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Norbert Krüger, Markus Lappe & FlorentinẄorgötter
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Biologically-inspiredMachine Vision, Theory
and Application

Horst Holstein and Fred Labrosse

Department of Computer Science, University of Wales, Aberystwyth
Penglais, Aberystwyth, Ceredigion SY23 3DB, Wales, UK

hoh@aber.ac.uk ; ffl@aber.ac.uk

Editors’ Introduction

Computer vision has developed into a mature science over the last forty years, but current
computer vision systems are vastly different from, and in most cases lack the efficiency of,
biological vision systems. Biological vision therefore remains a strong metaphor for the
design of machines that simulate intelligent behaviour in visually sensed environments.
It hints at information interchange between many cooperating parallel subsystems. This
theme was strongly present in the keynote talk, ”Action Representations”, by Aloimonos
and Fermüller. Immensely rewarding applications in human-machine interaction await
advances in the multi-disciplinary threads of machine vision, perception and cognition.

The aim of the symposium was to promote a forum for a strong multi-disciplinary
interaction in the state-of-the-art and opening directions of research and technology re-
lated to biologically-inspired machine vision and visualisation. The papers included for
publication in the AISB Journal conveyed this aim in the oral and written presentations.
Thus, Kolesnik and Barlit simulate image contrast detection by simple cells in the primary
visual cortex through iterative orientation tuning, and exhibit noise suppression through
the introduction of cross-oriented inhibition. Krüger, Lappe and Wörgötter propose a new
multi-modal image representation that is also motivated by image processing in the hu-
man visual system. Li and Holstein demonstrate recognition of periodic human motion
captured in sparse feature point data, without recourse to structure from motion

It is hoped that the selected papers will lead interested readers to access the full range
of contributions presented in the Symposium Proceedings.
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Perception of Human Periodic Motion in
Moving Light Displays:

a Motion-based Frequency Domain Approach
Baihua Li and Horst Holstein
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Ceredigion, Aberystwyth, UK, SY23 3DB
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Abstract

We present amotion-based frequency-domaintechnique for modelling and recog-
nising human periodic movements in moving light displays (MLDs). Periodic mo-
tions are modelled by motion templates composed of a set of feature power vectors.
Feature power vectors are extracted from unidentified trajectories of feature points
using motion power spectral analysis. Motion recognition therefore is carried out in
the frequency domain by finding a best match among pre-stored templates. Recogni-
tion is demonstrated through examples of human periodic motion with data obtained
from a marker-based motion capture system. Experimental results prove that motion
characteristics exist not only in the spatio-temporal domain, but also in frequency do-
main. This method contrasts with common spatio-temporal approaches and avoids a
time consuming recovery of underlying kinematic structures in visual analysis.

1 Introduction

The ability of humans to perceive structure and motion from sparse point feature motion
cues has been demonstrated by Johansson’s Moving light displays (MLDs) (Johansson,
1975). In the MLDs as shown in Figure 1, an image sequence was reduced to a set of mov-
ing light dots. These light dots were attached at the joint sites of a human subject, con-
trasted to a dark background. The dots acted as discrete feature-points presenting motion
characteristics in spatio-temporal domain. The MLDs carried only motion information
but no structural information, since the displayed points were discrete and unconnected.
One frame of static dots remained meaningless to observers, while human observers were
able to recognise activities such as walking, running or stair climbing from a sequence
of relative movements of a small number of lights. Barclay et al. (1978), Cutting and
Kozlowski (1977) also showed human observers can identify the actor’s gender and even
their friends by their gaits in MLDs. These pioneering works in psychology relating to hu-
man motion perception suggest that feature-based motion presentation plays an important
role in recognition tasks. In the case of machine vision, the biological metaphor suggests
that it is possible to use the reduced spatio-temporal information, such as embedded in
MLDs, for recognition.

MLDs have been widely used in studies of perception in psychology (Johansson,
1975; Barclay et al., 1978; Cutting and Kozlowski, 1977); motion tracking, activity clas-
sification and recognition of human motions in computer vision (Goddard, 1992; Cédras
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Figure 1: A clockwise circle-walking person in MLDs with 16 feature points.

and Shah, 1994; Campbell and Bobick, 1995; Cédras and Shah, 1995; Boyd and Little,
1997; Dorfm̈uller, 1999); clinical gait analysis and sports science (Ferrigno and Gussoni,
1988; S̈oderkvist and Wedin, 1993; Angeloni et al., 1994; Michael, 1996; Stoddart et al.,
1999); computer game and animation industries (Gleicher, 1999; Richards, 1999); aug-
mented reality and virtual reality (Dorfm̈uller, 1999); and more recently in humanoid
robot design (Hill and Pollick, 2000). Motion analysis from MLDs uses concise and
accurate data to investigate what are the essential recognition features for modelling mo-
tion, formulating kinematics and motion synthesis. The research has gained increasing
attention in ever widening applications.

During the last two decades, MLD perception theory has emphasisedstructure-based
recognition in computer vision (Ćedras and Shah, 1994; Aggarwal and Cai, 1999; Gavrila,
1999; Moeslund and Granum, 2001). Researchers used various kinds of information from
images to recover the time varying articulated structure of the human body. Subsequently,
from the recovered underlying structure, parameters such as joint angles could be identi-
fied for motion interpretation and recognition. For example, Campbell and Bobick (1995)
classified ballet dance steps using a phase space representation. The phase space was re-
lated to each degree of freedom (DOF) in the identified articulated human structure, using
MLD data. Goddard (1992) proposed a computational model for visual motion recog-
nition of gaits in walking, jogging, and running from MLDs. He used the joint angles
and angular velocities as features for recognition. A difficulty in this work was the prior
necessity to identify individual points in the images. He has argued the possibility for a
perception directly from motion information.

Very few researchers have attempted motion recognition directly from motion infor-
mation provided by MLDs (Ćedras and Shah, 1995). However, recent work by Boyd
and Little (1997), using global shape-of-motion features derived from MLD images, has
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shown that it is possible to recognise individual people by their gait using non-structural
means. This approach avoids the complex vision problem of kinematic structure recovery.

In this paper we propose a frequency domain approach for recognition of human peri-
odic movements in MLDs. We believe that common periodic movements, such as walk-
ing, running and skipping, present human body segment movement in relative harmony.
These motion characteristics exist not only in the spatio-temporal domain, but also in fre-
quency domain. They are preserved even in the reduced information of MLDs, allowing
motion recognition without knowledge of underlying structure.

The rest of the paper is organized as follows: Section 2 reviews related work on cyclic
motion recognition. Section 3 states our method of data collection. Section 4 describes
the frequency domain approach for recognition. Section 5 provides experimental results
on recognition of human cyclic motion. We discuss and conclude our work in Section 6
and 7.

2 Related work

Human motion, specifically walking, has been studied extensively using various spatio-
temporal cues from images or MLDs. Approaches directly using motion for periodic
motion recognition are described in e.g. (Polana and Nelson, 1993; Tsai et al., 1994; Fu-
jiyoshi and Lipton, 1998; Boyd and Little, 1997). Polana and Nelson (1993) propose a
method for detecting periodic motion using Fourier transforms on several point trajecto-
ries. They indicated that in principle, the period of the movement could be inferred from
averaging the fundamental frequencies of the point trajectories. Tsai et al. (1994) use the
trajectory of one point on an object that performed some cyclic motion to compute cur-
vature. An autocorrelation is performed to enhance self-similarity within the curvature
function. The Fourier transform is finally used to detect the presence of a cycle and its
period from the spatio-temporal curvature. Fujiyoshi and Lipton (1998) generate a “star”
skeleton from the object boundary. They apply Fourier analysis to the skeleton for de-
tecting periodic motion. Then they utilise both posture and motion cycle of the “star”
skeleton to recognise activities such as walking and running.

In these approaches, Fourier transforms are used to detect or recognise periodicity.
The detected periodicity is used to assist motion recognition. For spatio-temporal do-
main approaches, in order to deal with the problems of e.g. human motion irregularities
or change in speed, techniques such as scale space or Dynamic Time Warping (DTW),
considered computationally expensive, are usually used to match portions of scale space
to find repeated patterns from identified curves.

The direct application of frequency domain analysis for motion recognition has re-
ceived much less attention. Works emphasising frequency domain analysis are, for exam-
ple, Angeloni et al. (1994), K̈ohle and Merkl (1996). Angeloni et al. use gait kinematic
data from MLDs to analyse the frequency content of whole body movement. Their work
presents the characteristic spectral distribution among articulated body parts. Köhle and
Merkl demonstrate that the kinetic data from ground reaction force platforms can also
be used to classify gait patterns in clinical gait analysis, through Fourier transforms of
vertical force components and classification by self-organising maps. The works of both
Angeloni and K̈ohle show that motion frequency spectra may include cues suitable for
motion recognition.

We are pursuing the development of interpretation and recognition of human periodic
motion. We investigate a pure frequency domain approach to model human periodic
motion using kinematic data from MLDs.
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3 Data collection from 3D-MLDs

All human kinematic data used in our investigation are acquired from a marker-based
3D optical motion capture (MoCap) system, the Vicon 512. The system provides 3D
coordinates of unidentified trajectories of markers attached to a subject, in the manner of
a 3D-MLD system. The data are not affected by the projective distortions of particular
camera views. In this respect, we differ from other classical MLD investigations, which
detect data from 2D projected image sequences. The high quality of our data allows us to
apply a frequency domain approach for direct motion recognition from the captured data.

In our motion capture system, the world coordinate system has its origin on the
ground. Thexy-plane is parallel to the ground plane, and the Z-axis is vertical. Other
conditions for data collection in our experiments are:

• Motions are captured in a control volume, about 4m (length)× 4m (width)×2.5m
(height). The measurement accuracy is to the level of a millimetre.

• Sixteen markers, regarded as feature points, are attached on human subjects at the
following locations: head, back (anatomical T10), shoulders (L/R), elbows (L/R),
wrists (L/R), AISs (L/R hips), knees (L/R), ankles (L/R), toes (L/R hallux big toes).
They are effective in indicating motion cues in MLDs.

• The trajectories are nearly always uninterrupted. Some small trajectory gaps arising
from occlusion are filled by interpolation during MoCap post-processing.

• The correspondence between a 3D trajectory and the marker identity is not assumed
to be known in the motion to be identified. In Figure 4 and Figure 5, we have
indicated feature point identity for display clarity, but identity information is not
used in the recognition process.

4 A Frequency Domain Method

Figure 2: Right toez-trajectory of a walking person.

The relative movements of feature points contain information both of motion and
structure identity. For most common periodic activities carried out on a level (horizontal)
floor, the vertical components, which are thez-coordinates of 3D-MLD trajectories, imply
crucial cues relative to ground (z = 0) and provide a simple input for Fourier analysis.
They can be used without transformation, because they contain no secular variation and
are motion orientation invariant. In this study, we use thez-data as the only motion cue to
be analysed. We find that cues from the unidentifiedz-trajectories suffice to discriminate
between a number of simple periodic human activities. An examplez-trajectory of right
toe (hallux) of a walking person is shown in Figure 2.
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4.1 Power spectral analysis for whole body movement

Our experiments assume availability only of unidentified trajectories of feature points,i =
1 . . . I, obtained from 3D-MLDs. We apply spectral analysis to the vertical component
zi(n) of the trajectory of each feature pointi of frame samplesn = 0 . . . N − 1, N being
the trial length. The Fourier decomposition of thez-trajectory is expressed by

zi(n) =
1
2
ai(0) +

1
N

N−1∑

k=1

ai(k) cos(2πnk/N) + bi(k) sin(2πnk/N), (1)

whereai(k) andbi(k) are the Fourier coefficients of feature pointi. To achieve an adequate
frequency resolution, the length of each trial isN =256 to 1300 frames, ideally including
at least 5 gait cycles (Gc) for a specific periodic movement. When the trial lengthN is an
exact power of two, we adopt the Fast Fourier Transform (FFT) algorithm which is more
efficient than the raw Discrete Fourier Transform (DFT).
The power spectrum for thekth frequency multiple of feature pointi is defined by the
Fourier coefficientsai(k) andbi(k) as

Pi(k) = a2
i(k) + b2

i(k), k = 1, 2 . . . N/2 . (2)

Examples of such power spectra for a clockwise circle-walking person are given in Fig-
ure 3.

From power spectral analysis of whole-body feature points for a number of common
cyclic movements, such as walking, running, jumping, skipping, we find the dominant
power of human movements occupies only a narrow bandwidth, with the upper limit
about 10 Hz. The power spectral distribution shows clustering around some frequencies
related to the fundamental activity frequency, such as the gait-cycle frequency in walking
and running, and its multiples. The magnitude and envelope of a specific spectrum retain
time-shift invariance regardless of where in time the Fourier transform is performed. We
also observe that spectral patterns reflect the activeness of body parts, consistent with un-
dergoing different intensity and character of motion. For example, as shown in Figure 3,
each spectrum of head, shoulder, back and hip has a small total power and a very dif-
ferent distribution compared to each spectrum of elbow, wrist, knee, ankle and toe. Low
frequency components well under 1Gc in spectraPi reflect vertical motion noise asso-
ciated with secular postural changes and human motion irregularity over the trial track.
These low frequency noise components are relatively more evident for body parts under-
going small vertical movements, such as for head, back and shoulder during walking. The
spectra of active body parts, such as elbow, wrist, knee, ankle and toe, show remarkable
motion power clustering around the Gc and its multiples, and therefore show a relatively
diminished motion noise at low frequency. We can also observe that the power compo-
nents of the left toe (Figure 3(j)) are larger than that of the right toe (Figure 3(i)), though
their spectral patterns are similar. The power discrepancy arises because clockwise circle-
walking has a larger left foot movement than that of the right foot. For the same kind of
motion in different subjects, spectral patterns of the same feature points are similar, hint-
ing at the motion nature, differences being related to variation in individual speed and
amplitude.

From the power spectral analysis of human periodic movements, we find human body
parts present rhythmicity and harmony related to a fundamental activity cycle. To achieve
speed-invariant representation for the same kind of movement, we normalise whole-body
spectra to the fundamental activity cycle or generalised Gait-cycle (Gc). To obtain an
accurate Gc, we sum the power spectra over all feature pointsi for frequencyk∗∆f within
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(a) head (b) back (anatomical T10)

(c) shoulder (d) elbow

(e) wrist (f) hip

(g) knee (h) ankle

(i) right hallux (big toe) (j) left hallux (big toe)

Figure 3: Examples of vertical-component power spectra of a clockwise circle-walking
person.N = 1024, fδ = 60 Hz, Gc≈ 1 Hz.
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a band-limited frequency [0.4∼5.0] Hz, ∆f = fδ/N denotes the frequency resolution,fδ
denotes the chosen sample rate, such as60 Hz used in our experiments for human motion.
The frequency corresponding to the maximum power magnitude in the first clustering of
the resulting spectrum sum,

k∗ := max
k

{∑

i

Pi(k)

}
(3)

is regarded as the activity cycle, or generalised gait-cycle (Gc= k∗∆f).
The detected cycle frequency is subsequently used to normalise the frequency axis of

power spectrum from Hz to generalised Gait-cycle (Gc). Figure 4 shows examples of
Gc-scaled whole-body power spectra1.

4.2 Feature power vector and motion template

Observably, frequency resolutions∆f = fδ/N differ for the different trial lengthsN .
There is not a consistent number of spectral components among these spectra. It is there-
fore impossible to implement component-by-component comparison. A uniform motion
template for trials is needed in order to make direct spectral comparison. Moreover in
practice, a random trial lengthN may contain only a few motion cycles and result in an
imprecise spectrum.

To obtain a uniform motion template, considering the nature of clustering distributions
in power spectra, we extract a set of dominant power components around Gc and its
multiples from each spectrumPi, and regard the result as afeature power vector~νi of the
feature pointi:

νi(0) = DCi ,

νi(n)|n=1,...4 =
∑

k∈Wn

Pi(k) ,

νi(5) =
∑

k/∈W1,...4, k 6=0

Pi(k) ,

νi(6) =
∑
k 6=0

Pi(k) .

(4)

The first componentνi(0) of the vector~νi is theDC component in the Fourier decom-
position, equal to12ai(0), denoting the average vertical position of this point. To mitigate
the frequency resolution problem, inνi(n) wheren = 1,... 4, we utilisesum-windowsWn

to sum power components within the range of±20%Gc around thenthGc. The param-
eterνi(5) is used to represent the non-selected “small power” components that have not
been included in the±20%Gc window powersνi(1) to νi(4). The last itemνi(6) is used
to represent the sum of motion powers over all frequencies of feature pointi. Feature
power vectorsaggregate the frequency components into just 7 feature elements (νi(0) to
νi(6)). This makes comparisons with differently sampled trials possible, and condenses
frequency power matching to efficient aggregate matching.

We stackI feature power vectorsof feature points together as amotion template, V =
{~νi | i = 1 . . . I} . The template can be viewed as anI × 7 array. Each column in the

1In Figure 4 and Figure 5, 16 feature points are arranged in the order of HEAD, BACK, LSHO, RSHO,
LELB, RELB, LWRI, RWRI, LASI, RASI, LKNE, RKNE, LANK, RANK, LTOE, RTOE.

http://www.aisb.org.uk



Perception of Human Periodic Motion in MLDs

1−Gc
2−Gc
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(a) anticlockwise circle-walking
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(b) butterfly anticlockwise circle-walking
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LKNE
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LTOE

0

0.5
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2

2.5

3
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Gait−cycle frequency

(c) running-on-spot

1−Gc
2−Gc

3−Gc
4−Gc

HEAD
LSHO

LELB
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LKNE

LANK
LTOE

0

2

4

6

8

10

x 10
5

Gait−cycle Frequency

(d) skipping-on-spot

Figure 4: Gc-scaled whole-body power spectra.

motion template is scaled relative to the maximum value in this column. By this means,
the power amplitudes are normalised for subjects. After normalisation, averaging is used
to reduce small differences in motion templates among different subjects to generate a
standard motion templatefor a specific motion. Some examples of motion templates are
shown in Figure 5. In experiments, we found high-frequency feature power beyond3rdGc
are very small, so we setνi(4) to zero.

4.3 Motion recognition

Motion recognition is straightforward at this stage. It is achieved by finding the best
match between an observed motion template and pre-stored standard motion templates.
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DC
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(a) anticlockwise circle-walking
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(b) butterfly anticlockwise circle-walking
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(c) running-on-spot
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small−power

total−power
HEAD

LSHO
LELB

LWRI
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LKNE
LANK

LTOE

0

0.5

1

(d) skipping-on-spot

Figure 5: Examples of motion templates.

We apply the algorithm stated above to an observed motion to generate its motion template
U = {~µj | j = 1 . . . J} , with J unidentifiedfeature power vectors. The feature points of
the observed motion can be an adequate subset (J ≤ I) of standard templates. We use
anJ × I match matrixM = {m(j,i)| j = 1 . . . J, i = 1 . . . I}, see Equation 5, to store
the weighted difference between eachjth motion vector−→µ j in the observed template and
eachith motion vector−→ν i in a model template,

m(j,i) =
6∑

n=0

|µj(n) − νi(n)| ωn , (5)

where~ω = [ω0, ω1, . . . , ω6] is the weight vector. In our experiments, we used|~ω|1 = 1,
~ω = [0.34, 0.2, 0.2, 0.03, 0, 0.03, 0.2].

In this motion template comparison, the first element related to DC-component is
weighted by0.34, as it significantly indicates the identity of a feature point from the
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average normalised vertical position relative to the origin on the ground. We found from
our experiments that principal spectral powers distributed around1stGc and2ndGc are
nearly 10 times larger than the power around3rdGc. We therefore set the comparison
weights of1stGc, 2ndGc and3rdGc elements to be0.2, 0.2 and0.03, respectively. The
fifth weight in ~ω with value0.03 is used for the comparison of small power which may
only occupy less than10% of the total motion power. This element is very possibly inter-
fered by motion irregularity and noise, and can not be highly weighted. The last element
weighted by0.2 implies motion intensity in terms of total power.

The best match of pointj is taken to be the point corresponding to the minimum
elementmini{m(j,i)} in the jth row of match matrixM . This allowsmotion power
spectral similaritySfft to be defined from all best matches of theJ feature points as

Sfft =


1−

J∑
j=1

mini{m(j,i)}

J




3

. (6)

The motion with maximum similaritySfft for all the searched templates is taken to indicate
recognition.

5 Experimental Results

All experiments were conducted using real motion capture data from a marker-based op-
tical motion capture system, the Vicon 512, as described in section 3. Recognition was
tested on simple periodic activities, namely walking-on-spot (Walk-S), circle-walking
(Walk-C, Walk-A for clockwise/anticlockwise directions), clockwise butterfly-walking
(waving hands up and down, B-Walk-C), running-on-spot (Run-S), clockwise circle-
running (Run-C), skipping type 1 (feet stepping alternately, Skip1), skipping type 2 (feet
stepping together, Skip2), jumping type 1 (arms raised to horizontal level, Jump1), jump-
ing type 2 (arms raised over head, Jump2).

Recognition is indicated by themotion power spectral similaritySfft in Table 1. The
results are averaged for a group of subjects that consisted of males and females, with ages
from 5 to 60 years. The highest column entries, highlighted, occur when the observed
activity matches the motion template activity. Because the algorithm utilises a whole-
body power spectral analysis approach, recognition could be achieved by comparison
of the movement on each feature point. For example, similarity parametersSfft of an
observed circle-walking with each model activity decrease in the order: circle-walking,
walking-on-spot, clockwise butterfly-walking in a circle, circle-running, running-on-spot,
skipping and jumping.

From the results above, we find that the proposed power spectral analysis approach is
able to classify periodic motions solely on unidentified vertical-component trajectories.
The different classes of movements, such as walking, running, jumping and skipping,
are discriminated by the similarity parameterSfft. Even with similar movements, such
as running-on-spot and circle-running, there is discrimination because the magnitudes of
power spectra for left and right limbs have a bias in circular activities.
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6 Discussion

We have found that the parameterSfft reflects motion power characteristics of the whole-
body, giving rise to recognition possibility. The parameterSfft has been made insensitive
to inter-subject variability for the same activity, by scaling with respect to the Gc. The
same scaling, however, has also lost the important discriminating factor of speed among
different activities, represented by the value of Gc itself. We therefore considered activity
periodicity assisted recognition, defined asSfft-Gc = {Sfft, SGc}, formally

SGc = 1− |Gcobserved −Gcmodel|
Gcmodel

, (7)

Sfft-Gc = 0.8Sfft + 0.2SGc . (8)

As shown in Table 1, the combined similarity parameterSfft-Gc increases the ability to
distinguish motions with largely different activity periodicity, such as running and walk-
ing. It will not contribute to distinguishing motions with similar activity periodicity, such
as walking and Jump2, with activity periodicities Gc around0.92 Hz2.

For best frequency resolution, we use the Fourier transform for the whole sequence of
lengthN whenN < 7 × fδ/Gc, rather than the truncated sequence of length2blog2 Nc.
In this case, the FFT is reduced to the raw Discrete Fourier Transform (DFT) algorithm.
This is a tradeoff between frequency resolution and computational cost. Nevertheless,
because each motion template is efficiently coded by a small number of parameters using
feature power vectors, and because we also only use one standard template for indexing
each kind of motion, a short matching time and small database are required. The method
proved to be computationally efficient.

7 Conclusions

A frequency domain approach based on whole-body spectral analysis is proposed for
efficient modelling and recognition of articulated periodic activities. The approach is
motion-based using unidentified trajectories of feature points from MLDs. We apply
power spectral analysison each vertical-component trajectory from 3D-MLDs and detect
a set offeature power vectors. These feature power vectors are used to generate amotion
templatefor given periodic activity, averaged for a number of subjects, after normalisation
both on frequency and power magnitude. This allows recognition to be carried out in
frequency domain for a wide range of subjects. Recognition involves comparison of a
template of the observed motion with standard motion templates to find a best match. The
choice of feature points is not prescribed, the only requirements being that chosen feature
points effectively reflect motion cues and are common to all templates.

The experimental results indicate that frequency domain analysis allows classification
of periodic motions without identification of underlying kinematic structure. It demon-
strates that inherent characteristics of human periodic movements exist not only in the
spatio-temporal domain of MLDs, but also in the frequency domain. Frequency domain
features hint motion nature which can be used to classify different periodic activities, and
even discriminate similar movements within the same class.

2Averaged activity periodicity Gc of each periodic movement used the standard motion template and the Gc
range of a group of observed motion are indicated in Table 1.
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Whether frequency domain components also include information for individual subject
recognition, and what kinds of features would be necessary for a more precise, reliable
and unique interpretation to distinguish individuals, are still open questions.
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Köhle, M. and Merkl, D. (1996). Things we observed when watching people walk: Clas-
sification of gait patterns with self-organizing maps. InProc. 7th Australian Conf.
Neural Networks ACNN’96, Canberra.

Michael, M. W. (1996). Gait analysis: An introduction. Butterworth-Heinemann Ltd,
Oxford.

Moeslund, T. B. and Granum, E. (2001). A survey of computer vision-based human
motion capture.Computer Vision and Image Understanding, 81(3):231–268.

Polana, R. and Nelson, R. (1993). Detecting activities. InProc. IEEE Computer Vision
and Pattern Recognition, pages 2–7.

Richards, J. (1999). The measurement of human motion: A comparison of commercially
available systems.Human Movement Science, 18(5):589–602.
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Abstract

We describe a new kind of image representation in terms of local multi–modal
Primitives. These Primitives are motivated by processing of the human visual system
as well as by functional considerations. We discuss analogies of our representation
to human vision and concentrate specifically on the implications of the necessity of
communication of information in a complex multi-modal system.

1 Introduction
In this paper, we describe a new kind of image representation in terms of local multi–
modal Primitives (see Figure 1). These Primitives are motivated by processing in the
human visual system as well as by functional considerations. The work described here
has been evolved from a project started in 1998 which has been focused on the integration
of visual information (ModIP, 2003). The image representation described here is now a
central pillar of the ongoing European project (ECOVISION, 2003) that focuses on the
functional modelling of early visual processes.

In the human visual system beside local orientation also other modalities such as
colour and optic flow (that are also part of our multi–modal Primitives) are computed in
the hyper-columns of V1 (Hubel and Wiesel, 1969; Gazzaniga, 1995). All these low level
processes face the problem of an extremely high degree of vagueness and uncertainty
(Aloimonos and Shulman, 1989). This arises from a couple of factors. Some of them
are associated with image acquisition and interpretation: owing to noise in the acquisition
process along with the limited resolution of cameras, only erroneous estimates of semantic
information (e.g., orientation) are possible. Furthermore, illumination variation heavily
influences the measured grey level values and is hard to be modelled analytically (Ikeuchi
and Horn, 1981). Information extracted across image frames, e.g., in stereo and optic flow
estimation, faces (in addition to the above mentioned problems) the correspondence and
aperture problem which interfere in a fundamental and especially difficult way (Ayache,
1990; Klette et al., 1998).

However, the human visual system acquires visual representations which allow for
actions with high precision and certainty within the 3D world under rather uncontrolled
conditions. The human visual system can achieve the needed certainty and completeness
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Figure 1: A: Image sequence and frame. B: Schematic representation of the multi–modal
Primitives. C: Extracted Primitives at position with high amplitude.

by integrating visual information across modalities (Hibbard et al., 2000) and by utilising
spatial and temporal interdependencies (Phillips and Singer, 1997; Hoffman, 1980). This
integration is manifested in the huge connectivity between brain areas in which the differ-
ent visual modalities are processed as well as in the large number of feedback connections
from higher to lower cortical areas (Gazzaniga, 1995). The essential need for integrating
visual information in addition to optimising single modalities to design efficient artificial
visual systems has also been recognised in the computer vision community after a long
period of work on improving single modalities (Aloimonos and Shulman, 1989).

However, integration of information makes it necessary that local feature extraction is
subject to modification by contextual influences. As a consequence adaptability must be
an essential property of the visual representation. Moreover, the exchange of information
between visual events has necessarily to be paid for with a certain cost. This cost can be
reduced by limiting the amount of information transferred from one place to the other, i.e.
by reducing the bandwidth. This is the reason why we are after a condensed description
of a local image patch, which however preserves the relevant information. Here relevance
has to be understood not only in an information theoretical sense, but in a global sense (the
system has to be subject to modifications by global interdependencies, in particular local
entities have to be connectable to more complex entities) and action oriented sense (the
transfered information has to be relevant for the actions the individual has to perform).

Taking the above mentioned considerations into account, the Primitives, which are the
basic entities of our image representation, can be characterised by four properties:

Multi-modality: Different domains that describe different kinds of structures in
visual data are well established in human vision and computer vision. For example,
a local edge can be analysed by local feature attributes such as orientation or energy
in certain frequency bands (Krüger and Sommer, 2002). In addition, we can distin-
guish between line and step–edge like structures (contrast transition). Furthermore,
colour can be associated to the edge. This image patch also changes in time due to
ego-motion or object motion. Therefore time specific features such as a 2D velocity
vector (optic flow) are associated to our Primitives (see Figure 1).

http://www.aisb.org.uk
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Adaptability: Since the interpretation of local image patches in terms of the above
mentioned attributes as well as classifications such as ‘edge–ness’ or ‘junction–
ness’ are necessarily ambiguous when based on local processing (Krüger and Fels-
berg, 2003), stable interpretations can only be achieved through integration by mak-
ing use of contextual information (Aloimonos and Shulman, 1989). Therefore, all
attributes of our Primitives are equipped with a confidence that is essentially adapt-
able according to contextual information expressing the reliability of the attribute.
Furthermore, feature attributes themselves are subject to correction mechanisms
that use contextual information.

Condensation: Integration of information requires communication between Prim-
itives expressing spatial (Krüger and Wörgötter, 2002; Krüger et al., 2002b) and
temporal dependencies (Krüger et al., 2002a). This communication has necessarily
to be paid for with a certain cost (as will be made explicit in section 3). This cost
can be reduced by limiting the amount of information transferred from one place to
the other, i.e., by reducing the bandwidth. Therefore we are after a condensed rep-
resentation. Also for other tasks it is essential to store information in a condensed
way, e.g., for the learning of objects to reduce memory requirements.

Meaningfulness: Communication and memorisation not only require a reduction
of information. We want to reduce the amount of information within an image
patch while preserving perceptually relevant information. This leads to meaningful
descriptors such as our attributes position, orientation, contrast transition, colour
and optic flow.

We will describe our feature processing in section 2 and will compare it to early human
visual processing in Section 3.

2 Feature Processing and Application
In this section we describe the coding of modalities associated to our Primitives. In addi-
tion to the position � , we compute the following semantic attributes and associate them
to our Primitives (see also Figure 1).

Frequency: We describe the signal on different frequency levels � independently. Often
the decision in which frequency band the relevant information does occur is difficult,
therefore we leave this decision open to be decided at later stages of processing. It may
be even that for the same position on different frequency levels there occur different kinds
of semantic information (for example, the top of the toy in Figure 2A on a high frequency
level can be described as texture–like while on a lower frequency level it resembles an
edge).

Orientation: The local orientation associated to the image patch is described by 	 . The
orientation 	 is computed by interpolating across the orientation information of the whole
image patch to achieve a more reliable estimate. This holds also true for the following
feature attributes contrast transition, colour and optic flow.

Contrast transition: The contrast transition is coded in the phase 
 of the applied filter
(Felsberg and Sommer, 2001). The phase codes the local symmetry, for example a bright
line on a dark background has phase 0 while a bright/dark edge has phase �
����� (in Figure
3 the line that marks the border of the street is represented as a line or two edges depending

http://www.aisb.org.uk
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Figure 2: Examples of edge structures in an image sequence.

on the distance from the camera). In case of boundaries of objects, the phase represents
a description of the transition between object and background (Kovesi, 1999; Krüger and
Wörgötter, 2002).

Colour: Colour ����������������� � is processed by integrating over image patches in coinci-
dence with their edge structure (i.e., integrating separately over the left ( � � ) and right ( � � )
side of the edge as well as a middle strip ( �!� ) in case of a line structure). In case of a
boundary edge of a moving object at least the colour at one side of the edge is expected
to be stable (see Figure 2E–G) since it represents a description of the object.

Optic Flow: Local displacements " is computed by the well known optic flow technique
(Nagel, 1987).

Furthermore, we represent the system’s confidence # that the entity $ does exist. We
end up with a parametric description of a Primitive as

%'& �(�)���*��	+��
,�-��� � ��� � ��� � �.��"�/�#0�.1
In addition, to each of the parameters 
,� �(���������2�����-�.��" there exist confidences #-3���4657 
,�����8��������������":9 that code the reliability of the specific sub–aspects that is also subject
to contextual adaptation.

We have applied our image representation to different contexts. First, an image patch
also describes a certain region of the 3D space and therefore 3D attributes can be asso-
ciated such as a 3D-position and a 3D-direction. In (Krüger et al., 2002b; Pugeault and
Krüger, 2003), we have defined a stereo similarity function that makes use of multiple-
modalities to enhance matching performance. Second, the Primitives can be subject to
spatial contextual modification. We define groups of Primitives based on a purely sta-
tistical criterion in (Krüger and Wörgötter, 2002). Once these groups are defined, we
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Figure 3: A: Original Image. B: Extracted Primitives with high amplitude.

modulate the confidences of our Primitives: confidences are increased if the Primitives
are part of a bigger group, otherwise the confidences are decreased. Thirdly, we have
stabilised features according to the temporal context. In (Krüger et al., 2002a; Krüger
et al., 2002c), we make use of the motion of an object to predict feature occurrences and
showed that we can stabilise stereo processing by modifying the confidences according to
the temporal context.

3 Hyper-columns of Basic Processing Units in early Vi-
sion

In this section, we discuss aspects of the processing of visual information in the human
visual system and draw analogies to our image representation.

The main stream of visual information in the human visual system goes from the two
eyes to the LGN (Lateral Geniculate Nucleus) and then to area V1 in the cortex (see Fig-
ure 4 and (Wurtz and Kandel, 2000a)). There are two kinds of cell types involved (M
(magnocellular) and P (parvocellular) cells) that have different response characteristics:
M cells have a low spatial but high temporal resolution and are not colour sensitive. In
contrast to M cells, P cells have a low temporal and high spatial resolution and are colour
sensitive. Both kinds of cells project into two cortical pathways, the dorsal and ventral
pathway (see Figure 4). The ventral pathway goes from the cortical area V1 to V2 to the
Inferior Temporal Area (IT) and is believed to be mainly responsible for object recog-
nition (Tanaka, 1993). In the dorsal stream information is transferred from V1 to MT
(Middle Temporal Area) to MST (Medial Superior Temporal Area) and is believed to be
involved in the analysis of motion and spatial information.

V1 (or Visual Area 1) is the main input of both pathways. The structure of V1 has
been investigated by Hubel and Wiesel in their ground-breaking work (Hubel and Wiesel,
1962; Hubel and Wiesel, 1969). V1 is organised in a retinotopic map that has a spe-
cific repetitively occurring pattern of substructures called hyper-columns. Hyper-columns
themselves contain so called orientation columns and blobs (see Figure 5). The main in-
put of V1 comes from the LGN and targets to layer 4 to which information of both eyes
projects (see Figure 5Aiii).

The orientation columns are organised in an ordered way such that columns represent-
ing similar orientations tend to be adjacent to each other (see Figure 5Ai). However, it is
not only orientation that is processed in an orientation column but the cells are sensitive
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Figure 4: Flow of visual information in the human visual system (schematic).

to additional attributes (see Figure 5D) such as disparity (Barlow et al., 1967; Parker and
Cumming, 2001), local motion (Wurtz and Kandel, 2000b), colour (Hubel and Wiesel,
1969) and phase (Jones and Palmer, 1987). Also specific responses to junction–like struc-
tures could be measured (Shevelev et al., 1995). Therefore, it is believed that in V1 basic
local feature descriptions are processed similar to the feature attributes coded in our Prim-
itives. However, since the processing is local,1 the ambiguities of visual information is
not resolved at this level. For example, response properties of neurons in V1 reflect the
aperture problem (Stumpf, 1911). This holds also for our Primitives since the flow is also
computed by a local operation.

It is believed that mainly form is processed in the ventral pathway. Neurophysiological
equivalents of illusionary contours can be detected in V2 but not in V1 (von der Heydt
et al., 1984). This is not surprising since illusionary contours like in the Kanizsa triangle
(Kanizsa, 1976) presuppose an integration of information across a large spatial domain as
well as across different feature types (e.g., edges and junctions) and can therefore only be
processed at a later stage.

The different visual modalities are not computed independently but are combined. For
example in V1 the processing of motion is necessarily intertwined with the processing
of orientation because of the aperture problem. In V4, colour and orientation is com-
bined (Wurtz and Kandel, 2000b). Accordingly, in our image representation the coding
of colour is deeply intertwined with the coding of orientation. Colour is a feature that
describes homogeneous surfaces. However, orientation describes discontinuities and can
be used to separate the surfaces. In our image representation we therefore first compute
orientation and then compute a left and a right colour according to this orientation.

In the dorsal pathway mainly motion is analysed. Like the occurrence of illusionary
contours presuppose global interactions, the aperture problem can only be solved by tak-
ing the global context into account. This does not happen (and can not happen because
of the local processing) in V1. However, in MT and MST many cell responses indicate a
solution to aperture problem (Pack and Born, 2001; Wurtz and Kandel, 2000b). Similar
to the cells in V1, our Primitives also reflect the aperture problem. However, we can use
the output of our Primitives to apply global mechanisms that disambiguate the local flow.

As in the ventral pathway, cells in the dorsal pathway show multi-modal response

1There is a high connectivity within a hyper-column. There exist also connections across hyper-columns.
However their distribution falls sharply with distance.
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Figure 5: Hyper-columns in V1. A: There exist three physiological distinguishable sub-
structure in a hyper-column: (i) in orientation columns information about oriented edge
structure is represented in a topological way. (ii) Colour information is coded in so called
‘blobs’. (iii) Information of both eyes are input to the fourth cortical layer (see also B).
B: three–dimensional structure of a hyper-column. C: organisation in cortical layers. D:
feature attributes that are coded in a hyper-column.

patterns. For example, a moving edge may not be visible as a luminance edge but can be
constituted by colour or texture. MT cells respond to these kinds of structures although
they are not sensitive to colour alone (Thiele et al., 1999; Wurtz and Kandel, 2000b).

Let us summarise. In V1 visual information is mainly locally processed. However,
some semi–local interactions exist. The ambiguities of visual information can not be
resolved at this stage of processing. A specialisation to form processing (along the ventral
pathway V1–V2–V4–IT) and motion processing (along the dorsal pathway V1–V2–MT–
MST) does occur.

As mentioned above, stable and reliable information can only be achieved by disam-
biguation through integration. However, this integration process makes the exchange of
information within and across visual areas mandatory. As discussed before, intra–areal
connections are very limited. However, inter–areal connection project to a much wider
field of the next layer.

Regarding communication between visual areas we have to address two issues:

1) What is the bandwidth of information we want to transfer (“quantity”)?

2) What kind of information do we want to communicate (“quality”)?

The first question leads to a reflection about costs of communication. In any commu-
nication system transfer of information is associated to a cost which normally increases
with the amount of information to be transferred and with the distance to be covered. This
could concern the costs of “cables” but also the cost of the energy used for the transfer
(Attwell and Laughlin, 2001).
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In the brain, the communication between two neurons is realized by an axon docking
to the soma or the dendrites of other neurons. Accordingly, the complexity and, thus, the
“cost” of communication increases with the number of connections. This holds in a very
general sense and may have been one driving force for the bandwidth reduction that is
actually observed in neuronal visual processing. This bandwidth reduction most clearly
manifests itself in mechanisms of visual attention and visual awareness. Focused attention
is often taken as one central mechanisms used to reduce the bandwidth of computation
as well as of information transfer in the brain to a manageable degree. Anatomically the
bandwidth limitation requirement may be reflected by the density of fibres which connect
different areas which is smaller than that which connects cells within a hyper-column.

A similar mechanism is also used in our image representation were we arrive at a
significant reduction of information following the first processing stages. Compared to
an average sized image patch of ;=<?>@;=< pixels represented by a Primitive the output of
a Primitive has less than 20 values, i.e., we have a compression rate of more than 96%.
This rate becomes even higher when we compare the output of a Primitive to intermediate
local stages of processing where feature attributes for all modalities are derived for each
pixel.

The second question above concerns the quality of information which needs to be
transferred between the different stages of visual processing. Here we refer back to what
we have said above noting that pre-processed visual information is exceedingly ambigu-
ous as the consequence of fundamental problems in image data acquisition as well as
resulting from the intrinsic structure of the detectors (receptive fields). This leads to the
situation that redundant information must be transferred because only through redundancy
it can be assured that erroneous information can be disambiguated. For this it is required
that a visual event which is represented by the firing of neuron A has a relevance for the
event represented by B. Since event A is supposed to be used to correct event B both
events need to be highly correlated. This can be quantified by the following measure of
statistical interdependencies: A �(BDC EF�A ��B2� 1 (1)

If this term takes a high value then there is a high likelihood of the occurrence of event B
when we know event E has occurred compared to the likelihood of the occurrence of the
event B without prior knowledge. In this case, events A and B can be used to mutually
correct each other because they are carrying shared (i.e., redundant) information. The
expression (1) has been called ‘Gestalt coefficient’ in (Krüger, 1998) where it was shown
that applying binarised Gabor wavelets to natural images, a high Gestalt coefficient cor-
responds to the Gestalt laws Collinearity and Parallelism. As an extension of (Krüger,
1998), it has been shown in (Krüger and Wörgötter, 2002) that by using our multi–modal
Primitives we can increase the statistical interdependencies measured by (1) significantly
compared to using orientation only (Krüger, 1998). That means that by using our Primi-
tives we can increase interdependencies of visual events. In this way in our Primitives not
only information is condensed but transferred to more meaningful descriptors.

4 Conclusion
We have introduced a novel way to compute visual Primitives which are motivated by
early processing in the human visual system in analogy to the output of V1 hyper-columns.
These Primitives are multi-modal and give a dense and meaningful description of a scene.
Our Primitives can adapt according to the spatial and temporal context that is realized in
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the human visual system through a high synaptic connectivity. In this way the locally
unreliable feature extraction can be disambiguated and stable feature representations can
be achieved.
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Abstract 
 

The orientation selectivity of simple cells in visual cortex gives a striking 
example of the biological system perfectly adapted to the perception of oriented 
stimuli. Several models have employed major principles of orientation 
selectivity for the processing of contrast variations in images. We have recently 
suggested a model for iterative orientation tuning, in which the astonishingly 
regular layout of simple cells is explicitly involved in the processing of oriented 
stimuli. In this work we extended the iterative model by incorporation a 
mechanism of cross-oriented inhibition. We then investigated the two models 
using synthetic, noisy and natural images. We found that the two models 
account for a large fraction of the contrast invariance of orientation selectivity – 
another striking aspect of the behaviour of simple cells. Our results indicate that 
the iterative processing of visual stimuli combined with local amplification of 
proximate simple cells is responsible for ~75% of the contrast invariance. 
Contrary to some earlier studies, the cross-oriented inhibition did not have any 
significant contribution to the contrast invariance but accelerated the 
convergence of the iterative processing on a stable solution. When probed with 
different images, the new model with cross-oriented inhibition generated a clear 
pattern of object contours. 

 
 

1 Introduction 
 
Edge detection is a cornerstone processing stage in the analysis of visual information by 
humans. This has triggered the development of numerous algorithms for detection of 
local luminance changes in images. The most popular edge detectors include Marr-
Hildreth zero-crossings [1], Canny [2], Haralick [3], Deriche [4] approaches, and a full 
list of suggested algorithms would go on. From the sheer number of suggested edge 
detectors, one may conclude that the detection of contours of objects in images is not an 
easy task for a computer. The fact that a person can effortlessly find the contours of 
objects has inspired the investigation, and modelling of a contrast detection circuitry in 
mammalian visual system. This work attempts at developing a processing algorithm for  
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contrast detection in images built upon principles of the physiological orientation 
selectivity in mammals.  

Forty years ago, Hubel and Wiesel ([5], 1962) discovered that simple cells in cat 
primary visual cortex (V1) are tuned for the orientation of light/dark borders. The inputs 
to V1 come from the lateral geniculate nucleus (LGN), whose cells are not significantly 
orientation selective [6]. LGN cells themselves get their input from the retinal ON and 
OFF ganglion cells with centre-surround receptive fields (RFs), first discovered by 
Kuffler ([7], 1953). The orientation selectivity of simple cells in V1, as proposed by 
Hubel and Wiesel [5], derives from an oriented arrangement of input from the LGN: 
ON-centre LGN inputs have RFs centres aligned over simple cells ON subregions, and 
similarly for OFF-centre inputs. Because of this input arrangement, simple cells 
perform a linear spatial summation of light intensity in their fields and have an 
elongated shape of their RFs. The orientation preference of simple cells is quite narrow, 
and turning a bar-stimulus through more than about 20° from the preferred orientation, 
greatly reduces the cell’s firing rate.  

A traditional feed-forward model of the orientation selectivity performs linear 
spatial summation of input signals from the LGN followed by a non-linear rectification 
stage, in which a threshold filters out small inputs evoked by improperly oriented 
stimuli [8], [9]. Although many aspects of simple cell responses are consistent with this 
linear model, there also are important violations of linearity. For example, scaling the 
contrast of a stimulus would identically scale the responses of a linear cell. At high 
contrasts, however, the responses of simple cells show clear saturation. Such behaviour 
of the simple cells is referred to as contrast invariance of orientation selectivity [10].  

Several neuronal models have attempted to address the nonlinearities of simple cell 
responses by extending the linear model to include a gain control stage [11], [12], [13]. 
It is suggested the response of a simple cell is governed by shunting inhibition - the 
divisive normalization of the cell activity due interaction with other cells. The shunting 
inhibition controls the gain of the transformation of the cell’s input current to output 
membrane potential [14]. A followed rectification stage converts the latter into a firing 
rate of the cell. The models with shunting inhibition predict response saturation because 
the divisive normalization increases with stimulus contrast. Another class of models, 
which also exhibit the contrast invariance rely on the amplification of LGN input by 
recurrent excitation occurring within the cortical column [29], [30], [31], [32]. This 
amplification is gated selectively by intracortical inhibition and thereby sharpens weak 
and poorly oriented LGN input. To arrive at these results the models make an 
assumption that LGN synapses comprise 5%-10% of the total excitatory synapses 
present in layer 4. However, recordings of visually evoked membrane potential changes 
in simple cells [33] indicate that the LGN input is responsible for generating 
approximately 35% to 46% responses of simple cells.  

Despite remaining controversy over the details of synaptic mechanisms underlying 
orientation selectivity, advances in understanding of major principles of its 
functionality, laid the foundation for the development of computational models for 
contrast detection in images [15], [16], [17]. The typical architecture of such a model is 
built upon a simple cell circuit, which is composed of segregated ON- and OFF-data 
streams interacting via mechanism of opponent inhibition as suggested by Ferster [18].  

None of these models, however, explicitly employed the impressive regularity in a 
spatial layout of simple cells called by Hubel and Wiesel [5], the functional 
organisation of visual cortex. Visual cortex has a distinctive striped appearance in 
cross-section, caused by the arrangement of cells in layers of different densities and for 
this reason it is also known as the striate cortex. Simple cells that respond more strongly 
to  stimuli  in  one  eye  than  in  the  other,  and  are said to show ocular dominance, are  
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aligned into ocular dominance stripes. Moreover, when the orientation preference of 
cells in the ocular dominance stripes was related to their position, an astonishingly 
systematic organisation has emerged: the orientation preference changed linearly with 
position across V1 [19], [20]. After some distance where cells had shown a systematic 
clockwise stepping of their orientation preferences, the sequence would reverse to 
anticlockwise. Hubel and Wiesel therefore suggested that orientation-selective cells are 

ns or “slabs”, in which all cells have the same preferred orientation, 
 slabs represent adjacent orientation. Because, furthermore, the 

orientation slabs tended to be at right angles to ocular dominance stripes, their regular 
structure was nicknamed as Icecube layout.  

Since axons and dendrites take up a significant fraction (about 60%) of the cortical 
volume [21], limitations on the brain size require keeping neuronal processes as short as 
possible. Evolution was likely to select in favour of developmental rules that produce 
orientation preference maps which are sufficiently optimised in terms of length of 
neuronal connections. Numerical simulations relating orientation preference maps to the 
length of intracortical wiring have shown that the optimised layout is the Icecube if the 
strength of local connections is Gaussian [22]. Therefore we assume that local 
interactions of spatially close simple cells within the Icecube ought to be important for 
their functionality. A first attempt at utilizing the regularity of orientation preference 
maps for contrast detection in images, has been made in [23]. It is suggested that the 
processing of visual input undergoes several iterative cycles. The responses of simple 
cells at different iterations change due to local interactions of proximate cells. The 
model takes advantage of the regular layout of orientation preference in a very explicit 
way: each simple cell is sending activation into a regular net of local connections and 
amplifies the activity of spatially close cells. The model achieves a significant level of 
contrast invariance of orientation selectivity due to the iterative amplification of cells of 
similar orientations at retinotopically close positions.  

The work here discusses an extension of the iterative model [23] by incorporating a 
mechanism of orthogonal suppression of spatially close simple cells of V1. The new 
model accounts for another aspect of the behaviour of simple cells, namely that simple 
cells are subject to cross-oriented inhibition; the responses to an optimally oriented 
stimulus can be diminished by superimposing an orthogonal stimulus that is ineffective 
in driving the cell when presented alone [24], [25]. We suggest that a highly systematic 
wiring of simple cells in neighbouring ocular dominance bands is involved in the 
transition of inhibiting signals to nearby cells of orthogonal orientation.   
We test the performance of both models using a selected set of two-dimensional stimuli 
as well as noisy and natural images. Comparison of processing results reveals a very 
similar behavioural pattern. Both models account for a large fraction of the contrast 
invariance of orientation selectivity. Our results indicate that incorporation of the cross-
oriented inhibition does not significantly improve its performance in terms of contrast 
invariance, rather stabilises the model and accelerates its convergence on equilibrium. 
The new model is robust to noise and, when probed with natural images, it generates a 
clear pattern of contours.  
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2 Model 1: the iterative orientation tuning of simple cells 
 

The first model 1 has been introduced in [23] and is built upon the idea that visual 
perception is a continuous process of interpretation of incoming visual data. We adopt 
the view that the brain has no internal representation of the outside world because it is 
continuously availab
particular object, the
several iterative cyc
neural activity in the underlying visual circuitry, the activity which depends on a level 
of current neuronal excitation. Consequently, neural responses to the same visual input 
at different processing cycles would vary.  

This iterative approach to the low-level visual processing gains a further meaning 
when the role of feedback connections is considered. It is logical to suggest that 
feedback projections, activated at subsequent iterations, would alter cell responses to 
the visual input, which itself remains constant in time. It is even more likely that the 
regular layout of simple cells in V1 reinforces responses of simple cells at subsequent 
iterations. In the model, we assume that the activation of a simple cell amplifies the 
activity level of proximate cells, so as to tune these neighbouring cells to a local 
orientation pattern. After several cycles of iterative tuning, the whole system reaches 
equilibrium and responses of simple cells to visual input stabilise. 

A neural circuit of the model for iterative orientation tuning (Fig. 1) consists of two 
ON- and OFF-pathways interacting via a mechanism of opponent inhibition. Visual 
input is processed sequentially, first by retina-LGN followed by a simple cell circuit in 
V1. A key feature of the model is the iterative processing of visual input, which imitates 
an instance when the eye is fixating a particular object and the processing of still visual 
input might undergo several iterative cycles. Local intracortical interaction of simple 
cells changes their responses to the visual input at subsequent iterations. The local 
interaction of simple cells is governed by their spatial layout. We adopt an Icecube 
model to describe the spatial layout of simple cells. In the process of local interaction 
the activation of each simple cell causes excitation of close cells in the Icecube layout. 

 

Figure 1. The architecture of the model neural network. The network consists of two 
major stages - the retina-LGN stage, followed by a simple cell circuit. Triangles at the 
end of lines denote the excitatory input; filled-in-black triangles denote the inhibitory 
input. Two dashed lines show the iterative interaction of spatially close simple cells. 

 

The first processing stage deals with responses of retinal ganglion cells with centre-
surround receptive fields (RFs) [7]. The retinal ganglion cells are modelled at each 
spatial position by the difference of input stimulus and its convolution with a 2-
dimensional Gaussian kernel (A1), [27]. Retinal ON and OFF ganglion cells synapse 
mainly onto respective ON and OFF cells of  the  LGN.  In the model,  retinal  inputs do  
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not change while passing through the LGN.Simple cells of V1 are driven by oriented 
input from the LGN. Physiological studies on simple cell responses recorded in cat 
striate cortex suggest that elongated sensitivity profile of a simple cell subfield is best 
modelled by a difference of two elongated Gaussians (A2). Each simple ON cell 
receives excitatory input from the LGN ON cells beneath it and is inhibited by LGN 
OFF cells at the same retinotopic position (A3). 

In addition, simple cells undergo local interaction, which amplifies the activity of 
cells belonging to a same channel. All simple cells are considered to be stacked into a 3-
D array (Icecube layout, Fig. 2), in which two coordinates define the spatial 
(retinotopic) position of the cell and the remaining third coordinate is related to the 
cell’s preferred orientation. Each simple ON cell undergoes additive amplification 
received from those simple ON cells that are spatially close in the 3-D array; the same 
ON cell is inhibited by proximate simple OFF cells (A3). The reverse arrangement 
holds true for simple OFF cells.  

Final activation of a simple cell results from the cross-channel inhibition obtained as 
the steady-state solution of inhibitory shunting interaction (A4), [28].  

Because the strength of amplification is an inverse function of squared distance 
(A6), the activation of proximate cells effectively decays within the distance of 3 units. 
Due to the weighting factor ω =16 in (A6), the effect of amplification affects only one 
neighbouring cell in all 8 directions within the spatial layer, and about 6 neighbouring 
cells in the orientation column (3 orientations both up and down the column). This local 
amplification enhances responses of both retinotopically proximate cells and cells tuned 
to similar orientations. 

Son

 i
 j
θ

 

Figure 2. A schematic diagram of the spatial layout of V1 - Icecube layout. The primary 
visual cortex is divided into ocular dominance columns; running perpendicular to these 
are orientation columns. Orientation preference within columns changes systematically 
so that each column represents directions from 0° to 180°. The Icecube layout of simple 
cells is modelled by the 3-D array consisting of spatial layers and orientation columns. 
Each element of the array, (i,j,θ,) has two spatial coordinates, i and j, for position within 
the layer and one orientation coordinate, θ, for position in the orientation column. It is 
assumed that each 3-D position contains a pair of ON and OFF cells, Son  and Soff. This 
array layout is repeated twice for both contrast polarities p =1,2. 
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The local amplification changes responses of simple cells to the same visual input over 
time. This  is  mediated  by the  iterative  processing  of  visual input: amplification 
functions (A6) for the ON and OFF cells are fed into (A3) and the processing cycle is 
repeated.  As  the  model  proceeds  through  iterations,  responses of simple cells would 
increase. It is however important that the model reaches equilibrium and the 
amplification of proximate cells stabilises. The corresponding balancing mechanism is 
provided by the cros
cells to grow indefi
prevent a small growth of cell responses cells in the vicinity of sharp luminance 
changes. 
 

3 Model 2: the iterative tuning with cross-orientation 
inhibition 
 

Incorporation of the mechanism of cross-oriented inhibition into the model 2 is based 
on considerable experimental evidence suggesting that stimuli at non-optimal 
orientations suppress the background activity of simple cells [13], [24], [25]. Clearly, 
the cross-oriented inhibition has the potential to suppress weak responses in the vicinity 
of contrastive edges, thus increasing model’s robustness to noise. Similar to the local 
amplification, the cross-oriented inhibition is governed by the spatial layout of simple 
cells in V1. 

135º 45º

0º180º

Orientation bundles

135º 45º

0º180º

Orientation bundles

 

Figure 3. Schematic presentation of relationship between ocular dominance bands and 
the organisation of orientation  selectivity  in the visual cortex (Obermayer and Blasdel 
[26]). Cells along “iso-oriented contour” have the same optimal orientation. Adjacent 
iso-contour bundles linked at points of singularity range within two complementary 
sectors of 90° each (shown in black arrows). Due to this arrangement for each cell in a 
given bundle there exist a counterpart cell of orthogonal orientation belonging to the 
adjacent bundle. 
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Optical imaging studies on patterns of activation across a region of monkey cortex [26] 
revealed a regular structure of “iso-orientation” contours radiating from points of 
singularity (Fig. 3). Along each of these contours the orientation preference of cell is 
constant, hence the name - “iso-contours”. Cells at the singularities are not orientation 
selective. Orientations within each bundle of iso-contours range within the interval 90° 

urs representing orientations 11.25° apart. A complete circle around 
epresents a rotation from 0° to 180°. We suggest that these iso-

are the links serving the propagation of inhibitory signals to 
retinotopically close cells of orthogonal orientation. 

The activity of each simple cell is inhibited by four cells from the neighbouring 
orientation columns that are tuned to orthogonal orientation (A5). This mechanism of 
cross-orientation suppression affects the activity of simple cells in two ways. On one 
hand, the activity of a simple cell is cancelled out by the activity of retinotopically close 
cells of orthogonal orientation if these are strongly activated. On the other hand, the 
response of a strongly activated cell would only be slightly suppressed by 
retinotopically close cells of orthogonal orientation if these are weakly activated. This 
cross-oriented inhibition eliminates weak responses of simple cells while sharpening 
their strong responses.  

 

4 Perception of luminance changes by the two models 
 

We investigated the behaviour of the two models through a set of computer simulations. 
Each model is probed with several test stimuli, illustrating typical instances of contrast 
variations in images. All test stimuli are two-dimensional functions. Each model 
proceeds through 5 iterative cycles before edge responses of simple cells are generated. 
Edge response S is computed by rectifying the sum of activities of ON and OFF cells 
minus their difference: 

[ ]+−−+= offonoffon SSSSS  (1) 

Each plot, illustrating responses of simple cells, is a one-dimensional slice through 
stimuli, activity levels of simple cells at selected iterations and edge responses (1). All 
plots, displaying the activity level of the ON and OFF cells for the model 1 (see Fig. 4a, 
5a, 10a), share a common feature: regions of strong activity levels spread onto nearby 
areas at later iterations. The spreading is less pronounced for the model 2 (see Fig. 4c, 
5c, 10b) because the cross-oriented suppression (A5) wipes out the low-level activity at 
tale regions of the Gaussian-shaped response of ON and OFF cells.  

Ramp transition. We conducted two series of simulations investigating the strength of 
responses depending on the transition range and width. On average, responses of the 
ON and OFF cells generated by the model 2 grow less with iterations than responses 
generated by the model 1 (Fig. 4 a, c; and Fig. 5 a, c). This behavioural difference 
occurs due to the orthogonal suppression. However, both models exhibit almost 
identical edge response (1) to the ramp transition regardless of its range (Fig. 4, b, d and 
Fig.5 b, d). Our investigation shows that the perception of ramp profile by the two 
models depends largely on  the  profile’s  width  and  much  less  on the  range  of  ramp 
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 transition. The strength of edge responses decreases approximately linearly with the 
increasing width of the ramp transition (Fig. 6). When the ramp width exceeds 28 
pixels, responses of simple cells decay completely even though the transition range is 
high. This behaviour is similar for both models although the trend is quicker for the 
model 2: it becomes insensitive to the transition ramp wider than 22 pixels.  

The dependency of responses on the ramp range is strongly non-linear for both 
models. Fig. 7 show
25% growth in the s
aggregated during the iterative processing due to advantageous enhancement of initially 
weaker responses. This result supports a great part of the contrast invariance of 
orientation selectivity observed experimentally.  

 

model 1 

 
 a b 

model 2 

 
 c d 

Figure 4. Responses to the ramp transition generated by the two models. Ramp range is 
equal to 0.2. The responses of ON and OFF cells, Son and Soff, generated by the model 1 
(a), grow stronger and spread wider with iterations as compared to the corresponding 
responses generated by the model 2 (c). Due to a steep fall off in the ON and OFF 
response for model 2 (c), it generates as strong edge response at 5th iteration (d) as that 
one of model 1 (b). 
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Further analysis of curves in Fig. 7 shows that a subtle difference in the behaviour of 
two models appears at later iterations. Edge responses generated by the model 2 
stabilise at 6th iteration. The convergence rate is slower for the model 1. The explanation 
for this comes from the analysis of mechanisms stabilising the two models. There exist 
two such mechanisms. The first one, the cross-channel inhibition (A4), is common for 
both models. The second one, the cross-oriented suppression (A5) which is only present 

poses an additional constraint on the propagation of excitation onto 
 receive salient oriented excitation from the visual input. Also, the 
in the model 2, im
cells which do not

cross-oriented suppression accelerates the convergence of the iterative processing of 
model 2 when compared to the model 1.  

model 1 

  
 a b 

model 2 

 
 c d 

Figure 5. Responses to the ramp profile of range 0.8. Edge responses display similar 
tendencies in the shape and rate of growth as responses to the ramp transition of 0.2 
(Fig. 4). Also the strength of edge response at 5th iteration of model 2 (d) is pretty the 
same as that one of model 1 (b).  
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Figure 6. Edge response to ramp profiles of different widths. The strength of edge 
responses generated by the two models is plotted against the width of ramp transition 
with range 0.8. For both models edge response drops almost linearly with the increase 
of the ramp width. The fall-off is quicker for model 2, which does not perceive the 
luminance ramp above 22 pixels width.  

 
model 1 model 2 

 

Figure 7. Convergence of the models on a stable solution occurs quicker for stronger 
responses. Whereas responses to weaker stimuli continue to grow at later iterations, 
strong responses do not rise any more. This feature, common for both models, is 
responsible for the partial contrast invariance of orientation selectivity. 

 
Bar profile. Both models capture a large narrow variation in brightness in the form of 
two sharp responses (Fig. 8). The responses are associated with two sides of the bar 
profile, which are perceived as “edges”. The same double response pattern is induced 
by a narrowest possible bar profile with the width of 1 pixel. Note that the iterative 
amplification of edge responses by the model 2 is stronger than that one of the model 1.   
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model 1 model 2 

 

Figure 8. Responses to the bar profile generated by the two models at 1st, 3rd, and 5th 
iterations. Bar width is equal to 3 pixels.  
 
 

Grating. Simulation of responses induced by a grating composed of four equal contrast 
bars produces eight sharp responses at “edge” positions, each one associated with 
particular bar side (Fig. 9). However, boundary responses evoked by the two external 
sides of the grating undergo stronger amplification at iterations than responses to any of 
the internal sides of grating bars. It seems that more isolated responses tend to override 
nearby responses of smaller or comparable magnitude. This behavioural aspect is 
particularly useful for the processing of noisy images. Weak responses to spontaneous 
luminance variations caused by noise get eliminated after several iterations. The 
elimination process is especially efficient in the vicinity of strong luminance changes. 

model 1 model 2 

  

Figure 9. Responses to the grating generated by the two models at 1st, and 5th iterations. 
The width of bars in the grating is 3 pixels. The iterative processing advantageously 
amplifies responses to the external sides of the grating followed by the amplification of 
two responses induced by the two sides in the middle. Note that responses, 
neighbouring to the external bars on each side of the grating are not amplified.  
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model 1 model 2 

  
a b 

  
c d 

Figure 10. Responses to the staircase profile generated by the two models at 1st, and 5th 
iterations. The models perceive the illusory line in the middle of the step. Due to a 
sharper shape of the ON and OFF responses generated by model 2 (b), the perception of 
illusory line by the model 2 is stronger. 

 
Staircase profile. The processing of a luminance staircase reveals that both models 
perceive an illusory line right in the middle of step’s plateau. The origin of this curious 
phenomena becomes clear when we analyse the shape of responses of the ON and OFF 
cells (Fig. 10, a, b). The OFF cell response to the abrupt luminance change between two 
subsequent steps has overlay with the ON cell response evoked by the adjacent 
luminance change in the staircase. Computation of edge responses (1) results into a 
sharp edge response in the middle of the step’s plateau (Fig. 10, c, d). The illusory line 
vanishes when the step’s plateau width exceeds 26 pixels. Perception of the illusory line 
might be related to the well known Chevreul illusion, in which a regular luminance 
staircase is perceived as not perfectly uniform along the luminance plateaus. 
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Figure 11. Noisy input image (left) and the cross section taken at the centre of the image 
(right). 
 

model 1 

          
 

 
model 2 

          
  

 

Figure 12. Edge responses to the noisy image (Fig.11) after 1st, 3rd, and 5th iteration 
generated by the model 1 (two upper rows) and model 2 (two bottom rows). Images of 
edge responses are inverted. Corresponding cross sections are taken at the centre of the 
images. Responses to noise weaken noticeably as the models proceed through iterative 
cycles. The cross-oriented inhibition introduces an additional mechanism of noise 
suppression for the model 2 due to suppression of the activity of cells at non-optimal 
orientations.
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Noisy input. The processing of a synthetic image of a dark rectangle on a lighter 
background corrupted with 50% Gaussian noise (Fig. 11) exhibits that responses to 
weak contrast variations caused by noise are significantly diminished after several 
iterations (Fig. 12). Noise reduction is especially pronounced in the vicinity of rectangle 
edges, where small responses are “cancelled out” by stronger responses which spread in 
the process of iterati

5 Processing 
Edge responses to natural images clearly illustrate a common feature exhibited by the 
two models, namely the enhancement of isolated weak edges at subsequent iterative 
cycles (Fig. 13). The reason for this behaviour is a non-linear normalization of 
responses due to the cross-channel inhibition: the divisive normalisation tends to boost 
weaker responses over the stronger ones while normalising an overall magnitude of cell 
responses to the range [0,1]. 

model 1 

 
model 2 

 

Figure 13. Input image of a wound and edge responses (inverted) generated by the two 
models at 1st, 3rd, and 5th iteration (clockwise from top left). Weak edges disappear and 
strong edges are amplified as the models proceed through iterative cycles. The iterative 
tuning   diminishes   spurious   responses   both   for   skin  and the wound region. Edge 
enhancement is more pronounced for the model 2. 
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6 Summary and conclusions 

The motivation of this work is the development of a biologically justified model for 
contrast detection in images, the model, which has the potential to outperform purely 
computational approaches to edge detection. The orientation selectivity of simple cells 
in V1 gives us an exciting example of a biological system, which is capable of 
responding to oriented visual stimuli with great efficiency. We have proposed a model 
for the iterative orientation tuning with cross-oriented suppression. The model is an 
extension of the iterative orientation tuning model introduced in [23]. We have 
compared the performance of the two models by probing them with synthetic stimuli, 
synthetic noisy images and natural images.  

The two major and common features for both models are the iterative processing of 
visual input and the local intracortical amplification of proximate cells belonging to a 
same channel. The local amplification explicitly exploits the morphology of simple cells 
in V1. The contribution of local amplification to the responses of simple cells grows 
with iterations. This iterative amplification greatly enhances responses of both 
retinotopically proximate cells and cells tuned to similar orientations. Consequently, the 
local amplification activates a process of selective orientation tuning enhancing 
responses of cells of “proper” orientations at retinotopically close positions. The cross-
orientation inhibition, incorporated in the model 2, is the mechanism of selective 
suppression, which affects locally the activity of cells receiving stimuli with no 
distinguished orientation.  

Three processes play a major role in the generation of the contrast invariance of 
orientation selectivity: 1) the iterative processing of video input, 2) the local 
amplification, and 3) the cross-channel inhibition of activities of simple cells. These 
processes are responsible for a very similar behavioural pattern exhibited by the two 
models. We note that the incorporation of cross-oriented suppression into the model 2 
only slightly improves the model’s performance in terms of contrast invariance, which, 
on average, remains at a level of 75%. The orthogonal suppression does not seem to 
play a crucial role in the generation of contrast invariance: it does not significantly 
affect the magnitude of edge responses. Our investigation indicates that a major 
contribution to the contrast invariance comes from the local intracortical amplification 
of responses at subsequent iterative cycles. The cross-oriented inhibition did not 
account for a significant part of the contrast invariance in our simulations. This 
conclusion contradicts earlier suggestions that intracortical inhibition tuned to the 
orthogonal orientation plays a major role in the generation of cortical orientation 
selectivity [13], [24], [25]. However, our simulations do suggest that the cross-oriented 
suppression sharpens responses of simple cells. It appears that this sharpening 
accelerates the convergence of edge responses on a stable solution. 

We conclude that the cross-oriented inhibition introduces an important stabilising 
factor into the process of orientation tuning, but cannot preserve the contrast invariance 
of orientation selectivity. Additional mechanisms may therefore be involved in the 
generation of the contrast invariance observed experimentally in monkeys and cats.  

Although neither model includes any additional mechanism for the suppression of 
noise, both of them have demonstrated high robustness to noisy input. It seems that a 
good resistance to noise is an inherent feature of the functionality of simple cells taken 
over by the models for free. 
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One final conclusion of this study is as follows: however efficient the functionality of 
simple cells is, neither the iterative amplification of activities of simple cells nor the 
cross-oriented suppression can provide a selective extraction of object edges. It seems 
that additional mechanisms such as object recognition linked with memory association 
feedback should play a decisive role in the selective extraction of object contours. 

 
Appendix 

 
The processing of visual input undergoes several iterative cycles, each one containing 
either four (model 1) or five (model 2) subsequent stages. Stages #1, #2, #3, and #5 are 
common for both models. Stage #4 stands for the model 2. Below we list all processing 
stages noting explicitly the differences between the two models when these are present. 
1. Retina-LGN. Responses of retinal ganglion ON and OFF cells,  and u , are 
given by: 
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where  is the spatial convolution operator and [x]∗ + :=max{x,0} denotes half-wave-
rectification. The Gσ is a centre Gaussian with standard deviation σ=3 for the model 1 
and σ=5 for the model 2. The Gaussian is sampled within a filter mask of 35x35 and 
45x45 pixels for the model 1 and model 2, respectively. Visual input I is normalised to  
the range [0,1].  

2. Simple cell subfields. Simple cells are modelled for twelve discrete orientations θ = 
0°, 15°,…, 165°, and two opposite contrast polarities p=1, 2: 
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where  denotes the position (i,j),  is relative offset for two 
Gaussian lobes from their central position (i,j), and the space constants σ

),( jiT =x )sin,(cos θθ=Tτ

m=1 and σM= 4 
define the degree of filter’s elongation. The filter mask of the simple cell subfield is 
19x19 pixels. 

At each position, (i,j), and for each orientation, θ, and polarity, p, the model has an even 
symmetric simple cell with two parallel elongated parts: an ON subfield, , which 

receives excitation from LGN ON cells beneath it, , and is inhibited by input from 

the LGN OFF cells at the same position, ; and an OFF subfield, , for which 
the reverse relation to the LGN channels holds true. This physiology is embodied in the 
equation for the ON subfield by subtracting the half-wave rectified LGN OFF channel, 
u

pjiR ,,, θ

pj ,,θ

+
iju

−
iju iL ,

-, from the rectified ON channel, u+, and convolving the result with the positive lob of 
the oriented filter, [ ]τmM

D σθσ
+, [27]. The OFF subfield, , is constructed similarly.  pjiL ,,, θ
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In addition, each ON subfield, , receives excitatory input, , from all 

simple ON cells that are spatially close to position (i,j) in the Icecube layout, and is 
inhibited by input  from all close OFF cells. The reverse arrangement holds true 

for the computation of the activation level of each OFF subfield, . The mutual 

ition of neighbouring cells is a time varying function which is 
. The above considerations give rise to the following expressions 
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The strength of local interaction for both models, , that we call 
amplification functions, varies over time. The values of amplification functions at initial 
iteration n=0, are set to  ,  for  all  orientations  and  polarities. Note, that 
due to the offset of the positive and negative lobes of , subfield responses are 

shifted from their central positions. To compensate, both subfields,  and , 

are shifted in the opposite directions, τ and -τ, respectively. 
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3. Cross-channel inhibition. The activation of simple ON cell, , at iteration n, is 
obtained as the steady-state solution of inhibitory shunting interaction:  
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Here variables occur for all positions, orientations and polarities; indexes i, j, θ, and p 
are omitted to simplify notations. Activation of simple OFF cell is obtained by 
interchanging Rn and Ln.  

4. Cross-oriented suppression.  
Model 2: Simple cells are engaged in the cross-orientation inhibition, so that the 
cells’ activity at position (i,j,θ), is inhibited by four neighbouring cells in the 3-D 
array (see caption to Fig.2) that are tuned for the orthogonal direction: 
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5. Local amplification. At each at position (i,j,θ) in the 3-D array, the excitatory input, 
, from proximate ON cells, is an inverse function of squared distance:  n

jiA θ,,
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where µ - is a scaling factor set to: µ =0.18, and ω - is a weighting factor set to ω =16. 
Above computations are repeated twice for both polarities. Excitatory input B to an 
OFF-cell is obtained by substituting Soff for Son. 
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Editor’s Introduction

We met the Year 2001 – magical milestone to the future – without being surrounded by
either Arthur C. Clark’s intelligent computers or their moody cousins of Douglas Adams’s
cut. We wish to believe though that one of the many steps needed in this direction was
made when the First Symposium on Adaptive Agents and Multi-Agent Systems (AA-
MAS) was organised in this year. The past two years have seen an increasing interest, and
the beginning of consolidation of the European research community in the field. The first
book on the eponymous subject, largely based on contributions to AAMAS and AAMAS-
2 has now been published.

This volume contains two articles from the Third AAMAS Symposium, which per-
sisted in the goals set in 2001, namely, to increase awareness and interest in adaptive
agent research, encourage collaboration between machine learning and agent system ex-
perts, and give a representative overview of current research in the area of adaptive agents.
The paper by Kapetanakiset al. focuses on the learning of co-ordination for two-player
co-operative single-stage games. The authors propose a method that enables agents to
learn to co-ordinate without explicit communication and without the need to observe each
other’s actions. The second paper by Strens investigates a search technique for optimal
agent behaviour with partially observable states (and specifically a hidden goal state). The
algorithm is based on particle filtering and enables the agents to evaluate a policy against
all possible hidden states at the same time. The system is evaluated in a hunter-prey
scenario, where the hunters do not know the position of the prey.
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Abstract

We report on an investigation of the learning of coordination in cooperative multi-
agent systems. Specifically, we study solutions that are applicable to independent
agents, i.e., agents that do not observe one another’s actions and do not explicitly
communicate with each other. In previously published work (Kapetanakis and Ku-
denko, 2002) we have presented a reinforcement learning approach that converges
to the optimal joint action even in scenarios with high miscoordination costs. How-
ever, this approach failed in fully stochastic environments. In this paper, we present
a novel approach based on reward estimation with a shared action-selection protocol.
The new technique is applicable in fully stochastic environments where mutual ob-
servation of actions is not possible. We demonstrate empirically that our approach
causes the agents to converge almost always to the optimal joint action even in diffi-
cult stochastic scenarios with high miscoordination penalties.

1 Introduction

Learning to coordinate in cooperative multi-agent systems is a central and widely stud-
ied problem, see, for example (Lauer and Riedmiller, 2000; Boutilier, 1999; Claus and
Boutilier, 1998; Sen et al., 1994; Weiss, 1993; Nowé et al., 2001). In this context, co-
ordination is defined as the ability of two or more agents to jointly reach a consensus
over which actions to perform in an environment. We investigate the case of indepen-
dent agents that cannot observe one another’s actions and do not explicitly communicate
with each other, which often is a more realistic assumption. This generality distinguishes
our approach from alternatives (Wang and Sandholm, 2002; Chalkiadakis and Boutilier,
2003, inter alia) that require complete mutual observation of actions.

In this investigation, we focus on scenarios where the agents must learn to coordinate
their actions through environmental feedback. In previous research (Kapetanakis and Ku-
denko, 2002) we have presented a reinforcement learning technique (called FMQ) for
independent agents, that converged to the optimal joint action in scenarios where mis-
coordination is associated with high penalties. However, the FMQ approach failed in
fully stochastic environments, where the rewards associated with joint actions are non-
deterministic.

In this paper, we present a novel technique that is based on a shared action-selection
protocol (called commitment sequence) that enables the agents to estimate the rewards for



Learning to coordinate

specific joint actions. We evaluate this approach experimentally on a number of stochastic
versions of two especially difficult coordination problems that were first introduced in
1998 (Claus and Boutilier, 1998): the climbing game and the penalty game. The empirical
results show that the convergence probability to the optimal joint action is very high, in
fact reaching almost 100%.

Our paper is structured as follows: we initially illustrate coordination through exam-
ples extracted from human, animal and artificial agent societies. We then introduce a
common testbed for the study of learning coordination in cooperative multi-agent sys-
tems: stochastic cooperative games. We continue to introduce a basic version of the novel
commitment sequence technique that uses simple averaging and discuss the experimental
results. Finally, we present an extension using Gaussian estimation that improves both
the probability of convergence to the optimal joint action and the convergence speed. We
finish with an outlook on future work.

2 Coordination without communication: examples

Coordination is often naturally associated with explicit communication. However, there
are many examples of agents coordinating without explicitly communicating in animal,
human and artificial agent societies.

Take, for example, the coordination required by a group of five lionesses who hunt
wildebeest, as reported By Donald Griffin (Griffin, 1984). Two of the five lionesses mount
ant hills so as to be clearly visible. These two hunters make themselves seen but stay at a
safe distance from the two bands of wildebeest. A third lioness creeps along a ditch par-
allelling the road until she positions herself between the two herds in a covered position.
A fourth lioness charges out of a nearby wooded area to one band of prey driving them
across the road towards the other band. The lioness in the ditch has an easy kill to make
with wildebeest jumping over the ditch that she occupies. They then apparently all feed
on the same prey.

The need for coordination without communication does also arise in human societies.
Take, for example, any team sports game such as football, basketball, baseball, cricket,
volleyball, or hockey. The existence of two opposing teams that consist of multiple co-
operating players makes communication a costly action in the sense that a player is much
less likely to (audibly or otherwise) signal to his/her teammates when he/she knows that
such signalling normally gives away the intention to the opposition. Communication
does occur, of course, when its expected benefit outweighs the disadvantage of opponent
discovery. However, what typically happens is that players have this type of untold coor-
dination built in and engage in correctly coordinated behaviour without communicating.
So, much in the same sense as the five lionesses, the players can achieve coordination
without explicit communication.

Finally, in artificial agent societies, the achievement of coordination is not always
a consequence of communicative acts. Instead, it often is the case that agents coordi-
nate their activities without communication. Take the following network routing control
system, for instance: in static conditions, the optimal routing tables, i.e., the choice of
appropriate neighbour to route a packet that arrives at a network node, can be calculated
by various means e.g., ant-based routing (Legge and Baxendale, 2002; Legge and Bax-
endale, 2003). This provides the system with the optimal way to route packets along the
network in static conditions. However, in the presence of congestion and potential down-
time for links and nodes, it is essential to be able to calculate new routing tables for the
network. This is done by placing a single agent on each node to handle the routing. The
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joint decision of all the agents/nodes to change their routing tables so as to alleviate traffic
congestion on the network can be seen as a massive coordination step. For each agent,
the decision to make every n time steps is which way to route a packet that arrives at
this node and is destined for some other node in the network. All the nodes maintain a
routing table that determines, for each possible destination on the network, which nearest
neighbour node to forward the packet to. For example, if a node is adjacent to nodes A,
B and C, its routing table may look like 1:

A B C
A 1 0 0
B 0 1 0
C 0 0 1
D 0 1 0
E 0 1 0
...

...
...

...
S 0 0 1

Table 1: Example routing table

If a packet for node S arrives at this node, it is first forwarded to node C. In other
words, the decision to make every n timesteps is how to allocate a ’1’ in any of three
places for m− 1 destination nodes, where m is the total number of nodes in the network.

This problem can be solved by measuring the traffic on the network and rewarding
the agents every n timesteps depending on how well the network is working. When there
is no congestion, we expect the reward to be positive whereas lots of congestion leads
to severe negative rewards or penalties. These nodes are able to communicate with one
another but should choose not to do so when each communicative act will only worsen
the state of the network. Under such circumstances it is desirable to achieve better routing
without explicit communication.

In the rest of this paper, we will not deal with the aforementioned real-world prob-
lems, but rather focus on a more abstract formalism to describe coordination problems:
stochastic cooperative games.

3 Stochastic cooperative games

Cooperative single-stage games (Fudenberg and Levine, 1998) are a means to illustrate
the complex interactions between two or more agents when they learn to coordinate their
actions. As such, they provide a common platform on which to evaluate new machine
learning algorithms, statistical approaches and coordination protocols.

A single-stage game defines one or more outcomes for every possible joint action
the agents may undertake. Single-stage games cannot possibly describe a series of co-
ordination actions in an environment but they can accurately model one interaction step.
Finally, these games are unsuitable for problems where coordination must be achieved in
complicated state spaces but they are able to model the static dynamics of coordination
in one of these states. Therefore, single-stage games are indeed the ideal choice for the
study of coordination in static single-step multi-agent problems and a first step towards
understanding the true complex dynamics of agent interaction, in which coordination is
merely one layer.
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In this work, we have concentrated only on cooperative games, i.e., games where the
agents are rewarded based on their joint action and all agents receive the same reward. In
these games, every agent chooses an action from its action space for every round of the
game. These actions are executed simultaneously and the reward that corresponds to the
joint action is broadcast to all agents.

Table 2 describes the reward function for a simple cooperative single-stage game. For
example, if agent 1 executes action b and agent 2 executes action a, the reward they receive
is 5. Obviously, the optimal joint-action in this simple game is (b, b) as it is associated
with the highest reward of 10.

Agent 1
a b

Agent 2 a 3 5
b 0 10

Table 2: A simple cooperative game reward function.

Our goal is to enable the agents to learn optimal coordination from repeated trials in
cases where the game matrix is not known to the agents. To achieve this goal, one can use
either independent or joint-action learners. The difference between the two types lies in
the amount of information they can perceive in the game. Although both types of learners
can perceive the reward that is associated with each joint action, the former are unaware
of the existence of other agents whereas the latter can also perceive the actions of others.
In this way, joint-action learners can maintain a model of the strategy of other agents and
choose their actions based on the other participants’ perceived strategy. In contrast, in-
dependent learners must estimate the value of their individual actions based solely on the
rewards that they receive for their actions. In this paper, we focus on individual learners,
these being more widely applicable.

In the present study, we analyse a number of coordination problems, all of which are
descendants of the climbing game and the penalty game. We show why these problems
are of interest to us and why they are hard problems. The climbing game is representa-
tive of problems with high miscoordination penalties and a single optimal joint action,
whereas the penalty game is representative of problems with miscoordination penalties
and multiple optimal joint actions. Both games are played between two agents and their
reward functions are shown in Tables 3 and 4:

Agent 1
a b c

a 11 -30 0
Agent 2 b -30 7 6

c 0 0 5

Table 3: The climbing game.
In the climbing game, it is difficult for the agents to converge to the optimal joint ac-

tion (a, a) because of the negative reward in the case of miscoordination. For example, if
agent 1 plays a and agent 2 plays b, then both will receive a negative reward of -30. Incor-
porating this reward into the learning process can be so detrimental that both agents tend
to avoid playing the same action again. In contrast, when choosing action c, miscoordina-
tion is not punished so severely. Therefore, in most cases, both agents are easily tempted
by action c. The reason is as follows: if agent 1 plays c, then agent 2 can play either b or

http://www.aisb.org.uk



Kapetanakis, Kudenko and Strens

Agent 1
a b c

a 10 0 -10
Agent 2 b 0 2 0

c -10 0 10

Table 4: The penalty game.

c to get a positive reward (6 and 5 respectively). Even if agent 2 plays a, the result is not
catastrophic since the reward is 0. Similarly, if agent 2 plays c, whatever agent 1 plays,
the resulting reward will be at least 0. From this analysis, we can see that the climbing
game is a challenging problem for the study of learning coordination. It includes heavy
miscoordination penalties and “safe” actions that are likely to tempt the agents away from
the optimal joint action.

Similarly, the penalty game is a hard problem as it not only has potentially high penal-
ties for miscoordination (depending on the choice of k) but also includes multiple optimal
joint actions. If agent 1 plays a expecting agent 2 to also play a so they can receive the
maximum reward of 10 but agent 2 plays c (perhaps expecting agent 1 to play c so that,
again, they receive the maximum reward of 10) then the resulting penalty can be very
detrimental to both agents’ learning process. In this game, b is the “safe” action for both
agents since playing b is guaranteed to result in a reward of 0 or 2, regardless of what the
other agent plays, thus maximizing the worst-case reward.

Because of the difficulties discussed above, regular Q-learning agents failed to con-
verge to the optimal joint action in both the climbing game and the penalty game. A
Q-learning variant that solves these games for independent agents has been presented in
the past (Kapetanakis and Kudenko, 2002) using an approach known as the FMQ heuris-
tic. This heuristic works in a reinforcement learning setting and it allows two agents that
have no communication capabilities or shared knowledge to jointly reach the optimal joint
action in single-stage games.

However, the FMQ heuristic cannot distinguish adequately between miscoordination
penalties and reward variance in stochastic games. Therefore, it fails to solve more com-
plex games such as the stochastic climbing game which is shown in Table 5. The stochas-
tic version of the climbing game differs from the original in that each joint action now
corresponds to two rewards instead of just one. These two rewards are received with
probability 1/2. If the two agents were to commit to playing a specific joint action in-
definitely, the reward they would accumulate over time would converge to the same value
as in the original game. In this respect, the stochastic climbing game is equivalent to the
original. This equivalence is maintained across all variations of the climbing and penalty
game that we introduce in this work.

Agent 1
a b c

a 10/12 5/-65 8/-8
Agent 2 b 5/-65 14/0 12/0

c 5/-5 5/-5 10/0

Table 5: The stochastic climbing game table (50%).

The difficulty in solving the stochastic climbing game with the FMQ heuristic stems
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from the fact that the heuristic is designed to deal with one type of uncertainty, namely
that which arises from sampling actions with associated mis-coordination penalties. This
uncertainty is due to the inability of one agent to observe the other agent’s actions. The
FMQ heuristic filters out the impact of failed coordination attempts to help the agents
reach the optimal joint action. The difference in the stochastic version of the climbing
game is that there are now two sources of uncertainty in the game, the other agent’s
actions (as before) and the multiple rewards per joint action.

We will show two ways to tackle the stochastic climbing game using the idea of com-
mitment sequences. We also presently introduce two new variants of the game so as to
show the full potential of our methods. The first variant is the three-valued climbing
game in which that there are three rewards corresponding to any joint action. This game
is shown in Table 6.

Agent 1
a b c

a 16/22/-5 4/6/-100 10/20/-30
Agent 2 b 4/6/-100 25/0/-4 10/5/3

c 8/12/-20 10/20/-30 4/5/6

Table 6: The three-valued stochastic climbing game.

The probability of receiving any one of the three rewards that correspond to each joint
action is 1/3. If the two agents were to play the action profile (b, b) indefinitely, they
would accrue an average reward of 7 as in the original game.

The next variant of the climbing game that we introduce is the variable-probability
climbing game. There are again two rewards for each joint action. However, they are now
received with non-uniform probabilities. Equivalence with the original game is again
maintained. The variable-probability climbing game is included in Table 7. The notation
(π)n signifies that the probability of getting a reward of n for playing that joint action
is π. For example, the probability of getting a reward of 5 for joint action (c, b) is 0.8
whereas the probability of getting a reward of 10 for the same joint action is 0.2 .

Agent 1
a b c

a (0.4) 6.5 (0.25) -36 (0.6) 4
(0.6) 14 (0.75) -28 (0.4) -6

Agent 2 b (0.25) -36 (0.8) 5 (0.8) 5
(0.75) -28 (0.2) 15 (0.2) 10

c (0.7) 3 (0.6) 4 (0.8) 4
(0.3) -7 (0.4) -6 (0.2) 9

Table 7: The variable-probability stochastic climbing game.

Finally, we introduce a stochastic variant of the penalty game. This game is called the
stochastic penalty game and is shown in Table 8.

4 Reward estimation

In games with stochastic rewards, such as all the climbing game variants and the stochastic
penalty game, it is difficult to distinguish between the two sources of variation in the
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Agent 1
a b c

a 8/12 -3/3 -8/12
Agent 2 b -3/3 0/4 -3/3

c -8/-12 -3/3 8/12

Table 8: The stochastic penalty game (50%).

observed reward for an action. It would be useful to have a protocol that allows 2 or
more agents to select the same joint action repeatedly in order to build up a model for the
stochastic reward distribution. This section describes a novel approach for achieving this.

The basic principle is that agents follow a common action selection policy that enables
them to estimate the potential reward for each joint action. The action selection policy
is based on the following idea: if an agent chooses an action at time i, then the agent is
required to choose the same action at specific future time points. The only assumption
that this approach makes is that all agents share the same global clock and that they follow
a common protocol for defining sequences of time-slots.

4.1 Commitment sequences

A commitment sequence is a list of time slots (t1, t2, . . .) for which an agent is committed
to taking the same action. If two or more agents have the same protocol for defining these
sequences, then the ensemble of agents is committed to selecting a single joint-action for
every time point in the sequence. Although each agent does not know the action choices of
the other agents, it can be certain that the observed rewards will be statistically stationary
and represent unbiased samples for the reward distribution of some joint action. In order to
allow an arbitrarily high number of joint actions and consequently commitment sequences
to be considered as the agent learns, it is necessary that the sequences have an increasing
time interval δi ≡ ti+1 − ti between successive time slots. A sufficient condition is that
δi+1 ≥ γδi where γ > 1 for all i > i0 (for some pre-defined constant i0). In the results
given here, sequences are infinite with γ = 5/4.

Here, the successive increments are generated by the function:

δi+1 =

⌊

cδi + c − 2

c − 1

⌋

where c > 1 is the increment factor and b·c indicates rounding down to an integer value.
For example, if the increment factor is 5 (i.e., the increment ratio γ is 5/4) the rule be-
comes: δi+1 = b(5δi +3)/4c. The first such sequence starts with (1, 3, 6, 10, 15, 22, . . .).
The second sequence therefore starts at time slot 2. To prevent any 2 sequences from
selecting the same time slot, each sequence excludes the time slots in the existing ones.
Hence the second sequence starts with (2, 5, 9, 14, 20, 28, . . .).

For time i suppose the agents chose actions (ai
1, a

i
2, . . . , a

i
m) (where m is the number

of agents). Then an estimate of the value of this joint action is available as the average
reward received during the part of the sequence that has been completed so far. Longer
sequences provide more reliable estimates. Initially, we evaluate the simplest approach
possible where the agents maintain a running reward average for all the active commit-
ment sequences. Later, we will explore a method that takes into account the stochasticity
in the rewards and the length of sequences within the framework of Gaussian estimation.
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4.2 Action selection policy

Each agent must choose an action at the start of each sequence. A new sequence starts
whenever no existing sequence is active in the current time slot. There are two obvious
ways to select the new action: either explore (select the action randomly and uniformly)
or exploit (select the action currently considered optimal). The simple approach used
here is to choose randomly between exploration and exploitation for each sequence. In
order to prefer longer sequences (more reliable estimates), we maintain statistics about
the commitment sequences that are active. One such statistic is the length of the sequence
until the current time point. Agents only consider a commitment sequence to yield a
reliable reward estimate if its length becomes greater than a threshold value, Nmin. In
these experiments, Nmin was set to 10.

For a 2-agent system, we chose the exploration probability p to be 0.9. As an excep-
tion, the first Ninit sequences (where Ninit ≥ 1) must be exploratory to ensure that an
exploitative action can be calculated. The algorithm followed is shown in Figure 1. In the
results below, Ninit = 10.

if number of sequences < Ninit then
explore randomly and uniformly

else
with probability p : explore randomly and uniformly
with probability 1 − p : exploit

end if

Figure 1: The average reward estimation algorithm.

The exploit function simply returns the action that corresponds to the commitment
sequence with the highest observed average reward among those whose current length is
at least Nmin.

4.3 Parameter analysis

In this section, we analyse the influence of the algorithm’s parameters on the learning.
These parameters are: the minimum number of commitment sequences that must have
been started before the agents can exploit (Ninit), the minimum length that a sequence
must reach before it is considered for exploitation (Nmin), the increment factor (c) and
the exploration probability (p).

Ninit was set to 10 in all our experiments. Since none of our experiments have less
than 10 commitment sequences, Ninit has no role in the learning other than to make sure
that, upon selection of an exploitative action, there are some sequences among which to
choose.

Nmin affects the learning as follows. In experiments where only short commitment
sequences are created (either short experiments or long ones with a small increment fac-
tor), learning performance improves by setting Nmin to a reasonably high value since
our confidence is higher for longer commitment sequences. In longer experiments, Nmin

plays no part in the learning other than to decrease learning performance if set too high.
This is because it is possible that an agent never explores as no commitment sequences
reach the required length. Figure 2 illustrates this effect. We have plotted the convergence
probability of the learners in the stochastic climbing game after 1000 moves. Since no
commitment sequences of length greater than 20 have been created, the learning perfor-
mance decreases for values of Nmin > 20.
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Figure 2: Number of successful experiments out 1000 runs for Nmin ∈ [1, 25].

The increment factor c defines how quickly a commitment sequence is visited again.
Informally, the higher the value of the increment factor, the greater the time between
two successive updates of a commitment sequence. Consequently, the total number of
commitment sequences reduces monotonically with the increment factor for any length
of the experiment. To illustrate this relationship, Figure 3 shows the total number of
sequences for an experiment of 1000 moves with increment factor c ∈ [2, 29].
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Figure 3: The relationship between the increment factor and the total number of se-
quences.

The performance of the learners for different increment factors is also plotted in Fig-
ure 4. This plot was generated for the stochastic climbing game with Nmin = 10 and
experiment length 1000.

Finally, in order to understand the influence of the exploration probability p on the
learning, we have plotted its effect on the learning performance in Figure 5. The explo-
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Figure 4: The relationship between the increment factor and the probability of conver-
gence to the optimal joint action.

ration probability has been varied from 0 (always exploit) to 1 (always explore), Nmin

and Ninit were set to 10 and the experiment was 1000 moves long. This plot was created
for the stochastic climbing game.
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Figure 5: The relationship between the exploration probability and the probability of
convergence to the optimal joint action.

From Figure 5, we can see that 100% exploration is optimal in this case. However, we
have identified some games where one agent’s exploitative behaviour can help the other
agent to learn. If performance during learning is an issue, a low exploration probability is
also desirable. In our experimental evaluation, the exploration probability will be 0.9.
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4.4 Experimental results

This section contains the experimental results for the basic approach in all three versions
of the climbing game and in the stochastic penalty game. As before, we repeated each
experiment 1000 times to obtain high confidence in the results. The number of moves was
varied from 500 to 3000 and the parameters Ninit and Nmin were both set to 10. In all
experiments, we chose γ = 5/4. The results for the climbing game variants are plotted in
Figure 6.
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Figure 6: Convergence of the basic approach on the three games.

In Figure 6, SCG stands for Stochastic Climbing Game, TVSCG stands for Three-
Valued Stochastic Climbing game and VPSCG stands for Variable-Probability Stochastic
Climbing Game. From Figure 6, we can see that the probability of convergence to optimal
eventually reaches over 90% for all cases, with some reaching over 95% even for relatively
short experiments. The most difficult game is the three-valued climbing game as there is
more variance in the rewards that correspond to each joint action.

The stochastic penalty game is solved much quicker by this approach. The probability
of convergence to the optimal joint action reaches over 95% even for very short experi-
ments (500 moves). This is because the variance in the rewards is small and the method
is impervious to the existence of multiple optimal joint actions. Regardless of how many
optimal joint actions there are in the game, one will always have a higher estimate than
others1 so that choosing an action for exploitation is not affected by the number of optimal
joint actions.

5 Variance-sensitive approach

The basic approach using averaging performs fairly well. However, there are cases (e.g.
the three-valued stochastic climbing game) where convergence only reaches above 90%
for very long experiments. This section outlines an extended approach using a Gaussian

1If multiple estimates are equal, the agents will choose the one that corresponds to a longer commitment
sequence.
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estimator that improves both the convergence speed and the probability of convergence to
the optimal joint action.

5.1 Finding the exploitative action

As in the basic approach, if the agents chose actions (ai
1, a

i
2, . . . , a

i
m) (where m is the

number of agents) at time i then an estimate of the value of this joint action is available
as the average reward received so far for this sequence. For the extended approach, we
attempt to reason about the true expected reward. To do this, we must make some as-
sumptions about the possible form of the reward for each joint action, e.g. that it must
have finite variance.

Here we use a Gaussian model and estimate its mean and variance from the obser-
vations. If n rewards are observed with empirical average m and sum of squares S, we
obtain estimates for the population mean µ and its variance σµ (estimates of a quantity x
are denoted by x̂):

µ̂ = m

σ̂2
µ =

S + σ2
0

n2
−

m2

n
σ0 is a parameter to the algorithm and should be based on the expected variance of

rewards in the game. In order to prefer longer sequences (more reliable estimates), a
pessimistic estimate µ̂ − Nσσ̂µ is used to provide a lower bound on the expected return
for each sequence. At any given time, the exploitative behaviour for an agent is to choose
the action corresponding to the sequence with the greatest lower bound. Large values of
Nσ reduce the risk that an optimistic bias in the reward estimate from a short sequence
will affect the choice of action. However, smaller values may give faster initial learning.
In the results below, Nσ = 4.

5.2 Exploration policy

In the variance-sensitive approach, the agents choose randomly between exploration and
exploitation for each sequence. For a 2-agent system, we chose the exploration probability
to be 0.9 as before. We have maintained the Ninit parameter (Ninit >= 1) but have
eliminated Nmin. We simply allow Ninit commitment sequences to start and then only
use the variance-sensitive estimator to find the exploitative action. In the results below,
Ninit = 10.

5.3 Experimental results

Figure 7 depicts the convergence performance of the variance-sensitive approach for the
three variants of the climbing game. In these experiments, σ0 was set to 50 for the
three-valued stochastic climbing game and to 10 for the rest. In Figure 7, SCG, VP-
SCG and TVSCG stand for Stochastic Climbing Game and its Variable-Probability and
Three-Valued variants.

As we can see from Figure 7, the variance-sensitive approach outperforms the aver-
aging approach in all cases. In fact, the probability of convergence to the optimal joint
action consistently reaches over 98%. For the three-valued game, we chose σ0 = 50 be-
cause the variance in the stochastic rewards is higher. The probability of convergence to
the optimal joint action in this game reached over 90% for longer experiments i.e. after
2000 moves.
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Figure 7: Convergence of the variance-sensitive (Gaussian) approach on the three games.

Finally, the stochastic penalty game was once again much easier to solve. Here, the
probability of convergence to the optimal joint action exceeded 95% for 200 moves and
reached 100% after only 800 moves. This clearly illustrates the ability of the variance-
sensitive approach to resolve the problem of choosing between multiple optimal joint
actions.

6 Related work

There are two main paradigms for the learning of coordination, one using independent
agents and another using joint-action learners. While joint-action learners are able to
observe one another’s actions, their independent counterparts can not. Therefore, ap-
proaches using independent learners (such as ours) are more general and more universally
applicable.

Claus and Boutilier (Claus and Boutilier, 1998) used joint-action learners and ficti-
tious play in their approach to learning coordination in cooperative multi-agent systems
but reported a failure to solve problems where miscoordination is heavily penalised. Later,
Boutilier (Boutilier, 1999) developed an extension to the value iteration technique that
allowed each agent to reason explicitly about the state of coordination, i.e., whether the
group of agents are in a coordinated or non-coordinated state. More recently, Chalkiadakis
and Boutilier described a Bayesian approach to multi-agent reinforcement learning prob-
lems but, again, made the limiting assumption that each agent can observe the actions and
rewards of all other agents at each round of the game. Also, Wang and Sandholm (Wang
and Sandholm, 2002) developed a learning algorithm for joint-action learners that prov-
ably converges towards an optimal Nash equilibrium.

Sen, Sekaran and Hale (Sen et al., 1994) argued convincingly that shared knowledge
or the ability to communicate is not a necessary condition for multi-agent coordination.
They implemented a system where two independent agents learnt to coordinate their ac-
tions so as to push a block to a specific location without even being aware of one another.
However, their agents did only converge to suboptimal policies.

Similarly, Peshkin, Kee-Eung, Meuleau and Kaelbling) (Peshkin et al., 2000) devel-
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oped a gradient-descent policy-search algorithm for cooperative multi-agent domains that
is guaranteed to find a local optimum in the space of factored policies but may not always
find an optimal Nash equilibrium.

Finally, Nowé, Parent and Verbeeck (Nowé et al., 2001) used social agents that employ
a periodical policy to tackle learning in single-stage 2-player games. In contrast to our
approach, these agents rely on communication to achieve coordination.

7 Concluding remarks and outlook

We have presented a novel learning technique based on commitment sequences that en-
ables independent agents to converge to the optimal joint action even in difficult scenarios
with miscoordination penalties and stochastic rewards. Such scenarios were previously
approached with Q-learning techniques but remained unsolved using independent agents.

The ability to achieve coordination with independent agents is a major advantage of
the commitment sequence approach and makes the technique much wider applicable in
the real world. Specifically, by not relying on explicit communication and mutual obser-
vation, the technique is insensitive to disruptions in the communication channel and does
not require the spatial proximity of agents.

A potential disadvantage of commitment sequences is the dependence on a shared
global clock in order to achieve coordination. This is a limiting assumption in the sense
that such a clock may not always be available. In such cases, the reward signal may
sometimes be used to emulate the gloabl clock. However, the clock needs to be fail-safe
and keep the agents synchronised at all times. Potential glitches can be overcome by
permitting limited communication at regular time intervals to check synchronisation.

We are currently investigating the scaling-up performance of the commitment se-
quence approach, both in terms of the number of agents and in terms of the size of the
game (i.e., the number of actions available to each agent). Early results show that our
technique scales up well.

While agent coordination in the real world is typically much more complex than what
can be described by a single-stage cooperative game, these games offer a useful abstrac-
tion. To study the essential dynamics of coordination in a real-world scenario, it is helpful
to simplify the problem so as to isolate the issues involved and study them separately. In
this way, the effect of each issue can be highlighted and its contribution to the over-
all problem of coordinating actions can be extracted. That is the main reason for using
single-stage games as the testbed for learning coordination. It is their simplicity and ex-
pressional power that is well suited to this type of research.

To extend our system to multi-stage games will require a combination of the com-
mitment sequence approach (applied separately in each state to evaluate the expected
immediate reward) with state-action value functions that estimate expected discounted re-
turns taking into account the state-transition function. Value functions of this kind may
be associated with sequence-action pairs and/or state-action pairs. A hybrid method that
makes use of reinforcement learning heuristics, such as FMQ (Kapetanakis and Kudenko,
2002), will be considered first.
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Abstract

We identify a specialised class of reinforcement learning problem in which the
agent(s) have the goal of gathering information (identifying the hidden state). The
gathered information can affect rewards but not optimal behaviour. Exploiting this
characteristic, an algorithm is developed for evaluating an agent’s policy againstall
possiblehidden state histories at the same time. Experimental results show the method
is effective in a two-dimensional multi-pursuer evader searching task. A comparison
is made between identical policies, joint policies and “relational” policies that exploit
relativistic information about the pursuers’ positions.1

1 Introduction

We address the reinforcement learning problem (Sutton and Barto, 1998) for episodic
tasks in partially observable environments. These tasks are characterised by the presence
of ‘hidden state’ which is not observable by the agent, although it may be revealed over
the course of a trial.

For example, suppose the task is to search an area of the ground using a robotic vehicle
(thepursuer, under the learning agent’s control). Initially, the pursuer may only know that
the evader (another vehicle perhaps) is within some given uncertainty area. The pursuer
may also have available a dynamics model that determines how the evader could move
over the course of a trial. The goal is simply to bring the evader within detection range
of the pursuer’s sensors (and at this point the trial ends). Therefore the only use that the
pursuer can make of its sensor measurements during the course of the trial is to eliminate
regions of the search area:i.e. the pursuer must reason aboutwhere the evader could
be. This is an extreme example of adual controlproblem: an agent must take actions to
gather information on the way to its goal.

If the means available to the agent for observing the environment (e.g. sensors) do
not allow the agent to gather instantaneously all the information that is relevant to its
decision-making, then the task is apartially observable(PO) one. In PO tasks, reactive
policies based on only the instantaneous observations are rarely effective: it is necessary
for the agent to fuse information over time to make best use of the observations (and initial
information). The searching task is a good example: the instantaneous observations are
identical at every time step until the evader is found, and so no useful memoryless policy
could be found. However, if the agent uses the observations to modify a longer-term

1This paper isc©QinetiQ 2004.
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memory representing where the evader could be at the current time, it can use this memory
as the foundation for decision-making.

A standard model for reasoning about PO environments is the Partially Observable
Markov Decision Process (POMDP). This models the transition dynamics of the (full)
environment state, the expected return for every (state, action) pair, and a stochastic func-
tion mapping states to observations. Most success for large POMDP problems has come
from restricting the complexity of learning by choosing the agent’s policy from a pa-
rameterised family (our approach), rather than estimating state-action values for every
information state. The learning problem becomes one of finding appropriate policy pa-
rameters. However, even with parameterised policies there remains a difficulty in how to
define the ‘inputs’ to the policy. In fully observable problems, these inputs should be a
compact representation of the state (afeature vector) that carries with it all information
relevant to decision-making. Similarly, in PO problems the inputs can beinformation
featuresthat encode aspects of the belief relevant to decision-making. For example, in the
detection task where the belief is an evader uncertainty area (EUA), candidate sets of fea-
tures might include informative points in the EUA (center of mass, extrema of boundaries)
or spatial moments of the distribution.

Section 2 gives formal descriptions for a POMDP and the proposed specialisation, an
information gathering problem. Section 3 introduces recursive Bayesian filters for track-
ing beliefs, including the particle filter used in the experiments. Section 4 describes a
set of appropriate information features for the searching task, and three types of policy
parameterisation (individual, joint, and relational). Section 5 describes a fast way of learn-
ing in information gathering problems that exploits conditional independence between the
true hidden state and the optimal behaviour, given the belief. Section 6 describes direct
search methods for finding effective policy parameters. Section 7 describes evaluation of
the approach using a multi-pursuer evader task, and section 8 concludes.

2 A special class of POMDP

Before describing a specialised version of the POMDP for information gathering prob-
lems, we give a formal description of the existing MDP and POMDP models. An MDP
is a discrete-time model for the stochastic evolution of a system’s state, under control of
an external input (the agent’s actions). It also models a stochastic reward that depends on
the state and action.

Definition A Markov Decision Process is given by〈X, A, T, R〉 where
X is a set of states andA a set of actions.T is a stochastic transition
function defining the likelihood the next state will bex′ ∈ X given cur-
rent statex ∈ X and actiona ∈ A: PT (x′|x, a). R is a stochastic reward
function defining the likelihood the immediate reward will ber ∈ R
given current statex ∈ X and actiona ∈ A: PR(r|x, a).

A POMDP is a general-purpose discrete-time mathematical model for reasoning about
single-agent interaction in the presence of partial observability. The POMDP assumes
that the agent receives observations that do not necessarily convey the full hidden state of
the environment.

Definition A POMDP 〈X,A, T, R, Y,O〉 builds upon a MDP
〈X,A, T, R〉 by adding a set of observationsY and an observation func-
tion O that generates stochastic observations from the hidden state ac-
cording toPO(y|x).
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2.1 Optimal behaviour in POMDPs

Reinforcement learning for partially observable problems is generally more difficult than
for fully-observable ones. The reason for this can be seen by analysing optimal behaviour
in a POMDP (assuming all parts of the POMDP are known2 ). Optimal behaviour is given
not by a policy that maps observations to action probabilities, but by a policy that maps
beliefsto action probabilities. The agent’s belief orinformation stateis its representation
for uncertainty in the hidden state at the current time. This belief is a probability distribu-
tion P (x|H) overX, whereH is the complete interaction history. It is possible to find the
agent’s optimal policy by constructing a MDP from the POMDP but with a much larger
state space corresponding to the set of possible beliefs. This larger MDP can, in theory, be
solved by standard RL methods. In practice, however, the belief space is usually so large
that the methods are intractable without some kind of approximation. For example Thrun
estimated state-action values for a discrete set of belief ‘exemplars’, each corresponding
to a particle filter estimate of the belief (Thrun, 2000). The KL divergence was used as a
distance-measure between information states, to allow the nearest neighbor exemplar to
be found for each information state encountered during learning. In the worst case, the
belief space has size exponential in the number of time steps of interaction.

2.2 Information gathering problems

Now we investigate special cases where part of the state isfully hidden. Byfully hidden we
mean that observations that depend on this state do not affect optimal behaviour (and are
therefore excluded from the model). Firstly, suppose that the fully hidden state represents
the location of a physical entity (e.g.a vehicle) and that the agent’sonly goalis to discover
this information. When the information is discovered the trial ends. In this case the agent
knows its own physical state, and observations convey no information about the hidden
state until the end of the trial. Therefore optimal searching behaviour is not dependent
on these observations. More generally, consider an agent that aims to discover some part
of the hidden state, but passes the information on to another agent for action. The trial
does not end, but from that point on the agent has “no interest” in that part of the state.
An example would be a remote surveillance system (e.g. a relocatable satellite) that must
plan its own course to gather imagery at a set of locations, and report this information
for interpretation by another system (e.g. a ground station). This is an example of a
continuing information gathering problem (IGP) for which the following definition is
proposed:

Definition An IGP is given by< X, S, A, Th, T s, R >. The fully hid-
den part of the statex ∈ X evolves according to a transition function
PT h(x′|x, s, a). The observable part of the states ∈ S evolves separately
according to a transition functionPT s(s′|s, a). R defines the stochastic
immediate rewardPR(r|x, s, a) which may depend on both the hidden
part and the observable part of the state.

Note that there is no observation function because the observations are identical to the
observable part of the state (s). The observable state could incorporate the physical state
of the agent(s) and any other observable scenario information. A stationary policy for the

2If the observation, transition and reward functions of the POMDP are not knowna priori an even more
difficult learning problem is encountered.
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agent is now a stochastic function of (i) the beliefb ≡ P (x|H) over the fully hidden state
and (ii) the fully observable state:

π(b, s, a) ≡ P (a|b, s)

The benefit of this new formulation is that the beliefb evolves independently of the
actual fully hidden statex. (There are no observations to convey information about it.)
The beliefb is obtained simply by a recursive Bayesian filter that has no information
update step.

3 Recursive Bayesian filtering

Bayesian filtering is the process of estimating the distribution of possible values (belief)
for the state of a dynamic system, given a sequence of noisy measurements. Arecursive
Bayesian filter implements this process by using only the current measurement to update
the belief at each time step; it never refers back to previous measurements. Consider
first the non-interactive case where the agent is simply observing the dynamic system.
Implementation requires a way to represent the current beliefP (xt|Yt) wherext is the
state vector andYt is the sequence of measurements so far. There are many possible
implementations. The Kalman filter approximates the belief by a multivariate Gaussian
distribution. Particle filters use a ‘cloud’ of samples as the representation, allowing multi-
modal distributions to be represented. Grid-based filters discretise the state space and
store a probability at each grid point.

The filter has two updates at each step:predictionapplies the known dynamicsP (xt+1|xt)
to obtain a prior distributionP (xt+1|Yt) for the state at next time step;information update
uses Bayes’ rule to account for the new observationyt+1, yielding a posterior distribution
(the belief att + 1):

P (xt+1|Yt+1) ∝ P (yt+1|xt+1)P (xt+1|Yt)

This states that the likelihood of a new state (xt+1) is proportional to (∝) the like-
lihood of the observation (yt+1) given that state, weighted by its prior probability given
previous observations (Yt).

For example, a recursive Bayesian filter can be applied to the problem of tracking the
location of an aircraft using noisy sensor measurements from a radar. The state is the
aircraft’s location, pose, and speed. The dynamics is determined by the aircraft’s accel-
eration capability. The measurement modelP (yt|xt) describes the radar’s performance
(e.g. typical error) and must be known. Applying the filter yields a belief that represents
the uncertainty in the aircraft’s state at each time step, and allows decisions to be made.

3.1 Formulation for interactive systems

In many sequential decision problems it is feasible to estimate the belief (even when it
is not feasible to enumerate the space to represent a value function). Using the POMDP
notation, the vectorxt represents the full state of the environment (e.g. the position and
motion of one or more objects). The belief is a probability density forxt given the inter-
action historyHt ≡ (At−1, Yt) whereAt−1 ≡ (a1, . . . , at−1) is the action history and
Yt is the observation history. The initial information isP (x0). The recursive Bayesian
filter makes use of a dynamics modelPT (x′|x, a) and an observation modelPO(y|x) to
recursively estimate the belief:
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P (xt+1|At, Yt)︸ ︷︷ ︸ =
∫

xt

P (xt|Ht)PT (xt+1|xt, at)dxt

P (xt+1|Ht+1) ∝ PO(yt+1|xt+1)
︷ ︸︸ ︷
P (xt+1|At, Yt)

3.2 The particle filter

Our experiments make use of the particle filter (Doucet et al., 2001) because it is very
easy and convenient to work with: it represents the belief as a sum of weighted hypotheses
{(xi

t, w
i
t)}:

P (xt|Ht) =
N∑

i=1

wi
tδ(x

i
t, xt)

The update can be implemented (separately for each particle) by importance sampling,
using some proposal densityq(xi

t+1|xi
t,Ht+1) then re-weighting the particles according

to:

wi
t+1 ∝ wi

t

PO(yt|xi
t)PT (xi

t+1|xi
t, at)

q(xi
t+1|xi

t,Ht+1)

Over the course of time, the weights of the particles may become imbalanced causing the
set of particles to be a poor representation of the true belief. To overcome this problem,
resamplingis usually necessary. Resampling makes all weights equal, but there tend to
be more copies in the new population of the particles that had the largest weights.

3.3 Particle filter for fully hidden state

The full recursive Bayesian filter is not required in information gathering problems. In
particular, there are no observations conveying information about the hidden state, and so
the belief depends only on the initial distributionP (x0) and on the dynamics expressed
as a transition modelPh

T (xt+1|xt, at) (now using IGP notation). The update becomes a
single step:

P (xt+1|Ht+1) =
∫

xt

P (xt|Ht)P (xt+1|xt, st, at)dxt

whereHt ≡ (At−1, St) andSt ≡ (s1, . . . , st) is the observable state history. We will
be use this “history filter” for two different purposes: representing an agent’s beliefs and
representing an ensemble of scenarios for evaluation.

A detection event in the pursuer-evader problem will lead to the weight of the cor-
responding hypothesis being set to 0. If resampling were then to take place, these zero-
weight hypotheses would be replaced in the filter by duplicates of other hypotheses; i.e.
the computational effort of the whole particle filter would be focussed on cases where the
evader would not yet have been intercepted. However, there is a strong argument for not
resampling3. Given that no computational effort is expended on zero-weight particles,
the processing requirement will be proportional to the likelihood that the evader has not
yet been detected. This implies that, without resampling, computational load is matched

3However, resamplingis required if the transition function does not assign similar probabilities to all feasible
outcomes.
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to the maximum change in total return from the trial. Therefore, in the pursuer-evader
problem, the particle filter has been reduced to a very simple update for each hypothesis,
implementing the evader’s instantaneous motion.

4 Policy parameterisation

Our goal is for the learning agent to acquire effective control policies (searching be-
haviours). A policy is a means for selecting an appropriate action, given the current
situation. For large problems, there are two main approaches: policy search and value
function approximation. In policy search, the designer provides the agent with a parame-
terised control policy, and the parameters are the objective for learning. In contrast, value
function approximation approaches (common in reinforcement learning) estimate a map-
ping from states to values. This allows an agent to exploit a known (or sampled) transition
function to reason about the values of future states (using Bellman’s “backup” operator
within the learning rule), and toderivea control policy. The advantage of representing
and exploiting the state information in this way is faster learning. The disadvantage is that
it is difficult to meet the assumptions required by the Bellman operator (especially in the
presence of large state spaces or partial observability).

The method used here is best described as “direct policy search” because it does not
exploit Bellman’s operator in learning (even though it does represent the policy intrinsi-
cally as a parameterised value function). The uncertainty in the evader’s location is given
at any instance in time by a belief consisting ofNH = 256 hypotheses (particles in the
filter). To pose the problem as one of direct policy search, a set of information features is
required that summarises the set of particles adequately for robust decision-making. This
process is sometimes calledbelief compression(Roy and Gordon, 2002). The features
described here make use only of the position part of each particle’s state.

4.1 Information features

Let (xi, yi) be the position vector for hypothesisi expressed in a coordinate system of a
pursuer of interest4. To obtain a compact set of information features, we integrate over the
particles using a small number of basis functionsφjk for j ∈ {1, 2} andk ∈ {1, 2, 3, 4}.
A suitable set is given by the regularised spatial derivatives:

φjk(x, y) = H(j, 2k − 2)

where:

H(m,n) =
∂m

∂x

∂n

∂y
exp(−x2 + y2

2
)

These basis functions are all derivatives of a Gaussian distribution placed at the origin
(of the pursuer’s coordinate system). They are mutually orthogonal and (multiplicatively)
separable in the two axis directions. Only even derivatives are selected in the y-direction;

4This coordinate system has its x-axis parallel to the pursuer’s velocity vector. A nonlinear transforma-
tion is also applied: a displacement of(u, v) in the pursuer’s coordinate system is mapped to(x, y) ≡
(u/{R0sqrt|u|}, v/{R0sqrt|v|}), in order to provide more spatial resolution close to the agent.R0 is a
constant that will determine the effective spatial extent of the basis functions, and is chosen equal to 512 in our
evaluation.
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the odd ones are of no interest as a result of symmetry in the problem. This yields a set of
information features:

zjk =
1

NH

∑

i

φjk(xi, yi)

We then define an information-state value function:

Vα(xi, yi) =
∑

j,k

αjkCjkzjk

Cjk is a constant that ensures the magnitudes of the information features are balanced:

C−1
jk ≡

∫

x

∫

y

φ2
jk(x, y)dydx

The 2x4 parameter matrixα will be the target for learning. We make use of the smooth
dynamics to avoid computingV explicitly. Instead, each pursuer selects its action (turn
left or turn right) according to the sign of the gradient ofV with respect to the angleθ of
its velocity vector. The gradient is given here without proof:

∂V

∂θ
≡

∑

i

∑

j,k

Cjk{xiH(j, 2k − 1)− yiH(j + 1, 2k − 2)}

Since only the sign of the gradient is used to determine the pursuer’s action, an arbitrary
scaling ofα will not affect its behaviour. This redundancy is eliminated by requiring
‖α‖ = 1.

4.2 Joint and relational policies

In general, every pursuer need not be given the same policy. Instead, the problem can
be regarded as a search for the joint policy(α1, . . . , αNp) which has8NP dimensions.
We will evaluate whether the extra representational freedom (and complexity) of a joint
policy can be exploited.

In order to allow any number of pursuers tocooperatewithout the policy size increas-
ing, a simple relational policy has also been designed. Every pursuer has a copy of the
policy which consists of two components:α (as before) andβ which contains information
about the relative positions of the pursuers.β affects the value function in the same way
asα except that the basis functions are summed over pursuer locations instead of particle
locations:

zrel
jk =

1
NP − 1

∑

l

φjk(xl, yl)

Vβ(xl, yl) =
∑

j,k

βjkCjkzrel
jk

where(xl, yl) is the location of pursuerl expressed in the coordinate system of the pursuer
for whom the decision is to be made. Using relational policies, it is the gradient of the
combined value functionVα+Vβ that determines each pursuer’s action. The dimension of
this policy is 16 nomatter how many pursuers are present. (Also, the number of pursuers
taking part in the search could change dynamically during a trial.) This approach will
be evaluated to determine whether pursuers are aided by taking account of each other’s
locations.
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5 Dual particle filter method

One major benefit of identifying the problem as an “information gathering process” rather
than (the more general) POMDP is that specialised solution methods can be derived.
In the pursuer-evader problem, the pursuers’ locations are the fully observable state (s)
and the evader’s location is the hidden state. When the evader comes within detection
range of a pursuer, the trial ends. Therefore, the hidden state is never used to determine
future actions: i.e. observation of the hidden state conveys no information about optimal
behaviour (pursuer policy). The implication of this is thatany proposed policy can be
tested against all possible hidden state histories in parallel. The outcome of a parallel
trial is not success or failure (evader detected or not) but instead theproportion of the
histories in which the evader was detected.

The method proposed here uses one particle filter to represent the pursuers’ beliefs
about the location of the evader, and a separate particle filter to represent hidden state
histories for parallel evaluation. Although it may not be immediately obvious, the two
particle filters are estimating the same distribution: the possible state of the evader at
each time step. Nevertheless, it is essential that they are kept separate because if the ap-
proximation errors (inevitable in a particle filter) were correlated, a grossly overoptimistic
estimate of the performance of a policy would be obtained.

We found that 256 particles in each filter were sufficient, whereas using a single filter
for both estimation tasks means that over 4000 particles are required for similar perfor-
mance. Each trial does not end until the evader has been detected in every parallel sce-
nario, or a maximum duration has expired. This approach is also very efficient compared
with the naive alternative: running 256 separate trials; one for each possible trajectory
taken by the evader.

6 Direct Policy Search

Suppose that the agent’s policy has a parameter vectorw of sizem; for examplew ≡ α
for pursuers with identical policies;w ≡ (α1 :: . . . :: αNP

) for joint policies (where::
indicates concatenation of vectors); orw ≡ α :: β for relational policies. A single simula-
tion trial in whichw defines the pursuers’ behaviours will lead to a stochastic return. The
aim of learning is to find aw that maximises the expected return.Direct policy search
methods attempt to optimise expected return without reference to performance gradient
information. Some methods use a large number of trials for each proposedw to obtain
a near-deterministic evaluation, then apply a deterministic optimization procedure (e.g.
downhill simplex method). However, here we use a method that can work with unreliable
policy comparisons (Strens and Moore, 2001).

6.1 Differential evolution

Our approach is a variant ofdifferential evolution, an evolutionary method that operates
directly on a population of real-valued vectors (rather than binary strings) (Storn and
Price, 1995). Proposals are obtained by linear combination of existing population mem-
bers.

Initially, the population is chosen randomly from some prior density onw. To gen-
erate each proposal, one candidate in the population is chosen (systematically) for im-
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provement. Then the vector difference between two more randomly5 chosen members,
weighted by a scalar parameter,F , is added to a third randomly chosen ‘parent’. Crossover
(see below) takes place between this and the candidate, to obtain a proposal point. The
proposal is compared with the candidate by running a small set of new simulation trials
for each. To reduce variance in this comparison, the same set of scenarios6 is used for
every comparison. According to the outcomeeither the proposal replaces the candidate
or the population remains unchanged. In either case, a new candidate for replacement
will be selected on the next iteration.

Crossover is implemented here by selecting each element of the proposal vector from
either the candidate or the new vector with equal probability. Crossover helps to prevent
the population from become trapped in a subspace. For each proposal,log2 F was chosen
uniformly from the range[−10, 0] and the result was scaled by a valueFmax(t) that
decreased with time. (log2 Fmax(t) was reduced uniformly from 0 to -10 during learning.)
This ensures convergence of the population.

6.2 Illustration

Figure 1 illustrates this process in more detail: the weighted difference between two pop-
ulation members (1,2) is added to a third population point (3). The result (4) is subject to
crossover with the candidate for replacement (5) to obtain a proposal (6). The proposal
is evaluated (using a number of trials) and replaces the candidate if it is found to be bet-
ter. Note that the proposal could be identical to (4) or (5), depending on the outcome of
crossover.

This form of DE has a very useful property; replacing any one population member due
to an occasional incorrect comparison is not catastrophic. It suffices that the comparison
be unbiased, and correct with probability only slightly better than chance (0.5) in large
populations (Strens and Moore, 2002). This means that it is possible to use only a small
number of simulation trials (4 in this case) per proposal.

candidate parent

proposal

×F

1

2
3

4

5

6

Figure 1: Obtaining a new proposal in differential evolution.

5All vectors used in the process of generating a proposal are mutually exclusive.

6A scenario is an initial configuration for the pursuers’ locations.
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7 Evaluation

We perform a comparison between individual, joint and relational policies for different
numbers of pursuers. The aim is to demonstrate the effectiveness of the dual particle filter
method and to collect some evidence about the best way to structure a policy for this type
of task.

7.1 Multi-pursuer evader task

We consider a multi-pursuer evader task in which the observable state is the location and
velocity of each pursuer, and the hidden state is the location and goal direction of an
evader. The pursuers must cooperate to detect the evader before the uncertainty in its
position becomes too large.

• States.Each pursuer’s state is a location on the 2-dimensional plane and a motion
direction. The evader’s state is a location in the plane and a preferred direction;
therefore each particle in the filters will be a 3-vector.

• Scenarios.The initial belief for the evader’s location is an uncertainty area given
by a Gaussian distribution with standard deviation 100, located at the origin. The
pursuers all start at a distance from the origin chosen uniformly from[2000, 3000].
Their angular separation (subtended from the origin) is 30 degrees. Note that ro-
tational and translational invariance of our formulation will mean that the policy
obtained will work just as well for any rotated or translated versions of this set of
scenarios.

• Dynamics.The pursuers can move at a speed of 24 (length units per time step) and
the evader at 1. The evader can instantaneously change its direction whereas the
pursuers have a maximum turn angle ofπ/8 at each time step. In our implementa-
tion, each pursuer selects either+π/8 or−π/8 according to the information-state
value function’s gradient. It remains possible for a pursuer to follow an almost
straight course by alternating between these two actions. The evader’s behaviour is
given by a stochastic policy: with equal probability it either moves in its preferred
direction or moves in a direction that takes it away from the nearest pursuer (ensur-
ing the problem is non-trivial7). If the evader’s position is within detection range
(24 units) of a pursuer, it is deemed to have been found.

• Termination. The maximum trial duration is 256 steps. With a naive implemen-
tation in which only one evader trajectory (history) is used in each trial, detection
would often be completed within this time limit. However, using the dual particle
filter method, the trial will not end until detection takes place ineveryhypothesis
for the evader’s trajectory. Therefore, often the maximum duration will be reached
(but with a diminished number of active particles in each filter.)

• Returns. The return at the end of a simulation trial is the proportion of the origi-
nal probability mass within the evaluation filter that has been eliminated during the
course of the trial. This represents the expected return over the256 parallel scenar-
ios described above, and can be interpreted simply as the probability that the evader

7In particular it ensures there is a dependency between the pursuers’ actions and the evolution of the hidden
state; otherwise it would be possible to pre-compute evader trajectories.
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is found within the trial duration. The differential evolution method uses this return
as the (stochastic) evaluation of the weight vector associated with that trial.

Figure 2 shows the trajectories of 3 pursuers during a trial as sequences of connected
circles. The radius of each circle is the area within which the evader can be detected. A
more detailed view of the central circle (radius 400 units) is also given, for a different
learning trial. It shows a strategy has been learnt for the 3 pursuers that covers the central
part of the space very well. By this stage in the trial the pursuers have moved towards
the edge of this central circle, because the evader could have reached these areas. The
plotted markers indicate the states of one particle filter at the end of a trial. The grey
points indicate particles that have been detected. These are frozen in the locations at
which they were detected, for illustration. The outer (black) points represent hypotheses
for the current location of an evader that has not yet been captured.

7.2 Configuration of learning system

Differential evolution used a population size of 16 andF was chosen as described in
section 1. 256 particles were used in each filter. 4 trials were performed for each policy
evaluation (with pursuers at distances of 1125, 1375, 1625 and 1875 from the origin).
Therefore 8 trials were needed for each policy comparison, and so 512 policy comparisons
were possible in the total budget of 4096 trials. (This is a relatively small number of
function evaluations for an evolutionary algorithm.) The best policy within the population
was tested at the end of learning, using a set of 512 scenarios, in which the initial pursuer
positions were uniformly distributed in the interval [2000,3000]. A baseline performance
was obtained using a very simple policy in whichα11 = 1 and all other elements are 0.
This causes each pursuer to turn towards the centre of probability mass of the evader’s
position distribution, taken under the weighting functionH(0, 0).

7.3 Results

Table 1: Success rate (%) for different policy types.

NP 1 2 3 4
Baseline 46± 4 64± 3 75± 4 81± 3
Identical 47± 7 72± 3 80± 2 88± 2
Joint NA 73± 6 79± 3 85± 2
Relational NA 72± 6 86± 3 93± 1

Table 1 shows the performance of the baseline policy and three types of learnt policy
as a percentage (likelihood of detecting evader), for different number of pursuers. The
error bounds given are at one standard deviation: the standard errors (n = 500) are about
20 times smaller so a difference of 2% is significant, using Gaussian statistics.

The task is sufficiently difficult that no method is able to obtain 100% success, even
with 4 pursuers. This is not surprising, because the uncertainty in the evader position
expands at a rate that increases rapidly with time. The baseline strategy (no learning)
provides performance that increases with the number of pursuers: this indicates that the
pursuers do not all converge onto the same trajectories even though they are acting in-
dependently according to a simple strategy. Introducing learning improves performance
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Figure 2: Pursuer trajectories and final particle states in a simulation trial. Full trial (top);
detail from a different trial (below).
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(significantly) for 2 or more pursuers even though the pursuers continue to ignore each
others’ positions in their decision-making. The learnt joint policy, in which each pursuer
has a separate set of policy parameters performs very similarly: it seems there is no great
advantage in allowing each to have a different strategy. There is actually a performance
decrease with 4 pursuers, probably because the joint strategy has 32 parameters and so
could be expected to take much longer to learn than the identical (8 parameter) strategies.

The learnt relational policies are equally effective (compared with the other learnt
strategies) for 2 pursuers, but show major benefits with 3 or more pursuers. This indicates
pursuers that are aware of each others’ positions can “divide and conquer” the search
problem in a more systematic way. The gains that have been obtained are very significant:
with 4 pursuers the chance that the evader escapes has been halved (compared with the
other learnt policies) and reduced by nearly 3 times compared with the baseline policy.

8 Conclusions

Some information gathering problems such as searching tasks have special structure. Al-
though there is hidden state, and beliefs must be tracked, the actual hidden state does
not affect optimal behaviour. In other words, optimal behaviour is conditionally indepen-
dent of the true hidden state given the belief. Therefore it is possible to evaluate a policy
against any number of hidden state trajectories in a single learning trial.

The implementation described here matches the computational burden of agent rea-
soning (belief revision) and simulation (generating hidden state histories) exactly: a par-
ticle filter can be used for each of these processes. Furthermore, these two particle filters
are performing the same estimation task. They are kept separate in the learning algorithm
only because there are benefits if errors are not correlated. When the learnt strategy is
transferred into a real environment (not a simulation) only the particle filter representing
agent beliefs would be retained: the second filter is part of the learning algorithm rather
than the agent itself.

When learning policies for multiple homogeneous agents, it is not necessary to learn
separate policies for each agent (the joint policy option); however it is important that the
agents make use of relational information (e.g. relative position) in order to divide the
workload effectively. The “relational policy” achieved this by applying the same set of
basis functions (used for obtaining evader information features) to represent the relative
positions of the other pursuers. The deterministic structure of the pursuers’ dynamics was
also exploited in the policy formulation, that might otherwise have required a state-action
value function to be estimated.
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