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Foreword from the Convention Chairs

The AISB’11 call for symposium proposals particularly  encouraged events drawing more strongly 
on the cognitive science aspect of the AISB remit. The result is a coherent programme with a very 
strong interdisciplinary  character, which is also matched in the choice of plenary speakers. The 
three symposia looking at the interaction between Computing and Philosophy, the prospect of 
machine consciousness and the quest for a new, comprehensive intelligence test, form a coherent 
unit where the eternal questions of who we are and what makes us so are asked from a dual Human-
Machine perspective. The Symposia on Active Vision, Computational Models of Cognitive 
Development and Human Memory  for Artificial Agents demonstrate how better understanding of 
the nature and basis of cognitive processes can advance work on Artificial Intelligence and, 
inversely, how computational models of these processes can help better to understand them. The 
prominent multi-agent design and modelling paradigm links the Symposium on Social Networks 
and Multi-agent Systems with the one on AI and Games. Finally, the Symposium on Learning 
Language Models from Multilingual Corpora, which brings together some of the first attempts in 
this area, can also be seen through the prism of such a general notion in Philosophy and Linguistics 
as semiosis, and the dual role of sign and interpretant that text plays in translations.

We are delighted that after another ten successful years in its long history, the AISB convention is 
returning to the University  of York. The 2011 convention takes place on the brand-new Heslington 
East campus, the result of a multi-million pound expansion that  is now the new home of the 
Department of Computer Science, and hosts the Excellence Hub for Yorkshire and Humber, a new 
incubator for interdisciplinary research and interaction between academia and industry. The last few 
years have seen a strong involvement of the Computer Science Department in such interdisciplinary 
collaboration through the York Centre for Complex Systems Analysis (YCCSA), and we hope that 
this convention will provide a boost for more synergy between York departments, with other 
institutions conducting AI-related research in the region, and beyond. As the programme shows, we 
have also made an effort to promote cooperation with industry and use the convention to support 
school outreach. The convention format makes it  perfect for establishing dialogue and collaboration 
in new areas of research, as well as across disciplines, and we hope that this year, it will play again 
this role to the full. We want to thank everyone who has contributed to it or otherwise made this 
event possible and wish all participants a fruitful and enjoyable time in York.

Dimitar Kazakov and George Tsoulas
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2
 and Cyril Brom

3
 

INTRODUCTION 

Back in AISB 2010, the 1st Symposium on Human 

Memory for Artificial Agents brought together researchers 

from the fields of cognitive science, artificial intelligence, 

and the social sciences to discuss important aspects of 

human memory suitable to be modelled in artificial 

intelligent agents. Through papers presented in the 

symposium and various interesting discussions, it revealed 

the potential of human memories in modelling artificial 

cognition and social processes. Therefore we hope more 

scientific contributions can be made to investigate the 

interactions between its essential components such as 

short-term, working memories, semantic knowledge and 

episodic experiences among others. Therefore this 

symposium aims to gather interdisciplinary perspectives 

on the above issues and review work done so far to 

achieve a better understanding of which, when and how 

human-like memory can contribute to artificial agents 

modelling. 

   Since decades ago the idea of creating computational 

representation of experience for agents has been 

mentioned often in cognitive modelling literatures. On one 

hand, researchers in the early 90’s argued, in the context 

of the Turing Test, that it is questionable whether any 

computer in the future can pass the Test without the 

ability to experience. On the other hand, embodied AI 

emphasizes the on-going interaction between agents and 

their environment, in which object representation evolves 

from the experience of the agents with these objects. Here 

the term “experience” is not as defined in machine 

learning, but as similar to the whole cognitive concept of 

human “organic” memory, e.g. events attributed with 

“emotion” and “meaning”. It includes a range of cognitive 

processes that our memory operates effortlessly: 

perceiving, encoding, storing, retrieving, generalising and 

forgetting of events. 

    Up to date, various research projects have attempted to 

create agents that are more natural, believable and behave 

in human plausible ways; however, memory components 

in  these models are rather static and  loosely connected to 

 

 

 

 

 

 

each other. Another direction which has captured a lot of 

attention is the influence of emotion in long-term episodic 

memory. It is important to identify the possible ways of 

integrating various known emotion models to artificial 

agents with computational human memory, particularly 

those designed for social interactions with human users. 

Additionally, many existing models do not take into 

consideration the bio-mechanisms of human memory 

operations such as those involved in retrieval and 

forgetting processes. 

    Some recent research shows that artificial agents 

equipped with a subset of the above listed human memory 

processes are perceived as more natural and have the 

potential of improving human-agent interaction. 

Consistent with these findings, we envision that the 

existence of more comprehensive human-like memory 

processes will allow artificial agents to maintain 

behaviour coherence and plausibility, thus may lead to the 

establishment of longer term interaction/relationship with 

humans. 

    This year 5 short-papers (the length of which has been 

extended up to 5 pages) and 3 long-papers (8 pages) have 

been accepted for presentations in the symposium. Here 

the nature of long-paper is to allow the completeness of 

research concept to be conveyed in the paper. Each 

contribution received three reviews which were made by 

the following program committee members (listed by 

surname): 
 Heuvelink Annerieke, TNO Defence  

 Cyril Brom, Charles University Prague (co-chair) 

 Joanna Bryson, University of Bath  

 Nate Derbinsky, University of Michigan  

 Sibylle Enz, University of Bamberg 

 Stan Franklin, University of Memphis  

 Wan Ching Ho, University of Hertfordshire (co-chair) 

 Mei Yii Lim, Heriot-Watt University (co-chair) 

 Nikolaos Mavridis, United Arab Emirates University 

 Andrew Nuxoll, University of Portland 

 Christopher Peters, Coventry University 

 Debbie Richards, Macquarie University 

 Alexei Samsonovich, George Mason University 

 Holger Schultheis, University of Bremen  

 Dan Tecuci, University of Texas 
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A Memory Structure that Gives Meaning
to the Notions of Knowledge and Belief

José Ferreira de Castro 1

Abstract. Beliefs are usually represented with modal operators
in rule-based systems, or with probabilities in probabilistic frame-
works. This paper explains how the concepts of knowledge and belief
emerge from a simple memory architecture of cinematic records.

1 INTRODUCTION
Since 2000 I have been working on a machine for a unified theory
of cognition[13, 12], called the M-Logic Machine. I have not pub-
lished much about it [3, 4]. Among many other interesting aspects,
the machine implements two simple but effective ideas: cinematic
memories and dominant thoughts.

Consider birds and penguins. If we are asked about birds in gen-
eral, the first image coming to our minds may be a flock of flying
birds. Therefore birds fly. If we are asked about penguins, we shall
recall an image of penguins - birds that do not fly. Dominant thoughts
- the first images coming up to our minds - defy strict logic coher-
ence. This is not easily captured by rule-based systems. We need to
explicitly indicate all possible exceptions.

Probabilistic frameworks do better. Dominance should favour pre-
dictive accuracy, meaning giving correct answers as often as possi-
ble. I looked for an alternative approach avoiding the mysterious no-
tion of probability. The basic idea is easy to grasp. Imagine we have
a tray with a pile of documents. When we look for an answer, we
simply go through the documents, starting from the document at the
top of the pile. When we find a document that gives us a satisfactory
answer, we put it back on top of the pile. If we find no answers after
going through the pile, we leave the pile as it is. It’s easy to see that
the documents that were most often found satisfactory will tend to
be found first, dominating (hiding) the documents that were seldom
satisfactory. There is no need to resort to the notion of probability or
keep statistics of any sort. The M-Logic Machine bets on dominant
thoughts. The dominance hierarchy reflects the relative frequency of
satisfaction. Notice that this approach is quite different from case-
based learning [1]. Case-based learning uses a similarity function to
generate predictions based on all the previously recorded cases. The
M-Logic Machine chooses the dominant case. It’s much simpler, and
faster.

Regarding cinematic memories, it is obvious that the documents
we handle in the tray are not like photographs, but rather like short
films. For survival purposes, knowing how things evolve is much
more important than knowing how things are. The movies in our
heads allow us to imagine dominant continuations for the current
situation. Because the current situation is specified by a sequence of
events, the number of state variables used for prediction can be small.
As the machine learns, successful motor-sensory sequences will tend

1 CENTRIA, FCT-UNL Portugal, email: CastroJFGF@gmail.com

to be replayed, without the need to understand causal relations. This
gives a straightforward explanation to the origin of superstitious poli-
cies [16].

In this setting, where all the machine’s information about its envi-
ronment is recorded from its life experiences, the role of hardwired
reflexes is essential to provide basic survival skills. Avoiding a deadly
cliff cannot be learned with in-life experience.

An influential paper from Elman [6] discarded the use of cinematic
memories, arguing they were not a good idea to model cognition.
The AI mainstream research followed other directions. In this article
I will show that in a non-verbal sensory-motor approach the use of
cinematic memories is worth considering.

Among many other things, the M-Logic Machine architecture
gives semantics to the notions of knowledge and belief. These no-
tions emerge from specific memory configurations of the machine.
In rule-based systems these notions are usually handled with modal
operators that satisfy some axioms. The creator of a rule database
for a given domain must indicate from the start what is to be con-
sidered knowledge or belief. In Bayesian probabilistic approaches (a
recent example is Mavridis’ proposal of Grounded Situation Models
[10]) the initial credences must also be defined by the end-user. In
both cases the environment must be previously modelled. Those so-
lutions clearly lack autonomy. We shall now see in some detail the
M-Logic Machine fully autonomous solution. A generic mathemati-
cal description is presented in section 2, explaining the basic MLM
functional structure, while section 3 presents a simple example that
details some of the MLM processes.

In what follows, it is important to remember that the MLM ap-
proach does not try to build a machine that talks to humans or em-
ulates human cognition. It tackles the problem from the other end:
If we start wiring neurons one to another, what are the minimal
structures needed, from where notions like knowledge and belief can
emerge? Just as Turing machines clarified the vague idea of algo-
rithm, the MLM allows a clarification of knowledge and belief con-
cepts.

2 AGENTS THAT KNOW AND BELIEVE

Let us start from the usual definition of an agent found, for instance,
in [14, p. 32]: an agent is an entity that perceives its environment
through sensors and acts upon it through actuators. A possible rep-
resentation for this understanding [5, pp. 39-40] is to consider a set
of environment states E = {e1, e2 . . .}, a set of the agent’s percep-
tive states P = {p1, p2 . . .} and a set of the agent’s action states
A = {a1, a2 . . .}. The set of all possible sequences of environment
states is noted E∗, and the set of all possible sequences of perceptive
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states is noted P ∗. We can define an agent g as a function:

g : E∗ → A (1)

In a learning agent the g function will evolve in time as the
agent learns more. The agent has no direct access to the environ-
ment states. The environment is known by means of its perceptive
abilities, and the actions are based on these perceptions. The g func-
tion can be rewritten to include explicitly the function composition
g = perception ∗ action2.

perception : E → P (2)

action : P ∗ → A (3)

The effect of the agent’s actions on the environment (from the
agent g point of view) is given mathematically by:

environmentg : E ×A→ P(E) (4)

where P(E) denotes the power set of E. Although only one state is
reached at each time step, at different time steps different states can
result from the same environment state and agent action. This mathe-
matical formulation expresses the environment non-determinism, as
seen by the agent. In time there is a unique sequence of environment
states and actions, called the agent’s objective history of action-effect
states:

hg : e0→a0 e1→a1 e2→ . . . (5)

The M-Logic Machine makes some ontological assumptions re-
garding the agent and its environment:

• All meaningful thoughts are linked to measurements. For instance,
consider two instruments that identify squares and circles. Since
there is no instrument to identify a “square circle”, a “square cir-
cle” is a verbal fiction. Also, a born blind human is not expected
to dream visual images [9].

• There is no reality beyond measurements. In simple terms, we do
not measure things. The measurement is the thing. The set of mea-
surement states resulting from a given set I of measurement in-
struments is noted M . All agent’s perceptions are built from the
agent’s set of measurement states M .
For definiteness, all measurement instruments are assumed to be
classification instruments. This simply means there is a set of
distinct possible outputs O = {oj : j ∈ {1 . . . k}} for each mea-
surement instrument. All output pulses are assumed to be similar,
and no temporal meaning is assigned to the frequency of pulses.
This requires different measurement outputs to be sent to distinct
output points. With this understanding, deep belief networks [2]
are instances of measurement instruments.

With these assumptions we do without the set E, and work only
with M and P . The environment function (4) is discarded. Environ-
ments and sensors are not explicitly modelled. The agent’s percep-
tion function becomes:

perception : M → P (6)

The transient outputs recorded inside a given sensory-motor time
interval are called simultaneous. Perceptions are records obtained
from the simultaneous transient measurement outputs of the agent.

The perception function therefore plays two important roles:

2 The usual mathematical notation is rather g = action ◦ perception

• It binds several events as “simultaneous”. Measurement output
pulses from different instruments are seldom synchronous. On the
contrary, different instruments usually take different times to com-
plete their measurements.

• It maps measurement output points to memory locations.

Perceptions can be ordered in space to reflect the order in time of
measurement outputs. These spatially ordered structures are called
cinematic memories. A binding memory is the place where a set of
compatible measurements is integrated to produce elements of P . It
is used to compose a present-moment crisp image.

The agent detects its own actions through a specific subset3 of
measurement instruments I.a ⊂ I defining a set of measurement
states for actions M.a = {m.a1,m.a2 . . .} ⊂ M . The correspond-
ing perceptions are given by

perception : M.a→ P.a (7)

As a general principle, the signals that trigger the action are not mea-
sured, but rather some physical manifestation of the action. For in-
stance, human voluntary muscles are crossed by nerves that detect
the muscle change in length, and the rate of change. The nervous
pulses that generate the muscle stretching are not measured. This
means that actions are perceived (and therefore known) after they are
performed [8]. Similarly, environment (P.e) perceptions are gener-
ated at each agent’s history step. The agent’s objective history in (5)
thus becomes a perceptive history:

hP : p.e0→p.a0 p.e1→p.a1 p.e2→ . . . (8)

This agent’s history is now fully subjective. Objective environ-
ment states and actions are no longer included. Each sensory-motor
step p.eN →p.aN of the perceptive history is called a frame and is
noted f . The set of all frames is noted F . This set is agent-specific.
It relies on the sensory abilities of the agent.

Since the M-Logic Machine works with sequences of perceptive
states, the cinematic records, some notation for state sequences is
needed. The set of frame sequences4 is noted F ∗. [F ∗] indicates
the set of continuous sequences bounded in time. Continuous and
bounded sequences of frames are called scenes. Scenes can be built
as list structures, adding frames to the top of the list.

A maximum number n of frames in the [F ∗] set of scenes is indi-
cated with [F n]. This means no new frame will be added to the top
of the list when the size limit is reached. Otherwise the size of scenes
in [F ∗] is allowed to grow indefinitely. Alternatively, a new frame
added to the top of the list will push out the frame at the bottom
when the size limit is reached. This process is indicated with [F~n],
and these scenes are called scrolling scene memories.
|[F ∗] indicates that the most recent frame of each scene in |[F ∗]

refers to the present moment. The set of present moment frames is
noted Fπ (a present moment individual frame is noted fπ). The sets
of upcoming and prior frames are noted F+

π and F−π , respectively
(the corresponding individual frames are noted f+

π and f−π ).
A specific subset of measurement instruments was considered in

(7) to identify actions. In general, any subset of measurement in-
struments I.µ ⊂ I generates a reduced set of measurement states
M.µ = {(m.µ)1, (m.µ)2 . . .} ⊂ M . This reduction is controlled
by the orientation function of the machine:

orientation : |[F~2]→ {µ} (9)

3 Suffixes are used to discriminate instrument subsets.
4 In what follows, the same notation conventions apply to any reduced per-

ceptive history F.µ∗
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where |[F~2] refers to a binding memory and {µ} is the set of sensory
modes µ (the specifier µ is called a sensory mode). |[F~2] is the min-
imal structure that allows the MLM to detect the rise of important
signals in any of its sensory dimensions.

The corresponding perceptions are given by

perception : M.µ→ P.µ (10)

The orientation and perception functions together define the
measurements that are included in the frames and their specific loca-
tion inside the frames. A sequence of reduced frames recorded from
a reduced set M.µ of measurement states is noted F.µ∗.

In a sensory-motor learning setting, the agent sensory mode should
include instruments to perceive relevant environment features and its
own actions. In pure reflex settings, perception of motor actions is
irrelevant.

Records for two different sensory modes, say P.µ1 and P.µ1 are
not distinguished by their memory content. The distinction is made
using two distinct brain regions to place these records.

The perception and orientation functions are vital aspects of
any autonomous agent. On this subject, the work of Sokolov is worth
reading [18].

Both binding memories and short-term memories are scrolling
scene memories. But a binding memory is only two frames deep
|[F~2], while a short-term memory is recorded after the orientation
function is applied, and is therefore of type |[F.µ~n].

The set of multiple scenes of maximum length n separated by
gaps, keeping the scenes in chronological order, is written [F n‖∗.
These are called tales. Scenes in tales are allowed a maximum length
n. Tales are generated by the record function. They are built from
the short-term memory and placed in the agent’s long-term memory:

record : |[F.µ∗]× |[ρ∗]→ [F.µn‖∗ (11)

where |[ρ∗] represents a sequence of record modes ρ = {on, off}
up to the present moment. The record mode at each moment is given
by:

record mode : |[F.µ~n]→ ρ (12)

While the orientation function defines what is being recorded, the
record function uses the short-term memory to define when the
recording of a new scene takes place in the long-term memory. As
the long-term memories are built up in stable environments, there is
less need to record.

Each distinct sensory mode requires a distinct long-term memory
(noted LTM.µ). Tales can be understood as lists of scenes, with a
new scene added at the top of the list. In general, the number of
frames in the tale scenes is not constant. A tale built up to the lat-
est recording session (not necessarily the present moment) is noted
|[F n‖∗.

The set of cinematic records built from tales with the scenes’s
chronological order possibly shuffled is indicated with [F n‖∗⇀↽].
These structures are no longer real tales, although the scenes keep
their internal chronological order intact. They are called scene dom-
inance records. The scene shuffling is defined by a dominance.s
function:

dominance.s : [F.µn‖∗⇀↽]×D.µ× S → [F.µn‖∗⇀↽] (13)

where D is the set of dominant scenes that can be taken from
[F n‖∗⇀↽], and S classifies the predictive success of D. The agent ac-
tion function (3) is redefined as follows:

action.r : M → A.r (14)

action.cr : M.µcr × [F.µp
cr‖± → A.cr (15)

action.v : H× |[F.µ~m]× [F.µn‖∗⇀↽]→ A.v (16)

The functions action.r and action.cr are the reflex and conditioned
reflex functions, respectively. In a complex agent, many reflexes co-
exist. A.r and A.cr can easily coexist because the conditioned reflex
simply anticipates (triggering a little sooner) the reflex action. The
relevant scenes are stored in dedicated tales [F.µp

cr‖± with specific
sensory modes µcr . The generation mechanism simulates Hebbian
learning. Scenes are added or taken out of the tales according to their
predictive success. No dominance is used. Instead, a minimal number
of instances is required to trigger the conditioned reflex. The machine
thus learns by repetition of a scene pattern.

The last function action.v describes voluntary actions based on
beliefs. H is the set of decision heuristics of the agent. A deci-
sion heuristic defines the aspects of the past and future that are be-
ing searched in the records. Heuristics are transversal to the sensory
modes. It’s simply a search for patterns in the record sequences, in
the spirit of [7]. This requires all reduced cinematic records to have a
similar frame structure. Besides, the number of used sensory modes
must be small. The agent cannot afford a huge number of memory ar-
eas, one for each LTM.µ. Such limiting requires a small number of
classifier instruments assigned to each frame (something already no-
ticed by Miller in [11]). There are not many effective sensory modes
for a given environment. The best modes can be found with evolu-
tionary learning.

In (16), the scenes |[F.µ~m] and the tales [F.µn‖∗⇀↽] are stored in the
agent’s short-term and long-term memories, respectively. The short-
term memory tells the agent about the recent past, defining the cur-
rent cinematic situation. The dominant scene in the long-term shuf-
fled memory provides a (hopefully true) continuation for the current
situation. This explains the need for both types of memory. Coex-
istence of A.v with reflex actions will depend on the sensory mode
µv .

The voluntary action defined in (16) can be understood as a com-
position of a question, a believed answer, and an action trigger:

action.v : question.v ∗ answer.v.b ∗ trigger.v (17)

with the following mathematical definitions:

question.v : H× |[F.µ~m]→ Q.µ (18)

answer.v.b : Q.µ× [F.µn‖∗⇀↽]→ A(B) (19)

trigger.v : A(B) → A.v (20)

whereQ is the set of questions andA the set of answers.A(B) is the
same as D.µ in (13). The function trigger.v triggers the expected
action perceptions included in the believed answer upcoming frame
f+
π . If no action perception is included in the believed answer, no vol-

untary action is triggered. Ultimately, voluntary actions are triggered
because the agent believes they can be done.

Propositions are questions. Questions usually include a context
and an interrogation. In the Prolog implementation of the MLM 5,
questions are queries. Contexts are constants and interrogations are
variables in the queries. There are only constants in the consulted
memories, the records of measurement outputs. An answer in A is
the first match found in the agent’s memories for a given question.
For instance, if we represent cinematic memories with lists, the list
is scanned from head to tail until a match is found for the context.
5 The Prolog source code can be found in the authors homepage

https://sites.google.com/site/josefgfcastro/.
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The contexts are matched and the interrogation variables are unified
with the corresponding constants. The first match therefore gives the
dominant answer. Short-term predictive answers are found inside
a dominant scene of D.µ, the same that is used in definition (13).
The heuristic that is actually used in (16) and (18) is the dominant
heuristic, subjected at each motor-sensory step to a shuffling pro-
cess defined by a dominance.h function. Note that the heuristics
are transversal to the sensory modes. This allows meta-learning: the
heuristic dominance hierarchy will be kept when the sensory mode
changes.
A(B) answers are believed. This is because they are found in a

non-factual (shuffled) long-term memory. Known answers A(K) are
given by a series of answer.v.k functions:

answer.v.k.stm : Q.µv × |[H.µv]~n → A(K) (21)

answer.v.k.ltm : Q.µv × |[H.µv‖H.µv]→ A(K) (22)

Knowledge answers do not trigger voluntary actions. The present
and the past perceptions can no longer be acted upon. Neverthe-
less, it’s the answer.v.k process applied to the present-moment
frame, trying to know the believed answer for the present-moment
action, that actually triggers the voluntary action in definition (20).
The two knowledge functions (21) and (22) are run in sequence.
First, answer.v.k.stm consults the short-term memory, and then, if
needed, answer.v.k.ltm consults the long-term memory. In words,
we know something when the answer can be found in our memories
of facts. We can only know the present and the past. We can believe
the future and the past, but not the crisp present moment found in the
binding memory. The crisp present moment is felt, not known. When
knowledge and belief about the past overlaps, we may get confused.
Specially because the scenes in the shuffled memories still appear as
factual. These results are summarized in Table 1.

Table 1. The MLM epistemic states.

A(K) A(B) Temporal Range Epistemic State

no no n.a. none
no yes future, past justified belief
yes no present, past knowledge
yes yes past knowledge

The aim of the dominance function given in (13) is to provide
the answer most often found correct for the current question. The
predictive success result is given by a success.pred function:

success.pred : (A.fπ)(K) × (A.fπ)(B) → S (23)

This function compares the believed and known answers for the
present-moment frame fπ . The belief answers were generated some
time before the present-moment knowledge answers, and the com-
parison is made as soon as the relevant knowledge is generated. If
the knowledge and belief answers do not match, the agent may feel
surprised. This happens when the agent belief was not weakened by
further scanning of the long-term memories. This belief gradation
involves a simple additional memory scanning process to find a few
sub-dominant belief answers.

The same evaluation S of the predictive success is used to update
the heuristics dominance.

A M-Logic Machine memory scheme can be seen in Figure 1.
In this scheme, the question (generated by the Q process) and the
belief and knowledge answers (generated by the B and K processes,

Sensory Mode

Dominance Memory

Q Process

Binding Memory

Working Memory

IR Process

B   Process

K  Process

Short-Term Memory

Long-Term Memory      

Heuristics

Orienting 

Process

Recording 

Process

Update Dominance 

Process

Figure 1. The MLM memory structure and processes in vigil mode

respectively) are gathered in a Working Memory. The IR process
provides the sub-dominant answers that generate belief gradations.
Some other MLM interesting features were ignored in this article,
because they are not important for our current purpose. There are,
for instance, cinematic imagination processes that we not consider
here. The classical work of Shepard in mental rotation [15] fits well
in the cinematic imagination concept.

Figure 1 refers a vigil mode. There is also a sleep mode. All frames
and scenes are alike in size, and therefore may contain information ir-
relevant to the finding of cinematic regularities. An internal cleaning
process is performed during sleep mode. Memories are simplified,
but become more useful for prediction.

The necessary limitations of cinematic memories regarding con-
tent and duration may be further justified by physical constraints. If
we accept the hypothesis that cinematic memories are recorded in
the cortical columns, the number of measurements in the scenes and
their duration is necessarily limited.

3 A MATCHING-PENNIES MACHINE
Cinematic reasoning only becomes important in situations that can-
not be solved directly by reflex actions. Taking advantage of cin-
ematic regularities in incoming sequences is the most obvious ex-
ample of a problem that cannot be tackled by pure reflexes. Let us
therefore consider a simple version of the matching-pennies prob-
lem. The MLM plays against a player X . In each turn, both players
must choose simultaneously to produce one or two coins. The MLM
wins if the number of coins produced by each player is found to be
equal, and loses if the number of coins is found to be different. Ac-
cording to the definition given in (8), the MLM perceptive history is
represented with

hP : p.e0→p.a0 p.e1→p.a1 p.e2→ . . .

In order to learn the cinematic regularities, the MLM needs at least
a classification instrument to detect its own relevant actions. The
measurement results for producing one or two coins are written 1c
and 2c, respectively. This corresponds to the p.a perceptions in the
perceptive history. The MLM needs also to detect the two relevant
environment states, i.e. the number of coins being equal or different.
This is written eq and df , respectively. This corresponds to the p.e
perceptions. All these measurements are assigned to locations in the

Page 5 of 48



frames according to the perception and orientation functions. Re-
member that different measurement results are sent to distinct out-
put points. The assignment can be seen as the wiring between the
measurement instruments and the frames. Let us assume the frame
assignment ?f to be:

?f =

[
eq df
1c 2c

]
(24)

Each line in the frame matrix is called a frame channel. A single
instrument is assigned to each frame channel. The columns in each
frame channel will hold the different measurement results of clas-
sifier instruments. In (24) the two frame channels record a sensory-
motor sequence.

Now, the MLM heuristics consult the frame locations without any
information about the meaning of their content. The heuristics try to
bring up recorded pulses in a selected location of the frame (the pl
“pleasure” location), and avoid the presence of recorded pulses in
another location of the frame (the pn “pain” location). The heuris-
tics also assume that the actions triggered by their choices are also
recorded in two other locations, a1 and a2. Let us assume the heuris-
tic frame template ?fH to be:

?fH =

[
pl pn
a1 a2

]
(25)

Comparing (24) and (25) we see that the pleasure pl and pain pn
of the MLM are situated in the game. The heuristic finds a recorded
pulse in the pleasure value location when the MLM wins, and finds a
recorded pulse in the pain value location when the MLM loses. This
assignment is the first step to define a MLM “goal”. From now on we
shall refer to the eq location as pl and the df location as pn.

These remarks highlight two important aspects of the M-Logic ap-
proach:

• Different measurement outputs and records are distinguished by
their different locations. For instance, the rate of action potentials
is not used as a classification criterion. Ultimately, all measure-
ment results that are used are those assigned to single neurons.

• All meaning is relational and dynamic. Each location is accessed
by different processes that consult its state and manipulate its con-
tents. It’s this set of processes that gives meaning to each location.
This totally eliminates the symbol grounding problem.

The notion of pleasure and pain is therefore relational and dy-
namic. Pain and pleasure can refer to any measurement that triggers
specific motor responses in the machine by means of a heuristic. In
the absence of a hostile environment6, the frame assignment is ir-
relevant for the machine’s survival. The machine could as well take
pleasure in losing the game, with no practical consequence. In a hos-
tile environment, on the contrary, the “wrong” assignments are the
ones that kill the agent, while the “right” assignments are the ones
that promote its survival. In this case it might seem reasonable to link
nociceptors to the pain locations. But it’s probably more effective to
link them directly to evasive reflexes. Quite often there is no time to
learn. In the MLM framework, notions like pleasure and pain, right
and wrong, good and bad, goal and purpose, result from evolutionary
learning.

The two matrix lines in (24) are the minimal number of frame
channels required for any reinforcement learning problem. One chan-
nel (the driving channel) has two locations that records the “pleasure”

6 Hostility is measured by the time it takes an agent to be destroyed when its
actions are chosen at random.

and “pain” tags. A second channel (the motor channel) records the
the motor choices of the MLM (i.e. the motor commands to display
one or two coins), that will be confronted with the choice of player
X in the next turn. Assuming reliable sensors and motors, the sen-
sory information regarding the number of coins actually produced is
redundant. This can be recorded in a third channel (the state channel)
related, for instance, to visual information.

Some general considerations about the game may fit here. If an
unbalanced coin is flipped and the probability is biased towards one
of the possible results, say tails, the best winning strategy is to bet
on the most frequent result (i.e. keep betting tails). The dominance
mechanism can easily handle this problem. If, on the contrary, the
probability of getting heads or tails is identical, it may still be pos-
sible to make some valuable predictions. Certain sequences of re-
sults may be more probable than others. A trivial example is a se-
quence where heads and tails always alternate. This is where cine-
matic records become useful. The machine can look for dominant
sequences. Another valuable strategy is to find a correlation in time
with some other event. For instance, if the result of a coin is always
equal to the previous result of another coin, we are able to guess the
result after we discovered the temporal relation among the two coins,
even when the first result is unpredictable. All these strategies are im-
plemented through the corresponding heuristics. The current MLM
dominance mechanism integrates in a single procedure the search for
these three types of regularities. It tends to keep betting on the one
that is most frequently rewarding. This is achieved without the need
to evaluate or manipulate probabilities.

Sometimes the MLM cannot generate actions based on beliefs.
Whenever possible, the MLM motor actions are triggered according
to the guesses of a belief generator for the immediate future, accord-
ing to a given inference heuristic, sayH1. If the belief generator fails
to provide a guess for a motor action, a random generator triggers a
motor action anyway. This corresponds to an exploratory instinct.

For definiteness, let us assume that X produces two coins every
fifty turns, producing one coin in the remaining turns. Let us also
assume that the short-term memory of the MLM is recording a single
frame per turn, in two micro-steps. This will happen in a natural way
if the machine sensory-motor cycle is fully dedicated to the play. In
the first micro-step it gets the current situation regarding the equal
or different number of coins and in the second micro-step it records
the sensed force related to the motor action triggered. Let us limit to
six frames the scenes in the short-term memory (|[F.µ~6]). After six
turns, with player X always choosing to produce one coin and the
MLM playing randomly, the short-term memory (STM) of the MLM
could contain, for instance, the following sequence of frames:

STMt6 :
pn pl pl pl pn pl

2c 1c 1c 1c 2c
(26)

In each frame we only indicate the frame position tag where a pos-
itive value is recorded. Since we are assuming classification instru-
ments, only one frame location in each frame channel is expected
to present a positive value. By convention, the MLM starts with an
pl perception at time t1. The most recent frame of this scene is to
the left. In the most recent frame, only the first micro-step is com-
pleted, and we have only the current equal/different situation (in this
case pn) resulting from the choice 2c recorded in the previous frame.
This means the MLM presented two coins while X presented just
one coin. Remember that the rule for X is to produce two coins ev-
ery fifty turns, producing one coin in the remaining turns. The latest
motor action at t6, that will have an impact on the next frame eval-
uation, is still undefined. Since the maximum number of frames in a
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scene has been reached, every new frame recorded in the short-term
memory will push into oblivion the oldest frame. Oblivion of frames
is therefore reached suddenly, not by gradual decay of their compo-
nents. This aspect is in agreement with some experimental evidence
[19].

The MLM searches its scene dominance records to generate be-
liefs. A wise criterion is needed to record scenes from the short-term
memory into the scene dominance memories (SDM). The criterion
is the record mode function described in (12). What is “wise” or
not is also a result of evolutionary learning. The recording criterion
also participates in defining the machine’s “goal”. Let us define the
record mode function as follows:

1. The STM-to-SDM record mode ρ switches from OFF to ON when
a pn frame follows two consecutive pl frames. When ρ switches
from OFF to ON, the first thing recorded in the STM-to-SDM
buffer is the short-term memory content, in its totality. This gives
the MLM some information about the recent past, prior to the
recording.

2. The record mode ρ changes from ON to OFF after a certain size
limit of the STM-to-SDM buffer is reached, say ten frames. At the
ON-OFF transition the buffer content is moved to the SDM.

Let us call this recording criterion RC1. Looking at the STM in
(26) we see that this criterion finds a match in time t6. We therefore
start placing in the buffer a copy of the STMt6 scene. As new frames
are recorded in the STM, they are also added to the buffer, up to
ten frames. When the recording mode gets back to OFF, the buffer
content is moved to the SDM. We may have got, for instance:

STMt10 :
pn pl pl pn pn pl

2c 1c 1c 2c 2c

SDMt10 :
pn pl pl pn pn pl pl pl pn pl

2c 1c 1c 2c 2c 1c 1c 1c 2c

Now SDMt10 is available for prediction. Let us assume the follow-
ing cinematic heuristic is being used by the question.v function pre-
sented in (18):

H1 :
c(pl) c(PPπ)

i(A)
(27)

Heuristics are general templates used by the MLM to generate
questions. The question.v process is quite simple: The value for the
undefined context c(PPπ) is searched in the present moment frame
fπ of the STM. In this case we are looking in STMt10 . Therefore
fπ = f10 (the leftmost frame), and we get c(PPπ) = c(pn). The
generated question is therefore

Q :
c(pl) c(pn)

i(Aπ)
(28)

The context of this question is a pl following a pn frame. The inter-
rogation i(Aπ) is the action that hopefully generates that sequence.
Since the past and the future cannot be acted upon, the action is to be
generated in f10.

Answers for the interrogation i(Aπ) are searched by three pro-
cesses. The first two belong to the knowledge acquisition process K
presented in (22). The third belongs to the belief generating process
B.

1. answer.v.k.stm looks in the short-term memory, the STMt10 .
In this case it will necessarily fail, because part of the question

context refers to the future. The STM does not include frames
beyond fπ .

2. answer.v.k.ltm looks in the long-term memory. In the current
example this memory is not even considered. It is only necessary
to recall episodic past information.

3. answer.v.b looks in the scene dominance memory, the SDMt10 .
This process looks sequentially through the SDM. It scans the
SDM scenes, following their dominance order. Each dominance
scene is scanned from the most recent frame to the oldest, looking
for a match to the question.

The questions and the answers are centralized in a working mem-
ory W. At moment t10 there is only one scene in SDMt10 , and the
first match found provides the following W configuration:

W =

∣∣∣∣∣∣∣∣∣
Q :

c(pl) c(pn)
i(Aπ)

K : nf

B :
c(pl) c(pn)

i(1c)

∣∣∣∣∣∣∣∣∣
t10

(29)

This W configuration corresponds to a belief epistemic state. The
knowledge acquisition process could not find an answer, and this is
noted nf .

The belief answer does not trigger directly a 1c action. The MLM
can think of actions without actually performing them, because the
belief generating process B is not directly linked to actuators. It just
consults memories. Actuator actions can only be performed in the
present moment, and only the knowledge acquisition process K can
be directly linked to actuators. The voluntary motor action 1c is trig-
gered when the K process looks for an answer to a question built
from the belief trimmed to the present moment.

W =

∣∣∣∣∣∣∣
Q :

c(pn)
c(1cπ)

K : . . .
B : . . .

∣∣∣∣∣∣∣
t+
10

For voluntary actions, a physical link must exist between the K
process and the action measurements: the K process triggers the ac-
tuator that gives back the requested measurement. This necessary
link is the most elementary form of procedural memory. The ac-
tion is measured and recorded in STM

t+
10

, while nothing changes
in SDMt10 :

STM
t+
10

:
pn pl pl pn pn pl
1c 2c 1c 1c 2c 2c

SDMt10 :
pn pl pl pn pn pl pl pl pn pl

2c 1c 1c 2c 2c 1c 1c 1c 2c

This in turn provides the desired answer to the K process:

W =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q :
c(pn)
c(1cπ)

K :
c(pn)
c(1cπ)

B :
c(pn)
c(1cπ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t++
10
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This W configuration corresponds to a knowledge epistemic state
(the belief is fully covered by knowledge). Besides, there is no sur-
prise, since the belief produced is identical to the acquired knowl-
edge.

We thus see that the MLM knows about its voluntary actions after
they were triggered. Something similar to this perplexing situation is
actually found in human brains [11].

We can also see that SDMt10 provides a micro-theory MTt10 for
theH1 cinematic heuristic, giving two micro-rules (mR1 and mR2)
forH1:

MTt10

mR1 :
pl pn

1c

mR2 :
pl pl

1c

In words, the micro-rules tell the MLM to select 1c whatever the
present moment situation, in order to reach a pl next frame. Remem-
ber that only the first match found in DDLt10 (scanning scenes from
the top of the scene list, and scanning scenes from the most recent to
the oldest frame) is used to define the micro-rule. We can also note
that the “implicit knowledge” (a list of scenes) recorded in STMt10

becomes “explicit knowledge” (a set of rules) when searched by a
specific cinematic heuristic.

What happens next? First, the next frame is recorded in the short-
term memory,

STMt11 :
pl pn pl pl pn pn

1c 2c 1c 1c 2c
(30)

Now the success.pred function evaluates the success of the vol-
untary action. To do so, a query is generated where the K process
can check the f11 frame against the pl prediction in (29). The corre-
sponding working memory configuration becomes:

W =

∣∣∣∣∣∣∣∣∣∣∣

Q :
i(plπ)

K :
i(plπ)

B : . . .

∣∣∣∣∣∣∣∣∣∣∣
t11

This working memory configuration corresponds to a knowledge
epistemic state. The prediction was successful. The dominance.s
function in (13) takes the scene in SDMt10 that was used by the B
process to produce the belief answer, and moves it to a higher or
lower position relative to the other scenes in the SDM, according to
its predictive accuracy. So far there is only one scene in the SDM, so
the dominance.s function does not reorder anything. Note that it is
the micro-theory that is reordered, not the derived individual micro-
rules.

After the checking process is completed, the full process starts
again. From this moment onward, since the motor actions of the
MLM are now defined by the belief generator, the MLM starts win-
ning until the fiftieth turn arrives, and playerX plays two coins. Until
then, the record mode ρ stays OFF, according to the RC1 record-
ing criterion. Therefore the SDMt10 is the only source for micro-
theories, and the MTt10 micro-theory is dominant. According to the
RC1 recording criterion, when a new pn occurs after two consec-
utive pl, the record mode rho is again set to ON. After four more
turns it’s switched back to OFF, and the buffer content is transferred
to the SDM. Therefore, at time t54, the short-term memory and SDM

configuration become:

STMt54 :
pl pl pl pl pn pl

1c 1c 1c 1c 1c

SDMt54 :


pl pl pl pl pn pl pl . . .

1c 1c 1c 1c 1c 1c . . .

pn pl pl pn pn pl pl . . .
2c 1c 1c 2c 2c 1c . . .

From now on the scene on top of SDMt54 is scanned first. It be-
comes the new source for a dominant micro-theory for H1, and the
former MTt10 from DDLt10 is forgotten “by interference”. But the
new micro-rules provided by DDLt54 to the H1 heuristic are iden-
tical to mR1 and mR2, therefore the machine simply ignores the
choice of X to play 2c from time to time. This is, by the way, the
best strategy for MLM when the exact moment of the exception can-
not be predicted.

At time t100 the scene on top of SDMt54 is pushed down in the
list because it provided a false prediction at time t99. But this will
not change the micro-theory used, since the older scene (now on
top) gives an identical micro-theory for the heuristic. At time t104
a new scene is recorded in the SDM, just like at time t54, and the
process goes on. Each failure starts a new recording, and more iden-
tical scenes are added to the top of the SDM. When the limit of the
SDM capacity is reached, the scenes at the bottom start being pushed
out to oblivion. This is the basic mechanism that implements the ma-
chine’s reinforcement learning.

Let us now suppose that player X , instead of playing two coins
every fifty turns, gets tired of losing and decides to invert its playing
rule at time t100, and starts producing two coins instead of one. From
the configuration above, four turns after this new rule of player X is
started, we get:

STMt104 :
pn pn pn pn pn pl

1c 1c 1c 1c 1c

SDMt104 :



pn pn pn pn pn pl pl . . .
1c 1c 1c 1c 1c 1c . . .

pl pl pl pl pn pl pl . . .
1c 1c 1c 1c 1c 1c . . .

pn pl pl pn pn pl pl . . .
2c 1c 1c 2c 2c 1c . . .

The new scene in the top of SDMt104 does not change the micro-
rules for theH1 heuristic. It does not contain any pn to pl transition.
Therefore, the two bottom scenes are used. They fail and are pushed
down alternatively. This is so because we do not find in the SDM any
indication that 2c now brings pleasure instead of pain. And nothing
further will be recorded in the SDM while the MLM keeps using the
RC1 recording criterion.

This obvious interaction of all the MLM features, from clever
senses to wise recording criteria, highlights the importance of inte-
grated intelligence. This aspect was already noticed in the seventies
by Newell [12]. It justified the search for unified theories of cogni-
tion.

To get out of the learning deadlock, the MLM needs to resume
exploring. This can be obtained in several ways. The two following
strategies are very simple and can be implemented simultaneously:
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1. Failure-Based Unlearning. This can done erasing the scenes that
support the failing micro-theories after a given number of consec-
utive failures (we can thus tune the machine’s “patience in pain”).
After the SDM cleaning process, we are back to random moves
and the learning process starts again. Notice that, if player X
takes a long time to shift its rule, many scenes like the new one
in DDLt54 are added to the SDM, and the cleaning process takes
longer. The machine sticks longer to theories that were repeatedly
rewarding.

2. Action Randomization. Another simple strategy is to always al-
low some randomness in the motor actions triggered, even when
a belief is successfully generated. This is what we may call the
“keep-exploring principle”. This idea is frequently used to escape
the curse of local maximums in learning algorithms. The learning
speed is increased if we add to the RC1 recording rule another
RC2 rule that starts recording after two consecutive pn are fol-
lowed by a pl. With these two rules, a 2c random choice soon
brings to the SDM an adequate micro-theory for H1. Action ran-
domization may adapt faster than failure unlearning to the new
situation, but it will also bring pain to the machine.

In this learning setting, the heuristic H1 is good enough in two
situations. First, when the rule used by player X has a periodicity of
one or two turns, with a small amount of noise. Second, although the
heuristic H1 is unable to detect periodicities over more than one or
two turns, it may be still good enough when the rules with a peri-
odicity of one or two turns are slowly alternated, giving time for the
machine to unlearn and relearn good micro-rules for H1. Of course,
the new rule must be learned fast enough to avoid compromising the
machine’s survival. This will depend on the initial survival assets of
the MLM and how hostile the world is.

Beyond these two situations, other simple and fast heuristics (in
the spirit of [7]) and recording strategies can be tried to cover as much
as possible the deficiencies ofH1. The final set of good heuristics is
a product of evolutionary learning.

The current implementation of the M-Logic Machine that can be
found in the authors’ homepage is somewhat more complex than this
very simple example just given. In it, frames use around ten chan-
nels to structure data. The searched patterns are four frames long, in-
stead of just two. A dozen predictive heuristics are used, along with
half-a-dozen recording criteria. Some heuristics look for global plea-
sure at scene level, searching for greater pleasure beyond immediate
pain. This requires higher-level measurements to detect scene fea-
tures. Most important, there are heuristics that will try to avoid pain,
not just heuristics to look for pleasure. The set of predictive heuris-
tics is subject to a dominance update mechanism similar to the one
used for scenes in the SDM. When pleasure seeking heuristics fail
repeatedly, pain avoidance heuristics dominate, and vice-versa.

Because of the fixed number of channels in all frames, irrelevant
information is often recorded in the available channels of the cine-
matic memories. The MLM interrupts the vigil mode processes from
time to time, shown in Figure 1, and starts a SDM cleaning process
that greatly improves the inference abilities of the machine. It’s an
internally generated Hebbian learning process that strongly evokes
dreaming. Cinematic memories become less accurate, but more use-
ful in many situations.

Therefore, the MLM core architecture here presented easily scales
out to new features. The ability for an architecture to scale out is
emphasized by Sloman in [17]. As it is, the MLM can solve an in-
teresting set of predictive inference problems. The set of problems is
embedded in the public source code of the MLM.

4 CONCLUSION
The M-Logic Machine gives a concrete meaning to the notions of
knowledge and belief. The meaning relies solely on the question-
answer configurations found in the machine’s working memory. This
clarification can contribute to the progress of any research field that
deals with these important concepts. Furthermore, it was shown how
the MLM achieves learning in random hostile environments with-
out resorting to statistical calculations. Only memory manipulations
are involved. Most features of the MLM machinery can be randomly
generated and tuned by evolutionary learning. In this sense it’s a fully
autonomous solution. The MLM architecture also shows the virtues
of using cinematic memories as a basis for cognition. This approach
is virtually absent from current AI research.
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I think I know you: a sharable memory model
between agent and human

Joana Campos and Ana Paiva 1

Abstract. The idea of ’human-like’ memory has gained im-
portance with artificial companion systems, which attempt to
”change interactions into relationships”. Following that per-
spective, it is necessary to have memory models that not only
store events, but also allow semantical integration of those
events into the agent and user’s lifetime. In our work, we ar-
gue that a sharable memory framework between agent and
human, both in structure and content, is essential to help the
agent to perform in a social environment and as such establish
meaningful relationships with the user. In this paper we pro-
pose a memory framework for mapping also the user’s memory
into three levels of abstraction like humans do. Such structure
should enhance social aspects of memory and development of
social bonds between agents and human.

1 INTRODUCTION

Memory in humans is more than just a set of mechanisms for
retaining mundane facts of our lives. It serves other purposes
such as to define personal identity, to guide future behav-
ior or to help people perform in a social environment. This
functional approach of memory, most precisely autobiograph-
ical memory (AM), explains why people retain memories for
so long [3]. Socially, those mechanisms contribute to develop
intimacy and maintain relationships over time [14], as they
allow us to naturally communicate with our peers.

Accordingly, ’human-like’ memory architectures for arti-
ficial companions are recognized as an essential aspect for
sustaining long-term relationships between those compan-
ions and humans [10]. Undeniably, agents endowed with such
mechanisms would be able to perform in a social setting using
the same base line for thought.

We are not the first to note that a sharable framework for
representing memories or events would be an essential feature
to integrate into the agents’ memory [12]. In our work, we
argue that such sharable framework not only in structure, but
also in content, would support social aspects of memory and
help the agent to behave properly in a verbal communication.

However, the memory architecture proposed in this pa-
per does not try to fully reproduce the human memory. It
tries to capture computationally some of its relevant aspects
for achieving a more ’human-like’ acceptable behaviour. We
grounded our work on the assumption that conceptual autobi-
ographical knowledge is formed from abstractions of episodic
memories coupled with beliefs and attitudes of the working

1 Instituto Superior Tecnico - UTL and INESC-ID, Portugal, email:
joana.campos@ist.utl.pt and ana.paiva@inesc-id.pt

self [6]. In other words, AM can be seen as a ’semantic net-
work’ of events contextualized in one’s life, retaining knowl-
edge about progress of personal goals.

Therefore, we formalized a model for a companions’ mem-
ory based on Conway’s perspective [6], who suggests a human
memory division in three levels of abstraction ([4] describes
the model in detail). A more abstract level (Lifetime Periods)
to contextualize the self in his lifetime, a middle level that ac-
counts for the experienced events (General Events) and a less
abstract level contextualizing the events in time and emo-
tionally (Memory Line). This hierarchical conceptualization
allows to the system interpret the encoded and retrieved in-
formation in a meaningful way, acting as specific views over
the memory.

The underlying assumption is that such model could map
not only the agent’s memory, but also the companion would be
able to share memory content with a human. Thus, through-
out this paper, we describe the implemented memory struc-
ture and its processes of remembering and forgetting, always
focusing in the social functionality of AM.

2 RELATED RESEARCH

Autobiographic memory (AM) in humans empowers the in-
tegration of the past into the future. Likewise, it has been
suggested that in agents this could help them to communi-
cate and form social relationships.

To address the question of how to include autobiographical
memory mechanisms in an agent and how its own emotions
can increase the believability through an interaction with a
user, Ho et al. [9] defined AMIA (Autobiographical Mem-
ory for Intelligent Agents) framework - an autobiographical
knowledge base of significant events sensed by the agent [9, 8].
Such framework does not try to copy an adult AM, but rather
to capture essential features from some psychological models
suggested by Conway [6].

Ho et al. proposed an implementable computational model
(yet, not implemented), divided in Life Periods,Themes,
Episodes, Events and Action, with different models that can
be linked and yet evaluated separately. Events are organized
by goals and they can encapsulate all necessary knowledge for
a particular object or situation. Further, these highly specific
experiences are a central feature of AM allowing the agents
to represent their own experiences for acting in a virtual en-
vironment. The defined model, formalizes components that
in fact are useful for addressing the agents’ memory content.
However, the model suggested does not contemplate a shared
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memory between user and agent.
Focusing on a more social memory, Mei Yii Lim et al. also

present an initial prototype for a social companion generic
memory. The aim is to create mechanisms reflecting human
memory’s characteristics and then allow companions to iden-
tify, characterize and distinguish experiences [11]. They dif-
ferentiate two components of an agent’s memory, Short Term
Memory(STM) and Long Term Memory (LTM). The main
goal is to maintain active the information relevant for the
agent’s actual state and at the same time ensure that the
agent adapts to the situations over the long-term [7]

3 MEMORY’S ARCHITECTURE

In humans, Autobiographical memory (AM) has knowledge at
three levels of specificity, which are sensitive to cues and pat-
terns of activation. As mentioned earlier, while lifetime peri-
ods identify thematic and temporal knowledge, general events
are related to actions, happenings and situations in one’s life.
Event Specific Knowledge (ESK) details are contextualized
within a general event that in turn is associated with one or
more lifetime periods, linking self autobiographical memory
as a whole (fig. 1).

Figure 1. Knowledge base abstraction levels.

As referred by Conway [6] and other researchers[13], any-
thing can be a cue. In our model, we will consider cues that
could be represented by text due to our initial concern of de-
veloping a framework for sharable content between agent and
human.

The underlying structure of the proposed architecture [4] is
a collection of RDF (Resource Description Framework) triples
consisting of < subject, predicate, object >. These triples are
organized in graphs, one for each level of specificity, repre-
senting a simple data model for inference. The subject and
object are nodes in the graph both linked by an edge. This
edge represents the predicate, which establishes the relation
between the two nodes.

3.1 Shared Memory

The implicit concept of shared memory (sm), should be clar-
ified for a better understanding of the framework, as it is the
basis for the memory’s structure. Put simply, it is an experi-
ence that one had had and told to the agent. An event that
occurred in the user’s life. This information is defined by the
tuple < L,G,E >, where:

• L – refers to one or more lifetime periods, which contextu-
alize an event in a broad period of time.

• G – defines the main part of a shared memory, that is the
action or event.

• E – specifies the details of one event.

Each one of the elements represents a level in the memory
hierarchy. Besides all levels can be accessed separately, as if
they were different views over the knowledge base, the 3 levels
(graphs) are interconnected. This rich data integration allows
us to represent knowledge in a meaningful way, while it unifies
the memory as a whole.

3.1.1 Lifetime Period - L

A lifetime period (LTP) can be divided in two categories:

• FL – Fixed lifetime periods. Those refer to periods that are
common in everyones’ life. For example, the current year
and the user’s age.

• SL – When we refer to a specific time in our lives we use
particular words that possibly only make sense for us. Ac-
cording to this idea, lifetime periods can be subjective, and
cannot be defined apriori. Therefore, new LTPs should be
created dynamically whenever it is needed.

3.1.2 General Event - G

A general event is a tuple with 6 characteristics
< A,Wo,We,Wn,Wt,Ev, Sub >, where:

• A (action) – infinitive of the main verb identified in the
shared memory.

• Wo (who) – participants that had taken part in the event
• We (where) – specific place where the event occurred
• Wn (when) – specific time when the event occurred
• Wt (what) – any other complement of the shared memory

that not fits in the other characteristics.
• Ev (event) – refers to the event itself. The event is gen-

erated by linking the action to one of the inferred charac-
teristics: A + {Wo,We,Wn,Wt}. That link is based on the
underlying semantic of the verb. For example, if the verb
indicates movement, such as “go” or “go out”, it links to
where. Thus, the event is given by A + We.

• Sub (subevent) – link to a related G element.

3.1.3 Memory Line - E

The details of an event (G) refers to its surrounding context
and the emotional details that the user may have added. This
element is defined by the tuple < T,D,Em, I, S >, where:

• T (text) - sentence or set of sentences that describe the
event and add personal details to it. It describes a personal
view of the facts and its emotional connotation.

• D(date) - date object extracted from the Wn characteristic
of the event. It corresponds to an instant (a specific day)
or a interval with a settled begin and end.

• Em (emotion) - emotional state in T. The system is capable
to work with this variable (and others that we might want
to add), but at this stage of implementation the emotional
stage is not inferred from T.
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• I (image) - image that one can use to better describe the
event.

• S (sound) - sound that could add some personal detail and
sufficient to bring the event to one’s mind.

3.2 Accessing agent’s memory

Remembering is a complex process and is theoretically di-
vided in three phases Encoding, Storage, Retrieval. We based
our approach to accessing the knowledge base in this three
stages, which are formalized below.

3.2.1 Encoding Process

The encoding process refers to the stage that information is
registered [1] and is directly linked to how interesting some
subject is. In this process, sequences of linked events are as-
sociated with different kinds of information, as formalized in
the previous section. Each event is formalized according to
the structure of a sm, formed by layer’s rules.

Figure 2 depicts the encoding process for a written text as
input. A main event (G1) is extracted from the set of sentences
and sub-event (G2) is attached to it.

Figure 2. Encoding example.

To each one of the general events, the components of a
shared memory (sm) are extracted and after used as cues for
memory triggering.

L = Year 2010; Relationship with Sam

G1 = <A = go; G2 = <A = go;

Wo = I, Sam; Wo = I, Sam;

We = Rome; We = the colosseum;

Wn = last week; Wn = - ;

Wt = - ; Wt = it wasn’t like I

Ev = go to Rome; had imagined;

Sub = G2 ; > Ev = go to the colosseum;

Sub = - >

E = < T = I went to Rome with Sam last week.

We went to the colosseum,

it wasn’t like I had imagined.;

D = 2010-03-01 , 2010-03-07

Em = - ; S = - ;

I = c://mypictures/colloseum.jpg

3.2.2 Storage

The storage or consolidation is the process whereby informa-
tion is maintained in memory over time [1]. In human mem-
ory only relevant and important events are retained in one’s
memory. Thus, as we are concerned with an agent that gath-
ers meaningful information about the user, a filter should be
applied to guarantee that only relevant events are stored in
memory.

A straightforward approach for filtering relevant informa-
tion, can be done weighting the action present in some event.
For example, actions that may change the user’s state are
more important than others that do not make such change.
Therefore, a sm is only stored in the agent’s memory if the
event (based on its action) adds relevant information about
the user.

Continuing with the previous example, the verb ’to go’ in-
dicates movement and perhaps an important change on the
user’s state, so that may be a good indicator that the event
associated should be retained in memory. According to that
decision a shared memory object is created (see fig. 3).

Figure 3. Graphical example of the RDF memory description.

3.2.3 Retrieval

The retrieval is a complex process for accessing information,
which is possible by recognition or recall [1]. Recall is normally
an intentional process but can occur when some perception
- cue - triggers some experienced event. In our approach we
take into account such perspective to simplify the access to the
agent’s memory and to take advantage of the social function
of AM. Researchers have suggested that everything can be a
cue for memory triggering, as long as it is linked to an event.

Therefore, any element at any level of this memory model
can be retrieved, as long as, a reference to the general event
is present. So to retrieve any element from memory three el-
ements should be present O =< G,Lv,Wr >, where:
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• G – reference to the specific event (SUBJECT)
• Lv – level in the database or graph where the search should

be performed (context)
• Wr – what to retrieve from the performed search. Note

that this element represents an edge in the graph, more
precisely a relation between two nodes. (PREDICATE)

• O – obtained element (OBJECT)

To get any event based on information from any of the
other levels, it is only necessary to perform the inverse process
G =< Wr,Lv,O >.

4 SOCIAL MEMORY

An important function of memory in a social environment is
to increase one’s responsiveness, as it allows listeners to make
empathetic and contextually grounded responses to what the
speaker is saying [2]. To enhance this social characteristic, the
described structure plays an essential role providing a very cue
sensitive database, which facilitates building the social bond.

This memory model was integrated into the architecture
of a companion system (MAY - my Memories are Yours) [4],
which interacts with the user through dialogue. We verified
that the memory content in conjunction with its structure,
offers support to a more interesting interaction. Not only does
this sharable framework increase the agent’s responsiveness,
but also its subsequent utterances are sensitive to textual cues
in user’s input.

4.1 Companion’s overview

MAY is an agent created to assist a teenager user on self-
reflection about what happens in his/her life. The communi-
cation between the agent and the user is done through dia-
logue by which the shared memories are collected and saved
in a diary form (or timeline). The process flows as follows:

• Every sentence will be analyzed using the natural language
tools, which are responsible for (1) identifying a sentence’s
verbal tense and to separate future from past events;
(2) identifying the event (action) and its characteristics:
when it happened, who participated and where it took
place. Those components are responsible for indexing an
event.

• The shared memory base is updated with every new
relevant “sensed” event. Apart from this main module,
which stores all relevant past events in user’s life that the
agent knows. Another one, similar in structure, accounts
for events that have not happened yet.

• To produce an adequate response, the agent starts by
searching its memory for anything appropriate to say.
It looks for active goals, past events with some relevant
information for the current situation or even go beyond
the present and infer future plans. Other tools are also
available for enriching the dialogue (For instance, Con-
ceptNet2).

2 http://csc.media.mit.edu/conceptnet

4.2 Shared structure and content

When recollecting some event from memory, humans follow
a pattern that starts by establishing a broad period in their
lives, which cannot always be mapped into a date (”When I
was 15 I went to Brazil”). Then, they specify an event and
after that they start describing its details [5]. The described
memory structure tries to map this line of thought, enabling
the agent to ’think’ as similar as possible to the user. Allowing
him/her to ’frame’ the experienced events in a semantically
meaningful space.

In the previously described scenario, the memory has an
essential role on assisting the dialogue and again on increasing
the agent’s responsiveness using the previous shared events.
This task is performed by ’sensing’ if any internal stimulus
lead to a pattern identified in data, either after a memory
had been created or at any point of the interaction. So far, we
focused on three views of data 1. Tracking Goals; 2. Virtual
Sensing ; and 3. Forecast. Also, the user is able to ask direct
questions to the agent.

The former function decides, with user acquiescence,
whether to store permanently or simply eliminate some event
in the active goals database. The other two functions, which
we call Virtual Sensing and Forecast, extract specific gener-
alities while focusing on specific information. These cognitive
functions are supported on the fact that we nearly always in-
terpret new events based on available knowledge about the
world and about our selves. In this case, the agent interpret
the past or new events based on the shared events on previous
interactions.

• Virtual Sensing – is concerned with the agents ability to
sense that something is missing in the told event. When
this search in the database is performed, we compute a
view of the events that match the criterion of the event
introduced. We set that the agent would be confident in
believing that some fact is true in proportion with the
number of events in memory.

• Forecast – normally refers to future, but in this case it refers
to anything that the agent does not actually know but still
can be inferred using the data in memory. The aim of this
feature is particularly useful in diversifying the conversa-
tion when the system asks about yesterday or tomorrow.
In contrast with the previous feature, this takes in account
the day of the week to make a prediction.

4.3 Memory access through layers

The aforementioned cognitive functions use differently the
layered structure of memory. In this section we describe situa-
tions wherein the companion uses the information in memory
to enrich the dialogue.

4.3.1 Virtual Sensing

In this situation the agent makes a prediction about some
missing element in a sentence. To clarify this situation, con-
sider the following sentence: ”I’m going to the cinema with
Lyam.” . In this sentence typed by the user the element
’where’ is missing, so the agent combines two things that it
knows: most of the times the event ’go to the cinema’(event)
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with ’Lyam’(who) happens every other ’Thursday’ (when).
This query occurs in two different levels of the data base: Gen-
eral Events, which match ’event’ and ’who’ and also the Mem-
ory Line, which gathers more specific details of each event
(day of the week).

Figure 4 (left) depicts preliminary results of query time3 for
getting the required information. The time for query response
increases in pair with the database size. At this point, the
superior level would have an important and relevant role in
decreasing the search space and to guarantee agent better
performance. Figure 4 (right) shows the size of memory in
terms of number of nodes.

Figure 4. Storage space in function of the number of nodes

4.3.2 Forecast

When the agent tries to diversify the conversation asking
about yesterday or tomorrow, a sentence can take the fol-
lowing structure: ”Are you going jogging to the Stadium, to-
morrow?” . The agent knows that several times in the past
the user told it that at Saturdays he/she used to going jogging
to the stadium.

5 CONCLUSION

In this paper, we described a framework which allows the rep-
resentation of the agent’s mental information about the user
similarly to how humans do. Furthermore, this implemented
model enables to share content and structure allowing the
agent to behave more naturally in a social setting. In a few
steps the agent is capable of recalling the exact episode in dif-
ferent granularities of time at any level of the RDF structure.

We consider that this structure provides an acceptable time
for reaction in dialogue (< 0.5 seconds for large databases).
However, the system would benefit if the agent encompass a
lifetime period that could map the ’current period’ in one’s
life. It would work as a ’window’ over the events in mem-
ory establishing the search space constant independently of
the memory size. Therefore, the memory (autobiographical
memory) would be considered, as it should be, a ”transitory
representation ” [5].

3 The time for each query is the average of 10000 loops over the
same function. We followed this procedure due to sightly varia-
tions on the Python processor and background processes during
a normal interaction.

As mentioned in the opening section the social feature is
only one of the characteristics of memory and this framework
offers a base line for exploring the remaining functions
enabling the agent to operate in situations and relations that
are not present to the senses [15].
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Between Downward Spirals and Habituation:
Emotion Intensity in Virtual Agents’ Memory Retrieval

Paulo F. Gomes and Ana Paiva and Carlos Martinho1

Abstract. In the present article a model for memory retrieval of per-
sonal experiences for virtual agents is presented. It builds upon previ-
ous work and focuses on the effect memory retrieval can have on the
agent’s emotional state. Memory retrieval is defined as an emotional
re-appraisal of past experiences. The variation of intensity of such re-
experience is explored by modeling two phenomena: downward spi-
rals and habituation. Downward spirals consist of situations in which
recurrent retrieval of negatively charged past memories increases the
recall intensity of such memories in depressed individuals. Habitu-
ation is the reduction of recall intensity caused by re-experiencing
past experiences in a context perceived by the individual as safe.

1 INTRODUCTION

Recollection of personal experiences sometimes shoots oneself
through a trip of sensations. These experiences can be moments of
professional achievement, amorous conquest, peer conflict, a friend
departing, etc. We travel to a past time, reliving those episodes
[18], with previously elicited emotions coming to mind [12]. Daniel
Schacter describes how troublesome this voyage can sometimes be:

“We’ve all endured difficult experiences - the death of a loved one,
rejection by a lover, failure at work - that pain us mightily in the
days and weeks after they occur. In the immediate aftermath, we may
find ourselves reliving the painful incident to the point of distraction,
...”[17]

Should we not expect believable agents to have some degree of
this “emotional memory retrieval”? How coherent would seem the
behavior of an agent, that when returning for the first time to the
place where it was first kissed, displays no emotional reaction? To
address this issue, in previous work we defined and implemented a
model in which an agent emotionally re-appraises past events when
retrieving them [6][7].

However, the evaluation of the model seemed to indicate that be-
cause an agent tended to always react emotionally in the same way
when retrieving a specific past memory, in the long-term this might
render its behavior as excessively repetitive and predictable [6]. In
the current document we propose a mechanism to add some vari-
ability to the model, by changing the experience’s intensity between
different retrieval situations. Furthermore, this mechanism will be in-
spired in two phenomena of human memory. Such a model can ul-
timately contribute to the believability of virtual agents by support-
ing behavior coherence while maintaining variability in the behavior
[15].

1 INESC-ID and Instituto Superior Técnico, Portugal, emails:
pgomes@gaips.inesc-id.pt and ana.paiva@inesc-id.pt and car-
los.martinho@ist.utl.pt

2 RELATED WORK

Many researchers have already defined agent architectures in which
both past memories and emotions are present. The cognitive architec-
ture Soar [11] is an example, yet in it there is no integration between
the two. In [8] a virtual agent architecture framework is proposed in
which past events are used to select strategies to deal with similar cur-
rent events, and the emotional state is an indicator of the discrepancy
between a desired state and the perceived state. However, emotion is
not part of the memory retrieval process.

In FAtiMA [4] agents emotionally appraise events, store a personal
story of these events, and can textually reconstruct it. Also oriented
towards enabling reconstruction of personal stories, the agent mem-
ory system described in [3] takes into account memories’ emotional
charge. Memories concerning events that were initially perceived as
more emotionally relevant take longer to forget. In opposition, in the
cognitive architecture presented in [5], memory episodes linked with
emotions of higher intensity have a higher probability of being re-
trieved. Nevertheless, in none of these architectures are past events
re-appraised emotionally.

On the other hand, in the SALT & PEPPER agent architecture [2]
emotion is an integral part of the retrieval process. The authors de-
fine emotions as performance evaluators and attention shift warnings.
When an emotion is generated it is matched against the header of all
nodes in a memory network. Nodes have different activation levels
and only the matching node with highest activation level is retrieved
to working memory. This retrieval causes the node’s activation level
to increase, activation which in turn is spread to neighboring nodes,
similarly to activation spread in ACT-R’s declarative memory [1].
Although it would be possible to use SALT & PEPPER to support
change in the emotional state caused by retrieval of personal expe-
riences, few clues are given on exactly how to discriminate between
past and present in their appraisal.

In [10] the authors describe an agent architecture for an inter-
active virtual character (Eva) for which past interactions indirectly
influence the agent’s emotional state. The relationship between the
agent and a specific user, defined in a two-dimensional space of dom-
inance and friendliness, depends on emotions felt by the agent in
previous interactions. For instance, gratitude will increase perceived
user friendliness and decrease perceived dominance towards the user.
Moreover, the relationship values change the agent’s mood when in-
teracting with the user, and in turn the mood affects the intensity
of emotions. Although, memories indirectly influence the emotional
state, the system is unable to model retrieval of past events not en-
tailing a relationship.

All in all, supporting the inter-connection between emotion and
memory has yet to be fully investigated, particularly in what concerns
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the retrieval process.

3 MEMORY RETRIEVAL MODEL

In previous work [7] a model for memory retrieval of personal ex-
periences was defined, and implemented, drawing inspiration from
Tulving’s conceptualization of the process [19]. The model is divided
in two main stages: location ecphory and recollective experience. In
location ecphory, memories connected with the agent’s current lo-
cation are selected (details in [6]). The recollective experience con-
sists of re-appraising the selected memories’ associated past events
according to current motives2. This model of memory retrieval was
integrated in an agent architecture schematically represented in Fig-
ure 1.

As can be noticed, the recollective experience is essentially an ap-
praisal process. This process follows closely FAtiMA’s reactive ap-
praisal [4] and the emotional related concepts are inspired in the OCC
theory of emotions [15]. For instance, an emotion is defined as a va-
lenced evaluation of an event and contains the following elements:

• type of the emotion according to the OCC model [15] (e.g. pity).
• intensity specifies the emotion’s current intensity (non-negative

scalar value). It decays to zero with time. When the intensity
reaches a close to zero value the emotion is removed from the
emotional state.

• valence specifies the emotion’s value (positive or negative). The
valence is directly dependent on the emotion type. For instance,
joy emotions are positively valenced and pity emotions are nega-
tively valenced.

Moreover, an emotional state is defined by the following elements:

• active emotions contains the set of emotions the agent is currently
feeling. The Behavior module of the agent architecture (Figure 1)
is responsible for making the agent display a facial expression cor-
responding to the emotion with highest intensity.

• mood is a bounded scalar value that represents the agent’s recent
overall emotional state valence. The evocation of negatively va-
lenced emotions decreases the mood, while the evocation of pos-
itively valenced emotions increases it. These changes are propor-
tional to the intensity of the evoked emotions. Additionally, mood
decays to a neutral value with time.

The emotional state is affected by the appraisal of past events, dur-
ing the recollective experience stage of memory retrieval, as well as
present perceived events (regular appraisal). Events have a frame-like
representation in which an event can have a sub-event. For exam-
ple, a past event of witnessing another agent falling in a hole placed
at bi-dimensional coordinates (200,300) could have the following
representation: [Event type: retrieval sub-event:[Event type: witness
sub-event:[Event type: fallHole location:(200,300)]]]. A past event
is characterized by having type retrieval, and its sub-event parame-
ter value is the event associated with the retrieved memory selected
in the ecphory stage. Past events are stored in memory as memory
traces. A memory trace is defined by the following elements:

• event is a representation of the event which the memory is about.
• emotion specifies the emotion caused by the appraisal of the event.

If an event’s appraisal generates more than one emotion, one mem-
ory trace is created for each one. In the remainder of this paper,

2 The term motive is used as an abstraction over goals or desires.

memory traces with a negative emotion will be referred to as neg-
atively valenced, and memory traces with a positive emotion will
be referred to as positively valenced.

• time stamp is a meta-field indicating when the event started or
when the memory trace was retrieved for the last time.

In the current system only if an event’s appraisal causes a change
in the emotional state is the event stored. This approach tries to simu-
late the effect emotion content has on promoting attention focus dur-
ing encoding [16] and on enhancing elaborative rehearsal. Instead of
enforcing a forgetting mechanism such the one in [3], the events are
filtered during storage. However, we have yet to empirically compare
these two methods.

When a memory trace is selected by ecphory, a past event is cre-
ated and fed to the appraisal system for recollective experience. This
past event has type retrieval and has as its sub-event the event param-
eter of the memory trace. In the model, a past event appraisal consists
of appraising its sub-event. However, appraisal may differ from the
original one regarding the following perspectives:

• The mood influences the intensity of generated emotions: a pos-
itive mood enhances positively valenced emotions’ intensity, and
reduces the intensity of negatively valenced emotions. As mood
may change, so can the intensity of generated emotions. Further-
more, if the re-calculated intensity is small enough, the emotion
will not even change the emotional state. The mood influences ap-
praisal by reflecting the recent past emotional experience.

• The agent’s motives may change, and hence the appraisal and con-
sequent generated emotions may differ from the originally cre-
ated.

Finally, guided by the assumption that re-living a past experience will
typically be less intense as the original experience [12], the final in-
tensity of a generated emotion due to the appraisal of a past event is
reduced by a parameterizable positive factor smaller than one (mem-
ory retrieval intensity bias):

intensity = intensity ×memory retrieval intensity bias

4 DOWNWARD SPIRALS AND HABITUATION
It is debatable to assume that re-living a past experience will always
be a less intense experience than actually perceiving the experience
first-hand, as the just shown expression implies. The two presented
factors of emotion intensity variability have limitations: due to time
decay, the mood only encodes the agent’s recent past emotional con-
text, and not an overall process of dealing with the past experience;
changing motives arbitrarily can harm an agent’s believability by pre-
venting an individual evaluating the agent’s behavior from creating
a mental model of these motives [14]. Therefore, we propose adding
to the existing model a mechanism for tuning emotion intensity vari-
ability during memory retrieval that takes into account the agent’s
overall experience with a specific memory.

Daniel Schacter discussed how retrieval of a certain memory can
influence future recall of that same memory [17]. He states that con-
tinual reminding of a personal memory can sometimes strengthen
recall. Moreover, that depressed patients better encode negative ex-
periences and have a greater tendency for a phenomenon he names
as memory persistence. Persistence of memories consists on an in-
dividual recurrently retrieving a memory when he, or she, does not
wish to do so. An accountant not being able to concentrate on do-
ing a company’s tax declaration due to the constant retrieval of a car
accident in which he was hurt, is an example of memory persistence.
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Figure 1. Agent Architecture

Depressed individuals are more prone to enter an emotional down-
ward spiral connected with this phenomenon: they have a greater
tendency to retrieve negative experiences, which can negatively in-
fluence their mood, consequently increasing their susceptibility to
encode more negatives events (that can the experience of retrieval it-
self), that in turn will have a greater tendency to be retrieved. Schac-
ter proposes that this loop may internally be enforced by an integra-
tion of negative past experiences into the self-schema (the individ-
ual’s conception of itself) in which the former is linked with generic
negative concepts such as “I do not do anything right” or “bad things
always happen to me”.

Despite their possibly devastating effects, Schacter argues that
downward spirals caused by memory persistence may not be un-
avoidable. Telling others troubling experiences has been shown to
have positive effects. Furthermore, re-experiencing a past traumatic
experience in a safe context may result in a better integration with the
self-schema and a less intense recollection further on. Abstractly, we
can interpret this process as an habituation: reduced physiological
response to repeated stimuli.

5 DYNAMIC EMOTION INTENSITY IN
MEMORY RETRIEVAL

We propose modifying the memory retrieval model presented in Sec-
tion 3 to take into account the phenomena of downward spiral and
habituation. Each memory trace would have its own retrieval inten-
sity bias value, that we rename as persistence, and this value could
change when the memory trace was retrieved: if habituation took
place it would decrease; if the downward spiral phenomenon took
place it would increase; if neither phenomena were active the value
would remain the same. Consequently, we need to define the condi-
tions in which habituation and downward spirals take place.

Schacter presents depression as being a factor for an increased
downward spiral effect [17]. Although depressed individuals are
more prone to downward spirals, that does not rule out that the phe-
nomenon, at least to some degree, can take place in non-depressed
individuals. In a first approach, we propose mapping a state lean-
ing towards potential depression in humans, to the agent having an
extremely low mood value. Therefore, we propose that for the down-
ward spiral phenomenon to take place, the mood must be lower than a
downward spiral threshold. For instance, we could consider cases in
which the mood is in the lower quarter of the mood range. Note that
downward spiral threshold should be lower than the defined neutral
value (see Section 3).

Turning to habituation, Schacter indicates the feeling of safety as
promoting this phenomenon [17]. We propose mapping the feeling
of safety to the absence in the emotional state of an emotion of type
“fear” according to the OCC model [15]. Hence, for habituation to
take place, there can not be an emotion of type “fear” in the emotional

state.
Additionally, as habituation and downward spirals have opposite

effects on subsequent recollective experiences of a memory trace,
decreasing the emotion intensity and increasing it, we propose that
they should be mutually exclusive. Therefore, we define that down-
ward spirals will only take place if there is an emotion of type “fear”
in the emotional state, and that habituation will only take place if the
mood is higher than the downward spiral threshold. Summarizing the
phenomena conditions:

• downward spiral: mood is lower than downward spiral threshold,
and an emotion of type “fear” is present in the emotional state.

• habituation: mood is higher than downward spiral threshold, and
no emotion of type “fear” is present in the emotional state.

Finally, considering the change in persistence (formerly named
as memory retrieval bias), we propose that when a memory trace
is retrieved in the downward spiral’s conditions, the persistence is
increased by the parameter value persistence increase. However, if
with this increase the persistence would be greater than a parameter
max persistence, then it would be reset to max persistence3. Analo-
gously, when the habituation conditions are verified, the persistence
could decrease to a minimum of min persistence. As the emotion
intensity is a non-negative scalar, and the recalculated intensity is
intensity × persistence, min persistence must not be negative.

6 APPLICATION
The variation of the memory retrieval’s emotion intensity will only
positively affect believability if it is reflected on the agent’s Behav-
ior. The model presented in Section 3 has been integrated into a
game prototype (“Meemos’ Rescue”) in which that happens [6]. In
“Meemos’ Rescue” the player controls a character (meemo captain)
and through it can issue commands to several non-player characters
(meemo minions). The objective is to lead the meemo minions to an
exit point. The meemo minion’s expressive behavior greatly depends
on the architecture of Figure 1, and we will refer to them as agents
for the remainder of this section.

An agent’s mood is graphically represented by its color saturation.
The lower the saturation of a color, the closer it will be to a gray tone.
The word “gray” can be used to classify a mood [9] describing it as
negative. In fact, gray tones are sometimes associated with a negative
state of mind. With this motivation, when the mood is below its neu-
tral value, the lower it is, the lower its color saturation is. Considering
that the saturation percentage varies between 0 (minimum saturation)

3 The value 1 is a potentially interesting candidate for the max persistence:
on one hand the retrieval of past experiences will typically be less intense
than the actual experience; on the other, if the mood is much lower than in
the original situation, the resulting emotion can in fact be more intense than
the original one.
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and 1 (normal saturation), and that negative moods belong to the in-
terval [minimum mood;neutral mood] the saturation percentage
is calculated by the following expression:

saturation percentage =
mood−minimummood

neutral mood−minimummood

Mood is influenced by the evocation of emotions, as mentioned in
Section 3. Consequently, the retrieval of negatively valenced mem-
ory traces indirectly decreases the agent’s color saturation. Moreover,
the decrease in color saturation will be proportional to the emotion
intensity of the memory retrieval.

Still considering emotion expression, agents express the most in-
tense emotion through a facial expression (see Figure 2). The cur-
rent implementation supports four expressions: neutral (that acts as a
baseline), sadness, happiness and anger. The choice of the three last
expressions was motivated by the fact that they are part of the group
of six universally recognized facial expressions (anger, disgust, fear,
happiness, sadness and surprise) [13].

Figure 2. Meemo’s face expressions: a) neutral b) anger c) sadness
(Distress/Pity) d) happiness (Joy/HappyFor)

We mapped emotion types to the available emotion expressions.
Note that each emotion type from OCC [15] represents a family of
emotions. The emotion type “joy”, for instance, represents emotional
states such as happy, glad, delighted, pleased, etc. On the other hand,
“distress” represents emotional states such as sad, unhappy, feel-
ing bad, displeased, dissatisfied, etc. With this in mind, we mapped
the emotion type “joy” to the happiness expression and the emotion
type “distress” to the sadness expression. If there are no emotions in
the active emotions, the neutral expression is displayed (Figure 2a).
Unfortunately, emotions of type “angry” are not supported by our
current model implementation, hence angry expression is never se-
lected.

Turning to other supported emotion types, “happy-for” represents
emotional states happy-for, delighted-for, pleased-for, etc. One can
notice that these emotional states are quite similar to the ones pre-
sented for “joy”. Thus, “happy-for” was also mapped to the happi-
ness expression. “Pity” represents emotional states compassion, sym-
pathy, sad-for, sorry-for, etc. It has been claimed that emotions such
as compassion and sympathy have a different facial display pattern
than distress [13]. However, this pattern seems to include oblique
eyebrows, which are part of the sadness expression. Consequently,
“pity” was also mapped to sadness expression. Lastly, the remain-
ing emotion types supported by the implementation do not have a
mapped facial expression.

In addition, if the agent’s facial expression changes due to the re-
trieval of a past event, a thought balloon is presented (see Figure 3)
for short period of time (parameterizable in a configuration file). An
image is displayed on the thought balloon representing the remem-
bered event. In Figure 3 the retrieved event was witnessing another
agent falling into a trapdoor.

Figure 3. Meemo’s thought balloon

Finally, the agent’s behavior also directly considers the memories.
The path planning tends to avoid locations where negative events
have occurred and favoring paths where positive events have oc-
curred [6].

7 EVALUATION
We believe that such an application can be used in a user study to
evaluate how variating the emotion intensity of the recollective expe-
rience, as described in Section 5, can improve perceived believability.
We propose a scenario in which a character negatively appraises an
event taking place at a certain location, and returns to that same lo-
cation several times, always remembering the past event (recall 1, 2
and 3). We can separate the evaluation in two sub-scenarios, one to
evaluate the habituation effect (storyboard in Figure 4), another to
evaluate the downward spiral effect (storyboards in Figure 5).

In the former, there will be two test conditions: with habituation
(with H) and without habituation (without H). In test condition with
habituation, when returning to the mentioned location, and remem-
bering the past event (symbolized by the appearance of a though
balloon with an iconic representation of the event), the character
will progressively express a less intense expression. In test condition
without habituation the reaction to the memory retrieval will always
be the same.

Figure 4. Habituation evaluation storyboard

When considering the effect of downward spirals, there will also
be two test conditions: with downward spiral (with DS) and with-
out downward spiral (without DS). In both test conditions, when re-
turning to the mentioned location for the second time, the character
displays a fearful expression. In test condition with downward spiral
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the emotional reaction of the character will progressively be more
intense. In test condition without downward spiral, the reaction will
always have the same intensity.

Figure 5. Downward spiral evaluation storyboard

As proposed in [14], believable character’s behavior should be
perceived as coherent, but at the same time not be perceived as ex-
cessively predictable. We propose that test participants, after being
exposed to a test condition, would have to rate perceived coher-
ence and predictability similarly to how it was performed in [6][7].
We expect that: test condition with habituation will present lower
scores for predictability, and similar scores for coherence, when com-
pared to without habituation; test condition with downward spiral
will present lower scores for predictability, and similar scores for co-
herence, when compared to without downward spiral.

8 CONCLUDING REMARKS
In the present article a model for memory retrieval of personal expe-
riences was presented. It builds upon previous work and focuses on
the effect memory retrieval can have on the emotional state. Memory
retrieval is defined as an emotional re-appraisal of past experiences.
The variation of intensity of such experience is explored by modeling
the phenomena of downward spirals and habituation. The modifica-
tions needed to take into account these phenomena have yet to be
implemented and evaluated.

Although the modifications may account for a possibly greater
variation of emotion intensity between retrievals, they unfortunately
introduce four new parameters to the model: persistence increase,
max persistence, persistence decrease and min persistence. Further-
more, it can be argued that the persistence increase should depend
on the intensity of the active fear emotion or on the mood value. A
potential approach for setting these parameters, as well as the initial
persistence value, would be to map the differences in retrieval results
between normal individuals and depressed individuals, to the differ-
ences in persistence between agents in conditions of the downward
spiral phenomenon and agents not in these conditions.

If the “Meemos’ Rescue” application is to be used to create the
evaluation scenario, support for expressive behavior when the agent
is feeling “fear” needs to be added (e.g. having the character’s body
tremble). It would also be an advantage to have different facial ex-
pressions for high and low intensity emotions.

Finally, as the model becomes increasingly more complex, the
need for mechanisms such as forgetting, activation spreading, tempo-
ral organization between memory traces, and network organization of
memory traces, also increases. Future work will probably entail inte-
grating it into another memory system that already supports some of
these mechanisms.
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Towards modeling false memory using virtual characters:
a position paper

Michal Čermák and Rudolf Kadlec and Cyril Brom1

Abstract. This position paper presents our approach to
development a long term episodic memory model featuring the false
memory effect. We will explain motivation for the model, data
structures used in the model and algorithms working over these
structures. Finally we will present a prototype of an agent embodied
in a 3D virtual world equipped with our model.

1 INTRODUCTION
Human memory is fallible: we do not remember everything we
perceive, we forget, we may fail to retrieve information. A less
traditional trait of memory fallibility - related to errors of commission
rather than omission - is false memory [3]. Generally, false memory
refers to “circumstances in which we are possessed of positive,
definite memories - although the degree of definiteness may vary - of
events that did not actually happen to us” [3, pp. 5]. Examples include
remembering a gist of experience that may actually not correspond
exactly to what has happened [3, 2, 20]; implanting distressing
childhood memories, either accidentally at a psychotherapy [3,
ch. 8][1, pp. 150] or in a laboratory experiment [18]; enhancing
memories by or blending them with post-event information [17,
ch. 4]; or fabrication of non-existing details of a criminal event by
an eyewitness [3, ch. 6].

False memory is characteristic of normal rather then pathological
remembering [3, 23]. Yet many people have only limited knowledge
of false memory or may neglect its importance [28][1, pp. 151]. This
can be particularly troublesome at courts and during psychotherapies.
Therefore, the research on false memory phenomena (and increasing
awareness of them) is important.

Computational approaches to memory modeling have become
increasingly important in the past decade [21, 9]. In silico
simulations enable a researcher to specify hypothetical mechanisms
in precise detail, systematically explore the model and manipulate its
parameters, and generate new predictions [26, 19, 25, 9]. It is known
in computational cognitive sciences for some time that computational
(neuro-)psychological episodic memory models, predominantly sub-
symbolic ones, can produce some false memory-like phenomena (see
[21], for a review of these models). However, to our knowledge, the
issue of false memory has never been studied systematically in that
field. At the same time, development of mathematical models of false
memory by the community studying false memory directly is in its
early stages [3, pp. 426-447].

In this position paper, we present our approach to computational
modeling of false memory. We have been developing for about

1 Faculty of Mathematics and Physics, Charles University in Prague,
Czech Republic, email: mikajel@yahoo.com, rudolf.kadlec@gmail.com,
brom@ksvi.mff.cuni.cz

a year a generic episodic memory model featuring false memory
characteristics, a model extending our previous episodic memory
models [7, 4]. Of course there are some false memory characteristics
that are out of our scope. The model is intended for acquisition,
retention and retrieval of complex everyday events, such as cooking
dinner (as opposed to events from laboratory tasks, e.g. presentations
of lists of words). The memory representation is organized around
memories of single objects (but not their features, e.g. not features of
faces) and hierarchically nested events/episodes lasing from seconds
to hours (e.g. knocking a door, opening the door, a visit) (see [5] for
details). Our present aim is to develop architecture for false memory
models rather than a single model fitting data from a particular
experiment. Still, we believe that in future, when the model is stable
enough, it can be used for the purpose of computational cognitive
sciences. Additionally, because the underlying platform on which
we test the model is a virtual character inhabiting a complex 3D
virtual environment (see [6] for more on using VR for development
of high-level cognitive models), the model can be also used in virtual
reality applications. For instance, think of a serious game explaining
to jurors limitations of eyewitness testimony with respect to false
memory phenomena.

The rest of the paper is organised around the following points:
1) psychological underpinnings, 2) architecture of the model, 3)
problems stemming from validating the model against human data,
including human data acquisition.

2 GENERAL APPROACH

Our false memory model capitalizes on the fuzzy-trace theory [3, 12].
In a nutshell, this theory posits two parallel mechanisms that encode
incoming information: verbatim and gist. While the former encodes
the surface-form of the information in detail, the latter encodes
the meaning in a coarse-grained way [12]. Of course, it may not
be always clear what exactly a gist is. In our approach, the gist
resembles the notion of a script [24], a knowledge structure about
a stereotypical situation, including typical events that will occur and
the most common deviations. The verbatim corresponds to a detailed
log-based hierarchical representation of a particular flow of events
as we used in [7]. The overall representation can be also linked to
the event segmentation theory [29] and parts of the Conway’s self-
memory system, namely to episodic memories and general events
[10].

Concerning recollection and familiarity, verbatim and gist
mechanisms may operate in opposition to each other. For instance,
when a memory trace for a particular detail is not strong enough,
this detail may be replaced during recall by a different information
“fabricated” based on the respective gist memory trace.
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3 ARCHITECTURE OF THE MODEL
Our cognitive architecture integrates a decision making module, a
memory system, a perception module and an emotion generator.
The architecture is detailed in [6]. The next section provides a brief
introduction into already existing decision making module. Then
the extended long term memory module of our architecture will be
described.

3.1 Decision making module
Our agent is driven by the existing decision making module based
on AND-OR trees [7]. Terminology used in our model largely comes
out from the structures of this module. An AND-OR tree is a tree
consisting of two types of nodes: AND nodes, also called actions
in our model; and OR nodes, also called goals. The property of
AND nodes (actions) is that in order to accomplish it, all its children
must be performed. On the contrary the OR nodes (goals) can be
completed by performing any of its direct children. AND nodes not
containing any child can be performed directly and are also called
atomic actions. The root of a tree is always an OR node and it is
usually referred to as a top-level goal. All goals and actions can also
have affordance slots, that are placeholders for objects, places, etc.
that provide resources for a node’s execution, i.e. they define the
roles of missing objects. The term affordance [14] was coined by
Gibson. The set of all AND-OR trees specifying an agent’s behavior
is denoted as D. The agent also has a short term memory module [7]
that keeps a track of its current goals.

3.2 Elements of the episodic memory
Our memory structure for storing episodic memories is a pair 〈C, S〉
where C is a set of chronobags and S is a schema bag. A chronobag
is a unit of memory representing a certain period of time, it stores the
episode structures that model the verbatim of episodes experienced
in that period. The term chronobag was first used in our paper [4]. A
schema bag holds the gist of a typical episode of a certain type. The
gist is represented by a statistics about co-occurrences of goals and
their satisfying actions together with objects used by the agent. The
following sections describe these components more closely. Figure 1
shows the structure of both C and S components of our episodic
memory model.

3.2.1 Episode structures

An episode structure E is a tree-like structure consisting of episodic
nodes, objects in affordance slot and time pointers. It incorporates all
the actions performed while trying to satisfy one top-level goal. The
root of the episode structures is always an episode node representing
one top-level goal. Its children are actions that were performed in
order to satisfy it.

Episodic nodes can represent either action, sub-goal or atomic
action in the decision tree and the whole episode structure represents
action/goal traces from the top-level goal to the atomic actions
performed when trying to satisfy one top-level goal. If a node has
more than one child, an order of execution of child nodes is stored in
a time pointer.

When the agent performs an atomic action, the episode with the
root node corresponding to the current top-level goal is located
and episodic nodes reflecting the action/goal trace are added to the
episode. If the agent performs the same action several times in a

row, new nodes are stored in the memory only once. All objects used
during execution of an action are linked with appropriate affordance
slots. Instances of these object nodes are shared among all the
episodes. Note that this structure is a core of our previous models
[7, 6].

3.2.2 Chronobags

A chronobag is a structure for holding episodes experienced by the
agent in a given time period. The memory can contain any number
of chronobags, but will always contain at least one chronobag for
episodes from the current day, this chronobag is called the present
chronobag. Anytime a new episode is experienced by the agent, it
will be stored in this chronobag. In all the chronobags, there is an
ordered list of episode structures belonging to it. Moreover in the
present chronobag, there is also a separate list for episodes that are
not finished yet.

The action selection algorithm allows for temporary interruption
of the top-level goal the agent is trying to accomplish. The agent
can interrupt the current episode (i.e. performing actions satisfying
the current top-level goal), experience another episode (accomplish
another top-level goal) and return to the original episode (and
original top-level goal) later. The present chronobag can therefore
contain several opened episodes. Each time the top-level goal of an
episode is successfully satisfied or the agent abandons its top-level
goal, the particular episode is marked as finished and moved from
opened episodes to finished episodes. This also happens to all opened
episodes during the agent’s sleep.

Chronobags are organized in a layered structure. In the lowest
level there are chronobags for episodes from single days, in higher
layers there are multiday chronobags that integrate episodes from
lower level chronobags. The multiday chronobags hold episodes
belonging to the period of time of its subordinate chronobags.
Currently the model divides chronobags into four different layers,
the most abstract layer incorporating episodes from 7-day period.

3.2.3 Schema bag

Specific part of our model is so called schema bag corresponding
to the gist trace from the fuzzy-trace theory. It incorporates all
the events the agent experienced during its existence and helps
to determine how often the agent performed specific actions and
how often it used specific objects. Any action, goal or atomic
action from AND-OR trees experienced by the agent will have the
associated node in the schema bag. These nodes are called schema
episode nodes. Apart from these nodes, the schema bag also keeps
separate nodes for each object the agent used during its lifetime.
These are called schema object nodes. Schema bag also includes
representatives of affordance slots and special nodes that connect
object node with affordance slot it was used in. These special nodes
are called slot content nodes.

Probably the most important component of the schema bag are
schema counters. Schema counters keep track of how many times
a set of schema nodes was executed/used by the agent. This set
can contain schema episode nodes, slot content nodes, or both
node types. The maximum set size is currently set to 3 due to
combinatorial explosion problem. Schema bag not only provides
information how often a specific node is executed or used, it also
provides conditional probabilities P (X|Y ) where X and Y can be
any set of schema nodes provided the combined size of sets X and
Y is not larger than 3. Information deducible from the schema can
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be for example: the agent visited a cinema 6 times so far; when
commuting to work the agent used a bus 6 times out of 10.

Nodes in the schema bag and all the counters are updated on-line
as the agent performs atomic actions.

Figure 1. Different representations used by the memory model. The set of
decision trees D represents procedural knowledge, it stores hierarchy of
goals and actions satisfying those goals together with affordance slots

(L-shaped figures) representing resources, and atomic actions (black circles)
that can be performed directly in the agent’s environment. The episode

structure E represents actual experience. It is similar to one decision tree,
but slots are already filled with object (squares). It also contains the

sequence of episode nodes performed by the agent. Chronobags C hold the
sets of episodes of similar age. As chronobags get older, details of episodes
can be forgotten. When a chronobag gets old enough it becomes a landmark

chronobag and it contains fossilized episodes that could not be forgotten.
The boundary between ordinary chronobags and landmark chronobags is

shown as a dashed line. Besides forgetting there is another process of
creating more abstract chronobags for longer time periods. Details of lower
level chronobags are merged into a higher level, more abstract chronobag

spanning longer time period. The distinct chronobag on the right is the
present chronobag used for storing current episodes. The last representation

is schema bag S - schema bag is similar to the decision tree but it is
extended with counts of how often each node was selected, how often each
object was used in all affordance slots (black squares) and also it keeps a

track of how many times different nodes and objects appeared in an episode
together (there are three aggregate counts shown on the figure).

3.2.4 Example of filling the memory

For clearer conception of how new memories are added into the
memory structures consider the following illustrative case. The agent
starts with empty memory structures and he will try to fulfill the
top-level goal dinner by performing following action eating at
restaurant. To perform this action, he will have to complete the
following subgoals: travel to a restaurant, order something to eat, eat
it, and pay for the food.

When the agent starts following a new top-level goal, a new
episode in the present chronobag will be created. The root of this
episode will be the top-level goal dinner. This node will have one
child node (eat at restaurant) and four grandchildren nodes (travel,
order, eat, pay). Objects used will be also part of the episode: for
example a lobster can be associated with the affordance slot food on
the eat node. Each of these goals has to be completed by performing
an action consisting of atomic actions executed by the agent in the
virtual environment.

Apart from the episode structures, the schema bag is
also being updated each time the agent performs an action.
Imagine that the agent is sitting in the restaurant. The set
of all schema nodes relevant to schema counter updating
in this scene will be S = Sepisode ∪ Sslot content where
Sepisode = {dinner, eat at restaurant, eat}, Sslot content =
{lobster in food slot}. Then for each X ⊆ S, |X| ≤ 3 the value
of a schema counter will be increased by 1.

3.3 Processes maintaining the memory structure
One process behind maintenance of memory data structures deals
with the acquisition of new information and it was explained in
the previous section. Other processes described in this section are
triggered during the agent’s sleep and are more complicated. Some
of these processes still have to be calibrated.

3.3.1 Shifting of chronobags

Shifting of chronobags simulates aging and generalization of
episodic memories. There are two mechanisms working behind the
chronobag shifting process each night:

1. Forgetting – as time passes chronobags are continuously being
shifted back to the past. Age of chronobags is increased by one
day every night. The present chronobag is moved to the set of past
chronobags and new empty present chronobag is created. During
every shift, some details of the episode can be gradually forgotten,
as described later. This happens until the chronobag reaches age
tLandmarkl when it becomes one of a landmark chronobags for
the l-th level of chronobags. After this point no more details are
forgotten from this specific chronobag. In literature this is referred
to as a flash bulb memory, flash bulb memories are for example
attacks from 9/11, birth of a child etc [8].

2. Episode merging – this process takes episodes from (non-
landmark) consecutive chronobags, creates a chronobag
representing union of time intervals of the chronobags being
merged and copies all the contained episodes to it. This
mechanism causes creation of several levels of abstraction of
chronobags, with the daily chronobags being the least abstract
chronobags. When the more abstract chronobag already contains
a similar episode to the one being added, details of those episodes
are merged, creating an “average” of the two. This is one of
mechanisms for induction of false memories.
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3.3.2 Deriving an episode from the schema

Existence of some nodes in the episode structure E can be deduced
from other nodes in the episode with the use of schemas. If the
conditional probability of existence of node n1 given the existence
of node n2, that is P (n1|n2) is close to 1, it means node n1 does not
have to be stored in episode E as long as node n2 is not forgotten.

For example consider an agent that always goes to work by bus.
Then the episode of going to work by bus happens every work day
and it has the highest count among all ways of transport in the schema
bag associated with going to work. It will be easily derivable from
the schema (nodes travel and work will imply the existence of node
bus). But when the agent oversleeps, it may use its car instead of the
bus. Then this episode will not be derivable from the schema and its
details should be remembered in a particular episode structure.

This mechanism helps to reduce the memory size and it would
not cause any side effects if the derivability of nodes stayed constant
during the existence of the agent and only derivable episodes would
be forgotten. But in our model, even details that are not derivable
can be forgotten, and in reality, the derivability of nodes can also
change (because schemas are constantly updating). This process is
another mechanism capable of inducing a false memory. Consider
for example going to work episode mentioned above. If the node
car is forgotten, the model will derive the node bus instead and the
agent will not be able to distinguish this false memory from any other
stored memory.

3.3.3 Details of forgetting

The forgetting of episode nodes is performed using the node’s score.
Each node is assigned a numeric score:

score =
∑

aεAttributes

weighta · valuea (1)

based on the following Attributes set: the user defined salience, the
frequency of executing the node, the ability to derive its existence
with the use of schema bag, the salience of objects attached to the
node, the number of subnodes. Generally the score is higher for
more interesting nodes: those more salient, less frequently executed
and those that cannot be derived from the schema. Weights of all
attributes will be fine-tuned during more complex testing of the
model.

An important feature of the model is that the scores do not change
in time. However, each chronobag has only limited capacity based
on its age and the saliency of nodes in it. The capacity is currently
calculated according to the formula:

capacity = MaxCapacity · 1

al ∗ t+ 1
+ b (2)

where t is the chronobag’s age, al is a coefficient based on the
chronobag’s level of abstraction and b is a parameter used to increase
capacity of chronobags with many salient nodes. The node scoring
mechanism (Eq. 1) together with the limited capacity of chronobags
(Eq. 2) should result in a believable forgetting process.

4 IMPLEMENTATION

The memory model is being developed as a standalone Java library
independent of the agent’s decision making system (DMS). The
current implementation is divided into three separate projects:

• Bot – this library includes the DMS of the agent (in this case
AND-OR trees) and it controls the agent’s body through the
Pogamut platform [13]. Pogamut is a tool for programming agents
in virtual 3D environment.

• Memory ↔ Pogamut interface – a lightweight layer translating
events originating in the agent’s DMS into representation used in
the episodic memory.

• Episodic memory model – a standalone library implementing the
core of the model, that is: chronobags, schema bag, the chronobag
shifting algorithm (see Section 3.3) and a GUI for exploring the
content of the memory (see Figure 2). There is a clearly defined
API used to insert information into the memory. AND-OR trees
are the default formalism used by the model but any other DMS
with hierarchical nature can be connected to the memory module
too. The model works with the notion of more and less abstract
actions (or goals), it does not matter whether those actions are
implemented in the DMS as Hierarchical Finite State Machines,
AND-OR trees etc.

This modular architecture makes it possible to connect our model to
any other source of data without much effort in the future. For new
environments, only the lightweight interface translating events to the
format expected by the core memory model has to be implemented.
The core episodic memory model can remain unchanged.

Figure 2. The GUI of the Episodic memory module showing a content of
one chronobag. It shows two very simple episodes executed by the agent.

The GUI is able to display contents of any chronobag, decision tree or
schema structures. JUNG library [22] was used for visualization of the

graph.

5 VALIDATION OF THE MODEL
Natural question is how the model will be validated and
parameterized. Research on human memory provides only limited
data about function of memory outside psychological laboratory.
There are many experiments with memorizing lists of words, non-
sense syllables and figures, but fewer results about working of
memory in daily life on a scale of months, years or an entire life.
For purposes of episodic memory modeling it would be best to have
data with:

1. Input of the memory - e.g. all events, objects and other actors that
the subject was exposed to.
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2. Content of the memory - which of the inputs were remembered
and the depth of detail that can be recalled.

Concerning Point 1, for longer time scales there is no such data yet,
however this may change in a near future. Dawn of devices like
Microsoft SenseCam [15] can generate tons of data about inputs of
memory that we are currently lacking. Considering already existing
published data, Wagenaar’s six year diary study [27] and video based
study of real life events [11] seems to be the closest matches to our
requirements.

Concerning Point 2, the exact content of memory remains
unknown, we can study it only through recollection and recognition
experiments. Our aim is to fit data from this kind of experiments with
human subjects.

In our methodology we want to create simulation on the scale
of several months (and later a life time simulation) of our agent to
obtain inputs of the memory. In a 3D simulated world we can log
every subtle detail of the environment. After we obtain this log of
information, we will use it as an input of our memory model and try
to fit data dealing with false memories reported in [3, 16] and the
data dealing with forgetting curves and retention intervals reported
in [1, 11, 17].

We plan to perform several experiments:

1. The first is to prove that the model can recall episodes that did
not happen but are compliant with the schemas. To do this we
will perform simulation of three weeks with one set of plans the
agent will be following and then one additional week with slightly
modified plans. We expect to find reasonable parameters of our
model, where a false memories will appear. We will try to fit the
data reported in [16].

2. The second experiment should find parameters for a model that
will approximate the retention curve of remembered memories.
We will try to fit the real life data for several retention periods
going from one day to several weeks, as reported in [1, 11, 17].

3. In the next experiment we will try to find out if our memory model
is able to support a hypothesis that memory dating errors peak at
multiples of seven days, as reported in [17].

4. We also consider creating a setting for the experiment where the
agent’s recollections of different events and items will be ordered.
We want to parameterize the model so that less errors will be made
in items recollected earlier, as reported in [17].

6 CONCLUSION
We have presented our computational model of long term episodic
memory that aims to model false memory effect. The model
capitalizes on our previous work [7, 4] and extends it with a notion
of a schema bag and a chronobag shifting algorithm (Section 3.3).
The chronobag shifting algorithm combining both gradual forgetting
and episode merging was briefly described. We believe that these
two mechanisms together with node derivability (Section 3.3.2) can
result into emergence of false memory effects well known from
psychological literature. However our model is currently a work in
progress, the validation of the model against data from psychology
will be the next step.
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A Preliminary Functional Analysis of Memory in the 
Word Sense Disambiguation Task

Nate Derbinsky1 and John E. Laird1 

Abstract.  We focus on the problem of efficiently retrieving 
knowledge from large memories given ambiguous cues. First, 
we analyse the word sense disambiguation task in context of 
memory model comparison and evaluation. Then, in this task, 
we demonstrate the functional benefit of two forms of memory 
retrieval bias, recency and frequency of memory access, and 
present a preliminary evaluation of heuristics to efficiently 
support these biases in memory systems.12 

1 INTRODUCTION 
One advantage the human brain demonstrates over the current 
generation of artificially intelligent agents is its ability to extract 
diverse, useful experiences from its interactions with the world; 
store large amounts of this information in memory for long 
periods of time; and later retrieve this knowledge from memory 
when it is relevant to making decisions and taking action. There 
is evidence that extending agents with long-term memory 
supports many functional cognitive capabilities [1]; however, 
maintaining and querying large memories poses significant 
computational challenges that currently make it impossible to 
task these agents with real-world problems. 

The focus of this paper is one specific challenge facing long-
term memory: given a large store of knowledge, how should the 
system respond to an ambiguous cue, one that pertains to 
multiple previously encoded memories. Anderson and Schooler 
[2], positing that human memory optimally solves this problem 
with respect to the history of past memory access, have 
developed and validated memory models that are widely used in 
the cognitive modelling community. However, existing 
computational implementations of these long-term declarative 
memory models do not scale to large bodies of knowledge [3]. 

Previously [4] we developed and evaluated computational 
techniques to efficiently support queries of large declarative 
memory stores; however, this work supported only a limited 
class of bias in the case of ambiguous cues. In this paper, we 
extend our prior work and evaluate methods for efficiently 
incorporating recency and frequency of memory access as 
functional models of memory retrieval bias. We evaluate our 
methods in the word sense disambiguation (WSD) task, an 
important and well-studied problem in the Natural Language 
Processing (NLP) community [5]. We are not attempting to 
solve the word sense disambiguation problem, but instead our 
work is intended to provide evidence that (1) the WSD task is an 
appropriate benchmark when evaluating and comparing memory 
models and that (2) agents whose long-term memory systems 
incorporate historical regularities of past memory access will 
benefit in this task. 

                                                
1 Computer Science and Engineering Division, University of Michigan, 
2260 Hayward St., Ann Arbor, MI, 48109-2121. Email: {nlderbin, 
laird}@umich.edu.  
 

We begin with an introduction to the word sense 
disambiguation task, including an analysis of WordNet [6] and 
SemCor [7], the datasets we use in our evaluation. We then 
present results of how simple baseline algorithms perform on the 
WSD task, including the relative advantage of memory-based 
algorithms that incorporate the recency and frequency of 
memory access. Given this performance advantage, we evaluate 
the WSD performance of the base-level model of memory bias 
[8], a commonly used model based upon the rational analysis of 
memory [2] that combines recency and frequency of memory 
access. As the base-level model performs relatively well in this 
task and dataset, we motivate, describe, and evaluate preliminary 
heuristics to efficiently implement this model in a long-term 
memory system. Finally, we conclude with a discussion of this 
and future work.  

2 WORD SENSE DISAMBIGUATION 
Many words in the English language are polysemous, that is they 
have multiple, distinct meanings, or senses, which are interpreted 
differently based upon the context in which they occur. For 
instance, consider the following sentences: 

a) Deposit the check at the bank. 
b) After canoeing, they rested at the bank. 

The occurrences of the word bank in the two sentences clearly 
denote different meanings: ‘financial institution’ and ‘side of a 
body of water,’ respectively. Word sense disambiguation is the 
ability to identify the meaning of words in context in a 
computational manner [5]. The task of WSD is critical to the 
field of NLP and has been studied for decades. There are several 
formulations of and many approaches to this problem. 

As the focus of this work is memory, not language 
processing, we simplify components of the general WSD 
problem and adopt a variant of the lexical sample formulation of 
the problem. As input, the agent receives a sequence of 
sentences, each composed of a sequence of words. For 
simplicity, each word in the input is tagged with its appropriate 
part of speech (noun, verb, adjective, or adverb). Additionally, 
the agent has access to a machine-readable dictionary (MRD), 
such that each lexical word/part of speech pair in the input 
corresponds to a list of word senses within the MRD. For each 
sense, the MRD contains a definition and tag frequency from a 
representative corpus. Thus, for each word in each input 
sentence, the agent’s task is to select the most appropriate sense 
from the MRD. 

3 TASK ANALYSIS 
The data source we use is version 3 of the SemCor [9] semantic 
concordance. A semantic concordance is a textual corpus and 
lexicon linked such that every substantive word in the text is 
linked to its appropriate sense in the lexicon [7]. SemCor is the 
largest and most used sense-tagged corpus, which includes 352 
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texts from the Brown corpus [10]. We use the 186 Brown corpus 
files that have all content words tagged, which includes more 
than 185,000 sense references to version 3 of the WordNet 
lexicon [6]. WordNet 3, the most utilized resource for WSD in 
English, includes more than 212,000 word senses. 

To understand the task at hand, it is useful to examine certain 
properties of WordNet and SemCor. We begin with aggregate 
sense size in WordNet, which measures the number senses per 
lexical word/part of speech pair, and thus the average ambiguity 
faced by an agent attempting to disambiguate an arbitrary input 
word. In total, the average number of senses per word is 1.33 
(std. deviation 1.12), with a minimum of 1 and a maximum of 
59. If we aggregate these statistics with respect to word part of 
speech, we see the breakdown reported in Table 1 (sorted in 
order of increasing maximum sense size). 

 
Part of Speech Min. Max. Avg. Std. Dev. 

Adverb 1 13 1.2453 0.7379 
Adjective 1 27 1.3968 1.0731 

Noun 1 33 1.2421 0.8563 
Verb 1 59 2.1725 2.5128 
Table 1. Part of Speech Sense Size Statistics in WordNet 3. 

 
This summary statistic, however, refers only to WordNet, and 

thus does not take into account the distribution of words within 
the SemCor texts. Table 2 indicates this proportion of words in 
the SemCor data set, aggregated by part of speech. These 
statistics reveal that nearly 73% of the words fall into the two 
most ambiguous parts of speech (nouns and verbs). 
 

Part of Speech Proportion of SemCor 
Adverb 10.2% 

Adjective 17.1% 
Noun 47% 
Verb 25.7% 

Table 2. SemCor Part of Speech Proportion. 
 
For about 0.33% of SemCor words, multiple senses are 

equally appropriate within the linguistic context, as annotated by 
a human interpreter. Thus we introduce effective sense size, 
computed as one divided by ambiguity in a given input context. 
For example, consider the following sentence from SemCor: 

 
Pansies are supposed to like it cool, but those great velvety 
flowers were healthy and perky in the glaring sun. 

 
The verb “to like” has five senses in WordNet and in this 

context, two are considered equally appropriate (“find enjoyable 
or agreeable” and “want to have”). So while the sense size of this 
word is 5, its effective sense size in context is (1/[2/5]) = 2.5. 

Figure 1 synthesizes the data from Tables 1 and 2, plotting 
cumulative proportion of words against effective sense size, 
aggregated by part of speech. This chart is rich with useful 
trends and statistics that we consider here. First, the data exhibits 
a strong right skew, containing mostly words with few effective 
senses. Next, we draw out the proportion of words that require 
no disambiguation, as their effective sense size is 1, by reading 
the second plotted point for each part of speech. While for 
adverbs and adjectives this value is about 40% and 30%, 
respectively, for nouns and verbs it is about 20% and 5%. Next, 
we can assess the median effective sense size for each part of 
speech by reading the x-axis as each part of speech intersects 
50% on the y-axis. For adverbs, adjectives, and nouns, this value 
is between 2 and 4, while for verbs this it is about 10. In 
summary, the average effective sense size in the SemCor dataset 
is between 2 and 3 and the expected performance on the WSD 
task, given a random selection strategy, is 38.73%. 

 
 SemCor Task Performance 
Random 38.73% 
Static Frequency 76.39% 
Lesk 63.40% 
Simplified Lesk 65.52% 

Table 3. Non-Memory Baseline Results. 

4 NON-MEMORY BASELINE ALGORITHMS 
To contextualize performance of memory-based algorithms on 
the WSD task, we first implemented some non-memory baseline 
algorithms. The results from these baselines are summarized in 
Table 3, including random selection, derived in the previous 
section. All algorithms we implement select a word sense for all 
input words, and thus precision and recall are identical for all 
results, so we report them jointly as “task performance.” Each 
task performance result we report is the true accuracy of the 
algorithm on this dataset, as opposed to the sample average of 
individual probabilistic runs; consequently, even small 
differences in performance should be considered relevant.  

 The first baseline was a frequency-biased random selection 
strategy. As previously described, WordNet includes, for each 
sense, a static tag frequency from the Brown corpus. As the 
SemCor textual corpus is a subset of the Brown corpus, we 
expected this information to be highly informative during sense 
disambiguation, and unsurprisingly this algorithm yielded nearly 
twice the performance of pure random selection. 

The remainder of the non-memory baselines were variants of 
the Lesk algorithm for word sense disambiguation [11]. The 
Lesk algorithm, a commonly used baseline metric [12], assumes 
that words in a given “neighbourhood” (such as a sentence) will 
tend to share a common topic, and thus biases sense selection 
based upon shared terms in sense definitions and context. The 
classic algorithm finds the maximum overlap between all 
definitions of all candidate senses in the neighbourhood, and is 
thus computationally intractable as the size of the neighbourhood 
grows, so it is common to introduce constant-sized 
neighbourhood “windows” to reduce search time. A “simplified” 
Lesk algorithm [13] defines word context as simply the terms in 
the neighbourhood, as opposed to their definitions, and thus has 
more tractable growth, scaling with the sense size for the word to 
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be disambiguated. The performance of the Lesk family of 
algorithms is highly sensitive to the exact wording of sense 
definitions, and so it is common to supplement Lesk with 
heuristics and additional sources of semantic meaning (ex. [14]). 

For the classic algorithm, we evaluated neighbourhood 
windows of size 2 and 4 in each sentence. For both classic and 
simplified, we also evaluated four heuristics. The first was the 
use of a stop list, which excludes definition terms that are 
common to the target language, such as “a” and “the.” The 
second was to exclude example sentences from sense definitions, 
as the example terms might pollute overlapping computations. 
The third was the use of the Porter Stemming [15] algorithm to 
strip word suffixes with the intention of facilitating overlap of 
words with common linguistic roots. Finally, we included a bias 
towards the corpus frequency information described above. We 
evaluated the full combinatorial set of these parameters across 
both algorithms. The maximal results (see Table 3) for both 
classic and simplified algorithms occurred using the stop list, 
pruned definitions, and frequency bias, but not the Stemming 
algorithm. For the classic algorithm, the neighbourhood size that 
yielded greatest task performance was 2. Again, these results are 
simplistic, very specific to our implementation and data sets, and 
are not intended for representation of or comparison to modern 
NLP techniques, but instead to provide a baseline for later 
memory-based results. These results suggest that we can apply 
basic techniques, which do not incorporate memory-based 
methods, and expect to disambiguate up to 76.39% of input 
words in SemCor. 

5 MEMORY BASELINE ALGORITHMS 
Inspired by non-memory frequency bias results (see Table 3) and 
the rational analysis of memory [2], this section investigates 
algorithms for maintaining a dynamic history, or memory, of 
information presentation and evaluates the degree to which these 
memories facilitate effective sense selection.  

In context of the WSD task, the algorithms described below 
differ in what information constitutes a history of past sense 
assignment, and how this information is maintained over time, as 
well as how, when presented with a word to disambiguate, this 
history is resolved to select a word sense. Therefore, to evaluate 
these algorithms, we applied a common evaluation sequence. 
First, for each word in each input sentence, we performed a read-
only query, the result of which was scored. We then presented to 
the algorithm the correct sense (or senses) that had been 
annotated within the SemCor test set. Revealing the correct 
sense(s) to the memory system eliminates the possibility of 
unintended divergent learning, which could occur without 
truthful feedback and would obfuscate the algorithm results.  

Unlike the non-memory baselines, these algorithms have the 
potential to improve with added exposure to the corpus, and thus 
we performed 10 sequential runs of each. The results are 
summarized in Table 4 and report task performance on the 1st 
and 10th run on the SemCor test set. 

The first algorithm we evaluated was recency of presentation. 
This algorithm maintains only the most recently presented sense 
for each lexical word/part of speech pair, which is returned at the 
time of the next query of the same pair (selecting randomly from 
amongst multiple simultaneous presentations). This algorithm 
performs well if the same word sense is used repeatedly in 
immediate succession.  

The next algorithm was frequency of presentation. This 
algorithm maintains the number of presentations of each word 
sense and then selects the most frequent sense at the time of 
query. This algorithm performs well if particular senses of words 
are generally more common than others in a corpus, as opposed 
to being highly dependent upon sentence context. As an 
experimental condition, we initialized the frequency of each 
word sense to its absolute frequency within the full Brown 
corpus. We found that this initialization provided more than 4% 
improvement on the first run, but the improvement was only 
about 0.1% after 10 runs. This condition is labelled 
“Frequency*” in Table 4. This is comparable to the “Frequency 
Bias” result in Table 3, with the added improvement in Table 4 
coming from updated frequency values as the algorithm gains 
exposure to the corpus. 

Finally, to establish an upper bound on the degree to which 
recency and frequency can individually contribute to WSD 
performance, we implemented an oracle algorithm. For each 
word query, this algorithm scores both the recency and 
frequency algorithms described above and returns the result that 
provided the greater score. As with frequency, we label as 
“Oracle*” the variant that initializes frequency with overall 
corpus frequency. This algorithm performs well for a word query 
when either recency or frequency is informative to effective 
sense selection. 

 
 Run 1 Run 10 

Recency 72.34% 74.43% 
Frequency 71.69% 76.53% 
Frequency* 75.97% 76.62% 
Oracle 79.51% 84.08% 
Oracle* 83.87% 84.18% 

Table 4. Memory Baseline Results. 
 

We draw three conclusions from the data summarized in 
Table 4. First, we note that with the exception of pure recency, 
which does not achieve frequency bias performance, all 
memory-based algorithm results for run 10 are greater than all 
non-memory baselines (see Table 3). This result suggests that 
memory access history in SemCor, with very little corpus 
exposure, yields a performance benefit in the WSD task, an 
advantage that is not dependent upon MRD definition quality 
(unlike Lesk and its variants). Second, based upon the run 10 
results, we can expect memory-endowed agents to disambiguate 
up to about 84% of SemCor words, simply via memory 
retrievals, with the potential to improve performance with 
additional reasoning. Finally, in comparing the run 10 results of 
“Frequency” vs. “Frequency*” and “Oracle” vs. “Oracle*” we 
have preliminary evidence that it is unnecessary to bootstrap 
learning in frequency-biased memories with corpus-specific 
initialization information, as the empirical history of presentation 
within the text corpus quickly captures these regularities. 

6 MEMORY BIAS MODEL 
We have presented evidence that recency and frequency of 
memory access yield performance benefits in the WSD task on 
the SemCor dataset. However, to apply these findings to a 
memory system, we require a model of how these properties 
combine to bias selection of word senses (recall that the oracle 
algorithm in the previous section is not possible to implement, as 
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it requires the memory system to evaluate correct sense 
assignments during word sense selection). 

The base-level activation component of the declarative 
memory module in the ACT-R cognitive architecture [8], based 
upon the rational analysis of memory [2], offers one such model 
that has been widely used within the cognitive modelling 
community. This model computes activation bias of a memory 
according to the following equation: 

where n is the number of presentations of the memory, tj is the 
time since the jth presentation, and d is a free decay parameter. 

We evaluated this model in the same fashion as the memory 
baseline algorithms. The only experimental condition was the 
value of the decay parameter, over which we performed an 
exploratory sweep of 12 values between, but not including, 0 and 
1, and found that d=0.7 resulted in the best run 10 performance. 
We found that base-level activation yielded 74.45% task 
performance on SemCor in the first run and 78.47% after 10 
runs. This run 10 task performance bests all non-memory and 
memory baselines, and the run 1 task performance is an 
improvement to the recency and frequency run 1 results.  

Figure 2 summarizes SemCor task performance. It includes 
all non-memory baselines, as well as those memory baselines 
that are not initialized using corpus-specific information. Note 
that for clarity, we have re-named the memory form of frequency 
as “Dynamic Frequency.” 

7 EFFICIENT MEMORY BIAS 
Data in the previous section demonstrates that the base-level 
model is relatively effective in the WSD task on the SemCor 
dataset. Additionally, base-level activation is the dominant 
model used for cognitive models of human memory phenomena. 
However, it has been shown to not scale to large bodies of 
knowledge for long-lived agents [16]. Thus we consider here the 
challenges associated with efficiently integrating this model as a 
source of bias within a long-term memory system.  

One scaling issue arises when calculating base-level bias as 
presentation history (n) grows large. However, there are known 
methods to mitigate this problem (such as a constant-sized 
history) and so we do not discuss this issue further. 

The primary scaling challenge occurs because the base-level 

model includes a sum over memory presentations (tj), and that 
these temporal distances change at each point in time for every 
memory. Thus, a naïve integration of the base-level model as a 
source of bias in memory retrieval must calculate bias values for 
each candidate memory, a potentially expensive computation 
given large memory stores and ambiguous cues. Our prior work 
[4] details methods for efficiently biasing memory retrievals, 
assuming that only a constant number of memories change bias 
value at any point in time. To better satisfy this assumption for 
the base-level model, the remainder of this section provides a 
preliminary evaluation, within the WSD task, of two novel 
heuristics that seek to identify only those memories for which 
bias must be calculated during a memory retrieval. We begin 
with a description of evaluation metrics and baselines, describe 
the heuristics, and analyse our results (Table 5). 

The first metric, updates, refers to the number of memories 
that require bias calculation during retrieval (lower is better). 
The average is a measure of expected efficiency and the 
maximum refers to expected reactivity. The second metric, 
validation, is a measure of quality and refers to the proportion of 
queries in the WSD task that result in the same word sense as a 
naïve baseline, wherein bias calculations are performed for all 
candidate memories. Table 5 also includes a stable baseline, 
wherein memory bias calculations only occur at the time of 
presentation. This heuristic exploits a regularity of the base-level 
model: from the time that bias is calculated for a memory, this 
value is guaranteed to over-estimate the true bias value until the 
memory is presented again in the future. Note that while this 
heuristic requires no updates, validation suffers by 27.15%. 

Our first novel heuristic, NT, refers to the (N)umber of 
memory accesses and most recent (T)ime of access. Both of 
these statistics can be efficiently maintained incrementally and 
we reasoned that if neither of these values of memory A is 
greater than that of memory B, it is unlikely that the bias value 
of A is greater than that of B, and therefore it is unnecessary to 
compute the bias value of A. This heuristic reduces the average 
number of updates by 55%, as compared to naïve, and maintains 
a very high level of validation, as compared to stable, but has no 
impact on maximum updates. 

To reduce maximum updates, we developed a second novel 
heuristic, NTM, which augments NT with incremental 
(M)aintenance of memories: NTM clears the presentation 
history, and updates the bias value, of those memories for which 
the time since the most recent presentation is greater than a 
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Figure 2. SemCor task performance comparison of non-memory baseline algorithms and run 10 memory-based algorithms. 
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threshold (τ). This type of incremental maintenance can be 
implemented efficiently [17] and we reasoned that the result over 
time would be many fewer memory candidates with substantive 
presentation histories. We found that increasing the maintenance 
threshold (i.e. permitting “older” histories) had the effect of 
decreasing average updates, while increasing maximum updates 
and validation; however, due to the exponential decay of the 
base-level model, all three metrics exhibited “knees”. We 
performed a preliminary sweep of the threshold parameter on 
SemCor and report the data in Table 5 for the setting that yielded 
the fewest maximum updates and greatest validation (τ=10). The 
result is a more than 80% reduction in maximum updates, as 
compared to NT, while maintaining a high level of validation, as 
compared to stable, and a moderate average number of updates, 
as compared to NT and naïve. This data represents initial 
evidence that a high-fidelity base-level model can be efficiently 
implemented in a memory system, even as the number of 
memories grows large. 
 

 Avg Updates Max Updates Validation 
Naïve 2.94 31 100% 
Stable 0 0 72.85% 

NT 1.32 31 100% 
NTM 1.74 6 99.87% 

Table 5. Heuristic Results (τ=10). 

8 DISCUSSION 
We have analysed a formulation of the WSD task on the SemCor 
data set and have shown preliminary evidence that recency and 
frequency of sense assignment, biases common to human-
inspired computational memory models, are beneficial to task 
performance. We have also presented evidence that in this task 
and data set, the base-level model [8] is effective at combining 
these properties as a source of retrieval bias, and we described 
and evaluated preliminary heuristics to efficiently incorporate 
base-level activation within a long-term memory system. 

Our over-arching goal is to develop long-term memory 
mechanisms that are efficient and effective across a wide variety 
of tasks. We have made progress towards evaluating one class of 
memory bias on one data set for the word sense disambiguation 
task, but this leaves much future work to be done. First, to make 
sure we are not over fitting for the SemCor dataset, we plan to 
evaluate additional WSD datasets (ex. SENSEVAL [13]). 
Furthermore, to gather evidence that recency and frequency of 
memory access are generally useful in a long-term memory 
system, we plan to evaluate these biases in tasks other than 
WSD. While the base-level model has been shown to be 
effective, there is additional room for improvement, as illustrated 
by the task performance of the oracle algorithm, and thus we 
also plan to develop and evaluate additional memory bias 
models. We also plan to evaluate the computational run-time of 
bias algorithm implementations within real agents, such as to 
understand the trade-offs between computational efficiency, 
model validity, and bias functionality. Finally, our results 
demonstrate that memory retrievals alone can successfully 
disambiguate up to 84% of the words in SemCor, but what of the 
remaining words? We plan to integrate this work into running 
agents and explore the interactions of memory retrievals and 
other, complimentary processing mechanisms and sources of 
knowledge. 
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Abstract.  Companion robots are becoming increasingly 

prevalent in a wide variety of domains. The development of 

realistic long-term human-robot interaction is desirable and this 

entails the extension of interactions over multiple episodes. 

Memory systems are thus required in support of this goal. While 

current memory systems for artificial agents (and companion 

robots in particular) are currently restricted to symbolic database 

structures, this is not guaranteed to remain the case, with an 

increasing number of approaches using sub-symbolic 

representation schemes. This position paper explores the legal 

and ethical consequences of this shift of perspective by 

examining a range of solutions to the problem of data removal 

from artificial memory systems, specifically in the context of 

healthcare applications, and concludes that the current legislative 

provisions for data processing and protection may be inadequate 
for the next generations of companion robots. 

1  INTRODUCTION
12

 

Artificial (robotic) companion agents are becoming increasingly 

important in the domain of human-robot interaction studies and 

applications. As this line of research advances, increasing 

emphasis is being placed on extended interactions, in which the 

robot and human participants engage in multiple, extended and 

progressive interactions, rather than the single stand-alone 

interaction episodes that are generally the focus of human-robot 

interaction. With this shift in emphasis, it becomes increasingly 

necessary for the artificial agent (be it purely virtual, or 

embodied in a physical robotic platform) to use information 

personal to the human participant [1][2], whether this 

information has been acquired only from prior interaction, or 

from another source (such as pre-existing details from a personal 

medical record). This information may be used to adapt the 

agent‟s behaviour to suit the person‟s needs, including the ability 

to sustain interactions, and to provide better social support – i.e. 

to provide higher levels of companionship. 

 In the context of health-related applications, robotic 

companion agents may play a number of different roles. Three 

broad cases may be envisaged: (1) the robot acts as an 

entertainment device, with no explicit healthcare functionality; 

(2) the robot has a medical role (such as in the support of clinical 
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objectives, e.g. rehabilitation programmes), and is assigned 

personal medical patient information prior to any interactions; (3) 

the robot has a medical role, but does not have any specific 

personal medical information, although it may gain this through 

interaction. This distinction of roles similarly applies to any 

other application-specific domain, such as education, social care, 

or games. The type of information dealt with as the agent fulfils 

any of these general roles will be different, as will the interaction 

requirements. However, the overarching aim of companion agent 

research would be to encompass the functionality required by 

each of these roles in a single system. As such, the role of the 

agent, and hence the type of personal information dealt with, is 

in this paper taken in its most general sense. 

The agent‟s acquisition of personal information through 

interactions with a human participant requires what may be 

termed a „memory system‟. This system is responsible for the 

storage of a wide range of information, from the name of the 

interacting person, details of their physical appearance (for the 

purposes of visual identification for example) to aspects of their 

preferences and habits. The extension of this memory system to 

interface with specific pre-existing information would also be 

desirable in certain circumstances, particularly where the 

purpose of the agent is to provide both companionship and 

specific support, such as for diabetic patients [3]. In the most 

general terms, these memory systems must fulfil the roles of 

encoding, storage and retrieval [4][5], although these are 

functional requirements, and do not necessarily have to 

correspond to structural aspects of a computational architecture. 

Current memory system implementations for artificial agents are 

generally based on database-like structures, where information is 

explicitly represented, and may be added to or removed within 

the defined structure, although an alternative perspective is 

gaining support (section 3). 

Since such agents can be considered as Information 

Technology (IT) systems, the knowledge that an artificial agent 

acquires through interaction will be subject to personal data 

protection legislation. This requirement means that personal data 

is secure, accessible and updateable by the subject, and erasable 

if necessary. It is implicitly based on the assumption that the 

computational structures underlying the memory systems of 

artificial agents have particular properties and characteristics – 

namely that they are essentially databases in which information 

is identifiable and removable if required. However, for artificial 

agents, if this implicit assumption were to become invalidated, 

the consequences are undetermined.  

It is the aim of this paper to show that should this assumption 

of explicit information storage be violated, the current means of 

providing data and privacy protection will become inadequate. 

Given that distributed forms of control and information encoding 
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are becoming increasingly prevalent, this question is one that 

requires consideration. This paper is therefore an assessment of 

data protection issues arising from changes in the computational 

implementation of memory systems from a legal and ethical 

perspective: an overview of the social and ethical issues may be 

found in [6]. 

The first part of this paper presents a very brief review of the 

general legal issues involved in the storage and use of patient 

information by an artificial companion, which illustrates the 

implicit assumption of a database-like structure for the memory 

system. An overview of the conceptual move away from strict 

database structures for the storage of information for artificial 

agents then demonstrates the need to explore what consequences 

this has. A set of solutions to this problem is proposed within the 

current legal framework, but the limitations of these solutions 

indicate that more appropriate solutions may only be possible 

with further legislative developments to reflect the disparate 

range of companion robot implementation methodologies. 

2  BACKGROUND 

Personal information, its acquisition and processing, is protected 

by privacy legislation, such as the European Parliament 

“Directive on the protection of individuals with regard to the 

processing of personal data and the movement of such data” 

(1995), [7], and related national laws (such as the U.K. Data 

Protection Act 1998 [8]). These statutes define the rights of the 

person to whom the gathered information relates, and includes, 

for example, the right to know whether and what information is 

held, and the right to block, update and erase this data (subject to 

certain constraints). Whilst this clearly covers any medical data, 

any information acquired by an artificial companion agent in 

other domains could also be subject to these restrictions, with 

this potentially also extending to personal preferences, habits and 

characteristics that are only acquired directly through interaction 

(rather than drawn from a pre-existing database, such as 

communication preferences). Thus, in the case of a companion 

agent designed to learn the personal preferences of a patient, if 

the patient were to request it, then all the information acquired 

would have to be removed from the system. 

For current human-robot interaction architectures, this 

requirement is either circumvented or fulfilled by two main 

factors: (1) at present, human-robot interaction is generally 

constrained to short-term exchanges that are largely predicated 

on reactive behaviour on the part of the artificial agent; and (2) 

any storage of information that does occur in these architectures 

uses database structures, which means that individual records are 

explicitly stored, and may be recalled and deleted if required 

without having an impact on the robot control system used. 

Current human-robot interactions have typically been limited 

to single isolated episodes [1]. As a consequence, memory 

systems of the type introduced above, which allow the agent to 

modify its behaviour on the basis of prior interactions, are not 

well developed. For these artificial companion agents, the 

problem of data protection does not arise. However, as human-

robot interaction develops and extended interactions become 

more prevalent (including multiple discrete but linked interaction 

episodes), the necessity of memory to support the desired 

functionality has become clear, e.g. [9][10]. Where such 

implementations exist, the use of explicit representation database 

structures means that deletion of information is a trivial task 

without functional consequence for the database structure itself. 

These developments in companion robotics have been 

paralleled by new approaches to the design and implementation 

of general control architectures for artificial agents, including 

those for memory, based on inspirations from neurobiological 

empirical evidence. These methods centre on the use of 

distributed, neural network-like systems in which information is 

processed in sub-symbolic form. Neural network controllers (and 

similar) are often not amenable to traditional functional 

decomposition and the distribution of information within such 

systems can render them relatively opaque to such analysis. 

However, network based control systems have been shown to be 

highly effective mechanisms for robust, dynamic organisation of 

behaviour in artificial cognitive systems of the type required for 

companion agents. The use of such architectures entails new 

perspectives on how information can be processed and stored, 

leading to a necessity for re-examining the legal and ethical 

issues incurred; specifically, whether current legislative 

provisions are adequate in the face of differing implementation 

methodologies. 

3  IMPLEMENTATION METHODOLOGIES 

Memory is increasingly being applied to human-robot interaction 

studies, with previous approaches involving agent behaviour 

adaptation only within the context of a single interaction episode 

[1]. The memory systems that are implemented are typically part 

of cognitive architectures in which memory is regarded as 

inherently passive, i.e. as a storage system to which information 

is sent and from which it can be retrieved. For example, the 

episodic memory system implemented in the SOAR cognitive 

architecture periodically stores a snapshot of all the contents of 

the central computation workspace [11]. This snapshot may be 

subsequently recalled in its entirety and used to bias future 

processing in the central workspace. Similarly, [12] introduce an 

explicit representation memory architecture for autobiographical 

memory with short-term and long-term components. These 

examples are symptomatic of the general approach that 

emphasises a division of cognition and related processes into 

functional modules; memory being in this case a separable 

function from cognition. Whilst significant advances have been 

made, it is not clear that such systems are sufficient to underpin 

the robust, extended and unstructured social interactions with 

human users required of artificial companion agents. 

In contrast with the explicit separation of memory and 

cognitive processes, there are an increasing number of 

integrative, biologically derived frameworks that emphasise the 

reverse. For example, the principle of distributed memory and 

cognition proposes that cognition, memory and perception share 

a common substrate [13]. The application of this memory-based 

principle to artificial cognitive agents, including companion 

agents, necessitates a view of memory as an active process 

central to cognition [14][15]. In practical terms a memory-based 

approach to cognition places the acquisition and handling of 

distributed memory at the heart of a computational 

implementation, rather than an information processing 

mechanism, which, based on the computing metaphor of 

biological cognition, implies the presence of a passive storage 

device (memory). The consequences of this perspective on the 
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legal issues highlighted above (section 2) have not thus far been 

addressed. 

 Consider, for instance, a generic sub-symbolic face 

recognition system. In this case, the recognition system does not 

explicitly store individual instances of faces (for template 

matching for example), but rather statistical properties in a 

distributed manner, which give the benefits of robustness and 

compactness, e.g. [16]. For this example system, a sub-symbolic 

network (which may take on a variety of forms and properties) is 

trained on a series of faces, such that at the end of the training 

period, the output of the network is 1 (or „yes‟) if a newly 

presented face has been previously seen, or 0 („no‟) if the face 

was not encountered in the training phase. This recognition 

network thus has the capacity to positively identify a specific set 

of faces from all possible faces, but without the storage of any 

individual face images. 

Let it be assumed that this face recognition system was 

trained as part of a study in which volunteer patients 

consensually provide the face images for the training set. If at 

some future time one of the patients withdraws consent from the 

programme, then it may become necessary to remove all 

personally identifiable information related to the individual from 

the study. For the face recognition system, the fact that the 

information contained within the network is in a distributed and 

statistical form means that there is no formal requirement for this 

information to be removed according to personal information 

processing legislation. However, the network may nevertheless 

be used to provide positive identification of the individual 

concerned: that this recognition is possible may amount to 

confirmation of that individual being a participant of the clinical 

trial at a later date. The problem is thus apparent: while explicit 

individually identifiable information may have been removed, 

the capacity to provide explicit personal identification remains. 

This issue of personal identification, and thus of potential 

violation of privacy rights, is one that at the present time has 

been ill-considered, particularly given the specific details of 

different types of memory system. The question is then how this 

type of information, in general terms, may be removed such that 

the requirement for the removal of personally identifiable 

information under certain circumstances is upheld, within the 

current legislative framework. 

Another potential problem related to the use of information 

held in sub-symbolic form is that of data privacy in the context 

of social interactions. Considering that a single artificial 

companion agent may be interacting with multiple individuals, 

the issue is how to maintain a separation between the personal 

information of these individuals such that the confidential data of 

one person is not revealed by the agent to another individual 

through interactions. In the case of database-like structures for 

the storage of information, this may be addressed through the 

tagging of individual entries as belonging to particular 

individuals, and blocking the recall of these entries in the 

presence of others. However, in the case of distributed 

information, this becomes more problematic, since the 

overlapping nature of storage results in the same difficulties in 

identifying individual pieces of information as exposed in the 

discussion of the face recognition system example. While these 

problems can be technically addressed to a large extent using 

explicit meta-knowledge control systems, they merely shift the 

problem: if personal information or identifiers need to be 

removed from this meta-control system, the same issues persist. 

4  TOWARDS PRINCIPLED SOLUTIONS 

In order to propose solutions to the issues raised in the previous 

section, it is necessary to provide a characterisation of the range 

of potential memory structures. A continuum is defined that may 

be used to characterise the type of memory system used (or 

which may eventually be used), from a structured flat database 

on one extreme, to an unstructured sub-symbolic network on the 

other (figure 1). An analysis of some pertinent points along this 

continuum may be used to place the issues raised in the previous 

section into context, and allows solutions to the problem of 

sensitive personal information removal to be explored. It should 

be noted that one solution that applies in all cases is the deletion 

of the entire architecture, both control system and memory 

components, to ensure that no personal information remains in 

any form. However, this is undesirable as all incidental 

information would also be lost. This section therefore explores 

the alternatives, although as will be described, data removal 

based on the unstructured network perspective on the 

implementation of memory leads to complete system ablation as 

the only viable option.  

 

 
 

Figure 1. A conceptual continuum of memory system types, with 
structured databases on one extreme, and unstructured sub-symbolic 

networks at the other extreme. The relationship between the intermediate 

points is relational and illustrative. 

 

Five representative points may be identified along this 

continuum. These points capture some important properties of 

five different types of implementation methodologies described 

above (section 3). Indeed, the use of this continuum enables a 

principled account of potential solutions to be formed, which 

would not be possible given disparate implementation types. 

A flat structured database is at one end of the continuum as 

it allows an explicit representation of data in human readable 

form in a single structure. This is typically tailored for a specific 

type of information in a particular format, and so is inflexible to 

changes in application context, and is a standard type of 

implementation used for memory systems. However, it is fully 

compliant with the necessity for data removal, since information 

is discrete and independent. A similar argument applies to 

relational databases, where information is stored in multiple flat 

structures (a partially-distributed information representation), 

which are related to on another in a specific pre-determined 

manner.  

Network structures may also be used to store data, where 

information is encoded in a distributed fashion in the weights of 

links between nodes (e.g. artificial neural networks), and is thus 

not explicitly represented. Combined with database structures, 

this forms hybrid symbolic/sub-symbolic systems. This type of 

system is particularly relevant for robotics work, where the sub-

symbolic aspect is responsible for handling low-level sensory 

and motor data, and the symbolic aspect responsible for higher 

level, abstracted information, e.g. [17]. For the database-like 

components, information may be readily identified and removed 

without affecting the functionality of the system. However, for 

the sub-symbolic network component, the selective removal of 
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certain items of information is problematic, as discussed with the 

face recognition example above. If the symbolic data related to a 

specific patient is removed from the database, then an unchanged 

sub-symbolic network component would no longer result in the 

patient-specific behaviour that it previously would have done, 

whilst preserving the general functionality of the architecture. 

However, in this case, the information (so the positive 

identification of a face in the above example) would remain in 

distributed form in the network. 

With the progressive replacement of the explicit database 

structures in a system with sub-symbolic network analogues, 

structured sub-symbolic network systems store information in a 

distributed manner, but the structure and arrangement of multiple 

networks allow a limited interpretation of the informational 

contents (such as specific types of information being restricted to 

a certain sub-network), as seen in animal-inspired cognitive 

architectures, e.g. [18]. In this case, there is a significant problem 

with data removal. Two main approaches may be used to 

circumvent this. Firstly, the links between the sub-networks may 

be removed, meaning that only single-modality information can 

be processed. Whilst this decomposes the information linked to 

an individual into what is essentially anonymous information, it 

has two main drawbacks: (1) the system as a whole is impaired 

to the extent that it is no longer fit for purpose, and (2) modal-

specific information still persists in the individual sub-networks, 

although the context in which it is identifiable to an individual 

may be removed. The second approach that may be used in 

certain cases is the replacement of individual sub-networks that 

may contain the most pertinent information. For example, if the 

interaction between artificial agent and patient was non-verbal, 

then it may suffice to replace the face recognition network with a 

blank analogue. In this case, all of the information contained in 

this network would be lost (including the ability to recognise 

other individuals), but other modality information may be 

preserved (such as recognition of objects and voices, if they are 

supported by other networks). However, this solution is 

dependant on the precise forms of interaction that the agent has 

engaged in with the patient, and will not be a comprehensive 

removal of all relevant information. 

Finally, at the other end of the continuum, in unstructured 

networks, there is no uniquely identifiable structure to the sub-

symbolic network, and the information encoded by it is held in a 

distributed manner – there is no means of determining the 

contents of the memory system by examining the system itself, 

only through its behaviour (i.e. its output given an input). In this 

case, the problem of information removal is at its most acute. 

There are two possible resolutions to this problem based on the 

interpretation of data removal informed by symbolic database 

structures. The first of these is the deletion of the entire system 

in order to guarantee that the sensitive information has been 

removed. Whilst this does provide the necessary personal data 

protection, it also results in the loss of all other information, and 

any capabilities developed by the system through perhaps 

extended interactions with other patients. The second option is to 

periodically produce network state images, in a process akin to 

software versioning control. If information requires removal, 

then the system could be reverted to a previous state prior to 

when this information had been acquired. Whilst this provides an 

imperfect possible solution to the problem, and even then, it only 

does so in a relatively limited number of situations. Given that 

the target domain of these artificial companion agents is 

extended human-robot interaction, and that each such agent may 

be reasonably expected to interact with multiple patients, a roll-

back to a previous version would necessarily also lose 

information acquired from interactions with other patients than 

the subject whose records are to be deleted. Furthermore, given 

the potentially extended time-scales over which information may 

need to be deleted (e.g. a request for data removal months or 

years later), the versioning approach is clearly not ideal. In 

summary, with an unstructured sub-symbolic system acting as 

both controller and memory system, there appears to be no 

satisfactory way of dealing with selective data removal, within 

the current interpretation of companion robots as IT systems. 

Each of the successive points on the continuum illustrate the 

increasing difficulty that the current approach to personal 

information management will have with progressively more 

distributed information representation. Even though each of 

these systems are not necessarily currently applied to the domain 

of robotic companion agents, this does not circumvent the need 

to examine the consequences if they do find eventual application.  

5  IMPLICATIONS AND CONSEQUENCES 

Some potential resolutions to the problem of managing data 

stored in sub-symbolic and symbolic/sub-symbolic hybrid 

systems depend on the perspective adopted as to the locus of 

responsibility for information management. In the context of 

medical practice these issues are particularly pertinent, with the 

maintenance of patient confidentiality largely reliant on the 

compliance of medical workers. Patient records are potentially 

available to a large number of employees associated with any 

given health care facility. Confidentiality is maintained through 

the adherence of staff to codes of professional conduct. Workers 

with access to sensitive information are personally responsible 

for ensuring that they do not breach patient confidentiality. This 

aspect of the „duty of care‟ is backed up by the threat of 

sanctions against medical staff who fail to observe good practice 

in data protection: a similar situation to that which exists in other 

domains. 

What happens if we seek to apply the same reasoning to 

companion robots operating in hospital settings? On this view 

the companion agent should be treated as having the same 

responsibility for maintaining patient confidentiality as any other 

health worker. The obvious problem here is that while medical 

workers can normally be relied upon to understand their moral 

obligation to preserve confidentiality, the same assumption 

clearly cannot be made for an artificial agent [6]. Thus 

responsibility devolves to the designers of the artificial system, 

where they would be required to build-in safeguards to ensure 

that data protection requirements could be met. As described 

above (section 4) it is not clear how this could be done in the 

case of sub-symbolic and hybrid systems. 

This problem is particularly acute in the context of networks 

whose structure is, at least in part, derived through interaction 

(i.e. unstructured networks). Networks in which on-line learning 

underpins significant aspects of functionality cannot easily be 

„wound-back‟ to „erase‟ particular user without some 

concomitant loss of that functionality. 

In the context of these issues it is also interesting to ask how 

we define the role of „user‟ with regard to such systems. On one 

level, the user of a robot companion can be understood to be the 

person with whom the robot interacts, such as a patient. 
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However, the role of user arguably carries with it responsibilities 

for the behaviour of the system that are not commensurate with 

the situation of the patient. If the robot is viewed as a medical 

tool, used to perform various functions in a healthcare setting 

then it becomes less appropriate to view the patient as the user, 

with the medical staff (and ultimately the institution for which 

they work) taking on the role of user instead, as a means of 

facilitating patient care. This distinction between notions of the 

user might appear trivial but the issue of who would be 

responsible for misuse of such equipment clearly is not.  

Placing responsibility for the data acquired and stored by a 

robot companion device in the hands of medical staff still does 

not answer the question of how such information should be 

treated and patient confidentiality protected. The problem is 

complicated by the fact that it is not obvious how we should 

characterise data stored in a network form. Can such information 

be regarded as anonymous and thus, like aggregated statistical 

information, be exempted from data protection legislation? 

While it seems quite reasonable to consider data in this form to 

be anonymous this step still does not deal with the problem of 

identification. The face recognition example, discussed above 

(section 3), concerns a system that, while not identifying 

individual faces, can recognise that it has seen a particular face 

before. It is not clear if such recognition could be said to render 

an individual identifiable. By extension, if such a system were to 

respond in a probabilistic rather than binary fashion then it is 

even less obvious that its outputs could be said to constitute 

identification of an individual. 

It seems that in order to find appropriate practical solutions 

to data protection problems posed by novel computational 

architectures it is first necessary to develop more robust notions 

of what can be treated as data, where the responsibility for data 

protection lies and what constitutes a proper degree of 

anonymisation for information held in such systems: i.e. 

updating the current legislative provisions. 

6  CONCLUSION 

With the increasing necessity for long-term human-robot 

interactions, the development of memory systems for artificial 

companion agents is becoming an  important issue, with issues 

of data protection and privacy consequently coming to the fore. 

Whilst database-based approaches are currently prevalent, the 

increasing application of network-based implementations makes 

these issues more acute, with a need to fully explore the 

consequences of these different implementation methodologies. 

This paper has provided the foundations of such a discussion, by 

proposing a means of characterising memory system structures, 

and proposes that whilst the current (European) legislative 

framework may be applicable in a limited manner, it is necessary 

to re-evaluate the legal status of future artificial companion 

agents, the data that they will deal with, and the manner in which 

these data are processed. 
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Abstract.  The several different memory systems in human 

beings play crucial roles in facilitating human cognition. To 

build artificial agents that have cognitive capabilities similar to 

those of human beings, we have to develop these agents based 

on architectures modelling what we know of human cognition 

from neuroscience, psychology and cognitive science. In this 

paper we describe the various memory systems in the LIDA 

Architecture, which implements Global Workspace Theory. We 

discuss the interaction between these memory systems, feelings 

and emotions, and consciousness in the context of cognitive 

cycles. Finally, we look at our current work on spatial memory 

in the LIDA model. 

1 INTRODUCTION 

Human memory seems to come in myriad forms: sensory, 

procedural, working, declarative, episodic, semantic, long-

term memory, long-term working memory and perhaps 

others. To achieve human-like cognitive capabilities in 

artificial agents, we have to build them with principles of 

human cognition and learning. When an autonomous 

artificial agent [19] is equipped with computational 

versions of human cognitive features, such as multiple 

senses, perception, various forms of memory including 

transient episodic memory and declarative memory, 

learning, emotions, multiple drives, it is called a cognitive 

agent [18]. Such cognitive agents promise to be more 

flexible, more adaptive, more human-like than classical 

software systems because of their ability to learn, and to 

deal with novel input and unexpected situations. One way 

to design and implement cognitive agents is to build them 

within the constraints of the Global Workspace Theory 

(GWT) [2], [3], a psychological theory that gives a high-

level, abstract account of human consciousness and 

cognition. 

Per Global Workspace Theory, one of the most 

fundamental functions of consciousness is to provide 

access among separate sources of information.  

Effectively, consciousness creates access to various 

memory systems of a cognitive agent. In the following 

sections,  we  will  discuss  the  various  human  memory 

 

 

 

 

systems that play a role in the Learning Intelligent 

Distribution Agent (LIDA), a model of cognition that 

implements Global Workspace Theory [7], [37].  The 

main aims of the LIDA model include understanding how 

the mind works as well as building smarter and better 

artificial cognitive systems. The LIDA model, which is 

both computational and conceptual, includes modules for 

perception, various types of memories, “consciousness”, 

action selection, deliberation, volition, and several types 

of learning technologies [23].   

 

2 MEMORY SYSTEMS 

 

The memory modules in LIDA are not unique to this 

model. Other cognitive architectures like SOAR, ACT-R 

and Clarion for example, have multiple memory systems 

in them. In LIDA, the approach to memory is more 

systemic and granular. Let us consider the different 

memory systems of the LIDA model, short-term to long-

term. 

 Sensory memory holds incoming sensory data in 

sensory buffers and performs the initial processing. It 

provides a workspace for integrating the features from 

which representations of objects and their relations are 

constructed. There are different sensory memory registers 

for different senses and probably a separate sensory 

memory for integrating multimodal information. Sensory 

memory decays at the fastest rate, measured in tens of 

milliseconds. 

Working memory is the scratchpad of the mind. It holds 

sensory data, including visual images and inner speech, 

together with their interpretations. There are separate 

working memory components associated with the 

different senses, the visuo-spatial sketchpad and the 

phonological loop [8], [5]. Its decay rate is in tens of 

seconds.  

Episodic or autobiographical memory is memory for 

events having features of a particular time and place [10]. 

This memory system is associative and content-

addressable. 

An unusual aspect of the LIDA model is its transient 

episodic memory (TEM), an episodic memory with a 

decay rate measured in hours. Our hypothesis is that a 

conscious event is stored in transient episodic memory by 

a broadcast from a global workspace. A corollary to this 
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hypothesis says that conscious contents can only be 

encoded in long-term declarative memory via 

consolidation from transient episodic memory. 

Humans have a variety of long-term memory types that 

may decay exceedingly slowly. Memory research 

distinguishes between procedural memory, the memory 

for motor skills including verbal skills, and declarative 

memory. Declarative memory (DM) is composed of 

autobiographical memory and semantic memory, 

memories of fact or belief typically lacking a particular 

source with a time and place of acquisition. Declarative 

memory systems are accessed by means of cues from 

working memory.  

We see a clear distinction between perceptual memory 

(recognition memory [34]) and sensory memory (similar 

to Taylor [42]). Our model distinguishes between 

semantic memory and perceptual associative memory 

(PAM) and hypothesizes distinct mechanisms for each 

[20]. PAM memory is a memory for individuals, 

categories, actions, feelings, events, and their relations. 

PAM plays the major role in recognition, categorization, 

and more generally the assignment of interpretations. 

Upon presentation of features of an incoming stimulus, 

PAM returns precepts, the beginnings of meaning. We 

venture that PAM is evolutionarily older than TEM or 

declarative memory. This further points to the likelihood, 

though not at all certain, that they have different neural 

mechanisms. Since the contents of TEM consolidate into 

DM, which contains semantic memory, these facts suggest 

the possibility of separate mechanisms for PAM and 

semantic memory.  

Procedural memory in LIDA is a modified and 

simplified form of Drescher‟s schema mechanism [14], 

the scheme net. The scheme net is a directed graph whose 

nodes are (action) schemes and whose links represent the 

„derived from‟ relation. A scheme consists of an action, 

together with its context and its result. At the periphery of 

the scheme net lie empty schemes (schemes with a 

primitive action, but no context or results), while more 

complex schemes consisting of actions and action 

sequences are discovered as one moves inwards. 

3 TEM AND DM IN LIDA 

Transient episodic and declarative memories have 

distributed representations in the LIDA model. There is 

evidence that this is also the case in the nervous system 

[20]. In this model, these two memories are implemented 

computationally using a modified version of Kanerva‟s 

Sparse Distributed Memory (SDM) architecture [26], [36]. 

The SDM architecture has several similarities to human 

memory [26] and provides for “reconstructed memory” in 

its retrieval process:  

• Fast divergence in SDM is equivalent to knowing 

that one does not know. 

• Neither converging nor diverging indicates the 

tip-of-the-tongue state. 

• Rehearsal happens by writing a datum many 

times to memory. A datum rehearsed well is 

retrieved with fewer iterations than an item that 

is stored only once. 

• Full and overloaded memories exhibit 

momentary feelings of familiarity that fade away 

rapidly.  

• Forgetting increases with time because of 

intervening write operations (interference), as 

well as decay. 

 

A preconscious percept consisting of a selection of the 

contents of sensory memory, together with recognitions, 

categorizations and other interpretations produced in 

PAM, are stored in working memory. Only the conscious 

portion of the contents of working memory (actually long-

term working memory [16]) is stored in TEM. Information 

from the same conscious content is used to update PAM, 

TEM, and procedural memory. The undecayed contents of 

TEM are consolidated into DM at a later time offline. 

Retrieval from the content-addressable, associative TEM 

and DM memories uses recently stored unconscious 

contents of working memory as cues. 

In the next section, we will describe LIDA‟s cognitive 

cycle and the role played by the various memory systems 

in effecting human-like cognitive processing in this 

artificial agent. 

4   LIDA’S COGNITIVE CYCLE 

LIDA‟s processing can be viewed as consisting of a 

continual iteration of Cognitive Cycles. Each cycle 

consists of units of understanding, attending and acting. 

During each cognitive cycle the LIDA agent first makes 

sense of its current situation as best as it can by updating 

its representation of its world, both external and internal. 

By a competitive process, as specified by Global 

Workspace Theory, it then decides what portion of the 

represented situation is most in need of attention. 

Broadcasting this portion, the current contents of 

consciousness, enables the agent to finally choose an 

appropriate action which it then executes. Thus, the LIDA 

cognitive cycle can be subdivided into three phases, the 

understanding phase, the consciousness phase, and the 

action selection phase.  

Beginning the understanding phase, incoming stimuli 

activate low-level feature detectors in Sensory Memory. 

The output is sent to PAM where higher-level feature 
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detectors feed into more abstract entities such as objects, 

categories, actions, events, etc. The resulting percept is 

sent to the Workspace where it cues both Transient 

Episodic Memory and Declarative Memory producing 

local associations. These local associations are combined 

with the percept to generate a current situational model; 

the agent understands what‟s going on right now.  

Attention Codelets begin the consciousness phase by 

forming coalitions of selected portions of the current 

situational model and moving them to the Global 

Workspace. A competition in the Global Workspace then 

selects the most salient coalition whose contents become 

the content of consciousness that is broadcast globally.  

In the action selection phase of LIDA‟s cognitive cycle, 

possibly relevant action schemes are recruited from 

Procedural Memory. A copy of each such is instantiated 

with its variables bound and sent to Action Selection, 

where it competes to provide the action selected for this 

cognitive cycle. The selected instantiated scheme triggers 

Sensory-Motor Memory to produce a suitable algorithm 

for the execution of the action. Its execution completes the 

cognitive cycle. 

The LIDA model hypothesizes that all human cognitive 

processing is via a continuing iteration of such cognitive 

cycles. The unconscious elements of these cycles are 

proposed to occur asynchronously, with each cognitive 

cycle taking roughly 200-300 milliseconds. These cycles 

cascade, that is, several cycles may have different 

processes running simultaneously in parallel. This 

cascading must, however respect the serial nature of 

conscious processes that are necessary to maintain the 

stable, coherent image of the world [21], [32]. The 

cascading cycles, which partially overlap, allows a rate of 

cycling in humans of five to ten cycles per second. There 

is considerable evidence from cognitive psychology and 

neuroscience that is consistent with such cognitive cycling 

in humans [28], [41], [46], [48].  

5   FORGETTING IN MEMORY SYSTEMS 

 

Forgetting is a fundamental aspect of memory.  

Historically, decay [15], [12], [35] and interference [30], 

[27], [47] have been proposed as two theories on 

forgetting.  Retrieval failures have also been proposed as 

the possible basis for forgetting – memories never 

disappear; they just cannot be retrieved [43]. We do not 

take this view, and build decay into every memory system. 

Altmann and Gray [1] have proposed a functional 

theory of decay, which says that decay and interference 

are functionally related. If a memory trace decays, it 

interferes less with future memory traces. This theory 

states that when an attribute is to be updated frequently in 

memory, its current value decays to prevent interference 

with later values; and the decay rate adapts to the rate of 

memory writes.  Wixted [49] has proposed that recently 

formed memories which have not yet consolidated are 

vulnerable to interference from mental activity and 

memory formation. 

Memory researchers hypothesize about decay in 

working memory [25]. While there is debate and 

controversy over decay in declarative/autobiographical 

memory, decay in transient episodic memory is a 

hypothesis that the LIDA model offers.  

Decay plays two roles in these cognitive agents: 

modelling the cognitive processes in memory (assuming 

the hypothesis that there is decay in human memory 

systems) and providing the solution to the memory 

capacity problem of the SDM architecture. Decay is 

essential in the modified SDM architecture utilized in the 

LIDA model for Transient Episodic Memory (TEM). 

Decay ensures that the detailed memory traces of episodes 

that have occurred in the past few hours are retrievable.  

Without decay, the SDM architecture will retrieve a high-

level, aggregate of all the traces written to that region of 

the binary space, and not the specific trace that is expected 

from a TEM.  To be able to retrieve details of episodes 

with cues such as „where did we park our car this 

morning?‟ or „what did we have for dinner yesterday 

night?‟ we hypothesize that decay is required in the 

modified SDM that will be used as transient episodic 

memory. 

We have tested different types of decay mechanisms in 

our modified SDM module, including linear decay, 

exponential decay and inverse sigmoid decay [38]. The 

inverse sigmoid decay function models the memory 

hypotheses of decay mechanism by rapid decay of the less 

rehearsed episodes while episodes which were rehearsed 

most experienced a very slow decay.  Those episodes 

rehearsed most were retrievable after several decay cycles 

while all other episodes written fewer times decayed away 

in the first couple of decay cycles. This high grade 

filtering ensures that only relevant, important, unique, 

urgent and highly emotion-based episodes are retained in 

transient episodic memory, as they come to consciousness 

many times and are thus written many times to TEM. 

6   MEMORY CONSOLIDATION 

The Memory Consolidation hypothesis has been discussed 

and debated from the time it was proposed over a hundred 

years ago by Müller and Pilzecker [33].  In this 

hypothesis, it is believed that the hippocampal complex 

acts as a temporary indexer linking traces in other cortical 

regions. With repeated reference and retrieval of the 

memory traces, direct cortico-cortical connections get 

established and these connections are independent of the 

hippocampal function [45]. The exact processes and 

purpose of this mechanism are still unclear. Many believe 

that consolidation occurs over hours and days, and during 
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our REM sleep. There is also debate about this process 

being conscious vs. subconscious. The LIDA model 

conjectures the need for two episodic memories, transient 

episodic memory and long term declarative memory. As 

pointed out in the previous section, the first is needed to 

recall details of events that would, over time, be wiped out 

by interference from similar events. In the LIDA model, 

events reach DM only by consolidation from TEM. 

We use the LIDA model to propose a design for 

memory consolidation. We hypothesize that in cognitive 

agents based on the LIDA model, the memory traces 

which have not decayed away from transient episodic 

memory (TEM) are consolidated into the agent‟s 

declarative memory (DM).  The contents of every 

conscious broadcast get stored in TEM. Over time and 

without rehearsing that information, those memory traces 

in TEM will decay. On the other hand, when those traces 

are rehearsed and hence strengthened, they will remain in 

the TEM.  We hypothesize that at regular intervals 

(perhaps equivalent to human sleep cycles), the cognitive 

agent transfers the contents of its TEM to its DM.  

The two memories – TEM and DM – based on the 

modified SDM architecture have identical address spaces. 

The TEM employs a faster inverse sigmoid decay function 

tuned to the domain in which the cognitive agent lives. 

The DM has a variable decay rate based on the inverse 

sigmoid decay function but with parameters different from 

those of TEM. The decay mechanism in TEM is crucial in 

ensuring that only memory traces that are significant, 

relevant and important to the cognitive agent are 

consolidated to DM. A ball seen under a bush on a 

morning walk will be encoded in TEM, but is unlikely to 

be consolidated into DM unless some particular meaning 

gives it an affective boost, or brought it to consciousness 

multiple times leading to multiple encodings. 

At specific intervals, defined by the parameter 

„consolidation time‟, the consolidation mechanism goes 

into action. Since the two memories have identical address 

space, there will be a one-to-one correspondence between 

their hard locations. The consolidation mechanism 

transfers the contents of the bit-counters of each hard 

location in the modified SDM used in the TEM to the 

corresponding hard location in DM.  The parameter 

„consolidation time‟ may be tuned dependent on the 

domain in which the cognitive agent lives. We 

hypothesize that this will be in the order of a few hours. 

The consolidation mechanism may also be triggered by 

other internal or external states.  

7   DISCUSSION 

The main goal of our research work in the LIDA model is 

to understand how minds work, be they human, animal or 

artificial. In that spirit, the LIDA model has a very 

granular architecture accounting for various cognitive 

processes. The cognitive cycle of the LIDA model 

provides an important tool for fine-grained analyses of 

cognitive processes. We have several memory systems in 

the model as described in this paper, based on both 

psychological, neuroscience and evolutionary evidence as 

well as on the interactions these memories have with 

consciousness per Global Workspace Theory [20].  

As must be true with any computational/conceptual 

model of human cognition, the LIDA model is replete 

with gaps, areas in which it cannot yet offer explanations. 

One such gap with reference to human memory systems 

and artificial agents that we are currently working on is 

spatial memory.  

In the human brain, two neural systems facilitate 

encoding of self-location [13]: they are (1) the place cells 

in the hippocampus for encoding unique environments and 

(2) grid cells, border cells and head-direction cells in the 

parahippocampal and entorhinal cortices for mapping 

positions and directions in all environments. Humans and 

many animals construct multiple spatial maps, also called 

cognitive maps [31] generated by these two neural 

systems. These spatial maps can be extended by adding 

multiple maps together.  

Episodic memory is for the recording the „what‟, 

„where‟ and „when‟ of events.  The „where‟ component of 

episodic memory results in cognitive maps. We 

hypothesize that a separate memory module/mechanism is 

needed in the LIDA model to account for such spatial 

memory/cognitive maps. While considering this memory 

module, we have to address several issues related to this 

memory: 

 

 What is the interaction between the spatial 

memory and the other memory systems in the 

LIDA model? 

 How does consciousness interact with spatial 

memory? 

 What will be the basic representation of a spatial 

map, and how will it be accessed? 

 If complex spatial maps are created from smaller 

fragments, how are the different fragments linked 

together and where are they stored? 

 How do we represent very large environments in 

these spatial maps? 

 Is there a decay mechanism in spatial memory and 

if so, what type of decay is to be employed in this 

memory? 

 

 As yet we have only tentative answers to a few of these 

questions. Taking advantage of this so far relatively rare 

occurrence of neuroscience providing a mechanism, a 

primitive spatial map will be represented in a picture like 

fashion inhabited by land-marks (objects). The 

representation will denote the size, shape and orientation 

of the object as well as its position and distance relative to 
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other landmarks. Each object will also be connected back 

to its corresponding node in LIDA‟s PAM, so as to make 

connections with features and relations of the object that 

are known to LIDA. 

 LIDA‟s spatial memory must interact with its PAM as 

well as with its two episodic memories so as to provide 

locations for events [29]. We envision much of this 

interaction taking place through LIDA‟s preconscious 

working memory, but just how is still an open question.  

 Spatial memory will be a long term memory system. 

Like most of those in the LIDA model, it will have a 

network structure with nodes corresponding to spatial 

maps and links to inclusion (being a subset of). Again as 

in other forms of long term memory in LIDA, spatial 

learning will have to be both selectionist (reinforcing 

existing spatial maps) and instructionalist (creating new 

spatial maps, or updating the content of existing maps).  

 Consciousness will play the same role with spatial 

memory as it does with all other memory systems. We 

learn that to which we attend, that is, the contents of 

consciousness. 

 As we continue work on understanding, designing and 

implementing spatial memory in the LIDA model, we 

hope that it will take us one step closer to realizing a more 

comprehensive and complete model of cognition.  Using 

this model to build artificial agents will enhance our 

understanding of the interaction amongst these various 

memory systems, and between these memory systems and 

consciousness.  
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Implementing a data mining approach to episodic
memory modelling for artificial companions

Matthias U. Keysermann1 and Alex A. Freitas2 and Patricia A. Vargas3

Abstract. The main goal of this work is to implement and test two
different data mining approaches for retrieving and classifying the in-
formation within a computational episodic memory model developed
for artificial companions. As the information stored in our episodic
memory model reflects mainly certain past events we have elaborated
an appropriate data structure and created the corresponding event
data. Data mining techniques were then implemented for processing
the knowledge within the memory model. The data mining task ad-
dressed here is classification and further prediction. Two Bayesian
classifiers were evaluated by analysing prediction performance in
general, comparing the results obtained in specific and more real-
istic scenarios. This work is a first step towards the full incorporation
of data mining techniques to episodic memory modelling for artifi-
cial companions. Future work includes the processing of hierarchical
data and other machine learning techniques in order to facilitate the
creation of more believable artificial companions/robots.

1 Introduction
The idea of living together with robots still seems to be a future vi-
sion but becomes more and more realistic as advances are made in
building and investigating artificial companions [1]. These artificial
companions rely on an intelligent system which enables them to cap-
ture data from its surroundings, execute necessary actions and most
importantly to interact and communicate with humans.

Such a system could reside on different hardware platforms and
can be also transferable to different devices. When used at home the
system could run on a stationary computer while at work a laptop
might serve as the hardware basis. Moreover, portable electronic de-
vices are widely accepted and therefore it is not unlikely to bring an
artificial companion to almost everywhere you go.

Being accompanied by such a system, interaction is a central as-
pect and it is essential to organise it as appropriate as possible. Hav-
ing the companion reacting naturally is very important to generate
a familiar feeling of interaction for the user. As the human memory
is involved in several cognitive tasks, the incorporation of a com-
putational memory model is essential. Modelling characteristics like
abstraction, generalisation and forgetting leads not only to more be-
lievable companions but could also improve human robot interaction
in general [10, 11, 12].

As the topic of memory modelling is huge and has many different
subtopics, the limitation to a specific area is necessary. Psychology
literature provides an overview of the human memory and tries to
structure and subdivide it into different parts [2, 8] (figure 1). In this

1 Heriot-Watt University, Edinburgh, UK, email: muk7@hw.ac.uk
2 University of Kent, Canterbury, UK, email: A.A.Freitas@kent.ac.uk
3 Heriot-Watt University, Edinburgh, UK, email: P.A.Vargas@hw.ac.uk

Figure 1. Different parts in the model of the Long-Term Memory.

paper we focus on the Episodic Memory which stores information
about single events, i.e. episodes.

Although the basic idea about using Bayesian data mining tech-
niques for memory modelling has already been introduced by others
[11], this particular approach has neither been implemented nor eval-
uated before in the given domain of robots as artificial companions.
Both the application of the classification methods as being used here
and the scenarios tested provide a new perspective on memory mod-
elling for these artificial companions. The data structure explained in
[11] has been extended and further specified and sample data for this
specific structure has been newly generated.

Section 2 introduces the data structure, which has been elaborated
for the usage with memory modelling. This includes a detailed de-
scription of the attributes. Section 3 familiarises the reader with the
data mining methods. The implemented classification approaches are
briefly described by explaining first common characteristics of the
implemented classifiers and then mentioning specificities of each of
them. A description of the data set as well as an explanation of the
evaluated scenarios and the results obtained by applying the clas-
sification approaches to the data are given in section 4. Section 5
discusses the work and its outcomes. Sections 6 and 7 conclude the
paper and give an outlook on future work.

2 Memory modelling for artificial companions

The episodic memory modelling done here is only a small part of a
more complete model of the human memory and thus is based on the
work developed by the LIREC project [1]. The LIREC project tries
to develop a memory model that includes not only Long-Term Mem-
ory and Short-Term Memory but also many sub-parts. The project
addresses as well lower level aspects [4], for instance, capturing and
processing sensor data.
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2.1 Episodic memory structure

Information stored in our Episodic Memory reflects mainly certain
events happened in the past [2, 8]. This holds as well for the Auto-
biographic Memory except that remembered events in here address
personal experiences. In general all these events comprise persons,
animals or items involved in a certain activity which happened at a
specific location at a particular time. Therefore each event is repre-
sented by predefined attributes. All events together are held in a list
of single events. The attributes can be nominal or numeric. Every
attribute can contain null values for some events, indicating that the
value of the attribute is unknown or not applicable to those events.

Furthermore the given attributes have a hierarchical structure
which makes it possible to specify a more detailed data/information
about an event depending on how much is known. This allows the
consideration of rough knowledge about a situation. At the same time
a lot of detailed information can be given in order to incorporate as
much knowledge as possible in the decision making process.

The complete attribute structure is shown in figure 2. The task of
identifying and capturing particular attributes and their values in a
real world environment is not discussed in this paper as it is not the
focus of our work.

The attribute hierarchies are described as follows:

Id: Serves as a unique identifier for each event and makes it pos-
sible to distinguish events which are identical in terms of the other
values.

Subject: Specifies the subject that actively executes the given task.
Subjects are subdivided by their type which can be a person, an

animal or an item. The latter one is rather uncommon to be a sub-
ject but stays in the hierarchy because of consistency as the same
hierarchy is used as well for the object.

Another distinction is made by the category. Persons are cate-
gorised into male or female, animals can fall in the category dog,
cat, fish, etc. and for items there are numerous possibilities, e.g. book,
newspaper, fruit, etc.

Also a name can be given. The name can be the full name for
persons (e.g. Peter Simon Smith), a pet’s name (e.g. Kitty) or for items
the particular name, e.g. The Times for a newspaper.

Furthermore the date of birth can be specified which is applicable
for persons and animals. This might be useful when considering age-
related habits. The age doesn’t have to be stored but can be computed
by additionally considering the date of the event. Even items can have
a date of birth when thinking of it as a date of production. For books
or newspapers the date of publication would be suitable.

Task: Specifies the task or action which is executed by the subject.
The hierarchy allows a distinction between a main and a sub task
where the sub task allows a more detailed description of the executed
action. This is also useful when there are different ways of how to
carry out a task. Though in many cases the sub task is not applicable
and therefore can’t be specified. Both main and sub task are usually
stated as a verb.

Object: Specifies the object which is passively involved in a spec-
ified task. Attributes are the same as for subject. The object is very
often an item but of course can be also an animal (e.g. when a person
washes a dog) or a person (e.g. during a talk).

Place: Specifies the global place at which the event happens. The
country is useful when modelling cultural, ethical or even religious
aspects. By including this information the companion is able to adopt
to different cultures and treat them correspondingly. The city is im-
portant when using the same companion in different cities, i.e. the
companion can move place without the need of erasing previously
stored knowledge.

Location: Specifies the particular location at which the event hap-
pens and is more specific than place.

The environment allows to distinguish between different applica-
tion areas, e.g. home and work. As behaviours and habits can differ
significantly from one environment to another it is reasonable to store
this information.

Furthermore room and location are stored which is important for
capturing reoccurring habits. Room can also mean areas like the gar-
den or a car park. The location describes the particular location inside
the room or area, e.g. table, bed, desk, etc.

Date and Time: Specifies the exact date and time when an event
happens. Year, month and day as well as hours, minutes and sec-
onds can be specified. These attributes are of major importance when
recognising reoccurring habits.

Also useful is the current day of the week (i.e. Monday, Tuesday,
etc.) which makes it much easier to find weekly patterns. To avoid
storing redundant information the day of the week is not saved as
another attribute as it can be computed when knowing the exact date.

Privacy: Specifies to whom information about a certain event
should be concealed. The structure is the same as for subject although
only subjects of type person seem to be reasonable.

By having null values, in other words, leaving all the attributes un-
set, means that the information can be disclosed to everybody. When
at least the type is given, the interpretation changes, e.g. having the
type person but category, name and date of birth null would conceal
the information to every person. By specifying these other attribute
values more fine-grained restrictions are possible, e.g. information
can be disclosed to everybody except men. With the date of birth
also age-related restrictions are possible if interpreting the computed
age as a lower limit for revealing information about the event.

Emotions: Specifies the emotions involved both for subject and
object. An emotion classification like positive or negative can be
given as well as a specific emotion like happy, sad, etc.

These attributes apply for persons, partly for animals but not for
items. It might be used by the companion in order to change some-
one’s mood (e.g. to make someone happy) by causing certain events
or giving corresponding suggestions.

Furthermore emotions can be stored for the companion itself. Here
the focus lies on taking into account the influence of emotions on
how information is stored and retrieved. Currently these values are
not specified, i.e. are null, but are intended for future use.

3 Data mining approach

The data mining task addressed here is classification, where each in-
stance (event) consists of a set of predictor attributes and a class.
The goal of a classification algorithm is to predict the class of an
instance, based on values of its predictor attributes. A classification
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Figure 2. The attributes in their hierarchical structure (id not shown here). The attributes connected with dotted lines were not used yet and therefore the
corresponding attribute values were always null. These attributes are included in this diagram as they will be incorporated into a future model.

problem consists of two phases. First, the algorithm builds a classifi-
cation model from the training set (where the classes of all instances
are known), and then the model is applied to predict the class of in-
stances in the test set, consisting of instances unseen during training.

Two probabilistic approaches have been implemented, namely a
simple Naive Bayes Classifier and a Bayesian Network Classifier [7,
14].

All classifiers build a model by computing and storing lists of
probabilities for nominal values or mean and standard deviation in
order to represent a normal distribution for numerical values. For
nominal values also a list of values encountered during the training
phase is kept. None of the classifiers stores all the events used for
training.

Nominal values are represented and treated as strings. The clas-
sifiers enumerate them internally to map them to the corresponding
probabilities. To avoid probabilities of 0 we use a simplified Laplace
estimator, hence nominal value counts are initialised to 1 instead of
0.

For each classifier we have implemented two approaches to cope
with null values in predictor attributes during the training phase.
Within the first approach, null values are ignored, i.e. the instances
containing a null value for a given predictor attribute are ignored
when computing the probabilities required by the Naive Bayes or
Bayesian Network Classifier. In the second approach null values are
treated as a separate value and probabilities are computed for the null
value in the same way as for other values. During the test phase the
treatment corresponds to the one chosen during the training phase.

Date and time values are converted to their equivalent in seconds
and are handled as numeric values which in turn are approximated
by the classifiers with a normal distribution. This allows the con-
sideration of the distance between different dates and times which
wouldn’t be possible if date, month, year, etc. were discretized and
treated as being nominal. In order to model weekly routines the clas-
sifiers utilise the computed, nominal day of the week attribute.

Next we describe each Bayesian classifier implemented.

3.1 Naive Bayes Classifier
The Naive Bayes Classifier offers an approach to predict class values
completely based on the probability distribution of the attribute val-
ues of the data set. Given a set of attribute values the classifier returns
the most probable target value. The more training instances there are
to learn the classifier, the more reliable and precise are the decisions
made. Further information can be found in [7, 14].

The Naive Bayes Classifier implemented here does not regard the
hierarchical attribute structure as it treats the attributes as being flat
and independent of each other. For each nominal attribute that is
treated as a class attribute, the posterior probability of each class
value can be calculated using two types of probabilities computed
during training. One is the class’ prior probability and the other is
the conditional probabilities of that class given each of the predictor
attribute values.

For instance, let Ai denote the attribute i (where A1 refers to sub-
ject type, A2 to subject category, A3 to subject name, A4 to subject
DOB, A5 to main task, etc.). Then a posterior probability for each
value of the attribute Ai (i.e., each class) can be calculated as fol-
lows:

p(Aij |θ) =
p(θ|Aij) · p(Aij)∑

j∈J
p(θ|Aij) · p(Aij)

(1)

• J refers to the set of indices obtained by enumerating the values
of the attribute Ai.

• Aij refers to attribute Ai having the j-th value of the correspond-
ing set.

• θ refers to the given evidence, i.e., the values of the predictor at-
tributes in the instance being classified.

• p(θ|Aij) =
∏

k
p(Bk|Aij) where Bk denotes the value of the

k-th predictor attribute in the test instance (or event) being classi-
fied, and the product is computed for all values of the index k (i.e.
for all predictor attributes individually, ignoring attribute interac-
tions).

Naive Bayes predicts, for each instance in the test set, the class (Aij

value) with the highest value of formula (1), among all values of the
class attribute Ai.

3.2 Bayesian Network Classifier
As the Naive Bayes Classifier also Bayesian Networks offer a method
for predicting a class value given certain attribute values. In compar-
ison to the former, Bayesian Networks can handle conditional de-
pendency amongst the attributes as they do not treat all attributes
as being conditionally independent of each other. Therefore they are
less constraining than the Naive Bayes Classifier in terms of their
representational power. A detailed description of Bayesian Networks
and how they can be used to infer missing attribute values is given in
[7, 14].

In our approach every single attribute, i.e. each level of each hier-
archy, is considered as being a node in the Bayesian Network. For
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each class attribute whose value is to be predicted, a network is
created with the following structure: each attribute which is at first
level (e.g. subject type, main task, object type, etc.) and is a pre-
dictor attribute (i.e. different from the class attribute) has just one
parent node, namely the class attribute. Every other attribute (except
the class attribute) has exactly two parents, namely the class attribute
and the corresponding parent (hierarchical order shown in figure 2).
The class attribute itself has no parents.

Consider for example that country has to be predicted. First level
attributes like subject type, main task, etc. (except country) have only
country as a parent node. subject category, which is situated at the
second level, has two parent nodes, namely country and its hierar-
chical parent attribute subject type. Similarly other non-first level
attributes are incorporated into the network structure. Also city is
treated as having two parent nodes in the Bayesian Network, although
both parent attribute and class attribute are the same here (which is
country).

4 Results

This section reports results using the Bayesian classifiers described
in section 3 to predict the classes of all nominal attributes in the data
set described in section 4.1. Two broad types of experiments were
performed, one where the data was randomly partitioned into train-
ing and test sets (section 4.2) and another where the data was parti-
tioned into training and test sets according to the temporal order of
the events (section 4.3). In each experiment, each Bayesian classifi-
cation algorithm is used to solve as many classification problems as
the number of nominal attributes. In each of such problems, a differ-
ent nominal attribute is treated as the class attribute and all the other
available attributes are used as predictor attributes.

4.1 Data set

No suitable real-world event data was available to directly work on.
Neither pre-made events existed nor similar information has been
captured which could be used to build events from. Therefore the
manual creating of events was needed. Of course these events should
match as best as possible with real data and should reflect everyday
routines, weekly habits, etc. These happen usually at the same day
of the week, roughly at the same time and often at the same location
or at least close together, i.e. reoccurring events have many things in
common and differ only in small details.

In order to achieve that, the creation should be based on regu-
lar routines but happen to some extend in a partially random way.
While most of the attribute values stay fixed for one kind of event,
mainly for the hierarchies subject, task and place, the exact time dif-
fers slightly as well as the location or the particular object name.
Emotions can be related e.g. to the current task or to the environment
– always depending on the event at hand.

These partly-fixed event patterns were necessary. A completely
random creation would not suit our purposes as it would hardly gen-
erate patterns. Thus it would not make it possible for a classifier to
detect any patterns and make predictions based upon them.

In order to obtain a data set, first, domain values have been created
for each attribute. The full list of nominal values (including numeri-
cal date of birth values when appropriate) is shown in table 2.

By using these values, events have been generated for two fic-
tional characters, namely George from Edinburgh and Amy from
Glasgow. These events have been generated day by day according

Table 1. Percentage of null values for each attribute (shown values are
rounded).

attribute name null values attribute name null values
subject type 0.0% date 0.0%

subject category 0.0% time 0.0%
subject name 0.0% conceal to type 100.0%
subject DOB 0.0% conceal to category 100.0%

main task 4.3% conceal to name 100.0%
sub task 68.7% conceal to DOB 100.0%

object type 7.5% emotion class.
object category 7.5% subject 0.0%

object name 7.5% emotion subject 0.0%
object DOB 64.5% emotion class.

country 0.0% object 64.5%
city 0.0% emotion object 64.5%

environment 0.0% emotion class.
room 0.0% companion 100%

location 0.0% emotion companion 100%

to day templates. These templates describe a series of events hap-
pening throughout a single day. Usually only some attribute values
are fixed whereas other values are not clearly defined. In the latter
case the corresponding attributes can take up any appropriate value
in terms of the corresponding hierarchy value (table 2). For instance
if the object type is specified as item and the object category is fruit
then the object name can be either apple, banana or orange.

For each event description a time range indicates the potential pe-
riod of time when the event can happen. It happens only once at a cer-
tain moment within this period. An associated emotion refers to the
emotion of the subject, the object’s emotion (if applicable) was ran-
domly chosen. This was done as well for all other values which are
not explicitly stated in the corresponding templates. The only excep-
tions are the four privacy attributes and the two companion’s emotion
attributes of which all the values are always null.

For each character two day templates exist, one for working days
and one for weekend days. For George a working day template de-
scribes 19 events, a weekend day template 13 events. For Amy the
respective counts are 15 and 9.

The time period for which the events have been generated spans
over two months, namely May and June 2010, which corresponds to
43 working days and 18 weekend days. Hence, 61 days of events for
each character have been generated. Each event was considered as
an instance by the Bayesian classification algorithms, so the data set
consists of 1858 instances.

4.2 Experiments with a random data partitioning

The first set of experiments involved three different ratios of random
allocation of the instances into the training and test sets as follows:

• 90% – 10% (1672 events in training set, 186 events in test set)
• 50% – 50% (929 events in training set, 929 events in test set)
• 10% – 90% (185 events in training set, 1673 events in test set)

For a given allocation the classification performance, i.e. the ratio
of correct classifications amongst all predictions made, arises from
the predictions made over all events in the test set. Predictions were
made for every nominal attribute, the obtained results were then av-
eraged. Excluded here were the attributes contained in the privacy
hierarchy and the emotion attributes for the companion (as these at-
tributes are always null). These attributes were not used as a predictor
attribute either and thus they did not influence the computation of the
likelihood.
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Table 2. Attribute values used for the data set creation.

attribute name attribute values parent value
subject type person, item -
subject/object category male, female person
subject/object category fruit, snack, beverage, liquor, newspaper, book, magazine, letter, article item
subject/object name Frederic, George, James, John male
subject/object name Amy, Betty, Helen, Kate female
subject/object name apple, banana, orange fruit
subject/object name cookie, brownie, muffin snack
subject/object name water, juice, coffee, tea beverage
subject/object name beer, wine liquor
subject/object name The Guardian, The Times, The Sun newspaper
subject/object name The Shining, Harry Potter and the Philosopher’s Stone, Dr. Jekyll and Mr. Hyde book
subject/object name The Rolling Stone, The National Geographic, Time Magazine magazine
subject/object name personal letter, business letter letter
subject/object name summary, report, short story article
subject/object DOB 21/04/1988 Frederic
subject/object DOB 15/01/1979 George
subject/object DOB 03/11/1957 James
subject/object DOB 25/10/1972 John
subject/object DOB 02/08/1991 Amy
subject/object DOB 11/02/1981 Betty
subject/object DOB 28/12/1977 Helen
subject/object DOB 14/05/1963 Kate
main task eat, drink, read, write, speak, wash -
sub task handwrite, type write
sub task chat, talk, discuss speak
country United Kingdom -
city Edinburgh, Glasgow United Kingdom
environment home, work -
room living room, kitchen, bathroom, bedroom home
room office, cafeteria, meeting room work
location table, sofa, shelf living room
location cooker, fridge kitchen
location toilet, sink, shower bathroom
location bed, wardrobe, chest of drawers bedroom
location desk, printer, photocopier, bookshelf office
location queue, counter cafeteria
location chair, screen meeting room
emotion class. subject/object positive, negative -
emotion subject/object happy, excited, relaxed positive
emotion subject/object sad, bored, stressed negative
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Figure 3. Averaged classification performance for different test set sizes
averaged over all nominal class attributes. Shown in dark grey are the results
when null values were ignored, results when null was treated as a separate

value are shown in light grey.

For a given partition ratio the allocation happens randomly, mean-
ing that a new allocation can produce different results. Therefore for
each classification process 10 runs were executed, having a new al-
location in each run. Finally the results were averaged over the 10
runs.

The treatment of null values can have a major impact on classifi-
cation performance. For all implemented classifiers this option has
been tested by evaluating the performance when completely ignor-
ing null values as well as considering them as being another attribute
value. Averaged results for different test set sizes are shown in fig-
ure 3. As can be observed in this figure, the ratios of events correctly
classified by the Naive Bayes Classifier and the Bayesian Network
Classifier are greater when null values are treated as separate values.

4.3 Experiments with a temporal data partitioning
In this scenario the classifiers use the knowledge learned in different
days of training to predict what happens next. Here a temporal par-
titioning of the data set is used, different from the ones described in
section 4.2. Events are grouped according to the value of the date at-
tribute resulting in one event set for every single day. A certain num-
ber of successive days, i.e. events of the corresponding sets, is used
to build the probabilistic model while for the following days events
have to be predicted, thus events happened during the following days
form the test set.

For the prediction each event of the test set is taken to obtain its
date and time. Then the classifiers are given that information and
have to predict all unknown values by making use of a consecutive
classification method. This means that the classifiers predict all nom-
inal attribute values that are set to null. Therefore the classifiers cal-
culate posterior probabilities for each nominal attribute being set to
null. Amongst all the computed posterior probabilities the maximum
is chosen and the corresponding attribute value is set for the corre-
sponding attribute. This process is repeated until there are no null
values left in the nominal attributes of the given event. As this classi-
fication method doesn’t work when null values are treated as another
value, they had to be ignored by all classifiers.

Of course the date can confuse the classifiers as its mean is al-
ways in the period of the training events and probabilities become
smaller the further an event is in the future. But there is still the day
of the week attribute which can be reliably used to recognise weekly
patterns.

To evaluate the predictions the ratio of correctly classified attribute
values has been determined by comparing the predicted value with
the actual value from the sample data. Finally results have been aver-
aged to obtain the classification performance over the complete test
set.

Figure 4. Averaged classification performance for different numbers of
training days for a test set size of 7 days whereby only the date and time

were known.

In order to figure out how many days of training are required and
how the number of training days can improve classification perfor-
mance, 29 different evaluations have been done starting with no train-
ing at all (0 days for training) up to four weeks, or 28 days (856
events), constantly increasing the number of training days.

The particular number of events contained in these training sets
depends on the how many working days and how many weekend
days are included in this period. The range of the days used in the
training set always starts with the very first day present in the data
set. The days following the last day of the training set are taken into
account for the test set. The number of days for testing was first set
to 7 which corresponds to 214 events, then to 1 which corresponds
to 34 events if it was a working day or 22 events if it was a weekend
day.

Only one single run is required for each number of training days,
because training and test sets are generated deterministically.

For no or only one day of training the classification performance
of all classifiers is rather low with about 40% (figure 4). Building the
probabilistic model over one day more leads to a significant increase
in the amount of correct predictions – for two training days about
55% of the attribute values are classified correctly. The first two days
in the sample data are Saturday and Sunday. Although no working
days have been trained so far, after two days both weekend days have
been trained once, allowing to match both Saturday and Sunday by
the day of the week attribute.

Surprisingly no other significant improvement can be spotted
when the classification models include knowledge about working
days. After 9 days of training the classification performance in-
creases slightly until after 3 more days it reaches a little bit more
than 60%. For more training days the amount of correct predictions
remains roughly the same without any further significant improve-
ments. All the classifiers handle this scenario almost equally well but
cannot achieve really high prediction rates.

It is important to mention that only very little information was
given and in practise it can be expected that more attribute values are
either known or just given. The country and the city can be easily
detected via GPS (Global Positioning System). If this information is
not available, at least it is possible to manually restrict the predictions
to a specific place and set these values correspondingly.

Another evaluation has been carried out whereby apart from date
and time also the place attributes were known. The results (figure 5)
are very similar to the ones previously discussed. Generally the pre-
diction rate for all training days is a little bit higher than it was before,
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Figure 5. Averaged classification performance for different numbers of
training days for a test set size of 7 days whereby date, time, country and city

were known.

ranging from almost 50% to more than 65%. But again the only sig-
nificant change in terms of prediction performance happens after two
days of training.

A possible reason for lowered classification rates could have been
the days being further in the future. This way the prediction of later
days worsened the results. Therefore the test set size was set to only
one day and results were determined again.

Also for testing with only one day, the results are not signifi-
cantly better (figure 6). For all classifiers the classification perfor-
mance varies slightly more than it does in the other two evaluations
but never exceeds 70%. The prediction rates after 9 days and 16 days
can be considered as local minima. In both cases this is after another
weekend has just been trained and the proportion of trained weekend
days is higher.

It can be concluded that a short period of training is enough. The
performance can’t be increased much more by longer training over
more days. Here it has to be considered that the sample data mainly
contained daily routines, separated by working days and weekends,
and that the results can be quite different when patterns in the data
change over time.

It should be noticed that the classiers were not able to predict null
as a value due to the chosen treatment of null values. Hence, null
values contained in the events could not be predicted correctly which
in turn limited the achievable classication performance.

Overall no really high prediction rate can be expected in this sce-
nario. Nonetheless, the classications made here are still a difcult task
for the high amount of missing knowledge at the beginning of each
consecutive classication task.

5 Discussion
Most often the performances of both classifiers were rather similar
and none of them can be clearly declared to be the best approach.

The Bayesian Network achieved the highest average prediction
rates but was closely followed by the Naive Bayes Classifier. The
two approaches performed better on average when null values were
taken into account.

The difference made by using this option was significant for the
attribute sub task and the emotion attributes of the object. These at-
tributes frequently take null as their value while the amount of null
values in the sample data for the other attributes was very low (except
for the privacy and companion’s emotions attributes). In reality it is
likely that some attribute values are unknown or cannot be obtained,
which means that the event data contains more unset attributes.

Figure 6. Averaged classification performance for different numbers of
training days for a test set size of 1 day whereby date, time, country and city

were known.

No judgement about difference in performance of the two ap-
proaches can be made by comparing the results of the future predic-
tions. But at least they show that only a small amount of events used
for training is required to build an appropriate probabilistic model.
It has to be mentioned that the patterns represented in these mod-
els arise from sample data which only contain rather simple patterns.
Events containing more complex weekly or monthly routines may
require more training.

6 Conclusions
Two different classifiers have been implemented. They are both prob-
abilistic approaches but treat and represent the data in different ways.
In different evaluation scenarios both approaches approved as being
useful with good results and overall none of the two approaches per-
formed really poorly.

Though more complex implementations can be thought of and bet-
ter results are certainly possible when classifiers are more specialised
and more advanced techniques are incorporated.

Nonetheless, the results discussed here show that data mining
techniques are well-applicable to memory modelling and can pro-
duce useful predictions when dealing with discrete attributes. The
storage of information about several different situations is possible
and knowledge extraction can be performed with the techniques used
here.

The idea of artificial companions seems probable but still the step
from capturing raw sensor data to processed discrete attribute values
has to be further developed.

The interaction with robots would benefit from incorporating arti-
ficial memory models that mimic our own [5, 6]. By making robots
aware of the activities that happens around them over a longer pe-
riod of time and letting them make assumptions about the situation
they are currently involved in would make robots more believable
and better suited for living together with human beings.

7 Future work
This work is a first step into a topic which deserves – due to its extend
– much more investigation in the future. It has many different aspects
and subtopics and therefore offers lots of potential for extensions in
numerous ways.

Apart from creating sample data which contains more complex
patterns, the privacy attributes can be filled with values and can be
included when building and using prediction models. Furthermore
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the classifiers can treat these attributes in a special way, e.g. apply
filtering or other sorts of preprocessing.

The companion’s emotion attributes have been ignored so far. As
described in psychology literature [2, 8] recall and the retrieval pro-
cess in general are dependent on the mood the corresponding indi-
vidual is currently in. Therefore emotions of the companion could be
taken into account when retrieving knowledge by the classifiers. Fur-
thermore environment-dependency could be included as the human
memory is influenced by surrounding conditions.

More complex models can be built by taking into account further
aspects of the human memory. The process of forgetting has not been
included in the implementations done here. The explicit modelling
of forgetting theories like trace-decay, interference and repression
would make the forgetting process more transparent and thus easier
to evaluate.

In consideration of the increasing number of artificially controlled
systems which are around us in our everyday lives, the consideration
of ethical issues becomes necessary. Also in computational memory
modelling the use of ethical rules is reasonable. Theories like the
deonthological, consequentialist and virtue-based theory [13] could
be implemented by using rule-based and state-based techniques as
well as prediction schemes as described by [10, 12].

Apart from probabilistic models several other machine learning
approaches could be tested on the attribute structure developed for
this project. Other methods like Artificial Neural Networks, Support
Vector Machines and Decision Trees have been applied to hierarchi-
cal classification in other domains [3, 9] and could be transferred to
the memory modelling for artificial companions.
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