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Much of our daily reasoning appears to be based
on stereotypes, exemplars, and anecdotes. Yet,
basic statistics informs us that decisions based only
on limited data are, at best, likely to be inaccurate,
if not badly wrong. However, exemplars and
stereotypes are not arbitrary data points, they are
chosen based on experience and represent
prototypical situations. The ability to predict the
behaviour of a consumer, observe that two people
are related, diagnose an illness, and even how an
MP might vote on a particular issue, all depend on
a person’s past experience—that is the exemplars
and stereotypes a person learns. If this hypothesis—
namely that we can form and reason well with
exemplars—is true, we should be able to identify
exemplars from data. To achieve this, we need to
answer the following questions. What is an exemplar
and how can it be represented? How do we learn
good exemplars incrementally? How can exemplars
be used?

Here we outline a particular approach to these
questions that involves the use of the notion of
family resemblance to learn exemplars and Bayesian
networks to represent and exploit them.

The central problem can be visualized as moving
from a situation like that in Figure 1—which has
three categories, A, B, and C, with a lot of data—
to one like that in Figure 2 where we have exemplars
representing the categories. Given that both
membership of categories and the extent to which
exemplars represent other points are graded, we
use Bayesian networks for this task. Figure 3 shows
the representation used, where ei denotes
exemplars associated with the categories, fi denotes
features, and the arcs denote dependencies. The
node Ve is a virtual exemplar, introduced to take
account of all the data points that have not been
seen as the model learns incrementally. It is needed
to satisfy the conditions of the particular kind of
network that we use, called the noisy-OR model,1

which enables us to adopt a more efficient
propagation algorithm. Given such a model, we
assess whether a new point is represented by an
exemplar using a propagation algorithm to compute
its probability given the point’s features. The
exemplar with the highest probability can then be
used to determine the point’s category.

How do we learn such a model incrementally?
As an initial experiment, a simple, greedy learning
strategy is adopted: if a new training case is not
represented by an existing exemplar, then it is

Family resemblance, Bayesian
networks and exemplars

added as a new one, otherwise the exemplar that
represents the training point and the new training
point compete, with the better one being retained.
To assess which exemplar is better, we adopt
Rosch and Mervis’ view2 that a good exemplar is
one that has high family resemblance with those
it represents (focality) and low resemblance with
those considered outside the family (peripherality).
Given our representation, we can interpret family
resemblance as the probability of an exemplar
representing a point, which in turn can be used to
compute focality and peripherality. The difference
between the the two can then be used as a measure
of the prototypicality of the exemplar.

The model has been implemented and tested
on the animals, votes,
and audiology data
sets available from the
University of Califoria
at Irvine Machine
Learning Repository.
The experiments used
a 70/30 training/
testing split and 20
random trials were
performed. The votes
data set records the
voting behaviour of USA congressmen on 16 issues
and their party affiliation, classified into Democrats
or Republicans. On average, two exemplars were
retained to achieve an accuracy of 96% for the
Republican category, and four exemplars were
retained to achieve an accuracy of 84% for the
Democrats. The results were similar for the animals
data set, with two exemplars at most  in any of
the seven categories of animals, and an overall
accuracy of 92%. The results on the audiology
data set are much more varied, but close to those
achieved by Bareiss (1989) when the exemplars
were hand crafted with the aid of experts for his
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PROTOS system.3 A
general characteristic
of the results is that
forcing an increase in
the number of
exemplars retained
reduces the accuracy,
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The IndagoSonus project is about using blocks
that are both similar in size and shape to
children’s wooden building blocks, and in their
ability to be combined together to make physical
structures. However, here, each block has the
ability to play and compose music, so building
a physical structure results in creating a piece
of music.

Imagine you have a single block. You give
it a small musical fragment (its ‘home’ music),
put it on the table, and start it off playing. The
block then begins repeating its musical phrase,
either sporadically or continuously. Make another
block, this time with a different piece of ‘home’
music. Place it next to the first block and they
start playing together, and in synch. Now press
a button on block 1 labelled ‘send music.’ This
causes block 1 to send its music to block 2.
Block 2 then performs a composition activity.
Each block contains a genetic algorithm to
achieve this, which evolves musical solutions
based on the block’s ‘home’ music, the music
it is currently playing, and the music it has just
been passed. The compositional aim for the
block is to produce a new musical section that
has a thematic relationship with both its home
music and the music it has received. Block 2
then starts playing its new music.

Now imagine a chain or group of several
blocks in any 3D structure. All blocks have a
‘send music’ button, so the start of the chain
does not have to be block 1. If a block is passed
some music, it recomposes itself then passes its
new music on to all of its neighbours. By sending
out music from a starting point, all other blocks
within a specified range recompose, and the
collective music of the structure is transformed.
It is important to clarify that each block holds

INTELLIGENT INTERACTION

The IndagoSonus composition system
onto its ‘home’ music throughout, enabling any
music composed by it to remain thematically
related, despite the constant process of re-
composition each block undertakes. In this way
the composer of the home music for all blocks
maintains a compositional thumb-print on the
evolving musical structure.

The development of the overall piece of
music will therefore be determined by: the
design of the composition system described
here; the nature of the music imported as ‘home’
music into each block; how the blocks are built
into structures; how these structures change
over time; and how the user sends music around
the structure. In effect, the listener/performer
is able to shape the overall music by choosing
to send musical fragments from blocks they like
to influence other blocks. One part of the
structure may have composed some ideas the
user likes. A block from that group could then
be placed in another part of the structure to see
what effect it has. The whole system acts as
a kind of genetic algorithm ‘patch bay,’ allowing
users to direct the evolution down a musical
path without having to make judgments after
every evolved population.

IndagoSonus is a development from my
earlier work in interactive music, and sees the
human composer’s role as being the process of
defining a search space for exploration by the
user. This is an extension of the notion of the
act of composition itself being an exploration of
the potentially very large search space permitted
by the compositional practice of the composer,
even considering limitations of instruments,
styles, genres etc.. I now regard this exploration
as a two-stage process. Firstly, the composer
limits the larger search space by defining an
area within it. Secondly, the performer or listener
explores this more limited space and defines his
or her own aural realization.

IndagoSonus is therefore a composing
system, rather than playback system for pre-
composed fragments or loops. It has a simple
interface designed to encourage depth of
involvement, and to provide the user with a
high degree of creative influence on the actual
realization, whilst at the same time enabling a
composer’s thumbprint to be present

Currently the project exists as a working 3D
graphical prototype, see Figure 1, with plans to
develop the hardware model during 2003/4.

Andrew Gartland-JonesAndrew Gartland-JonesAndrew Gartland-JonesAndrew Gartland-JonesAndrew Gartland-Jones

Computational Creativity Research Group
The University of Sussex
Brighton, UK
E-mail: drew@atgj.org
http://www.atgj.org/drew

Figure 1. This screenshot
shows the current,
functional 3Dgraphical
prototype.
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We encounter mathematics in every aspect of our
lives. Some of the deepest and greatest insights
into reasoning were made in mathematics, so it is
not surprising that emulating such powerful
reasoning on machines is one of the important and
difficult aims of artificial intelligence. Human
mathematicians have many problem-solving
strategies. They use diagrams to better convey
problems and generate intuitive and easily-
understandable solutions. They also learn from
examples of solutions to related problems, and
exploit analogy and symmetry. My research explores
the nature of such informal reasoning.

Though informal human reasoning is very powerful,
its potential has largely not been exploited in the
design of mechanised reasoning systems: systems
that use some logic formalism to (semi-)
automatically solve problems. This can perhaps be
explained by the fact that we do not have a deep
understanding of informal techniques and their use
in problem solving. To advance the state of the art
in automated reasoning systems, I think it important
to integrate some of the informal human-reasoning
techniques with the proven, successful, formal
techniques, such as different types of logic. This
will not only make reasoning systems more
powerful, but will allow them to serve as tools with
which we can study the nature of human reasoning.
My aim is to formalise and emulate two things on
machines: human reasoning with diagrams and
human learning.

In automated systems, theorems are usually
proved with formal, logical—so-called symbolic—
proofs. However, there is a subset of problems
that humans can prove by the use of geometric
operations on diagrams, so-called diagrammatic
proofs. Figure 1 presents an example of such a
proof1 concerning the sum of odd naturals
n2=1+3+5+...+(2n-1).

The proof consists of repeatedly applying Lcuts
to a square (an Lcut removes an ell shape which
is formed from two adjacent sides of a square—
see Figure 1). Notice that an ell represents an odd
natural number since both sides of a square of size
n are joined (2n), but the joining vertex was counted
twice (hence 2n-1). We showed how such
diagrammatic reasoning about mathematical
theorems can be automated, and demonstrated
the approach with the diagrammatic reasoning
system called Diamond.2

In Diamond, concrete, rather than general,
diagrams are used to prove particular instances of
a universal statement: e.g., in the example in
Figure 1, the instance is n=6. The “inference steps”
of a diagrammatic proof are formulated in terms
of geometric operations on the diagram: e.g., the
Lcuts in the diagrammatic proof in Figure 1. A
general schematic proof of the universal statement
is induced from these proof instances by means of
the constructive omega-rule. Schematic proofs are

Informal human
mathematical reasoning

represented as recursive programs which, given a
particular diagram, return the proof for that diagram.
It is necessary to reason about this recursive
program to show that it outputs a correct proof.
One method of confirming that the abstraction of
the schematic proof from the proof instances is
sound is proving the correctness of schematic proofs
in the meta-theory of diagrams.

Diamond can only tackle theorems that can be
expressed as diagrams. However, there are those
that may require a combination of symbolic and
diagrammatic reasoning steps: so-called
heterogeneous proofs. I am currently investigating
how a system could automatically reason about
these, and learn them in general from examples.
An example below demonstrates a heterogeneous
proof that consists of a combination of symbolic
and diagrammatic inference steps. The theorem
states an inequality: (a+b)/2≥√ (ab) where a,b≥ 0.
The first few symbolic steps of the proof are:

(a+b)/2 ≥ √ (ab)
↓ square both sides of ≥

(a+b)2/22 ≥ ab
↓ ×4 on both sides of ≥

(a+b)2 ≥ 4ab
↓

a2+2ab+b2 ≥ 4ab
The second part of the proof,1 which is presented
in Figure 2, shows diagrammatically the inequality
a2+2ab+b2≥ 4ab.

Rather than learning low-level proofs, I aim for
a system that can learn diagrammatic proof plans.
Proof planning3 is an approach to theorem proving
that uses high-level proof methods rather than
low-level logical inference
rules to find a proof of a
conjecture at hand. A proof
plan consists of some
combination of proof
methods, which in turn
specify and encode a
general-reasoning strategy
that can be used in a proof.
It typically represents a number of individual
inference rules: e.g., mathematical induction can
be represented as a proof method. Our
heterogeneous proof plans will be formed from
geometric operations plus symbolic inference steps.
The system will be able to learn such proof methods
from examples of the use of lower-level methods.
Eventually, it will be able to learn new diagrammatic
and heterogeneous proof plans.

The hope is that, ultimately, learning new,
general, and complex proof methods and plans
may lead to the discovery of new and interesting
proofs that use diagrams for inferencing.

Mateja JamnikMateja JamnikMateja JamnikMateja JamnikMateja Jamnik

Computer Laboratory, University of Cambridge, UK
http://www.cl.cam.ac.uk/users/mj201
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Figure 1.Figure 1.Figure 1.Figure 1.Figure 1. Diagrammatic
proof for:
n2=1+3+5+...+(2n-1).

Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Diagrammatic
proof for a2+2ab+b2≥ 4ab.
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An ultimate goal of AI is the manufacture of an
android that can interact meaningfully with human
beings. Progress has already been made towards
achieving this. Androids exist that can walk, climb
stairs, recognize and grasp objects, imitate human
behaviour, and so on. In addition to these abilities,
however, an android would also need the ability
to acquire knowledge about its surroundings: not
only its physical and social environment, but also
its intellectual environment. Most research on
knowledge acquisition focuses on the ability to
acquire beliefs through perception.1 This is
important, but equally important is the neglected
topic of acquiring knowledge by believing what
other people say and what they have written.
Usually, when I discuss my research, people cannot
believe that there is no general theory of how
agents acquire knowledge by accepting other
people’s assertions.2 In recent years, philosophers
have started to take this topic more seriously,3

but AI has not yet caught up with them. (In
addition to my research, Paul Thagard is also
working in this area.4)

I propose a two-stage model of belief-
acquisition, shown in Figure 1. An agent gains
information in two main ways: by making
judgements about its perceptual environment and
by accepting some of the assertions other people
make. My research focuses on the second of
these. Most of an agent’s knowledge has been
acquired by accepting other people’s assertions,
but nobody believes everything he reads or hears.
My proposal is that an agent’s assessment of the
assertions it encounters is governed by the

defeasible (capable of being annulled or
invalidated) rule to believe them. This sounds
simplistic, but working out all the factors that may
cause it to be overridden is a difficult task.5-7

In the model, faced with an assertion, an
agent can either accept it—adding it to his belief-
system—or reject it. This is a simplification of
what actually happens, since we do not accept
everything with the same degree of conviction.
This is one of many simplifications I have made.
Such an approach is justifiable, however, in order
to gain a better understanding of how agents
evaluate assertions. I intend to refine the model
in the future as computer simulations are evaluated
and analyzed.

The heart of the model is the assessment
component. This unpacks the defeasible rule to
believe other people’s assertions. It consists of an
ordered set of rules, all of which—except the
last—are conditional. The last rule is the non-
defeasible rule to believe the assertion in question.
There are many reasons why someone may decide
not to accept an encountered assertion, and these
become the antecedents of the conditional rules.
For example: a play is a work of fiction and so
we do not normally believe the actors’ assertions.
This can be captured by adding, to the assessment
component, the rule, ‘If the assertion X is uttered
by an actor during the performance of a stage
play, then reject X’. There is provision in the
model for the assessment-component rules to be
altered in the light of experience.

So far I have been describing the first stage
of belief-acquisition. Clearly, the judgements we
make about our perceptual environment, and the
evaluations we carry out concerning the assertions
we encounter, have to be done in real time.
Therefore, assessment cannot be very
sophisticated. As a result of this, agents will acquire
some false beliefs and reject some assertions
that, as a matter of fact, are true. Consequently,
the model contains a second stage of belief-
acquisition in which a small number of an agent’s
beliefs are subjected to a thorough investigation
of their truth or falsity. Here, an agent can re-
evaluate something he believes or re-consider an
assertion he previously rejected. This may involve
substantial belief-revision.

This research is still in its infancy, but
considerable progress has already been made in
developing a general theory of how agents learn
from others’ assertions. Collaborators and doctoral
students are welcome: as are competitors to devise
rival theories.

Antoni DillerAntoni DillerAntoni DillerAntoni DillerAntoni Diller

School of Computer Science
University of Birmingham, UK
E-mail: A.R.Diller@cs.bham.ac.uk
http://www.cs.bham.ac.uk/~ard
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Modelling assertion
evaluation

Figure 1.Figure 1.Figure 1.Figure 1.Figure 1. A two-stage
model of belief
acquisition.
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Genetic programming is a systematic method for
getting computers to automatically solve problems.
The technique starts from a high-level statement
of what needs to be done, and automatically creates
a computer program to do it, by progressively
breeding a population of programs using analogues
of the naturally occurring operations: reproduction,
crossover (sexual recombination), and mutation.1-4

Genetic programming now delivers routine, high-
return, human-competitive machine intelligence.

In fact, there are now 36 instances where this
method has produced a human-competitive result.
Of these, in 15 cases something was created that
either infringed or duplicated the functionality of
a previouslypatented 20th-century invention (a
further six for 21st-century inventions), and twice
a new, patentable invention emerged. One of the
latter is a general-purpose controller that
outperforms others by employing tuning rules that
have been widespread in industry for most of the
20th century (see Figure 1). Such genetic-
programming creations exhibit the same kind of
creativity, logical discontinuity, and departure from
established ways of thinking as are the essence of
human invention.

We say that a result is ‘human-competitive’ if
it satisfies at least one of eight criteria: for instance,
that the machine-produced result is publishable in
its own right as a new scientific result—independent
of the fact that the result was mechanically
created—or that the machine-produced result was
patented in the past or would qualify today as a
patentable invention.

A result is ‘high-return’ if it has a high AI
(artificial-to-intelligence) ratio. We define this as
the contribution of the automated operation of an
artificial method over the intelligence pre-supplied
by the human. Manifestly, the aim of the field of
machine intelligence is to get computers to
automatically generate human-competitive results
with a high AI ratio, not to demonstrate that humans
are capable of producing human-competitive results
themselves. A method is ‘routine’ if it is general
and relatively little human effort is required to get
the method to successfully handle new problems
or those from a different domain.

Many of the results produced by genetic
programming are the result of the successful reuse
of substructures. Complex structures are almost
always replete with modularities, symmetries, and
regularities. Reuse avoids reinventing the wheel on
each occasion, and requires a particular sequence
of already-learned steps. Genetic programming can
reuse code by means of automatically-defined
functions, iterations, loops, and recursions: it can
also reuse the result of executing code by means
of automatically-defined stores. Thus, it can
dynamically determine—during the run—the number
of reused structures, their type, and the nature of
the hierarchical references among the substructures.

GENETIC PROGRAMMING

Routine, human-competitive,
high-return machine intelligence

Results produced using genetic programming
come mainly from fields such as circuits, controllers,
antennas, networks of chemical reactions, metabolic
pathways, genetic networks, and game-playing.

Summarizing work over the 15-year period
between 1987 and 2002, genetic programming has
delivered a progression of qualitatively-more-
substantial results in synchrony with five
approximately order-of-magnitude increases in the
expenditure of computer time. The five now-
identifiable groups of ever-better results include:
• solving toy problems of the 1980s and early
1990s from artificial intelligence and machine
learning
• producing human-competitive results not involving
patents
• duplicating or infringing 20th-century patents
• duplicating or infringing 21st-century patents
• creating patentable new inventions.

As far as we know, genetic programming is, at
the present time, unique among methods of artificial
intelligence and machine learning. This is because
of its duplication of numerous previously patented
results, its generation of patentable new results,
the breadth and depth of the problems it can solve,
its demonstrated ability to produce parameterized
topologies, and its delivery of routine, high-return,

human-competitive machine intelligence.
Looking forward, we believe that genetic

programming will be increasingly used to
automatically generate ever-more-complex, human-
competitive results.

For further information about genetic
programming, please consult the references listed.

John R. KozaJohn R. KozaJohn R. KozaJohn R. KozaJohn R. Koza

Consulting Professor
Biomedical Informatics, Dept. of Medicine
and Dept. of Electrical Engineering
Stanford University, CA, USA
E-Mail: koza@stanford.edu
http://www.smi.stanford.edu/people/koza
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In collaboration with Point Loma Nazarene
University in San Diego, current research at the
University of Essex investigates how dynamical
systems and chaos theories can be used to quantify
robot-environment interaction. Mobile robotics
research to date is still largely reliant on trial-and-
error procedures rather than exploiting established
theories describing robot-environment interaction
in a formal manner, making falsifiable predictions,
and allowing quantitative descriptions of a robot’s
behaviour. Quantitative performance measures are
the first step towards a theory of robot-
environment interaction, as well as having practical
applications to mobile robotics research. We are
therefore interested in establishing such measures
as standard within the field.

Quantitative measures of interactionQuantitative measures of interactionQuantitative measures of interactionQuantitative measures of interactionQuantitative measures of interaction

The behaviour of a mobile robot cannot be
discussed in isolation: it is the result of properties
of the robot itself (physical aspects, the
‘embodiment’), the environment (‘situatedness’),
and the control program (the ‘task’) the robot is
executing (see Figure 1). This triangle of robot,
task and environment constitutes a nonlinear

system, whose analysis is the purpose of any
theory of robot-environment interaction.

If we assume, for
argument’s sake, that the
behaviour resulting from
the interaction of agent,
task, and environment
can be described
quantitatively, a number
of possibilities arise:
• Two of the three
elements in Figure 1 are
kept unchanged, and the
third is modified in a
systematic way. The
quantitative performance

measure then characterises that third
component.

- For instance, to characterize two
environments quantitatively, the same robot and
control program can be used in either environment,
and the quantitative description of behaviour used
to identify (in the system-identification sense) the
environments.

- Likewise, by systematic modification of just
one of the three components shown in Figure 1,
optimal parameter settings (with respect to some
desired behaviour) can be determined in a
systematic way.
• Experimental results can be stated quantitatively.
This allows replication and verification of
experimental results, which is currently hardly
possible in mobile robotics research.
• Predictions made by the theory of robot-
environment interaction can be made
quantitatively, and tested against the actual
experimental results.

Is robot behaviour chaotic?Is robot behaviour chaotic?Is robot behaviour chaotic?Is robot behaviour chaotic?Is robot behaviour chaotic?

A mobile robot interacting with its environment is
a nonlinear system. Any prediction of the robot’s
trajectory is therefore limited to short time
horizons, and the actual trajectory will diverge.
One way to investigate the behaviour of nonlinear
systems is chaos theory, in particular quantitative
descriptions of the system’s phase space
(dimensionality of attractor and sensitivity to initial
conditions).

In our experiments, we used a Pioneer II
mobile robot executing various control programs
in various environments. The robot’s trajectories
were logged using an overhead camera system,
resulting in paths such as those shown in Figures
2 and 3. We then analyzed the trajectories for the
four defining characteristics of systems exhibiting
deterministic chaos: stationarity, determinism,
aperiodicity, and sensitivity to initial conditions.
Please see the references for details.

ResultsResultsResultsResultsResults

We conducted a wide range of experiments,
modifying either the environment, or the task the
robot was executing. As a result, both the
dimension of the attractor, and the degree of
sensitivity to initial conditions, were quantitative
descriptions of the parameter changed.

Our findings were as follows. First, robot-
environment interaction does exhibit deterministic
chaos. Second, chaos theory can indeed be used
to quantify robot-environment interaction. Finally,
different aspects of robot-environment interaction
have different influences on the deterministic chaos
seen: for instance, changes to the environment
are less influential than changes to the robot’s
control program. A full presentation and discussion
of experimental results can be found in the
references listed.

Ulrich NehmzowUlrich NehmzowUlrich NehmzowUlrich NehmzowUlrich Nehmzow

Department of Computer Science
University of Essex
Wivenhoe Park
Colchester CO4 3SQ, UK
http://sh656.essex.ac.uk/staff/udfn/

Investigation of robot-environment
interaction using chaos theory
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Figure 1.Figure 1.Figure 1.Figure 1.Figure 1. The fundamental
triangle of robot-
environment interaction: a
robot’s behaviour always
has to be seen in the
context of robot, task and
environment.

Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. The x and y
coordinates of part of
the trajectory shown in
Figure 3.

Figure 3.Figure 3.Figure 3.Figure 3.Figure 3. ‘Billiard Ball’
behaviour in a square
arena—the entire trajectory
(left) and 150 data points
(right).
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Human perception is an active process by which
meaningful information is gathered from the
external environment. Application areas such as
human-computer interaction (HCI), or the role of
human experts in image analysis, highlight the
need to understand how humans, especially experts,
use prior information when interpreting what they
see. Here, we describe how a model of expert
perception is currently being extended to support
expectation-driven perception of bitmap-level image
data, focusing particularly on its ability to learn
semantic interpretations.

The chrest modelThe chrest modelThe chrest modelThe chrest modelThe chrest model

CHREST (Chunk Hierarchy and REtrieval
STructures1) is a computational model of perception
and learning, designed to capture the perceptual
knowledge acquired by an expert2 (see also Gobet’s
individual article on page 8). Figure 1 illustrates
the model’s three main components: mechanisms
for interacting with the external world; multiple
short-term memories (STMs) to hold information
from different input modalities; and a long-term
memory (LTM) where information is held within a
discrimination structure known as a ‘chunking
network’.

Recent work with CHREST is attempting to
integrate three key processes for using expectations
in perception: the use of bitmap data (whereas
previous work has relied upon symbolic information),
the creation of links between visual and verbal
information, and the role of heuristics to guide the
simulated eye. We describe the latter two in more
detail here.

Combining visual and verbal chunksCombining visual and verbal chunksCombining visual and verbal chunksCombining visual and verbal chunksCombining visual and verbal chunks

CHREST’s LTM holds information in the form of
‘chunks’, each of which is a familiar pattern in the
environment. CHREST stores a chunk in a dual
fashion. Firstly, the chunk itself is stored in a
format representative of the data within it: in a
visual domain, the chunk may be in the form of
a bitmap; for a verbal pattern, it may be a sequence
of phonemes. Secondly, the chunk’s location in the
model’s LTM may be addressed directly with a link.
Links are formed between nodes in the multiple
STMs when they share an important relationship:
such as being present in the environment
simultaneously.

Figure 2 illustrates how a chunk acquired visually
may be named by forming an association with a
chunk acquired verbally. There are three steps.
First, the visual pattern is sorted through LTM, and
a pointer to the node retrieved is placed into visual
STM. Second, the verbal pattern is sorted through
LTM, and a pointer to the node retrieved is placed
into verbal STM. Finally, a ‘naming link’ is formed
between the two nodes at the top of the STMs.

Simulations with the CHREST model using
semantic associations, such as those illustrated in

Towards a model of
expectation-driven perception

Figure 2, demonstrate that CHREST captures several
important phenomena illustrating the role of
expectations in perception. These include: improved
classification accuracy, faster classification, and the
use of reconstructive memory to identify very noisy
objects.3

Heuristics to guide eye fixationsHeuristics to guide eye fixationsHeuristics to guide eye fixationsHeuristics to guide eye fixationsHeuristics to guide eye fixations

An extended bitmap image cannot be perceived in
its entirety. Instead, CHREST uses a simulated eye
directed at a focus of attention—the fixation point—
and has a limited field of view. The position of the
eye is controlled with a set of heuristics that interact
with each other. Prior work2 has used various groups

of heuristics that combine both bottom-up and
top-down sources of information to guide the eye.
In the top-down category, CHREST attempts to
complete information held at a node referenced in
the STM, to follow a test link, or to deepen the
search within the LTM. Additional sources of
information/heuristics include salient objects, novel
objects, or default scanning of the scene.

CHREST is uniquely placed as a cognitive model
of human learning in perceptual domains, with
each area of Figure 1 interacting closely to gather
and use meaningful information from a complex
environment. With its recent extensions and use
in domains with bitmap-level data, CHREST is

currently being applied to domains involving the
semantic analysis of complex images.

Peter LanePeter LanePeter LanePeter LanePeter Lane***** and Fernand Gobet and Fernand Gobet and Fernand Gobet and Fernand Gobet and Fernand Gobet**********

*Dept. of Computer Science
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Much of what we know about expertise comes
from research into chess by de Groot in the forties
and Chase and Simon in the seventies.1,2 Two
classic de Groot results demonstrated the
importance of perception in expert behaviour.
First, even though grandmasters found better
moves than strong amateurs in a problem-solving
task, there were few differences in their search
behaviour. In particular, all players were selective
and visited only about one hundred positions.
Second, chess masters performed almost perfectly
in the recall of game positions (see Figure 1)
presented for a few seconds. To explain these
results, Chase and Simon developed the ‘chunking
theory’ that proposed mechanisms specifying how
knowledge is implicitly acquired during practice.
Expertise is seen as the acquisition of a large
number of perceptual chunks (groups of features
that can be used as units), that give access to
relevant information (e.g., what move to play).

Over the last decade, my research has aimed
to flesh out these mechanisms computationally
and to test them empirically. The computational
work has led to the development of CHREST
(Chunk Hierarchy and REtrieval STructures), which
models expertise as the growth of a discrimination
net. Each node (chunk) in the net contains

information about the location of pieces, as well
as pointers to possible (sequences of) moves.
Provision for eye-movement mechanisms enables
a close interaction between perception and
memory. Finally, high-level schemas are created
automatically. The empirical work has investigated
expert perception and problem solving using verbal
protocols, eye movements, and—more recently—
brain imaging. I have also manipulated several
variables in recall experiments, such as time of
presentation, level of position distortion, and level
of position randomisation. In general, CHREST,

serving as a subject
‘in silico’, models the
memory experiments
well. Here, I focus on
the recall of random
positions.

As documented in
psychology textbooks,
Chase and Simon
found no skill

Implicit learning of
expert chess knowledge

difference in the recall of random positions (see
Figure 1). However, CHREST predicts a small
difference, as chunks are more likely to be
recognized serendipitously in random positions
with large nets than with small ones. Re-analysis
of the literature, as well as the collection of new
data, supported this prediction.3

Random positions are typically created by
shuffling the piece locations of a game position.
Vicente and Wang4 noted that these positions are
not really random, as they still contain information
about the distribution of pieces (e.g., only one
white King is allowed). They raised the question
as to whether skill differences would remain if
‘truly-random’ positions were used, where both
the location and the distribution of pieces are
randomised (see Figure 1). CHREST predicts that
this would be the case. An experiment with 36
players ranging from weak amateurs to
grandmasters confirmed CHREST’s prediction: with
truly-random positions, there was a statistically
reliable correlation between skill and recall
performance.5 This difference remained when
variables such as age and visual memory were
partialled out.

Current work with Andrew Waters further
explores the role of perception in expert memory.
We created positions where the pieces lie at the
intersection, rather than the middle, of squares
(see Figure 2). Results indicate that overall
performance drops drastically. While masters still
maintain some superiority with game positions,
they do not perform better with random and
truly-random positions. CHREST simulates these
results by assuming that players need to ‘re-
centre’ the pieces in their mind’s eye in order to
facilitate the recognition of chunks. This takes
time and thus lowers performance.

Beyond chess, the chunking mechanisms
embodied in CHREST have explained empirical
data in other domains.6 Within expertise research,
they have accounted for computer programmers’
memory and the learning of multiple
representations in physics. Beyond this, they have
helped model how children acquire the syntactic
categories of their native language, and how
humans combine information from different input
modalities (see Peter Lane’s contribution on page
7). Overall, CHREST shows that simple mechanisms
leading to the implicit learning of a large number
of chunks may underpin (expert) behaviour in a
number of domains.

Fernand GobetFernand GobetFernand GobetFernand GobetFernand Gobet

Department of Human Sciences
Brunel University
Uxbridge, Middlesex, UK
E-mail: fernand.gobet@brunel.ac.uk
http://www.psychology.nottingham.ac.uk/staff/frg/
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Figure 1.Figure 1.Figure 1.Figure 1.Figure 1. A game position
(left), random position
(middle), and ‘truly
random’ position (right).

Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Positions where
the pieces have been
placed at the intersection
of squares: a game
position (left); and a truly
random position (right).
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The field of evolutionary computation (EC)—using
principles of nature’s survival of the fittest to perform
robust learning—has been used in many interesting
applications over the last two decades. Combined
with emerging electronic technology, the field of
evolvable hardware (EHW) aims at broadening the
scope of EC applications to designing electronic
circuits using artificial evolution. Since the field
first emerged, its scope has been broadened to
generally incorporating biological concepts in
electronics or related areas: such concepts include
self repair, self reproduction, and adaptation. Today,
the field tends to be focussed on areas where
sustained operation despite harsh conditions is
desirable: space and military applications in
particular.

Now EHW has moved beyond the proof-of-
concept phase, the move towards larger-scale
applications has been limited by the sheer
complexity of electronic circuits and the
computational resources required for their
development. This has pushed a number of
researchers towards re-evaluating basic concepts
of EC techniques in hardware, inspired by the
apparent lack of scaling difficulties of natural
evolution. Our work focuses on investigating
genotype-phenotype development as one such
possible solution within EC in general, and within
EHW in particular.

A popular way of overcoming resource
limitations is to use the computational equivalent
of a biological developmental mapping from
genotype to phenotype. EC techniques typically
directly encode and optimize traits of possible
solutions. Incorporating development in EC implies
optimising a generative ‘building plan’ that develops
into a candidate solution before being evaluated
(very much like the way human DNA encodes the
building plan for an embryo). A schematic overview
of a developmental mapping within a typical EC
setup is shown in Figure 1.

Typically, such a mapping results in a high
degree of gene interaction, a mechanism that is at
the heart of why it scales well. However, while
there is a good chance that scaling issues can
indeed be (partially) overcome using a
developmental mapping, it is far-too-often
overlooked that uncontrolled degrees of this gene
interaction can result in high degrees of gene
interdependence: a subclass of so-called gene
‘epistasis’. The EC community is well aware that
this effect is the key mechanism that makes
problems difficult to solve using EC.

The project presented here aims to combine
knowledge from EC, biological development, and
EHW. It is also intended to offer a first step towards
designing and understanding developmental
mappings for practical applications like EHW that
are both able to encode the typical phenotypes of
the application area, and allow favourable

Development and
evolvability in hardware

evolutionary properties. Practically, this comes down
to exploring the balance between efficient
phenotype expression on one hand, and evolvable
genetic encodings on the other. In our opinion this
area is the key to applying development to EC (and
EHW), and is far too easily neglected, especially
in ‘applied’ EC.

The projectThe projectThe projectThe projectThe project

Our project consists of two main parts: an
introductory study of the properties of
developmental fitness landscapes, and the design
and analysis of a conceptual development model
aimed at evolving and developing cellular automata.
In particular, the first stage looks at the family of
NKd fitness landscapes—an adapted version of
Kauffman’s NK landscapes1—and models the higher
impact of early developmental operations versus
those later on. Different flavours of NKd landscapes
have been investigated for a range of typical
properties and compared to the NK variety.
Furthermore, actual evolutionary runs on the
different landscapes have been compared.2

The second stage involves a more elaborate
investigation of an actual evolution and development
system that is aimed at evolving cellular automata
(1D or 2D). This toolbox is designed with the basic
properties of biological development in mind, and
allows tuning with respect to a broad range of
parameters of the developmental system. Generally
speaking, the system allows both mosaic and
regulative development: both of which are
archetypical mechanisms in biological development.

Figure 1. Figure 1. Figure 1. Figure 1. Figure 1. A comparison of
a classical EC setup (a),
and a setup with
development (b). While in
(a) the genotype is
evaluated immediately and
without (much) prior
processing, (b) contains a
process of development
from genotype to
phenotype which then is
evaluated.

(a) (b)

Piet van Remortel, CoMo, VUB, Belgium
Continued on page 10.
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At well over a thousand pages, this book is a
bargain. It’s a collection of tried-and-true papers
in cognitive science, with a special emphasis on
human cognition. (So topics such as naive physics,
adaptive systems, complex social interactions, and
machine learning and tutoring, are deliberately
omitted.) As such, it’s not exciting: but it is very
useful. On the one hand, it could form the basis
of graduate and undergraduate courses in various
areas, while on the other hand it would be a
convenient ‘compendium’ for the researcher’s
bookshelf.

The 38 chapters are organized in three parts:
Architectures and Approaches (symbolic models
and neural networks); Case Studies in Cognitive
Modeling (a wide range of specific examples);
and Issues in Cognitive Modeling (the general
philosophy/methodology of these techniques).

The many classics here include Anderson on
ACT and Carpenter/Grossberg on ART; Elman on
recurrent networks and Hinton on connectionist
learning; seminal papers on Hopfield nets, back-
propagation, supervized learning, optimality, and
analogical reasoning; Plunkett and Marchman on
the past tense; and, last but not least, Newell
(and colleagues) on early-Soar and on the general
philosophy behind it.

If that sounds worthy-but-boring, you should
know that there are also a number of papers
which I, at least, hadn’t previously come across.
Especially in the ‘Case Studies’ section, there are
contributions that may be fresh even to researchers

in the field. So one could actually learn a lot, as
well as having one’s old favourites readily to hand.

In trying to do this, the index will be helpful.
Far too often, edited collections include no index:
no-one could be bothered to compile one. I hope
I’ll be forgiven if I don’t trawl through the 1200+
pages to check the index out. Possibly, every
entry could have had a dozen additional references;
and possibly, there could have been many extra
entries. (There are no entries for names, as such:
“Stroop task” and “Smolensky architectures” are
there, but Stroop and Smolensky aren’t. Someone
who wants to get a sense of Jo Bloggs’ overall
contribution will gave to read his chapter and
consult the bibliographies of the others.) But
anyway, at four small-print pages, it’s a useful
start.

Also useful is the list of postal and e-mail
addresses of the 76 contributors. Yes, a mere
detail: but details make the difference. All in all,
the editors have done a good job.

Margaret A. BodenMargaret A. BodenMargaret A. BodenMargaret A. BodenMargaret A. Boden

Research Professor of Cognitive Science
University of Sussex, UK
E-mail: maggieb@cogs.susx.ac.uk

Boden is author of Purposive Explanation in
Psychology (1972), Artificial Intelligence and
Natural Man (1977/87), and Computer Models of
Mind (1988).

Furthermore, it supports tunable gene regulation,
cell communication, a time variable that can be
referenced, etc. Without getting into details here,
we claim that this model, although conceptual,
resembles natural development to a reasonable
extent and serves the purposes of our investigation.

Towards resultsTowards resultsTowards resultsTowards resultsTowards results

The general approach in this investigation was to
start from the very basics: incorporating
development, gradually adding complexity to the
model, trying to understand the consequence of
every step. In view of this, a first step was
subjecting evolution to NKd problems, which turns
out not to be very difficult for evolution. Dependent
on NKd parameters however, convergence towards
a solution can vary from sequential to parallel.2

Experimentation with the development system
is in its final stage. The cornerstone of this
investigation is the modularity of the developmental
mapping, since this allows reasonable ‘evolvability’.
Experimentation is set up in three phases. In the
first, basic patterns are encoded by hand in a
genetic code, exploring different expression

mechanisms and related modularity of the genome
(measured based on gene clustering). Preliminary
experiments indicate local cell communication (the
basis of regulative development) and the parallel
signalling channels offered by multiple proteins as
important sources of exponential gene interaction.

In a second phase, evolutionary experiments
investigate the advent of modularity through
mechanisms such as gene duplication and
divergence3 and ideas based on linkage learning.4

Once more modular, the effect of biological
concepts such as heterochronic mutations5 are
investigated in the phenotype. Finally, a conceptual
investigation of non-deterministic development is
performed. This, given the right circumstances,
can improve the robustness of evolved phenotypes.
Further information on these experiments will be
forthcoming.6

Piet van RemortelPiet van RemortelPiet van RemortelPiet van RemortelPiet van Remortel

Computational Modelling Lab (CoMo)
Vrije Universiteit Brussel (VUB), Belgium
http://como.vub.ac.be/Members/Piet.htm
References on page 9.

Development and evolvability in hardware Continued from page 9.
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This book is well described in its introduction as,
“a set of papers that collectively lay out the ‘state
of the art’ in our current scientific understanding
of the mental processes involved in the use of
analogy in cognition.” Analogy itself is defined, first
loosely, as the ability to think about relational
patterns. But most of the book’s contributors take
on Dedre Gentner’s characterisation of analogy as
a process of ‘structural alignment’ between two
domains. The importance of this (suprisingly recent)
idea is that it goes beyond simple listing of common
properties to explain some of the richness of
analogical reasoning.

The initial chapters present theoretical and
computational models of this process of structural
alignment. The architectures vary from
propositional, to agent-based, connectionist and
hybrid systems. All have been shown capable of
replicating human data on analogical thinking and,
as presented, it is difficult to compare them. It is
good, however, that all address the theme of how
to go beyond the various successful matching
algorithms to embed these systems in wider
cognitive contexts: e.g., reasoning (Forbus),
memory (Kokinov and Petrov), development (Wilson
et al), and cognitive neuropsychology (Holyoak
and Hummel).

There follows a series of chapters that
summarise observational and experimental study
of the use of analogy in various domains. These
vary from rather focussed synopses of the author’s
own research using a specific paradigm (e.g.
Bassok’s study of ‘word problems’ in mathematics,
or Dunbar’s investigations of analogy use in science
and politics) to more general overviews of areas
of application (e.g. effects of analogy on political
decision-making and consumer choice by Markman

Publisher: Publisher: Publisher: Publisher: Publisher: MIT Press
http://mitpress.mit.edu
Paperback: Paperback: Paperback: Paperback: Paperback: ISBN
0262571390
£26.50
Pages: Pages: Pages: Pages: Pages: 520

The Analogical Mind
Edited by Dedre Gentner,

Keith Holyoak, and Boicho Kokinov

and Moreau, or in expression of emotion by Thagard
and Shelley). In my view the weakest chapters
were the final two, on analogy use in infants and
primates. The authors seemed to over-interpret
the rather scant evidence that analogy use is not
unique to mature humans: tasks that seemed to
indicate little more than simple learning.

This raises the interesting issue of what is not
analogy use. The majority of the authors in this
book are keen to claim structural alignment as a
fundamental underlying process in nearly all
activities that are considered cognitive: e.g.
language use, reasoning, perception, memory. It
is certainly hard to find sharp distinctions between
‘analogy’, ‘metaphor’, and ‘similarity’: Gentner et
al. explicitly present, “an approach that unifies
metaphor with processes of analogy and similarity.”
Fauconnier argues that, “structure mapping is
inherent in all our thought processes,” including
the construction of meaning, and discusses
‘conceptual blending’ as a process akin to analogy.
However, Keane and Costello cast a critical eye on
this tendency and present arguments and evidence
for an alternative explanation of concept
combination. The ‘epilogue,’ by Hofstadter, presents
a thought-provoking essay on why he feels, in
cognition, “analogy is everything, or very nearly
so.” Whether readers are sympathetic or
antagonisitic to this conclusion, this book will
certainly allow them to become better informed
about the current theory and evidence in this area.

Barbara WebbBarbara WebbBarbara WebbBarbara WebbBarbara Webb

Reader
Institute for Perception, Action and Behaviour
University of Edinburgh, UK
http://homepages.inf.ed.ac.uk/bwebb/

Review

Figure 3. Figure 3. Figure 3. Figure 3. Figure 3. Bayesian
network representation of
an exemplar-based model.

Family resemblance, Bayesian networks...Family resemblance, Bayesian networks...Family resemblance, Bayesian networks...Family resemblance, Bayesian networks...Family resemblance, Bayesian networks...
Continued from page 1 References on page 1.References on page 1.References on page 1.References on page 1.References on page 1.

and a good indication of the accuracy within a
category is the proportion of training cases the
exemplars represent.

Sunil Vadera,Sunil Vadera,Sunil Vadera,Sunil Vadera,Sunil Vadera,***** Andres Rodriguez, Andres Rodriguez, Andres Rodriguez, Andres Rodriguez, Andres Rodriguez,**********
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*University of Salford
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**Instituto de Investigaciones Electricas, Mexico
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8. How to give a
presentation
1. As we discussed in Guide #6, the ideal
presentation is erudite, profound, insightful and
entertaining. It's a rare presenter who can meet
this specification, so in this guide I will adopt the
second best option: convincing your audience that
you have reached a level of enlightenment that
is beyond ordinary mortals. If you can't lose your
audience in the first five minutes, then your
research can't be really challenging. Your
presentation should consist of baffling technical
detail, peppered with ambitious claims for its
significance.
2. The convergence of tools for preparing papers
and presentations means that it is a trivial matter
to copy whole paragraphs and proofs from the
paper and paste them into a slide. Now your
audience have the full benefit of the complex and
detailed arguments from the paper to complement
your verbal presentation. Don't worry if their eyes
glaze over with the effort of absorbing so much
information, that will only demonstrate the depth
and difficulty of your research.

Announcing a New, ImprovedAnnouncing a New, ImprovedAnnouncing a New, ImprovedAnnouncing a New, ImprovedAnnouncing a New, Improved
version of Hacker's OBSCURANTversion of Hacker's OBSCURANTversion of Hacker's OBSCURANTversion of Hacker's OBSCURANTversion of Hacker's OBSCURANTT MT MT MT MT M

(OBSCURANT Baffles with Science,(OBSCURANT Baffles with Science,(OBSCURANT Baffles with Science,(OBSCURANT Baffles with Science,(OBSCURANT Baffles with Science,
Clouds Understanding, Reasoning, andClouds Understanding, Reasoning, andClouds Understanding, Reasoning, andClouds Understanding, Reasoning, andClouds Understanding, Reasoning, and

Arguments with NonsensicalArguments with NonsensicalArguments with NonsensicalArguments with NonsensicalArguments with Nonsensical
Transformation)Transformation)Transformation)Transformation)Transformation)

Now with unintelligible jargon,
confusing typos, and miniscule fonts.

3. The combination of laptop and data-projector
enables your presentation to be right up to date.
Not only can you leave the preparation of your
slideshow to the plane or train journey, but you
can be polishing it as you await your turn to

speak: or even during the talk itself. Don't worry
about the many bugs that such last minute
preparation inevitably introduces; your audience
will be entranced by the feeling of immediacy and
engagement that this engenders.

Construct your slides as you talkConstruct your slides as you talkConstruct your slides as you talkConstruct your slides as you talkConstruct your slides as you talk
with Hacker's SCRAWLwith Hacker's SCRAWLwith Hacker's SCRAWLwith Hacker's SCRAWLwith Hacker's SCRAWLTM TM TM TM TM (Speech(Speech(Speech(Speech(Speech
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State-of-the-art speech recognition
software will process, précis, and present

your talk as you deliver it.

4. It is not necessary to master this new
technology. There is bound to be a whiz-kid in the
audience who can get your laptop working in
harmony with the data-projector in only 5 or 10
minutes. It is not your problem if these teething
troubles disrupt the published conference schedule;
good programme chairs always build-in plenty of
slack to mop up timetable overspills. If not, then
why shouldn't less important talks be foreshortened
to make space for yours?
5. Similarly, don't feel constrained to fit within the
narrow-minded time constraints set by your
intellectual inferiors. Running overtime will
demonstrate the impossibility of fitting your wealth
of achievement into artificial limits. Better still, if
you are forcibly prevented from completing your
presentation then any aggressive questioners can
be referred to the undelivered part of your talk.

Dealing with questions will be the subject of
a future guide. For those who are unable or
unwilling to wait for this, note that if you have,
as recommended, run overtime, then there will be
no time for questions. In case a short question
period is, nevertheless, imposed, feel free to ignore
the question and use the opportunity to continue
your interrupted presentation.


