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Having designed the control system, the next
stage was to test whether these motion
camouflage controllers would be able to fool
humans! We did this by performing a novel
psychophysical experiment that masqueraded as
a computer game competition.3 The competition
was based on a 3D computer game (Missile
Defence) of the popular first-person shoot-em-up
genre: purpose-written to allow comparison of
subjects’ success in detecting different approach
strategies. In the game, the player takes the role
of the prey. The player flies along the centre of
a straight tunnel (see Figure 2) whilst attempting
to shoot missiles
(fired at the player).
The missiles represent
our predators em-
ploying different stra-
tegies to approach the
prey. Three different
approach strategies
were investigated.
The first was motion
camouflage. The se-
cond was a homing
approach where, at
each time step, the
missile moved in the
direction of the prey.
In the third, a direct-interception ap-proach, the
missile moved in a straight line to intercept the
prey as quickly as possible: these missiles had
access to the path of the prey in advance.

The results of the experiment, conducted on
30 volunteers, showed that motion-camouflaged
missiles were, in general, able to get closer to the
player than missiles using the other strategies:
they approached to an average distance-to-prey
that was just ~60% of the missiles using the
homing strategy and ~50% of those attempting
direct interception. This psychophysical experiment
therefore served two purposes: to further validate
the design of the control system using a real
task; and to provide the first evidence suggesting
that humans are susceptible to motion camouflage.

The study and modelling of the hoverfly’s
stealth behaviour has proved useful in that it has
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The use of camouflage and mimicry as deceptive
strategies are commonplace in nature and well
publicised. The subject of this article is, however,
less well known: a stealth behaviour designed to
camouflage motion. Motion camouflage, first
suggested by Srinivasan and Davey,1 is a technique
that may be used by a predator to help conceal
its motion as it approaches moving prey. The
paradoxical basis of motion camouflage is that
the predator should approach the prey along a
route such that the predator’s optic flow—as
observed by the prey—resembles that of a
stationary object (a fixed point) in the environment
(rather than moving laterally away from the fixed
point as would be the case for any non-
camouflaged approach). The predator does this
by ensuring it is positioned directly in between a
nominal fixed point in space and the prey’s current
position (see Figure 1).

Srinivasan and Davey1 observed that male
hoverflies may track females in a manner
consistent with motion camouflage, and that
insects possess both the machinery and
mechanisms to implement this strategy. We have
followed on from their observations and
speculations by constructing and examining an
artificial neural model for this intriguing stealth
behaviour. The first question posed was whether
it was possible to design a (simulated)
connectionist motion-camouflage control system
that operates using only the information an insect
can retrieve from its senses.

The answer to this question seems to be yes.2

The only external information our control systems
were supplied with was the current direction of
the prey. The simulated ‘fly controllers’ were
expected to estimate the position of the fixed
point using dead reckoning based upon
proprioreceptive signals (i.e. recent motor outputs
were fed back as input). The control systems
were tested on different prey trajectories—
including those filmed of real hoverflies—and
shown to adopt accurate, camouflaged approaches
that predict prey motion. These results, which
show that a system with workings reminiscent of
a biological nervous system can perform motion
camouflage with basic sensory input, are
considered to support the conjecture that motion
camouflage is not beyond the computational power
of insects.

Learning lessons from biology:
From hoverfly stealth to missile camouflage
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Figure 1.
A motion-
camouflaged
pursuit illustrated
with flies. The fixed
point is located at the
initial position of the
predator. Note that, at each
time step, the predator lies on
the line connecting the prey
to the fixed point.
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Continued on p. 7
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Opinion
I recently fell out with a senior academic at my
college (not in my own department, I’m happy to
say). Among other things, I was annoyed that he
presented a specialist presentation to an inter-
disciplinary seminar. For those of us (me?) who
had the wrong background, the talk quickly
spiralled out of the understandable into the
obscure. So much so that I gave up: I had heard
him speak before with no better success but had
given him the benefit of the doubt because that
seminar really wasn’t aimed at me. This time I
figured I had better things to do.

Artificial Intelligence and Simulation of
Behaviour are profoundly interdisciplinary subjects.
So much so that I’m sometimes amazed that we
can talk to each other at all. With some effort,
most of us do manage: this despite the irritating
loss of precision that results when handy jargon
is banned. Perhaps the others doubt that this
effort is worthwhile. At the risk of preaching to
the converted, I’d like to make a case that it is.

In the 15 years or so that I have worked
around emerging technologies, interdisciplinary
research has been where the action is. Holography,

my first love, was populated by photographers,
physicists, artists and electrical engineers. Micro-
electromechanical systems were developed by
mechanical and optical engineers, materials
scientists, and circuit designers. Research in neural
systems has required contributions from everyone
from the lab rat and the student who puts him
through his paces to the computational
neuroscientist and the neuromorphic engineer.

When communication between these groups
breaks down, so does the productivity of research.
Fast algorithms and low-power hardware are
irrelevant if the researchers they’re built for don’t
need them or can’t figure out how to use them.
The designer who didn’t listen to what was
required, or couldn’t explain how the new system
fit the bill, may be to blame. Or the potential
user’s inability to explain what they wanted might
be the culpret. Either way, a communication
problem can become a research problem, with
talented people building toys that work well, but
for no-one.

Speaking in tongues is the way to go.

Sunny Bains (Editor)Sunny Bains (Editor)Sunny Bains (Editor)Sunny Bains (Editor)Sunny Bains (Editor)

Imperial College London
http://www.sunnybains.com
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Research into socially-interactive robots covers
many areas, and robots are designed to be so for
various purposes: for instance, to promote natural
human-robot interactions, or to learn about social
phenomena, emotions, and development.1 Our
work concerns social interactions for learning,
and we are interested in finding out what levels
of interaction are required for learning to occur
successfully. Is there a minimal level of interaction
that is necessary? For example, if a robot could
translate the actions of a human onto its own
motor abilities, and therefore copy the human’s
actions, is this enough for the robot to learn a
task that consists of these actions? Or do the
interactions need to be more interactive?

Let us consider the above scenario, where the
robot copies the actions of a human demonstrator
as ‘minimal’. (Of course, the problem of translating
the actions of a human into the robot’s own
motor repertoire is anything but trivial, but let’s
assume that the robot has this ability). Where the
system performs supervised learning using the
robot’s perceptions and actions during this
copying, minimal interactions provide valuable
boot-strapping that allows the machine to learn
the demonstrated task.2 This avoids many
difficulties that would arise in programming the
robot to perform the task: such as having to
figure out what the robot actually perceives and
the consequences of its actions.

However we have found that such ‘minimal’
interactions are not always sufficient, especially
when a real physical (as opposed to simulated)
robot is involved, and the learning setup is such
that the robot is continuously faced with sensory-
motor data that are noisy and unstructured. In
such situations it is crucial that the human
demonstrator take a more active and interactive
role in the teaching process (see Figures 1 and
2). The human can be more active by manipulating
the movements of the robot such that it is exposed
to experiences that will make the learning easier,
or by indicating to the robot—using explicit
signals—parts of the demonstration that the
human deems important. The human can be more
interactive by allowing the robot’s current physical
state influence the demonstrations, rather than
providing passive demonstrations that are
independent of the robot.

Attention plays a very important role in such
a learning setup. Another facet of our work
therefore concerns an explicit model of an
attention system that considers saliency
parameters for deciding when to learn. We refer
to this kind of attention as temporal (as opposed
to spatial) because it involves deciding whether
or not to attend to the current input based on
previous experiences, rather than deciding which
part of the sensory input to attend to. Having an
explicit model of attention is important because

Robot learning through human
interactions

it potentially allows for social interaction to
contribute in an even more active way than
discussed above. If the human has access to the
robot’s attentive state (or vice-versa, if the robot
has access to the human’s attentive state) then
this information can be used by the robot to
autonomously tune the parameters of attention.
This would otherwise need to be determined by
the designer (through tedious, and possibly
inaccurate, trial-and-error). For example, if the
robot decides to attend to an input because it is
novel (one form of saliency), but the human
disagrees with this response, then the robot can
modify its novelty-detection threshold accordingly.
Currently such attention parameters are given to
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our robot not through trial-and-error but through
extensive systematic experimentation, which is
also tedious. However, we are considering
extending our work and the social interactions so
that the robot can tune these parameters itself.

Thus, research into human-robot interaction
is important for more than just designing
believable human-like robots that will encourage
humans to use them as aids, toys, companions,
etc.. It is also necessary for designing systems
that allow robots to learn from humans.

Yuval MaromYuval MaromYuval MaromYuval MaromYuval Marom

Institute of Perception, Action and Behaviour
School of Informatics
The University of Edinburgh
http://www.dai.ed.ac.uk/~yuvalm

Figure 2. The human
can take a more
active and interactive
role in the teaching
process.

Figure 1. Human-robot
interactions can be
‘minimal’ where the robot
simply copies the actions of
the demonstrator, who is
passively performing a task
such as wall-following.
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Self-diagnosing hardware is important: especially
in mission-critical systems exposed to radiation.
Built-in self test (BIST) is widely used, yet
commonly requires more than 100% overhead in
the form of double-redundant systems or off-line
(interrupting normal operation) testing.
Evolutionary methods applied to hardware have
both produced circuits comparable to those
designed by experts, as well as unconventional
circuits in which hardware resources are used
extremely efficiently. Moreover, many evolved
systems in nature exhibit self-diagnostics (such
as the immune system).

All this has led to the prospect that evolutionary
methods could explore areas of design space that
reuse hardware components so they contribute
both to the circuit’s main functionality and its
BIST, leading to a low-overhead on-line solution.
We have recently been the first to attempt the
evolution of self-diagnosing hardware designs and
will try to give a flavour of this work here.1,2

A generational genetic algorithm (GA) was
used with a population of 32 individuals. The
amount of conventional design knowledge used
to set up the fitness evaluation function and the
mapping from genotype to circuit was kept to a
minimum. Evolving circuits were made up of two
input logic gates and evaluated in a simple digital
logic simulator where noise was introduced in
order to facilitate transfer to real hardware.
Hardware faults were simulated by sticking a
gate output at 0 or 1, a model well established
in industry.

Small circuit tasks were chosen as good starting
points to establish a proof of principle that BIST
functionality could be evolved for them: a one-

bit full adder, a two-bit
multiplier and an edge-
triggered D-latch. The
fitness function evaluated
a number of circuit
properties here listed in
decreasing priority order:
perform the desired task,
off-line BIST, on-line
BIST, minimize gate
count. Self-testing be-
haviour was evaluated by
checking if an extra
output E went high when
the task outputs were
incorrect due to an
induced fault. And so a
process of the ‘survival of
the meekest’ commenced.

From a population of
random individuals, after
14100 generations of
evolution, there emerged
an individual performing

Are you fit for failure?
the adder task using the minimum five gates and
having 90%-fault-coverage off-line BIST using an
overhead of only two extra gates. This circuit
performs a hybrid of online/off-line self-diagnosis
that could be implemented in a BIST system with
31% of the overhead of the conventional off-line
solution. About 15000 generations later, a full
(100% coverage) on-line BIST solution for the
adder was found using only 50% of the overhead
of the conventional on-line solution. Another run
that imposed extreme noise conditions arrived at
an online solution that includes a low-pass filter
to iron out glitches at the output. In effect, this
circuit could be clocked at twice the speed as the
conventional online BIST solution.

A new run was seeded with a hand-designed
multiplier using the minimum seven gates. Nearly
150000 generations later it suffered one
modification while four gates were annexed for
performing full off-line BIST requiring 36% of the
overhead of the conventional equivalent. A
multiplier with full online BIST was also evolved
from a population of random genes after roughly
four million generations (three weeks processing
time). This circuit used 64% of the overhead of
the conventional on-line solution and its
unconventional structure is shown in Figure 1. An
on-line self-diagnosing edge-triggered D-latch was
also evolved after 3 million generations and had
the same structure and overhead as the
conventional solution.

These self-diagnosing circuits, evolved for the
first time, are competitive with conventional ones
in terms of fault coverage and gate count
overhead. Evolved circuits exploit conventional
design principles—such as voting and design
diversity—as well as unconventional principles,
such as computing checksums while cascading
outputs. These principles, which allow them to
reuse logic for both the main task and BIST,
could prove useful if adopted by designers. Some
circuits were extremely modular in structure while
others were inscrutable. The reason for this is
unknown but, then again, evolution moves in
mysterious ways.

Previous work3 suggests larger circuits are
riper targets for evolutionary optimization, but
computational power is a limiting factor when
evolving them (you can easily contribute your
unused CPU time to this project4). Our current
efforts include the evolution of BIST for industry-
sized modules of self-diagnosing analogue circuits,
perhaps under varying operating conditions,5 and
of circuits capable of ‘testing the tester’ under
multiple faults.

Miguel GarvieMiguel GarvieMiguel GarvieMiguel GarvieMiguel Garvie

COGS, University of Sussex
E-mail: mmg20@cogs.susx.ac.uk
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Figure 1. Evolved two-
bit multiplier performs
full on-line self-diagnosis
with only 64% of the
overhead of the
conventional equivalent
by reusing logic for both
the main task and self-
test.
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Improvised music differs from composed music in
a very simple way - it is composed and performed
simultaneously, with no chance to choose between
ideas, polish up a rhythm or get a chord change
right. The best known example of music with
improvisation is jazz, where performers have to
produce fresh melodic ideas based on a composed
harmonic structure. However, experiments by
avant-gardists such as John Coltrane and Ornette
Coleman and—in the classical tradition—by
composers such as John Cage and Cornelius
Cardew, have led to forms of improvised music
with very little pre-thought structure.1 The
musicians assemble and, without rehearsal or
any sort of written or tacit plan, begin to develop
a piece of music that is improvised at every level.
Apart from important aesthetic considerations,
the obvious questions are: how do humans do it
and can we get a computer involved?

Answers might be found in the biologically
inspired field of self organization. Avian flocks,
insect swarms, and shoals of fish are examples
of systems that develop spatio-temporal
organization. In other words, global properties
arise from local low-level interaction. These
systems have no central control or organising
plan, yet are capable of responding to a complex
environment. Surprisingly, the apparently
choreographed motion of flocks can be explained
by assuming that relatively simple individuals
interact locally with near neighbours. Raid patterns
of army ants, consisting of many interconnecting
trails, can contain several thousand virtually blind
individuals: all acting with a common purpose,
yet without central control. Once more, the
explanation is to be found in the principles of
self-organization.2

An improvising ensemble might, therefore, be
subject to similar rules. In this case, the emergent
structure would be musical form. The musicians
respond in an expressive way to the current
musical environment: trying to match current
parameters such as pitch range, dynamic level,
and density of events. They may also try to alter
the musical direction by deliberately trying to
provoke change. Such fluctuations may become
amplified due to the matching behaviour of the
ensemble. Hence musical structure is derived from
the swarm-like interaction of the participants.

At another level, the succession of events that
comprise a melody can be viewed from a swarm-
like perspective. In Swarm Music, particles of a
virtual swarm interact with other particles by trying
to cluster together without colliding and by moving
towards one or more external attractors. The
organized pattern of particles in a four-dimensional
physical space is interpreted as a melody by
mapping positions onto a four-dimensional space
of event parameters: time between events, pitch,
loudness and event duration (see Figure 1).

Swarms and self-organized music
ReferencesReferencesReferencesReferencesReferences
1. R. Dean, NewNewNewNewNew
Structures in JazzStructures in JazzStructures in JazzStructures in JazzStructures in Jazz
and Improvised Musicand Improvised Musicand Improvised Musicand Improvised Musicand Improvised Music
since 1960, since 1960, since 1960, since 1960, since 1960, Open
University Press, 1992
2. E. Bonabeau, M.
Dorigo and G.
Theraulax, SwarmSwarmSwarmSwarmSwarm
Intelligence: FromIntelligence: FromIntelligence: FromIntelligence: FromIntelligence: From
Natural to ArtificialNatural to ArtificialNatural to ArtificialNatural to ArtificialNatural to Artificial
Systems,Systems,Systems,Systems,Systems, Oxford
University Press, 1999.
3. T.M. Blackwell,
Swarm Music:
Improvised Music with
Multi-Swarms, Proc.Proc.Proc.Proc.Proc.
AISB Symp. on AIAISB Symp. on AIAISB Symp. on AIAISB Symp. on AIAISB Symp. on AI
and Creativity in Artsand Creativity in Artsand Creativity in Artsand Creativity in Artsand Creativity in Arts
and Science, and Science, and Science, and Science, and Science, pp. 4149,
2003.

Figure 2. A two-swarm.
In this snap shot, the
left swarm has started
to move towards the
front of the cube.
Attracting cones
corresponding to this
fluctuation are deposited
in the right swarm. Both
swarms may follow this
new direction, or the
cones deposited by the
right swarm may drag
the left swarm back.
Musically, this
corresponds to a surge
in loudness and a drop
in pitch, a musical
direction that other
members of the
ensemble are invited to
join.

A number of swarms are used in swarm music,
each corresponding to a musical performer.
Swarms themselves interact by a process known
as stigmergy. Social insects may interact directly
by touch, smell, etc., and also indirectly by making
modifications to the environment that other
individuals respond to at a later time. This indirect
or stigmergetic interaction is responsible for
termite task coordination and nest building. In
Swarm Music, each particle in a swarm leaves
behind marker cones that become attractors for
other swarms. Each swarm is a separate process
and the resulting system is called a ‘multi-swarm’
(see Figure 2).

Swarm music interacts with human performers
by capturing audio and MIDI events, inversely
interpreting these events, and placing
corresponding cones in the physical space of each
member of the multi-swarm. This means that the
swarm-human interaction is identical to the swarm-
swarm interaction. Some experiences of
collaborators with Swarm Music have been
recorded, as anecdotes, in Reference 3, which
also has further information on the underlying
principles and system design. Examples of
autonomous and interactive Swarm Music can be
found on my website.

Tim BlackwellTim BlackwellTim BlackwellTim BlackwellTim Blackwell

Department of Computer Science
Goldsmiths College, London
E-mail: tim.blackwell@ieee.org
http://www.timblackwell.com

Figure 1. Interpretation
(in three dimensions) of
a five-particle swarm.
The interpretation
assumes no musical
syntax and is very
transparent in order to
enable a direct and
intuitive map from
physical position to
musical note.
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Knowledge transfer between a user and a new
robot assistant is necessary to make the robot
functional. In the same way, human employees
need instruction before being able to fulfil their
duties. In industrial robotics, robots are
programmed by a small number of trained
operators. However, in domestic or service
robotics, potential users are many and cannot be
expected to know or learn a programming
language. Instead, the machines may need to be
able to understand instructions issued in natural
language and then convert them into the
appropriate code. A joint EPSRC project between
the Universities of Plymouth and Edinburgh was
therefore aimed at designing a system for
programming robots using spoken input, and
identifying the limitations of current tools.

In the Instruction Based Learning (IBL) project,
a mobile robot is instructed on how to travel from
one place to another in a miniature town1 (see
Figure 1). On the basis of these instructions, it
creates a computer program that it uses to
navigate. The complete system, starting with
spoken input and ending with a navigating robot,
has been built and was recently exhibited in the
Plymouth City Museum as part of a robotics week.
In that noisy environment, speech recognition
proved surprisingly robust, failing mainly on the
high-pitched voice of some children. Indeed, there
are still unsolved problems as outlined in the
following sections.

The first step in the design of the IBL system
was the recording of a corpus of 144 route

Instructing robots
instructions given by 24 subjects. They were told
to speak for a human operator who would later
move the robot by remote control. The transcripts
of the utterances (6600 words, 330 distinct words)
were used to select, out of a wide-coverage
grammar, the restricted set of grammatical rules
and lexicon corresponding to this domain. In
principle, this user-centred approach to the design
of restricted grammars enables users to employ
unconstrained speech while maximizing speech-
recognition performance. The results, however,
showed that wide-coverage grammars do not hold
for some of the forms found in spoken language:
indeed, 40% of utterances were not covered.
Further, there were indications that the domain
lexicon was not closed and that about one new
word had to be expected for every two new
instructions.2 Neither problem yet has accepted
solutions, and further research is required: for
instance, grammars for spoken language need to
be developed, as do mechanisms for dealing with
out-of-grammar words.

The corpus underwent a further functional
analysis to determine which navigation actions
users refer to in route instructions. A list of 14
primitive functions was established3 including turn
in direction x after the nth landmark y and the
goal x is located in relation y to landmark z. Each
of these functions was pre-programmed into the
system, and a new procedure specification
language (PSL) was created to encode rules that
map natural language expressions to the
appropriate function calls.4 There are many ways

to refer to a given action and
about 200 rules were required.
Again, the list of primitive
functions was found not to be
closed, with about one new
function expected for every 35
new instructions. It is unclear at
present how this problem should
be dealt with, because a primitive
is a piece of low-level robot
program that the user cannot
create. Here, methods of learning
by example may prove useful.5

The combination of primitives
defined in the instruction was
then converted into a new piece
of program code (using the
scripting language Python) having
the same access protocol as pre-
programmed primitives. Thus,
learned procedures can be re-
used in later instructions to create
more complex procedures (Figure
2). However, natural language
references to previously taught
procedures revealed a range of
new problems that have only

ReferencesReferencesReferencesReferencesReferences
1. http://
www.tech.plym.ac.uk/
soc/staff/guidbugm/ibl
2. G. Bugmann, S.
Lauria, T. Kyriacou, E.
Klein, J. Bos and K.
Coventry, Using Verbal
Instruction for Route
Learning: Instruction
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Figure 1. Experimental
set-up: a miniature
remote-brained robot
with a 8cm×8cm base
performs vision-guided
navigation in a
170cm×120cm model
town. It follows a
sequence of actions
defined in prior
instructions given by a
user. Video images are
sent from the robot to a
PC for processing via
wireless. The resulting
motion commands are
sent back by wireless to
the robot. The user
speaks to the robot
through a headset
microphone connected
to the PC.
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demonstrated the simplicity of the input
information required to accurately calculate
camouflaged approaches. In addition, it has
provided evidence to suggest that motion
camouflage has real-world applications. The most
likely artificial applications of motion camouflage
are military: for instance as an automatic control
strategy for missiles or aircraft. Possible extensions
of motion camouflage to counter radar and thermal
imaging are also possible.4 The other obvious
application for motion camouflage, as
demonstrated by the experiment discussed above,
would be in the AI of predatory agents in computer
games.
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Lessons from biology: Cont. from cover

Figure 2. Missile Defence
screenshot, an explosion as the

player hits a target. (This
screenshot and others are

currently displayed at
http://www.dcs.qmul.ac.uk/~aja).

Figure 2. IBL (Instruction Based
Learning) concept diagram: a
command issued
by the user can
either be
executed
immediately—if
the robot has
the
corresponding
procedure—or a
learning process
is initiated. This
way, a new
procedure is
created from a
combination of
existing
primitives.
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partially been solved in the IBL project.4

Primitives are actions referred to in human-
to-human instructions. They correspond to
common human execution capabilities such as
finding a left turn and taking it. For robots,
however, these are not simple functions and it is
not straightforward to write a function that can

deal with every type of left turn.6 Thus, a robot
that understands unconstrained natural language
instructions needs quite advanced action
capabilities. Or, conversely, a robot with limited
action capabilities can only understand a limited
range of expressions. As future users cannot be
expected to know all the robot’s capabilities, it
needs to have an information mechanism built in.
Interestingly, this turns out to be the same

problem as teaching the user which
expressions the robot can
understand. Future research along
these lines may also solve many of
the natural language processing
problems above, as the user would
seek to adapt his/her language to

that of the robot. Demonstrations have suggested
that this is a natural tendency in users.
The following researchers also contributed to the
IBL project: Ewan Klein, Johan Bos, Stanislao
Lauria, Theocharis Kyriacou and Kenny Coventry.

Guido BugmannGuido BugmannGuido BugmannGuido BugmannGuido Bugmann
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University of Plymouth
http://www.tech.plym.ac.uk/soc/staff/guidbugm/
bugmann.htm
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Dealing with uncertainty is a common problem
for agent systems. The ability to reason with
uncertain information is an indispensable
requirement for modelling intelligent behaviour in
a complex and dynamic environment. This is why
uncertain reasoning has become a major research
topic in AI, with many important applications.

Psychologists have shown that human
judgement under uncertainty involves consistent
departures from normative rationality. In
particular, people show ‘motivational biases’ in
judgements of probability, over-estimating the
probability of events with a positive return to the
self and under-estimating the negative.1,2

From the standpoint of rational choice theory,
these biases are clearly maladaptive. Some
psychologists, however, have argued that they
are adaptive.3 We have attempted to adjudicate
between these two possibilities by constructing a
multi-agent based computer model in which a
variety of agents with different decision rules are
allowed to compete in various environments.

MethodsMethodsMethodsMethodsMethods

We designed a multi-agent-based simulation using
the program NetLogo.4 The agents in our model
face ‘opportunities’, each of which has a probability
of success (p), a benefit for success (b) and a
cost of failure (c). Different noise levels influence
the agents’ knowledge of c, b and p.

For every opportunity faced, each agent must
decide whether or not to 'play'. This decision is
made according to the agent's decision rule. There
are three types of agent:
1. The rational agent uses the principle of expected
utility. That is, it only plays when:
p * b > (1-p) * c.
2. The way the optimistic agent works is inspired
the empirical data from situations where humans'
judgement is biased. People's probability
weightings follow an inverse S-shaped curve.5 We

modelled this by
giving our op-
timistic agents a
biased estimate
of p. This agent
plays when: (p *
(b/c)) * b > ((1-
p) * (b/c)) * c.
3. The emotional
agent is based
on the observa-
tion that people
tend to play
when the bene-
fits are high:
independent of
the probability of
success. The lot-
tery is a case in

The evolution of optimism:
An agent-based model of adaptive bias

point. But it also works the other way around, so
this agent always plays if b/c > 2 and never plays
if b/c < 0.5. Only when the difference between
cost and benefit is small do people seem to attend
to the probability of success.6 We modelled this
by stipulating that when 2 > b/c > 0.5, the
emotional agent’s chance of playing is proportional
to its estimate of p (random 1 < p).

Each agent’s chance of success is determined
by the probability associated with the opportunity
in question. If an agent plays and succeeds, its
energy level is increased by the benefit for success
associated with the opportunity. If it plays and
fails, its energy level is decreased by the cost of
failure. If an agent does not play, its energy level
remains the same.

Results and conclusionResults and conclusionResults and conclusionResults and conclusionResults and conclusion

We let the program run 10 times for every possible
combination of the errors of p, c, and b. Figure
1 gives an overall view of our results. Not
surprisingly, the rational agents do better than all
other agents under most conditions. More
interesting is the fact that there are conditions
under which the rational agent is outperformed.
The biased agents do better when the error for
b and c is low, but the error for p is high.

This is arguably the situation that people mostly
encounter in the real world. It is plausible to think
that people can estimate costs and benefits of an
opportunity quite accurately, by observing other
people faced with similar opportunities and by
memories of past experiences. However, the
chances of success of any specific opportunity
depend on the interaction with other human beings
and many other imponderable factors. Hence our
ability to estimate probability is much poorer than
our ability to estimate the cost of failure or the
benefit of success.

From the standpoint of classical decision
theory, motivational biases are clearly irrational.
We have found that—under certain environmental
conditions—biased agents that behave in ways
similar to humans outperform classically rational
agents acting purely to maximize expected utility.
Our findings, therefore, support the view that
motivational biases are adaptive.

Our paper and model can be found at:
http://www.dylan.org.uk/OptimismAISB.html
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Review

Thanks to advances in molecular biology—
including molecular cloning, DNA sequencing, and
the human genome project—interest in sequence
comparison has recently increased. However,
these techniques can be used more widely: to
sequence agent plans or robotic behaviours, for
instance. The book Time Warps, String Edits, and
Macromolecules: The Theory and Practice of
Sequence Comparison was first published in 1983
and was reprinted in paperback in 1999. While
other algorithms for sequence comparison have
been published in the literature, this book is the
definitive source. It describes techniques for
comparing sequences by measuring the
Levenshtein or edit distance (defined as the
minimum number of operations required to change
one sequence into another). With discrete genetic
sequences, these can be used to measure
deviations or mutations. Also, continuous time-
dependent signals can be compressed or expanded
(time warped) and then sampled: this process
has been used in speech recognition.

How can the artificial-intelligence community
use sequence comparison? Consider the problem
of merging partial plans, where each plan is a
sequence of discrete actions. If each action has
a function or functions associated with it that
describe the costs of deleting, delaying, or
modifying that action, then the Levenshtein
distance, with each operation weighted by the
appropriate cost function(s), could be used to
develop the best merged plan. A related problem
is recursive learning; applying ‘rewards’ or
‘penalties’ to a sequence of actions that have led
to a successful or unsuccessful outcome. With
traditional techniques it can be difficult to assign
rewards based on order, particularly if the ordered
pair is not contiguous. Using the edit distance, on
the other hand, allows wide latitude in how reward
is applied and how state transitions are learned.

Time Warps... is written at the graduate level
with articles covering the fields of computer
science, genetics, linguistics, and speech
recognition. While some edited books can be
uneven in the depth and breadth of coverage
from chapter to chapter, this book has a flow that
is usually only achieved by a single author.
Although the contributors are diverse, both
geographically and academically, the reader gets
the impression that this book is actually a
collaboration, not a collection, of essays. Though
I have not tested the algorithms, on inspection
they appear complete enough that computer
programs could be readily developed.

The introduction to the new edition, Edit
Distance and Dialect Proximity, could easily serve
as an additional chapter. It uses Levenshtein
distance as a measure of phonetic variation of
Dutch dialect. Overlaying the phonetic distance
with the geographic map of the Netherlands shows

a continuum of dialect that non-numeric methods
have been unable to demonstrate.

Part One focuses on genetic application,
presenting algorithms for solving the problem of
finding a section of a long sequence, `with best
possible agreement’, to a shorter sequence, where
best possible agreement can mean shortest overall
edit distance or, in the case of repeating
sequences, the shortest ‘local’ edit distance.

Time warping of continuous functions of time,
the process of stretching or compressing the time
axis, is discussed in Part Two. Extensively used
in speech processing, this transform is generally
done in the continuous domain, and is often
performed during sampling to create a discrete
function. Time warping can be done globally,
where the entire function is stretched or
compressed, or locally, where the time scale factor
varies from segment to segment. Another form
of time warping involves breaking the continuous
function into segments of varying lengths, coding
each segment, and compiling the codes into a
sequence.

Part Three provides variations of the dynamic
programming algorithm to address similar but
distinct problems: matching a portion of a
sequence to a known template; finding similar
sub-sequences in different strings; simultaneous
comparison of multiple sequences; auto-
comparison; comparison of two trees, directed
networks, or continuous functions with time
warping; and comparison of two sequences under
constraints. Other variations included are sequence
comparison where adjacent elements may be
transposed, and where more generalized
transpositions and substitutions are permitted.

Computational complexity is addressed in Part
Four (along with Chapter 7 in Part Three). While
two of the three chapters are necessarily
theoretical, Chapter 14 presents an edit distance
algorithm that is faster for long sequences and
a cost function to calculate when it is worth
using.

Part Five discusses methods of determining
whether the similarity between two sequences is
meaningful or random. Upper and lower expected
similarity bounds are computed for random
sequences and reworked in terms of sequence
distances. These can be used in a standard ‘null
partial’ plans in multi-agent systems, adaptive
control, and stock market analysis. Nor does it
discuss how advances in neural-network
programming have reduced the computational load
of—thereby increasing interest in—sequence
analysis algorithms.
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In the life sciences, imitation has been studied for
many years for the insight it gives into the brain
mechanisms underlying visual perception of
biological motion, as well as memory and motor
control. It has also attracted the attention of
robotics researchers because of its promise of
easily-programmable robots that require a mere
demonstration to learn how to perform a given
task. It was in this climate that the Second
International Symposium on Imitation in Animals
and Artifacts1 was held as part of the AISB
convention this year. It was the longest of the
symposia, spanning all five days of the convention,
and attracted a large number of participants from
as far as Australia and North America.

Following the successful format of the first
symposium (at AISB’99), it inter-mixed invited
and refereed papers from a variety of disciplines,
including contributions from animal behaviour,
psychology, philosophy, brain imaging, computer
science, and robotics. This was mainly due to the
efforts of the programme chairs, Kerstin
Dautenhahn and Chrystopher Nehaniv of the
University of Hertfordshire, who should be
congratulated for rigorously enforcing the
interdisciplinary focus of the meeting through their
selection of invited speakers and contributed
papers. Rather than grouping the papers into
themes, Dautenhahn and Nehaniv chose to
interlace talks from the various disciplines in all
five days, combatting the trend usually observed
in conferences of participants attending only the
sessions directly relevant to their work.

The participants responded well to this
arrangement. It was clear that the presenters
(and particularly the invited speakers) had
understood the need to explain their work to an
interdisciplinary audience, and did so eloquently.
Combined talks, where researchers from different
disciplines took turns in presenting material, also
made their debut in this symposium: with excellent
results. For example, Jacqueline Nadel
(developmental psychology) and Arnaud Revel
(robotics) examined how information from infant

Conference
Report

Imitation in Animals and Artifacts
Part of AISB’03, Aberystwyth, Wales, 2003

psychology can be used to advance developmental
approaches to robotic imitation. Sarah Woods
and Kerstin Dautenhahn combined efforts pursuing
the interplay between bullying behaviour,
empathy, and imitation.

Another positive trend was the shift from
debating definitions of imitation to the detailed
examination of the mechanisms underlying
imitation capabilities and their pathologies.
Although the occasional definition debate did crop
up (as it regularly did in the first symposium),
there was a distinct emphasis on the ‘how’ of
imitation. From Robert Mitchell’s models of mirror
self recognition—with an emphasis on kinaesthetic-
visual matching—to John Laird’s algorithms for
implementing learning by observation, there was
a distinct ‘mechanistic’ flavour to the symposium.
This was complemented by presentations on the
pathologies of these mechanisms: work with
autistic children by Peter Hobson, Justin Williams,
Jacqueline Nadel, Kerstin Dautenhahn, Jessica
Meyer and Dominic Massaro.

Invited speakers included John Laird, Andrew
Whiten, Aude Billard, Ludwig Huber, Robert
Mitchell, Mark Norman, and myself, all supported
by an EPSRC grant to the symposium chairs. With
Kerstin Dautenhahn, Chrystopher Nehaniv, Peter
Hobson and Irene Pepperberg, the invited
speakers formed a panel for a discussion at the
end of the third day. The idea was for each to
pose research challenges to those from other
disciplines: psychologists, for example, suggested
that it would be particularly helpful to researchers
interested in autism if roboticists paid more
attention to the development of the imitation
mechanisms observed in humans.

We left the conference and Aberystwyth with
lots of new ideas, and an agreement to hold this
meeting more frequently: I, for one, am looking
forward to the next one!

Yiannis DemirisYiannis DemirisYiannis DemirisYiannis DemirisYiannis Demiris

Imperial College London
http://www.iis.ee.ic.ac.uk/~y.demiris/
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Treasurer’s report
INCOME AND EXPENDITURE ACCOUNTINCOME AND EXPENDITURE ACCOUNTINCOME AND EXPENDITURE ACCOUNTINCOME AND EXPENDITURE ACCOUNTINCOME AND EXPENDITURE ACCOUNT 20022002200220022002 20012001200120012001

Turnover 28,052 26,996
Direct costs (9,569) (7,730)
EIEEIEEIEEIEEIE11111 before overheads before overheads before overheads before overheads before overheads 18,48318,48318,48318,48318,483 19,26619,26619,26619,26619,266

Administrative expenses (15,794) (12,251)
EIEEIEEIEEIEEIE11111 before taxation before taxation before taxation before taxation before taxation 2,6892,6892,6892,6892,689 7,0157,0157,0157,0157,015

Taxation (6) (30)
EIEEIEEIEEIEEIE11111 for the year for the year for the year for the year for the year 2,6832,6832,6832,6832,683 6,9856,9856,9856,9856,985

Retained profit brought forward 8,987 2,002
Retained profit carried forwardRetained profit carried forwardRetained profit carried forwardRetained profit carried forwardRetained profit carried forward 11,67011,67011,67011,67011,670 8,9878,9878,9878,9878,987

BALANCE SHEETBALANCE SHEETBALANCE SHEETBALANCE SHEETBALANCE SHEET 20022002200220022002 20012001200120012001

Debtors 7,849 10
Cash in bank 23,660 27,296
Current assetsCurrent assetsCurrent assetsCurrent assetsCurrent assets 31,50931,50931,50931,50931,509 27,30627,30627,30627,30627,306

Creditors: amounts falling due within one year (5,946) (4,426)
Total assets less current liabilitiesTotal assets less current liabilitiesTotal assets less current liabilitiesTotal assets less current liabilitiesTotal assets less current liabilities 25,56325,56325,56325,56325,563 22,88022,88022,88022,88022,880

Reserves
Other reserves 13,893 13,893
Income and expenditure reserve 11,670 8,987
Total reservesTotal reservesTotal reservesTotal reservesTotal reserves 25,56325,56325,56325,56325,563 22,88022,88022,88022,88022,880

INCOME AND EXPENDITURE IN DETAILINCOME AND EXPENDITURE IN DETAILINCOME AND EXPENDITURE IN DETAILINCOME AND EXPENDITURE IN DETAILINCOME AND EXPENDITURE IN DETAIL 20022002200220022002 20012001200120012001

AISB Convention this year: income 15,612 13,858
AISB Convention this year: costs (9,569) (7,730)
AISB Convention this year: netAISB Convention this year: netAISB Convention this year: netAISB Convention this year: netAISB Convention this year: net 6,0436,0436,0436,0436,043 6,1286,1286,1286,1286,128

ECAI’98 Conference - 513
AISB Convention 2001 (Correction) (672) -
Membership fees 12,200 11,121
Inserts in AISBQ 309 1,200
Workshop Proceedings 347 -
Gross interest received 256 304
EIEEIEEIEEIEEIE11111 before overheads and taxation before overheads and taxation before overheads and taxation before overheads and taxation before overheads and taxation 18,48318,48318,48318,48318,483 19,26619,26619,26619,26619,266

OVERHEAD EXPENSESOVERHEAD EXPENSESOVERHEAD EXPENSESOVERHEAD EXPENSESOVERHEAD EXPENSES 20022002200220022002 20012001200120012001

Office costs 4,930 5,373
Newsletter and Journal: production 6,969 2,526
Newsletter and Journal: distribution 1,118 602
Postage costs 471 495
Committee expenses 209 780
Computer costs - 111
Sundry expenses 14 330
Travel awards 200 300
ECCAI membership fee 719 524
Accountancy fee 1,058 1,011
Bank charges 106 199
Total overhead expensesTotal overhead expensesTotal overhead expensesTotal overhead expensesTotal overhead expenses (15,794)(15,794)(15,794)(15,794)(15,794)(12,251)(12,251)(12,251)(12,251)(12,251)

EIEEIEEIEEIEEIE11111 before taxation before taxation before taxation before taxation before taxation 2,6892,6892,6892,6892,689 7,0157,0157,0157,0157,015

Taxation (6) (30)

NET PROFITNET PROFITNET PROFITNET PROFITNET PROFIT 2,6832,6832,6832,6832,683 6,9856,9856,9856,9856,985

Following the trend set in previous
years, AISB has continued to make
a profit in the year 2002, despite
the significant cost of producing
and distributing the new AISB
Journal. This major cost item has
mainly been covered by the
success of AISB'02 held at Imperial
College, which made a surplus of
over £6000: thanks to the
convention organisor, Dr Jim
Cunningham.

Over the years, AISB has now
built up a healthy reserve of
£25,563. This will allow AISB to
take on more adventurous proj-
ects, where appropriate, in the
coming years.

Paul ChungPaul ChungPaul ChungPaul ChungPaul Chung

Treasurer

In Aaron Sloman's article in the
last issue, How to build a human-
like mind, some text was
inadvertently lost in the layout
process. In the paragraph starting,
"In particular, if meta-
management...," and after the
words, "leading robot philosophers
with this sort of architecture to
discover the problem(s) of..." the
following text should be inserted.

“...’qualia’. Some of them would
become dualist philosophers.

It's a huge project: is it doable?
I don't know. One way to make
progress is to set up a long term
target, and then identify a
succession of increasingly difficult
steps leading towards that target.

Such a target might be the
design and implementation of a
robot with a large subset of the
abilities of a typical four or five
year old child.

We can then attempt to achieve
increasingly large subsets of those
abilities. This contrasts with...”

The full text is available at:
h t tp : / /www.cs .bham.ac .uk /
research/cogaff/sloman-aisbq-03/

Apologies both to readers and
to Professor Sloman.

Sunny BainsSunny BainsSunny BainsSunny BainsSunny Bains

Editor

Correction

ReferenceReferenceReferenceReferenceReference
1. Excess of income
over expenditure.
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Gary Jones
University of Derby
membership@aisb.org.uk
Public Relations:Public Relations:Public Relations:Public Relations:Public Relations:
David Bree
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Simon Colton
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simon.colton@aisb.org.uk
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About the SocietyAbout the SocietyAbout the SocietyAbout the SocietyAbout the Society
The Society for the
Study of Artificial
Intelligence and
Simulation of Behaviour
(AISB) is the UK’s
largest and foremost
Artificial Intelligence
society. It is also one of
the oldest establised
such organisations in
the world.

The Society has an
international membership
of hundreds drawn from
academia and industry.
Membership of AISB is
open to anyone with
interests in artificial
intelligence and
cognitive and computing
sciences.

AISB membership
includes the following
benefits:

• Quarterly newsletter
• Biannual Journal
• Travel grants to

attend conferences
• Discounted rates at

AISB events and
conventions

• Discounted rates on
various publications

You can join the AISB
online via:
http://http://http://http://http://
www.aisb.org.ukwww.aisb.org.ukwww.aisb.org.ukwww.aisb.org.ukwww.aisb.org.uk

7. How to Write Computing
Programs
1. The short answer is don’t: that’s what graduate
students are for. Your time is better spent on
setting strategic research directions.  However,
since you have to supervise the students, you
must at least be able to bluff your way through
the art of programming, so read on.
2. Software engineering defines a whole
paraphernalia of techniques for developing
computer programs: requirements capture,
specification, validation, verification, formal
methods, modularisation, top-down programming,
testing.  For people of your ability and that of
your research group, it is insulting to suggest that
you need such support in the simple matter of
computer programming.  You can safely ignore
it all.

Does your implementation lack anDoes your implementation lack anDoes your implementation lack anDoes your implementation lack anDoes your implementation lack an
underpinning mathematical theory?underpinning mathematical theory?underpinning mathematical theory?underpinning mathematical theory?underpinning mathematical theory?

Let Hacker Enterprises’ CONS™
(Constructs Obtuse but Nonsensical

Squiggles) pepper your papers with proofs.

3. AI pioneered the technique of exploratory
programming: the evolution of innovative systems
via the run, debug, edit cycle. Critics have
maintained that this leads to brittle, unreliable
and flabby programs. But human intelligence has
evolved in this same exploratory way with similar
results, so no neat program could possibly provide
a psychologically valid model. Exploratory
programming is essential for accurate emulation
of natural cognition.
4. Computer programs are classically evaluated
by systematic, thorough-going and exhaustive
testing. But this is only necessary for those who
lack confidence in the key ideas underpinning
their implementation. For researchers of our
calibre, such excessive testing is an extravagant
luxury.
5. In this age of the Internet, computer
programmers frequently make their programs
available as freeware over the web, allowing
potential users to assess their functionality and
usability. Unfortunately, this creates an opportunity
for misunderstandings about the more imaginative
claims you have made for your system. To protect
against such misunderstandings, you should
ensure that your system is only guaranteed to
work with an unobtainable version of its

implementation language, e.g. if the version
numbers jumped from 3.12 to 4.0 then insist on
version 3.13.

Protect your system from il l-Protect your system from il l-Protect your system from il l-Protect your system from il l-Protect your system from il l-
informed criticism...informed criticism...informed criticism...informed criticism...informed criticism...

...with Hacker Enterprises’ GREMLINS™
(Guard against Reviewers with an

Enveloping Mask that Limits and Impedes
Negative Scrutiny). It will output convincing

‘software rot’ error messages to anyone
subjecting it to unfair tests.

6. Funding agencies and other reviewers are
increasingly assessing the value of systems by
the size of the user community you have built up.
Clearly, this creates difficulties for researchers,
such as ourselves, who are ahead of their time.
Hacker Enterprises have addressed this problem
with CLUB™ (Collaboration of Lots of User Back-
scratching) our self-help users club. Subscribers
to CLUB™ will all claim to use each other’s
systems, thus increasing the size of everyone’s
user community without the unwanted burden of
providing a maintenance service.

AI research is founded on computer programs. Your research reputation ultimately dependsAI research is founded on computer programs. Your research reputation ultimately dependsAI research is founded on computer programs. Your research reputation ultimately dependsAI research is founded on computer programs. Your research reputation ultimately dependsAI research is founded on computer programs. Your research reputation ultimately depends

on the quality of your software. So it is vital to know…on the quality of your software. So it is vital to know…on the quality of your software. So it is vital to know…on the quality of your software. So it is vital to know…on the quality of your software. So it is vital to know…

Next AISBQ

deadlines:

8 August and

14 November 2003

The AISBQ reaches hundreds of
Artificial Intelligence and Cognitive

Science researchers in the UK, Europe
and beyond.

Advertising and other information is
available via:

http://www.aisb.org.uk/qhome.html

This page includes full guidelines for
the submission of book reviews,

conference reviews, and technical
articles. Books available for AISB

members to review are also listed.


