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Imitation in Animals and Artifacts
Kerstin Dautenhahn and Chrystopher Nehaniv

Department of Computer Science, University of Hertfordshire
College Lane, Hatfield, Hertfordshire AL10 9AB, UK
K.Dautenhahn@herts.ac.uk ; C.L.Nehaniv@herts.ac.uk

Editors’ Introduction

This special issue of the AISB Journal includes a section comprising fully refereed, ex-
tended journal versions of the three most outstanding contributed papers selected from
amongst those that were presented at the AISB’03 Second International Symposium on
Imitation in Animals and Artifacts but which were not co-authored by symposium pro-
gramme committee members. The symposium was organized by Prof. Kerstin Dauten-
hahn and Prof. Chrystopher L. Nehaniv (Adaptive Systems Research Group, University
of Hertfordshire, U.K.), who are pleased to acknowledge the U.K. Engineering and Phys-
ical Sciences Research Council for support of the interdisciplinarymeeting under EPSRC
Grant GR/S57907/01 entitled Social Learning and Artificial Intelligence.

Mark Nielsen and Cheryl Dissanayake’s article investigates three different types of
imitation that can be observed in children: immediate imitation, deferred imitation and
synchronic imitation. In a longitudinal study infants are studied repeatedly during their
second year of life. While immediate and deferred imitation could be observed from
12 months onwards along a similar developmental trajectory, synchronic imitation only
emerged after 18 months. The authors suggest that synchronic imitation is primarily a
communicative behaviour. This contribution stresses the importance of a developmental
perspective in the study of human behaviour and intelligence, as well as the need for
carefully controlled experiments that can aid the understanding of the complexity and
richness of animal and human behaviour.

The contribution by Ross Clement addresses the possible roles of individual versus so-
cial learning in the speciation and evolution of cichlid fish from the African Great Lakes
where different species co-exist, occupying very similar ecological niches. Agent-based
computer simulations study mechanisms of sympatric speciation, varying different en-
vironmental and behavioural parameters. Results point out the importance of learned
behaviour in creating barriers between different populations. This paper gives an exam-
ple of possible contributions of agent-based simulations on social and individual learning
towards a better understanding of specific processes in biological evolution.

Elhanan Borenstein and Eytan Ruppin investigate interactions between evolution and
imitative behaviour where within a generation agents can learn from other members in
the population, ’teachers’ (via horizontal transmission only). The Imitation Enhanced
Evolution (IEE) framework is applied to three tasks, namely the parity problem, the tri-
angle classification problem, and a foraging task. Computer simulations demonstrate that
lifelong adaptive learning via learning by imitation can significantly enhance the perfor-
mance of evolving agent populations. This work exemplifies the evolutionary potential of
learning by imitation in Artificial Intelligence and autonomous agents research.



Imitation

The full proceedings of the symposium contain many other excellent contributions
and are published in K. Dautenhahn and C. L. Nehaniv (Eds.), Proc. Second Interna-
tional Symposium on Imitation in Animals and Artifacts (7-11 April 2003; Aberystwyth,
Wales; AISB’03), The Society for the Study of Artificial Intelligence and Simulation
of Behaviour (ISBN 1-902956-30-7). Also, an edited book based on the topics of the
AISB symposium and tentatively entitled Models and Mechanisms of Imitation and So-
cial Learning: Behavioural, Social and Communicative Dimensions is in preparation for
publication by a well-known scientific publisher.

http://www.aisb.org.uk
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Abstract 
 

The aim in this study was to investigate the emergence of immediate imitation, 
deferred imitation and synchronic imitation in human infants through the second year. A 
longitudinal study was conducted of eighty-six infants at three monthly intervals from 12- 
through to 24-months-of-age. At each session the infants were assessed for immediate, 
deferred and synchronic imitation. Immediate and deferred imitation was evident in the 
infants from 12-months onwards. In contrast, it was not until 18-months that synchronic 
imitation began to emerge. Moreover, the infants’ engagement in both immediate imitation 
and deferred imitation showed a common developmental trajectory that was distinct from the 
trajectory for synchronic imitation. It is argued that synchronic imitation, unlike the other 
forms of imitation assessed here, is primarily a communicative act. 

 

1 Introduction 
 
The vast corpus of experimental research conducted on the imitative abilities of 
infants and young children over the course of the last century has established that 
observing adults is an especially powerful way of learning in human children. The 
majority of this research has focused on the ability of infants and children to recreate 
the actions of others, whether the actions comprise facial and manual gestures or 
actions on objects.  

Though somewhat controversial, there is evidence that immediate imitation 
of facial and manual gestures is present from birth (Meltzoff & Moore, 1977, 1983, 
1989, 1994)1. Immediate imitation and deferred imitation of actions on objects 
appear concomitantly towards the end of the first year (Meltzoff, 1985, 1988b). 
Deferred imitation refers to the actions of a model that are reproduced after a delay 
without the benefit of immediate practice. 

 In addition to facilitating the acquisition of new skills and behaviours, 
imitation also provides infants with a means by which they can acquire an awareness 
of sharing, not only specific actions, but also the intentions of others (Chapman, 
1991). Imitation can therefore function to increase interaction between the imitator 
                                                 
1 Though see Anisfield (1991) 
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and the imitated and, in so doing, provides an environment in which infants can 
engage in sustained communicative sequences. 

Towards 18 months of age, certain behavioural and cognitive skills 
(Mitchell, 2002; Suddendorf & Whiten, 2001) develop that permit infants to 
coordinate their own actions with the thematic specifics of a social partner’s play, 
and this in turn helps generate and sustain valued forms of cooperative action 
(Eckerman, Davis, & Didow, 1989; Eckerman & Didow, 1989; Nadel & 
Baudonnière, 1980, 1982; Nadel, Baudonnière, & Fontaine, 1983; Nadel & 
Fontaine, 1989). A common expression of this achievement in nonverbal 
communication is the interest infants show in sustaining dyadic play through what 
has been labelled synchronic imitation.  

At approximately 18 months, infants begin to show a preference for 
engaging with objects that are similar to ones chosen by their play partner, and they 
use the common object in a similar postural, motoric, and symbolic way. Such play 
is characterised by its inherent reciprocity whereby the partners do not solely adopt 
one role but consistently alternate between model and imitator (Nadel et al., 1983). 
A feature of synchronic imitation is that infants not only reproduce the behaviour of 
their play partner but continue to do so in concert with him or her, all the while 
watching the other closely and showing clear signs of enjoyment.  

The ability of infants to engage in synchronic imitation has been identified 
as a foundation for the onset of verbal language. That is, Nadel and her colleagues 
(2002; Nadel, Guérini, Pezé, & Rivet, 1999) argue that synchronic imitation is a 
form of pre-linguistic communication. As Chapman (1991) has noted, “infants 
perform particular actions as a means of signalling to their partners that they wish 
them to act in a similar manner, and their partners’ actions are understood in the 
same way” (p. 214). When infants engage in synchronic imitation they are therefore 
able to build long-lasting interactions about an object through the alternation of 
imitating and being imitated. More specifically, the long-lasting interactions that 
often characterise synchronic imitation episodes in dyadic play lead to the 
construction of shared topics with a co-referent and, thereby, present a means by 
which infants can learn how to pre-verbally invite participation in play. Turn taking 
in synchronic imitation thus provides an important tool for social exchange, and 
hence a means for developing both referential and inferential communication.  

 Despite the important role that has been attributed to synchronic imitation, 
no study to date has investigated the developmental changes in synchronic imitation 
through the second year, the period when this ability becomes a feature of typical 
infant behaviour. Moreover, the development of synchronic imitation has yet to be 
appraised with reference to the development of infants’ maturing capacities for 
reproducing actions on objects. The aim in the research reported here was to address 
this gap in the literature.  
 

2 Method 
 
2.1 Participants 

Eighty-six infants infants (47 male, 39 female) were seen five times at 
intervals of three months from 12 through to 24 months of age. The infants were 
recruited from Maternal and Child Health Centres in suburbs surrounding La Trobe 
University, Melbourne, Australia. The infants were predominantly Caucasian, of 
middle socio-economic status, and participated in this study as part of a larger 
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longitudinal investigation (Nielsen & Dissanayake, submitted; Nielsen, 
Dissanayake, & Kashima, 2003). All testing was conducted within one month of the 
relevant target age. 
 
2.2 General Procedure 

The sessions were conducted in two playrooms at the Child Development 
Unit at La Trobe University. Playroom 1 was 5.35 X 4.60 metres and contained a 
video camera (that could be operated remotely) positioned above a 1.54 X 1.60 
metre play mat placed on the floor. A basket containing a range of toys (see 
Appendix A) was placed on the edge of the mat. Playroom 2 measured 2.60 X 2.45 
metres and contained a table (120 X 60cm) that was placed between two cameras. 
These cameras were used to videotape the infant and experimenter during 
administration of the tasks. All infants were tested individually with their primary 
carer present.  

Upon arrival at the Child Development Unit, the infant and carer were 
escorted into Playroom 1. The carer and the experimenter sat on the play mat 
together with the infant who was allowed to explore the room. This warm-up stage 
was terminated once the infant appeared comfortable with both the playroom 
environment and the experimenter (usually less than 5 minutes). The free-play 
episode was then conducted followed by the synchronic imitation task. The carer 
and infant were then escorted into Playroom 2 and the deferred imitation task was 
administered.  
 
2.3 Measures 
2.3.1 Immediate Imitation 

A Free-Play episode was conducted on the playmat in Playroom 1 at each 
session. The carer was asked to play with his or her infant, using the toys from the 
basket, exactly as if they were at home. They were also requested to encourage the 
infant to return to the playmat if he or she ventured off it. The infant and carer were 
left to play alone with the toys. The ensuing fifteen minutes were videotaped and the 
exhibition of immediate imitation was later coded continuously from the videotapes 
of these episodes. This provided a naturalistic measure of the infant’s engagement in 
imitation. 

The measure of immediate imitation was coded at each of the six sessions 
and was derived from Hart and Fegley (1994). Following Hart and Fegley, to be 
coded as an exemplar of immediate imitation the following criteria had to be met:  

1. The infant had to observe the modelled behaviour from beginning to end. 
2. The carer had to pause at the completion of the behaviour as an indication 

that the infant was expected to perform the action, or alternatively had to 
communicate the expectation verbally (e.g., “you do it”). 

3. Repeated attempts by the carer to model the behaviour within one minute 
were not coded. 

4. The infant had to perform the action within one minute of observation of 
the carer, and repeated attempts by the infant at imitating the same action 
were not coded. 
Scoring. All exemplars of immediate imitation were coded for the 

frequency of carer initiation and frequency of infant response. As the number of 
items imitated by the infant is dependent on the number of actions modelled by the 
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carer, the dependent variable of immediate imitation was the percentage of modelled 
actions adopted by the infant. Where the response of the infant was considered to be 
ambiguous, no imitation was coded. 
 
2.3.2 Deferred Imitation 

The deferred imitation task was adapted from Meltzoff (1985; Meltzoff, 
1988a, 1988b). All testing took place with the experimenter sitting across from the 
infant at the table. The procedure was the same for each session although the objects 
and actions used were changed (a complete list of the objects and modelled actions 
is included in Appendix B). The procedure consisted of four distinct stages.  

Baseline stage. A baseline stage was introduced to ensure that no infant 
spontaneously produced the target actions. The experimenter placed the first object 
on the table in front of the infant. If necessary the experimenter attracted the infant’s 
attention to the object by making neutral comments that did not relate to the task. 
The infant was given 30 seconds to explore the object. This procedure was repeated 
until the infant had been exposed to three objects. The order in which the objects 
were presented was counterbalanced across infants. None of the target actions were 
spontaneously produced during this phase. 

Modelling stage. Immediately following the baseline stage, the 
experimenter modelled the target actions associated with each object in the same 
order that the objects had been presented. Each action was modelled four times 
within a 30 second period. The experimenter then removed the object from the table 
thus ensuring that the infant was given no opportunity to engage with it until the 
response stage. 

Intervention stage. The last object was placed away and the infant was 
engaged in other unrelated tasks for eight minutes. 

Response stage. The infant was presented with the objects under the same 
conditions as the baseline stage. He or she was given 30 seconds with each object to 
produce the target behaviour. 

Scoring. All coding was conducted from videotape. The coder was required 
to judge whether the target behaviour was produced in the response stage and, if so, 
the infant was awarded one point for each action. Therefore, for each session the 
infant could receive a deferred imitation score ranging from zero to three.  
 
2.3.3 Synchronic Imitation 

The procedure for synchronic imitation was adapted from Asendorpf, 
Warkentin, and Baudonnière (1996). The experimenter sat on the play mat opposite 
the infant. The infant’s carer sat behind the infant and was instructed to avoid 
engaging with him or her. The experimenter placed a small tray of four duplicate 
toys/objects behind him. The episode commenced when the experimenter took the 
first object, offered the duplicate object to the infant, and began the first activity 
with that object. The experimenter continuously modelled an action for 15 seconds 
and then performed a second action with the same object for a further 15 seconds. 
Following completion of the second modelling period, the experimenter placed the 
object and its duplicate in the tray behind him and repeated the procedure until the 
infant had been exposed to all four objects and their accompanying actions. The 
order of administration was counterbalanced across subjects. If the infant stopped 
paying attention to the experimenter, the sequence was paused and recommenced 
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when the infant reoriented to the experimenter. A complete list of the objects and 
modelled actions is included in Appendix C.  

Scoring. The combined amount of time each infant spent engaged in 
synchronic imitation during the four trials of each session was coded from the 
videotapes. Following Asendorpf et al. (1996) a synchronic imitation sequence was 
determined to have commenced when the infant took the duplicate object, looked at 
the experimenter within 3 seconds, and imitated the action of the experimenter for at 
least 3 seconds. The duration of the sequence was coded for as long as the infant 
maintained imitation of the modelled action and continued to look at the 
experimenter at least once every ten seconds. A synchronic imitation sequence was 
considered to have terminated when either the experimenter stopped the activity or 
when the infant stopped the activity for more than 3 seconds. For each session the 
infant could receive a synchronic imitation score ranging from 0 to 120 seconds.  
 
2.3.4 Reliability 

The first author was the primary coder of all measures. A second trained 
coder, who was blind to the specific hypotheses of the study, independently 
observed and coded the videotapes of 12 randomly selected infants (2 from each 
session). Intraclass Correlation Coefficients (Shrout & Fleiss, 1979) were calculated 
between the scores of the two coders for each measure. The inter-rater reliability on 
all measures was good. The individual coefficients were as follows: Immediate 
Imitation 0.75; Deferred Imitation 0.96; and Synchronic Imitation 0.98. 
 

3 Results 
3.1 Immediate Imitation 

 The mean immediate imitation scores (and 95% confidence intervals) for 
each session are presented graphically in Figure 1. At 12-months, the infants 
adopted approximately two-fifths of the imitative bids offered by their carers and 
this number increased to slightly less than two thirds in the 15-month session. The 
proportion of bids adopted then stabilised at this level for the remainder of the study 
(though a slight but non-significant rise was observed at 21-months). 
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Figure 1. Mean percent (and 95% confidence intervals) of immediate imitation bids 
adopted by infants from 12- to 24-months-of-age. 
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3.2 Deferred Imitation 
The means (and 95% confidence intervals) for the number of items imitated 

(out of a total of 3) in each session are presented in Figure 2. Similar to the data for 
immediate imitation, the number of items imitated increased from the 12- to the 15-
month session, after which performance reached a plateau.  
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Figure 2. Mean number (and 95% confidence intervals) of deferred imitation (DI) 
items exhibited by infants from 12- to 24-months-of-age. 
 
3.3 Synchronic Imitation 

The mean duration (and 95% confidence intervals) of synchronic imitation 
exhibited by the infants at each session are presented graphically in Figure 3. Unlike 
immediate imitation and deferred imitation, the infants exhibited little synchronic 
imitation prior to the 18-month session. However, a marked increase in the duration 
of synchronic imitation was observed from the 18-month session onwards. By the 
24-month session, infants were spending approximately one third of the 120-second 
episode engaging in sustained imitative sequences. 
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Figure 3. Mean duration (seconds) (and 95% confidence intervals) of synchronic 
imitation exhibited by the infants from 12- to 24-months-of-age. 
 
3.4 Summary 
 Infants demonstrated immediate and deferred imitation from the 12-month 
session onward. The infants’ exhibition of these two skills increased to the 15-month 
session and then remained relatively constant thereafter. In contrast to these 
measures of imitation, the infants exhibited little synchronic imitation prior to the 
18-month session. However, from 18-months onwards a marked increase in 
synchronic imitation was observed.   
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 In order to enhance comparability across measures, the cumulative 
percentage of infants demonstrating at least one example of each measure was 
calculated for each session (see Figure 4). Immediate and deferred imitation 
emerged in close correspondence with each other. Synchronic imitation emerged 
later, and also showed a developmental trajectory that was distinct from the 
remaining two measures of imitation.  
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Figure 4. The cumulative percentage of infants showing evidence of immediate 
imitation (Immd), deferred imitation (Defd) and synchronic imitation (Synch) at 
each session. 
 

4 Discussion 
The majority of infants demonstrated a capacity for immediate imitation 

and deferred imitation from the 12-month session onward2. Performance on both 
measures of imitation increased to the 15-month session, and then remained 
relatively constant thereafter. In addition, the percentage of infants demonstrating an 
ability to engage in immediate imitation and deferred imitation from 12- through to 
the 24-month session was almost identical. These findings are consistent with 
Meltzoff’s (1988b) report that the capacity for deferred imitation is a concomitant of 
the capacity for immediate imitation. The concordance between the current findings 
and those of Meltzoff is notable given that Meltzoff evaluated immediate imitation 
through an experimenter-elicited task while ‘spontaneous’ caregiver elicited 
imitation was measured in the current study. 

The pattern of results reported here indicates that there is a developmental 
disjunction in the emergence of synchronic imitation and both immediate and 
deferred imitation. This disjunction indicates that the exhibition of synchronic 
imitation is not solely an outcome of the ability of infants to reproduce the actions of 
a modelling adult. In this context, it is worthwhile noting that during administration 
of the synchronic imitation task in the 12- and 15-month sessions it was not 
uncommon for the infants to reproduce the target actions of the experimenter, but 
not to do so continuously. That is, they imitated but did not synchronically imitate. 

                                                 
2 As noted previously a capacity for immediate imitation and deferred imitation is likely to exist earlier. 
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A potential explanation for the developmental disjunction between 
synchronic imitation and both immediate and deferred imitation is that, unlike the 
latter two skills, synchronic imitation relies on the infant’s ability to attribute 
‘intentionality’ to others (Asendorpf, 2002; Asendorpf et al., 1996; Suddendorf & 
Whiten, 2001). Asendorpf (2002) argues that in order to engage in synchronic 
imitation infants must be able to take the perspective of their interaction partner 
regarding the on-going use of objects. That is, the infant must appreciate the 
experimenter’s intention for the infant to continue to copy his behaviour and to do so 
for a sustained period.  

It is therefore argued that the exhibition of synchronic imitation is 
underpinned by an ability to attribute intentions to others. This argument would be 
severely compromised if the attribution of intentionality was first evident in children 
either well before or well after the middle of the second year. Fortunately this is not 
the case. A growing body of literature has identified the middle of the second year as 
the period when children develop a capacity for reading intentionality into the 
behaviour of others (Baldwin & Baird, 2001; Bellagamba & Tomasello, 1999; 
Carpenter, Akhtar, & Tomasello, 1998; Meltzoff, 1995; Moore & Corkum, 1998; 
Repacholi & Gopnik, 1997). For example, 18- but not 12-month-olds will reproduce 
an action an experimenter meant to do (but never actually did) as often as children 
who saw a successful demonstration of the complete target action (Bellagamba & 
Tomasello, 1999; Meltzoff, 1995). Meltzoff (1995) argues that by the middle of the 
second year infants do not interpret the behaviour of others solely in terms of 
physical movements or motions but rather represent the behaviour of others within a 
psychological framework that involves goals and intended acts. The data presented 
here on synchronic imitation supports this claim.  

It is also noteworthy that while infants can imitate the movements of 
inanimate objects they do not treat them with a sense of intentionality in the same 
way that they treat human models (McConnell & Slaughter, 2001, July; Meltzoff, 
1995). In this context, assessing the tendency of infants to synchronically imitate a 
humanoid robot will provide an interesting test of the argument that reading 
intentionality into the behaviour of others underpins synchronic imitation. 

There has been considerable debate throughout the last decade over the 
capacity of children with autism and nonhuman primates to engage in imitation. 
However, mention of synchronic imitation in this debate has been largely absent. It 
is thus of interest to speculate on the possible nature of this novel form of imitation 
in children with autism and in nonhuman primates. 

Children with autism show impairments in their ability to imitate the 
behaviour of others (Rogers, 1999; Williams, Whiten, Suddendorf, & Perrett, 2001). 
However, the results from a growing number of studies suggest that the imitation 
impairments in autism are reduced when these children are provided with a 
structured experimenter-elicited setting (Charman & Baron-Cohen, 1994; Charman 
et al., 1997). Responding to these discrepant findings, Nadel et al. (1999) argue that 
it is the socially laden aspect of imitation that is impaired in children with autism. 
According to this view, children with autism are capable of reproducing the actions 
of a model, but do not enter into the social aspects that characterise a typical 
imitative exchange. This view concurs with the position that the primary deficits 
associated with autism stem from socio-affective and/or socio-communicative 
dysfunction (Dawson & Lewy, 1989; Hobson, 1990, 1993; Moore, Hobson, & Lee, 
1997).  
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Given the role of social communication in synchronic imitation, the socio-
communicative dysfunction characteristic of children with autism should inhibit 
their tendency to engage in synchronic imitation. Consonant with this speculation, 
Nadel and her colleagues (Nadel & Pezé, 1993; Nadel & Revel, 2003, April) have 
reported subtle differences in the ways that children with autism engage in 
synchronic imitation when compared with normally developing children, For 
example, when placed in a synchronic imitation situation, children with autism 
reproduced the actions of their play partners but failed to develop the role switching 
behaviour (i.e., alternating between imitatee and imitator) characteristic of normally 
developing children. These children were also deficient in their attempts at inviting 
their partner to imitate. Nonetheless, there remains a paucity of research 
investigating synchronic imitation in children with autism, and this is clearly an area 
in need of continued investigation. 

With regard to nonhuman primates, there remains considerable debate in 
the literature about the precise nature of social learning in these animals. First, no 
nonhuman primate species outside of the great apes (bonobos, common 
chimpanzees, gorillas, orangutans) has demonstrated a clear capacity for 
reproducing the behaviours of others via observation (Visalberghi & Fragaszy, 
2002)3. Given this finding it is highly unlikely that synchronic imitation will be 
evident in monkeys or other primate species outside of the great apes.   

To date, no study has been published that has systematically evaluated 
synchronic imitation in primates. The only potential source of information regarding 
this ability comes from Chantek, a sign-language trained orangutan, who in the 
context of a complex on-going interaction requested his carer to “do what I do” 
(Miles, Mitchell, & Harper, 1996).  Nonetheless, debate remains as to whether the 
great apes should be classified as ‘true imitators’ (whereby they reproduce both the 
goal of a particular behaviour they have seen performed by another as well as the 
specific actions that brought about that goal) or ‘emulators’ (whereby they learn 
about the features and affordances of an object or situation by observing the 
behaviour of another but devise their own behavioural strategies to bring about the 
observed goal) (Byrne & Russon, 1998; Tomasello, 1996; Tomasello & Call, 1997; 
Whiten, 1998). However, if the great apes are ‘emulators’, rather than ‘true 
imitators’, and do not pay attention to the specific actions that bring about a goal, 
synchronic imitation is unlikely to be evident. That is, long-lasting interactions 
about an object through the alternation of imitating and being imitated are unlikely 
to be built if the focus of social learning exchanges is on the acquisition of 
knowledge about the features and affordances of an object or situation.  

The line between the imitative abilities of human infants and the imitative 
abilities of our closest evolutionary relatives remains somewhat blurred. The use of 
imitation as a form of communication may yet prove to be a distinguishing feature 
between humans and our closest living relatives. This hypothesis remains to be 
tested. 

The longitudinal data reported here provide further empirical support for 
the contention that that the exhibition of synchronic imitation does not emerge until 
around 18 months of age. Thus, it may not be until the middle of the second year 
that infants begin to use imitation not only as a means of acquiring new behaviours 

                                                 
3 Although see Custance, Whiten and Fredman, 1999; Voelkl and Huber, 2000. 
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and/or skills but as a form of communication. The long-term importance of 
synchronic imitation to normally developing children has yet to be determined. 
Moreover, the exhibition of this skill in children with autism and in nonhuman 
primates has not been systematically charted. In this context, further investigation of 
this novel form of imitation is clearly warranted.  
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Abstract

Two agent-based simulation systems were created to investigate open problems in
the speciation of cichlid fish from the African Great Lakes. A behaviour-free system
has demonstrated that incompletely isolated subpopulations are still likely to speciate.
A system modelling both social and individual learning was built to investigate the
role that social and individual learning may play in creating partially isolated subpop-
ulations. These populations have limited genetic exchange, a prerequisite for specia-
tion in typical models of evolution. Individual learning does produce non-overlapping
subpopulations, but social learning does not. Social learning can lead to populations
of (virtual fish) failing to fully exploit all the resources in an environment, particularly
when it is combined with individual learning. Incomplete exploitation of resources is
a plausible explanation for the much larger than expected numbers of cichlid species
inhabiting rocky reefs in lakes.

1 Introduction

There are still many mysteries remaining concerning exactly how evolution occurs, and
particularly on how new species arise. That is, the process of ’speciation’ where a single
ancestor species gives rise to a number of new, ’daughter’ species. Theories of evolution
and the origin of species were inspired by natural systems, such as Darwin’s observations
of finches in the Galapogos Islands (Darwin, 1859). In current research on evolution, the
natural system that poses the greatest number of questions about the process of speciation
are the cichlid fish (Barlow, 2000) of the Great Lakes of Africa (Victoria, Tanganyika, and
Malawi). The first ’mystery’ concerning these fish is the rapidity at which new species
arise. Lake Victoria completely dried up approximately 14,000 years ago (Johnsonet
al, 1996). Hundreds of species of cichlid fish are found in Lake Victoria that are found
nowhere else. Some genetic and comparative evidence supports the view that these fish
evolved in the lake, from one or two ancestors, in this time, though there are currently
arguments that cichlids from Lake Kivu, rather than river cichlids, may have seeded the
Lake Victoria cichlid flock. (See (Kocher, 2003) for a brief discussion of this argument).
Cichlid fish also appear to invalidate the competitive exclusion principle. Different cich-
lid fish coexist in the same location, despite no, or extremely small, differences between
the ecological niches occupied by these species (Konings, 2001). Finally, cichlid fish are
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one of the most common examples used to support the concept of sympatric speciation.
The ’standard’ model by which organisms speciate is ’allopatric’ speciation. In short,
a population is separated by a physical barrier (e.g. a mountain range), and continue
breeding independently. Genetic drift, and/or selection pressures, cause the two popula-
tions to diverge, and by the time the barrier disappears, the two populations are unable
to interbreed, and are now separate species. In sympatric speciation (Maynard Smith,
1966) (Via, 2001), an ancestor divides into two (or more) daughter species in the absence
of physical barriers. The cichlids of Lake Barombi-Mbo (Schiewenet al, 1994) appear
to have undergone sympatric speciation, as a single ancestor species has divided into a
number of daughter species, in this small (0.6km2), smooth-walled crater lake. However,
sympatric speciation has been viewed very narrowly in the past, as solely speciation with
a lack of physical distance between the two populations. For example, in (Via, 2001), a
parasitic insect is given as an example of sympatric speciation. The insect lives its entire
life cycle, including meeting mates and mating, on a single species of host plant. When
the insect jumped to another host found in the same area, two populations were formed
which did not interbreed, and hence can be considered different species. However, while
there is a lack of distance separating the two populations, the host-plant specificity is a
strong physical barrier. Possibly as strong a barrier as a mountain range separating the
two populations.

A great deal of research is continuing to investigate these open questions concerning
cichlid biology and speciation/evolution of cichlid fish. Among the approaches being
used in efforts to understand both speciation itself, and cichlid speciation in particular,
computer simulation and modelling has been used several times. The need for computer
simulation and mathematical modelling is clear, as speciation itself is probably too slow
a process to be observed directly, or generated by experiment. Computer simulation has
been used to investigate sympatric speciation (and is cited as strong support for it in
(Via, 2001)). (Kondrashov & Kondrashov, 1999) and (Dieckmann & Doebeli, 1999)
show that in the presence of appropriate environmental conditions (e.g. two different
food sources requiring incompatible adaptations), a covariance can emerge between food
source adaptation (trophic adaptation), and a species signalling/selection device (male
colour and female colour preference). A population that divides into two in this manner
is very consistent with speciation among real species.

(Turner & Burrows, 1995) modelled a population of fish where simultaneous mu-
tations in both colour (from light to dark) and female mate colour preference resulted
in speciation. In (Landeet al, 2001), sex-reversing mutations lead to a division of one
species into two.

Computer simulations specifically aimed at modelling African cichlids have tended
to ignore environmental effects (such as food sources), and concentrate on pure genetic
models. The motivation for this is clear, as closely related (and presumably recently
speciated) species tend to be nearly identical in trophic adaptation. This suggests that en-
vironmental factors may have little effect on speciation. In (Sturmbauer 1998), mention
is made of ’intrinsic’ and ’extrinsic’ properties of organisms that can be involved in spe-
ciation. Intrinsic properties are properties of the organism itself that leads to speciation,
while extrinsic properties are the properties of the environment that promote speciation.
The genetic based models of cichlid speciation have investigated intrinsic properties of
the fish, while ignoring extrinsic properties. It is unlikely that intrinsic properties alone
can explain cichlid speciation. The cichlids that initially seeded the lakes were river fish,
and no mass speciation has occurred in the rivers. However, exactly the same fish undergo
mass speciation in lakes. This suggests that some difference in these two environments
enables or triggers mass speciation.

http://www.aisb.org.uk
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The abstract simulations used to investigate sympatric speciation mix both intrinsic
(a breeding model where females have a colour preference) and extrinsic (multiple food
sources in the environment which require differential adaptation) properties. These three
factors (colour, colour preference, and feeding adaptation) plus gender are the only factors
that can vary during evolution in the genetic model. However, there are many other factors
that combine to make up the full spectrum of cichlid biology. Notably absent from any
of the previous models of speciation (cichlid or not) is behaviour. Cichlids are advanced
organisms, and behaviourally complex. However, there seems to have been little investi-
gation of any roles behaviour may have played in speciation. Most research on evolution
and behaviour has concentrated on the evolution and competitive advantages of certain
forms of behaviour (Boyd & Richerson, 1985). In (Barlow, 2000) it is mentioned that be-
havioural changes will precede genetic adaptation, as there is no advantage in adaptation
to a food source unless that food source is already being consumed. However, Barlow
discusses only the effect of behaviour on differential adaptation after a species of fish has
been divided into separate populations.

In this paper (an expanded version of (Clement, 2003a)), we use agent-based mod-
elling techniques to investigate the conjecture that behaviour, in particular social and in-
dividual learning, can lead to population segmentation that can enable speciation without
physical distance between subpopulations. This is, we believe, a few form of sympatric
speciation, where a behavioural, rather than geographical barrier arises between subpop-
ulation. Furthermore, we look at the possibility that social learning can result in a species
not harvesting all resources present in an environment, leaving open the possibility of
other species exploiting these ’overlooked’ resources.

2 Methods

Agent-based modelling has been used to investigate the properties of cichlid populations
with varying amounts of social (by observing other fish) and individual (from a fish’s own
experience) learning. There are of course many types of social learning (?). The style of
social learning modelled in this paper most closely matches ’social facilitation’.

At present there are two agent-based modelling systems. A more ’traditional’ model
has been built (Clement, 2003c). This system can be considered an extension of the sys-
tems of (Kondrashov & Kondrashov, 1999) and (Dieckmann & Doebeli, 1999), intended
to situate the genetic models proposed in those systems in a reasonably detailed simula-
tion of rock living cichlids and their lake environment. This system will be referred to as
the ’genetic’ system, as speciation proceeds solely according to population genetics. In
addition, a second system, the ’behavioural’ system, has been implemented which does
not allow variation in ’genetic’ factors, but only behavioural factors. The ’genetic’ sys-
tem is the target of long-term development, and the ’behavioural’ system is being used to
experiment with behavioural models before their eventual incorporation into the genetic
system.

Agent-based modelling was chosen because of the potential for flexibility in building,
and configuring models. It is the central thesis of this paper that low-level day to day
effects (e.g. a fish observing the actions of another fish) can have large cumulative effects
on processes occurring at quite different time-scales (e.g. evolution and speciation). Small
changes to the day to day characteristics of the model may have large (and unpredictable)
effects on the longer term characteristics. By using an agent based model, it is possible to
perform experiments over a wide range of systems by configuring and choosing agents.
This is particularly the case in the genetic system, which allows the choice of types of

http://www.aisb.org.uk
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agents, over and above setting simulation (and agent) parameters.

2.1 Population Segmentation

Experiments with the genetic system showed some interesting properties which inspired
the search for alternative, more subtle methods of dividing populations than solid phys-
ical barriers. Rockfish in the African Great Lakes (hereafter this natural system will be
referred to as ’the wild’) live on rocky reefs, which can be quite small, and separated by
sandy regions that the fish are very reluctant to cross. This leads researchers to propose
that these reefs could enable a ’micro-allopatric’ model of speciation, where very small
isolated populations exist on reefs. Micro-allopatric situation is discussed and criticised in
(Knight, 1999). While rare, fish do cross between reefs, as observed in (Konings, 1990).
The genetic system allows the creation of a number of (virtual) reefs, and the specifica-
tion of probabilities for fish crossing (migrating) between reefs. Initially, a single reef
was created, with two food sources. These food sources were different, but not different
enough for sympatric speciation to occur (i.e. the system stabilised with a single, gener-
alist, species harvesting both food sources). After confirmation (by simulation) that this
was the case, a new experiment was created with two reefs, where each food source was
placed on a different reef. With no migration, each population stabilised as a specialist
consumer of the food source present on their reef. After sufficient time (roughly equiva-
lent to a virtual 7700 years), genetic drift gave two populations that differed not only in
trophic adaptation, but also in colour and female mate preference, i.e. different species.
Since the initial fish populating both reefs were identical, the experiment demonstrated
allopatric speciation. i.e. we have a situation where speciation will occur with division
of the population into independent subpopulations, but will not occur if the population
remains as a single group.

Further experiments were performed with increasing probabilities of migration. After
each experiment, the final population was investigated to see whether the result was a sin-
gle generalist species, or two specialist species. This was achieved by writing a diagram in
the native format of the xfig drawing/diagramming package (http://www.xfig.org), map-
ping the numerical phenotypes to (x,y) coordinates on an A4 page. The distribution of
phenotypes was then investigated by eye. For high probabilities of migration, the two
populations had acted as a single population. For lower, but not zero, probabilities of
migration, the populations had acted as independent populations. Migration probabilities
were made equal forreef1 to reef2and migrations in the opposite direction. Probabili-
ties represent the probability that an individual fish will migrate during each time period
(roughly one week). The results are graphed in Figure 1.

The x-axis of this graph shows the probability of one fish migrating to the other popu-
lation during one time period (one week). For each migration probability, 20 experiments
were performed. A probability of speciation was calculated by counting the number of
times speciation occurred, and dividing by 20. This is thep(speciation) plotted on the
y-axis.

The point at which the populations ceased behaving as independent populations was
approximately at a migration probability of 0.02 (2 percent) While this may appear a low
number, the average lifespan of a fish was set at 100 steps (slightly under two years),
meaning that the average fish living to maturity will switch populations twice. Or, that
since the population sizes typically number about 100 fish per population, that four fish
will swap populations every week. That speciation still occurs in this situation shows that
division of populations need not be complete for speciation to be possible.

http://www.aisb.org.uk
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Figure 1: Speciation of Partially Divided Populations

2.2 Behavioural System

In the wild, different species of cichlids are typically found at different water depths.
Seehausen (1996) describes the cichlid species found at a single reef, showing how the
large number of species present and the characteristic depths where they live. As well
as dividing themselves into overlapping, but partially distinct populations, different food
sources (and methods of harvesting them) are found at the different depths. For exam-
ple, algae grows profusely in shallow water, but is far less frequent in the relatively dim
depths. Hence, if a single species of fish invades a new reef, and somehow divides itself
into populations that are sufficiently (if not completely) divided, then all of the factors
necessary for speciation (genetic separation and divergent survival pressures) are present,
and speciation should follow.

Before experimentation, both social and individual learning appeared to be plausible
mechanisms of achieving this division. For individual learning, a fish may associate a
given depth and mode of harvesting a certain type of food with success in obtaining food.
This may encourage the fish to remain at that depth. With social learning, a fish may
observe fish in its own vicinity tending to remain at that depth and harvesting food in a
particular manner. This may encourage fish to (again) remain at that depth following a
particular lifestyle.

Social learning in fish has been observed by several researchers. For example (Dugatkin,
1996) observed that social learning affected mate choice in guppies. In (Brown & Laland,
2002), the effects of social learning on the foraging behaviour of Atlantic salmon was
described. The models to be presented in this paper most resemble simple forms of so-
cial learning, similar to that described as ’social facilitation’ in (Zentall, 1996). This is a
simple application of Occam’s razor. If division of populations can be demonstrated in
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the simplest forms of social learning, those most supported by hard evidence, then there
is no need for the adoption of more sophisticated models such as ’true imitative learning’
(Thorpe, 1963). The models of the effects of copying mate choice described in (Boyd
& Richerson, 1985) were also a major inspiration for the work described in this paper.
Boyd and Richerson describe optimal ratios for social and individual learning in organ-
isms given different properties of their environment. This is particularly relevant to our
work, as we suppose that cichlids colonising a lake will have a mix more suited to river
environments than lakes.

2.3 Behaviour Model

In order to implement agents (representing fish) that learn, a model is needed to repre-
sent behaviour that fish can perform, and allow individual fish to vary that behaviour in
response to individual experience, and by learning from observation of other fish. Rather
than try to develop a model of flexible behaviour that would allow fish to create new be-
haviours not encoded in the original model, a simple model was created. In this model,
based on that in (Nehaniv & Dautenhahn, 2002), all possible behaviours are encoded in
a tree. Each node in the tree is considered to be a state, and each move from one node
to a daughter node is an action. Therefore, a path in the tree to some other node in the
tree becomes a sequence of actions, which in Nehaniv and Dautenhahn’s terminology
characterises a ’behaviour’. Given that the root of the tree is considered to be a resting
state, a tree can be built representing all sequences of actions that a fish might undertake
before returning to the resting state. Note that behaviours can end at any node marked as
a possible end state (bold rectangles in Figure 2).

A simple set of possible behaviours was created for experiments. The ’reef’ water
space is divided into two spatial locations,shallowanddeep. Within these locations, there
are two food sources:a, andb, perhaps roughly equivalent to algae and invertebrates. A
fish can either crudely scrape the rock, harvesting (slightly inefficiently) botha andb, or
it can adopt one of two specialist modifications of that behaviour, harvesting specifically
a or b alone, with higher efficiency.a1 refers to food sourcea in shallow water, whilea2
is the same food present in deep water. Similarb1 andb2 refer to food typeb in shallow
and deep water. The numbers in Figure 1 (e.g.a1 0.03, b1 0.0) refers to a specialist
behaviour, where a fish ’biting’ the rock will harvest a maximum of 0.03 energy units
from food sorucea1, but nothing from food sourceb1. By omission, this behaviour also
harvests nothing from food sourcesa2andb2.

This model is common to all fish, and describes the universe of possible behaviours
available to fish. Individual fish store their own behavioural characteristics as a set of
probabilities. Using Figure 2 as an example, a fish in statex1 has three possible choices. It
can cease its behaviour in that state (stopx1), it can continue the behaviour by performing
actions3 leading to statex3, or it can perform actions4, leading to statex4. Hence, the
set of possible decisions for statex0 is:

Dx1 = {p(s3), p(s4), p(stopx1)} (1)

As these are an exhaustive list of decisions for statex1, we have:

p(s3) + p(s4) + p(stopx1) = 1.0 (2)

All behaviours begin at statex0. Since this is not a possible final node the probabilities
stored for this state are:

Dx0 = {p(s1), p(s2)} (3)
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Figure 2: Behaviour Model and Rewards

with p(s1) + p(s2) = 1.0. Conversely statex3 has no actions leading from it, and hence

Dx3 = {p(stopx3)} (4)

with p(stopx3) = 1.0.
At the beginning of a behaviour, a fish is in statex0. It then makes a choice of ac-

tion according to the probabilities inDx0, moving to another state (calledxN for con-
venience.) It then examines the options for actions at that state, and continues until the
stopaction is chosen. Since the universe of possible behaviours is a tree, the fish must
eventually end the behaviour. In the universe of behaviours of Figure 2, the maximum
number of actions in a behaviour is 2.

At the end of a behaviour, the fish willbite at resources, and will harvest resources in
amounts controlled by both the maximum reward for that behaviour (Figure 2), and also
the amount of the resources still left in the environment.

2.4 Learning

Given the behaviour model described, learning is achieved by modifying the weights.
Sources of learning include: recent individual experience, social learning (observation of
others, i.e. horizontal transmission of behaviour), and parental learning (vertical trans-
mission).

Individual learning is the simplest, as it only requires access to an individual’s past
experience in order to update the weights. Behaviours are performed in batches (typi-
cally of 100 behaviours), and learning is performed at the end of each of these batches.
First, the success of all actions performed is calculated. This is performed by finding
the rewards received for every action that passed through, or stopped at, each state in the
tree. For example, a fish may have performed 58 behaviours that included statex1, re-
sulting in a total energy gain of 0.7. The same fish will have performed 42 behaviours
including statex2, resulting in a total energy gain of 0.5. To calculate the weights of ex-
perience, these weights are raised to the power of a learning parameter (calledpower) to
allow a controlled degree of non-linearity in learning. Hence, ifreward(staten) is the
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actual amount of reward received from behaviours includingstaten, in the past batch of
behaviours, then the weight forstaten is:

weight(staten) = reward(staten)power (5)

A new set of probabilities can be calculated from these weights. We call the set of prob-
abilities according solely to recent experiencep′. Assuming thataction is a state change
from staten to statem, andp′(stopn) is the probability of stopping instaten (which
is 0 for nodes that are not potential final nodes), andAn is the complete set of actions
available fromstaten, then:

p′(staten → statej) =
weight(statej)
weight(staten)

(6)

and:

p′(stopn) =
weight(staten)−

(∑
(staten→statej)∈An

weight(statej)
)

weight(staten)
(7)

Finally, thestrengthof learning controls how quickly a fish learns. That is, ifp(x) is a
probability from a fish’s previous behaviour, andp′(x) is the probability solely due to
recent experience, then the updated behaviour (probability for any action) after one step
of learning is:

p∗(x) = (1.0− strength)× p(x) + strength× p′(x) (8)

strengthcan range between 0.0 and 1.0. Astrengthof 1.0 would create a fish that only
acted according to its recent experience, while astrengthof 0.0 results in a fish that
never learns. Though, note that the previous expression is only correct if the fish is only
performing individual learning, and the weighted expression is more complex when more
than one type of learning is being performed at once.

Social learning (either vertical or horizontal transmission) proceeds similarly, except
that the weights assigned to states in the tree are calculated by different methods. For
parental transmission, ifcount(parent, staten) is the number of times that a parent (ei-
ther father or mother) had performed a behaviour includingstaten in the last batch of
behaviours,weight(staten) is calculated as.

weight(staten) = count(father, staten)power + count(mother, staten)power (9)

Once these weights are calculated, then probabilitiesp′(x) can be calculated according to
(5) and (6).

For horizontal transmission, the situation is more complicated again. A fish learns
from its peers by adjusting its weights according to the behaviours that it sees other fish
performing. In our model, we assume that the environment is divided into two locations,
shallowanddeepwater. A fish only observes behaviour in the location that it is in at
any particular time. However, fish do not necessarily spend all their time for a whole
batch of behaviours in the same location. The first step of any behaviour is effectively a
choice to be inshallowor deepwater, and hence a fish can (if it so chooses) move back
and forth between the available locations. Fish choose behaviours (and hence locations)
statistically independently from each other. Therefore, ifL = {shallow, deep} is the set
of locations, andtime(f, l) is the proportion of time that a fishf spends in locationl,
then the expected degree of spatial overlap between any two fishf1 andf2 is:

overlap(f1, f2) =
∑
l∈L

time(f1, l)× time(f2, l) (10)
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And, if F is the full population,count(f, staten) is the number of behaviours including
staten performed by fishf in the last batch, then the weight assigned tostaten (from the
viewpoint of the learning fishflearning) is:

weight(staten) =

∑
f∈F

count(f, staten)× overlap(f, flearning)

power

(11)

Note that these weights must be calculated anew for every fish in the population, as each
fish has its own independent view of the rest of the population.

There are three different types of learning that can be performed by fish, and these
are performed simultaneously. Assuming thatp′i(x), andp′s(x) are the two sets of new
probabilities calculated for recent individual and social learning respectively, and,p(x)
andp∗(x) are the previous probability and the new (updated) probability as before, then:

p∗(x) = strengthi×p′i(x)+strengths×p′s(x)+(1.0−strengthi−strengths)×p(x)
(12)

Given this equation, a framework for individual action, and learning has been created.
Fish have the opportunity to compete for resources, and adjust their behaviours according
to social and/or individual learning.

2.5 Other Parameters

The behavioural system starts a simulation by reading a configuration file, and creating a
population of fish with random behavioural probabilities. Food sources are also created,
matching those in the reward table of the behavioural tree. At each step in the simulation,
all fish perform a fixed number of ’behaviours’. Each behaviour results in abite at food
sources, which transfers energy from the food source to the biting fish. If during this
process, any food sources ’run out’ (i.e. available energy falls to zero), then any further
bites at that food source are ineffective. This repeats until all fish (performing behaviours
in round robin style) have performed the fixed (currently 100) number of behaviours in
a batch. Next, all fish lose a fixed amount of energy, representing energy expended on
metabolism, and behaviour. Any fish whose energy reserves fall below zero dies of star-
vation. Fish then increment their ’age’ parameter by one step. Any fish that has reached
the end of its natural lifespan then dies of old age. Food sources then regenerate by gaining
a fixed amount of energy, set in the configuration file. If any food source has exceeded its
set maximum of available energy (simulating properties such as algae covering all avail-
able rock surfaces and being unable to spread further), then the energy is reduced to the
maximum. Finally, fish are allowed to mate. If a female fish has reached maturity, and is
ready to breed, then it does so. If the female is un-mated (or has a mate that has died),
then it chooses a mate from among the un-mated males. This is done solely according to
the amount of time that the female and the males have spent together over the last time
period. IfU is the set of un-mated males, then the chance of the femalef choosing a male
m is:

p(f,m) =
overlap(f,m)∑

m′∈U overlap(f,m′)
(13)

Once a mate is chosen, this pair of fish remains mated for life. This pair will then breed
frequently (every few weeks), laying a small number of eggs each time, with one juve-
nile surviving for each clutch of eggs. This is a slightly optimistic (no divorces occur)
and over-regular model of the ’trickle breeding’ Tanganyikan rock-livingJulidochromis
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species. In the wild pairs of fish will defend a single cave, effectively ’setting down’ in
a fixed location. In our model, we do not limit the movement of the fish in a pair, or
deliberately make the pair ’stay together’ in a single location. This is so that co-located
pairs can be shown to be (or not be) an emergent property of the behaviour system being
modelled.

Note that breeding produces more fish (parameters are set so that the population will
grow), but the fixed input of energy per time period effectively defines a carrying capacity
(the maximum number of fish the environment will support). In the absence of factors
preventing full exploitation of the resources, the population will grow to the carrying
capacity, and oscillate around that figure.

Every step, a large number of properties of the population and its actions are written
to a trace file. As well as sum totals indicating the number of times each action was
performed, two summary variables are output: the total population size, and the average
overlap between mated pairs. This property has been used as the most reliable indication
of population segmentation. For average overlap to approach 1.0, both of the pair must
spend all or nearly all of their time in one environment, and all or nearly all fish must have
chosen mates from the same environment.

One major omission in the current model is predation and predators. As well as
cichlids that feed on algae and invertebrates, all the African lakes contain a wide va-
riety of cichlids that feed on cichlids. For the rocky reefs of Lake Malawi, the aptly
namedTyrannochromis predates onmbuna (the typical algae grazing rock cichlids).
Nimbochromis venestus has an advanced predation strategy, pretending to be a dead,
rotting, fish laying on the lake bed, and eating small fish that attempt to eat this ’carrion’.
Even in the relatively young Lake Victoria, cichlid predators were common before their
decimation after the introduction of the Nile Perch (Goldschmidt, 1996).

Importantly for simulation studies, it is theorised that predators can stabilise popula-
tions of competing species (Kooi & Kooijman). While Kooi and Kooijman did not even
mention speciation, or the particular situation of cichlids in African lakes, it seems intu-
itive that their models may have something to say about African cichlids. For example,
they may provide an alternate contributory or complete explanation for the unexpectedly
large number of apparantly competing species found in African lake cichlid species. It
is planned that future experiments will investigate the effects of recursive (fish speciating
into predators consuming fish from a common ancestor), and non-recursive (specialist
’predation’ agents without the capability of evolution) predation. It is felt that trying to
add all possible factors affecting evolution into a single model at once is a bad research
strategy. A solid understanding of the properties of biological factors studied indepen-
dently (at least very difficult using real organisms) is necessary. Without this it is likely
to be very difficult to quantify the contribution of these properties to patterns observed in
any ’kitchen sink’ simulation approach.

2.6 Experiments

Experiments are performed by creating a configuration file. There are huge numbers of
variables which can be adjusted, and it is impossible to test all possible combinations of
values. Hence, a single behavioural model (Figure 2) has been applied, and ’reasonable’
values have been chosen for all parameters apart from thestrengthandpowerof each type
of learning. These are: initial population of 50 individuals, maximum age of 1000 steps,
and a probability of a female breeding per step of 0.01. All trials were run for 6000 steps
(roughly 115 years).

Given the above fixed (across all experiments) parameters, an individual experiment
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is characterised solely by thestrengthand power of the type of learning investigated.
Note that (11) and (12) show howpowerandstrengthare used in the model. Experiments
performed were:

1. No learning.

2. Weak social learning (strength=0.01, power=1.0)

3. Social learning (strength=0.1, power=2.0)

4. Strong social learning (strength=0.1, power=2.0)

5. Very strong social learning (strength=0.1, power=4.0)

6. Individual learning (strength=0.01, power=2.0)

7. Strong individual learning (strength=0.1, power=2.0)

8. Both social (strength=0.1, power=2.0) and individual (strength=0.1, power=2.0)
learning.

Each experiment was run for 2000 time steps. The simulation system wrote measures of
population size, population segmentation, and summaries of behaviour to a plain text trace
file. This file was parsed by a program that converted the plain trace into comma separated
value (csv) files. These were then loaded into a spreadsheet application (OpenOffice
Calc), and graphs created for visual inspection.

3 Results

Population sizes are graphed in Figure 3. The x-axis represents time (each step being
approximately one week), and the y-axis graphs the total number of individuals alive at
each time period. Without learning, the population rises to, and stabilises at, 200 individ-
uals. Weak social learning, and moderate individual learning give similar results, showing
that the available resources are being fully exploited by populations implementing these
learning strategies.

Strong social learning, very strong social learning, and both types of learning led to a
stable population size about half the size of the full carrying capacity of the environment,
indicating that at least some of the available resources were being ignored. Finally, strong
individual learning leads to an unstable situation, with fluctuating population sizes. In-
vestigation of simulation traces show that the population is gravitating to one food source
(whichever is more plentiful at the time), and becoming fixated on that source. Due to
excessive competition, the population crashes, and allows the resource to regenerate.

Population segmentation results are presented in Figure 4. Due to the method of
calculation, 0.5 is the minimum amount of segmentation that can be expected (indicating
random movement of fish between the two depths). 1.0 is the maximum possible, if all
fish spend all their time at one depth, and only mate with other fish spending all their
time at the same depth. Pure social learning (strong, average, or weak) does not lead
to noticeable segmentation of the population, with the exception of very strong social
learning, which leads to cyclic behaviour where the populations split apart, then merge
back together again. Individual learning shows progressively more segmentation as with
increasing amounts of learning. Strong individual learning segments the population to a
high degree (>90%). Combining social and individual learning appears to give perfect
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Figure 3: Population Sizes

segmentation of the population. However, close examination of the final trace shows that
nearly all fish are spending all their time indeepwater, leading to a high degree of mate
similarity, even though there is no real ’pre-speciation’. High degrees of social learning
result in population segmentation, even though resources from both locations are being
utilised to their full, indicating a true splitting of the population.

In interpreting these results it is important to remember that we are considering two
different methods by which learned behaviour may affect speciation in African cichlids.
A population may split into two parts with limited genetic exchange between the two. In-
dividual learning appears to provide these conditions with both high segmentation of the
population, and full exploitation of the available resources as evidenced by the large pop-
ulation size. (Individual traces were examined to verify that this was indeed the case). An-
other method by which learned behaviour may help explain African cichlids is if learned
behaviour leads to a population failing to exploit all the resources in an environment.
This would leave those resources available for other species, without requiring the other
species to have a significantly different ecological niche. This pattern (again, verified by
examining traces) is present in social (and combined) learning experiments, shown by a
small population, and a high measured population segmentation, showing that the species
is choosing only one of the available locations.

4 Conclusions and Future Work

Segmentation of the population due to flexible, and learned, behaviour has been demon-
strated. It was originally expected that social learning would be the main influence behind
any segmentation of the population, but this has been contradicted by the results of the
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Figure 4: Population Segmentation

experiments. Social learning has a tendency to focus the population on a single resource,
without dividing the population.

Sympatric speciation is frequently criticised for the lack of mechanisms that could
prevent gene flow between diverging populations. The results presented in this paper sug-
gest that learned behaviour is a plausible factor which could provide a barrier to gene flow.
While the barrier created is not absolute (as an impassible mountain range would be), an
absolute barrier is not necessary for speciation. This suggests that non-geographical bar-
riers, such as behavioural barriers, are plausible explanations for apparent examples of
sympatric speciation.

Agent-based simulations often have the problem that the model is described as a large
number of explicit low-level parameters, while the characteristics of interest (such as pop-
ulation segmentation) are implicit. For properties such as population size, it is trivial to
calculate the property. But, tracking the rise (and possible fall) of species is a more dif-
ficult task. Fish agents are not labelled with a crisp species label, and to do so would be
to pre-judge the results of the simulation. In the work reported in this paper, measurable
factors (similar location preferences between mates) assumed to be synonymous with the
implicit factor being searched for (separation of subpopulations) were used in place of
an exact measure of the desired property. Currently most development effort in this re-
search is being devoted to finding model-independent methods of tracking and visualising
speciation, with current research described in (Clement, 2003b).

While the current results appear informative, great care is needed when evaluating
the relevance of any results from simulation to real natural systems. As discussed in
(Clement, 2003c), there is a major problem in designing simulations of natural systems,
that of knowing exactly where to set the values of crucial parameters. For example, in
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this paper we describe certain parameter settings as being ’strong individual learning’, or
’very strong social learning’. While these parameters are felt to be ’intuitively correct’,
further research is definitely required to put these figures on a more concrete footing. An
example is the research reported in papers such as (Kondrashov & Kondrashov, 1999).
Simulation models show that given a set of entirely reasonable assumptions, sympatric
speciation neatly follows. These are: multiple food sources requiring different adapta-
tions, female selection of males according to some characteristic, and plasticity in both
the female’s preference, and the characteristic displayed by males. While there is signif-
icant argument about whether sympatric speciation really occurs in nature, it is at best a
rare event. Clearly at least one of the assumptions leading to sympatric speciation in these
simulation models must be incorrect. One possibility is that the differences in adaptation
required by the multiple food sources are greater than those found in real environments.

At present biological simulation allows us to undertake experiments impossible in
real life. However, it must be remembered that real life, in the form of biological field
research, remains the ultimate model upon which results should be evaluated.
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Abstract

This paper presents a new mechanism to enhance the evolutionary process of au-
tonomous agents through lifetime adaptation by imitation. Imitation is an effective
method for learning new traits and is naturally applicable within the evolutionary
paradigm. We describe a set of simulations where a population of agents evolve to
solve a certain task. In each generation, individuals can select other agents from the
population as models (teachers) and imitate their behavior. In contradistinction to pre-
vious studies, we focus on the interaction between imitation and evolution when imi-
tation takes place only across members of the same generation, and does not percolate
across generations via vertical (cultural) transmission. We show how this mechanism
can be applied to successfully enhance the evolution of autonomous agents, when
other forms of learning are not applicable.

1 Introduction

A large body of work in recent years has studiedthe interaction between lifetime learning
and genetic evolutionwhen lifetime adaptations, acquired by learning, are not inherited.
Hinton and Nowlan (1987) introduced a simple model that demonstrates how learning
can guide and accelerate evolution. Nolfi et al. (1994) presented experimental results sup-
porting this view, even when the learning task differs from the evolutionary task. Other
researchers (Nolfi and Parisi, 1997; Floreano and Mondada, 1996) studied the interac-
tion between learning and evolution in robots and artificial agents systems. These studies
employed various sources of training data such as external oracles, regularities in the
environment or ”self-generated” teaching data. There is, however, an additional source
of training data; one which is naturally available within the evolutionary paradigm - the
knowledge possessed by other members of the population. This knowledge can be har-
nessed to improve the evolutionary process in the form oflearning by imitation.

The motivation for using learning by imitation to enhance evolution is twofold. First,
imitation is an effective and robust way to learn new traits by utilizing the knowledge al-
ready possessed by others. The existence of true imitative behavior in the animal kingdom
is still in debate, however, social learning can be found in a variety of species providing
clear benefits over other forms of learning (Kawamura, 1963; Whiten and Ham, 1992;
Zentall, 2001). Second, while oracles or other forms of supervised training data are scarce
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in agent environments, learning by imitation is still a valid option, using other members
of the population as teachers.

Extending these studies further,our goal is to put forward a novel framework for
merging these two approaches and study learning by imitation within the scope of the
interaction between learning and evolution. We wish to explorelearning by imitationas
an alternative to conventional supervised learning and to apply it as a tool to enhance
genetic evolution. We will label this framework asimitation enhanced evolution (IEE).

Learning by imitation has already been applied by researchers in the fields of artificial
intelligence and robotics in various experiments. Hayes and Demiris (1994) presented a
model of imitative learning to develop a robot controller. Billard and Dautenhahn (1999)
studied the benefits of social interactions and imitative behavior for grounding and use of
communication in autonomous robotic agents. For an up-to-date introduction to work on
imitation in both animals and artifacts see the cross-disciplinary collection (Dautenhahn
and Nehaniv, 2002). Furthermore, various frameworks that study the interaction between
cultural transmission and evolution have already been well established (e.g. Boyd and
Richerson, 1985; Cavalli-Sforza and Feldman, 1981; Laland, 1992). Gene-culture co-
evolution accounts for many adaptive traits (Feldman and Laland, 1996). Studies and
simulations of the evolution of language (Ackley and Littman, 1994; Kirby and Hurford,
1997; Arbib, 2002) assume, by definition, some sort of cultural transmission.

It is important to realize though, that in contradistinction to these studies, our frame-
work does not employ cultural evolution. In fact, we preclude culture from evolving in the
first place.Following in the footsteps of the studies of the interaction between learning
and evolution cited above, we thus avoid any direct form of acquired-knowledge transfer
between generations either genetically or culturally. We work in a strict Darwinian frame-
work, where lifetime adaptations are not directly inherited (although, as demonstrated in
some of the studies cited above, they may be genetically assimilated through the Baldwin
effect, 1896) and may affect the evolutionary process only by changing the individual’s
fitness, and thus the number of its offsprings. In terms of cultural transmission (see Boyd
and Richerson, 1985, for a detailed definition), we allowhorizontaltransmission alone
(where individuals of the same generation imitate each other) and exclude any form of
verticaltransmission (where members of the current generation transmit their knowledge
to members of the next generation). Numerous field studies suggest that at least in non-
human societies, horizontal transmission is far more common than vertical transmission
(Laland, 1992). Furthermore, to prevent any form of cultural evolution from taking place,
within each generation, only innate behaviors are imitated; that is, we prevent behaviors
acquired by imitation from being imitated again by another member.

A simple model that fits this framework has been studied before by Best (1999). He
demonstrated an extension of the computational model presented in Hinton and Nowlan
(1987), introducing social learning (namelyimitation) as an additional adaptive mecha-
nism. The reported results exemplify how horizontal cultural transmission can guide and
accelerate the evolutionary process in this simplified model. Best has also demonstrated
how social learning may be superior to conventional learning and yield faster convergence
of the evolutionary process. However, Best’s model has several limitations. The evolu-
tionary fitness function (which is the one used in Hinton and Nowlan, 1987) represents
a worst-case scenario where only the exact solution has a positive fitness value. There
is no probable path that a pure evolutionary search can take to discover this solution.
Additionally, there is no distinction between genotypes and phenotypes and thus no real
phenotypicadaptation process. Imitation is carried out simply by copying certaingenes
from the teacher’s genome to the student.

We wish to generalize this framework and study the effects of learning by imitation
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in a more realistic scenario ofautonomous agents evolution(see Ruppin, 2002, for a
general review). The definition of imitation in the literature varies considerably (Billard
and Dautenhahn, 1999), but for the purpose of this paper we use imitation (or learning by
imitation) in the sense of having an individual (student) being able to match its behavior
to that of a demonstrator (teacher). In particular, using autonomous agents to model the
population members, this form of imitation is implemented by using the teacher’s output
for each sensory input, as the target output in a back-propagation training algorithm. We
focus on the effects that imitation may have on the genetic evolutionary process, starting
with the most basic question:can imitation enhance the evolution of autonomous agents
(in the absence of vertical transmission), in an analogous manner to the results previously
shown for supervised learning, and how?Although it was shown thatlearningcan guide
the evolutionary process (e.g., via the Baldwin effect), the contribution ofimitation to
evolution is not obvious; while in late stages of the evolutionary process the best agents
may already possess sufficient knowledge to approximate a successful teacher, in early
stages of the process it may be the case of “the blind leading the blind”, resulting in a
decrease of the population’s average fitness.

This paper presents a set of simulations, where lifetime learning by imitation was used
to adapt individuals that go through an evolutionary process. The results are compared
with those of a simple evolutionary process, where no lifetime learning is employed, and
with those of an evolutionary process that employs conventional supervised learning.

The remainder of this paper is organized as follows. We begin in Section 2 with a brief
overview of the effect of lifetime adaptation on the evolutionary process. In Section 3 we
present theIEE model in details. To validate the effectiveness of our model we introduce
in Section 4 a set of tasks which were used to test our model and the experimental results
in Section 5. The paper concludes with a discussion of future work and a short summary.

2 The Effects of Lifetime Adaptation on Genetic Evolu-
tion

Studies of the interaction between lifetime learning and evolution (Hinton and Nowlan,
1987; Nolfi et al., 1994; Nolfi and Parisi, 1997; Floreano and Mondada, 1996) have shown
that learning can accelerate and guide the genetic evolutionary process. These studies
demonstrated (through both theoretical analysis and simulations) how thedynamicsof
the lifetime adaptation process can account for this positive effect. The phenotypic mod-
ifications that take place in an individual subject to lifetime adaptation (e.g. learning),
significantly depend upon its innate configuration. Individuals which initially have a low
fitness value, may attain higher fitness through learning. The expected fitness gain though,
will be higher for individuals which are initially closer to the optimum configuration. As
illustrated in Figure 1, learning can thus help to reveal the innate potential of each individ-
ual in the population. One may consider lifetime adaptation as a local search process that
can enhance the global search (evolution) by determining which configurations lie in the
vicinity of the global optimum solution and are thus worthwhile retaining in the popula-
tion (as they have a better chance to produce successful offsprings). From a mathematical
standpoint, lifetime adaptation can be conceived as afunctionalthat can potentially trans-
form an initially ragged fitness function into a smoother function, making the evolutionary
process more effective.

Our hypothesis is that learning by imitation, that is, using the best individuals in the
population as teachers, may be sufficient to reveal the innatepotentialof the population
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members. The results reported in the following sections clearly validate this assumption.
In this study we focus on the simple case where the learning (imitation) task is similar

to the evolutionary task. This case most probably does not closely represent the imitation
processes found in nature. Lifetime adaptation in humans and other cultural organisms
operates on high-level traits which are not coded directly in their genome. However, we
believe that this simple scenario can provide valuable insights into the roots of imitative
behavior. We further discuss this topic in Section 6.

Figure 1: An illustration of the effect that lifetime adaptation may have on the genetic
evolutionary process. Both agents start with the same innate fitness value (indicated by the
black dots). Applying lifetime adaptation (illustrated as a simple hill climbing process)
will result in the selection of agent A which is closer to the optimal solution. Inspired by
Nolfi and Floreano (1999)

3 The Model

A haploid population of agents evolve to solve various tasks. Each agent’s neurocon-
trollers is a simple feed-forward (FF) neural network (Hertz et al., 1991). The initial
weights of the network synapses are coded directly into the agent’s genome (the network
topology is static throughout the process). The initial population is composed of 100 indi-
viduals, each assigned randomly selected connection weights from the interval [-1,1]. The
innate fitnessof each individual is determined by its ability to solve the specific task upon
birth. Within the pure evolutionary process, the innate fitness will determine the reproduc-
tive probability of this individual. Each new generation is created by randomly selecting
the best agents from the previous generation according to their innate fitness, and allowing
them to reproduce (Mitchell, 1996). During reproduction, 10% of the weights are mutated
by adding a randomly selected value from the interval [-0.35,0.35]. The genomes of the
best 20 individuals are copied to the next generation without mutation.

When conventional supervised learning is applicable (i.e., an explicit oracle can be
found) we also examined the effect of supervised learning on the evolutionary process.
Each individual in the population goes through a lifetime learning phase where the agent
employs a back-propagation algorithm (Hertz et al., 1991), using the explicit oracle as a
teacher. Its fitness is then reevaluated to determine itsacquired fitness(i.e., its fitness level
after learning takes place). In order to simulate the delay in fitness acquisition associated
with acquired knowledge, we use the average of the innate and acquired fitness values as
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the agent’sfinal fitnessvalue. This fitness value is then used to select the agents that will
produce the next generation.

In the IEE paradigm, agents do not use conventional supervised learning, but rather
employ learning by imitation. In every new generation of agents, created by the evo-
lutionary process, each agent in the population selects one of the other members of the
population as an imitation model (teacher). Teachers are selected stochastically, where
the probability of selecting a certain agent as a teacher is proportional to itsinnatefit-
ness value (i.e., its initial fitness levels before learning takes place). The agent employs
a back-propagation algorithm, using the teacher’s output for each input pattern as the
target output, mimicking a supervised learning mode. The imitation phase in each gener-
ation can be conceived as happening simultaneously for all agents, preventing behaviors
acquired by imitation from being imitated. Only theinnatebehavior of the teacher is
imitated by the student. Theacquired fitnessandfinal fitnessare evaluated in the same
method that was described in the case of conventional learning.

As stated above, acquired knowledge does not percolate across generations. Each
time a new generation is produced, all lifetime adaptations possessed by the members
of the previous generation are lost. Newborn agents inherit only the genome of their
parents which does not encode the acquired network adaptations that took place during
the parent’s lifetime. Successful individuals that were copied from the previous generation
also go through a new genotype-to-phenotype ontogenetic development process and thus
lose all adaptations acquired during the previous generation.

To summarize, learning by imitation in a population of evolving agents (IEE) works
as follows:

1. Create the initial population. Assign the network weights of each individual with
randomly selected values.

2. Repeat:

(a) For each individual in the population:

i. Evaluate the innate fitnessFi.

(b) For each individualS in the population:

i. SetS to be the student.
ii. Select a teacherT from the population. The probability of selecting a

certain individual as a teacher is proportional to its innate fitness value
Fi.

iii. Train S with back-propagation algorithm. Use the output ofT as the
desired output (when computing the output ofT , use the innate configu-
ration of T ).

iv. Evaluate the acquired fitnessFa of S.

(c) For each individual in the population:

i. Evaluate the final fitnessFf = Fi+Fa

2 .

(d) Create the next generation by selecting the best individuals according toFf

and allow them to reproduce as described above.

4 The Tasks

The model described in the previous section was tested on three different tasks. The first
two are standard classification benchmark problems. The third is an agent-related task
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used in previous studies of the interaction between learning and evolution.

4.1 The Parity Problem

The agents evolved to solve the five bit parity problem. A network topology of 5-6-2-1
was used (i.e., 5 input neurons, two hidden layers, the first with 6 neurons and the second
with 2, and 1 output neuron), with an additional threshold unit in each layer. All 32
possible input patterns were used both for evaluating the network performance and for
training.

4.2 The Triangle Classification Problem

A simple two-dimensional geometrical classification problem was used in this task. The
network receives as input a point from the unit square and should determine whether it
falls within the boundaries of a predefined triangle. A network topology of 2-5-1 was used
(with an additional threshold unit in each layer). The test set and training set consisted of
100 points randomly selected from the unit square.

4.3 Foraging

The task in this simulation is similar to the one described by Nolfi et al. (1994). An
agent is placed on a two-dimensional grid-world (Figure 2). A number of food objects are
randomly distributed in the environment. As its sensory input the agent receives the angle
(relative to its current orientation) and distance to the nearest food object. The agent’s
output determines one of four possible actions: turn 90 degrees left, turn 90 degrees right,
move forward one cell, or do nothing (stay). If the agent encounters a food object while
navigating the environment, it consumes the food object. The agent’s fitness is the number
of food objects that were consumed during its lifetime. Each agent lives for 100 time steps

Figure 2: The foraging task: The agent (triangle) navigates in a 2D grid-world. Food
objects (stars) are randomly distributed in the world. The agent can turn 90 degrees left,
turn 90 degrees right, move one cell forward, or stay. Each time the agent encounters a
food object, it consumes the food object and gains one fitness unit. Inspired by Nolfi and
Floreano (1999)
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in a 30x30 cells world which initially contains 30 food objects. A network topology of
2-6-2 was used (with an additional threshold unit in each layer).

In this task, unlike the previous ones, there is no explicit oracle we can use to train the
agent. Nolfi et al. (1994) used available data to train the agent on the task of predicting
the next sensory input, which differs, but is in some sense still “correlated” with that of
finding food (the evolutionary task). In our model, we can still use the same mechanism
of learning by imitation to train the agent on the original evolutionary task, using the best
individuals in the population as teachers.

There are several strategies we can apply to determine which sensory input patterns
should be used for training. Randomly selecting arbitrary input patterns, as we did in
previous tasks, is not a suitable strategy here as the real input distribution that an agent
encounters while navigating the environment may differ considerably from a uniform
distribution. However, two behaviorally motivated strategies may be considered: aquery
model and anobservationalmodel. In the query model, the student agent navigates in
the environment and for each sensory input pattern it encounters, the student queries the
teacher to obtain the teacher’s output for this pattern. The teacher’s output is than used as
the target output in back-propagation training of that pattern. In the observational model,
the student “observes” the teacher agent as the teacher navigates in the environment and
uses the sensory input patterns encountered by the teacher as training patterns (again,
using the teacher’s output for the back-propagation algorithm). Using this model we can
further limit the observed patterns to those which occur during time steps that precede
the event of finding food. This constraint will allow the student to imitate only useful
behavioral patterns. We will label this strategy asreinforced agent imitation (RAIL).

5 Results

We first studied IEE in the two classification tasks described in Sections 4.1 and 4.2,
where conventional supervised learning can still be applied. In these tasks we were able
to compare the effects that both lifetime adaptation mechanisms (i.e., learning and imi-
tation) have on the evolutionary process. The results clearly validate that the IEE model

Figure 3: The triangle classification task: the innate fitness of the best individual in the
population as a function of generation.
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consistently yields an improved evolutionary process. Theinnate fitnessof the best indi-
viduals in populations generated by applying learning by imitation is significantly higher
than that produced by standard evolution.

Figure 3 illustrates theinnateperformances of the best agent as a function of genera-
tion, in populations evolved to solve the triangle classification problem (Section 4.2). To
evaluate the agent’s classification accuracy we use the Mean-Square Error (MSE) measure
to calculate the distance between the network predicted classification and the true clas-
sification, averaged over all the patterns in the test set. Fitness is defined as(1−Error).
The results of a simple evolutionary process (dashed line) and of an evolutionary process
that employs conventional supervised learning (dotted line) are compared with those of
an evolutionary process that employs learning by imitation (solid line). Each curve repre-
sents the average result of 4 different simulation runs with different, randomly assigned,
initial connection weights. The results presented in Figure 3 demonstrate how applying
either of the learning paradigms yields better performing agents than those generated by a
simple evolutionary process. In fact, applying learning by imitation produces practically
the same improvement throughout the process as does conventional supervised learning.

When facing the 5-bit parity task, the effect of applying lifetime adaptation is even
more surprising. Figure 4 illustrates theinnateperformances of the best agent as a func-
tion of generation, in populations evolved to solve the 5-bit parity problem. Each curve
represents the average result of 10 different simulation runs with different, randomly as-
signed, initial connection weights. While simulations applying the IEE model still out-
perform the simple evolutionary process, using conventional supervised learning actually
results with a significant decrease in performances. The problematic nature of this spe-
cific task may account for these poor results. The parity problem, although often used as
a benchmark, is considered to be a difficult and atypical classification problem (Fahlman,
1989). Learning algorithms facing this task tend to get trapped in local minima. How-
ever, learning from an imperfect teacher, as is the case in learning by imitation, induces a
certain level of noise into the learning process and may thus help to prevent the process
from getting stuck.

Evidently, learning by imitation has a similar (if not superior) effect on the evolution-

Figure 4: The 5-bit parity task: the innate fitness of the best individual in the population
as a function of generation.
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ary process to the one that was previously shown for conventional supervised learning.
The knowledge possessed by the best members of the population can be used as alterna-
tive training data for other members, even in the early stages of the evolutionary process.
We then turned to use IEE to enhance evolution where explicit training data is not avail-
able. This is the case in the foraging task described in Section 4.3.

Figure 5: The foraging task: the averageinnate fitnessof the population as a function
of generation. The results of a simple evolutionary process are compared with those of
simulations that employed lifetime imitation with two distinct adaptation forces (2 and 8
learning iterations).

Figure 5 illustrates the results of the simulations in which the agents faced the foraging
task. The averageinnate fitnessof the population in a simple evolutionary process is com-
pared with the averageinnate fitnessof populations that applied learning by imitation. The
agents in this simulation employed theRAIL strategy of imitation. Fitness is measured as
the number of food objects an agent consumes during its lifetime. Each curve represents
the average result of 10 different simulation runs with different, randomly assigned, ini-
tial connection weights. As can be seen in Figure 5, autonomous agents produced by our
model demonstrate better performances than those generated by the simple evolutionary
process; that is, theirinnatecapacity to find food in the environment is superior.

We also examined the effect of employing differentadaptation forces. In our ex-
periments, the adaptation force is implemented simply as the number of learning (back-
propagation) iterations we apply in each lifetime adaptation phase. The results illustrated
in Figure 5 also demonstrate that a higher adaptation force (i.e., a higher number of iter-
ations in each imitation phase) further improves the performance of the resulting agents.
This effect coincides with an analogous effect reported by Best (1999) where higher trans-
mission force resulted with faster convergence of the evolutionary process.

To further explore the effects of lifetime imitation on evolution, we examined the
improvement in fitness during lifetime as a function of generation. The improvement
can be evaluated by calculating the difference between theacquired fitnessand theinnate
fitness(i.e., Fa − Fi) in every generation. The results illustrated in Figure 6 clearly
demonstrate that in very early stages of the evolutionary process, the best agents in the
population already possess enough knowledge to improve the fitness of agents that imitate
them. In fact, the contribution of imitative learning decreases as the evolutionary process
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Figure 6: The foraging task: the improvement of the population average fitness gained by
lifetime imitation as a function of generation.

proceeds, probably due to population convergence to high performance solutions.
An additional observation on the interaction between lifetime adaptation and evo-

lution can be obtained from examining the diversity of the population throughout the
evolutionary process. The average genome variance of the population, i.e., the variance
among the population members, in the value of each gene (encoding a certain network
weight) averaged over all genes, can serve as a measure of the population’s diversity. As
demonstrated in Figure 7, during the first few generations, the population’s initial diver-
sity decreases rapidly due to the selection pressure of the evolutionary process. However,
throughout most of the following generations, the diversity found in populations subject
to lifetime adaptation by imitation is higher than the diversity of populations undergoing a

Figure 7: The foraging task: the average genome variance as a function of generation with
and without imitation. Populations that employ lifetime adaptation, maintain a higher
diversity throughout the evolutionary process.

http://www.aisb.org.uk



Borenstein and Ruppin

simple evolutionary process. Allowing members of the population to improve their fitness
through lifetime adaptation before natural selection takes place facilitates the survival of
suboptimal individuals and helps to maintain a diversified population. This feature can
partly account for the benefit gained by applying lifetime adaptation to agents evolution.

6 Discussion

This paper demonstrates how learning by imitation can be applied to an evolutionary
process of a population of agents, utilizing the knowledge possessed by members of the
population. Our IEE model proves to be a powerful tool that can successfully enhance
evolutionary computation simulations in agents.

In our model, the agents’ ability and incentive to imitate is assumed to be instinc-
tive. Quoting Billard and Dautenhahn (1999), “our experiments address learning by im-
itation instead of learning to imitate”. The imitation paradigm presented in this paper
additionally assumes that the agents can estimate the fitness of their peers (i.e., more suc-
cessful agents are larger and look healthier, etc.). More specifically, the RAIL strategy,
where agents imitate only successful behavior, assumes that agents can detect significant
changes in the fitness of their peers during their lifetime or identify specific activities that
may contribute to their fitness. The model presented in Section 3 can provide a frame-
work to explore ways in which these assumptions can be relaxed. Coding the imitative
behavior patterns themselves into the genome might result in the spontaneous emergence
of imitative behavior in a population of agents. Behavior patterns that can be coded may
include attributes such as the imitation model selection scheme, imitation strategy, imi-
tation period, etc. Our model can also be extended to study the incentive that should be
provided to an agent to make it assume the role of a teacher. Teaching, or even allowing
someone else to imitate one’s actions is, by definition, an altruistic behavior, and might
have various costs associated with it. We wish to explore the conditions which may lead
to the emergence of active teaching even in the presence of a fitness penalty for such a
behavior. Such favorable teaching conditions may arise when the fitness associated with
various actions is correlated with the frequency of these actions in the population (see
also Boyd and Richerson, 1985, for a discussion of frequency-dependent bias). A good
example of this case can be found in the emergence of normative behaviors (Axelrod,
1986; Flentge et al., 2001). Since the IEE model presented here entails a relatively simple
form of cultural transmission, confined to horizontal transmission of innate behaviors, it
can serve as a solid testbed for future studies of the emergence, evolution and prevalence
of imitation.

7 Summary

Our study focuses on the effects of imitation on the evolution of agents in the absence of
cultural evolution. We show that introducing the adaptive mechanism of lifetime learn-
ing by imitation can significantly enhance the evolutionary processes, resulting in better
performing agents. This paradigm is particulary useful in evolutionary simulations of
autonomous agents, when conventional supervised learning is not possible. Our model
can serve as a theoretical and experimental framework to further explore central issues
concerning the interaction between imitation, learning and evolution.
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Editors’ Introduction

The fifth AISB symposium on creativity in AI and Cognitive Science was intended to
bring together researchers in all aspects of creativity research within AI and cognitive
science, an area that is flourishing and progressively attaining respectability. Along with
philosophical discussions about the nature of creativity in both arts and sciences, it in-
cluded the presentation of research discussing implemented systems and frameworks
within which implementations can be undertaken, assessed and applied. The research
presented covered philosophical approaches to machine creativity, including a study of
epistemic and ethical mediators and the functioning of tropic communication. Frame-
works for machine creativity were also covered with papers on optimality principles for
conceptual blending, and the use of concept maps for natural language generation. As
usual, computer music was well represented at the symposium, with papers discussing
macrostructure discovery for musical signals, driving chord progressions using tension,
fugal exposition composition, improving the prediction of PPM variants, music genera-
tion from statistical models and an approach to improvisation using multi-swarms. Fi-
nally, computer art motivated by human perception was represented with a paper on sym-
bolic pointillism.”
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Dep. Engenharia Inform´atica, Pólo II, Pinhal de Marrocos, 3030 Coimbra

camara@dei.uc.pt ; amilcar@dei.uc.pt

Abstract

We propose an implementation of the eight Optimality Principles from the frame-
work of Conceptual Blending, as presented by (Fauconnier and Turner, 1998). Con-
ceptual Blending explains several cognitive phenomena in the light of the integration
of knowledge from differentmental spaces onto a singlemental space: the Blend.
The Optimality Principles express general pressures that compete in the generation of
the Blend.

The work we present now corresponds to the Constraints module of our compu-
tational model of Conceptual Blending, also described in other papers.

1 Introduction

One big challenge for Computational Creativity is the generation of new concepts and a
very interesting source of inspiration for approaching this issue comes from the frame-
work of Conceptual Blending, from (Fauconnier and Turner, 1998). The Conceptual
Blending (CB) framework suggests processes and principles that may be at work within
the cognitive integrations of knowledge needed in reasoning. We are developing a model
of computational creativity that takes an approach to CB as a fundamental pilar. This
system has been described in earlier papers ((Pereira and Cardoso, 2001), (Pereira and
Cardoso, 2003)) as well as its first experiments ((Pereira and Cardoso, 2002)), where the
need for developing the Optimality Principles of Conceptual Blending was evident as an
urgent improvement. These are the general guidelines that drive the process of blending
and allow the differentiation between a “good” and a “bad” blend. Here, we propose a
formal realization for each of the eight principles. Experimentations around these princi-
ples have already been published in (Pereira and Cardoso, 2003). Although in the present
paper we provide some results of these experiments, we strongly advise the interested
reader to explore this previous publication.

In the first sections, we give an overview of Conceptual Blending, so as to provide the
reader with the motivation and background for our approaches to the Optimality Princi-
ples. We made some exploratory experiments which are informally reported at the end
of the discussion of each principle. We finalize this paper with reflections regarding the
relevant aspects of this work for Computational Creativity.
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2 Conceptual Blending

Conceptual Blending (CB) was initially proposed by (Fauconnier and Turner, 1998) as
part of a major framework concerning cognition and language and had the role of explain-
ing the integration of knowledge coming from distinct sources onto a single, independent
and coherent unit, the Blend. A blend is a concept or web of concepts whose existence and
identity, although attached to the pieces of knowledge that participated in its generation
(the inputs), conquers gradual independence through time and use.

We find examples of blends in many sorts of situations. A blend can be an effective
way to get attention and curiosity towards advertising a product (e.g. Sony’s AIBO robot
uses all sorts of Sony products behaving as if it were a real human) or spreading a message
(e.g. the Marlboro cowboy with impotence problems). People have been making blends
with creatures from the times of Greek mythology (e.g.pegasus) till today (e.g. the
pokemons), natural language discourse (e.g. “John digested the book”, “Sue sneezed the
napkin off the table”), poetry (see (Freeman, 1999)). Many more examples and situations
could be listed and studied in detail, demonstrating the ubiquity of CB as observed by
these researchers.

It is noticeable that Conceptual Blending and its research community are growing, and
possibly still in its early stages. It is an elegant proposal for modelling a creative process
and its relationships with language and cognition, but it carries formal vagueness across
its several aspects, making it difficult even to be considered as a theory, in aPopperian
sense. Indeed, if the big hole between the general model and the specific examples does
not show any incoherence, it also does not allow falsifiability, leaving very much unde-
fined the boundary between what is and what is not a blend. These criticisms intend to
motivate work that, from our point of view, is fundamental. They also support our own
motivation for the present project, which is that of contributing with a formal model and
implementation based on Conceptual Blending. We hope it can be useful in shedding
some light on a number of issues.

In order to understand the CB framework, we must introduce a fundamental concept:
themental space. According to (Fauconnier and Turner, 1998), mental spaces are partial
structures that proliferate when we think and talk, allowing a fine-grained partitioning of
our discourse and knowledge structures. For simplifying, let us consider a mental space
as a partial selection of knowledge from a domain, a memory of a situation, an imagined
scenario or entity, essentially a knowledge structure of inter-related concepts that is ex-
plicitly or implicitly necessary for a reasoning. As AI researchers, we see a mental space
representable as asemantic network, a frame, a case or any other symbolic knowledge
structure that gathers a set of inter-related concepts towards a specific situation. In the
four space model, Conceptual Blending is described as involving two input mental spaces
that, recurring to a cross-space mapping between them and a generic space that has gen-
eral knowledge relevant for both the input domains, will generate a fourth one, called
Blend. This new domain will maintain partial structure from the input domains and have
emergent structure of its own.

The process of generation of a blend can be summarized according to three general
steps ((Fauconnier, 1997)): Composition, where new relations become available that did
not exist in the separate inputs; Completion, when generic knowledge is projected into the
blend, to ”complete” the emergent structure; and Elaboration, in which cognitive work is
performed in the blend, according to its own emergent logic. The order of these steps
may be changed and several iterations of the process may be necessary. There is a set of
governing principles, theOptimality Pressures, that should drive the process of generating
a “good blend” ((Fauconnier and Turner, 2002)):
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Figure 1: The Conceptual Blending Model

� Integration - The blend must constitute a tightly integrated scene that can be ma-
nipulated as a unit. More generally, every space in the blend structure should have
integration.

� Pattern Completion - Other things being equal, complete elements in the blend by
using existing integrated patterns as additional inputs. Other things being equal,
use a completing frame that has relations that can be the compressed versions of
the important outer-space vital relations between the inputs.

� Topology - For any input space and any element in that space projected into the
blend, it is optimal for the relations of the element in the blend to match the relations
of its counterpart.

� Maximization of Vital Relations - Other things being equal, maximize the vital rela-
tions in the network. In particular, maximize the vital relations in the blended space
and reflect them in outer-space vital relations. Turner and Fauconnier identify 15
different vital relations: change, identity, time, space, cause-effect, part-whole, rep-
resentation, role, analogy, disanalogy, property, similarity, category, intentionality
and uniqueness.

� Intensification of Vital Relations - Other things being equal, intensify vital relations.

� Web - Manipulating the blend as a unit must maintain the web of appropriate con-
nections to the input spaces easily and without additional surveillance or computa-
tion.

� Unpacking - The blend alone must enable the understander to unpack the blend to
reconstruct the inputs, the cross-space mapping, the generic space, and the network
of connections between all these spaces

� Relevance - Other things being equal, an element in the blend should have rele-
vance, including relevance for establishing links to other spaces and for running the
blend. Conversely, an outer-space relation between the inputs that is important for
the purpose of the network should have a corresponding compression in the blend.

http://www.aisb.org.uk



Optimality Principles for Conceptual Blending

As far as we know, there is no work yet towards an objective study of the optimality
pressures, measuring examples of blends or specifying these principles in detail. This,
we believe, disturbs considerably the appreciation and application of Conceptual Blend-
ing in scientific research, and therefore testing and specifying a formal proposal for the
optimality pressures is also a particular motivation for this work.

3 Basic Notions from our model

We present now some basic notions that are necessary to understand this document. We
use a specific type of mental space, that is static, modeless and non attached to discourse,
which is closer to the notion ofdomain knowledge in AI. We call it a domain, compris-
ing a theory and a set ofinstances. In this paper, we consider only the theory, which is
represented by aconcept map that explains the structural and causal organization of the
domain. A concept map is a semantic network, with binary directed relations between
the concepts1. In CB, there is a set ofvital relations that take a special role in the Blend-
ing process. We also consider these relations, but allow the choice of a different set of
relations. In principle, these vital relations can be the source for establishingmappings
between the input spaces, fundamental for the projection operation (two objects mapped
to each other can be projected to the same concept, e.g. horse and bird projected to pega-
sus). Each mapping projection consists of a ternary relationm/3. For example, a mapping
algorithm based on “property” could try to map pairs of concepts that make a valid pair
of property/object (e.g. “m(property, dark, bird)”), a different one based on analogy could
link pairs of analogical counterparts (e.g. “m(analogy, leg, wing)”). As far as our research
goes, we are applying mapping algorithms that find 1-to-1 structures mapping between the
concept maps of the two domains based on analogy, identity, space and time2. Knowing
this is a strong limitation, we hope to address other mapping algorithms in future develop-
ments. Currently, for the sake of validation and experimentation of the system, we allow
user-defined mappings, so as to allow conclusions independent from the mapping choice.

Finally, another important notion is that offrames. A frame comprises a set of con-
cepts and relations that should be tightly integrated according to a situation, structure,
cause-effect or any other relation that ties a set of concepts onto one, more abstract or
broad, composite concept. We envisage different kinds of frames, in terms of level of
abstraction. The more specific ones correspond to concepts easily identifiable as famil-
iar objects or situation (which we can see as a kind ofprototypes). For example, the
(very much simplified) frame of “transport means” corresponds to a set of concepts and
relations that, when connected together, represent something that has a container and a
subpart (e.g. an engine) that serves for locomotion.

������������	�� ������
�� �
�����
 �	���������

��������
 ��	���� �� �����
� ��
����	���� �	�	�	��	���
������  
�

1First order logic predicates with arity 2, e.g. isa(bird, aves); purpose(wing, fly))

2Analogy: the algorithm searches for a structure alignment between the two domains; Identity: equal or
synonymous elements from the two domains get mapped together; Space: Spatial data (e.g. location) at the
same level of detail are mapped together; Time: Temporal data (e.g. a date) at the same level are mapped
together.
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The more abstract frames can consist of top-level decisions or directives that decide
the underlying philosophy of the blend construction. For example, if a blend satisfies the
“aframe” frame, it means it maintains the structure of the input domain�. If it satisfies the
“bprojection” frame, then the concepts of input space� all get projected unchanged to the
blend (e.g. “bird” is projected to “bird”, “wing” is projected to “wing”). If a blend satisfies
“aframe” and “bprojection” simultaneously, then it should3 have the concepts from input
space� organized according to the structure of input space�. It is more complex to design
these more abstract frames, thus we allow the use of programming (inprolog language,
inside curly brackets) within a frame specification. Below we can see the programming
of the “aframe”.

���������������� �
�������������� ��

��������	����� �� ������� �����������
�����������
�� ������
�� ��� ��	�
�����	�����
�
� ��	�����	�����
� � � �� ��� � 	������������

Basically, “aframe” searches for all relations of domain 1 (�) and obtains a list (�)
containing their projections to the blend. The	������������ condition is anoperator that,
when, interpreted by the frame processor, expands� into a set of concept map relations
(like those in the “transportmeans” frame). For “aframe” to be totally satisfied, it is
necessary that all relations from input space 1 also exist in the blend.
There are also frames of intermediate level of abstraction, which aren’t either as specific as
“transportmeans” or as abstract as “aframe”. For example, “newcreature” is concerned
with finding a “creature” (thus having its specific properties - e.g. being a “living being”)
that didn’t exist before in either domains or existed but not as a “creature” (e.g. a “flying
snout”).

When we say thata frame � is satisfied in the blend �, we mean all its premises are
true in the domain�. We see frames asinformation molds and building a blend for a given
situation should depend much on the choice of these structures, either being structures
towards which the blend self-organizes or as pragmatic goals or query specifiers that the
blend is expected to accomplish.

4 Optimality Principles

Following the F&T notion of Optimality Principles, the pressures that should lead towards
stable, integrated new blends, we propose now a set of measures that should reflect as
much as possible the rationale behind each principle. In order to give a clearer idea
of its individual effect in our blending system, we present a brief report of experiments
we made. These experiments consisted of running a parallel search method, a genetic
algorithm, to retrieve blends from the search space. The input domains were the domains
of horse andbird (see tables 1 and 2 - in the end ofthis paper), meaning that the expected
results range from the unchanged copy of one (or both) of the concepts to a horse-bird
(or bird-horse) which is a combination of selected features from the input domains. The
construction of these domains was subject to the following constraints: they should be

3Depending on the mappings, the concepts considered in aframe and bprojection may become separate in
the inputs (and so there wouldn’t be any systematic relation between concepts from input spaces 1 and 2), yet
this would receive little value in the measures presented in this paper.
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concept networks in which nodes are concepts and arcs are relations; the concepts should
be connected to the ontology in the generic space through an “isa” relation; the relations
used should be present in the Generalized Upper Model (GUM) hierarchies ((Bateman
et al., 1995)) or be subtypes of them. GUM is a general top-level ontology that has two
hierarchies (elements and relations) that comprise abstract relations, properties, spatial
relationships, among others. Although allowing a normalization of the concept maps, the
constraints in the construction of the domains do not avoid,per se, the biasing or ingenious
tailoring. For this reason, in this paper and in the exploratory experiments we show, we do
not give special attention to a qualitativereading of the results or use them to demonstrate
its validity, instead we are interested in reporting the effects that each measure has on the
results and on the search landscape.

The generic domain (in tables 3 and 4, in the end of this paper) consists of a sim-
ple general ontology, a set of frames and integrity constraints. We applied 3 different
mappings (figure 2), all generated automatically (via a structure alignment algorithm -
read (Pereira and Cardoso, 2001) to know more). These mappings range from very small
(only four mapping correspondence) to large (21 mapping correspondences), from non-
surprising associations (e.g. “animal” and “animal”) to nonsense (e.g. snout and lung).
For each mapping, we tested the seven optimality pressures, each of these comprising 30
runs4.

ear � wing
snout � bird

eye � lung
mouth � feathers

2 � 2
hear � fly

1

mouth � beak
snout � bird

eye � lung
ear � feathers
eat � eat

2

vegetablefood � vegetable
food � food

horse � bird
equidean � aves

animal � animal
humansetting � house

wilderness � wilderness
ruminant � oviparous

run � fly
cargo � pet
neigh � chirp
snout � lung
mane � feathers

tail � beak
leg � eye

hoof � wing
4 � 2

eye � leg
ear � claw

hear � catch
grass � grass

3

Figure 2: The three mappings used in the experiments

4A run is an entire evolutive cycle, from the initial population to the population in which the algorithm
stopped
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4.1 Integration

Frames have a natural integration role because they gather knowledge around abstractions,
tightening the links between concepts. Assuming the set� of frames that are satisfied in
a blend, we define theframe coverage of a domain to be the set of relations from its
concept map that belong to the set of conditions of one or more frames in� . The larger
the frame coverage of the blend, the more it is integrated. Yet, a blend that is covered by
many frames should be less integrated than a frame with the same coverage, but with less
frames. In other words, if a single frame covers all the relations of a blend, it should be
valued with the maximal integration, whereas if it has different frames being satisfied and
covering different sets of relations, it should be considered less integrated. The intuition
behind this is that the unity around an integrating concept (the frame) reflects the unity
of the domain. The Integration measure we propose varies according to this idea. It also
takes integrity constraints into account so that, when a frame violates such a constraint, it
is subject to penalty.

Definition 4.1 For a frame � with a set � of conditions ��

�
���, a blend �, with a

concept map ���, a blendoid5 ���� , the concept map of the blendoid and �  , the set
of integrity constraints6 that are violated in the frame, the integrationvalue,  � is defined
by:

 � � �
��

����

	 ��� !��� ��	 �� �
����

�����

���

where ! is a penalty factor between 0 and 1, a value that penalizes a frame for each
violation to integrity constraints. An integrity constraint is violated if its premises are
true. In the context of the integration measure of frame� above,� violates integrity�� if
the conditions��� of �� are verified and���

�
� 
� �. In other words,� needs to violate

�� in order to be integrated.
We would like to clarify the above formula: the first factor represents the ratio of

coverage of� w.r.t. � ; the second factor means that each integrity constraint violation
implies an exponential discount; the third factor serves the purpose of maximizing the
size of the blend (if two frames have the same ratio of coverage, the one that contains
more relations should have higher integration); the division by 2 aims to normalize the
result between 0 and 1.
While the value for a single frame integration is described above, the integration measure
of a domain w.r.t. a set of frames is not necessarily straightforward. At a first sight, it is
appealing to just sum the values of integration of all frames, or of the union of them, or
even their intersection. But this would lead to wrong results, because a set of frames could
not be reduced to a single frame from the point of view of integration. In this measure,
we want to stimulate unity, coverage and take into account the strength of each frame
individually. In terms of unity, we argue that the set of relations that make the “core” of all
the frames that are satisfied, i.e. the intersection of the sets� of conditions of all frames,
should be highly valued. On the other side, the coverage of this “core” will be smaller
than the overall coverage (or equal, if the frames have equivalent� sets), which leads us
to take into account the disjoint sets of relations of the frames. Finally, the integration of
each individual frame (as defined above) should also be present in the overall measure.
These last two issues (the overall coverage and the integration of individual frames) are

5The concept map that contains all the possible relations that the blend may have

6Rules withfalse conclusion as in table 3
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Figure 3: The role of frame coverage in Integration value

subject to a disintegration factor because they reflect the existence of different, not totally
intersected, frames. We propose this factor,", to be a configurable value from the interval
	� 
�. It is now time to present our proposal for the ���#����	�������� of a blend:

Definition 4.2 For a set of frames �� � ��, where �� is the set of the frames that have
their conditions (��) satisfied in the blend �

 ���#����	� �  ��

�
��

� "	 $��	����#�	
��

�

 ��

The $��	����#� value consists of the ratio of relations that do not belong to the
intersection of all frames w.r.t. the total number of relations considered in the frames:

$��	����#� �
�
��

� �� ��
��

� ��

�
��

� ��

We think the integration measure is a fundamental brick of the blending process. It
leads the choice of the blend to somethingrecognizable as a whole, fitting patterns that
help to determine and understand what anew concept is.

In order to illustrate this reasoning, in figure 3, we show 4 blends and the respective
frame coverage. Blend A gets clearly the highest Integration value (all the relations are
covered by a single frame); B is also totally covered, but by two different frames; Blend C
should get lower Integration value than B because it does not cover every relation (Uncov-
erage is bigger than 0); finally, blend D would possibly get the lowest value (depending
on the value of") because, although covering every relation, there is a high dispersion of
frames.

Experiments: An immediate conclusion about the effect of Integration is that frames
behave asattractor points in the search space. Moreover, the frames with a larger cov-
erage tend to be preferred, although when too large (likeaprojection or aframe) they are
dropped away. The evolution is directed to a compromise of coverage and satisfiability.
More specifically, when it satisfies a frame likepw based explanation, the resulting In-
tegration value is a local maximum or a point in its neighborhood (because sometimes
other, related, frames were also found) and “jumping” to another area of the search space
becomes difficult.

Another conclusion to draw concerns to the observation that the complexity of the
search space landscape grows with mapping size. In fact, when we have a mapping of
size 2, the algorithm only finds two different solutions and the better rated (possibly a
global maximum) is achieved in 77% of the runs, but with a mapping of size 5, it returns
six different blends, with the best choice retrieved only 43% of the times. To confirm
this conclusion, the mapping of size 21 led the algorithm to 16 different maxima, with
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the best one found only 7% of the times. A good compensation for this apparent loss of
control is that the returned values are clearly higher (0.68, for the best) than in the small
mappings (0.22), meaning that with big mappings there are many more possibilities to
find integrated blends.

The resulting concept maps consist of exactly the relations that are covered by the
satisfied frame or combination of them, more specifically there were two frames that
were very persistent:pw based explanation andpurposeful subpart. In some blends, the
former was present multiple times (e.g. a part-whole explanation of a horse, with part-
whole explanations of its subparts) and both were plenty of times combined.

4.2 Topology

The Topology optimality pressure bringsinertia to the blending process. It is the con-
straint that drives against change in the concepts because, in order to maintain the same
topological configuration as in the inputs, the blend should maintain exactly the same
neighborhood relationships between every concept, ending up being a projected copy of
the inputs. Inreal blends, this pressure is normally one that is disrespected without big
loss in the value of the blend. This is due to theimagination context that normally involves
blends, i.e., novel associations are more tolerable.

In our Topology measure, we follow the principle that, if a pair of concepts,� and%,
is associated in the blend by a relation�, then the same relation must exist in the inputs
between the elements from which� and% were projected. We say that such relation,
��� %�, is topologically correct. Thus, the value of Topology corresponds to the ratio of
topologically correct relations in the concept map of the blend.

Definition 4.3 For a set &� � ��� of topologically correctrelations, defined as

&� � ���� %� � ��� %� � ���  �����

where ��� and ��� correspond to the concept maps of inputs 1 and 2, respectively 7.
The topology measure is calculated by the ratio:

&	�	�	#% �
�&�

����

Intuitively, this measure represents the amount of relations from the inputs that got
projected onto the topologically equivalent position in the blend. At the moment, the only
way to violate topology is by having a pair of concepts projected to the same one (e.g.
“horse” and “bird” projected to “horse”), bringing a new relation that was exclusive to
one of the domains (e.g. ability(bird, fly) projects to ability(horse, fly)). Topology thus
decreases as fusion or transfer projections are made.

Experiments: In all the experiments with Topology, the final results were valued
100%, meaning that this constraint is easily fully accomplished, independently of the
mapping. An interesting fact is that there is a multitude of solutions in thesearch land-
scape of Topology, showed by the amount of different final results in each mapping.
Intuitively, and observing the short duration of each run, this means that, wherever the
search starts, there is always a Topology optimal point in the neighborhood.

Topology is more an inertia than a transformation force because it values knowledge
that remains the same. In our horse-birds, this pressure projects wings, beaks and claws

7In other words,�� is the intersection of the concepts maps of the blend and the input spaces
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(i.e. concepts from the bird domain) to the blend but isolates them unless there is strong
evidence to connect to horses, legs and snouts (i.e. concepts from the horse domain).

4.3 Pattern Completion

The Pattern Completion pressure brings the influence of patterns, being them present in
the inputs or coming from thegeneric space. Sometimes a concept (or a set of concepts)
may seem incomplete but making sense when “matched against” a pattern.

At present, in the context of this work, a pattern is described by a frame, i.e. we do
not distinguish these two concepts, and therefore pattern completion is basically frame
completion. Here, as in the definition of this principle, the completing knowledge be-
comes available from “outside”, not as a result of projection. This means that the act of
completing a frame consists of asserting the truth of the ungrounded premises, a process
that happens only after a sufficient number of premises is true. We call this theevidence
threshold. The evidence threshold� of a frame� � with regard to a blend� is calculated
according to the following.

���� �� �
�'���
���

	 ��� !��� �

where'��� contains the conditions of each�� that are satisfied in�, ! is the integrity
constraint violation factor and�  the set of violated integrity constraints.

As in the integration pressure, we have the problem of taking into account multiple
frames. This time, given that we are evaluating possible completion of subsets of rela-
tions, instead of sets of relations that are actually verified in the domain, it is difficult to
find such a linear rationale (e.g. would two patterns each with individual completion�
value higher than three having each slightly less than�?). As a result, we propose to find
the union of the patterns and then estimate its own evidence threshold:

Definition 4.4 The Pattern Completion measure of a blend � with regard to a set � with
� frames is calculated by

(�������	������	� � ���� �� ��

This measure has a very important role in increasing the potential of the blend, for it
brings the “seeds” that may be used in the Completion and Elaboration phases. In figure
4, we illustrate Pattern Completion with two examples. Assuming a frame with three
conditions, on the left it has an evidence threshold of 66,6% (two relations are already
accomplished), whereas on the right the evidence threshold is only 33,3%. For both,
since we consider only one frame (i.e. onepattern), the value of Pattern Completion is
the same as of the evidence threshold.

Experiments: The first conclusion to take from the experiments with Pattern Comple-
tion is that the size of the resulting concept maps tend to grow as the evolution progresses,
although there is no linear correlation found. This has a simple interpretation, given that
this measure stimulates the appearance of patterns (frames) that are only partially com-
pleted. In doing so, it drives the blend to partially complete (i.e., instantiate partially its
conditions) the highest possible number of frames, leading, in each case, to several sets of
relations that fit into those frames without satisfying them (e.g. wings are projected, they
serve to fly, but they are not attached to anything).

In which respects to thesearch landscape, it seems to be very rich in local maxima.
This fact was not unexpected, considering the discussion of the previous paragraphs, the
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Figure 4: Pattern Completion examples

number of different frames available (9) and all their different combinations. The most
constant results came from mapping 2, with 13% of the best result obtained and 20%
of the second best. An interesting remark is that the resulting local maxima always fall
within a very strict range of values (of maximum amplitude 0.11).

4.4 Maximization of Vital Relations

For the maximization of vital relations, we estimate the impact of the vital relations to
the blend calculated by the ratio of vital relations w.r.t. the whole set of possible vital
relations, theblendoid. The blendoid is the largest possible blend that can be obtained
from a given mapping and is calculated by projecting every concept to it (i.e., there is no
selective projection) regardless of integrity constraint violation or any other constraint.
Since it has the largest set of potential relations, it also has the maximum possible of vital
relations.

Definition 4.5 Let � be a set of vital relations. From the concept map of the blend �, we
may obtain the set of vital relations in b, �� �:

�� � � ���� %� � ��� %� � ��� � � � ��

From the blendoid (the largest possible blend), ��, we have ��
� �:

��
� � � ���� %� � ��� %� � ���

� � � � ��

Finally, the Maximization of Vital Relations measure is calculated by the ratio

������)���	� � � �
��� �

���
� �

Experiments: The influence of Maximization of Vital Relations in the results is straight-
forward, given that its highest value (�) reflects the presence, in the blend, of all the vital
relations that exist in the inputs, independently of the projections of the concepts or non-
vital relations (which becomenoise in the sense that these appear randomly and making
no difference to the value of the measure, yet confusing the “reading” of the concept
map). As the evolution goes on in each run, the value grows until reaching the maximum
reasonably early. For each set of 30 runs, it reached the value� a minimum of 93% of
the times, and the remaining times achieved at least a value of 0.95. As in Topology,
the search space of Maximization of Vital Relations is verysimple since there is a global
maximum in the neighborhood of (almost) every point. On the other hand, since there
is no control onnoise, the resulting concept maps show unity only in the subset of vital
relations.
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4.5 Intensification of Vital Relations

Intensification of Vital Relations is the principle that maximizes the concentration around
a specific vital relation. I.e., while the Maximization of Vital Relations favors the creation
in the blend of vital relations in general as opposed to “regular” relations, Intensification
is based on focussing a specific vital relation. The former relates “new” vital relations
with “new” relations in the blend; the latter relates vital relations with themselves. Thus,
we need a notion of “intensity” of a vital relation. For such, we argue that a vital relation
is considered more “intense” when there is more evidence of its strength. This evidence
should be dependent on the kind of vital relation we are dealing with. For example, an
“analogy” vital relation between two concepts is stronger when there is also a systematical
association between the neighborhood concepts (the systematicity principle). In fact, sys-
tematicity is the only “intensity” heuristic we have now and its calculation ( ��	�	
��)
is straightforward. For a mapping (of size�)

 ��	�	
�� �
�����	#���� ���������

�

where ananalogical transfer consists of a projection of a concept� from input space
� to % in the blend (where% is the analogical counterpart of� in the input space�).

Considering several different “intensity” heuristics, the evaluation of this pressure
takes the point of view that a blend that applies only one vital relation, with intensity�,
should have higher measure than a blend with� vital relations, each with intensity���
(the sum would thus be�). So we want to favor “concentration” of vital relations.

Definition 4.6 Let *� � � be a vital relation and the set � ���� , of the instances of vital
relation *� in the blend, defined by � ���� � �*��� %� � *��� %� � ����

Assuming a value  ���� of intensity of the vital relation *�, the measure of Intensifi-
cation of Vital Relations is calculated by:

 ������������	� � � �

��

�  �����
�
��

�  �����
�
 � � ��

Intensification is thus higher when there is more “concentration” (e.g. �� �� � �,
 ���� � � �  ������������	� � ���;  ���� � � �  ������������	� � �). In
figure 5, we intend to illustrate the reasoning behind this measure. On the left, we see
that the only mapping function (vital relation) used in building the projections of A and
B is analogy, whereas on the right there are two kinds of connections (analogy andprop-
erty). Assuming that the number of mapped concepts of both examples remains the same,
the one on the left gets a higher ������������	� � � value because every mapping con-
tributes to the intensity of a single vital relation, whereas on the right, we see that intensity
is spread over two different relations. As a result, the former is more “concentrated” than
the latter, yielding a bigger value.

Experiments: The behavior of Intensification of Vital Relations is similar to that of
Maximization in the sense that the search landscape is not very complex. From wherever
the search starts, there is a high probability (of at least 70%, in the worst case) of finding
the maximum value in the neighborhood. It is important to point, though, that we are
only applying one heuristic (analogical transfer), and so the results could not be different.
Given this fact, we must say that we cannot claim or discuss much about this Intensifica-
tion of V.R. proposal unless we find other heuristics than based on analogy systematicity.
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Figure 5: Intensification VR examples

4.6 Unpacking

Unpacking is the ability to reconstruct the whole process starting from the blend. In our
view, such achievement underlies the ability to reconstruct the input spaces, specifically.
The complete reconstruction of the input spaces from the blend would demand the assess-
ment of the cross-space mappings, the generic space and other connections. However,
Unpacking should take the point of view of the “blend reader”, i.e., someone or some-
thing that is not aware of the process of generation, thus not having access to the actual
projections. This “reader” should look for patterns pointing to the “original” concepts.

Thus, what we are proposing is that Unpacking can be reduced to the ability to re-
construct the inputs. This is so because there is no way to properly reconstruct the inputs
without a reconstruction of the cross-space mappings, generic space and the connections
between spaces.

Once again we use the idea offrames, more specifically thedefining frame of a con-
cept, which comprises its immediately surrounding concepts and relations. For example,
if the concept “wing” were projected onto� in blend, the defining frame with regard to
the “bird” domain would consist ofpurpose(x, fly), conditional(x, fly), quantity(x, 2) and
pw(x, bird). The more of these relations are found in the blend, the more likely it is that
the “reader” will find easy to understand the relationship between� and “wing”.

Definition 4.7 Given a blend � and an input space �, the concept � (which is the projec-
tion of the element �� of input space � to the �), has a defining frame ���� in � consisting
of

���� � �� �� + + + �� �� ����

where �� � ���� %� � ���
� %� � ����.

Assuming that , is the number of conditions (��) of ���� that are satisfied in the blend,
the unpacking value of � with regard to � (represented as -�� ��) is

-�� �� �
,

�

We calculate thetotal estimated unpacking value of � corresponding to the average of
the unpacking values with regard to the input spaces. Thus, having input spaces� and�,
we have

-��� �
-�� �� � -�� ��

�

Definition 4.8 Let � be the set of � concepts of the blend �, generated from input spaces
� and �. The Unpacking value of � is calculated by

$����,��# �

��

��� -����

�
 �� � �
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Figure 6: Unpacking examples

In Figure 6, we present the defining frame for “horse”, in the “Horse” domain. In
Blend 1, the concept “horse-bird” (the projection of “horse”) will have the highest Un-
packing value because it fits exactly its defining frame. In Blend 2, the value is lower
because there are two new relations (with “fly” and “wings”), meaning it is not the exact
same concept. Blend 3 will get the lowest Unpacking value of all three because it also
lacks some relations (e.g. with “run” and “grass”).

Experiments: The results of the Unpacking measure show that it has a notorious side
effect on the size of the blend, since it drives it to very small sets (between 0 and 5) of
relations. The interpretation here is straightforward: the ratio ofunpackable concepts is
highly penalized in bigger sets because of the projected relations that come as side effect
of the projection of (unpackable or not) concepts. These relationsconfuse the unpacking
algorithm so that it leads the evolution to gradually select the smaller results.

The maxima points also correspond to the value�, but it seems, from the experiments,
that there is a very limited set of such individuals, achieved in the majority (at least 93%
for each mapping) of the experiments.

4.7 Web

The Web principle concerns to being able to “run” the blend without cutting the connec-
tions to the inputs. In our opinion, this is not an independent principle, it is co-related
to those of Topology and Unpacking because the former brings a straightforward way to
“maintain the web of appropriate connections to the input spaces easily and without ad-
ditional surveillance or computation” and the latter measures exactly the work needed to
reconstruct the inputs from the blend. It is not to say that Web is the same as Topology
or Unpacking, what we are arguing is that, on one side, Topology provides a pressure to
maintain the most fundamental connection to the input: the same structure; on the other
side, Unpacking evaluates the easiness of reestablishing the links to the inputs. These two
values combined in a weighted sum yield, we propose, an estimation of the strength of
the web of connections to the inputs:

.�� � "	 &	�	�	#% � / 	 $����,��#

with "� / � �.

Since this is not an independent variable, making independent experiments with the
Web measure would not add any valuable conclusion. In a subsequent publication, we
plan to focus on correlation of measures, where we may explore the behavior of this
measure.
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4.8 Relevance

The notion of “relevance” or “good reason” for a blend is tied to the context and goal of
the blending generation. A blend, or a part of it, may be more or less relevant dependent of
what it is for. Once again, frames take a fundamental role as “context” specifiers, (i.e., the
set of constraints within a frame describe the context upon which the frame is fulfilled).
Therefore, having a set of goal frames, which could be selected from any of the existent
domains or specified externally, a blend gets the maximum Relevance value if it is able to
satisfy all of them.
An aspect of the goal frames is that they allow the application of queries. For example,
if we want to find a concept that “flies”, we could build a goal frame with the relation
������%�� ��%�. The blends that satisfy this frame would have high relevance.

Definition 4.9 Assuming a set of goal frames, �� , the set �� of the satisfied frames of
blend � and the value (�0� for the pattern completion of a set of frames � in blend �,
as described in section 4.3, we have

��������� �
���� � ��� � ��� 	 (�0��

���

where��, the set of unsatisfied goal frames, consists of�� � �� � ��.
From the point of view of creativity, we propose the use of Relevance as a “usefulness”

measure, as we already made in some experiments (Pereira, 2003).
Experiments: The first part of the test on Relevance focussed on making a single

relation query. In this case, we asked for “something that flies” (ability(, fly)). The results
were straightforward in any mapping, accomplishing the maximum value (�) in 100%
of the runs, although the resulting concept maps did not reveal necessarily any overall
quality or unity. In other words, the evolution took only two steps: when no individual
has a relation “ability(, fly)”, therefore with value 0; when a relation “ability(,fly)” is
found, yielding a value 1, independently of the rest of the concept map.

The second part of the test on Relevance, by adding a frame (ability explanation) to
the query, revealed similar conclusions. There was no sufficient knowledge in any of the
input domains to satisfy this new frame completely, so the algorithm searched for the
maximum satisfaction and reached it 100% of times in every mapping. So thelandscape
seems to have one single global and no local maxima, reflecting the integration of the
two parts of the query. If there were separate frames, local maxima might be expected.
Intuitively, thesearch landscapes of Integration and Relevance seem to be similar.

5 Discussion and further work

A first conclusion we draw from this work is that the eight optimality principles can
be reduced to seven (since Web is not independent). Even more, given the power of
language that we use in frames, some of the principles can becoded within a frame,
namely Topology and Unpacking, and accomplished via a query measured by Relevance.
This reduces our number to five. Yet, we do not know whether this reduction reflects a
fault in the CB framework or in our interpretation of it.

It is important to say that the system is being already tested and some the experiments
were published (e.g. in (Pereira, 2003), we used the same set of nouns used in the� �

Conceptual Combination framework (Costello and Keane, 2000) to generate noun-noun
combinations), the general conclusions confirming the same behavior we showed in this
paper.
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Regarding the creative aspects of this system, there are some issues we may discuss
concerning the role of the optimality principles. Since different configurations may lead
to considerably different results, an obvious question emerges: Is there any “specific”
configuration (or configurations) that produces more creative results? If we assume a
“creative result’ as something that is novel (i.e., not existent in the list of previous re-
sults) and useful (according to a context), as a simple definition, we may at the least try
to understand what configurations bring better results, and which optimality principles
are more influential. From the experiments we have already taken, we can say that there
are no precise patterns for “creative results”. Although the individual behavior regarding
each of these principles remained faithful to what we presented here, their relative weight
in the the value of a blend may vary considerably. For example, in some experiments with
classical examples of Blending literature, in which we sought for the best weight config-
urations that the system needed to achieve the “correct blend”, we observed a variability
in the importance of the principles (e.g. in the “Buddhist Monk” example, Topology and
Relevance were central; in “Kant Debate”, it was Relevance and Pattern Completion).
However, it has been clear that usefulness is very much dependent on Relevance and, at a
lesser degree, Integration. Novelty seems to be related to how strong an optimality prin-
ciple is in a given context. For example, if Topology is important for the generation of
a well known kind of blends (e.g. creatures), then diminishing its weight on the config-
uration will bring novel results more often. Naturally, these also tend to be less useful.
This competition is a possible justification for the variability we have been observing in
experiments so far, given that different kinds of blends will behave differently with the
optimality principles.

We have already stated that the main motivation of our system is to generate new con-
cepts out of previous knowledge. Two works under development include the application
of the system to a game environment and the study of ways to increase the emergence of
knowledge within the blend. The latter will certainly improve the creativity potential of
the system since it consists of the generation of new relations and concepts (not present
in the inputs) within the blend. Since this new knowledge will come from outside (from
the generic space and other domains in the knowledge base), we expect it will open the
search space for the transfer of knowledge from distant sources.
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Appendix

isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(hoof, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(snout, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)
pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(hoof, 4) quantity(leg, 4)
pw(eye, snout) quantity(eye, 2)
pw(ear, snout) quantity(ear, 2)
pw(mouth,snout) purpose(eye, see)
motion process(horse,walk) ride(human, horse)
taxonomicq(horse, ruminant) purpose(horse, cargo)

Table 1: The domain theory ofhorse

isa(bird,aves) existence(bird, house) isa(parrot, bird)
isa(aves,oviparous) purpose(bird, pet) isa(nest, container)
lay(oviparous, egg) existence(bird, wilderness) roleplaying(bird, freedom)
purpose(bird, food) purpose(eye, see) ability(parrot, speak)
smallerthan(bird, human) purpose(beak, chirp) purpose(claw, catch)
pw(lung, bird) motionprocess(bird, fly) purpose(wing, fly)
purpose(lung, breathe) quantity(eye, 2) pw(claw, leg)
isa(paradisebird, bird) quantity(wing, 2) pw(beak, bird)
isa(owl, bird) quantity(claw, 2) pw(eye, bird)
ability(bird, fly) pw(wing, bird) quantity(leg, 2)
pw(feathers, bird) conditional(wing, fly) pw(leg, bird)
purpose(beak, eat) sound(bird, chirp) purpose(leg, stand)
pw(straw, nest)

Table 2: The domain theory ofbird
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isa(entity,something) isa(mammal, animal) isa(house, humansetting)
isa(situation,something) isa(animal, livingentity) isa(setting,spacelocation)
isa(state,situation) isa(oviparous, animal) isa(spacelocation,spatialentity)
isa(process,situation) isa(behavior, property) isa(physicalentity,spatialentity)
isa(temporalentity,entity) isa(humansetting, setting) isa(physicalobject,physicalentity)
isa(spatialentity,entity) isa(bird, existence, wilderness) isa(propertymeasure,informationentity)
isa(informationentity,entity) isa(wilderness, setting) isa(imaginaryspatialentity,spatialentity)
isa(human, primate) isa(farm, humansetting) isa(property,informationentity)
isa(primate, mammal) isa(equinae, mammal) isa(livingentity,physicalentity)

...

shape(X, Y),shape(X,Z), Y
� Z� false
quantity(X, Y), quantity(X,Z), Y
� Z� false
behavior(X, friendly), behavior(X, dangerous)� false
actor(X, ), not isaN(X, action)� false
pw(A,A)� false

Table 3: The generic space concept map and integrity constraints

Frame name Conditions
aframe The blend contains identical structure from input 1
aprojection The blend contains the same concepts of input 1
bframe The blend contains identical structure from input 2
bprojection The blend contains the same concepts of input 2
pw basedexplanation The blend contains a concept that has associated a set of

part-whole relations (i.e. it is explained by a set of these
relations)

transportmeans The blend contains a concept that has associated the set of
features of a generic transport means

purposefulsubpart The blend contains a a concept that has a subpart that has
associated a set of relations that justify its existence
(e.g. purpose, cause-effect)

new ability A concept has an ability relation not existent in any of the
inputs

new creature A concept is a living thing that did not exist (or wasn’t such)
in any of the inputs

new feature A concept has a feature relation not existent in any of the
inputs

Table 4: Frames of the generic space
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Editors’ Introduction

The motivation behind the symposium on “Scientific Methods for the Analysis of Agent-
Environment Interaction” was the desire to finally start with some of the “mopping up”
activities that characterise “normal science” (Kuhn, The Structure of Scientific Revolu-
tions), the attempt “to force nature into the pre-formed and relatively inflexible box that a
paradigm supplies.” The current paradigms underlying autonomous agents research still
seem too weak to support “normal science” sensu Kuhn. When we first identified this as
a problem within the discipline of autonomous agents in general, and autonomous mobile
robotics specifically, we hadn’t realised that this concern was so widely shared within
the community; but the call for papers for the AISB symposium elicited numerous en-
couraging comments and sufficient contributions for a viable meeting, so that the first
symposium (ever?) on scientific methods in mobile robotics went ahead.

Arguably, research in agent-environment interaction hasn’t even reached the stage of
“normal science” yet, because paradigms forming the foundation of our research are still
emerging and formulated in vague terms, theories of agent-environment interaction that
would make testable predictions and thus structure the “mopping up” are still lacking.

We have few precise instruments (such as for instance quantitative descriptions of
agent-environment interaction) at our disposal, and are consequently left to present qual-
itative descriptions of experiments and existence proofs. These are by no means futile
activities, but perhaps the time has come to aim for more rigorous experimental methods
that allow independent replication and verification of experimental results.

The fact that this symposium has happened is very encouraging. Slowly, but inex-
orably the emergence of a new branch of research in behaving agents, namely “scien-
tific methods”, is gathering momentum, and for the first time it was discussed within the
research community what we actually mean by “scientific methods for the analysis of
agent-environment interaction”.

The papers presented at the AISB workshop on Scientific Methods for the Analysis
of Agent-Environment Interaction1covered topics ranging from characterisation of be-
haviour through quantitative descriptions and computer modelling of agents to theoretical
cognitive science, cognitive robotics and computational neuroscience. Two papers — on

1Proc. AISB convention 2003, Aberystwyth, ISBN 1 902956 32 3.
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neuro-robotic simulation of minimally cognitive behaviour to investigate cognitive sci-
entific theories, and on quantitative descriptions of robot-environment interaction using
dynamical systems theory — were selected by an independent jury chaired by the pro-
gramme chairman for inclusion in this special issue of AISBJ. Paper presentations at the
workshopwere augmented by animated and fruitful discussions, resulting in a stimulating
workshop that defined some important research topics for the future, and gave indications
on how these might be addressed.
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Abstract

We present a method to describe the behaviour of a mobile robotquantitatively,
using methods from dynamical systems theory, time series analysis and deterministic
chaos theory.
Experimental results obtained with a Pioneer II mobile robot demonstrate the use
of the method, and show that robot behaviour exhibits deterministic chaos, and is
substantially influenced by the control program executed by the robot, while changes
to the environment have far less influence.

1 Background

1.1 Motivation

Research in mobile robotics to date has, with very few exceptions, been based on trial-
and-error experimentation and the presentation of existence proofs. Task-achieving robot
control programs are obtained through a process of iterative refinement, typically involv-
ing the use of computer models of the robot, the robot itself, and program refinements
based on observations made using the model and the robot. This process is iterated until
the robot’s behaviour resembles the desired behaviour to a sufficient degree of accuracy.
Typically, the results of these iterative refinement processes are valid within a very narrow
band of application scenarios, they constitute “existence proofs”. As such, they demon-
strate that a particular behaviourcanbe achieved, but not, how that particular behaviour
canin generalbe achieved foranyexperimental scenario.

The purpose of this paper is to introduce quantitative measures of robot behaviour, as
components of a theory of robot-environment interaction. Using dynamical systems the-
ory and methods of analysis derived from chaos theory, we investigate quantitatively in
what way the behaviour of a mobile robot changes if a) the robot’s environment is modi-
fied, and b) the robot’s control code is modified. Underlying this research, however, is the
fundamental question: How can the interaction of a mobile robot with its environment be
characterised quantitatively?
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1.2 Robot-Environment Interaction

The behaviour of a mobile robot cannot be discussed in isolation: it is the result of prop-
erties of the robot itself (physical aspects — the “embodiment”), the environment (“situ-
atedness”), and the control program (the “task”) the robot is executing (see figure 1). This
triangle of robot, task and environment constitutes a non-linear system, whose analysis is
the purpose of any theory of robot-environment interaction.

Figure 1: The fundamental triangle of robot-environment interaction.

Rather than speaking solely of a robot’s behaviour, it is therefore necessary to speak
of robot-environment interaction, and the robot’s behaviour resulting thereof.

1.3 The Role of Quantitative Performance Measures

1.3.1 Measurement: The Backbone of Science

Measurement is the backbone of science, and supports

• the precise documentation of experimental setups and experimental results,

• the principled modification of experimental parameters,

• independent verification of experimental results,

• theoretical design of artefacts without experimental development, and

• predictions about the behaviour of the system under investigation.

The experimental scenarios within mobile robotics, usingquantitativeperformance
measures, are manifold and expressed in figure 1. Basically, if any two of the three com-
ponents shown in figure 1 remain unaltered, then the quantitative performance measure
will characterise the third, modified component. This would allow the investigation of, for
instance, i) the effect of modifications of the robot, ii) the influence of the robot control
program on robot behaviour, or iii) the effect of modifications to the environment on the
overall behaviour of the robot.

The purpose of the experiments reported in this paper was to demonstrate how robot-
environment interaction could be characterised quantitatively, and how such quantitative
measures could be used to determine the influence of i) a change in the robot controller,
and ii) a change of environment.

http://www.aisb.org.uk
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1.3.2 Three Theses

The experimental work reported in this paper is based on three theses:

Thesis 1A mobile robot, interacting with its environment, is essentially an
analog computer that “computes”behaviour(the output) from the three in-
putsrobot morphology, environmental characteristicsandexecuted task(see
figure 2).

Figure 2: Robot-environment interaction as analog computation: Behaviour is the result
of analog computation, taking robot morphology, task and environmental properties as
“input”.

Thesis 2The behaviour exhibited by a robot, interacting with its environment
while executing some particular task, is encapsulated, as a first approxima-
tion, in the robot’strajectory.

Thesis 3.One suitable method to describe a robot’s trajectory quantitatively
is to analyse the trajectory taken, using methods of time-series analysis and
dynamical systems theory.

Based on these theses, we analysed the(x, y) components of logged robot trajectories,
using time-series analysis methods from chaos theory.

1.4 Related Work

So far, quantitative measures of robot-environment interaction are not widely used in mo-
bile robotics, and the amount of related work is consequently limited. The most important
references are probably the work by Schöner et al. and Smithers.

(Scḧoner et al., 1995) used dynamical systems theory to investigate robot-environment
interaction, and (Smithers, 1995) discussed the use of quantitative performance measures
as a tool of scientific mobile robotics research.

Regarding the methods of characterisation used, the most important references are
found in the area of time series analysis using chaos theory. Computing Lyapunov expo-
nents, we used Arbarbanel’s [(Abarbanel, 1996)] and Wolf’s et al. [(Wolf et al., 1995)]
methods. We computed correlation dimensions again using Arbarbanel’s method, as well
as the method discussed by Kaplan and Glass [(Kaplan and Glass, 1995)]. Background
reading to the methods applied are (Peitgen et al., 1992) and (Kantz and Schreiber, 1997).
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1.5 Experimental Setup

To investigate the two questions posed in section 1.3.1 — how does a change in robot
control program influence robot behaviour, and what influence does a change of envi-
ronmental conditions have? — we conducted experiments with a Pioneer II autonomous
mobile robot (figure 3), executing a number of different control programs in a number of
different environments.

Figure 3: The Pioneer II mobile robot used.

The robot’s trajectory was logged, using an overhead camera. Every 250 ms the
robot’s x and y-coordinate were recorded. Figure 4 gives an example of the kind of
trajectory obtained by this method, the dataset in that figure contains just over 26000 data
points, recording 109 minutes of robot operation.

Figure 5 shows part of thex andy coordinate of that trajectory — trajectories like
these were used for subsequent computation of Lyapunov exponent and correlation di-
mension (see section 2).

2 Quantitative Measures of Behaviour using
Chaos Theory

2.1 Reconstructing the Attractor

The behaviour of dynamical systems, such as a mobile robot interacting with its envi-
ronment, is characterised by velocity and position along each degree of freedom of the
system — the phase space. Because a direct representation of the phase space of our
robot-environment system is not available to us, the phase space has to be reconstructed
from an observed time series such as the one shown in figure 5.
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Figure 4: Robotic billiard ball (obstacle avoidance) behaviour — (entire trajectory (top)
and 150 data points (bottom)).
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Figure 5:x (top) andy coordinate (bottom) of the data shown in figure 4 (part).

To achieve this, we used the time-lag embedding method (discussed, for instance, in
(Peitgen et al., 1992) or (Kaplan and Glass, 1995, p. 309)), embedding the attractor in
p-dimensional space, using the coordinates given in equation 1.

Dt = [Dt, Dt−h, Dt−2d, . . . , Dt−(p−1)h], (1)

whereDt is thep-dimensional embedding of the attractor at timet, p the embedding
dimension, andh the embedding lag.

As an example, figure 6 shows a three-dimensional phase space reconstruction of the
attractor underlying the robotic billiard ball behaviour shown in figure 4.

2.1.1 Determining Embedding Lag and Embedding Dimension

In order to reconstruct the attractor, using the embedding method given by equation 1, em-
bedding dimensionp and embedding time lagh have to be determined first. To determine
a suitable embedding lag, we used two methods:

1. The autocorrelation method presented in (Kaplan and Glass, 1995, p. 353): ac-
cording to Kaplan and Glass “a good choice for the embedding lag is [that value]
at which the autocorrelation function falls toe−1 ≈ 0.37”. Figure 7 shows the
autocorrelation function for thex-coordinate of the data shown in figure 5, it can
be seen that fort = 31 the autocorrelation has fallen below 0.37. Becauset = 1
represents an embedding lag ofh = 0, we select an embedding lag ofh = 30 to
reconstruct the attractor.

2. The Mutual Information Method: This procedure is associated with non-linear
statistics while the autocorrelation method is based on linear statistics. In essence,
mutual information is analogously a nonlinear autocorrelation function. Mutual
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Figure 6: Phase space reconstruction of robotic billiard ball experiment, using the x coor-
dinate, embedding dimension 3 and an embedding lag of 30.

Information has its origin from the treatment of chaos as a source of informa-
tion [(Gallager, 1968)]. The mutual information essentially measures the degree to
which knowledge of one measurement determines another measurementh seconds
later. (Fraser and Swinney, 1986) argue that one should take the first minimum that
occurs in the mutual information function as the ideal time lag for constructing an
embedded attractor. This minimum in the mutual information function corresponds
to the time separation between two measured values so that there is a minimum
of redundancy of information connecting the two measurements in the time series.
Figure 8 gives the Mutual Information of the x-coordinate data shown in figure 4.
The first minimum of this curve is obviously at a time lag of 30, thereby giving the
same result as the autocorrelation function.

It is known [(Takens, 1981)] that the dynamics of a reconstructed attractor are geo-
metrically identical to the original dynamics (for both continuous and discrete systems),
if the relationshipp = 2ν+ 1 holds (ν is the dimension of the original attractor). In order
to establish a suitable embedding dimensionp to reconstruct the attractor, it is therfore
necessary to determine the dimensionν of the original attractor. One common measure
of the dimension of an attractor is the correlation dimensionν.

In order to determine the correlation dimension, one uses thecorrelation integral
C(r), defined in equation 2.

C(r) =
θ

N(N − 1)
, (2)

whereθ is the number of times that|Di −Dj | < r, i andj are two different times at
which the embeddingD is taken, andr is an arbitrary distance measure, the “correlation
distance”.N(N−1) the maximum number of cases where|Di−Dj | < r is theoretically
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Figure 7: Autocorrelation of the x-coordinate of the data shown in figure 5. For a lag of
h = 30 the autocorrelation has dropped belowe−1.

Figure 8: Mutual information of the x-coordinate of the data shown in figure 5. The first
minimum occurs for a lag ofh = 30.
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Figure 9: Correlation dimension versus correlation distance for the data shown in figure 5,
for various embedding dimensions and various correlation distances.h = 30.

possible (the trivial casei = j is excluded).
The important measure is not the correlation integralC(r) itself, but how this integral

changes with respect tor, i.e. the slope of the curveC(r) versusr. This slope is the
correlation dimensionν.

The mechanism to determine a suitable embedding dimension to reconstruct the at-
tractor is based on these considerations. Obviously, the computation of the correlation
dimension is dependent upon the chosen embedding dimensionp and the correlation dis-
tancer. To compute bothp andν from the same process is an ill-defined problem, and
the goal therefore is to find a range of parametersp andr for which ν is computed iden-
tically (a so-called “scaling region”). In other words, one aims to find a region where the
computation of the correlation dimensionν is not critically dependent upon the choice of
embedding dimensionp and correlation distancer.

To find a scaling region, we plot the correlation dimensionν as a function of correla-
tion distancer for all embedding dimensionsp between 1 and 10 (see (Kaplan and Glass,
1995, page 323)). Figure 9 showsν versusp andr for the x-coordinate shown in figure 5.

Choosing a large correlation distancer is somewhat like looking at an object from
a great distance: it will have dimension zero (Kaplan and Glass, 1995, p. 323). On the
other extreme, choosing too small anr will result in signal noise being amplified, which
is equally undesirable. Figure 9 reveals that forr ≈ 110 the computed correlation dimen-
sion is similar for a large number of embedding dimensions, in other words, increasing
the embedding dimension no longer changes the computed correlation dimension. The
correlation dimension forr = 110 is around 2, figure 10 shows that in factν ≈ 1.9.

This means that an embedding dimension of 5 is a good choice (according to Takens’
theorem). To confirm this finding, we used the ‘false nearest neighbours’ method as well
(Abarbanel, 1996), the results are shown in figure 11 and confirm that indeedp = 5 is a
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Figure 10: Ave Correlation dimension versus embedding dimension for dataset 240601,
for scaling region betweenr = 103 − 127. Embedding lagh = 30. The computed
correlation dimension isν ≈ 1.9.

suitable choice.

Figure 11: Percentage of False Neighbours for the x-coordinate of dataset 240601. Zero
false neighbours occurs at an embedding dimension of5.
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2.2 Characterising the Attractor

Systems that exhibit deterministic chaos are characterised by four properties:

1. They are stationary,

2. they are deterministic,

3. they are aperiodic, and

4. they show sensitivity to initial conditions.

Stationarity and determinism are easily established, the first by ascertaining that the
means and standard deviations of different portions of the signal do not differ significantly
(Kaplan and Glass, 1995, p.314), the latter by demonstrating that the first half of the data
can be used as a predictor for the second half (Kaplan and Glass, 1995, p.324ff). In purely
stochastic signals the best prediction possible is simply the mean of the signal, whereas
in deterministic signals better predictions can be obtained by using parts of the data to
predict other parts. All our data was confirmed to be stationary and deterministic.

Aperiodicity and sensitivity to initial conditions, however, are the truly interesting
determinants for the purpose of this paper, as they supply aquantitativedescription of the
attractor.

2.2.1 Aperiodicity

One main characteristic of a dynamical system exhibiting chaos is that the state variables
never return to their exact previous values: The trajectory in phase space lies on a strange
attractor. There is, however, variation from system to system in how close state variables
return to previous values, and it is therefore desirable to quantify this degree of “proxim-
ity”.

The measure to quantify the degree of aperiodicity is the correlation dimensionν,
which was discussed in detail above. Besides being a quantitative description of the at-
tractor, the correlation dimension indicates whether data is aperiodic or not, and to what
degree: Periodic data has an integer correlation dimension, while chaotic attractors have
a fractal (non-integer) correlation dimension.

2.2.2 Sensitivity to Initial Conditions

Another distinctive characteristic of a chaotic system is its sensitivity to a variation in
the system’s variables: Two trajectories in phase space that started close each other will
diverge from one another as time progresses, the more chaotic the system, the greater the
divergence.

Consider some stateSo of a deterministic dynamical system and its corresponding
location in phase space. As time progresses the state of the system follows a deterministic
trajectory in phase space. Let another stateS1 of the system lie arbitrarily close toSo,
and follow a different trajectory, again fully deterministic. Ifdo is the initial separation of
these two states in phase space at timet = 0, then their separationdt aftert seconds can
be expressed asd = doe

λt.
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Figure 12: Computation of the Lyapunov exponent of the x-coordinate of the data shown
in figure 5, using the method outlined by (Wolf et al., 1995).

λ is known as the Lyapunov exponent. For a m-dimensional phase space,λ will have
m-components. If any one or more of those components are positive, then the trajectories
of nearby states diverge exponentially from each other in phase space and the system
is deemed chaotic. Since any system’s variables of state are subject to uncertainty, a
knowledge of what state the system is in can quickly become unknown if chaos is present.
The larger the positive Lyapunov exponent, the quicker knowledge about the system is
lost. One only knows that the state of the system lies somewhere on one of the trajectories
traced out in phase space, i.e., somewhere on the strange attractor.

The Lyapunov exponent is one of the most useful quantitative measures of chaos,
since it will reflect directly whether the system is indeed chaotic, and will quantify the
degree of that chaos. Also, knowledge of the Lyapunov exponents becomes imperative
for any analysis on prediction of future states.

Determination of the Lyapunov exponents from a time series such as the robot trajec-
tories used in this research or, more importantly, the existence and value of any positive
exponents, has been discussed extensively in the literature [(Wolf et al., 1995; Peitgen
et al., 1992; Kantz and Schreiber, 1997; Abarbanel, 1996; Kaplan and Glass, 1995; Abar-
banel et al., 1993)]. Several academic and commercial software packages have been made
available to compute Lyapunov exponents from time series, for example (Wolf et al.,
1995; Applied Nonlinear Sciences LLC and Randle Inc, 2003; Kantz and Schreiber,
2003). In our analyses we have used the method proposed by (Wolf et al., 1995), as well
as Abarbanel’s commercially available software package (Applied Nonlinear Sciences
LLC and Randle Inc, 2003) to determine the largest Lyapunov exponent.

Figure 12 shows the result of the computation of the Lyapunov exponent for the data
shown in figure 5, using the algorithm described in (Wolf et al., 1995).

It can be seen that the algorithm converges toλ just above 0.3, which indicates that
this data exhibits deterministic chaos.

http://www.aisb.org.uk



Nehmzow and Walker

Figure 13: Wall following behaviour of the Pioneer Robot — entire trajectory (top) and
100 consecutive positions (bottom).

3 Experiments: Analysing Robot-Environment
Interaction

We stated above that robot-environment interaction is governed by the triangle of robot,
task and environment (figure 1). If, therefore, two of the three components remain con-
stant, Lyapunov exponent and correlation dimension will characterise the third component
and its influence on the overall behaviour of the robot.

Of the many experiments we conducted, we would like to discuss two experiments in
this paper:

1. In experiment 1 we kept the environment constant, and altered the robot control
code.

2. In experiment 2, we kept the control code constant, but altered the environment.

In both experiments the same robot was used.

3.1 Changing the Robot Task

In the first experiment, the Pioneer II operated in an empty environment, surrounded by
plasterboard walls. The robot executed two different behaviours: wall following (13000
data points, 54 minutes of operation, see figure 13) and “quasi-billiard-ball” obstacle
avoidance (26000 data points, 109 minutes of operation, see figure 4).

For the wall following behaviour, we computed a correlation dimension ofν ≈ 1.4
and a Lyapunov exponent ofλ ≈ 0.1. For the quasi-billiard ball behaviour noticeably
different values were computed, i.e.ν ≈ 1.9 andλ ≈ 0.3. In other words: The quasi-
billiard ball behaviour exhibited a considerably larger degree of deterministic chaos than
the wall following behaviour.
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Figure 14: Entire trajectory of quasi-billiard ball behaviour in an environment with a
central obstruction (top), and 200 consecutive positions (bottom).

3.2 Changing the Environment

In the second environment, we kept both robot and task constant (using the quasi-billiard
ball behaviour, but changed the environment by introducing a central obstruction to the
arena). The trajectory obtained for that case is shown in figure 14.

Here, both the correlation dimension (ν ≈ 1.7) and the Lyapunov exponent (λ ≈ 0.3)
remained essentially the same to the values obtained when no central obstruction was
present. In other words: The same degree of deterministic chaos was present, irrespective
of whether the central obstruction was in place or not.

4 Conclusion

4.1 Towards a Theory of Robot-Environment Interaction

Mobile robotics research to date is still largely dependent upon trial-and-error develop-
ment, and results often are existence proofs, rather than generalisable, fundamental re-
sults. Furthermore, independent replication and verification of experimental results are
largely unknown in mobile robotics research practice.

One reason for this is the dearth of quantitative measures of behaviour. We have there-
fore investigated the application of dynamical systems theory — specifically deterministic
chaos theory — to the analysis of robot environment interaction.

Using Lyapunov exponent and correlation dimension of the (strange) attractor un-
derlying our Pioneer robot’s behaviour, we found that the robot’s behaviour indeed ex-
hibited deterministic chaos. Moreover, we found that the degree of deterministic chaos
increased noticeably when the robot’s control program was changed from wall following
to quasi-billiard ball obstacle avoidance, while it remained essentially constant when the
environment was changed, but the control program remained the same.

However, we see the main contribution of this paper not in the specific analysis of
our Pioneer II mobile robot, but in presenting a method of analysing robot-environment
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Figure 15: Possible alternative environment to investigate wall following behaviour.

interaction quantitatively. Quantitative descriptions form the backbone of any scientific
theory, and are therefore the first step towards a theory of robot-environment interaction,
that allows the formation of hypotheses, precise reporting and independent verification of
results, and the theoretical design of robot systems.

4.2 Interpretation of Results

The specific interpretation of our experimental results is that in the experimental environ-
ment we have used, the robot control code has far more influence on the behaviour of the
robot than the environment itself. The wall following behaviour exhibits a far lower de-
gree of deterministic chaos than the quasi-billiard ball behaviour, while the quasi-billiard
ball behaviour shows a similar degree of chaos in two different environments.

4.3 Future Work

The obvious extension to the experiments reported here is to conduct the wall following
behaviour in an environment that is different to the one that is shown in figure 13 — for
example an environment similar to the one shown in figure 15.

Our hypothesis is that in such an environment we would obtain a correlation dimen-
sion ofν ≈ 1.5 and a Lyapunov exponent ofλ ≈ 0.1.
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Abstract

Research in embodied cognitive science emphasizes that a close interaction of
brain, body and environment is central to the emergence of cognitive processes. Much
work on embodied artificial intelligence has therefore shifted focus from purely com-
putational modeling to autonomous mobile robotics. Many researchers emphasize the
importance of working with real robots rather than simulations which usually cannot
fully capture the complexities of the physical world. However, from a cognitive sci-
ence point of view, robot simulations nevertheless have an important, complementary
role to play, due to the fact that in many cases they allow for more extensive, system-
atic experimentation as well as for experiments, e.g. with evolving robot morpholo-
gies, that can only be carried out in very limited form on real robots. Furthermore, it
will be argued in this paper, robot simulations are very useful tools in experimenta-
tion with active adaptation of non-trivial environments, an aspect that is still largely
ignored in much embodied artificial intelligence research.

1 Introduction

As several authors have pointed out, mobile robotics, or autonomous agents research in
general, can be viewed from at least two different, though intertwined perspectives: that
of engineering, mostly concerned with the design of artefacts, and that of science, mostly
concerned with the understanding of natural systems. Furthermore, the latter can of course
be broken down according to the different scientific fields that use robots and/or other
autonomous agents as modeling tools, e.g. cognitive science (Pfeifer, 1995; Pfeifer and
Scheier, 1999), neuroscience (Voegtlin and Verschure, 1999; Ruppin, 2002), or the study
of animal behavior (Webb, 2000; Webb, 2001).

While these distinctions appear fairly obvious, they seem to receive surprisingly lit-
tle attention in discussions of methodology in the field(s) of autonomous robotics and
embodied/behavior-oriented AI, where overly general statements such as ”simulations
are useless” or ”Khepera robots are not real robots” or ”existence proofs just don’t do
it” often can be heard. While from an engineering point of view these statements might
very well be more or less correct, they do not necessarily apply equally generally to the
scientific use of autonomous agents as models of natural organisms. Steels, for example,
explains the skepticism towards simulations as follows:
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‘The goal is to build artifacts that are ”really” intelligent, that is, intelligent
in the physical world, not just intelligent in a virtual world. This makes un-
avoidable the construction of robotic agents that must sense the environment
and can physically act upon the environment, particularly if sensorimotor
competences are studied. This is why behavior-oriented AI researchers insist
so strongly on the construction of physical agents ... Performing simulations
of agents ... is, of course, an extremely valuable aid in exploring and testing
out certain mechanisms, the way simulation is heavily used in the design of
airplanes. But a simulation of an airplane should not be confused with the
airplane itself. ’ (Steels, 1994)

Obviously, Steels has a point here, and nobody would seriously question the view that
simulations, however good they are, cannot fully capture the complexities of the physical
world. Hence, simulations might have limited value in robot engineering, and might only
be second choice in the modeling of animal behavior in cases where a real robot can
made to interact with (roughly) the same physical environment as the modeled animal
(Lambrinos et al., 1997; Webb, 2000). However, from a cognitive science point of view,
robot simulations nevertheless have an important, complementary role to play, due to the
fact that in many cases they allow for more extensive, systematic experimentation, which
simply takes less time in simulation, as well as for experiments, e.g. with evolving robot
morphologies, that can only be carried out in very limited form on real robots.

This is particularly important from the perspective of embodied cognitive science
which emphasizes that a close interaction of brain (or more generally, nervous system),
body and environment is central to the emergence of cognitive processes (Chiel and Beer,
1997; Clancey, 1997; Clark, 1997; Clark, 1999; Lakoff and Johnson, 1999; Pfeifer and
Scheier, 1999; Varela et al., 1991). Hence, instead of focusing on one experiment or a few
experiments with a real robot, many questions are more suitably addressed through a large
number of experiments allowing for more variations of agent morphologies, control archi-
tectures and/or environments. Finally, it should be added that in many studies simulated
and physical robot experiments, as also mentioned by Steels above, can play complemen-
tary roles, as for example in the field of evolutionary robotics (Nolfi and Floreano, 1999),
where it is not uncommon to run a large number of experiments in simulation first, and
then transfer the most interesting experiments or their results (e.g. evolved controllers) to
physical robots.

Concerning the role of existence proofs, again we have to distinguish between engi-
neering and scientific robotics. While from an engineering point of view existence proofs
certainly are of limited value (for example, who would want to fly in an air plane that has
been tested successfully exactly once?), from a cognitive science point of view they can
be very valuable in the development of theories. Much connectionist cognitive modeling
research, for example, has been concerned with providing concrete examples of neural
networks exhibiting properties such as systematicity (e.g. Boden and Niklasson, 2000),
which on purely theoretical grounds they had been argued not to be able to exhibit (Fodor
and Pylyshyn, 1988). This is just one example, where existence proofs constrain and
thus aid the development of cognitive-scientific theories. For this type of research robot
simulations are very useful tools in agent-based modeling (Schlesinger and Parisi, 2001),
paying more attention to the interaction of agents and environments than traditional com-
putational cognitive modeling of mostly internal processes.

Much of the cognitive science and AI research in our group (Ziemke and Niklasson,
2003) is concerned with theories and models of situated and embodied cognition, with
a focus on the interaction and co-adaptation of ’internal’ mechanisms (such as thought,
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memory, internal “representations”, etc.), sensorimotor/bodily mechanisms, and external
”scaffolds”, such as artifacts, other agents, or sociocultural structures. Theoretical work
on the mechanisms underlying human situated and social cognition (Susi and Ziemke,
2001; Susi et al., 2003; Lindblom and Ziemke, 2003) is complemented by experimental
work such as neuro-robotic studies of what Beer referred to as ”minimally cognitive be-
havior” (Beer, 1996), i.e. ”the simplest behavior that raises cognitive interesting issues”,
and the detailed analysis of the mechanisms underlying such behavior (Biro and Ziemke,
1998; Ziemke, 1999; Ziemke, 2000; Ziemke and Thieme, 2002).

Using two example neuro-robotic simulation studies, of delayed response tasks and
predator-prey co-evolution respectively, the following sections exemplify how we com-
bine qualitative and quantitative analyses, based on a detailed correlation of simulated
data (e.g. sensory inputs, neural activation values, morphological parameters, behavior,
etc.) at each point in time. This allows us to analyze in detail, at different time scales, the
interaction between often minimal internal mechanisms and the environmental or behav-
ioral dynamics they exploit.

2 Example 1: Delayed Response Tasks

Delayed response tasks are a standard paradigm in experimental psychology studies of
short-term memory, and they have also been used in a number of autonomous agents
experiments (Ulbricht, 1996; Jakobi, 1997; Rylatt et al., 1998; Rylatt and Czarnecki,
2000; Linaker and Jacobsson, 2002). Using a simulated version (Michel, 1996) of the
Khepera robot (Mondada et al., 1994), we carried out a large number of experiments
with four different neural control architectures, trained by evolutionary algorithms, in six
different types of delayed response tasks (Thieme and Ziemke, 2002; Ziemke and Thieme,
2002). Figure 1 illustrates the simulated robot and one of the tasks, in which the agent has
to navigate a maze in which light sources (or, to be exact, the sides on which they appear,
i.e. to the left or the right of the corridor) indicate the correct turning directions in the
junctions that it later encounters on its way to the goal. In the particular multiple delayed
response task illustrated here, the most complex in our series of experiments, the first light
source indicates the correct turning direction in the first junction, whereas the second one
indicates the wrong direction in the second junction. That means, the robot has to deal
with two overlapping delays of different lengths and stimuli with varying meaning.

What we found in our experiments was that, irrespective of which neural control archi-
tecture they were using, the robots tended to evolve to maximize their use of the environ-
ment as an external “scaffold” to guide their behavior reliably (despite the usual random
variations of exact starting positions, orientations, light source locations, etc.). In fact,
even purely reactive feed-forward networks without internal short-term memory turned
out to solve the simpler delayed response tasks (not the one illustrated here though), e.g.
by following particular walls, thus using their own position in the environment as some
form of “external memory” (Thieme and Ziemke, 2002).

Figure 2 illustrates how a robot, using a particular recurrent neural control architecture
(the only one solving all task reliably) that realizes short-term memory by dynamic mod-
ulation of otherwise reactive sensorimotor mappings (Ziemke and Thieme, 2002) solves
a particular instantiation of the task. It reactively follows the first corridor up to the first
junction, using weight matrix (a), and then switches to another reactive behavior, left-
hand wall following, realized by weight matrix (b), that takes the robot all the way to
the goal. The (type of) data illustrated in figure 2 allows us to analyze in detail how in
this case, and many others, the robots solve their tasks through maximal exploitation of
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Figure 1: Top: Example of a multiple delayed response task. The agent has to find its
way from the starting position (indicated by the arrow) to the goal (white circle) using the
information provided by the light sources. In this particular case the first light source (the
side on which it appears) indicates the correct turning direction in the first junction, the
second light source indicates the wrong direction in the second junction. Bottom: The
simulated Khepera robot used in the delayed response experiments, equipped with eight
distance/proximity sensors (D), two ambient light sensors (L), and two motors (M).
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environmental regularities and the dynamics of their own behavior (Ziemke and Thieme,
2002).

Figure 2: Top: Sensory/neural activation values at each point in time during a success-
ful robot trajectory. For abbreviations see Figure 1. Bottom: Sensorimotor connection
weight matrices, mapping sensory inputs to motor outputs (white: positive weights; black:
negative weights; size reflects weight magnitude). Matrix (a), used up to the first junc-
tion, generates simple corridor-following behavior, whereas matrix (b), to which the agent
switches in the first junction, generates left-hand wall-following behavior. Adapted from
Ziemke and Thieme (2002), for details see the original paper.

As in the vast majority of similar experiments in the field, the robots here had to
adapt themselves (in this case their neural control mechanisms) to their environments.
Although humans, as well as other animals, instead of adapting themselves in many cases
can choose to adapt their environments to their own needs (Kirsh, 1995), that alterna-
tive has been studied relatively little in robot experiments, except for robotic studies of
stigmergy (Beckers et al., 1994; Bonabeau, 1999), the simplest form of environment adap-
tation as used, for example, by social insects. In future work we therefore aim to address
more complex forms of active adaptation of the environment, both by individual agents,
e.g. by moving objects, and in the course of ’cultural evolution’ of, e.g., artefacts and en-
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vironmental structures. For the reasons discussed in the introductory section, we believe
that robot simulations can be a powerful tool in such studies, and a more natural starting
point than physical robot experiments.

3 Example 2: Predator-Prey Co-Evoluation

In a series of twenty-one experiments integrating competitive co-evolution (CCE) of neu-
ral robot controllers with ’co-evolution’ of robot morphologies and control systems we
aimed to extend previous work on CCE (Nolfi and Floreano, 1999) by systematically in-
vestigating the tradeoffs and interdependencies between morphological parameters and
behavioral strategies through a series of predator-prey experiments in which increasingly
many aspects are subject to self-organization (Buason and Ziemke, 2003b; Buason and
Ziemke, 2003a; Buason and Ziemke, 2003c).

Again, these experiments were carried out using a modified Khepera simulator (Carls-
son and Ziemke, 2001). Figure 3 (top) illustrates the basic setup with one predator and
one prey robot, both equipped with short-range infrared sensors and simple long-range
cameras. Neural control systems (standard recurrent networks) were evolved together
with a number of parameters of the robots’ respective visual morphologies (view range,
view angle, camera direction). In these experiments, the predator’s task was simply to
catch (make contact with) the prey as quickly as possible, whereas the prey obviously had
to avoid being caught as long as possible.

Figure 3 also illustrates the results of one particular experiment in which task-dependent
visual morphologies were evolved in the competing robot species (with the maximum
speed being constrained by the view angle, i.e. the larger the visual field, the slower the
robots) (Buason and Ziemke, 2003a). As the graphs illustrate, the predators tended to
have a relatively long view range and narrow view angle, whereas prey (right) tended to
minimize their view angle, irrespective of view range, i.e. they ’preferred’ speed over
vision.

This experiment illustrates one particular case of a close coupling between morphol-
ogy, sensorimotor processes and behavioral strategies (the latter is not illustrated here)
and their mutual adaptation, i.e. the type of interdependencies that are considered crucial
by embodied cognitive theories and, for obvious reasons, are difficult to investigate in
physical robot experiments.

Compared to the previous experiment, this one is more interesting in the sense that
at least part of the environment, i.e. the competitor, is no longer static and passive, but
actually co-adapting in a competitive fashion. As before, however, the rest of the envi-
ronment is completely static and of even more limited complexity. In current and future
work we are therefore investigating the role that a more complex and dynamic environ-
ment can play in such co-adaptive scenarios, (a) as a constraint for both species and (b)
as a resource that the robots/species might be able to adapt to their own needs.

4 Summary and Conclusion

We have in this paper argued that robot simulations, despite their limitations from an
engineering point of view, have an important role to play in the scientific modeling of
adaptive behavior and embodied cognitive processes. This has been illustrated with two
examples of robot simulation studies of ’minimally cognitive behavior’ that allowed for
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Figure 3: Top: Environment (left) and basic morphology of simulated predator and prey
robots (right). Middle: Average view ranges (bold lines) and view angles (thin lines)
for predator (left) and prey (right) over 250 generations. Bottom: An illustration of the
species’ ’preferences’ and their respective fitness (diamond grey level). Predators (left)
tend to have a long view range with a relatively narrow view angle, whereas prey (right)
tend to minimize their view angle, irrespective of view angle, i.e. they ’prefer’ speed over
vision. Adapted from Buason and Ziemke (2003a), for details see the original paper.
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extensive experimentation with systematic variations of task complexities, neural control
systems, morphological parameters, environments and other constraints.

Although some of these experiments, in particular in the delayed response task study,
certainly also could have been carried out with physical robots under more realistic cir-
cumstances, this would have been much more time-consuming and more difficult to an-
alyze. In the second case, of predator-prey co-evolution, obviously large parts of the
experiments could hardly be carried on physical robots with current technology. Further-
more, we have argued that future experiments should pay more attention to the role of
the environment, in particular to their (more or less) active adaptation through individual
agents or ’cultural evolution’. Again, robot simulations seem a natural starting point for
this.

In sum, it is certainly true that robot simulations have a number of more or less obvious
limitations. For example, it is not at all clear to what degree the results of the discussed
experiments could be transferred or generalized to physical robots. It is, however, also true
that simulations of the type(s) discussed here can be powerful tools for the realization and
analysis for experiments in the study of agent-environment interaction, and thus they can
aid the further development of theories in embodied cognitive science.
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