

x1

a

b

Figure 4. Prototype-threshold representation of a concept Li. The
conceptual space has dimensions x1 and x2. The concept has prototype Pi
and threshold εi. The uncertainty about the threshold is represented by the

dotted line. The neighbourhoodN εiLi
is the area within the dotted line.

Element a in the conceptual space is within the threshold, so it is appropriate
to assert ‘a is Li’. Element b is outside the threshold, so it is not appropriate

to assert ‘b is Li’

The threshold εi is uncertain, however, so there is some probability
that εi in figure 4 is actually wide enough to include the object b, i.e.
that Li is appropriate to describe b. The appropriateness µLi(x) of a
label Li to describe an element x is then given by the probability that
x lies within the neighbourhood N εi

Li
, i.e. that the distance d(x, Pi)

is less than εi. So:

µLi(x) = P (d(x, Pi) ≤ εi) =

∫ ∞
d(x,Pi)

δi(εi)dεi

Figure 5 shows how this appropriateness measure works in a setup
similar to that in figure 4.
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Figure 5. Membership in a concept. The prototype of the label is at
[0.5, 0.5] and the threshold ε has distribution U [0, 0.3]. When

x = [0.5, 0.5], µL(x) = 1. As we move further away from the prototype,
membership in the concept decreases, and is 0 when d(x, Pi) > 0.3

This appropriateness measure is similar to Zadeh’s description of
fuzzy membership in a concept [14].

1.2 Linguistic hedges
Hedges are words or phrases such as ‘very’, ‘quite’, ‘strictly speak-
ing’ which modify the domain of application of a concept. In partic-
ular, ‘very’, and ‘quite’ respectively contract or expand the domain
of application of a concept, so that, for example, ‘very tall’ applies to
fewer people than does ‘tall’, whereas ‘quite tall’ applies to more.
Within fuzzy set theory, we expect that µveryL(x) ≤ µL(x) and
µquiteL(x) ≥ µL(x). Applying this to the concept ‘tall’, again, this
means that membership in the concept ‘very tall’ should always be
less than membership in ‘tall’. So anyone who can be described as
‘very tall’ can also be described as ‘tall’. Zadeh [15] uses operations
of concentration and dilation to render these ideas. Concentration is
described as CON(µLi(x)) = (µLi(x))2 and dilation is often ren-
dered as DIL(µLi(x)) = (µLi(x))1/2. However, we argue, as do
[1], that Zadeh’s formulae are, to an extent, arbitrary, since the no-
tion of taking a power of a membership value does not correspond to
anything that language users might do. Rather, it simply has some of
the right effects. As with [1], we take a semantic approach.

We propose that a concept ‘very L’ or ‘quite L’ be rendered by
considering that the prototype of ‘very/quite L’ is equal to that of
the base concept L, but that the threshold of the hedged concept
‘very/quite L’ is respectively smaller or larger than that of the base
concept. This approach is grounded in the idea that ‘very/quite L’
should apply to respectively fewer or more objects than L. Narrow-
ing or widening the threshold achieves this in a natural way. This is
illustrated in figure 6.
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Pi

εi
x2

x1

a

b

qεi

vεi

Figure 6. Representation of ‘very Li’ and ‘quite Li’. ‘Very Li’ has
prototype Pi and threshold vεi ≤ εi. ‘Quite Li’ has prototype Pi and

threshold qεi ≥ εi. Notice that although Li is appropriate to describe a,
vLi is not. Also, although Li is not appropriate to describe b, qLi is.

Our model of the hedges ‘very’ and ‘quite’ therefore requires sim-
ply that vεi ≤ εi and that qεi ≥ εi. We implement this model in
a version of the multi-agent simulation created in [2] in order to in-
vestigate how the use of these hedges in a model of language helps
the emergence of shared categories across a community of language
users.

2 METHODS

2.1 Overview

To investigate the utility of hedged assertions we implement a multi-
agent simulation of a version of the category game [13], following
[2], in which shared categories develop over time as a result of the
interactions of the category users. An overview of the game is as fol-
lows. Agents use labels to describe a conceptual space Ω. At each
timestep, agents are randomly paired into speakers and listeners, and
each pair is shown a distinct element x ∈ Ω. The speaker makes an
assertion θ about the element based on its label set. The listener then
updates its own label set to be more similar to that of the speaker,
based on this assertion and a parameter w which can be thought of
as the age of the speaker. The update made by the speaker is a com-
bination of shifting the prototype of the relevant label and changing
the size of the threshold. The aim is that after a number of timesteps,
label sets across the population have converged to a common set of
shared categories.

2.2 Conceptual models

Each agent is equipped with the same number n of labels Li, with
point prototypes Pi ∈ Ω, where Ω = [0, 1]3. At the start of the simu-
lations the Pi are uniformly distributed around the space. Thresholds
εi are also randomly initiated, and considered to be some multiple of
a base threshold ε. Each threshold εi ∼ U(0, bi), where again, the
bi can be considered to be a multiple of some common b, and the bi
are taken from U [0.5, 2]. The distance metric is Euclidean.

Each agent therefore has a label set LA = {L1, L2, ...Ln}. These
labels can be hedged to form a set LA+ = LA∪{very Li, quite Li :
i = 1, ..., n}. Hedged concepts have the same prototype Pi as ba-
sic labels, but a scaled threshold vεi or qεi where v < 1 and
q > 1. Agents can assert positive or negated, hedged or basic la-
bels, giving an assertion set AS = {kLi,¬kLi : i = 1, ..., n; k =

very, quite, basic}, where k = basic means that the label is not
hedged.

2.3 Assertion model
At each timestep, half the agents are designated speaker agents and
make assertions, determined by the assertion model used.The asser-
tion model is based on the probability of making a particular asser-
tion θ, given that the object being described is x. Following methods
in [2, 8], we calculate the posterior probability of each θ ∈ AS, given
an element x ∈ Ω. The assertion made by a speaker agent is the as-
sertion with the highest probability. The posterior probability of each
θ, given x, is determined by the appropriateness of the assertion θ to
describe x, i.e. µθ(x), and the prior probability P (θ) of asserting θ.

We first consider which sets of labels that are appropriate to de-
scribe x ∈ Ω. The probability that any particular set of labels
F ⊆ LA are appropriate to describe x is given by a probability mass
function mx : 2LA → [0, 1]. One way of determining mx is via the
consonant selection function introduced in [8]. This states:

Definition 1 (Consonant selection function) Given non-zero ap-
propriateness measures on basic labels µLi(x) : i = 1, ..., n or-
dered such that µLi(x) ≥ µLi+1 for i = 1, ..., n, the consonant
selection function identifies the mass function

mx({L1, ..., Ln}) = µLn(x)

mx({L1, ..., Li}) = µLi(x)− µLi+1(x) for i = 1, ..n− 1

mx(∅) = 1− µL1(x)

mx(F ) = 0 if F 6= {L1, L2, ..., Lk} for some k ≤ n

Because we have ordered the labels by µLi(x) ≥ µLi+1 , if the
label Li is appropriate to describe x, all labels Lj : j < i must also
be appropriate to describe x. The quantity µLi(x) − µLi+1(x) cor-
responds to the idea that x in some sense lies between the thresholds
εi+1 and εi, so that Li is appropriate to describe x, but Li+1 is not.
We extend this definition to the case of hedged labels simply by con-
sidering all hedged labels as basic labels, explained in the example
below.

Example 2 (Determining the mass function) Suppose we are de-
termining the mass function for subsets F ⊆ {kL1, kL2 : k =
very, quite, basic}, given the point a ∈ x1 × x2, as illustrated in
figure 7.

Suppose that µquiteL2(a) = 0.9, µL2(a) = 0.7, µquiteL1(a) =
0.3, µveryL2(a) = 0.1, µL1(a) = 0, µveryL1(a) = 0, giving us
the order µquiteL2(a) ≥ µL2(a) ≥ µquiteL1(a) ≥ µveryL2(a) ≥
µL1(a) ≥ µveryL1(a). We may then assign probabilities to subsets
of labels according to the consonant selection function:

mx(F6) = mx({quite L2, L2, quite L1, very L2, L1, very L1})
= µveryL1(a) = 0

mx(F5) = mx({quite L2, L2, quite L1, very L2, L1})
= µL1(a)− µveryL1(a) = 0

mx(F4) = mx({quite L2, L2, quite L1, very L2})
= µveryL2(a)− µL1(a) = 0.1

mx(F3) = mx({quite L2, L2, quite L1})
= µquiteL1(a)− µveryL2(a) = 0.2

mx(F2) = mx({quite L2, L2}) = µL2(a)− µquiteL1(a) = 0.4

mx(F1) = mx({quite L2}) = µquiteL2(a)− µL2(a) = 0.2

mx(∅) = 1− µquiteL2(a) = 0.1
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P2x2

x1

a
P1

Figure 7. Determining the mass function on subsets of
{kL1, kL2 : k = very, quite, basic}. P1 and P2 represent prototypes for

each lable L1 and L2, and the dotted lines give the different thresholds
according to the hedges, as in figure 6. Notice that ‘quite L2’, L2, ‘very L2’

and ‘quite L1’ are all appropriate to describe a, although with different
appropriateness measures (not shown), but L1 and ‘very L1’ are not.

Having determined the probability mass function on sets of labels,
a mass assignment on sets of assertions is then defined.

Definition 3 (Mass assignment on assertions) max : 2AS →
[0, 1] is defined such that:

max(G) =
∑

F⊆LA+:C(F )=G

mx(F )

where C (F ) = {θ ∈ AS : F ∈ λ(θ)}, and λ(θ) is defined recur-
sively by

λ(kLi) = {F ⊆ LA+ : kLi ∈ F}
λ(¬θ) = (λ(θ))c

λ(θ ∧ φ) = λ(θ) ∩ λ(φ)

λ(θ ∨ φ) = λ(θ) ∪ λ(φ)

This definition has the implication that for Gi = Fi ∪ {¬kLj :
kLj ∈ LA+\Fi}, max(Gi) = mx(Fi).

Then the probability of an assertion θ being made, given that an
object x is being described, can be calculated by summing over G ⊆
AS that contain θ.

Definition 4 Given a prior distribution on AS, a posterior distribu-
tion given an object x can be calculated by:

P (A = θ|x) =
∑

G⊆AS:θ∈G

max(G)P (A = θ|A ∈ G)

= P (θ)
∑

G⊆AS:θ∈G

max(G)

P (G)

Here, P (G) =
∑
ϕ∈G P (ϕ)

The value of P (θ) for one particular label L is a product of two
elements: the prior probability pp of making a positive assertion (or
1 − pp for a negated assertion); and the prior probability of making
a hedged assertion, given by pv for making an assertion hedged with
the word ‘very’, pq for making an assertion hedged with ‘quite’ or
1− pv − pq for making a basic assertion, summarised in table 1.

Table 1. Prior probabilities of each type of assertion ±kLi

∗ pv pb pq
pp P (vL) P (L) P (qL)
pn P (¬vL) P (¬L) P (¬qL)

The prior probability of asserting any particular label Li ∈ LA is
uniform acrossLA. Hence the value ofP (θ) calculated above should
be divided by n, giving, for example,

P (¬vL2) =
pn ∗ pv
n

Example 5 (Determining the posterior probability of assertion)
Suppose, for an easy example, we want to calculate the probability
of asserting ‘very L1’, given object a, as in example 2. We need to
calculate

P (A = ‘very L1’|a) = P (θ)
∑

G⊆AS:‘veryL1’∈G

max(G)

P (G)

where Gi = Fi ∪ {¬kLj : kLj ∈ LA+\Fi}. However, the only
subset Gi 3 ‘very L1’ is G6, so

P (A = ‘very L1’|x) = P (‘very L1’)
max(G6)

P (G6)

= 0

Suppose, for a more involved example, the label set LA+ is as in
example 2, with pp = 0.7, pv = 0.7, pq = 0.2, and we want to de-
termine P (A = quite L1|a). The prior probability P (quite L1) =
0.7∗0.2

2
= 0.07. So we have:

P (A = quite L1|a)

= 0.07
∑

Gi:quiteL1∈Gi

max(Gi)

P (Gi)

= 0.07(
max(G6)

P (G6)
+
max(G5)

P (G5)
+
max(G4)

P (G4)
+
max(G3)

P (G3)
)

= 0.07(0 + 0 +
0.1∑

ϕ∈G4
P (ϕ)

+
0.2∑

ϕ∈G3
P (ϕ)

)

= 0.07(
0.1

0.54
+

0.2

0.4
)

= 0.048

Having calculated the probability of each assertion, the speaker
agent makes the most probable assertion θ ∈ AS.

2.4 Updating algorithms
Once the speaker agent has made assertion θ, the listener agent com-
putes µθ(x) based on its current label set. If µθ(x) < w, where w
is a parameter that can be thought of as the age of the speaker agent,
the listener agent updates its label set LA by moving the prototype
and/or changing the threshold of the concept, until µθ(x) = w. For-
mulae for these updates are again based on [2]. A label defined by Pi
and εi is updated to P ′i = Pi − λ(x− Pi) and ε′i = αεi. Values for
λ and α are sought, such that µ′θ(x) = w.
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2.4.1 Case 1: θ = kLi

Recall that εi ∼ U(0, bi), so that for x ∈ Ω,

µkLi(x) = 1− ||x− Pi||
kbi

< w by assumption.

The label Li is updated to L′i, where P ′i = Pi − λ(x − Pi) and
ε′i = αεi, such that µkL′

i
(x) ≥ w, and minimising the distance

between the interpretations as measured by the Haussdorff distance
between the two neighbourhoods,

H (NLi ,NL′
i
) = ||Pi − P ′i ||+ |εi − ε′i| (1)

= |λ|||x− Pi||+
εbi
b
|1− α| (*)

To minimise the update, we set µkL′
i
(x) = w, so:

w = µkL′
i
(x) = 1− ||x− P

′
i ||

kb′i
= 1− |1− λ|||x− Pi||

αkbi

which gives

α =
|1− λ|||x− Pi||

(1− w)kbi

=
(1− λ)||x− Pi||

(1− w)kbi
since λ = 1→ P ′i = x

To updateLi we will always want λ ≥ 0, α ≥ 1, as we are dealing
with a positive label.

Substituting α into equation (*), we obtain

H (NLi ,N
′
Li

) = |λ|||x− Pi||+
εbi
b

(
(1− |λ|)||x− Pi||

(1− w)kbi
− 1)

= |λ|||x− Pi||(1−
ε

b(1− w)k
) +

ε||x− Pi||
b(1− w)k

− εbi
b

(2)

Then if 1 − ε
b(1−w)k

> 0, i.e. ε < b(1 − w)k, the quantity (2)

can be minimised by setting λ = 0 so α = ||x−Pi||
(1−w)kbi

. Otherwise, we

have α = 1, λ = 1− (1−w)kbi
||x−Pi||

.
Since ε is a random variable, so is the choice between λ and α. We

therefore need a concrete updating rule. We update Pi and bi with the
expected values of λ and α respectively. ε ∼ Uniform[0, b], so

P (ε < b(1− w)k) =

{
(1− w)k if (1− w)k < 1

1 otherwise

We can therefore calculate

E(α) =

{
||x−Pi||

bi
+ 1− (1− w)k if (1− w)k < 1

||x−Pi||
(1−w)kbi

otherwise

and

E(λ) =

{
(1− (1− w)k)(1− (1−w)kbi

||x−Pi||
) if (1− w)k < 1

0 otherwise

2.4.2 Case 2: θ = ¬kLi

By an entirely similar argument, we obtain

E(α) =

{
||x−Pi||

bi
+ 1− wk if wk < 1

||x−Pi||
wkbi

otherwise

and

E(λ) =

{
(1− wk)(1− wkbi

||x−Pi||
) if wq < 1

0 otherwise

So at each timestep, each listener agent, for whom µθ(x) < w,
updates the relevant label using the the quantities E(α), E(λ).

2.5 Performance metrics
Performance metrics from [2] are used, measuring the Average Pair-
wise Distance between label sets (APD) and the Average Label Over-
lap (ALO). APD measures the difference in label sets in the com-
munity, and ALO indicates the extent to which an agent’s concepts
overlap. We seek low values for each metric.

APD is calculated using the Haussdorff distance between two
neighbourhoods as given in equation 1. The difference between the
label sets of any one pair of agents is given by

IPD =

n∑
i=1

H (N j
Li
,N k

Li
)

where n is the number of labels each agent has and j and k refer
to distinct agents.

This is averaged over pairs of agents. There are N agents, there-
fore

(
N
2

)
pairs, giving:

APD =
2

N(N − 1)

N∑
k=j+1

N∑
j=1

IPDjk

ALO is the extent to which labels overlap. To calculate this, we
take the maximum value of the intersection of a pair of labels, as
measured by a min rule. We average this value over pairs of labels.
The overlap within an individual’s label set is therefore

ILO =
2

n(n− 1)

n∑
j=i+1

n∑
i=1

max{min{µLi(x), µLj (x) : x ∈ Ω}}

Averaged across the population this is:

ALO =
1

N

N∑
k=1

ILOk

where ILOk siginifies agent k’s label overlap.

2.6 Simulation process
Simulations with n = 100 agents were run for T = 104 timesteps.
Agent weights w ∈ [0.2, 0.8] were updated at each timestep in in-
crements of 1/T . Whenw ≥ 0.8, agents are reborn with randomised
labels and w = 0.2. 20 simulations are run for each reported combi-
nation of parameters.

[2] show that if pp ∈ [0.5, 0.6] then performance of the system
changes from low ALO and high APD to vice versa at approximately
pp = 0.56. We ran simulations in a slightly extended range for com-
parison, varying the prior probabilities pv, pb and pq of asserting
the different hedges ‘very’, ‘basic’, and ‘quite’. We present results
from three sets of parameters. As a baseline we run simulations with
no hedges, i.e. pv = 0, pb = 1, pq = 0. To investigate the ef-
fects of using contraction hedges, we run simulations with parame-
ters pv = 0.7, pb = 0.2, pq = 0.1. For expansion hedges, we use
parameters pv = 0.1, pb = 0.2, pq = 0.7.
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3 RESULTS

The results presented show performance against the two metrics after
104 simulation timesteps. By this point, the population has generally
reached a steady state in which performance does not greatly change.

Figure 8 shows the steady state of APD achieved after 104

timesteps for a range of values pp ∈ [0.4, 0.6]. Three sets of results
are presented: results using unhedged assertions; results with a high
prior probability of using contraction hedges; and results from sim-
ulations with a high prior probability of asserting expansion hedges,
where these prior probabilities are as stated in 2.6.

A high prior of asserting contracted labels reduces minimum APD
achieved from 0.38 when pp = 0.56 or pp = 0.6 to 0.29 when
pp = 0.57 (figure 8). Performing a paired t-test across the 20 sim-
ulations gives the mean difference between these values as 0.097.
This difference is statistically significant with p < 0.001 and with
95% confidence interval [0.084, 0.110]. The median and range of
results are given in figure 9. At pp = 0.57, ALO decreases, from
0.92 to 0.89 (figure 11). The mean value of this difference across the
20 simulations is 0.032. Again, this is statistically significant with
p < 0.001 and 95% confidence interval of [0.029, 0.035], further
illustrated in figure 10. These results imply that a high prior proba-
bility of asserting contraction hedges enables us to improve conver-
gence between agents’ label sets as well as reducing overlap within
label sets slightly.
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Figure 8. APD after 104 timesteps. Using contraction hedges reduces the
minimum APD achieved from 0.38 at pp = 0.56 to 0.29 at pp = 0.57.

Expansion hedges reduce APD from 0.85 to 0.73 at pp = 0.45

With a high prior probability of asserting expanded labels, lower
values of ALO can be achieved when the probability of asserting pos-
itive labels is 0.45 , decreasing to 0.02 compared to 0.1, figure 11.
The mean difference between these values across the 20 simulations
is 0.083, which is statistically significant with p < 0.001 and a 95%
confidence interval of [0.078, 0.089]. The data is represented in fig-
ure 13. At this value of pp, APD achieved is 0.73 compared to 0.85
for unhedged assertions, figure 8. The mean value of this difference
across the 20 simulations is 0.12. This figure is statistically signif-
icant with p < 0.001 and 95% confidence interval [0.116, 0.126].
The data is again represented in figure 12. A high prior probability of
asserting expansion hedges therefore enables minimal overlap to be
maintained at low pp whilst improving convergence.

Unhedged, pp = 0.56 Contraction hedged, pp = 0.57

0.25

0.3

0.35

0.4

A
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D

Figure 9. Using contraction hedges reduces minimum APD. Box and
whisker plot of APD after 104 timesteps for 20 simulations, for pp = 0.56
unhedged, pp = 0.57 with a high probability of contraction hedges (values
of pp at which minimum APD is achieved). The middle line shows median
value, the box shows the 25th and 75th percentile. Whiskers show the range

of data excluding outliers, and crosses show outliers.
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Figure 10. Using contraction hedges slightly reduces ALO. Box and
whisker plot of ALO after 104 timesteps for 20 simulations, for pp = 0.57.

The middle line shows median value, the box shows the 25th and 75th
percentile. Whiskers show the range of data excluding outliers, and crosses

show outliers.

We can also examine how fast the community of agents arrives at a
steady state. Figure 14 shows that at short timescales (t < 2000), bet-
ter convergence may be achieved allowing only unhedged assertions.
In a more extreme case, figure 15 shows that for pp = 0.5, better per-
formance on the ALO metric is only achieved after 7500 timesteps.
Although this improvement takes a longer time to achieve, it goes
together with improved performance on APD which is achieved in a
similar timescale to the unhedged model 16.

4 DISCUSSION

These results show that, in a model of language development across
a population, hedged assertions can improve both the level of con-
vergence to shared language as measured by average pairwise dif-
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Figure 11. Contraction hedges slightly reduce high levels of ALO. At
pp = 0.57, ALO is reduced from 0.92 to 0.89. Expansion hedges reduce
minimum ALO from 0.1 for unhedged assertions to 0.02 for expansion

hedged assertions, at pp = 0.45.
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Figure 12. Expansion hedges reduce maximum APD. Box and whisker
plot of APD after 104 timesteps for 20 simulations, for pp = 0.45. The

middle line shows median value, the box shows the 25th and 75th percentile.
Whiskers show the range of data excluding outliers, and crosses show

outliers.

ference between label sets (APD) and, to an extent, the discrimina-
tory power of individuals’ label sets, as measured by average label
overlap (ALO). The two different types of hedges improve perfor-
mance in distinct ways. If overall convergence is important, a high
prior probability of asserting contraction hedges should be used to
improve performance on the APD metric. Conversely, if the ability of
the agents to discriminate precisely between objects in the environ-
ment is more important, then expansion hedges, together with lower
probabilities of asserting positive labels, should be used to maintain
low levels of ALO whilst still improving performance on APD.

The improved performance against the two metrics is tempered by
the fact that the speed at which the steady state is achieved is some-
what slower than when using simply unhedged assertions. However,
the improvement in APD is seen relatively quickly at pp = 0.56,

Unhedged Expansion hedged
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Figure 13. Expansion hedges reduce minimum ALO. Box and whisker
plot of ALO after 104 timesteps for 20 simulations, for pp = 0.45. The

middle line shows median value, the box shows the 25th and 75th percentile.
Whiskers show the range of data excluding outliers, and crosses show

outliers.
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Figure 14. APD vs time for models with no hedged assertions, contracted
assertions and expanded assertions, for a prior probability of positive

assertions pp = 0.56. Although the final value reached is lower when there
is a high probability of making contracted assertions, the community of

agents takes longer to reach that value.

soon after the unhedged model has reached its steady state. The im-
provement in ALO when using expansion hedges, for pp = 0.5, does
not occur until after 7, 500 timesteps, well after the unhedged model
has reached its steady state. However, the improvement in perfor-
mance on ALO goes together with improved performance on APD
which is attained at the same speed as the in the unhedged model.

If the speed of development of shared categories is not important,
the two types of hedges would be useful in different types of sit-
uation, depending whether convergence or discriminatory power is
more important. This might be dependent on, for example, the struc-
ture of the underlying environment. In the current simulation, ob-
jects are presented uniformly across the space. If objects were dis-
tributed non-uniformly, perhaps clumping in various regions of the
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Figure 15. ALO vs time for models with no hedged assertions, contracted
assertions and expanded assertions, for a prior probability of positive

assertions pp = 0.5. Although the final value reached is lower when there is
a high probability of using expansion hedges, the community of agents takes

longer to reach that value, and may even reach a lower value still.
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Figure 16. APD vs time for models with no hedged assertions, contracted
assertions and expanded assertions, for a prior probability of positive

assertions pp = 0.5. Lower APD is achieved with a high prior probability of
asserting expansion hedges, in a similar timescale to the unhedged model

space, then perhaps the ability to discriminate precisely between dif-
ferent labels would be less important, since the environment provides
that distinction naturally. Convergence to shared labels would then be
more important.

If speed is important, using contraction hedges can still improve
levels of convergence in a relatively short timeframe.

There are many parameters in the simulation that bear further in-
vestigation. The distribution of objects in the environment, as men-
tioned above, is likely to have an effect on performance again the
two metrics. In the current simulations, hedge values of v = 0.5 and
h = 2 are used. Increasing and decreasing these values could have an
impact on performance, as would, perhaps, allowing agents to have
difference values of v and h. The range of w allowed also affects
performance. When w = [0.01, 0.99], agents no longer achieve high

levels of convergence at pp > 0.55 (results not shown). Other weight
ranges may positively affect performance, however.

5 CONCLUSIONS
We have investigated the utility of hedged assertions in the develop-
ment of a shared language, and shown that allowing agents to make
hedged assertions improves the ability to develop common categories
in two distinct ways. Firstly, using contraction hedges, i.e. words
like ‘very’, allows improved levels of convergence to shared cate-
gories, whilst slightly improving the extent to which labels overlap.
Secondly, using expansion hedges, or words like ‘quite’, enables the
development of label sets that are more discriminatory of the envi-
ronment and also have better levels of convergence. However, both
these improvements come with a slower speed of development of
shared labels. It may be possible to improve these speeds by tuning
other parameters such as the age range of agents or the values of
hedges used.
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Abstract.  Assembly lines are one of the most frequently used 

flow oriented production systems in industry. Although only a 

few researchers have studied them, two-sided assembly lines are 

usually utilised to produce high-volume large-sized products 

such as trucks and buses. In this study, more than one two-sided 

assembly line constructed in parallel are balanced 

simultaneously using a newly developed ant colony optimisation 

algorithm. To the best knowledge of the authors, the proposed 

method is the first attempt to solve the parallel two-sided 

assembly line balancing problem using an ant colony 

optimisation based algorithm. The proposed approach is also 

illustrated with examples from the literature to show the 

procedures of the algorithm.  

Keywords: assembly line balancing; parallel two-sided 

assembly lines; ant colony optimisation; meta-heuristics; 

artificial intelligence. 

1 INTRODUCTION 

An assembly line is a sequence of workstations through which a 

set of tasks is processed. Assembly lines are used to assemble 

components into a final product and generally workstations are 

linked by a transportation system like a conveyor or moving belt 

[1].  

Assembly line balancing (ALB) problem is one of the most 

common problems in industry and a classical Industrial 

Engineering problem. The main objective of balancing assembly 

lines is to increase the efficiency of the line by minimising 

required number of workstations (type I problem) or cycle time 

(type II problem) [2]. A task can be defined as the smallest work 

element which cannot be divided between two or more stations 

[3]. A set of tasks is performed at each workstation and each task 

has its own processing time. Due to technological and 

organisational conditions, precedence constraints must be 

satisfied in the assignment process [4, 5].  

The sum of the completion times of tasks assigned to a 

work station is called as workload of this station. Usually, the 

cycle time is defined as a value which equals to the largest 

workload in an assembly line [6]. Hence, the production rate of 

the system is determined by cycle time [5, 7].  

Assembly lines can be classified into two general groups: 

(i) one sided assembly lines, and (ii) two-sided assembly lines. 

While stations are utilised on only one side for one sided 

assembly lines, left and right sides are used to utilise stations for 

two-sided assembly lines. Two-sided assembly lines are chiefly 

used to produce large sized products like trucks and buses. 

Although a large number of studies have been carried out in 

the literature on one sided assembly line balancing problem, the 

studies on two-sided assembly line balancing problem (TALBP) 

are very limited.  

Two-sided assembly line balancing problem was defined by 

Bartholdi [8]. Bartholdi [8] discussed some theoretical properties 

of two-sided lines; and developed a first fit heuristic based 

computer program which embodies a balancing algorithm that 

emphasizes speed over accuracy for the interactive rapid 

refinement of solutions. Afterwards, meta-heuristics have been 

used to solve TALBP. Kim et al. [9, 10], Taha et al. [11], 

Purnomo et al. [12], and Rabbani et al. [13] developed different 

genetic algorithms while Baykasoglu and Dereli [14], and 

Simaria and Vilarinho [15] developed ant colony optimisation 

(ACO) based algorithms. The study belongs to Baykasoglu and 

Dereli [14] is one of the first attempts to solve TALBPs using 

ant colony based heuristic. As different from some other studies, 

Simaria and Vilarinho [15] employed two ants that work 

concurrently - one at each side of the line - to build a balancing 

solution. Ozcan and Toklu [16], and Ozcan [17] implemented 

simulated annealing algorithms; Ozcan and Toklu [18] proposed 

tabu search algorithm; Chutima and Chimklai [19] proposed 

particle swarm optimisation algorithm while Ozbakir and 

Tapkan [20, 21] developed bees algorithms to solve TALBP. 

Some exact solution approaches have also been applied to 

TALBP by Hu et al. [22, 23], and Wu et al. [24]. However, 

none of these studies considered more than one line. 

Furthermore, this is the unique study in the literature which 

applies ACO on any kind of parallel two-sided assembly line 

balancing problem. 

In this study, more than one two-sided assembly line 

balancing problem is balanced simultaneously. This problem is 

known as the parallel two-sided assembly line balancing 

problem (PTALBP) and first (and only) studied by Ozcan et al. 

[25]. They described the problem and proposed a tabu search 

algorithm to solve PTALBP.  

Simple assembly line balancing problem (SALBP), which 

is the  simplest version of assembly line balancing problems, is 

an NP-hard class of combinatorial problem [26]. Since PTALBP 

is a much more complex version of SALBP, it is also NP-Hard, 

which means that it is difficult to obtain an optimal solution 

when the problem size increases. Because, the solution space 
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will grow exponentially as the number of tasks increase [24]. It 

is the major reason why a considerable amount of researches in 

the literature strives to develop heuristics and meta-heuristics 

instead of exact algorithms to solve ALB problems. 

Therefore, a new ant colony optimisation algorithm has 

been developed to solve PTALBP based on this motivation. To 

the best knowledge of the authors, the proposed algorithm is the 

first attempt to solve PTALBP with an ACO based approach in 

the literature. The main contribution of this research is proposed 

new and first ACO algorithm with different pheromone release 

strategy to solve PTALBP. 

2 PROBLEM STATEMENT 

The main objective of assembly line balancing is to minimise the 

sum of the differences between the cycle time and the individual 

workloads, which means minimising the total idle time of the 

line by minimising the number of required stations or the cycle 

time.  

A parallel, two-sided assembly line balancing problem is 

one in which more than one two-sided assembly lines are 

constructed in parallel. The main aim is assigning tasks to the 

workstations by considering some specific constraints like 

technological priorities, capacity constraints, zoning constraints, 

and positional constraints [25].  

Different product models are produced on different two-

sided assembly lines           and each product model 

          has its own set of tasks           . Each task 

requires a certain amount of time, which is called task time      , 
to be processed. Predefined precedence relationships are 

considered to perform these tasks.     represents the set of 

predecessors of task   in line  . Tasks are performed in a series 

of workstations           utilised on parallel lines, 

considering cycle time      which is predefined by line manager 

[25].    symbolises the queue number in which station   is 

utilised. 

The cycle time of each line may be different from each 

other. In that case, a common time should be used while 

assigning tasks to the stations, in each cycle. Gokcen et al. [1] 

used least common multiple (LCM) based approach for this 

issue. Please refer to the studies of Gokcen et al. [1], and Ozcan 

et al. [25] for further information on LCM approach. 

Interference is an important issue that must be taken into 

account while balancing two-sided assembly lines. To avoid 

interference, tasks which have precedence relationship with each 

other must be assigned by considering completion time of 

previously assigned task. To give an example about that, let us 

consider     as set of predecessors of task   (in Figure 1). Task 

  can only be initialised after completion of task  , which is 

assigned on the other side of the line (to its mated workstation). 

The shaded rectangles in the figure represent idle times of the 

line.  

The merging of stations is one of the useful advantages of 

parallel two-sided assembly lines. As can be seen from Figure1, 

operator 2 performs tasks on both lines. First, Operator 2 

completes task   on the left side of the line II and then completes 

tasks  , and   respectively on the right side of the line I. Thus, 

operators which are assigned to interval of two lines can be used 

effectively to increase the efficiency of the lines.  

In this study, we consider two parallel two-sided assembly 

lines      , so the number of different product models equals 

to two      . 

 
 

Figure 1 Representation of parallel two-sided assembly lines 

(adapted from [25]). 

The assumptions/constraints considered in the study are as 

follows: 

 Only one product model is assembled on each line        

     , 

 Task times are known and deterministic, 

 Each task must be assigned to exactly one workstation, 

 Cycle time is larger than total workload of any 

workstation, 

 Each product model has its own set of precedence 

relationships, 

 Tasks can be assigned only a predetermined side of the 

line (left - L, right - R, or either - E), 

 A task can only be started if all of its predecessor tasks 

have been assigned and completed, 

 Interval stations are merged if the efficiency of an 

interval station is less than 75%.  

 

The objective function of the proposed method is given in 

Equation 1. 

            
       

    

 

   

                                   

where    is a binary variable and   is a user defined 

weighting factor; 

    
                         
          

                          

 

The first term of the objective function corresponds to the total 

number of opened workstations while the second term represents 

the total length of the line. The weighting factor     allows the 

user to decide on the significance of these two major aims. 

If   is selected larger than 1, it means that total length of the 

line is more important than the utilised number of stations to 

perform assigned tasks. 
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As can be observed from the Figures 1 and 2, the lines have 

been divided into different queues and qzones. qzone value helps 

the algorithm in holding the information for any specific task in 

which section of the line is the task assigned. So, this value will 

be used for pheromone release strategy, as a new feature of the 

algorithm developed in this research.  

 

Figure 2 Dividing parallel two-sided assembly lines into 

different qzones. 

3 PROPOSED METHOD 

Meta-heuristic algorithms are widely used to solve engineering 

design problems; especially to deal with NP-Hard combinatorial 

ones. 

The ant colony optimisation (ACO) proposed by Dorigo et 

al. [27], is one of number of nature inspired algorithms. They 

developed an ant system (AS) meta-heuristic (initial form of 

ACO) to solve small-sized travelling salesman problem (TSP). 

Since then, several researchers carried out a substantial amount 

of research in ACO algorithm, which demonstrates a better 

performance than AS. ACO algorithm has some mechanisms, 

which mimics the behaviour of the real ant colonies.  

One of the main application areas of ACO algorithm is 

assembly line balancing problem. Some researchers have found 

that ant techniques are able to solve various types of ALB 

problems, but not PTALBP.  

To our knowledge, the first technique that uses concepts 

derived from ant colony optimisation in this domain was applied 

by McMullen and Tarasewich [28] to mixed-model assembly 

line balancing problem with parallel workstations. Then, 

Vilarinho and Simaria [29], and Yagmahan [30] proposed 

different ACO algorithms for different type of mixed-model 

assembly line balancing problems., Zhang et al. [31], Fattahi et 

al. [32], and Sulaiman et al. [33] applied ant colony optimisation 

algorithm for straight assembly lines with various objective 

functions. Among them, Bautista and Pereira [34], and Chica et 

al. [35, 36] considered also space constraints.  

Baykasoglu and Dereli [37], Khaw and Ponnambalam [38], 

and Sabuncuoglu et al. [39] addressed U-shaped assembly line 

balancing problem via ant colony optimisation algorithm. 

Moreover, Baykasoglu and Dereli [14], and Simaria and 

Vilarinho [15] balanced two-sided assembly lines while 

Baykasoglu et al. [40], and Ozbakir et al. [41] optimised 

balanced parallel assembly lines using ACO based approaches. 

 

Figure 3 Flowchart of proposed ACO. 

However, as mentioned before, none of these researchers 

addressed PTALBP problem to solve via an ACO based 

approach.  

Figure 3 gives a flowchart of proposed ant colony 

optimisation approach in this study. The proposed algorithm 

starts with initialisation of pheromones. A new colony is 

released and different solutions (paths) are obtained by each ant 

in the colony. The basic idea is selection of tasks to be added to 

the current workstation by artificial ants. Pheromone level 

determines the probability of a task being selected by an ant. 

Pheromones, a measure of each path’s relative desirability, are 

calculated according to the quality of the drawn path by each ant. 

In the algorithm a new pheromone releasing strategy has 

been used instead of a heuristic search. So, two types of 

pheromone have been released by each ant according to the 

quality of the drawn path: (i) between task and last assigned 

task, and (ii) between task and qzone number (see Figure 2 for 

the explanation of qzone). A constant value of pheromone is 

evaporated after each tour. When a colony is completed their 

tour, global best solution is updated if a better solution is found, 

and double pheromone is laid to the edges of global best 

solution. The algorithm continues until all colonies complete 

their tour and stops when a predetermined maximum colony 

(Max Colony) number has been exceeded. 

No 
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Transition rule and pheromone evaporation rule are given in 

Equations 3 and 4, respectively.  

So, the probability for ant   to select task   after task   in 

qzone   while in its     tour is: 

    
     

        
 
        

 

         
         

 

    
      

 

                       

Each ant   maintains a tabu list in memory that defines the sets: 

  
 : tasks still to be assigned when at task  , 

  
 : qzones still to be utilised when at task  . 

The amount of virtual pheromone between task - last assigned 

task is represented with       . As a new feature of the 

algorithm, the pheromone amount between task - qzone is 

represented with       . 

After the completion of a tour, each ant   lays a quantity of 

pheromone         on both task-task, and task-qzone matrixes. 

  is the value which represents the quality of the acquired 

solution, and obtained by objective function, which is given in 

Equation 1. Evaporated pheromone level is calculated via 

Equation (4).  

                                                      

Pheromone update rules for task-task matrix, and task-qzone 

matrix are given in Equations 5 and 6, respectively. 

                                                          

                                                          

                
   

                        
             

Pseudo code of building a balancing solution procedure is given 

below (see Figure 4). Each ant draws a path using this code to 
build a balancing solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Pseudo code of balancing a solution by each ant. 

In the code,       means workload of current workstation while 

      represents workload of its mated workstation [15]. 

While allocating tasks to line I, if both sides do not have 

enough capacity to assign available tasks from line I (product 

model 1), efficiency of right side workstation is checked whether 

more tasks can be assigned from line II (product model 2). If 

yes, tasks are assigned from line II until right side workstation 

gets full, to decrease idle times. 

4 EXAMPLES 

Two examples are given to enable understanding of the proposed 

method and its main components. For this purpose, well-known 

problems from the literature are used to obtain different product 

models and solved using the proposed algorithm.  

The algorithm is coded in Java SE 7u4 and executed on a 

3.1 GhZ Intel Core i5-2400 CPU computer. After max number 

of colonies is achieved, algorithm is terminated and best solution 

is taken. Additionally, best solutions are recorded after 

completion of each ant’s tour in order to analyse the efficiency 

of the algorithm.  

The parameters used in the study are determined through a 

set of preliminary experimentations by authors and given in 

Table 1. These experiments are performed to improve the quality 

of obtained solutions. 

Table 1 Parameters used in the study for illustrated examples. 

Parameter Example 1 Example 2 

  0.1 0.1 

  0.3 0.3 

  0.1 0.1 

  0.5 0.5 

Initial pheromone level 8 20 

Number of ants in each colony 10 10 

Total number of colonies 10 20 
 

4.1. Example 1 

In the first example, two product models which have same 

precedence relationships and task times - they also can be 

thought of as the same product - produced on two parallel lines, 

one on each assembly line. Data of precedence relationships, 

task times, and preferred operation directions (side) for this 

problem is collected from the study of Kim et al. [9] and 

represented in Figure 5 (problem P9). Cycle time is accepted as 

6 minutes for both lines. 

 

(2, L) (3, L) (2, E) 

(3, R) (1, R) (2, L) 

(2, E) (1, E)  (1, E) 

1 4 7 

3 6 9 

2 5 8  (y, z) 

 x 

 Task 

 Task time 

 Side 

Select first line 

Start from left side 

While (there is (are) unassigned task(s)) 

Determine available tasks (in terms of precedence, 
capacity, and other constraints) 

Select an available task using pheromone information 

Assign selected task to current workstation 

Increase station workload as task time 

 If (           ) then 

 Change side (left or right) 

 End if 

If (both sides do not have enough capacity to 
assign available tasks) then 

 Select other line 

 Start from left side 

 End if 

 Update unassigned tasks list 

End while 

 

Figure 5 Precedence relationship diagram for illustrated 

example 1 (adapted from [9]). 
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Table 2 shows obtained best solution for given example. As can 

be seen from the table, 6 workstations are utilised to perform 18 

different tasks that belong to two product models. Total length of 

the line is 2 units. Four workstations are charged full capacity 

while two workstations in queue 2 have 1 minute, and 1 minute 

idle times, individually. 

Table 2 Obtained best solution for illustrated example 1. 

Line Side 
Queue 1 Queue 2 

Tasks Workload Tasks Workload 

1 
Left 1,4,6 6 7,8,9 5 

Right 2,3,5 6 - - 

2 
Left 3,1,8 6 4,7 5 

Right 2,5,6,9 6 - - 
 

Figure 6 illustrates the convergence of the algorithm after 

releasing each ant. Best solutions are given in the figure from ant 

one to ant 100. Variation of station number and line length 

values can also be investigated from the figure. As can be 

observed from the figure, the behaviour of the algorithm is quite 

promising. 

The proposed ACO finds the optimal number of stations 

within 2 seconds and gets the best solution 6 at earlier colonies. 

 
 

 
Figure 6 Convergence of objective function value for   

illustrated example 1. 

 

 

 

 

 

 

 

 

 

 

 

4.2. Example 2 

For second example, two different product models that have 

same precedence relationships but different task times are 

assembled on two parallel lines (one on each line). Precedence 

relationship diagram for two product models is taken from a 

well-known test problem (P12) studied by Kim et al. [9], and 

given in Figure 7.  

 

 

 

 

 

 

 

 

Figure 7 Common precedence relationship diagram for 

illustrated example 2 (adapted from [9]). 

In the precedence relationship diagram (given above), preferred 

operation directions (sides) are also shown over nodes. Task 

times are not given on the graph since different task times are 

executed randomly for two different product models. Table 3 

exhibits randomly generated task times for two different product 

models (1, and 2). Cycle time is considered as 9 minutes for both 

lines. 

Table 3 Task times for illustrated example 2. 

Product Model 1 Product Model 2 

Task No Time (min) Task No Time (min) 

1 1 1 2 

2 3 2 1 

3 2 3 4 

4 4 4 3 

5 4 5 7 

6 3 6 6 

7 2 7 2 

8 7 8 5 

9 3 9 3 

10 5 10 2 

11 4 11 2 

12 3 12 7 
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Figure 8 Obtained best solution for illustrated example 2. 
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When the program runs, it finds the solution represented in 

Figure 8 in few seconds and at earlier stages of the program. As 

can be investigated from Figure 8, 10 workstations are utilised to 

perform 18 different tasks that belong to two different product 

models. Total required line length is 3 units. Six workstations are 

loaded full capacity while 3 workstations have 1 minute idle 

time and one workstation has 2 minutes idle time.  

To investigate the convergence of the algorithm, change in 

required total number of workstations, total line length, and 

objective function value by iterations are given in Figure 9. 

 

Figure 9 Convergence of objective function value for   

illustrated example 2. 

5 DISCUSSIONS 

The proposed method is illustrated with two different small-

sized examples, which have 18 and 24 tasks, respectively. 

However, since PTALBP is a much more complex version of 

SALBP, it is also NP-Hard, which means that it is difficult to 

obtain an optimal solution when the problem size increases. As 

the nature of NP-Hard problems, solution space will grow 

exponentially as the number of tasks increases [24]. So, solving 

this type of problems in a reasonable time using an exact 

solution method is quite hard. 

The proposed algorithm has the advantage of different 

pheromone releasing strategy between task – qzone. Using this 

sort of trail helps ants to find their way more efficiently in such 

complex problems. Because, PTALBP is much more complex 

form of SALBP and operation sides that tasks are assigned in to 

are also important as well as the last assigned task. However, a 

heuristic algorithm may be required to be integrated with 

developed ant colony algorithm to solve medium and large sized 

parallel two-sized assembly line balancing problems. 

Furthermore, more than one heuristic search algorithms can be 

integrated with proposed ACO algorithm. Thus, each ant may 

have different behaviours to select next available task.  

The illustrated examples use same cycle times for parallel 

lines. If we take into account different cycle time situations for 

parallel lines, task times should be modified and a common cycle 

time should be accepted as common cycle time to adapt LCM 

approach proposed by Gokcen et al. [1]. 

Some parameters vary between example 1 and example 2 in 

order to search solution space more efficiently. For example, 

initial pheromone level is selected 8 in example 1, while 20 in 

example 2. Similarly, 10 colonies are employed in example one 

whilst 20 colonies are charged in example 2. The reason is that, 

total number of tasks for example 2 is larger than example 1, and 

solution space grows exponentially as the problem size 

increases. 

None of the workstations are merged in the illustrated 

examples however it is most likely to be occurred in medium and 

large sized problems. 

6 CONCLUSION AND FUTURE RESEARCH 

In this paper, an ant colony optimisation algorithm has been 

proposed for solving type-I parallel two-sided assembly line 

balancing problem.  

The main purpose of this research is to explore the potential 

of ACO approach and show how more than one two-sided 

assembly line, which is constructed in parallel, is balanced 

together using an ant colony optimisation based approach. To the 

best knowledge of the authors, the proposed algorithm is the first 

attempt to solve PTALBP with an ACO based approach. 

The proposed ACO algorithm makes use of the trail 

information which is deposited between the task and last 

assigned task, and the task and qzone, which is the position in 

which the task is allocated. Objective function of the proposed 

method aims to minimise total number of workstations while 

considering total length of the line. A weighting factor, which 

determines the significance of line length, is also integrated to 

the objective function. 

Two examples are given from the literature and solved 

using proposed ACO algorithm. Results of the examples show 

that proposed method performs remarkably well. However, to 

assess the performance and efficiency of the algorithm, a set of 

benchmark problems can be solved with the proposed approach 

for future research directions. Obtained results can also be 

compared with existing tabu search algorithm in the literature.  

Some additional constraints such as positive and negative 

zoning constraints, synchronous tasks constraints, and positional 

constraints can also be considered for future researches. 
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Abstract. The ecological conservation problem for preserving 

species and their habitats was formulated as an optimization 

problem of maximal covering species problem in order to find 

the maximal number of species while limiting the number of 

selected parcels to P. It is a combinatorial optimization problem 

NP-Hard, and thus intractable with classical methods when data 

is very large. Metaheuristics offer an alternative to solve this 

type of problem. We applied a recently-developed Biogeography 

Based Optimzation metaheuristic. Tests were performed, and 

comparisons are made with another method using Harmony 

Searh metaheuristic. 

 

Keywords - Ecology, Biogeography Based Optimization, 

Maximal Covering Species Problem, Optimization, Harmony 
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1 INTRODUCTION 

The conservation of biological diversity has become a major 

challenge for different reasons like environmental (stability of 

ecosystems, geochemical cycles) and socio-economic reasons 

(food, agriculture, fisheries, industrial application) and also for 

evident ethical reasons of life intrinsic value. Location choice is 

always an important  concern in establishing biological reserves. 

A large amount of literature addresses the reserve site 

selection problem. Methods for systematically selecting sites 

(land units) for a nature reserve were first devised more than 20 

years ago, beginning with the pioneering work of Kirkpatrick [1, 

2]. These methods sought to identify reserve systems in which 

biodiversity, measured quantitatively, would be represented at 

desired levels.  

The models termed Species Set Covering Problem (SSCP) 

and Maximal Covering Species Problem (MCSP) are 

counterparts of location models [3] respectively developed in 

1971 and 1974 and termed Location Set Covering Problem [4]  

and Maximal Covering Location Problem [5]. They aim at 

delineating nature reserves for protecting either all species or as 

many species as possible. The motivation of these models is to 

conserve biological diversity by setting land aside for the 

creation or enlargement of nature reserves that protect the key 

habitats and species.  

The SSCP model was first developed by Possingham et al. 

(1993) [6]. It is to choose the least number of land sites (parcels) 

in such a way that each species is protected, i.e. represented in at 

least one parcel. The MCSP model, in contrast, aims at 

maximizing the number of species for a given number of land 

sites (parcels) to be selected or for a given number of parcels that 

can be selected, or a given amount of budget. 

The mathematical formulation of the SSCP model is as 

follows: 

 

Min             (1) 

s.t               all  iєI      (2) 

 

where j and J are the index and set of land parcels, respectively; i 

and I are the index and set of species, respectively; Mi is the set 

of parcels j that include species i ; and Xj is a binary variable for 

parcel selection (it has 1 if parcel j is selected, and has 0 

otherwise). The objective (1) minimizes the number of sites 

selected, and the constraint set (2) requires the selection of at 

least one site containing each species. 

Rather than minimizing the necessary land parcels to protect all 

the endangered species, the MCSP model, first formulated in  

1996 by Church et al. [7] and Camm et al. [8], focuses on 

maximizing the protected number of species for a given number 

of land sites selected. It is to find the maximal number of species 

while limiting the number of selected parcels to P.  

The mathematical formulation of the MCSP model is as follows: 

 

Max                             (3) 

 

                 s.t.              ,   all iєI     (4) 

 

              (5) 

 

where Yi is a binary variable for species covering (it has 1 if 

species Yi is covered, and has 0 otherwise). The objective (3) 

maximizes the number of species represented, whereas 

constraint set (4) enforces the condition that a species is 

represented only if a site containing that species is selected, and 

constraint (5) limits the number of sites that may be selected. 

The MSCP model was especially tackled by various 

algorithms [9-11].  It is a combinatorial optimization problem 

NP-Hard [12] and thus intractable with classical methods when 

data is very large. Metaheuristics offer an alternative to solve 

this type of problem. In our approach to tackle the MSCP 
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problem, we use a recently-developed Biogeography Based 

Optimization algorithm (BBO) [13]. Comparisons of our results 

with those of another meta-heuristic algorithm, Harmony Search 

(HS) [14] are made. 

The rest of the paper is as follows: BBO algorithm is outlined 

in section 2, with our contribution to solve MCSP problem. 

Experimental results are reported in Section 3. Comparisons with 

HS are also made. Section 4 is conclusion. 

2 SOLVING MCSP  

2.1. BBO overview 

Biogeography studies the geographical distribution of biological 

organisms. It is due to the work of Alfred Wallace [15] and 

Charles Darwin [16] in the 19th century. This work had a 

descriptive and historical aspect. In 1960, Robert MacArthur and 

Edward Wilson have developed a mathematical model for the 

biogeography [17]. They were interested in the distribution of 

habitat species. A habitat represents any living space isolated 

from other spaces. The mathematical model that was developed, 

describes how some species migrate from one habitat to another. 

Habitats that are favorable to the residence of biological species 

are called high habitat suitability index (HSI). The parameters 

influencing the HSI may be rainfall, crop diversity, diversity of 

terrain ... etc. The variables describing the habitability are called 

suitability index variables (SIV). 

Habitats are characterized by the following: 

 A habitat with a high HSI tends to have a high number of 

species, while those with a low HSI tends to have fewer 

species. 

 The habitats with high HSI are characterized by a high 

rate of emigration and low rate of immigration because 

they are saturated with species. 

 The habitats with low HSI have a high immigration rate 

and a low emigration rate. 

Immigration should result in the modification of the HSI of 

the habitat. If the HSI habitat remains too long without 

improving, the species that live there tend to disappear. 

Dan Simon introduced in 2008 a metaheuristic based on 

biogeography [13]. It uses the following analogies: 

 A solution is analogous to a habitat 

 The quality of the solution (fitness) is analogous to the 

HSI. 

 The variables defining the solution are analogous to 

SIVs. 

 A good solution is analogous to a habitat with a high 

HSI, and thus with a high number of species, a high rate 

of emigration and a low immigration rate. 

 A bad solution is analogous to a habitat with a low HSI, a 

low number of species, a low emigration rate and a high 

immigration rate. 

 A good solution tends to share characteristics with a bad 

solution to improve it (migration of SIVs). This is 

analogous to the migration of species between habitats. 

Sharing characteristics does not involve change in the 

characteristics of good solutions, because migration deals 

only with a sample of species, so that it does not affect 

the habitat. 

 The bad solutions accept the characteristics of good 

solutions in order to improve their quality. This is 

analogous to the bad habitat that accepts immigration of 

species from other habitats. 

Improving the population is the way to solve problems in 

heuristic algorithms. The method to generate the next generation 

in BBO is by immigrating solution features to other habitats, and 

receiving solution features by emigration from other habitats. 

As described in the migration algorithm given below, suppose 

we have a population of candidate solutions to a problem, 

represented by vectors (Habitats Hi, i=1…n). Each element of 

the vector is considered as an SIV value. In the migration 

process, the characteristics of good solutions replace the worst 

ones when using the immigration rate λ and the emigration rate 

μ,  according to a probability of change Pmod. 

In the migration process, when a solution is selected to be 

changed, we use the rate of immigration λ to decide whether an 

SIV will be changed. In this case, we use the emigration rate μ to 

decide which good solution in the habitat will migrate its SIV.  

In the mutation process, mutation is performed for the whole 

or part of the population in a manner similar to the mutation in 

genetic algorithms (GAs). Changes in a habitat may arise. These 

modifications will change the HSI of the habitat. This is modeled 

in BBO when muting with a certain probability. Mutated habitats 

are those having a low HSI. This mutation introduces diversity 

and encourages poor habitats to improve. 

In evolutionary strategies, global recombination is used to 

create new solutions, while BBO migration is used to change 

existing solutions. Global recombination in evolutionary strategy 

is a reproductive process, while migration in BBO is an adaptive 

process; it is used to modify existing habitats. As with other 

population-based optimization algorithms, some sort of elitism is 

typically incorporated in order to retain the best solutions in the 

population. This prevents the best solutions from being corrupted 

by immigration. 

BBO has shown good performance both on benchmark 

problems and on real-world problems, including air-craft engine 

sensor selection [13], power system optimization [18, 19], 

groundwater detection [20], mechanical gear train design [21], 

and satellite image classification [22]. 

 

 

 
 

Figure. 1 Coding of solutions and the objective function 
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2.2 Solving MCSP with BBO 

 

We recall the approach aims to determine the maximal number 

of species covered, while limiting the number of selected parcels 

to P. To use BBO, we must first find a good coding potential 

solutions and then find a fitness function to evaluate them.   

A potential solution of the problem to be solved is a N-vector 

H, expressed in a form of binary sequence (with a value 1 if the 

parcel i is present in the set I and a value 0 otherwise). 

Consequently, in our case, the coding is straightforward: a  

habitat is composed with N SIVs. Each SIV value is 0 

(corresponding parcel not covered) or 1 (parcel covered) and N 

is the total number of existing parcels. Each habitat in the 

archipelago corresponds to a particular N-vector solution H 

(Figure 1).  

Further, as specified above, we have to search, among all the 

possible parcels subsets (of size P), for the one which presents 

the greatest number of species. This results in the maximization 

of the sum: ∑Yi, where Yi is a binary variable for species 

covering (it has 1 if species Yi is covered, and has 0 otherwise). 

As BBO algorithm is an optimum search algorithm, finding 

the maximum of a fitness function, we can easily conclude that 

in our case this function should be made equal to the sum ∑Yi. 

So we have:   

F = Max  ∑Yi                                  (6) 

However, this selective function ignores the fact we deal with 

a constrained problem, which implies that some habitats among 

the 2N are not realistic. Solutions which do not satisfy the 

constraints will be penalized by setting their fitness to 0, 

migration rate μ to 0, and Immigration rate λ to1. As for the 

solutions satisfying the constraints, they will be sorted in 

decreasing order of the objective function.  

In BBO algorithm, an initial population of several habitats 

(binary vector Y) is randomly generated. It evolves through a 

migration (emigration and immigration) and a mutation 

processes to reach an optimal solution.  

During the evolution of the population, it is likely that the 

best solutions are modified, and therefore lost after the migration 

process and mutation. To avoid such a situation, an elitism 

operator is adopted. It copies the L best individuals in the new 

generation (the value of L has to be fixed by simulation).  

The process of mutation and migration are BBO mechanisms 

used to derive a new solution Y based on the past solution, 

exploring the search space, trying to improve the best solution in 

terms of its fitness value (that is the total number of covered 

species). Changing an SIV in a Y vector by means of migration 

and mutation processes causes a solution to appear or disappear. 

3 EXPERIMENTAL RESULTS 

Tests were carried out on a 2.10 GHz Intel (R) Core (TM) 2 Duo 

CPU  T6570 with 3GB memory. Data used is randomly 

generated. Each experiment is characterized by a triplet (P, Pm, 

L), where P is the population size, Pm the mutation parameter, L 

the elitism parameter and their values are fixed by simulation; 

All the results are averaged over 10 runs performed for each 

value of the triplet. We were first interested in the influence of 

each parameter, before fixing the parameters values.  

Note that the execution time is stopped when there is no 

variation in the number of covered species. 

Some experimental results are presented in Table 1, with: 

 Number of parcels = 441 and Number of species = 426 

 R: a  randomly generated 441x426 matrix, Rij = number 

of species j in parcel i  

 BBO parameter values : Pm = 0.005, L= 2,  Generation 

Number = 200 and Population Size(P) = 100. (These 

parameters are obtained starting from the default values 

given in [13]).  

 

Number of 

Parcels 

Maximal umber  

of Species 

Execution Time 

(sec 

1 240 0.218 

2 336 0.219 

3 389 0.265 

4 409 0.267 

5 422 0.297 

6 426 0.281 
 

Table 1: Maximal Number of Species while limiting the number 

of Parcels 

 

We observe that all the 426 species are covered with 6 

parcels. Several other tests confirm the good behavior of our 

method. Furthermore, comparisons with an existing method 

using Harmony Search metaheuristic are performed.  

 

3.1. BBO - based method vs. HS-based method 

To make our work more self-contained, we first present below 

the Harmony Searh approach: 

 

3.1.1 Harmony Search metaheuristic Approach 

Harmony Search [14] was devised as a new metaheuristic 

algorithm, taking inspiration from the music improvisation 

process, where musicians improvise their instruments’ pitches 

searching for a perfect state of harmony.  

HS has been successfully applied to various discrete 

optimization problems such as tour routing [24], water network 

design [25], vehicle routing [26],  and other industrial problems 

[27]. 

Analogies with optimization process are such that: 

 Instrument i  ↔  Decision variable xi , i є{1,2,…,n} 

 Music note from instrument i ↔Value of variable xi 

 Harmony ↔  Solution vector 

 Musical easthetic ↔  Fitness 

HS algorithm mainly consists of the following: 

 

Initialization of the Optimization Problem and Algorithm 

Parameters 

The optimization problem is specified as follows: 

 

Minimize (or Maximize) f(x) 

subjected to xi ∈ Xi, i= 1, 2, . . .,n. 

  

where f(.) is a scalar objective function to be optimized; x is a 

solution vector composed of decision variables xi, i= 1, 2, . . ., n; 

Xi is the set of possible range of values for each decision 

variable xi , that is, Lxi ≤  Xi ≤  Uxi, where Lxi and Uxi are the 

lower and upper bounds for each decision variable in the case of  
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continuous decision variables and xi∈{xi(1), …, xi(k), …, 

xi(K)} when the decision variables are discrete. N is the number 

of decision variables. 

In addition, the control parameters of  HS are also specified in 

this step. These parameters are the Harmony Memory Size 

(HMS) i.e., the number of solution vectors (population members) 

in the HM (in each generation); the HM considering rate 

(HMCR); the pitch-adjusting rate (PAR) and the number of 

improvisations (NI) or stopping criterion. 

 

Harmony Memory Initialization 
In this step, each component of each solution vector in the 
parental population (initial Harmony Memory: HM) is randomly 
chosen. Then, obtained solutions are reordered in terms of the 
objective function value: f (x1) ≤ f (x2) …≤ f (xi)… ≤ f (xHMS), 

where xi =(  
 ,   

 , … ,   
 ) is the ith solution vector.  

Harmony Memory is represented by the following matrix: 

HM =  

 
 
 
 
 
  
   

     
 

     

   
     

 

    
  
     

      
   

 

 
 
 
 
 

 

 

New Harmony Improvisation 

In this step, anew harmony vector x’= (  
 ,   

 , ...,   
 ) is 

generated based on three rules: memory consideration; pitch 

adjustment and random selection. Generating a new harmony is 

called ‘improvisation’.  

The memory consideration rule stipulates that the decision 

variable xi, ,i= 1…n,  takes a new value   
 from HM matrix (in the 

set {  
 ,   

 , …,   
   }), with a probability HMCR (parameter 

value between 0 and 1), and takes a fresh value randomly 

selected from the set Xi with probability (1- HMCR). This rule 

can be summarized in equation (1). 

  
   

  
 ∈    

    
        

                         

  
 ∈                                          

              (1)                

Every component obtained in the memory consideration step 

is further examined to determine whether it should be pitch 

adjusted. This operation uses the parameter PAR (pitch 

adjustment rate) as follows: 

 
 In the case of discrete variables:  

  = xi(k)        

      
   

                                 

  
                              

   (2) 

where : m∈ {-1, 1}. 

 
 In the case of continuous variables: 

xi
   

  
                      robability  A 

xi
     with probability  1    A  

     

Where bw is an arbitrary distance bandwidth (a scalar number), 
and rand() is a uniformly distributed random number between 0 
and 1. Evidently, the new harmony improvisation strategy is 
responsible for generating new potential variation in the 

algorithm and is comparable to mutation in standard 
evolutionary algorithms. 

 

Harmony Memory update 

If the new harmony vector x’= (  
 ,   

 , ...,   
 ) is better than the 

worst harmony in the HM, judged in terms of the objective 

function value, the new harmony is included in the HM, and the 

existing worst harmony is excluded from the HM. This is 

actually the selection step ofthe algorithm where the objective 

function value is evaluated to determine if  the new variation 

should beincluded in the population (HM). 

 

Check Stopping Criterion 

If the stopping criterion (maximum NI) is satisfied, the 

computation is terminated. Otherwise, New Harmony 

Improvisation and Harmony Memory update steps are repeated. 

 

In similar manner than in section 2.2, we use HS algorithm to 

solve MCSP problem. Figure 2 gives a representation of coding 

of solutions and the objective function. 

 

 
 

Figure. 2 Coding of solutions and the objective function 

 

3.1.2 BBO - based method vs. HS-based method 

Several tests are then performed on the same machine, using 

both approaches: BBO-based method and HS-based method.  

Some experimental results (based on random data) are 

presented in Table 2, with: 

 Number of parcels = 441 and Number of species = 426 

 R: a  randomly generated 441x426 matrix, Rij = number 

of species j in parcel i  

 BBO parameter values : Pm = 0.005, Elitism = 2,      

Generation Number = 200 and Population = 100 

 HS parameter values : PAR=0.4 ; Bw=1 ; HMCR=0.9 

 

Number of 

parcels (P) 

BBO HS 

1 236 233 

2 352 343 

3 386 386 

4 411 413 

5 422 422 

6 426 424 

7 426 426 
 

Table 2:  BBO - approach vs. HS – approach 
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We observe that all species are covered with 6 parcels when 

using BBO method, while 7 parcels are needed with HS. 

4 CONCLUSIONS 

The BBO method was applied to an ecological optimization 

problem (MCSP) where the number of preserved species in an 

area is to be maximized while limiting the number of considered 

area parcels. It was tested on a random generated data with 426 

species and 441 parcels. The 426 species were covered by 6 

parcels. Comparisons with HS – based method showed that the 

BBO algorithm produced better results.  
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