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Abstract

In this paper, we describe a model of physical computation that allows us to under-
stand how embodied intelligent agents can simultaneously be considered to be objects
operating under the laws of nature (or physics) and information processing devices.
Using this type of analysis has two major advantages. First, it allows us to make
concrete those issues relating to the relative merits of using analogue values or sym-
bolic representations such as numbers: our analysis allows this longstanding point of
contention in artificial intelligence to be transformed from a question of philosophy
to one of physics. Second, it gives us a framework that should eventually allow us
to produce design rules that will enable our artificially-intelligent (physical) agents to
make better use of influences from the physical environment. As should be expected,
for well-defined tasks, the results of this analysis are identical to Shannon’s informa-
tion theory. However, for large, multi-functional systems with ill-defined roles, the
new model provides a novel way of thinking about the complementarity of hardware
and software.

1 Introduction

In this paper, we take a fresh look at what intelligence is, where it fundamentally comes
from, and how this affects the way we think about building artificially-intelligent agents.
Note that this model is exclusively directed at the goal of understanding embodied intel-
ligence and, particularly, intelligence that is based in the natural or real (as opposed to
mathematical) world. In this sense, though it applies to any real machine that can perform
mathematics, the model is least useful for those whose goal is mathematical manipulation
rather than the processing of signals from the outside world in order to produce intelligent
actions.

This research has come about through a desire to bridge a gap between two exist-
ing fields. First is theoretical work that proves that analogue computation, in the form
of recurrent analogue neural networks (RANN), can be super-Turing in nature (Siegel-
mann, 1999). Siegelmann demonstrated that, if allowed to take continuous rather than
discrete weights, recurrent neural networks could perform functions that are theoretically
impossible using Turing machines. The problemwith thismodel is that it is entirely math-
ematical: in it, there is no interface to the real (physical) world, so assumptions she made
(about continuity, for instance, or noise) have no clear way of being validated. Likewise,
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studies that look at how noise can degrade the abilities of such machines (Maass, 1997)
do so from a theoretical rather than physical perspective.

The link between the theoretical and the physical is important because the brain looks
very much like a RANN. If Siegelmann’s conclusions were applied to the brain, then
Roger Penrose’s (1989) assertion that human-like intelligence could not be performed on
Turing machines could be correct (though for the wrong reasons).

It is important, at this point, to distance the arguments made in this paper from the
debate Penrose famously started concerning physics, artificial intelligence and computa-
tionalism. Using Gödelian arguments (Gödel, 1931), he pointed out that certain proposi-
tions are undecidable in Turing machines (as they are in all such mathematical systems)
based on the axioms inherent in those systems. He also claimed that microtubules in
the brain (Penrose, 1997) had quantum-mechanical properties that were both non-Turing-
computable and potentially important to intelligence. These claims have generally been
disputed from both computational and physical points of view. First, it has been argued
that the specific Gödelian limitations are not, in fact, in conflict with human intellectual
abilities (e.g. Laforte et al., 1998). Second, the timescales related to quantum deco-
herence in microtubules have been shown to be so different from those relevant to the
brain that classical (rather than quantum) neural behaviour has been proposed as the more
appropriate model (Tegmark, 2000).

Instead, this paper is more concerned with issues such as those succinctly outlined
by Dreyfus in the 1970s (Dreyfus, 1972). In his book What computers still can’t do: A
critique of artificial reason, Dreyfus explains why the formalization of a physical pro-
cess is not the same as the process itself (Chapter 5). With this paper, we take a more
engineering-based approach to his philosophical questions. We ask, if the behaviour of
physical systems cannot be replicated using Turing machines, how can they be replicated?

Back to the technological gap that we are trying to bridge. On one side we have the
work done in theoretical computer science (by researchers like Siegelmann), while on the
other we have the field of neuromorphic engineering: where engineers try to structure
their machines, often including the hardware, in a brain-like way. Carver Mead’s analy-
sis of the power-efficiency of analogue computation (e.g. Mead, 1989), particularly for
neural networks, has been extremely important in this regard. He demonstrated that by ex-
ploiting, rather than fighting against, the intrinsic physics of electronics, analogue circuits
could be orders of magnitude more efficient than their digital counterparts. Leon Chua’s
cellular neural network (e.g. Chua, 1998), a device that is digitally programmable but can
perform complicated nonlinear operations during the analogue transient—the “switching”
time to go from one stable state to the next—is an apt demonstration of Mead’s point. Not
only is the device far lower-power than the equivalent image-processor, but it is also up to
orders of magnitudes faster (depending on the algorithms implemented). Nabil Farhat’s
optical implementations of biological neural models (e.g. Farhat, 1997 and Farhat and
Wen, 1995) not only show the utility of analogue networks, but their potential complexity.
From conceptually very simple optical and/or analogue circuits, he has obtained behavior
that—within a single system—varies between periodic,m-periodic (repetition of a pattern
of m beats), psuedo-periodic (qualitatively periodic, but not strictly so quantitatively), and
chaotic (with a fractal set as an attractor) output.

Though these researchers never made any explicit claim that their systems were com-
putationally superior, Siegelmann’s model suggested they might be. Thus, it seemed log-
ical to find an approach that would bridge the gap between the two. To date, Siegelmann
and others (e.g. Blum et al., 1989) have worked with notions of super-Turing or hyper-
computation: forms of computation that can perform functions theoretically impossible
with conventional Turing machines, such as functions based on non-computable algebras
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or that are non-recursive. In particular, they have concentrated on computation over the
reals. This theoretical approach, though fruitful, does not tell us what is possible with real
machines. Our new model, on the other hand, was designed with the following intentions:
a) that it should have a clear interface with physics; b) that it have a clear application to
artificial intelligence in the simulation-of-behaviour sense (as opposed to the solution-of-
arbitrary-mathematical-problems sense); and, c) that it allow for an understanding of the
differences and relationships among various different types of machine.

Note that, though the model presented here does all of the above—including providing
an interface with physics (in that it can be interrogated using what we know of the physical
laws)—physical interrogation is beyond the scope of this paper (but is at an advanced
stage).

The paper is structured as follows. In Section 2 we discuss the Turing machine and
why, whatever its comparative computational power, it is an inadequate model for the
embodied intelligence task. In Section 3 we introduce the basis of the new model, show-
ing some important variations on how it can work in Section 4. The basics of how the
model can be used as an interface between the computational and physical paradigms
are explained in Section 5, with a discussion of the model—with particular reference to
neuromorphic engineering—in Section 6. Finally, in section 7, we will describe current
avenues of this research that are beyond the scope of this paper, and future avenues that
may be productive.

2 The Turing machine as a model of intelligence

When Turing wrote his original paper describing the thought experiment that became
known as the Turing machine, he described it as a kind of automatic version of doing
what people do when they manipulate numbers and symbols on paper in an intelligent
way (Turing, 1936). The machine had an arbitrarily long tape from which it could read as
many symbols (from a finite set) as needed, means to read and manipulate those symbols
(the read/write head), a finite set of states where it could store information about what
had gone before, and a set of rules that governed what it should do in the event of various
combinations of input and state.

Critically, the input and output are explicitly constrained to be symbolic. Thus, the
machine is unable to interact directly with the environment: it must always receive a set
of symbolic inputs from sensors, which have to perform some type of transformation into
the relevant symbol space (such as digitisation), and must produce its output as a set of
control symbols that can then be used to affect the real world.

This fact is critical, because it means that there is no way that a Turing machine can
perform any kind of natural behavioural intelligence—where it responds to some external
force or signal by moving or changing state—it can only perform the intelligent manipu-
lation of symbols. It is, therefore, not just wrong but essentiallymeaningless to speculate
on the ability of Turing machines to be able to perform human-like intelligence tasks. In
any real machine, but particularly those designed to interact with the environment, the
outer shell (body, sensors, actuators) must be, by definition, entirely analogue. This is
because the signals that they deal with (from the outside world) are analogous to the real
physical values in question (or, more precisely, they are the real values). For the machine
to work, at some stage after this outer-shell has been breached, an analogue-to-digital
(a/d) conversion step must take place, thus allowing the digital computer to do whatever
processing is required. The same, in reverse, is true for actuation.

Given this, every robot (and, to a lesser extent, every computer) is a hybrid machine:
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part analogue, part digital. In the following sections, a crucial question in the design
process of any machine, but particularly a machine intended to be tightly-coupled to its
environment, is highlighted: the location of the boundary between these two parts. In
particular, we believe the virtual interaction variation of the model gives some insight
into this question though, as yet, it falls short of providing specific design rules.

Note that the above argument is not anti-computationalist in the traditional sense.
Rather, the intention here is to point out that computationalism as it is normally discussed
is moot. Since all robots must be hybrid machines (and, therefore, not necessarily con-
strained by the well-known limits of Turing computation), setting up the Turing machine
as the only route to artificial intelligence is, in effect, setting up a straw man. From a
theoretical perspective the question is whether the hybrid machine has the computational
power to do the job. From an engineering perspective, the question is how such a machine
can be designed to do the job most efficiently.

3 The physical computational model

Here we present a mathematical model of a potentially-intelligent, embodied, adaptive,
physical system: one that includes mechanisms that can be interpreted as allowing learn-
ing via experience of the environment and action based on that experience. In Section 5
we consider the elements that are affected by physical constraints (i.e. the constraints of
the real physical world as opposed to specific engineering constraints), but for now we
simply lay out the mathematical model.

A system is here defined as an identifiable collection of connected elements. A system
is said to be embodied if it occupies a definable volume and has a collective contiguous
boundary. The matter, space and energy outside the boundaries of the embodied system
are collectively called the environment.

A sensor is any part of the system that can be changed by physical influences from
the environment. These, which include any or all forces, fields, energy, matter, etc. that
may be impinging on the system, are collectively called the sensor input (� � � ), even
where no explicitly-defined sensors exist. Though represented by a single variable, the
sensor input may in fact consist of many different sensor modalities (each influenced by
a different type of force or energy).

Resulting external physical changes to the embodied system, (emission of light, move-
ment of a limb, etc.), are collectively called the actuator output (� � �) of this function.
An actuator is any part of the system that can change the environment. A coupled pair of
sensor input and actuator output may be described as a behaviour.

Let us define� as the intelligence function performed by the embodied system, map-
ping the input to the output. Where � is time, and Æ� � � but arbitrarily small (in other
words, time may be continuous—whether it is or not is a physical question that will be
addressed in a future paper), we have:

������� ���Æ�

It is important to note here that, for our purposes,� � can only be considered to cause
an immediate actuator output (change that may effect the environment) as a result of an
immediate actuator input (physical influence from the environment). It cannot be con-
sidered to implement any kind of plan over time, like commanding robot arm to move
through a particular trajectory. Instead, the plan is carried out through� itself changing
with time. � is altered by any internal changes to the system caused by the input (flow
of a current inside a wire, charging of a capacitor, shifting of weight, etc.). The learning
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function, ��, determines how � changes with time: ������ ���Æ�� � ���Æ�. This
process is called adaptation.

This is a subtle, but important, difference in the way we think about how machines
work. Were the intelligence able to issue a command to be followed by an actuator over
time, some controller would have to be at work in the actuator to make sure that the
command was carried out. This is fine, but in our system this controller is considered to
be part of the intelligence function.

Now, let �� be the output from the environment to the system, and � � be the system’s
input to the environment: the impact of the system’s behaviour on its surroundings. Where
� is the environment reaction functionmapping the input to the output:

����
�

��� ����Æ�

There is also an environment learning function,��, equivalent to��, that determines
how � changes with time.

4 Categories of physical interaction

4.1 Real interaction

The interaction between � and� may be considered to fall into one of two classes. Real
interaction is a pure physical process in which embodied intelligence co-evolves with its
environment: such that the two functions are dependent only on initial conditions, their
governing functions (�� and ��), their interactions with each other, and time. Thus, any
adaptation of the embodied system is in direct response to its environment and nothing
else (and vice versa). See Figure 1. This type of interaction requires that � � �� and
� � ��. Consequently, the domains/ranges of the two systems must be the same.

In the real-interaction scenario, as well as being a function,�may also be considered
a description of the system’s instantaneous physical state at the arrival of the input stim-
ulus. It is important to note that the state is here defined as not only specific parameters
that can be measured instantaneously (speed, position, etc.), but also all associated rates
of change. For example, two balls—one at rest and the other falling under gravity—would
not be considered to have the same intelligence function even if they were identical in all
other ways. Instantaneously they might look the same, but with associated rates of change
taken into account, they are clearly not.

This should also highlight how intelligence in the physical sense is different from our
idea of intelligence in computers normally. With conventional computers, we consider
intelligence functions on subsets of stimuli and represented as abstractions. This makes
them implementation independent: an adder can be built in many different ways with
many different materials, but intelligence is required to determine what this intelligence
function actually is and to interpret—which we can define as weeding out the relevent
from the irrelevent—the results. With physical computation, the function and implemen-
tation are one and the same.

In the real-interaction case, implemented in the physical world, various constraints
may be imposed. These include the following:

� The combined values of certain physical parameters of the two systems may be
conserved (e.g. conservation of energy).
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Figure 1: Here an object is evolving under physics. � is the function that the object
performs on the inputs (�) it gets from the outside world, which determine how it will
impact the outside world (�). Likewise for �, which is the function performed by the
outside world on the input from the object (� �), producing the output (� �). These two
functions are carried out in parallel. Though labelled differently, � and � � must be the
same for real interaction to take place, and likewise for � and ��: thus the domain of each
function must be the same as the range of the other.

http://www.aisb.org.uk



Bains

� Changing functions and variables in the model may be constrained to evolve in
certain ways: i.e. they may be constrained to vary continuously or to have particular
allowed values.

� Since the only driving mechanism available is the function collectively known as
the laws of physics (as they exist rather than as we understand them), ��, the con-
straint that �� � �� � �� may be imposed.

In Section 5, we will consider some potential specific constraints of the laws of
physics.

4.2 Virtual interaction

The second class of interaction to be considered is virtual interaction, which may be me-
diated by symbolic representation and communication (thus allowing the domains/ranges
to be mismatched). Here, we define a symbol using Turing’s 1936 definition: a letter or
sign taken from a finite alphabet to allow distinguishability. We define communication
using Shannon’s communication theory: the sending of a message to a receiver via a
(potentially) noisy channel (Shannon and Weaver, 1949). See Figure 2.
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Figure 2: In deterministic virtual interaction, real interaction is also taking place. How-
ever, the output from the environment is not the same as what is being input to the function
that we deem intelligent: the virtual machine with function�. For this to be the case, we
model the interaction as including a complementary function (� �), that filters the input
from the outside world, feeds it into the virtual machine, processes the remainder, and
combines the virtual machine result with its own to produce the final output. The vir-
tual machine and its function are normally analyzed by computer scientists, whereas the
complementary functions are the province of electrical, electronic, mechanical, and other
engineers.

If we define � as the virtual intelligence function, analagous to� but for the virtual
case, some major constraints are lifted, with important consequences. First, � is no longer
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constrained to be equal to �� (likewise for � and ��). What this means is that the inputs
and outputs may not be considered in their totality, but selectively (entire modalities may
simply be excluded by � and �, or specific ranges within specific modalities may be
excluded). This can be considered in two ways. From a design perspective, it means that
behaviours (sensor-actuator pairs) may be considered identical even if the global inputs
and outputs (the inputs and outputs taking all possible modalities into account) are very
different.

For example, when the letter A is typed into an laptop computer, how hard the key is
pressed (within a range) is irrelevant. Soft A and hard A are considered, within the virtual
environment, to be identical inputs. Likewise, the brightness of the screen is irrelevant to
the meaning of the letter A when it appears before the user: whether or not our laptop
is in power-saving mode does not affect our perception of the output here. So we have
virtual sensor-actuator pairs (letter is typed, appears on screen) that can be very different
physically but are considered to be the same behaviour virtually. In this scenario, there
are fewer sensor modalities available to the embodied intelligence than there are actual
modalities of physical influence coming from the environment.

As a result of this, the actual output from the environment may be very different
from the input received by the virtual embodied intelligence. They may be very different
because they are not allowed to affect the working of the virtual machine at all (just as
how hard a key is pressed is information that is not available to the computing machine
within the laptop). Or they may be represented very differently. For instance, temperature,
which may be continuously varying in the environment, may be represented as a number
with just one decimal place in the machine. Mathematically, in either of these cases, the
domain and range of the two functions may be different.

In order for all of the above to be true, a new function must be defined: the comple-
mentary function���������� that ensures that, together with the intelligence function, the
entire system obeys the laws of physics. The existence of this function can be considered
to be a test of whether a system is virtual or not.

Another important constraint that is lifted is that � and � need not have any kind of
conserved relationship, and �� need not be the same as ��. Because only range/modality
subsets of �� and �� attach to � and ��, the intelligence and adaptation functions are
partially de-coupled from the environment. With the right machine and choice of sensor
modalities, arbitrary choice of� and �� may be made.

It is important to note that this arbitrary choice depends on the selection of inputs/outputs,
since a real interaction (with adaptation function ��) must be taking place at the same
time as this virtual interaction. Thus, it is only because of� � and ��� that such freedom
is allowed for� and ��.

4.3 Non-deterministic interaction

The argument so far assumes (as is generally assumed in all branches of physics, except
quantum mechanics, which will be discussed in more detail later) that the physical evo-
lution taking place is both a causal and a deterministic process. In this context, causal
means that the state of the two systems � and � at a given time � is the direct and only
cause of its state at time � � Æ�. In other words:

�������� ����Æ�����Æ��

Deterministic means that the state at time � � Æ� can be predicted from that at �.
Non-deterministic means that it cannot. Note that there is an ambiguity inherent in this
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definition. It is not stated by whom or by what this prediction can be made, nor in what
circumstances. It may be unpredictable in principle because the process has some kind
of random element, one not following any principle or order, embedded in it. Or it may
be non-deterministic in practice: because insufficient information is available to make a
reliable prediction.

It may seem that an interaction may not be both causal and non-deterministic. How-
ever, from the perspective of conventional quantum mechanics, the two are compatible
in the following sense: physics (in the form of the wave equation) causes a particular
set of outcomes to be possible, but which of these outcomes actually takes place is not
determinable in advance. This is the definition of a stochastic process. The word random,
left undefined in the last paragraph, can be more clearly understood in this context. If the
process of “choosing” between different possible outcomes is not determined by physics,
then it must be determined by something outside or above physics: meta-physics.

Two examples of in-practice non-determinism may make clearer the distinctions be-
tween this and the in-principle variety described above. First, a chaotic system might be
practically non-deterministic to an observer if it were impossible to get infinitely precise
information about it: however, there may be no principle that says that such information
could not be made available. Second, a quantum-mechanical system might be consid-
ered unpredictable by scientists because the required properties and variables to make the
prediction cannot be measured without changing them.

As the physical model presented in this thesis is not based on the manipulation of
information or prediction based on a model, the in-practice scenario does not qualify as
non-deterministic. Consequently, the model described in this section only applies if the
in-principle variety of non-determinism is true. This distinction becomes important when
the issue of how the mathematical model relates to real physics is considered.

4.3.1 Model of stochastic interactions

Mathematically, a causal, deterministic process can be represented by a one-to-one map-
ping from the input to the output: for a given set of conditions, only one outcome is pos-
sible. Both the real and virtual interactions described in the previous sections are based
on this type of mapping. A stochastic or non-deterministic interaction, on the other hand,
must be represented as a one-to-may mapping. In this case the output (�� or �) cannot be
represented by a single value. Instead it must be taken from a set. In principle, this set
may have any cardinality (with the possible exception of being empty): it may be finite,
denumerable or non-denumerable. In Figure 3, for simplicity, the set of possibilities is
kept to just two.

As can be seen in the figure, there is not (by definition) a pre-determined timeline.
Specifically, knowing the state of one system at one time no longer uniquely implies the
state of the other at that time, nor its own state any time later. This can be understood
by following the various allowed evolutionary pathways for the two systems. As time
elapses, the number of states that each system may have evolved into increases. This may
be considered a type of divergence, in that it directly prevents tight coupling between the
two systems.

To allow the mathematical model to take this type of evolution into account, a new
random variable, �, can be defined that chooses which of the possible physical outcomes
occurs: this variable is entirely independent of �, �, � �, and ��.

Such a scenario may be considered to be a type of double virtual interaction. Functions
� and� are constrained (by definition) to only act on input from each other (�, �, � �, and
��). And yet, somehow, there is a function in existence that operates on �. As our model
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Figure 3: In a non-deterministic universe, more than one outcome may be possible for a
given physical event (the non-deterministic laws of physics are used here: ���

�
). Two

are shown here for simplicity. Thus, the coupling relationship between the two systems
may change over time depending on which course (path) events take. Since the choosing
of the path is metaphysical (not produced by object or environment), such an interaction
cannot be considered real as it has been defined here.

is defined, the only way this is possible is if � and � are mapped to virtual functions
�
� and �� and their complementary functions, ��� and ���, are considered to keep

track of � (see Figure 4). Here, ����� � �, and ������ �� � ��. Crucially, � is
metaphysical here: it’s value is determined by some process that is not entirely dependent
on, or related to, any of the physical laws or variables.

Given this analysis, only deterministic physical processes can be considered to fall
into the class of real interactions as defined above.
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Figure 4: Instead, the non-deterministic case can be considered to be a kind of double
virtual interaction, where the virtual machine is that obeying the deterministic physical
laws that produce a set of possible outcomes, and the complementary function chooses
from this set based on some metaphysical random variable, �.
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4.4 Real versus virtual interaction

To summarize this section, it is worth going back to our laptop example and comparing the
real and virtual interaction analyses. In the former case, the machine may be considered
just like any object. It is something that moves under gravity, has resistance, gives off
heat, makes noise when touched etc.. It can be used as a paper-weight or a doorstop. All
of these uses of the machine are covered. In the virtual analysis, only the tapping of the
keys and the pixels on the screen are considered to be part of the machine’s intelligence
function: �. All other aspects of its behaviour, which combine to give it the global
function�, are included in� �.

Thus, for simulated robots, artificial life, and other applications where the interaction
is purely symbolic and has no real meaning (apart from for display purposes) outside
the machine, � is all that’s important: the complementary function is irrelevant (as it is
normally treated in computer science). For real robots in a real world, however, � is
critical. Thus,�� must be taken into account when designing and building them.

5 The interface with physics

As described so far, the model is entirely general, in that we have not assigned the various
functions or variables as belonging to any specific sets. It is only with this assignment
that the representational and computational power of the model can be determined and
(as required) compared to other computational models (such as the Turing machine). In
order to provide the bridge between the theoretical and the physical, these assignments
must come from our understanding of the physical laws. The relevant correspondences
are outlined below.

The first important physical question that must be answered in order to allow compar-
ison between various models has already been alluded to in Section 4: this is the issue
of whether physics is entirely deterministic, or whether it is not. As discussed earlier,
this information allows us to know whether real interaction actually exists, and therefore
which model should be used.

Second, �, ��, �, ��, are place holders for the multidimensional space that includes
all the physical state variables, and � is the placeholder for time. From a mathematical
perspective we can ask two very simple questions about these variables that allow us to
begin to understand their representational power. Are their sets finite or infinite? If infi-
nite, do they have cardinality �� or ��? These questions are crucial, because the answer
determines whether or not the physical computation is less powerful, more powerful, or
as powerful as (for instance) the Turing machine.

For instance, if it turns out that� can map a continuous variable onto a continuous
variable (�� � � ��� � ��) then this is the equivalent of a machine with an infinite symbol
set and an infinite rule book: this is, specifically, not allowed with a Turing machine and
represents the super-Turing case (it potentially contains all the mappings available to the
Turing machine as well as others). For �� � � ��� � ��, and �� � � ��� � ���� (a
finite set), the machine would be Turing-equivalent, or sub-Turing, respectively.

With some rearrangement, the questions about cardinality can be turned into physical
ones and then fed back into the model. First, are the multi-dimensional physical state
variables and time—or, more simply, is space-time—continuous, discrete (i.e. there is
a minimum Æ� or Æ�), or arbitrarily discrete (i.e. there is no specific minimum Æ� or
Æ� but the variable is still not defined as continuous). Second, are the physical systems
in question bounded or unbounded? For this latter question, in the case of the embod-
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ied intelligence, the answer is given in the definition: it is bounded. In the case of the
environment, however, the question is still not decided among physicists.

We will leave this discussion here, as a full explanation of the relationships between
the various physical and mathematical options is beyond the scope of this paper. However,
we hope that it is, at least, clear that an interface between the theoretical and physical
paradigms does exist here.

6 Discussion

In the brief discussion of comparisons above, a practical matter is not made explicit. The
question we are asking is whether or not� may be replaced with a Turing machine. In
fact, as discussed in Section 2, we know it cannot be, because there is no mechanism
for getting information in and out of the machine from the real world. Thus, it must be
the complementary function, ��, that allows us to feed our Turing machines (or digital
computers) with the symbols they need, and to use the resulting symbols to produce an
output. Thus, we can explicitly say that any symbolic interaction is, by definition, a virtual
interaction, and the complementary function is crucial to its success. What, in practice, is
�

�? It is the machine’s analogue sensors and actuators and enablers: mechanics, optics,
hydraulics, heat-sinks, etc..

The same thing might also be said of our bodies, which not only provides our con-
scious mind with sensors and actuators, but also the un/subconscious mind which is not
normally considered in AI. Other bodily systems—the limbic system, the spinal chord,
even basic organs like the heart and lungs—all contribute to our behaviour to a greater or
lesser extent. Using the virtual interaction model, we can see that what many people con-
sider to be artificial intelligence, particularly purely software-based approaches, concerns
only� and not� �.

What is interesting here is not only that this� � exists, but that it may be as important
as � for some applications.

This fact is increasingly being recognised by roboticists. For instance Williamson,
who worked on Rodney Brooks “Cog” project, was charged with engineering the robot’s
limbs in such a way as to ease both the information-processing and energy burden they
represented for the machine as a whole. A mechanical engineer by training, he designed
Cog’s arms and wrists so that they were compliant (Williamson, 1995) and could re-
spond mechanically to changes in the environment rather than purely through conven-
tional sensor-processor-actuator loops. The result was not only a more mechanically-
efficient and natural-lookingmovement, but considerably lower computational overheads.
Others interested in exploiting a balance between information processing and physical (in
this case, mechanical) computation include Lungarella and Berthouze (2002), who have
looked at how temporarily restricting the degrees of freedom of a mechanical system can
improve a robot’s ability to learn how to manipulate it, and Pfeiffer who gives numerous
examples of the importance of mechanical design to machine intelligence (Pfeifer, 2002).

This balance may also be said to be the concern of the neuromorphic engineering
field pioneered by Mead. This work often goes much further, blurring the interaction
boundaries. Projects like Harrison and Koch’s all-analogue fly vision system and robot
controller (Harrison and Koch, 2000), Hasslacher and Tilden’s analogue walking robots
based on the nervous systems of small animals (Hasslacher and Tilden, 1995), or Lewis’s
bipedal robots based on central pattern generators (Lewis et al., 2001), all have in common
that there cannot be said to be a clear line between sensor, processor, and actuator. Indeed,
there cannot be said to be a clear line between software and hardware. Whether their
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systems can also be considered to perform real interaction or not is complex (and will
not be considered here), but their machines certainly seem to address the complementary
function more fully.

Finally, one could also argue that full understanding of real interaction, virtual inter-
action, and the complementary function might go some way to addressing Brooks’ recent
question about the relationship between matter and life (Brooks, 2001). In essence, we
may just need to go further to try to understand a whole brain and body (both� and� �)
in order to understand how a creature works, rather than considering mind alone.

7 Current and future work

From the description above, several projects suggest themselves: some of which are cur-
rently underway and others that might usefully be done in future. The first of these,
currently in progress, is the analysis of the model under constraints as suggested by cur-
rent (and often contradictory) interpretations of the physical laws, and comparisons with
the Turing model given the options that arise from these. In particular, issues related to
quantum mechanics are problematic. Whether the universe may be considered discrete or
continuous is not a trivial problem: there is no consensus here. Likewise, there are still
many who believe that the current consensus in quantum-mechanics—of which it may
be said that the theory is sound, but the philosophical underpinnings not—will eventually
have to change. We are currently developing a map of these ideas so that, as the physics
develops, its impact on the question of intelligence can be seen clearly. This work is
currently being written up.

We are also trying to identify those applications of intelligence where a mismatch
in representational power may be important. Clearly, information-theoretic approaches
are appropriate in many engineering scenarios: today’s engineering is based on such ap-
proaches. We are currently drawing up a simple specification, in terms of the types of
functions that may be important and the type of stimuli that may need to be represented,
that should allow engineers to understand where a more physical approach may be war-
ranted. This work is also at the draft stage.

As a longer term goal, we would like to be able to help the engineer who, using the
test outlined about, has determined that the conventional design approach is inappropriate
for the task in hand. This involves the development of a set of design rules that would
determine how analogue to digital conversion layers are placed in a given system: i.e. how
to correctly balance the analogue and digital processes in order to maximise efficiency for
a given task. Note: in some cases it might be expected that no conversion is the best
option, thus suggesting an analogue-only system.

Acknowledgements

The author would like to acknowledge: her supervisor at the Open University, Jeffrey
Johnson; the help of the reviewers; ChristofKoch of the California Institute of Technology
for important discussions and reading the manuscript; her colleagues at Imperial College;
and numerous other scientists and engineers who have contributed to this work through
inspiration, discussion, and debate.

http://www.aisb.org.uk



Bains

References

Blum, L., Shub, M., and Smale, S. (1989). On a theory of computation over the real
numbers; NP completeness, recursive functions and universal machines. Bulletin of the
American Mathematical Society, 21(1), 1–46.

Brooks, R. (2001). The relationship between matter and life. Nature, 409, 409–411.

Chua, L. (1998). CNN: A Paradigm for Complexity. World Scientific.

Dreyfus, H. (1972). What computers still can’t do: A critique of artificial reason. MIT
Press.

Farhat, N. (1997). Cognitive networks for ATR: The roles of synchronicity, bifurcation
and chaos. Technical report, Office of Naval Research. Final Report.

Farhat, N. and Wen, Z. (1995). Large-scale photonic neural networks with biology-like
processing elements: the role of electron trapping materials. Proceedings of the SPIE,
2565.
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Abstract

One of the main questions concerning learning in Multi-Agent Systems is: ”(How)
can agents benefit from mutual interaction during the learning process?”. This paper
describes the study of an interactive advice-exchange mechanism as a possible way
to improve agents’ learning performance. The advice-exchange technique, discussed
here, uses supervised learning (backpropagation), where reinforcement is not directly
coming from the environment but is based on advice given by peers with better per-
formance score (higher confidence), to enhance the performance of a heterogeneous
group of Learning Agents (LAs). The LAs are facing similar problems, in an environ-
ment where only reinforcement information is available. Each LA applies a different,
well known, learning technique: Random Walk, Simulated Annealing, Evolution-
ary Algorithms and Q-Learning. The problem used for evaluation is a simplified
traffic-control simulation. In the following text the reader can find a description of
the traffic simulation and Learning Agents (focused on the advice-exchange mecha-
nism), a discussion of the first results obtained and suggested techniques to overcome
the problems that have been observed. Initial results indicate that advice-exchange
can improve learning speed, although ”bad advice” and/or blind reliance can disturb
the learning performance. The use of supervised learning to incorporate advice given
from non-expert peers using different learning algorithms, in problems where no su-
pervision information is available, is, to the best of the authors’ knowledge, a new
concept in the area of Multi-Agent Systems Learning.

1 Introduction

1.1 Framework
This work aims at contributing to answer the question: “(How) can agents benefit from
mutual interaction during the learning process, in order to achieve better individual and
overall system performances?”. This question has been deemed a “challenging issue”
by several authors in recently published work (Sen, 1996; Weiss and Dillenbourg, 1999;
Kazakov and Kudenko, 2001; Mataric, 2001).

In the pursuit of an answer to this question, the objects of study are the interactions
between the Learning Agents (hereafter referred to as agents for the sake of simplicity)
and the effects these interactions have on individual and global learning processes. In-
teractions that affect the learning process can take several forms in Multi-Agent Systems
(MAS). These forms range from the indirect effects of other agents’ actions (whether
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they are cooperative or competitive), to direct communication of complex knowledge
structures, as well as cooperative negotiation of a search policy or solution.

The most promising way in which cooperative learning agents can benefit from inter-
action seems to be by exchanging (or sharing) information regarding the learning process
itself. As observed by Tan (1993) agents can exchange information regarding several as-
pects of the learning process: a) the state of the environment, b) episodes (state, action,
reward triplets), or c) internal parameters and policies.

Exchanging environment states can be seen as a form of shared exploration. Sharing
this information may require a large amount of communication, although the use of a
selective policy for the exchange of information may reduce this cost. This type of inter-
action may be seen as if each agent has extra sets of sensors spread out in the environment,
being able to have a more complete view of its external state. This larger view of the state
space may require either pre-acquired knowledge on how to interpret this information and
integrate it with its own view of the environment’s state, or simply be considered as extra
input providing a wider range of information about the state. In the limit case, where all
agents have access to information regarding the state sensed by all their peers, each agent
could be seen as a classical Machine Learning (ML) system with distributed sensors if
we consider other agents’ actions as part of the environment. One interesting difference,
though, is the fact that other agents sensors are not under the control of the learning agent
and the perspective they provide on the world may be biased by the needs of the owner of
the sensor.

Episode exchange requires that the agents are (or have been) facing similar problems,
requiring similar solutions and may also lead to large amounts of communication if there
is no criteria regulating the exchange of information. In the limit case, where all agents
share all the episodes, this process can also be seen as a single learning system, and
produce very little new knowledge. In fact, the exchange of too much data could lead all
the agents to follow the same path through the search space, wasting valuable exploration
resources.

Sharing internal parameters is another way in which agents can benefit from the
knowledge obtained by their peers. Again, in the limit, this can be seen as the use of
a single learning agent if communication is unrestricted. This type of information ex-
change requires that agents have similar internal structures, so that they can easily map
their peers’ internal parameters into their own, or that they share a complex domain on-
tology.

As can be seen in the above paragraphs the question is not only: “what type of in-
formation to exchange?” , but also “when to exchange information?” and “how much
information to exchange?”.

When considering human cooperative learning in a team, a common method to im-
prove one’s skills is to ask for advice at critical times, or request a demonstration of a
solution to a particular problem from someone who is reputed to have better skills in
the subject. This is what we have attempted to translate into the realm of Multi-Agent
Systems Learning (MASL).

1.2 Rationale and summarized description
This paper reports experiments in which agents selectively share episodes by requesting
advice for given situations to other agents whose score is, currently, better than their own
in solving a particular problem. Considering the discussion of the previous section, this
option seemed the most promising for the following reasons: a) Sharing episodes does
not put heavy restrictions on the heterogeneity of the underlying learning algorithms,
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as sharing of parameters does; b) Having different algorithms solving similar problems
may lead to different forms of exploration of the same search space, thus increasing the
probability of finding a good solution; c) It is more informative and less dependent on
pre-coded knowledge than the exchange of environment’s states.

Experiments were conducted with a group of agents embedded in a simplified simu-
lation of a traffic control problem to test the advantages and problems of advice-exchange
during learning. Each individual agent uses a standard version of a well-known, sub-
symbolic, learning algorithm (Random Walk, Evolutionary Algorithms, Simulated An-
nealing, and Q-Learning; see section 3.2.1 for details on these algorithms). Agents are
heterogeneous (i.e., each applies a different learning mechanism, unknown to others). The
information exchanged amongst agents is: current state (as seen by the advisee agent);
best response that can be provided to that state (by the advisor agent); present and best
scores, broadcasted at the end of each training stage (epoch). The problem chosen to test
the use of advice-exchange has, as most problems studied in MASL, the following char-
acteristics: a) Analytical computation of the optimal actions is intractable; b) The only
information available to evaluate learning is a measure of the quality of the present state
of the system; c) The same action executed by a given agent may have different conse-
quences at different times, even if the system is (as far as the agent is allowed to know) in
the same state; d) The agent has only a partial view of the problem’s state.

The simplified traffic control problem chosen for these experiments requires that each
agent learn to control the traffic-lights in one intersection under variable traffic conditions.
Each intersection has four incoming, and four outgoing, lanes. One agent controls the four
traffic lights necessary to discipline traffic in one intersection. In the experiments reported
here, the crossings controlled by each of the agents are not connected. The learning pa-
rameters of each agent are adapted using two different methods: a reinforcement-based
algorithm, using a quality measure that is directly supplied by the environment, and su-
pervised learning using the advice given by peers as the desired response. Notice that
the term “reinforcement-based” is used to mean “based on a scalar quality/utility feed-
back”, as opposed to supervised learning which requires a desired response as feedback.
The common usage of the term “reinforcement learning”, that refers to variations of tem-
poral difference methods (Sutton and Barto, 1987), is a subclass of reinforcement-based
algorithms, as are, for instance, most flavours of Evolutionary Algorithms.

2 Related Work
The advantages and drawbacks of sharing information and using external teachers in vari-
ants of Q-Learning (Watkins and Dayan, 1992) had some important contributions in the
early 90’s. To situate the work presented below the remainder of this section will provide
a review of the related work.

Whitehead (1991) reports on the usage of two cooperative learning mechanisms:
Learning with an External Critic (LEC) and Learning By Watching (LBW). The first,
(LEC), is based on the use of an external automated critic, while the second (LBW),
learns vicariously by watching other agent’s behaviour (which is equivalent to sharing se-
ries of: state, action, quality triplets). This work proves that the complexity of the search
mechanisms of both LEC and LBW is inferior to that of standard Q-Learning for an im-
portant class of state-spaces. Experiments reported in (Whitehead and Ballard, 1991)
support these conclusions.

Lin (1992) uses a human teacher to improve the performance of two variants of Q-
Learning. This work reports that the “advantages of teaching should become more rele-

http://www.aisb.org.uk



On Learning by Exchanging Advice

vant as the learning task gets more difficult”, (Lin, 1992, section 6.4, page 315). Results
presented show that teaching does improve learning performance in the harder task tested
(a variant of the maze problem), although it seems to have no effect on the performance
on the easier task (an easier variant of the same maze problem).

The main reference on related work is (Tan, 1993). Tan addressed the problem of ex-
changing information amongst Q-Learning agents during the learning process. This work
reports the results of sharing several types of information amongst several (Q-Learning)
agents in the predator-prey problem. Experiments were conducted in which agents shared
policies, episodes, and sensation (state). Although the experiments use solely Q-Learning
in the predator-prey domain, the author believes that: “conclusions can be applied to co-
operation among autonomous learning agents in general”, (Tan, 1993, section 7, par 1).
Conclusions point out that “a) additional sensation from another agent is beneficial if it
can be used efficiently, b) sharing learned policies or episodes among agents speeds up
learning at the cost of communication, and c) for joint tasks, agents engaging in partner-
ship can significantly outperform independent agents, although they may learn slowly in
the beginning”, (Tan, 1993, in abstract). The results presented in that paper also appear
to point to the conclusion that sharing episodes with peers is beneficial and can lead to a
performance similar to that obtained by sharing policies. Sharing episodes volunteered by
an expert agent leads to the best scores in the presented tests, significantly outperforming
all other agents in the experiments.

After these first works several variants of information sharing Q-Learners appeared
reporting good results in the mixture of some form of teaching and reinforcement learning.
The following paragraphs make a brief review of the recent work in this area.

Clouse (1996) uses an automatic expert trainer to give the agent actions to perform,
thus reducing the exploration time.

Mataric (1996) reports on the use of localized communication to share sensory data
and reward as a way to overcome hidden state and credit assignment problems in groups
of agents. The experiments conducted in two robot problems, (block pushing and forag-
ing) show improvements in performance on both cases. Later work by the same author,
Mataric (2001) reports several good results using human teaching and learning by imita-
tion in robot tasks.

Brafman and Tennemholtz (1996) use an expert agent to teach a student agent in a
version of the “prisoner’s dilemma”. The agents implement variations of Q-Learning.

Maclin and Shavlik (1997) use human advice, encoded in rules, which are acquired
in a programming language that was specially designed for this purpose. These rules are
inserted in a Knowledge Based Neural Network (KBANN) used in Q-Learning to estimate
the quality of a given action.

Berenji and Vengerov (2000) report analytical and experimental results concerning the
cooperation of Q-Learning agents by sharing quality values amongst them. Experiments
were conducted in two abstract problems. Results point out that limitations to coopera-
tive learning described in (Whitehead, 1991) can be surpassed successfully under certain
circumstances, leading to better results than the theoretical predictions foresaw.

Price and Boutilier (2000) use implicit imitation to accelerate reinforcement learning.
The quality of the actions of each agent contains an extra term with information about the
“mentor’s” state-transition matrix. The “student” agent is induced into trying the actions
that are more often chosen by the mentor.

Simultaneous uses of Evolutionary Algorithms (Holland, 1975; Koza, 1992) and Back-
propagation (Rumelhart et al., 1986) are relatively common in Machine Learning (ML)
literature, although in most cases Evolutionary Algorithms are used to select the topol-
ogy or learning parameters, and not to update weights. Some examples can be found in
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(Salustowicz, 1995) and (Yao, 1999). There are also reports on the successful use of Evo-
lutionary Algorithms and Backpropagation simultaneously for weight adaptation (Topchy
et al., 1996; Ku and Mak, 1997; Ehardh et al., 1998). Most of the problems in which a
mixture of Evolutionary Algorithms and Backpropagation is used are supervised learning
problems, i.e., problems for which the desired response of the system is known in advance
(not the case of the problem studied in this paper).

Castillo et al. (1998) obtained good results in several standard ML problems using
Simulated Annealing and Backpropagation, in a similar way to that which is applied in
this work. Again, this was used as an add-on to supervised learning to solve a problem
for which there is a well-known desired response.

The use of learning techniques for the control of traffic-lights can be found in (Gold-
man and Rosenschein, 1995; Thorpe, 1997; Brockfeld et al., 2001).

3 Experimental Setup

This section will describe the internal details of the traffic simulation, the learning mech-
anisms and the advice-exchange technique.

3.1 The Traffic Simulator

The traffic simulator environment is composed of lanes, lane-segments, traffic-lights (and
the corresponding controlling agents), and cars.

Cars are “well behaved”, in the sense that they: a) Can only move forward; b) Do not
cross yellow or red-lights; c) Move at a constant speed; d) Do not crash into other cars.

Cars are inserted at the beginning of each lane, whenever that space is empty, with a
probability that varies in time. The time-unit used throughout this description is one turn.
One turn corresponds to a period where each object in the system is allowed to perform
one action and all the necessary calculations for it. Each lane has three lane-segments:
incoming (before the crossing, where cars are inserted), crossing and outgoing. Each
local scenario consists of four lanes, each with a different movement direction and one
crossing (the lanes in a local scenario will be referred as North, South, East and West, for
the remainder of this description). In the experiments reported here the local scenarios are
not connected, i.e., each lane has only one crossing and one traffic light. Cars are inserted
in its incoming lane-segment and removed when they reach the extremity of its outgoing
lane-segment, after having passed the crossing.

At the beginning of each green-yellow-red cycle, the agents observe the state of en-
vironment for their local scenario and decide on the percentage of green-time ( ��� ) to at-
tribute to the North and South lanes (the percentage of time attributed to the East and West
lanes is automatically set to the remaining time. Yellow-time is fixed in each experiment
and lies in the interval �
	����	���� turns).

Two types of description of the environment’s state are used, the first is realistic in the
sense that it is technically achievable to collect that type of data in a real situation and it
is actually used by traffic controllers today. The second, although it may be unfeasible
in today’s traffic monitoring systems, was considered to have relevant information for
the learning process. In the first type of state representation, the state, at a given time, is
composed by four scalar values, where each component represents the ratio of the number
of incoming vehicles in a given lane relative to the total number of incoming vehicles in
all lanes. This state representation will be referred as count state representation.
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The second type of environment state has the same information as the one described
above plus four scalar values, each of which represents the lifetime (number of turns since
creation) of the incoming vehicle that is closest to the traffic-light. To keep inputs within
the interval [0,1], this value was cut-off at a maximum lifetime (lifemax), and divided by
the same value. The value of lifemax was chosen to be 3 to 10 times the number of turns
a car takes to reach the crossing at average speed, depending on the difficulty of each
particular scenario, which is mainly dependent on the parameters used for car generation.
This state representation will be referred as count-time state representation.

The state representations described above are similar to the ones that were reported to
have produced some of the best results in the experiments conducted by Thorpe (1997)
for the same type of problem (learning to control traffic-lights at an intersection).

The normalization of the inputs to fit the � ���	�� interval was necessary, even at the cost
of loss of information, because using percentages for the first four elements of the state
space allows a substantial reduction of the number of possible states, as described below
when the implementation of Q-Learning is discussed.

The quality of service of each traffic-light controller ( � ), was initially calculated as a
linear decreasing function of the average time cars used to cross the scenario ( ����� ). This
measure did not provide enough differentiation of “good” and “bad” environment states,
thus a second function was introduced to emphasize the difference in quality between
these two types of environment states. A comparative view of both functions can be seen
in figure 1, the former in continuous line the latter in squares. The second function was
created specifically to suit this particular scenario and different parameterizations were
used in several trials. The shape of the function however was maintained in all trials, with
a steep decrease at a given point to differentiate clearly between “good” and “bad” states.

The car generation parameters in traffic simulator proved difficult to tune. Slight
changes led to simulations that were either too difficult (no heuristic nor any learned
strategy were able to prevent major traffic jams), or to problems in which both simple
heuristics and learned strategies were able to keep a normal traffic flow with very few
learning steps.

The traffic simulator was coded in C++, with a Java graphical interface. Agents are
not independent processes, at this stage, they are merely C++ objects that are given a
turn to execute their actions in round-robin. On the one hand, this choice eliminates
the “noise” of asynchronous communication and synchronization of parallel threads, on
the other hand, lighter agents that perform simple but coarse learning techniques (like
Random Walk) are being slowed down by the more computationally intensive learning
algorithms (like Q-Learning).

Although this was not an issue, the simulation runs faster than real-time, even when all
agents are performing learning steps. Simulations ran (usually) for 1600 epochs, where
each epoch consists of 50 green-yellow-red cycles, each consisting of 100 turns in which,
on average, approximately 150 cars were moved and checked for collisions. Each sim-
ulation, with five disconnected crossings (i.e., four parallel learning algorithms and one
heuristic agent), took 4 to 5 hours to run in a Pentium IV at 1.5 GHz. To generate a set of
comparable data, each scenario must be run twice: with and without advice-exchange.

3.2 Learning Agents

This section describes the learning algorithms used by each of the agents involved in the
experiments, as well as the heuristic used for the fixed strategy agent.

http://www.aisb.org.uk



Nunes and Oliveira

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Q

tci

Linear Quality
Enhanced Quality

Figure 1: Two functions for the evaluation of traffic quality (Q) based on the average time
of life of the incoming cars ( ��� � ).

3.2.1 Stand-alone agents

The stand-alone versions of the learning agents are used to provide results with which
the performance of advice-exchanging agents could be compared. The stand-alone agents
implement four classical learning algorithms: Random Walk (RW), Simulated Anneal-
ing (SA), Evolutionary Algorithms (EA) and Q-Learning (QL). A fifth agent was imple-
mented (HEU) using a fixed heuristic policy.

As the objective of these experiments was not to solve this problem in the most effi-
cient way, but to evaluate advice-exchange for problems that have characteristics similar
to the ones stated above for the traffic-simulation problem, the algorithms were not cho-
sen or fine-tuned to produce the best possible results for traffic control. The choice of
algorithms and their parameters was guided by the goal of comparing the performance of
a heterogeneous group of learning agents, using classical learning strategies, in a non-
deterministic, non-supervised, partially-observable problem, with and without advice-
exchange.

All agents, except QL and HEU, adapt the weights of a small, one hidden layer, neural
network. Experiments were conducted with several topologies, but the results discussed
below refer to fully connected networks of 4x4x1, when using count state representation,
and 8x4x1, when using count-time state representation. The weights of these networks
were initialised randomly with values in the range ������������������ . The hidden layer is com-
posed of sigmoids whose output varies in ��� 	!�	"� , while the outer layer sigmoids’ output
is in the range �#���	"� . The output will be the percentage of green-time ( ��� ) for the North-
South lane in the next green-yellow-red cycle.

The Random Walk (RW) algorithm simply disturbs the current values of the weights
of the neural network by adding a random value in the range �
��$%&$!� , where $ is the maxi-
mum disturbance, which will be updated after a given number of epochs, ( ')( ), according
to $ �+*-,/.10 $ � , with �32 0 24	 , until it reaches a minimum value, ( $�5 ��6 ). An epoch
consists of ' green-red-yellow cycles. At the end of an epoch, the new set of parame-
ters is kept if the average quality of service in the controlled crossing during that epoch
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is better than the best average quality achieved so far. The values used for the parame-
ters of this algorithm in the experiments discussed here were in the following intervals:
$879� ����������;:��<&$=5 ��6>. �?� �?	! 0>. �?� @"@�&' . �<�?A')(B7C� D�E:�� . These values apply also
for the decay of disturbance limits in the following descriptions of SA and EA. When
referring to the intervals in which values were chosen, it is meant that in different experi-
ments several combinations of parameter values were tested but the initial value for these
parameters was always in the mentioned range.

Simulated Annealing (SA), (Kirkpatrick et al., 1983), works in a similar way to Ran-
dom Walk, but it may accept the new parameters even if the quality has diminished. New
parameters are accepted if a uniformly generated random number FG7H� ��I	=� , is smaller
than

FKJMLN�AO . (-P!Q?R�S;TVUW  (1)

where X is a temperature parameter that is decreased during training in the same way as $
in RW and Y[Z is the difference between the best average quality achieved so far and the
average quality of the last epoch.

Evolutionary Algorithms (EA), (Holland, 1975; Koza, 1992), were implemented in a
similar way to the one described in (Glickman and Sycara, 1999), which is reported to
have been successful in learning to navigate in a difficult variation of the maze problem
by updating the weights of a small Recurrent Artificial Neural Network. This implemen-
tation relies almost totally in the mutation of the weights, in a way similar to the one
used for the disturbance of weights described for RW and SA. Each set of parameters
(specimen), which comprises all the weights of a neural network of the appropriate size
for the state representation being used, is evaluated during one epoch. After the whole
population is evaluated, the best ' specimens are chosen for mutation and recombination.
An elitist strategy is used by keeping the best \ specimens untouched for the next gen-
eration. The remainder of the population is built as follows: the first ] are mutated, the
remaining specimens ( ^ ) are created from pairs of the selected specimens, by choosing
randomly from each of them entire layers of neural network weights. The values used for
the parameters of this algorithm in the experiments discussed here were in the following
intervals: '_73� :�I	��`�!a\M73� D�E:��<&]b7c��	���ad!�`��&^e7_��d����� . The size of the population was
in � d<���D!�<� .

Q-Learning (QL), (Watkins and Dayan, 1992), uses a lookup table with an entry for
each state-action pair in which the expected utility �8Lgf!�J�O is saved. �8LNf"&J�O represents
the expected utility of doing action J when the environment is in state f . Utility is updated
in the usual way, i.e.,

�8Lhf"&J�O . �8Lhf"&J�O)ikj/LN^licm-� 5lnEo�Lgf�p+O&Oq (2)

where f p is the state after performing action J , j is the learning rate, m the discount factor
and � 5lnEolLgf p O is given by

� 5lnEolLhf�O .Grts`u L��8Lhf"�J�OAOq (3)

for all possible actions J when the system is in state f .
The values of j (learning rate), in the different experiments, were in the interval

� �?� ��&�?��:�� . The learning rate is updated after a given number of epochs, ( ')( ), accord-
ing to j-�+*-, .v0 jw� , with �[2 0 2x	 , until it reaches a minimum value (which in this case
was 0.012). In the experiments discussed here ')( . � . Parameter m (discount) was fixed
in each experiment. Different values for m were tested within the interval � �?� y?&�?� z<� . The
choice of action J , given that the system is in state f , was done with probability F{LNJq| f�O
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that is given by a Boltzman distribution,

F{LhJ}| f�O . (q~ S;��� �AUW� �N�!� � (
~%� ��� ���#�W (4)

where X is a temperature parameter, whose initial value was in the interval � ��� D�����;:�� and
was decayed in a similar way to the one described for j and ��� is the set of all actions
available from state f . Since the state of the environment is a real-valued vector, a partition
of the space in a square lattice is required to map environment states (continuous) to
internal (discrete) states. The decision of which is the state of the environment at a given
time is made by calculating the euclidean distance between the continuous valued world
state and each of the discrete state representations and selecting the state with minimum
distance. For the count state representation this partition consists in states composed
of quadruples of the form: L#�),`&�%�<&�%�"A�%��O , for which �q,MiG�K��iv�%��iv�%� . 	!� � , and
� � 7���������+	!�����d�I�+�+������ @�I	"� ��� . This reduction of the state space, compared to the use
of all possible quadruples with elements in ���?� �?&���+	!�����d�����+�
� , is possible given that the
representation of the environment is composed of the percentages of vehicles in each lane
relative to the number of vehicles in all lanes, thus being restricted to quadruples for which
the sum of all elements is 	"� � . For the count-time state representation the internal state is
of the form: L#� , A� � A� � &� � A�%�"A�K�<&�%�"A�%��O , where the first four parameters are generated
in the same fashion as in the previous case but with a coarser granularity and, the last four
elements, are selected combinations of values in ���?� �?&�?� d"��&�?� ��&�?��:!��I	"� ��� . The number
of states for the first and second case is, respectively, 286 and 1225.

Actions, i.e., green-time for the North and South lanes, are also considered as discrete
values starting from zero, up to the maximum green time allowed, and differing by 0.05
steps.

The heuristic agent (HEU) gives a response that is calculated in different ways, de-
pending on the state representation. The percentage of green-time is proportional to the
number of cars in the North-South lanes, relative to the total number of cars for the count
state representation, and in a similar way accounting for the lifetime values for the first
car in each track for the count-time state representation.

3.2.2 Advice-exchange mechanism

The main expectation, when advice-exchange was chosen, was that using advice from
the more knowledgeable agents in the system would improve the learning performances
of all agents. Since supervision is a more efficient training method than reinforcement,
(at the expense of needing more information) then, when no supervision information is
available it seems reasonable to use advice as supervision. Better yet, if agents have
different learning skills, which produce different types of progress through the search-
space, they may be able to avoid that others get stuck in local minima by exchanging
advice. It is unlikely that all agents are stuck in the same local minima and the exchange
of information regarding the appropriate answers to some environment states could force
others to seek better solutions.

The process of advice-exchange is conducted in a different way in the agents that use
a neural network as activation function and in the Q-Learning agent. The heuristic agent
does not participate in the experiments concerning advice-exchange. Advice-exchange is
prohibited in the first 2 to 10 epochs of training, depending on the experiments, to avoid
random advice being exchanged and to allow some time for the agents to announce a
credible best average quality value.
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1. Agent � : receive the best average quality ( \EZ�� ) from all
other agents (���. � ). Quality for Agent � is ��Z � .� : get state f for evaluation.
J=^�� ]�J=�?�l��\EZI��� , for all agents (���. � ).
4. Agent � : if ��Z � 2 $ rts`u �g\EZ � � :

a. Agent � : send agent ¡ the current state f and request advice.
b. Agent ¡ : switch to best parameters and run state f

to produce its best guess at the adequate response ( ��� ).
c. Agent ¡ : return ��� to Agent � .
d. Agent � : process advice ( �=� ).

5. Agent � : run state f and produce response �=� p .

Table 1: Steps of the advice-exchange sequence for an advisee agent ( � ) and an advisor
agent ( ¡ ).

All agents broadcast their best result (i.e., best average quality measured during one
epoch) at the beginning of each epoch. At the beginning of each green-yellow-red cycle,
agent � (the advisee) evaluates its current average quality ( �IZ � ) since the beginning of the
present epoch. This quality is compared with the best average quality ( \EZ � ), for all agents
� . Let ]�\EZ`¢ .£rts`u �g\�Z���� , for all agents �c�. � . If ��Z � 2¤${]�\EZ<¢ where $ is a discount
factor (usually 0.8), then agent � will request advice from agent ¡ (the advisor) who as
advertised the best average quality. The request for advice is sent having as parameter the
current state of the environment as seen by agent � . The advisor switches his working pa-
rameters (neural network weights in most cases) to the set of parameters that was used in
the epoch where the best average quality was achieved and runs the state communicated
by the advisee producing its best guess at what would be the appropriate response to this
state. This response (the advised percentage of green time for the north and south lanes)
is communicated back to the advisee. In the case where advisees are RW, SA and EA
agents, the communicated result is used as desired response for on-line backpropagation
(Rumelhart et al., 1986) applied to the weights of the neural-network. In some exper-
iments an adaptive learning rate backpropagation algorithm (Silva and Almeida, 1990)
was used but results were not significantly different. The values for the main backpropa-
gation parameters used in the experiments discussed here were in the following intervals:
learning rate 73� �?� �"��	!���� �"�`� , momentum 7B� ��� D�����;:�� .

When the Q-Learning agent is the advisor, switching to best parameters corresponds
simply to selecting the action with best quality. In the case where the Q-Learning agent
is the advisee, the action that is closest to the given advice (recall that actions are discrete
values in this case) is rewarded in a similar way to that described in (2). Since in this case
the state of the system after action J is unknown, the value of � 5lnEo L�f p O is replaced by a
weighted average of the utilities of all the possible following states when executing action
J at state f :

� 5lnEolLhJK�f�O . ¥��¦§�"¨ �g�
F{Lhf p | JKaf�O?� 5lnEolLhf p O (5)

where F{Lhf p | JK�f�O is the probability of a transition to state f p given that action J is executed
at state f and it is calculated based on previous experience, as the ratio between the number
of transitions ( 'q� ��¦ n � ) to state f p when performing action J at the current state, f , relative
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to the total number of transitions from current state by action J , i.e.,

F{Lhf p | JK�f�O . 'q� � ¦ n �� � 'q��� n � &�©7«ª)� n  (6)

where ª¬� n is the set of states reachable from state f by action J . This type of adaptation
of the state utility was proposed in (Sutton, 1992). After updating the internal parameters
with the advised information, the advisee agent gives the appropriate response to the
system following the normal procedure for each particular algorithm.

4 Experimental Results

Before the discussion of the experimental results, let us put forward a few brief remarks
concerning the simulation and experiments. The type of problem delt with is a difficult
topic for simulation. Several works have been done in this area, and the simplifications
made in this scenario were, in great measure, inspired by previous works mentioned in
section 2.

Quite frequently the car-generation parameters created problems that tended to be
either too easy or too hard, and, in the first experiments, only marginal differences could
be observed in the quality measure during training. The most interesting experiments
conducted were the cases where lanes had quite different behaviours from one another,
however, there seems to be a fine line between hard solvable problems and, apparently,
insoluble tasks in which no learning strategy, nor heuristic, could reach reasonable values
of quality.

The interpretation of results has also raised some problems. The fact that agents
are running online, and most of them are based on random disturbance, added to the
stochastic nature of the environment, produces very “noisy” quality evaluations. The
results presented here focus mainly on the analysis of the evolution of the best quality
achieved up the present moment of training. Other measures also give us an insight on
the process, but, at the present moment, and given the space limitations, this seemed to be
the one that could better illustrate the main observations made during experiments.

The above-mentioned stochastic nature of the problem, and the large simulation times,
also forced a compromise in the choice of parameters for car generation. Although a
greater variety of behaviours could be achieved with other type of functions, whose peri-
ods span over a larger time-frame, this would require that each training epoch would be
much longer, so that a comparison between values of different epochs would be fair.

One last remark concerning the discussion of results that will follow. The amount
data necessary for a sound statistical comparison and evaluation of this technique is still
being gathered. The preliminary results discussed here, produced in a series of 30 full
trials, give us an insight on the problems and possible advantages of advice-exchange
during learning, but data is still not sufficient for a detailed evaluation of the advantages
and drawbacks of this technique. The above mentioned trials were run under different
conditions, either in the parameters of car-generation, lane-size and car speeds, or in the
parameters of the algorithms themselves.

Before starting experiments, some results were expected, namely:
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Figure 2: Detail of the initial phase of a trial where advice given by Simulated Annealing
(ASA) led Random Walk (ARW) and Q-Learning (AQL) agents on a sudden climb of
more than 10%. Evolutionary Algorithms also benefited from this jump, but the climb
was less steep and from a lower point.

a) Initial disturbance of the learning process due to advice by non-expert
peers, as reported by Tan (1993) for cooperation amongst Q-Learning
agents.

b) In the initial phase of training, fast, step-like, increases in quality of
response, as soon as one of the agents, found a better area of the state
space and drove other agents that had poorer performances to that area.

c) Final convergence on better quality values than in tests where no advice
is exchanged.

d) Problems of convergence when using excess of advice, or high learning
rates when processing advice.

e) Improved resistance to bad initial parameters.
The actual observed results differed in some respects from expectations. The initial

disturbance, or slower convergence, reported by Tan (1993) for Q-Learning agents, was
not observed as a rule, although it occasionally happened. The exact opposite was ob-
served more frequently, which seems indicate that this is an advantage that is particular
to heterogeneous groups of learning agents. In some experiments we can find agents that
use advice climbing much faster to a reasonable quality plateau. Occasionally learning
was much slower afterwards (probably a local maximum was reached) and this high ini-
tial quality value was gradually surpassed by the stand-alone algorithms during the rest of
the training. The second expectation, the appearance of high steps in the quality measure,
due to advice from an agent that discovered a much better area of the search-space, was
observed, but seems to be less common than expected. Figure 2 shows a detail of the
initial phase of a trial where we can see a typical situation of the described behaviour.
The Simulated Annealing agent jumps to a high quality area, and “pulls” Random Walk
and Q-Learning into that area in a few epochs. In this experiment the advice-exchanging
algorithms did not stop at this quality plateau, being able to obtain better scores than their
counterparts.

Results where the final quality values for the best agent, on trials with advice-exchange,
is significantly better than in the normal case were observed, but do not seem to be as com-
mon as expected. Figures 3 and 4 show comparisons of the methods with and without
advice-exchange for one of the trials where advice-exchange proved advantageous. No-
tice that all results are better than the one obtained by the heuristic agent (HEU), which
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Figure 3: Left: Comparison of Simulated Annealing performance, with (ASA) and with-
out (SA) advice-exchange, and the corresponding heuristic (HEU) quality for the same
trial. Right: Comparison of Evolutionary Algorithms performance, with (AEA) and with-
out (EA) advice-exchange, and the corresponding heuristic (HEU) quality for the same
trial.

Figure 4: Left: Comparison of Q-Learning performance, with (AQL) and without (QL)
advice-exchange, and the corresponding heuristic (HEU) quality for the same trial. Right:
Comparison of Random Walk performance, with (ARW) and without (RW) advice-
exchange, and the corresponding heuristic (HEU) quality for the same trial

was not frequent. The most usual result is that agents climb to the vicinity of the best
agent’s quality in few epochs, learning to achieve a reasonably good result much faster
than when not exchanging advice.

The expectations referred in d) and e) were observed, as was foreseen. In fact, several
cases were observed in trials without advice-exchange, where early freezing of the tem-
perature parameter or the decay of the exploration rate, led to a sudden stop at a low local
quality maximum, from which the algorithm did not escape for the rest of trial. These
events are rare in trials using advice-exchange.

One of the most interesting problems observed was that of ill advice. It was observed
that some agents, due to a “lucky” initialisation and exploration sequence, never experi-
ence very heavy traffic conditions, thus, their best parameters are not suited to deal with
this problem. When asked for advice regarding a heavy traffic situation, their advice is
not only useless, but harmful, because it is stamped with the “quality” of an expert. In
Q-Learning this was easy to observe because there were situations, far into the trials, for
which advice was being given concerning states that had never been visited before. In the
next section some measures to prevent this problem will be discussed.
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5 Conclusions and Future Work
As mentioned in the previous section, advice-exchange seems to be a promising way
in which agents can profit from mutual interaction during the learning process. However,
this is just the beginning of a search, where a few questions were answered and many were
raised. A thorough analysis of the conditions in which this technique is advantageous is
still necessary. It is important to discover how this technique performs when agents are
not just communicating information about similar learning problems, but attempting to
solve the same problem in a common environment. The application of similar methods to
other type of learning agents, as well as other problems, is also an important step in the
validation of this approach.

For the time being, a more realistic traffic environment is under development based
on the Nagel-Schreckenberg model for traffic simulation (Nagel and Shreckenberg, 1992).
We hope that this new formulation provides a richer environment in which advice-exchange
can be more thoroughly tested. One of the main problems observed with advice-exchange
is that bad advice, or blind reliance, can hinder the learning process, sometimes beyond
recovery. One of the major hopes to deal with this problem is to develop a technique in
which advisors can measure the quality of their own advice, and advisees can develop
trust relationships, which would provide a way to filter bad advice. This may be espe-
cially interesting if trust can be associated with agent-situation pairs, and may allow the
advisee to differentiate who is the expert on the particular situation it is facing. Work on
“trust” has been reported recently in several publications, one of the most interesting for
the related subject being (Sen et al., 2000).

Another interesting issue rises from the fact that humans usually offer unrequested
advice for limit situations. Either great new discoveries or actions that may be harmful
for the advisee seem to be of paramount importance in the use of advice. Rendering
unrequested advice at critical points, by showing episodes of limit situations, also seems
like a promising approach to improve the skills of a group of learning agents. The same
applies to the combination of advice from several sources.

These techniques may require an extra level of skills: more elaborate communication
and planning capabilities, long-term memory, etc. These capabilities fall more into the
realm of symbolic systems. The connection between symbolic and sub-symbolic layers,
which has been also an interesting and rich topic of research in recent years, may play an
important role in taking full advantage of some of the concepts outlined in this work. Our
major aim is to, through a set of experiments, derive some principles and laws under which
learning in the Multi Agent System framework proves to be more effective, and inherently
different from just having agents learning as individuals (even if they are interacting in
the same environment).
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Abstract

This paper presents the process and results of experiments regarding the genera-
tion of blends of a concept of “horse” with a concept of “bird”. The blending process
is based on the framework of Conceptual Blending (Fauconnier and Turner, 1998) and
its development is achieving some stability. We present an overview of our system,
Divago, namely of its newest developments around the optimality constraints.
The results demonstrate the behavior of the system with regard to each of the op-
timality constraints and also give an insight on its ability for the generation of new
concepts from the combination of pre-existing ones, although highlighting problems
and further developments that must be taken.

1 Introduction

One big challenge to AI, more specifically to Computational Creativity, is that of the gen-
eration of new concepts. The first issue to approach is the very definition ofconcept and
its representation, interesting issues on their own right. Assuming a concept represen-
tation and semantics, we are then faced with the problem of theprocess. What kind of
processes can yield new and valid concepts?
In this paper, we apply a model of creative process that follows a framework, named Con-
ceptual Blending (CB) (Fauconnier and Turner, 1998), and present some results of recent
experiments. Although lacking in formalization and scientific proof in some aspects, this
framework suggests principles and processes that explain many creative cognitive phe-
nomena, such as metaphor, analogy and conceptual combination. CB is, at the least, a
very elegant model of creativity, a motivation that led us to attempt to a computational ba-
sis. In the system we are developing,Divago, those principles and processes are applied
iteratively until astable solution is found. This solution should be ablend, a new concept
(or web of concepts) that shares structure and knowledge from the inputs, yet having an
emerging structure of its own (e.g. a “pegasus”, as a blend of “horse” and “bird”).
We start this paper by a short review of similar systems, namely from a related area named
Conceptual Combination, after which we give an overview of the CB framework. Divago
is presented afterwards and, finally, we present and analyse the experiments we made
with the “horse” and “bird” domains, which constitutes the main contribution of this pa-
per. The reader will also find a final discussion, in which we make a reflection around the
results, the presented model and its creative aspects.
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2 State of the Art

The first computational work on Conceptual Combination we find in literature is that
of Carl Andersen (Andersen, 1996), which presents a system for “joining of information
from two existing concepts to form a third, more complex concept”. He gives a set of very
interesting ideas, but the paper is lacking argumentation and validation, thus oversimplify-
ing conceptual combination. An example of combination of “house” and “boat” is given,
but the definition of these two initial concepts, from our point of view, biases the results
because of their overt simplicity. Another issue is the lack ofbackground knowledge,
i.e., each concept is considered in isolation (a fact the author himself acknowledges), so
there are no ontological explanations or means of relating the concepts in question other
than from their structure, leaving to an external entity the task of establishing a mapping
between them.
Fintan Costello and Mark Keane (Costello and Keane, 2000) bring us a computational
model,��, for the interpretation of noun-noun compounds (e.g. “Cactus fish”, “pet
shark”), proposing one or more solutions for each concept pairing and validating them
against empirical tests on people.� � searches for concept explanations that use differen-
tiating properties from each of the nouns (thediagnosticity constraint), that are consistent
with background knowledge (theplausibility constraint) and that avoid redundancy or
vagueness (theinformativeness constraint). In so doing, their system provides different
sorts of noun-noun combinations, thus resulting in the polysemy we also find in humans.
Noun-noun compounds are clearly one example of the conceptual combination and cre-
ativity we do regularly.
On the side of Conceptual Blending, Tony Veale and Diarmuid O’Donogue (Veale and
O’Donogue, 2000) describe, from a computational perspective, a proposal inspired by
Veale’s Metaphor interpretation framework,Sapper. As we argue in (Pereira and Car-
doso, 2001), this proposal lacks some fundamental points of CB, namely the emergence
of a new domain, the blend, independently of the initial inputs. Furthermore, it takes into
account onlymetaphoric blends.
Our system, Divago, initially proposed in (Pereira, 1998), formalized in (Pereira and Car-
doso, 2001;?; Pereira and Cardoso, 2003)), makes use of a computational version of
Conceptual Blending as a process for transformation of the search space. This motivation
was discussed in (Pereira and Cardoso, 2002b), and the first experiments with blending
a “house” and a “boat” are shown in (Pereira and Cardoso, 2002a) and demonstrate a
change to the search space (e.g. containing houses with circular windows). Divago has
a knowledge base composed of domains, instances and rules and blends them following
eight optimality principles (described below). It makes use of ageneric domain to find
mappings between concepts, generic frames and rules and integrity constraints. It is ex-
pected to do concept combination as in (Andersen, 1996) and make noun-noun compound
interpretations as in (Costello and Keane, 2000). The experiments shown in this paper fo-
cus on the former, while the ones presented in (Pereira, 2003) concerned to the latter.

3 Conceptual Blending

Conceptual Blending was initially proposed by (Fauconnier and Turner, 1998) as part of a
major framework concerning cognition and language. Its role was to explain the integra-
tion of knowledge coming from distinct sources into a single, independent and coherent
unit, the Blend. A blend is a concept or web of concepts whose existence and identity, al-
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though attached to the pieces of knowledge that participated in its generation (the inputs),
acquires gradual independence through use.
We find examples of blends in many sorts of situations. A blend can be an effective way
to get attention and curiosity towards advertising a product (e.g. Sony’s AIBO robot uses
all sorts of Sony products behaving as if it were a real human) or spreading a message
(e.g. the Marlboro cowboy with impotence problems). People have been making blends
at least from the times of Greek mythology (e.g.pegasus) till today (e.g. pokemons)
and is present throughout our daily communication (e.g. “John digested the book”, “Sue
sneezed the napkin off the table”). Many more examples and situations could be listed
and studied in detail, demonstrating the ubiquity of CB.
In thecanonical model of Conceptual Blending, we have four differentspaces: two input
spaces, one generic space and the blend. Each space corresponds to what Fauconnier and
Turner call a “mental space”, a cognitive structure that corresponds to a concept, a set of
concepts, a frame, a reasoning orlower level entities like the perception of movement or
the feeling of physical pain. Mental spaces may have internal connections (inner-space re-
lations) between their constituent elements and connections to other mental spaces (outer-
space relations). The input spaces correspond to two mental spaces (e.g. horse and bird)
that will be integrated in the blend (e.g. a horse with wings). The generic space contains
knowledge that is not specific to any of the inputs but may relate to both (e.g. biology
taxonomies) or is common sense (e.g. Greek mythology).
An essential step in the process of blending is the establishment of a (partial) mapping
between elements of the input spaces. This mapping may be achieved through different
processes (e.g. identity, structure alignment, slot-filling, analogy) and doesn’t have to be
1-to-1. The paired elements are projected onto the blend as well as other surrounding
elements and relations. This is aselective projection, i.e., some elements get projected to
the blend, some don’t.
From the projections, some new relations emerge that relate elements either as a direct
result from the projection or from “running the blend”, which consists of performing
cognitive work within the blend, according to its own emergent logic. There is a set of
governing principles, theOptimality Pressures, that should drive the process of generating
a “good blend” (Fauconnier and Turner, 1998):

� Integration - The blend must constitute a tightly integrated scene that can be ma-
nipulated as a unit. More generally, every space in the blend structure should have
integration.

� Pattern Completion - Other things being equal, complete elements in the blend by
using existing integrated patterns as additional inputs. Other things being equal,
use a completing frame that has relations that can be the compressed versions of
the important outer-space vital relations between the inputs.

� Topology - For any input space and any element in that space projected into the
blend, it is optimal for the relations of the element in the blend to match the relations
of its counterpart.

� Maximization of Vital Relations - Other things being equal, maximize the vital
relations in the network. In particular, maximize the vital relations in the blended
space and reflect them in outer-space vital relations.1

1Fauconnier and Turner identify 15 different vital relations: change, identity, time, space, cause-effect, part-
whole, representation, role, analogy, disanalogy, property, similarity, category, intentionality and uniqueness
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� Intensification of Vital Relations - Other things being equal, intensify vital relations.

� Unpacking - The blend alone must enable the understander to unpack the blend to
reconstruct the inputs, the cross-space mapping, the generic space, and the network
of connections between all these spaces

� Web - Manipulating the blend as a unit must maintain the web of appropriate con-
nections to the input spaces easily and without additional surveillance or computa-
tion.

� Relevance - Other things being equal, an element in the blend should have rele-
vance, including relevance for establishing links to other spaces and for running the
blend. Conversely, an outer-space relation between the inputs that is important for
the purpose of the network should have a corresponding compression in the blend.

These constraints work ascompeting pressures and their individual influence in the
process should vary according to the situation; when the value of one grows, others de-
crease. As far as we know, there is no work yet towards an objective study of the optimal-
ity pressures, measuring examples of blends or specifying these principles in detail. This,
we believe, inhibits considerably the appreciation and application of Conceptual Blending
in scientific research, making a particular motivation for this work being that of testing
and specifying a formal proposal of these optimality pressures.

4 Overview of the Model

The architecture of Divago has four central modules: The Knowledge Base, the Mapper,
the Factory and the Constraints module. The Knowledge Base comprises data structures
(the concept maps, the frames, the integrity constraints and the instances) that are organ-
ised inspaces, according to their scope and generality. The Mapper establishes mappings
between theinput spaces (e.g. some concepts from the input space “horse” get mapped
onto concepts from the input space “bird”), and provides these associations to the Factory,
which deals with the process of blend generation, controlled through the evaluation made
by the Constraints module. This module implements the optimality constraints which,
when together applied to a given blend, return a value between 0 and 1. A fifth module,
Elaboration, will be added to the final version of the system and will transform the blend
according to knowledge from the generic space (by applying rules and triggering frame
conclusions).

4.1 The Knowledge Base

As in any other AI system, knowledge representation is the first fundamental issue to de-
cide. Here, we are particularly concerned about the representation of a “concept”, for it
is the goal of Divago to generate new “concepts”. Assuming a symbolic approach (as op-
posed to sub-symbolic ones, such as neural networks or genetic algorithms), we decided
for a semantic network based representation, in which a concept does not stand alone as
an isolated symbol, its definition and explanation being dependent on the relationships it
has with the surrounding concepts. More specifically, we take our concept networks as
beingConcept Maps. A Concept Map is a graph in which nodes representconcepts and
arcs representrelations. This is far from a novel perspective. It goes in consonance with
Murphy and Medin’s mini-theories (Murphy and Medin, 1985) or CYC (Lenat, 1995)
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and WordNet (Miller, 1995) representations. Even more important, any of the previously
mentioned works (Costello and Keane, 2000; Andersen, 1996; Veale, 1997) suggest this
view of concepts.
From a semiotics perspective, this representation of concepts seems Saussurian because
“everything depends on relations”(de Saussure, 1983). We try to escape from this extreme
position through the possibility of association of effective semantics to each concept (e.g.
the concept “window” may be realized as a set of instructions for “drawing a square”) and
by the association of the concepts to practical examples, theinstances (as in (Pereira and
Cardoso, 2002a)). Now, from a Peircian point of view, imagining themeaning triangle
(Ogden and Richards, 1923), we have the individualsymbol (e.g. the word “window”) as
standing for aconcept (e.g. the concept network around “window”) and corresponding to
anobject (e.g. a drawing of a window).
The choice of symbols for concepts and relations in our concept maps is arbitrary, yet
we are following a set of normalization principles. The first one is that relations must
belong to the Generalized Upper Model hierarchy (GUM) (J. Bateman and Fabris, 1995),
a general task and domain independentlinguistically motivated ontology that intends to
significantly simplify the interface between domain-specific knowledge and general lin-
guistic resources. GUM occupies a level of abstraction midway between surface linguistic
realizations andconceptual orcontextual representations. Being split into two hierarchies,
one containing all the concepts and the other all the roles, GUM gives us a large set of
primitive relations to standardize our choices in the concept map. It is important to notice
that, in our maps, the members of the concept hierarchy of GUM (e.g. “color”, “abil-
ity”, etc.) are also used as relations (e.g. “color(mane, dark)”, “ability(horse, run)”).
Other principles we follow in the construction of the concept maps is that concepts in our
knowledge base may only be represented as nouns, adjectives, preferably in the singular
form, or numerals (in the particular case of numbers). As we said, these are only nor-
malization principles for the construction of the concept maps, so, in theory, the model
itself doesn’t take into account the lexical categories of the words used, following only
the principle that “the same word corresponds to the same concept”. In Divago, there are
also other elements (such as instances), but for the scope of this paper, the reader needs
only to understand the notion ofconcept map.
In Table 2, we show examples of concept maps of “horse” and “bird”. These maps are
necessarily arbitrary in the sense that each person would draw their own maps, a result
of the different conceptualization and points of view one can take individually. Yet, we
assume these as being the conceptualization of the domains of “horse” and “bird” and
so, when we interpret a new concept as being a “bird with a moustache”, we refer to that
specific “bird” concept map with an attached subgraph that represents a “moustache”.
The semantics of each individual relation is arbitrarily defined by the user. By default,
each relation is simply a symbolic connection between two concepts (e.g. in “purpose(leg,
stand)”, “purpose” is a connection between “leg” and “stand”), being its interpretation de-
pendent on a context (e.g. in (Pereira and Cardoso, 2002a), the “shape” relation and its
parameters were converted into a set of drawing primitives). Structurally, the user is al-
lowed to addintegrity constraints to the relations (e.g. a “pw”, or part-whole, relation
cannot be circular, i.e. “pw(X,X)” is not possible) as well as to attach it to the GUM hier-
archy (e.g. “eat”, not in the original GUM, descends from “dispositive material action”).
There is a particular relation that has a special role, “isa”, which attaches a concept to a
taxonomic hierarchy (the general ontology) that is included in Divago Knowledge Base.

Two other important knowledge structures to refer here are theframes and theintegrity
constraints. The frames have the role of describing specific composite concepts, situations
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isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(paw, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(snout, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)
pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(paw, 4) quantity(leg, 4) purpose(horse, cargo)
pw(eye, snout) quantity(eye, 2) taxonomicq(horse, ruminant)
pw(ear, snout) quantity(ear, 2) ride(human, horse)
pw(mouth,snout) purpose(eye, see) motionprocess(horse,walk)
isa(farm, humansetting)

Table 1: The concept map ofhorse

isa(bird, aves) existence(bird, house) isa(aves,oviparous)
lay(oviparous, egg) existence(bird,wilderness) purpose(bird, pet)
purpose(bird, food) purpose(eye, see) smallerthan(bird, human)
pw(lung, bird) motionprocess(bird, fly) purpose(beak, chirp)
purpose(lung, breathe) quantity(eye, 2) quantity(wing, 2)
isa(owl, bird) isa(paradisebird, bird) quantity(claw, 2)
ability(bird, fly) pw(wing, bird) conditional(wing, fly)
pw(feathers, bird) pw(beak, bird) purpose(wing, fly)
purpose(beak, eat) purpose(claw, catch) sound(bird, chirp)
isa(parrot, bird) ability(parrot, speak) pw(straw, nest)
pw(eye, bird) pw(leg, bird) purpose(leg, stand)
pw(claw, leg) roleplaying(bird, freedom) quantity(leg, 2)
isa(nest, container) isa(house, humansetting)

Table 2: The concept map ofbird

or idiosyncracies. For example, we could specify that we are in face of a “new ability”
if some concept� has, in the blend, the ability�, which was not present in� ’s input
space, d1. We can even say that this “new ability” should have a minimal explanation,
i.e., there must be a subpart� of X whose purpose is to provide ability�. Furthermore,
we can also require that� and� be projected from different inputs (�� and��, resp.) to
the�����.

	
������ ������������ �
�� ������������ �� ������������� ��� 
������ ��������������

��
��������� � �������
�
��������������� ��� �����
�
��������������� ��� ����

Frames can represent very abstract reasonings (e.g. the blend should have the same struc-
ture as the input space 1 - the “aframe”) or very specific (e.g. the “transportmeans”
frame). The generic space we use in the experiments has the frames of Table 3.

In Figure 1, we give an idea of the application of frames to a blend (to improve read-
ability, both the frames and the concepts are simplified). We say that the blend accom-
plishes (or satisfies) “aframe”, “transportmeans” and “newability” and that its over-
all frame coverage is 100% (every relation is included in a frame). The coverage of
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Frame name Conditions
aframe The blend contains identical structure from input 1
aprojection The blend contains the same concepts of input 1
bframe The blend contains identical structure from input 2
bprojection The blend contains the same concepts of input 2
pw basedexplanation The blend contains a concept that has associated a set of

part-whole relations (i.e. it is explained by a set of these
relations)

transportmeans The blend contains a concept that has associated the set of
features of a generic transport means

purposefulsubpart The blend contains a a concept that has a subpart that has
associated a set of relations that justify its existence
(e.g. purpose, cause-effect)

new ability A concept has an ability relation not existent in any of the
inputs

new creature A concept is a living thing that did not exist (or wasn’t such)
in any of the inputs

new feature A concept has a feature relation not existent in any of the
inputs

Table 3: Frames of the generic space

“aframe” is aproximately 72% (the ratio of the blend that is covered by “aframe”) and
“transportmeans” and “newability” have coverages of 54% and 27% (respectively).

The integrity constraints serve to specify logical impossibilities. Two examples of
integrity constraints could be for specifying that something cannot be dead and alive at
the same time and for avoiding part-whole recursion, i.e. something cannot have a part-
whole relation (pw) with itself:

	����� �������� ����� � �������� ������

	����� ������

The violation of an integrity constraint does not imply the elimination of a blend; it
only brings a (configurable) penalty to its value. Thus it must have strong arguments to

carrier

pw

pw

purposeability

ability

purpose

pw

Horse-
bird

wings

snout fly

run

legs
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cargo

eat

grass

ride

human

aframe
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Blend

Figure 1: Three frames in a small blend
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violate an integrity constraint and still be a “good blend”. For space restrictions, we don’t
show the generic domain concept map, yet the reader should only know it has a very long
list of “isa” relationships, establishing an ontological basis for the concepts (e.g.isa(red,
color), isa(human, primate), isa(physical object, object), etc.).

4.2 Mapper

The Mapper currently takes an optional role in the architecture. Its purpose is to gener-
ate mappings between the concept maps of the input domains automatically. It uses an
algorithm of structure matching inspired in Tony Veale’s Sapper framework (Veale and
Keane, 1993). Basically, it uses a spreading activation algorithm to look for the largest
isomorphic pair of subgraphs from the input domains. In this context, two graphs are con-
sidered isomorphic if they have the same relational (arcs) structure, independently of the
concepts (nodes). There is potentially more than one structure matching between any pair
of concept maps and this complexity grows worse than exponential with the number of
concepts2. However, since it only allows alignment when it finds equal relations in both
graphs, the number of possible solutions can be drastically reduced, yet still demanding
Mapper to make the search in such huge space. Furthermore, the algorithm starts with a
randomly selected pair of concepts, so the “perfect choice” (or even the same choice) is
not guaranteed every time we run it.
This module generated three different mappings for input spaces of “horse” and “bird”, as
shown in Figure 2. It is important to understand that every relation has the same weight
in the graph and there is no domain knowledge or special heuristics considered in the
mapping construction. This means that the results may contain very unintuitive associ-
ations (e.g. “4” associated with “2”; “snout” with “bird”). The existence of “wrong”
associations, however, doesn’t necessarily affect the results because, when their use im-
plies low-valued outcomes, the system will ignore them due to the “selective projection”
algorithm we will describe in the next section.

4.3 Factory

Each concept�, from the input domains, has a “projection” in the blend that can be either
�, ��� (meaning it is not projected to the blend),� (the mapping counterpart of�) or a
composition of� and� (represented by���). The latter two only possible when there
is a mapping counterpart for�. To a string of “projections” of all concepts of the input
domains (one “projection” for each concept), we call a “selective projection”. The name
“selective projection” comes from the fact that, in blends, some aspects of the input spaces
are not present (i.e., not projected), some change and some remain the same.
The role of the Factory module is to make a search for blends that best fit the optimality
constraints in the space of “selective projections”. This space has a very high complexity.
Taking a close look on this issue, we notice that, for aninput domain 1 with� concepts
and aninput domain 2 with� concepts (with� � �), we may have the maximum of��
different mappings (if we use the isomorphic mappings, as in the Mapper), with the largest
mapping having a size� � ��������. This projection selection is made independently
on each concept, which means we have� � � � � different concepts for each blend,
each one with its own projection. So, in the “least complexity scenario”, the size of the

2Assuming n as the number of concepts of the largest (in number of concepts) of the two concept maps, we
will have a search space of�� possible mappings. So, with an exponential�

�, as� approaches infinity,�
�

��
will

be 0, meaning that the search space will expand more than exponentially as the number of concepts grows
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ear � wing
snout � bird

eye � lung
mouth � feathers

2 � 2
hear � fly

1

mouth � beak
snout � bird

eye � lung
ear � feathers
eat � eat

2

vegetablefood � vegetable
food � food

horse � bird
equidean � aves

animal � animal
humansetting � house

wilderness � wilderness
ruminant � oviparous

run � fly
cargo � pet
neigh � chirp
snout � lung
mane � feathers

tail � beak
leg � eye

paw � wing
4 � 2

eye � leg
ear � claw

hear � catch
grass � grass

3

Figure 2: The three mappings

mapping is 0, meaning that we have only two choices for each of the� concepts (either it
gets projected to the blend or it is not projected), thus we have� � “selective projections”.
If the size of the mapping is� (the maximum possible), we have four choices for each
of �� concepts (� concepts in each of the domains) because each concept� mapped to�
can be projected either to�, �, ��� or���. Apart from these�� concepts, the rest (�� ��)
has only two possibilities. This leads us to the conclusion that we have a range of� �

to ��� � ����� different “selective projections” to choose, which is a very large search
space. For example, for� � � � �	 (a “small” size pair of networks), we have at least
��� different solutions.
Given these space dimensions and expecting that the optimality pressures (a set of com-
peting constraints, described in next section) would complexify the search landscape, we
decided to implement a parallel search algorithm, which wouldn’t depend on following
a specific sequence of application of those pressures. The solution we found was a ge-
netic algorithm (GA): a framework inspired by evolutionary theory in which we have
a sequence ofpopulations of individuals, eachindividual with a fitness value that rep-
resents itssurvival andreproduction possibilities. This well-known framework has had
much success in problems with a search space with the characteristics we described. The
detailed formal and technical explanation of GA’s is far out of the scope of this paper, so
we direct the interested reader to (Goldberg, 1989). On the other side, those not interested
in the technical details of our GA implementation may skip to the next section and retain
the general idea that this is a parallel search that does not guarantee the “best blend” but
is able to search a vast area of the space and return, with correct parameters, relevant so-
lutions.
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In our GA, theindividuals we areevolving are blends, each one determined by a “selec-
tive projection”. Theindividual is then an ordered sequence of projections (thegenes),
each one with an allowed value given by the projection function (from the range�, �, ���
and
). The evaluation of a blend is made by the application of the optimality pressures,
which then participate in a weighted sum, yielding the fitness value. We have populations
of individuals (currently 100) that are then stochastically selected according to this value.
After the selection of the individuals, the step of generation of the following population
is made by using 4 operations: direct reproduction (the individual is copied to the next
population); crossover (two individuals exchange part of their list of projections); muta-
tion (random changes in the projections); random individual. The system stops when a
predefined number of iterations of this process has been done, when it stabilized around
a maximum for more than a predefined number of iterations or when an individual was
found that has a satisfactory (predefined) value.
Through this process, Divago is able to search in a huge space of blends according to the
preferences of the user. The best solution is not guaranteed, but it is reasonable to expect
that the higher the number of iterations, the more likely it is to find a good blend, if one
exists in the search space.

4.4 Constraints

The Constraints module implements the optimality pressures. The general role of this
module is to make a preprocessing of each blend (checking frame satisfaction and com-
pletion, integrity constraint violation, vital relation projection, etc.) and then obtain a
value for each of the eight measures. These values then participate on a weighted sum,
which yields thevalue of the blend (normalized to fall into the [0,1] interval) that is re-
turned to the Factory. The weight attributed to each optimality pressure is defined by
the user. The optimality pressures are formalized and described in (Pereira and Cardoso,
2003), and so, an entire paper is needed to specify in detail our implementation of these.
Therefore we give an informal explanation below. Beforehand, we would like to say that
we make no claims in respect to the cognitive realization of each measure. These eight
suggestions of quantification concern totally to the representation and scope of this model
which moves towards a computational account of conceptual blending. This doesn’t mean
that this proposal should not be verified or tested with regard to cognition and the blend-
ing phenomena in general, it states that we didn’t make our measures based on cognitive
experiments, but only tried to follow the philosophy behind the description that F&T give
in (Fauconnier and Turner, 2002) projected to our formal model.

4.4.1 Integration

Frames have an integration role. The reasoning behind a frame relies in the idea that
concepts within it should be tightly integrated according to a situation, structure, cause-
effect or any other relation that ties a set of concepts onto one, more abstract or broad,
composite concept. For example, the frame of “transportmeans” corresponds to a set of
concepts and relations that, when connected together, fit the abstract notion of “transport
means”. Frames may get much more abstract and, as in the example of “aprojection”
or “new feature”, represent construction directives for the blend. The integration role of
these frames is not perceived as clearly as in “transportmeans” but, without them, the
blend will lack global consistency (as in “aprojection”) or novelty (as in “newfeature”).
We see frames asinformation moulds and building a blend for a given situation should
depend much on the choice of these structures. Thus, the Integration value of a blend is
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Figure 3: The role of frame coverage in Integration value

calculated with regard to a set of frames.
Assuming the set� of frames that are satisfied in a blend, we define theframe coverage of
a domain to be the set of relations from its concept map that belong to the set of conditions
of the frames in� . The larger the frame coverage of the blend, the higher its Integration
value is. Yet, a blend that is covered by many frames should be less integrated than a frame
with the same coverage, but with less frames. In other words, if a single frame covers all
the relations of a blend, it should be valued with the maximal Integration, whereas if it
has different frames being satisfied and covering different sets of relations, it should be
considered less integrated. The intuition behind this is that the unity around an integrating
concept (the frame) reflects the unity of the domain. In the diagrams of Figure 3, we give
an informal idea of this reasoning. Blend� has the maximum Integration value (100%)
because a single frame is able to cover the complete concept map.� will have a lower
value since it needs two frames to cover the same area. Blends� and� will have lower
values than the other two and� will have higher value than� because frame coverage of
� is too much dispersed.

The Integration measure we propose also takes integrity constraints into account so
that, when a frame violates such a constraint, it is subject to penalty. Integration belongs,
along with Relevance, Topology and Unpacking, to the fundamental bricks of the blend-
ing process of Divago. It is intended to lead the choice of the blend to be something
recognizable as a whole, fitting patterns that help to determine and understand what anew
concept is.

4.4.2 Topology

The Topology optimality pressure bringsinertia to the blending process. It is the con-
straint that drives against change in the concepts because, in order to maintain the same
topological configuration as in the inputs, the blend should maintain exactly the same
neighborhood relationships between every concept, ending up being a projected copy of
the inputs. This pressure is normally one that is disrespected without big loss in the value
of the blend. This is due to theimagination context that normally involves blends, i.e.,
novel associations and changes in previous ones are not necessarily penalized.
We calculate our Topology measure by simply obtaining the ratio of relations (
��� ��) in
the blend that also exist in the inputs. This means, for example, in blending “horse” and
“bird”, that obtaining an exact “horse” or an exact “bird” would give the highest Topology
value (every relation would also exist in the corresponding input domain), while adding
the relation “ability(horse, fly)” to the “horse” would lower that value (there is no “abil-
ity(horse, fly)” in any domain).
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Figure 4: Pattern Completion examples

4.4.3 Pattern Completion

The Pattern Completion pressure brings the influence of patterns present either in thein-
puts or in thegeneric space. Sometimes, when reasoning about a concept (or a set of
concepts), it may make sense tocomplete it with new knowledge. For example, if we
have a “horsebird” defined as having “2 wings made of feathers”, we maycomplete it
with the “flying ability” by matching the concept of “horsebird” with the pattern of “fly-
ing creatures”: “Flying creatures have 2 wings. They are made of feathers and serve to
fly”.
At present, in the context of this work, a pattern is described by a frame, i.e. we don’t
distinguish these two concepts, and therefore pattern completion is basically frame com-
pletion. Here, as in the definition of this principle, the completing knowledge becomes
available from “outside”, not as a result of projection. This means that the act of complet-
ing a frame consists of asserting the truth of the ungrounded premises from frames of the
generic domain, a process that happens only after a sufficient number of premises is true.
We call this theevidence threshold. In Figure 4, we show two examples of the evidence
thresholds of a frame (“newability”) with regard to two different blends. In the first one,
the frame has an evidence of 67% approximately (the frame has three relations, and two
are true in the blend) and so its completion is made by adding the relation “ability(horse-
bird, fly)”. In the second one, the evidence threshold is approximately 33% (and so it is
completed by adding two new relations).

As in the integration pressure, we have the problem of taking into account multiple
frames. This time, given that we are evaluating possible completion of subsets of rela-
tions, instead of sets of relations that are actually verified in the domain, it is difficult to
find such a linear rationale (e.g. would two patterns each with individual completion�
be valued higher than three having each slightly less than�?). As a result, the value of
Pattern Completion of a blend corresponds to the evidence threshold of the union of the
frames (which will be the frame with all conditions that appear in all the frames).

4.4.4 Maximization of Vital Relations

For the maximization of vital relations, we estimate the impact of the inner-space and
outer-space vital relations to the blend. Fauconnier and Turner list a set of 15 vital rela-
tions (in footnote of page 3 of this document) that exist between elements within a mental
space (inner-space relations) and between different mental spaces (outer-spaces). These
are special relations in the sense that they can becompressed in blend. Since in our
current model we don’t explicitly approach compression, vital relations will be a set of
(customizable) relations whose projection should be valued.
The measure of Maximization of Vital Relations is calculated as a ratio of the actual num-
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ber of vital relations in the blend w.r.t. the maximum possible number of vital relations
(that would appear in the blend if every concepts were projected).

4.4.5 Intensification of Vital Relations

The difference between Intensification and Maximization of Vital Relations is not clear
in the definition so we propose a perspective that may disagree with what was origi-
nally meant by Fauconnier and Turner. In our case, Intensification of Vital Relations is
a measure concerning (exclusively) outer-space relations, more specifically the relations
established by the mapping algorithm. The rationale is that, for each vital relation, there is
a mapping algorithm that connects elements from the two input spaces with the respective
vital relation and the use of these connections will yield an estimate of how “intense” this
vital relation is in the blend. In our case, the (only) vital relation established is “analogy”
(e.g. there is an “analogy” relation between “run” and “fly” in mapping 3, Figure 2) and
its intensity is measured by thesystematicity principle (if � is associated to�, its neigh-
bors should also be associated). For different vital relations (e.g. “disanalogy”), different
intensity measures could be applied. We have only implemented “analogy” so far, so our
proposal for this measure is far less solid than the others.
The calculation of the value for Intensification pressure takes the point of view that a
blend that applies mappings generated by only one vital relation (suppose it has an inten-
sity value�) should have higher measure than a blend that apply� vital relations (suppose
each with intensity value���). We want to favor “concentration”, therefore there is a
penalty for the proliferation of different vital relations. In Figure 5, we show an example
of two choices for mappings. The mapping on the left will get higher Intensification value
because it is concentrated around a single vital relation (“analogy”).
In the experiments, our mapping was based on a single vital relation therefore this mea-
sure could not yet be tested.

4.4.6 Unpacking

Unpacking is the ability to reconstruct the whole process starting from the blend. From
our point of view, such achievement underlies the ability to reconstruct the input spaces.
The reconstruction of the input spaces from the blend demands the assessment of the
cross-space mappings, the generic space and other connections. Thus, what we are
proposing is that Unpacking can be reduced to the ability to reconstruct the inputs. This
is so because there is no way to properly reconstruct the inputs without a reconstruction
of the cross-space mappings, generic space and the connections between spaces.
Unpacking should take the point of view of the “blend reader”, i.e., someone or some-
thing that is not aware of the process of generation, thus not having access to the actual
projections. Being such, this “reader” will look for patterns that point to the “original”
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Figure 6: Unpacking examples

concepts. Once again we use the idea offrames, more specifically thedefining frame of a
concept, which comprises its immediately surrounding relations. In the blend, if we can
identify clearly the defining frames of the original concepts, then its Unpacking value is
high. In Figure 6, we present the defining frame for “horse”, in the “Horse” domain. In
Blend 1, the concept “horse-bird” (the projection of “horse”) will have the highest Un-
packing value because it fits exactly its defining frame. In Blend 2, the value is lower
because there are two new relations (with “fly” and “wings”), meaning it is not the exact
same concept. Blend 3 will get the lowest Unpacking value of all three because it also
lacks some relations (e.g. with “run” and “grass”).

The calculation of the Unpacking value of a blend corresponds to an average of the
individual Unpacking values of all the concepts in the concept map. Each of these in-
dividual Unpacking values takes into account the completion ratio of the defining frame
and the extra relations added.

4.4.7 Web

The Web principle concerns to being able to “run” the blend without cutting the con-
nections to the inputs. It is our opinion that this is not an independent principle, being
co-related to those of Topology and Unpacking because the former brings a straightfor-
ward way to “maintain the web of appropriate connections to the input spaces easily and
without additional surveillance or computation” and the latter measures exactly the work
needed to reconstruct the inputs from the blend. It is not to say that Web is the same as
Topology or Unpacking, what we are arguing is that, on one side, Topology provides a
pressure to maintain the most fundamental connection to the input: the same set of rela-
tions; on the other side, Unpacking evaluates the easiness of finding the connections to
the inputs. The weighted sum of these two values yield, we propose, an estimation of the
strength of the web of connections to the inputs.
Not being an independent variable, we don’t apply the Web constraint in the tests we show
here.

4.4.8 Relevance

The notion of “relevance” or “good reason” for a blend is tied to the pragmatics of the
situation, or, in other words, the context and goal of the blending generation. Once again,
frames take a fundamental role, they are “context specifiers” (i.e., the set of constraints
within a frame describe the context within which the frame is fulfilled). Thus, Divago
allows the specification of aquery that may contain a set of conditions (e.g. if we want to
find a concept that “flies”, we could add the condition���������� 	���) and a set of frames
to be accomplished (e.g. the blend should accomplish the “transportmeans” frame). This
query will then correspond to a set of frames (the set of conditions is also considered a
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frame itself) to which we callgoal frames.
Having a set of goal frames, which could be selected from any of the existent domains or
specified externally, a blend gets the maximum Relevance value if it is able to satisfy all
of them. In this measure we must also take into account partial completion of the goal
frames. A blend that “almost” satisfies a goal frame should be valued in relation to a frame
that doesn’t (assuming both are equal in the other features). Regarding this, we consider
a factor for the partial completion of the goal frames following the same procedure as in
Pattern Completion.
Intuitively, this measure takes two parts: the satisfied goal frames and the unsatisfied goal
frames. The value of the latter depend on completion (e.g. if Completion=50%, these
count as “half” satisfied goal frames).
The Relevance principle allows a user to specify his notion ofusefulness. In fact, the
usefulness of a concept is always a pragmatic matter. Something can be extremely and
obviously useful in a context and the opposite in another. For example, in a graphical
environment, useful concepts should have a color, a shape, a position and so on, while
in a text-based role-playing game, they are expected to have the game’s attributes (e.g.
mood, strength, role, etc.). Thus, a blend that has a 100% Relevance value satisfies all the
conditions of the query, meaning it contains all the knowledge needed for a given context,
i.e., it is useful with regard to that context. This is not to say that usefulness is easily
specified, as it is not straightforward to find all constraints and requirements that need to
be respected in a given context.

5 Experiments

We made two different experiments, each with a distinct goal: assessment of the indi-
vidual effects of each measure on the final results; qualitative evaluation and tuning of
the model. After several preliminary GA parameters tuning tests, we decided for 100
individuals as the population size, 5% of asexual reproduction (copy of an individual to
the following population), 80% of crossover (combination of pairs of individuals), 5%
of mutation and 1% of random generation (to allow random jumps in the search space).
We have three different stopping conditions: appearance of an individual with the max-
imum value (1); achieving� populations (� � �		); being stalled (no improvements in
best value) for more than� populations (� � �	). We kept these GA configurations
throughout the two experiments.

5.1 Evaluating Optimality Pressures

This test serves to observe the real effect of each pressure in the final results, bringing up a
way to predict and control the system. For the first part of these experiments, we isolated
each optimality pressure, by attributing zero weight to the remaining criteria. Since one
of the optimality pressures is not independent (Web) and another (Intensification of V.R.)
only applies one mapping algorithm (based on analogy), we did not test them, so we had
six different criteria to take into account.
The input domains we applied were the domains ofhorse andbird (in Tables 1 and 2),
meaning that the expected results range from the unchanged copy of one (or both) of the
concepts to a horse-bird (or bird-horse) which is a combination of selected features from
the input domains. The generic domain consists of a simple general ontology (essentially
an “isa” tree with concepts from high-level like “informationentity” or “physicalobject”
to low-level like “digit” or “dog”), a set of frames and integrity constraints (see Table
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3). We applied the mappings presented in Figure 2. For each mapping, we tested the six
optimality pressures, each of these comprising 30 runs3.
We present now a detailed analysis of the individual effect of each of the measures:

� In Integration, frames behave asattractor points in the search space. Moreover,
the frames with a larger coverage tend to be preferred, although when too large
(like aprojection or aframe) they are dropped away. The evolution is directed to
a compromise of coverage and satisfiability. The complexity of the search space
grows with mapping size (the number of cross-space associations found by the
mapping algorithm). In fact, when we have a mapping of size 5, it returns six
different blends, being the best choice retrieved 43% of the times, while with a
mapping size of 21, it finds eight different solutions, being the best choice retrieved
only 6% of the times. This confirms the complexity and dimensions of the search
space we discussed in section 4.3. A good compensation for this apparent loss of
control is that the returned values are clearly higher (0.68, for the best) than in the
small mappings (0.22), suggesting that, with larger mappings, the probability of
finding a better solution is higher than in smaller ones.

� Pattern Completion drives the blend to partially complete (i.e., satisfy some of
conditions but not all) the highest possible number of frames, leading, in each case,
to several sets of relations that fit into those frames without satisfying them. This
means that, isolated, Pattern Completion only leads to disperse, non-integrated re-
sults and so it is not very useful. Interestingly, it can be useful when combined with
Integration because it brings gradually to the blend the concepts and relations that
are needed to complete the frames and so speeding up the process of finding frames
with high Integration value. In which respects to thesearch landscape, it seems to
be very rich in local maxima. The most constant results came from mapping 2 (of
Figure 2), with the best results obtained in 13% of the times and the second best in
20%. An interesting remark is that the resulting local maxima always fall within a
very strict range of values (of maximum amplitude 0.11, in mapping 3).

� In all the experiments withTopology, the final results were valued 100%, meaning
that this constraint is easily fully accomplished, independently of the mapping. An
interesting fact is that there is a multitude of solutions in thesearch landscape of
Topology, showed by the amount of different final results in each mapping. Intu-
itively, and observing the short duration of each run, this means that, wherever the
search starts, there is always a Topology optimal point in the neighborhood. From
observation of the relations contained in the final results, we see that this constraint
brings a tendency fordisintegration, i.e, small isolated graphs appear in the blend.
Each isolated graph is either a copy of a (normally unmapped) subgraph of one in-
put source or consists of complete structure matching (there are concepts from both
domains, but only the relations that exist in both are present)

� The influence ofMaximization of Vital Relations in the results is straightforward,
given that its highest value (�) reflects the presence, in the blend, of all the vital
relations that exist in the inputs. As the evolution goes on in each run, the value
grows until reaching the maximum reasonably early. For each set of 30 runs, it
reached the value� a minimum of 93% of the times, and the remaining 7% achieved

3A run is an entire evolutive cycle, from the initial population to the population in which the algorithm
stopped

http://www.aisb.org.uk



Pereira and Cardoso

at least a value of 0.95. As in Topology, the search space of Maximization of Vital
Relations is verysimple since there is a global maximum in the neighborhood of
(almost) every point.

� The results of theUnpacking measure show that it has a deleterious side effect
on the size of the blend, it drives it to very small sets (between 0 and 5) of rela-
tions. The interpretation here is straightforward: the ratio ofunpackable concepts
is highly penalized in bigger sets because of the projected relations that come as
side effect of the projection of (unpackable or not) concepts. These relationscon-
fuse the unpacking algorithm so that it leads the evolution to gradually select the
smaller results. The maxima points also correspond to the value�, but it seems,
from the experiments, that there is a very limited set of such individuals, achieved
in the majority (at least 93% for each mapping) of the experiments.

� The first part of the test onRelevance focussed on making a single relation query.
In this case, we asked for “something that flies” (ability(, fly)). The results were
straightforward in any mapping, accomplishing the maximum value (�) in 100% of
the runs, although the resulting concept maps did not reveal necessarily any overall
constant structure or unity, giving an idea of randomness in the choice of relations
other than ability(, fly). In other words, the evolution took only two steps: when
no individual has a relation “ability(, fly)”, therefore with value 0; when a rela-
tion “ability( ,fly)” is found, yielding a value 1, independently of the rest of the
concept map. The second part of the test on Relevance, by adding a frame (abil-
ity explanation) to the query, revealed similar conclusions. There was no sufficient
knowledge in any of the input domains to satisfy this new frame completely, so
the algorithm searched for the maximum satisfaction and reached it 100% of times
in every mapping. So thelandscape seems to have one single global and no local
maxima, reflecting the integration of the two parts of the query. If there were sep-
arate frames, it is expectable the existence of local maxima. Intuitively, thesearch
landscapes of Integration and Relevance seem to be similar.

It is important to stress that, in the current version of Divago, no inference is done
within the blends. Each blend is examined by the Constraints module without being
subject to any transformation after the projections. In other words, there is yet no “running
the blend”, an aspect that will be focussed in the next developments of this work.

5.2 Qualitative evaluation

In this stage of the experiments, we tried to understand the behavior of the system by
generating and observing different blends, each one with a specific goal. The first goal
was to generate awell known blend of a horse and a bird: thepegasus. Then, we allowed
more variations of this creature, by changing the mapping or the weights of the optimality
pressures. Finally, we tried to generate different creatures that, from our point of view,
reveal interest.

5.2.1 The Pegasus

For our concerns, we define a pegasus as being a “flying horse with wings”, so leaving out
other features it may have (such as being white). These extra features could also be con-
sidered but would need knowledge concerning to the several aspects of ancient Greece,
Greek mythology and some ontological associations (e.g. purity is white). Moreover,
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they would make the generation of the blend considerably more complex, even if more
interesting. Formally, the pegasus we want to generate has the same concept map as the
horse domain augmented with 2 wings and the ability to fly (the relations “ability(horse,
fly), motion process(horse, fly), pw(wing, horse) and quantity(wing, 2)”).
For validation purposes, we started by submitting a query with all the relations of the pe-
gasus, so as to check if they could be found in the search space, and obviously the results
reveal that only the mapping 3 (see Figure 2) respects such constraints. This led us to use
exclusively this mapping throughout this section.
Knowing that the solution exists in the search space, our goal was to find the minimal nec-
essary requirements (the weights, the frames and the query) in order to retrieve it. From a
first set of runs, in which the system considers a big set of different frames and no query,
we quickly understood that it is not simple (or even possible) to build the pegasus solely
by handling the weights. This happens because there is no controlling device that allows
a user or an evaluation function to drive the evolution to a particular place. The optimality
pressures provide control regarding to structural evaluation and general consistency and
may yield interesting results, but only by chance a pegasus, which drives us to the need
of queries.
A query may range from specific conditions that we demand the blend to respect (e.g. the
set of conditions for flying, enumerated above) to highly abstract frames that reflect our
preferences in the blend construction (e.g. the frameaprojection: elements from input
space 1 should all be projected). Intuitively, the best options seem to comprise a combi-
nation of the different levels of abstraction.
Since a query is only considered in the Relevance measure, its weight must be large if we
intend to give it priority. In fact, using only Relevance is sufficient to find the solution if
the query is specific enough, as we could test by using a query withaprojection and the
flying conditions. From a creativity point of view, it is not expected to have very specific
queries (in these cases, the search wouldn’t be needed, in the first place) and we are more
interested in less constrained search directives. In the Table 6, we show the parameters
we used. The weights we present correspond to Integrity (I), Pattern Completion (PC),
Topology (T), Maximization of Vital Relations (MVR), Unpacking (U) and Relevance
(R). The “fly conds.” are the relations the blend must have in order to be a flying creature,
and aframe, aprojection and newability are frames as described before.

Exp. Weights Query
# I PC T MVR U R
1 0 0 0 0 0 1 fly conds. + aprojection
2 0 0 0 0 0 1 fly conds. + aframe
3 0 0 0 0 0 1 fly conds.+ aprojection + aframe
4 1 0 0 0 0 1 fly conds.+ aprojection + aframe
5 1 1 0 0 0 1 fly conds.+ aprojection + aframe
6 1 0 1 0 0 1 fly conds.+ aprojection + aframe
7 1 0 1 1 0 1 fly conds.+ aprojection + aframe
8 1 0 1 1 1 1 fly conds.+ aprojection + aframe
9 8.5 0 4 2.5 1 9 fly conds.+ aprojection + aframe
10 8.5 0 4 2.5 1 9 newability+aframe+aprojection

Table 4: Parameters used in each experiment.

The first eight experiments were dedicated to understanding the effect of gradually
adding optimality pressures to the fitness function. In the first three, where only Relevance
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was used, we verified that, although it waseasy to have all the concepts and relations we
expect for a pegasus, often it was complemented by an apparently random selection of
other relations. This results from having no weight on Integration, which we added on
the experiment 4, yielding the most strict pegasus, the projection of the entire horse do-
main, and the selective projection of wings and the fly ability from the bird domain, in
more than 90% of the runs. In experiment 5, the influence of Pattern Completion led the
results to minimum incompleteness (e.g. a pegasus with everything except a mane, wings
or any other item), which revealed that, by itself, it is not a significant or even positive
contribution to the present goal, a reason for dropping its participation in the following
experiments. Moreover, it suggests a revision of the implementation of this measure.
Adding Topology (exp. 6) brought essentially two different kinds of results. In 60% of
the runs, it returned the “correct” pegasus with extra features like having feathers or a
beak (which was not constrained in the query), either of each apparently selected at ran-
dom. These were also given the higher scores in the experiment. In other 37% of the
runs, the results were either “simple” horses or a compromise between a bird and a horse
(e.g. two legs, a beak, two wings, ruminant, a mane, paws, etc.). A possible interpretation
is that, on one side, the framesaprojection andaframe already imply strong topological
maintenance, and Topology itself brings knowledge that, although not considered in the
frames, strengthens this value. Yet, this does not avoid the existence of local maxima that
represent stable results, in terms of the weights considered. The following experiment, the
inclusion of Maximization of Vital Relations, confirmed the same conclusions, but with
more control over the kind of extra relations transferred to the blend. For example, the
blend may have 2 wings (from the relationquantity), a beak and feathers (frompw), but it
is never an oviparous (fromtaxonomicq). On the other hand, we can sense a gradual lack
of focus on the overall results (no two runs returned the exact same result) complicating
considerably our goal of controlling the system. There is a simple explanation for this:
Relevance, Integration, Topology and Maximization of V.R. all have the same weight and
some (like Maximization) are more easily satisfied, thus driving the evolution around their
maxima.
The eighth experiment brought a more stable set of results. Adding Unpacking to the
other pressures reassures the prominence of the “basic” pegasus, but, as happened with
the majority of sixth experiment results, augmented with features projected from the bird
domain. This time, some of these new features came isolated to the blend, i.e., not con-
nected to the rest of the blend (e.g. there are 2 claws that serve to catch, but they don’t
make part of anything).
An immediate conclusion we took from these first 8 experiments was that each pressure
should have a different weight, correspondent to the degree of influence it should have in
the result. In our case, we are seeking for a specific object (the pegasus), we know what
it is like, what it should not have and some features not covered by the query conditions
that we would like it to have. This led us to a series of tests for obtaining a satisfiable set
of weights, used in the configurations 9 to 12. Given the huge dimension of the problem
of finding these weights, they were obtained from a generate-and-test process, driven by
our intuition, so there is no detailed explanation for the exact choice of these values and
not others. Yet, a qualitative analysis can be made and we see a clear strength given to
Relevance and Integration. The former serves to “satisfy what we asked” and the latter
guarantees overall coherence (centered on the query frames) and consistency (e.g. it pre-
vents the solution from having 2 and 4 legs simultaneously). There is also a more discreet
presence of Topology, Maximization and Unpacking, to allow the transfer of extra knowl-
edge.
The experiment 9 revealed, possibly, the “best” pegasus we could expect. As we can see
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quantity(wing, 2) conditional(wing, fly) motionprocess(horse, fly)
ability(horse, fly) purpose(wing, fly) pw(wing, horse)
isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(paw, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(snout, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)
pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(paw, 4) quantity(leg, 4) purpose(horse, cargo)
pw(eye, snout) quantity(eye, 2) taxonomicq(horse, ruminant)
pw(ear, snout) quantity(ear, 2) ride(human, horse)
pw(mouth,snout) purpose(eye, see) motionprocess(horse,walk)

Table 5: Example 1 (from experiment 9)

purpose(claw, catch) pw(claw, leg) purpose(lung, breathe)
pw(lung, horse) conditional(wing, fly) motionprocess(horse, fly)
ability(horse, fly) purpose(wing, fly) pw(wing, horse)
isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(paw, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(snout, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)
pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(paw, 4) quantity(leg, 4) purpose(horse, cargo)
pw(eye, snout) quantity(eye, 2) taxonomicq(horse, ruminant)
pw(ear, snout) quantity(ear, 2) ride(human, horse)
pw(mouth,snout) purpose(eye, see) motionprocess(horse,walk)

Table 6: Example 2 (from experiment 9)

in the two results presented in tables 7 and 8, it has all the horse features, the specified
“flying” requirements and some added knowledge that we consider valid, like having 2
wings, lungs or claws. It is clear that these results were subjectively driven by us in the
choice of the concepts and frame design, but the argument we try to bring is that it pro-
duces a new concept that, not only respects the query, but also brings new knowledge that
was selectively projected.

In the final experiment (10), we decided to give a more vague specification, asking
only for anew ability in the blend, as well as the generic framesaprojection andaframe.
As a result, we found the exact pegasus in 23% of the times. This gives the first evi-
dence that the system can be used for generating concepts without a very constraining
and specific query and led us to the following experiments, in which we tried to assess its
generative possibilities.

5.2.2 Other creatures

In order to explore the potential of the system, we made additional tests, without imposing
specific goals beforehand. We didn’t make significant variations on the weights of the
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previous tests. For two, we removed some weights from the configuration and reduced
Integration in the latest ones. In table 9, we show all the configurations (the omitted
weights are 0, as in the other experiments). We made variations on the query and checked
the results, trying not to bias for particular outcomes. Therefore, these tests aim to give
an informal insight on the generative potential of the system.
We found several “creatures” that we’d like to describe. To the first (experiment 11),
we call “dumborse”, a flying horse that uses its ears as wings (likeDumbo, the flying
elephant). This “creature” is possible to find in mapping 1 (ears are mapped ontowings).
It is exactly a horse, but it has wings instead of ears, which serve to fly and to hear. With
Dumbo in mind, we tried to go further to a horse with ears that serve to fly and hear
(instead of wings in place of ears), and this was achieved by allowing only weights on
Integration and Relevance (experiment 12). A simple explanation is that, while it satisfies
entirely Relevance and, almost totally, Integration, it has less topology and less Unpacking
(ears don’t ever relate to fly in the bird domain).
Another creature to report is the “flying snout” (which appeared in 23% of the runs of
configuration 13, see table 9), a snout that has all the features of the bird. This is a “weak”
blend in the sense that an isolated concept (the “horse snout”) gets projected to the “bird”
structure without any surrounding support such as its shape or its purpose. The third
creature is the transport bird, which has all the features of the bird, but also carries humans,
it serves for cargo and traction. It appeared occasionally during the previous experiments,
but was triggered now by the frame “transportmeans” in the query (in configuration 20),
meaning indeed we had it in mind. Yet, its appearance throughout the tests (only when
dealing with mapping 3, though) led us to include it in this section. The fourth creature is
an oviparous horse, with two legs (instead of four), two wings and claws. It appeared in
less than 10% of the results in the configuration 20, but it was the one that got the highest
score.
In configurations 14, 15, 21 and 22, the results were essentially copies of the “bird”
concept map, whereas 19 and 21 yielded highly unstable partial projections of both the
“horse” and the “bird” concept maps simultaneously to the blend, since each of the 30 runs
returned a different concept map. In the latter, we find it difficult to interpret anything. A
possible explanation for these unsuccessful configurations is that the frames used are too
much abstract, leaving no concrete goal to the system.

Exp. Weights Query Mapping
# I T MVR U R
11 8.5 4 2.5 1 9 newability+aframe+aprojection 1
12 8.5 0 0 0 9 newability+aframe+aprojection 1
13 8.5 0 0 0 9 newability+ bprojection + bframe 1
14 8.5 4 2.5 1 9 newability + bprojection + bframe 1
15 8.5 4 2.5 1 9 bprojection + bframe 1
16 8.5 4 2.5 1 9 newability + bprojection + bframe 3
17 8.5 4 2.5 1 9 bprojection+ aframe 1
18 8.5 4 2.5 1 9 bprojection+ aframe 3
19 8.5 4 2.5 1 9 aprojection+ bframe 3
20 4 4 2.5 1 10 transportmeans+bframe+bprojection 3
21 4 4 2.5 1 10 transportmeans+bframe+bprojection 1
22 4 4 2.5 1 10 transportmeans+bframe+bprojection 5

Table 7: Parameters for configurations 11 to 22
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These ad-hoc experiments reveal that the system can produce novel concepts, yet it
also demonstrates clearly that we face a very large search space, demanding a serious
reflection about the tuning of the system.
It is the capacity to create novel and valid (with regard to the queries) creatures that tes-
tifies the potential of this model towards computational creativity. On one hand, it surely
allows the creation of new concepts, a vital feature of a creative process, but on the other
hand, the ultimate control always needs to be parameterized by a user (or another sys-
tem?). There seems to be a paradox here: one must orient the system towards novelty and
usefulness, but if doing so exhaustively, the emergentcreativity is seta priori by the pa-
rameters. Yet, this apparent paradox seems to be present in discussions around creativity
regarding issues like intentionality or evaluation. In fact, the boundaries between what
is and what is not a creative product are very controversial and fragile. In our case, this
boundary may lie within the level of abstractness given in the specification, which should
comprise the mandatory conditions (e.g. specific frames) and more abstract preferences
(e.g. abstract frames, likeaframe).

6 Discussion

As we expected, the experiments raised several fundamental issues, some of which de-
manding a short reflection. Does the system agree totally with the Conceptual Blending
framework? Does this system implement any kind of Computational Creativity? What
can we expect from this model?
Since Fauconnier and Turner do not present a formal perspective on Conceptual Blending,
it is not straightforward to validate our work in this respect. Starting from the represen-
tation of a mental space, we decided for a static, generic notion, thedomain. We believe
the representation we use (or an extension of it) could lead to mental spaces in general,
but we are not confident to claim so much yet. This reduction of the knowledge basis
of Conceptual Blending - the mental space - brings,a priori, limitations to our model.
If successful, it should be able to produce the specific types of blends that result from
blending static knowledge, such as domains, as opposed to dynamic knowledge, such as
we have in discourse. In the latter case, we would need to extend our language to consider
modalities, tense, mood, perspectives, or any other subjective, pragmatic or circumstan-
tial components of discourse. Assuming that concepts, like “horse” and “bird”, can be
validly defined by domains (those of “horses” and “birds”, from a common sense per-
spective), our model is expected to generate new concepts, like “horse-bird”, described
in the same language. Above all, this “horse-bird” must be understandable froma) the
chain of explanatory connections that appear in the new domain;b) the reference to the
input domains, in the end-points of the explanatory connections. This agrees with the
notions ofemergent structure andweb of connections that are present in the fundamentals
of Conceptual Blending.
In (Pereira and Cardoso, 2002b) and (Pereira and Cardoso, 2002a), we discussed the po-
tential of this framework from the point of view of Computational Creativity, namely in
transforming the search space by changing the meta-level description of a domain. We
showed that, having a level of instances (in the example of that paper, visual objects of
a “house” and a “boat”), a theory for explaining the concepts involved in them, and as-
suming these instances as the search space for the problem (in the example, “drawing a
house” or a “boat”), it is possible to obtain new ideas via blending the theories. After
generating a blend (with the first version of this model, formally described in (Pereira
and Cardoso, 2001)), the system reinterpreted each of the instances according to the new
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relations (e.g. a house with a round window). There were no criteria for assessing the
value of the blends or even selective projection. The idea was to generate the whole new
search space at the instance level starting from different mappings. Currently, we focus on
domain theories and on the evaluation of the blends via optimality pressures, leading to
further conclusions about the creative aspects of this model. Creativity has, without con-
troversy, two important aspects: novelty and usefulness. The work described in (Pereira
and Cardoso, 2002b) and (Pereira and Cardoso, 2002a) is centered on novelty, leaving
the task of choosing the “useful” results a responsibility of the search procedure. The
combination of the two could then be novel and useful. A step further, the model we
present now brings two components that may be valuable for usefulness: the frames and
the optimality pressures. Frames provide low-level specifications or directives that should
be valued in the blend, whereas the 8 optimality pressures work as high-level directives
that allow the system to evaluate each blend according to several aspects. Thus, without
having to exhaustively specify the query, it is possible to generate a novel concept that
conforms a set of constraints. From the assumption that the ability to create concepts is a
factor of creativity, we argue that ours is a computational model of creativity.
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Abstract

A quantitative theory of abstraction is presented. The central feature of this is
a growth formula defining the number of abstractions which may be formed by an
individual agent in a given context. Implications of the theory for artificial intelli-
gence and cognitive psychology are explored. Its possible applications to the issue of
implicit v. explicit learning are also discussed.

1 Introduction
Abstraction has long been assumed to be a key process in cognition. And though it has
never been given a generic specification, philosophers since the time of Aristotle have
been willing to accord it a central role. In Aristotle’s case (1), and later in Locke’s (2),
the process was seen as lying at the heart of the problem of ‘universals’.1 More recently,
artificial intelligence researchers have carried on the tradition, letting abstraction take the
strain in models of search, problem solving, theorem proving, planning, reasoning and
programming [c.f. 3, Gunchiglia and Walsh, 1990, 4, 5].

That such an important process has never been put on a formal, theoretical footing is
a little odd. It may be that it is regarded as too obvious and straightforward to require
formuleaic treatment. And, certainly, there has been little dispute down the ages about
the nature of the process itself. Accounts of the process have tended to show strong
commonalities. For example, consider Hume’s description from ‘The Essay’ (6).

’Tis evident that in forming most of our general ideas, if not all of them,
we abstract from every particular degree of quantity and quality, and that an
object ceases not to be of any particular species on account of every small
alteration in its extension, duration and other properties. (pp.16-7).

Hume saw abstraction, then, in terms of the filtering-away of information of specifics,
with the aim of extracting content or meaning. Aristotle also saw it this way. So too did
Locke, the philosopher perhaps most strongly associated with the idea that universals are
derived by abstraction from empirical data. Locke, in fact, deemed abstraction to be the
leaving out of particular circumstances of time and place.

But even a brief examination of these portrayals of the process reveal underlying in-
consistencies, contraditions and ambiguitities. Philosophers may agree that abstraction
involves the elimination of relatively specific information. But they are less clear how

1One characterisation of the difference between Plato’s and Aristotle’s views on the derivation of universal
truths was that Plato saw them as coming ‘from above’ while Aristotle saw them as coming ‘from below’.
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the specificity is to be measured or how the information is to be represented. In fact, any
attempt to specify what is to be eliminated tends to fall foul of counter-examples. Locke’s
notion, for instance, that all factors relating to time and place should be eliminated would
seem quite inappropriate in the case of abstraction applied to higher-level concepts, such
as might relate to physical beauty for example.

Suffice it to say, then, that philosophical accounts of the process of abstraction are
characteristically pre-theoretical. They assume the existence of a well-defined, shared
meaning for the term. Since this does not exist, these accounts lack precision and are
insufficient for the mechanistic and programmatic purposes of AI.

No surprise, then, that AI projects which attempt to harness the power of abstraction
in a particular problem domain typically start by providing a mechanistic definition of the
process (cf. Gunchiglia and Walsh, 1990). Clearly, AI researchers are aware of the fact
that abstraction has no generic specification and that they cannot hope to make use of it
without first providing a working definition.

The formulation of a generic specification for the process is a worthy goal, then, which
might yield benefits right across the landscape connecting cognitive science to epistemol-
ogy. It could provide a generic basis for the diversity of abstraction-using AI techniques.
It might also provide a means of integrating abstraction-related ideas arising in different
areas. Possibly, it might also help to fertilise new techniques for exploiting abstraction
within cognition. Last but not least, it would help to further the theoretical development
of artificial intelligence.

But while the present paper takes this ambitious goal as its general context, it makes
no claim to reach the target or even to approach it very closely. Rather, it addresses the
special problem of abstraction quantification. The paper shows, in particular, how we
may calculate the number of abstractions which may be generated by an individual agent
in a particular context. In so doing, it develops and uses a partial formalisation of the
process itself. This turns out to have a number of practical and explanatory applications
within AI and in related areas such as cognitive psychology. There is also the hint of a
new angle on the longstanding problem of universals.

2 Derivation of the theory
Informal characterisations of abstraction (such as Hume’s) normally focus on the reduc-
tive aspects of the process, i.e., the way in which relatively specific information is elim-
inated. But the process may also be characterised in terms of its constructive function.
An abstraction is necessarily an abstraction of something. In essence, then, it is an iden-
tification of a phenomenon — an object, process or property of the abstracting agent’s
world. At the point of construction, the constituents must be already available. We may
view abstraction therefore not in terms of the elimination of irrelevant components, but in
terms of the selection and combination of relevant constituents.

The advantage of the constructive interpretation is that it opens up the possibility for
quantitative analysis. Since the result of any act of abstraction is the identification of a
new phenomenon embodying some combination of currently identified phenomena, we
can use combinatorial reasoning to determine the number of abstractions a given agent
can form starting from a base of primitive identifications.

However, there are several complications to take into account. The number of possible
abstractions might seem simply to be the number of ways in which the elements of the
base set may be combined. But this is not quite correct. Each new abstraction identifies
a new phenomenon and thus becomes a potential constituent in a further abstraction. The
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process, then, is inherently recursive. The analysis should take account of this.
Also of importance is the fact that there are two quite different ways in which iden-

tifications may be combined to form a new abstraction. First, there is the process of
composition in which identified phenomena are combined together as parts to form a new
whole. Second, there is the process of classification in which identified phenomena are
gathered together (as whole elements) into a class of alternatives. (In AI terms, the former
is construction using PARTOF relationships and the latter is constructing using ISA rela-
tionships.) Every possible subgroup of identifications is a candidate for both processes.
Thus, starting from any base set, we may derive a set of abstractions by treating each
possible subgroup as (a) a composite and (b) a class.

The general idea is visualised in Figure 1. Here the base set of identifications is
labelled ��� . From ��� , we obtain ��� : each identification in this set is an abstraction derived
by applying composition or classification to a subset of ��� . Treating ��� as the base set
permits the derivation of a set ��� in which each phenomenon is the result of classification
or composition applied to a subset of � � . Treating � � as the base set permits the derivation
of the set �
	 and so on. In this manner, we can go on to derive ��� , ��� , �� etc.

Figure 1: Abstraction tree.

The diagram portrays the generation of possible abstractions, starting from a set of
primitives. The dynamics of this are characteristically constructive. But the eliminative
aspect should also be apparent. In the case of both composition and classification, a set of
elements is reidentified as a single entity. Information relating to the elements themselves
is effectively eliminated. But the result is achieved in two different ways. In the case of
composition, the elements become the component parts of a new whole. In classification,
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the elements become alternative manifestations of a single identity.

3 Complexity
Applied recursively to a base set of identifications, the two forms of abstraction lead to an
infinite hierarchy of constructs. The number of nodes in this hierarchy expands rapidly as
we move upwards from level to level. Let us say there are � nodes in a particular layer.
Then we would expect the number of nodes in the layer above to be

���������

since the number of possible combinations of n objects is
� � , and the process gen-

erates two nodes for each combination. However, we must also account for the fact that
some of these nodes are redundant. Clustering applied to all possible classes of a set of
objects is redundant, since any class obtained must be identical in object membership to
one of the original classes. By the same token, abstractions involving classes composed of
classes are redundant. Thus we need to discount the nodes which result from classification
applied purely to classes.

Exactly half of the � nodes will be classes. Therefore we should subtract
����

. The
revised formula for the number of nodes then becomes

����� � �
��� ��

It might seem that a further modification should be made to take account of the fact
that exactly � of the

� � possible combinations are singleton sets, i.e., they simply yield
‘copies’ of nodes at the layer below. (We might discount these nodes by subtracting

� � .)
However, since it is possible in principle for abstractions to be constructed out of nodes
at different levels in the tree, it simplifies matters if we allow the singleton sets to remain.
This way, every level of the tree contains a copy of every node at every level below and
the possibility of cross-level abstractions is automatically taken into account.

To render the formula in a recursive form is now straightforward. If � � is set equal to
the number of basic elements, the number of nodes ��� represented at the  ’th level of the
hierachy may then be calculated using the following recursive formula.

� �"! ��# ����� ��$ �
��� � $�

4 Significant abstractions
The growth formula reveals the exponential cost of abstraction formulation. But it ap-
plies specifically to the case of exhaustive (i.e., unrestrained) abstraction rather than to
abstraction in practice. The difference is significant. Agents which form abstractions in
a realistic situation are surely unlikely to do so exhaustively. More likely, they will aim
to ensure that abstractions match up to reality. This will involve making sure that any
identifications formed are literally significant, i.e., identify real and salient phenomena.
(Concerns about the inaccessibility and/or implausbility of objective reality are ignored
here.) The net effect is that the set of significant abstractions for any particular individual
is likely to be a small subset of the total set of possible abstractions.

But although the costs of in-practice abstraction may be lower than the growth formula
suggests, they will not be as low as we might hope. They will, after all, include the
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costs of carrying out the ‘reality check’, i.e., whatever operation is required to ensure that
abstractions match reality. In the case of classification, this may involve nothing more
than making observations about similarities among the relevant class members. But in the
case of compositional abstraction, the resulting construct is only valid if the elements fit
together in the right way, i.e., only if they have the right relationships. Thus the formation
of compositional abstractions always involves the identification, by the abstracting agent,
of the relevant relationship. There is evidence to suggest that in the worst case this may
be an infinitely complex task (7).

5 Types and tokens
Any abstraction whose structure (in the hierarchy) is not, at any stage, mediated by classi-
fication (i.e., whose roots do not go back through any class nodes) has only one, possible
grounding in basic elements. In the perception of the agent, there is only one way that
it exists. As a conceptualisation, then, the abstraction constitutes a token. In contrast,
any abstraction whose derivation is mediated by classification (i.e., whose roots do go
back through class nodes) identifies a phenomenon with more than one possible ground-
ing in basic elements. With respect to the given set, the latter constitutes a type, since it
effectively stands for more than one combination of elements.

The theory thus gives a formal meaning to the long-standing distinction between types
and tokens. But note how it upgrades the idea from a simple dichotomy into a continuous
dimension. As noted, the roots of a type node must go back through one or more class
nodes. But there can be more or less of these. And they may appear higher or lower in
the tree. Thus, the ‘typeness’ of a phenomenon is not a black-and-white issue. Rather, it
is a matter of (2-dimensional) degree.

How then should we properly render the distinction between types and tokens? A
simple approach might be to treat every phenomenon as a type, and to say that the ‘type-
ness’ of a particular phenomenon is just the size of its extension — the number of ways
in which it can exist. A token could then be thought of as a type with an extension of one.

An alternative would be to treat an identification as a type only if its class nodes
are sufficiently close to the surface, i.e., appear sufficiently high in the relevant abstrac-
tion construct. There might be problems in identifying a suitable cutoff point. But the
approach has its attractions. It would, for example, avoid the necessity of treating the in-
dividual called Fred Bloggs as a ‘type’ simply on the grounds that he may consist, at any
one time, of quite different arrangements of quantum states. The roots of ‘Fred Bloggs’
may go back through class nodes, we could argue, but they are at too great a depth to be
treated as significant.

Perhaps the best approach is simply to accept that the traditional type/token terminol-
ogy over-simplifies reality. The logical structure of abstraction means that the size and
character of a phenomenon’s extension may vary in a range of ways. Therefore there can
be no hard and fast distinction between types and tokens.

6 Other applications of the theory
The growth formula and its underlying principles provides a definition of the term ‘ab-
straction’ and a means of estimating the number of abstractions which may be formed by
an individual agent in a given situation. It provides a quantitative theory of abstraction
rather than a qualitative one, since it says nothing about what abstractions will actually
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consist of, except that they will involve the combination of certain elements. It also says
nothing about the way in which the process works or why it is required.

The theory can be applied to natural agents and even, in principle, to human subjects.
But here there is always the problem of identifying the set of basic identifications upon
which abstraction may build. Without a specification for this set, the growth formula
cannot be applied and the rest of the theory becomes inoperable. In some cases, it may
be feasible to treat an agent’s sensory stimuli as the set of fundamental identifications of
phenomena. (Certainly, there could be no more basic set of primitives than this.) But in
practice the approach still raises horrific problems of enumeration.

More practical are applications which focus on artificial agents, particularly when
these are hand-designed. Very often, the basic set of environmental objects with which a
designed agent engages can be simply read-off the design. The derivation of the potential
abstraction tree is then straightforward.

In some cases, it may be useful to map out an agent’s total abstraction set simply as
a means of evaluating its possible, representational trajectories (cf. 8). This might also
provide the basis for an evaluation of the agent’s conceptual adventurousness. Its relative
penetration of the total abstraction set — the ratio between the number of developed and
potential abstractions — summarises the degree to which the agent has fleshed-out the
potential conceptualisations of its environment. Relative penetration might then become
a kind of conceptual ‘horse-power’ rating for artificial agents. (This is not completely
satisfactory, however, since the total abstraction set will normally be significantly larger
than the set of significant abstractions.)

7 Representation and behaviour

To some degree, the theory may also be used to make judgements about the representa-
tional behaviour of agents. An agent’s total abstraction set includes all the phenomena
that the agent is capable of identifying (including ones that do not actually exist). Putting
this in representational terms, we would say that the abstraction tree identifies the com-
plete set of phenomena that the agent is capable of representing, as well as the logical
dependencies between them.

Thus, if a particular phenomenon does not appear within an agent’s total abstraction
set, we know that the agent cannot form a representation for that phenomenon. It may
be unable to form a particular representation for other reasons. But the absence of the
phenomenon from the abstraction set shows that it cannot do so in principle. This might
become an issue of importance, for instance, if an attempt were being made to build an
agent that would acquire the ability to behave contingently with respect to a property of
the world that it was unable to represent.

Imagine for example that the aim is to construct a simple, mobile agent which will
acquire the ability to approach smooth objects but not spikey ones. Regardless of any
efforts made, the experiment will necessarily fail if the phenomenon ‘smooth object’ has
no representation within the agent’s abstraction tree.

But the representational implications of the theory only go so far. It allows one to
calculate what is contained within a particular abstraction set and thus what a particular
agent is and is not capable of representing. However, it says nothing about what a particu-
lar representation will consist of or how it will be constructed. (This is really just the same
point as was made above: the theory does not specify what an abstraction will consist of,
merely that it must combine certain elements.)
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Furthermore, no claim is made that agents will representationally reproduce the struc-
ture of abstraction trees. Indeed, it is apparent that areas of research interested in learning
and behaviour acquisition (whether motivated by a representational interests or not) show
little sign of devising methods which generate abstraction trees, or anything like them. If
anything, the reverse is the case (cf. 9). The evidence is that insofar as contemporary arti-
ficial agents may be said to build representations at all, these do not resemble abstraction
trees.

On the other hand, it is noticeable that the very same areas of research tend to di-
vide attention between classification (class-forming) methods and compositional meth-
ods. In other words, they may be viewed as dividing attention between the two funda-
mental processes of abstraction. This is perhaps most noticeable in machine learning,
which is broadly divided up into a subfield focussing on statistical classification meth-
ods (similarity-based learning) and a subfield focussing on compositional or relational
methods (discovery, analogy, inductive logic programming etc.) (10)

8 Explicit and implicit learning
Perhaps the most fruitful area for applications of the theory is that of cognitive psychol-
ogy. A lively debate in this area involves the problem of explicit v. implicit learning. In
part, this is concerned with the question of whether knowledge is stored in an abstract
or specific (i.e., instance-based) form. It also focusses on the degree to which knowl-
edge is the result of conscious or unconscious processes. (In some sense, the two parts
of the debate are really one, with the former focussing on static issues and the latter on
dynamic.)

Traditionally, the implicit/explicit issue has been researched using experiments in
which human subjects are either taught, or exposed to strings generated by an artificial
grammar. By evaluating the subject’s ability to classify test cases, or to transfer knowl-
edge from one grammar to another, deductions are attempted showing the degree to which
abstractions have or have not resulted from implicit learning processes.

The seminal work in this area was performed by Reber (11) and it was his main
conclusion that unconscious (i.e., implicit) processes of learning could produce internal
abstractions with the same functional properties as those acquired through explicit tuition.
The implications that Reber drew from his results have been widely questioned, with
objections often focussing on the fuzziness of the supposed dichotomy between abstract
and specific knowledge.

All business as usual, perhaps. But from the point of view of quantitative abstraction
theory, it begins to look as if the problem here, as with the dilapidated type/token distinc-
tion, may really be the result of the attempt to apply an over-simplified, black-and-white
conceptualisation to what is in reality a complicated, multi-dimensionsal issue.

According to the theory, abstractions have a logical structure which may be arbitrar-
ily deep. The derivation of new abstractions, whether classificatory or compositional,
may proceed at any level within the tree of existing abstractions. On this view, it makes
no sense to classify new knowledge as either abstract or specific. Rather, it should be
identified as having a particular level of abstraction.

Similar remarks can be made with respect to conscious v. unconscious processing.
Assuming that the level of ‘consciousness’ inherent in cognitive processing is a function
of the abstractness of the entities over which it is applied, we can apply the continuity
upgrade to the conscious/unconscious ‘dichotomy’ too. On the basis of the assumption
stated, we can treat the issue of the consciousness of processing as a matter of degree, and
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judge any specific cases according to elevation in the relevant abstraction tree.

9 Concluding comment
It would be an interesting project to determine how many of the unresolved issues sur-
rounding the question of implicit v. explicit learning would evaporate in the presence
of suitable enhancements in the terminology. The project would certainly be approved
by Alan Newell who nearly forty years ago admonished psychologists for their use of
simplistic, binary opposites in their conceptualisation of cognitive function (12) Rather
obviously, Newell’s criticisms have had a limited impact. In fact, the implicit v. explicit
debate gained its principal momentum a full decade after Newell’s publication. But the
fact that cognitive psychologists still adhere to black-and-white concepts may be due to
the fact that workable replacements have yet to be provided. In this context, the limited
but concrete contribution of the present theory may have a worthwhile future.
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Abstract

Intelligent virtual agents exhibiting autonomous behavior rather than mere reac-
tions to users actions are going to become a major requirement for modern web sites.
In this paper we present Cindy, a 3D agent character designed with SAMIR, a system
conceived to create intelligent agents with a 3D animated look as a front-end, to en-
hance the user interaction with the web applications it’s embedded into. Our system
relies on an XCS classifier system to achieve an autonomous behavior: New rules
are generated during the interaction with the users by the XCS discovery component,
resulting in novel behavioral patterns.

1 Introduction

Intelligent personal agents are software components designed to advise web applications
users, where a high level of human computer interaction is required. Indeed their aim is
to substitute the classical WYSIWYG interfaces, which are often difficult to manage by
casual users, with reactive and possibly pro-active virtual ciceros able to understand users
wishes and converse with them, find information and execute non-trivial tasks usually
activated by buttons pressing and menu choices. Frequently these systems are coupled
with an animated 2D/3D look-and-feel, embodying their intelligence via a face or an
entire body. This way it’s possible to enhance users trust into these systems simulating a
face-to- face dialogue as reported in (Cassell et al., 2000).

A very complete agent of this kind, frequently called an ECA (Embodied Conversa-
tional Agent), is REA (Cassell et al., 2000), a Real Estate Agent able to converse with the
users and sell them a house with regard to their wishes and needs. The interaction occurs
in real time via sensor acquiring user facial expressions and hands pointing; moreover
speech recognition is performed to avoid users type their requests. REA answers using its
body posture, its facial expressions and digitized sounds rendering the salesperson recom-
mendations and utterances. The EMBASSI system (Jalali-Sohi and Baskaya, 2001) was
born by a very big consortium occupied in defining the technologies and their ergonomics
requirements to implement an intelligent shop assistant to facilitate user purchasing and
information retrieval. These objectives are pursued by multi-modal interaction: com-
mon text dialogs as well as speech recognition devices are used to sense user requests
whilst a 3D face is the front-end of the system. The agent is able to send its response
also via classical multimedia content (video-clips, hyperlinks, etc.). In (Kshirsagar and
Magnenat-Thalmann, 2002) an agent is described which is not just able to be animated
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but also to answer to users based on emotions modeled on the Five Factor Model (FFM) of
personality (McCrae and John, 1992) and implemented using Bayesian Belief Networks.

Moreover the Alice chatterbot is used in order to let the web agent process and gener-
ate responses into the classical textual form.

The SAMIR system was created in order to obtain a lighter system than REA, usable
from virtually every browser and operating system, easily embeddable into web applica-
tions as EMBASSI and exhibiting an autonomous behavior, thanks to the XCS algorithm,
even more than the various Bayesian Belief Networks solutions such as the one proposed
in (Kshirsagar and Magnenat-Thalmann, 2002).

Moreover we are spending many efforts in the creation of a custom 3D faces editor in
order to let the users personalize, trough a simple web application accessible via a web
browser, any face used by SAMIR: This is a clear advantage of our system with respect
to the cited ones because none of them integrates a similar built-in component.

The SAMIR system was used to create a "family of prototypes": The first one named
Samir was our first attempt to create a working 3D agent, but it suffered from a simply
implemented behavior because the XCS-based module was not still fully implemented.

While enhancing our XCS module for Samir, we conceived Cindy, a 3D virtual enter-
tainer with a working intelligent behavior and a quite extended knowledge base in order
to mimic a girl very devoted to gossips and chattering: This gave us cues and suggestions,
matured during a set of experiments with end users, about how users perceived Cindy and
about how we could designing Cindy’s dialogue structure, to involve users in interesting
conversations. Finally we are currently implementing UPoet, the prototype of a "virtual
poet". Our prototype uses the generative module YODA devoted to create haikus (a min-
imalist form of Japanese poetry) (Higginson, 1995): It plays and displays small poetries,
keeping his facial expressions and conversational tone coherent with its read verses.

The remainder of this paper is organized as follows: the next section depicts the over-
all architecture of the SAMIR system while Section 3 gets into details of the proposed
chatterbot, called Cindy. Section 4 addresses experimental results and finally, Section 5
draws out future work directions.

2 Overview of the System

SAMIR (see Figure 1) is a client-server system, composed of 3 main sub-systems detailed
in the next sections: the Dialogue Management System (DMS), the Behavior Manager
and the Animation System.

The DMS is responsible for directing the flow of information in our system: When
the user issues a request from the web site, via a form embedded into the HMTL page
displayed by the web browser, an HTTP request is directed to the DMS Server to obtain
the HTTP response storing the chatterbot answer. At the same time, based on the events
raised by the user on the web site (such as clicking specific links, changing the current
web page, selecting particular menus and/or buttons) and on his/her requests, a commu-
nication between the DMS and the Behavior Manager is set up. This results into a string
encoding the expression the Animation System should assume. This string specifies coef-
ficients for each of the possible morph targets (Fleming and Dobbs, 1998) into our system:
We use some high-level morph targets corresponding to the well-known fundamental ex-
pressions (Ekman, 1982) but even low-level ones are a feasible choice in order to preserve
full MPEG-4 compliance. After this interpretation step, a key-frame interpolation is per-
formed to animate the current facial expression.

The SAMIR system allows us to easily create intelligent agents with a 3D animated
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look as a front-end, to enhance the user interaction with the web applications it is embed-
ded into (Abbattista et al., 2002).

In (Zambetta et al., 2003), as an example, SAMIR has been used to create a virtual
book-seller, able to support users searching for a book into a Web book-store.

Behavior
Manager

ALICE
Servlet

FACE DMSexpression

HTTP
Request

ALICE
Response

Encoded
Params

HTTP
Request

Figure 1: The overall architecture of SAMIR

2.1 The Animation System

The FACE (Facial Animation Compact Engine) System is an evolution of the Fanky An-
imation System (Zambetta et al., 2001). Fanky was developed to overcome some limita-
tions of the Tinky system (Paradiso et al., 1999), namely the technologic bottleneck due to
the EAI (External Authoring Interface) API. It did not allow any application to reach high
framerates, whilst using Shout3D API applets ensure good performances and even a very
good OpenGL based hardware support, also with respect to "advanced" rendering fea-
tures such as, for example, bump mapping, environmental mapping and multi-texturing.
Besides, Shout 3D is almost 100% VRML ’97 (The VRML ’97 Specification) compatible
and it has some built-in applet resembling the basic Open Inventor viewer classes, very
useful to fasten the application development.

FACE design resembles Fanky in the implementation of SACs (Standard Anatomic
Components). The basic idea underlying them is to define face regions, acting as ob-
jects, in an object-oriented sense of the term. The offered services correspond to different
low-level deformations such as FAPs (Facial Animation Parameters), used during the an-
imation process. The Facial Animation Parameters (FAPs) are the set of parameters
defined by MPEG-4 to allow the animation of synthetic face models (The MPEG-4 stan-
dard specification) . They are divided into a high level set, used to describe visemes and
expressions, and a low level set, describing facial deformations in terms of FDPs (Facial
Definition Parameters), a minimum collection of "fundamental" points.

SACs may offer even services such as face sculpting and remodeling, used when the
user wants to modify the 3D face mesh, as detailed later on in this section when we
sketch our custom editor out. Finally, using SACs we could choice the numerical method
employed to deform vertices associated to a particular region of the 3D face, at runtime.

After having employed different numerical methods in Fanky (i.e. FFD (Sederburg,
1986), Waters muscle model (Waters, 1987) and various key-frame interpolation schemes
(Bergeron, 1986)), we choose to use the linear interpolation of a 3D face key-frames, as
exported by the 3D Studio Max morph targets.
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Our choice was dictated by the experimental evidence that, this method represents in
our opinion, the best compromise between speed and accuracy.

We used a Shout 3D plug-in to export morph targets data straight from the 3D Stu-
dio Max 4.0 modeler to the S3D file format, considerably shortening the setup process
required for integrating a new face into the SAMIR system. Indeed, the morph targets
meshes were generated using the well-known FaceGen software (The FaceGen website):
This enabled us to bypass a "preprocessing" phase usually devoted to the manual creation
of a detailed 3D face, saving some other time.

FACE supports a variable number of morph targets: For example we currently use
either 12 high-level ones or the number of the entire "low-level" FAP set, in order to
achieve MPEG-4 compliance (The MPEG-4 standard specification) .

In the high-level parameters scenario we are just interested to manipulate a facial
expression as a combination of "fundamental" expressions, reported in table 1, a quite
simple representation to be used in conjunction with our XCS Classifier System in the
Behavior Generator, the module driving Cindy’s behavior.

In fact each effector of the XCS matches exactly one expression, but we need exactly
4 bits to encode every single expression (see section 2.3 for more details about that).

Even in this case we have the effector part of each XCS rule is 48 (equal to 12*4) bits
long, which is always enough to create storage and debugging problems when the set of
rules starts to considerably grow.

Using just a small set of high-level parameters might be extremely useful when trying
to avoid bandwidth limitations, a major advantage in porting this animation module to a
small device such as a Pocket PC (The Pocket PC website), a process we are beginning to
experiment with.

Table 1: The set of high-level morph targets.
Expression Type

Anger Stimulus-response
Disgust Stimulus-response

Fear Stimulus-response
Sadness Stimulus-response

Happiness Stimulus-response
Surprise Non-conscious reflex

Left Blink Non-conscious reflex
Right Blink Non-conscious reflex

Left Brow Up Non-conscious reflex
Right Brow Up Non-conscious reflex

Left Brow Down Non-conscious reflex

In the low-level scenario, on the contrary, we use 68 morph targets, one for each
allowed FAP: This maps badly to be used with the Behavior Generator because the length
of the rule will be overwhelming and hard to handle.

This option is provided if we want Cindy to be employed in very simple applications
where a fixed logic rule set might turn out to be a useful choice, eliminating the need of
the XCS.

A possible scenario of this kind is represented by the use of Cindy as a simple virtual
presenter or speaker on web sites, web radios etc.

It is worth noting that an unlimited number of timelines can be used for animations
in FACE, allocating one channel for the stimulus-response expressions, another one for
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eye-lid non-conscious reflexes, another one for head non-conscious reflexes and so on.
We are currently developing a custom editor able to perform the same tasks performed

by FaceGen but optionally giving more control to the user: This way, we believe, each
user, both the unexperienced one and the experienced one, might enjoy the process of
creating a new face, tailored to his/her wishes, who could use some specific low-level
deformation tools, based upon the well-known FFD technique (Sederburg, 1986).

2.2 The Dialogue Management System

The DMS (Dialogue Management System) is responsible for the management of user
dialogues and for the extraction of the necessary information for giving textual responses
to any user. The DMS can be viewed as a client-server application composed mainly by
two software modules, communicating through the HTTP protocol (see Figure 2). The
client side application is just a simple Java applet whose main aim is to let user to type
requests in a human-like language and to send these ones to the server side application in
order to process them.

The other important task it is able to perform is retrieving specific information, based
on the responses elaborated by the server-side application, on the World Wide Web through
the JavaScript technology. On the server side we have the ALICE Server Engine enclos-
ing all the knowledge and the core system services to process user input. ALICE is an
open source chatterbot developed by the ALICE AI Foundation and based on the AIML
language (Artificial Intelligence Markup Language), an XML-compliant language that
gives us the opportunity to exchange dialogues data through the World Wide Web. The
AIML knowledge base of the bot is composed of several categories. Here is an example
of two categories in AIML:

<category>
<pattern>*</pattern>
<template> Hello! </template>
</category>

<category>
<pattern>I WOULD NOT *</pattern>
<template> No one says you have to. </template>
</category>

The <category> tag indicates an AIML category, the basic unit of chat robot knowl-
edge.

The category has a <pattern> and a <template>. The pattern in the first example is the
wildcard symbol ’*’ that matches any input. In general the pattern is a combination of
text and wildcards as in the second example ("I WOULD NOT *"). The template is the
bot’s answer associated to the user input detected by the pattern. Just the text "Hello!" in
the first example or "No one says you have to." in the second example.

ALICE has been fully integrated in SAMIR as a Java Servlet and all the knowledge
of the system has been stored in the AIML files, containing all the patterns matching user
input.

Dialogues data are exchanged through simple built-in classes handling the classical
HTTP sockets communication.

http://www.aisb.org.uk



Cindy: A 3D Virtual Entertainer

Web Browser

 ALICE Server Engine

SAMIR  HTTP
Socket Component

Client Application

Client Side

Server Side

ALICE AIML
Component

ALICE Core
Application

U
ser R

equest

A
L

IC
E

 O
utput

AIML Dialogues

U
ser

 Input
U

ser Input

A
IM

L
  R

esponse

World Wide Web

User

Figure 2: The DMS Architecture

2.3 The Behavior Generator

The Behavior Generator aims at managing the consistency between the facial expression
of the character and the conversation tone. The module is mainly based on Learning
Classifier Systems (LCS), a machine learning paradigm introduced by Holland in 1976
(Holland, 1976). The learning module of SAMIR has been implemented through an XCS
(Wilson, 1995), a new kind of LCS, which differs in many aspects from the traditional
Holland’s framework. The most appealing characteristic of this system is that it is closely
related to the Q-learning but it can generate task representations which can be more com-
pact than tabular Q-learning (Watkins, 1989). At discrete time intervals, whose duration
depend on the particular agent implementation, the agent observes a state of the environ-
ment, takes an action, observes a new state and finally receives an immediate reward.

The basic components of an XCS are:

� Performance Component, that, on the ground of the detected state of the environ-
ment, selects the better action to be performed.

� Reinforcement Component, whose aim is to evaluate the reward to be assigned to
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the system.

� Discovery Component which, in case of degrading performance, is devoted to the
evolution of new, more performing rules.

The environment in which SAMIR has to act is represented by the user dialogue (the
higher the user satisfaction the higher the reward received from SAMIR). At the very
beginning of its life, the behavior of SAMIR is controlled by a set of random generated
rules and, consequently, its capability is very low.

Behavior rules are expressed in the classical format if <condition> then <action>,
where <condition> (the state of the environment) represents a combination of 4 possi-
ble events, sensed by 4 effectors, representing different conversation tones such as: user
salutation (user performs/does not perform salutation), user request formulation to the
agent (no request, polite, impolite), user compliments/insults to the agent (no compli-
ment, a compliment, an insult, a foul language), user permanence in the Web page (user
changes/does not change the page) while <action> represents the expression that the An-
imation System displays during user interaction. In particular, the expression is built as
a linear combination of a set of fundamental expressions that includes the basic emotion
set proposed by Paul Ekman, namely anger, fear, disgust, sadness, joy, and surprise (Ek-
man, 1982). Other emotions and many combinations of emotions have been studied but
remain unconfirmed as universally distinguishable. However, we have extended the ba-
sic set of expressions in order to include some typical human expression such as bother,
disappointment and satisfaction. The Behavior Manager, as explained above, is able to
produce synthetic facial expressions, to be shown according to the content of the ongoing
conversation. Thus the <action> part provides the Animation System with the percentage
of each one of the expressions, to be used to compose the desired expression of our char-
acter. For example, an expression composed by 40% of joy and 60% of surprise is coded
into the string reported in Table 2.

It should be noted however that we encode the value of the expressions in 10% steps,
so that 0100 (i.e. the integer number 4) stands for 40%, 0110 stands for 60% and so on.

Table 2: Encoded String.
0100 0000 0110 0000 0000 0000 0000 0000 0000
% of % of % of % of % of % of % of % of % of
Surprise Sadness Joy Fear Disgust Anger Bother Disapp. Satisfaction

3 Cindy, the virtual entertainer

The framework provided by SAMIR allowed us to create a 3D agent able to entertain
users by chatting with them on several different topics (from religion to politics or gos-
sip). When the user connects to Cindy (http://ant1.di.uniba.it:8080/SamirBeta2/), she
welcomes the user and waits for an input from him. The user, at this point, can start a
conversation concerning every topic he wants to discuss with Cindy. Cindy, contrarily
to the virtual book-seller implemented in (Zambetta et al., 2003), does not perform any
useful task and her aim is only to converse with the user.

Our goal in the experimentation was twofold: i) to test the effectiveness of the knowl-
edge (AIML files) provided with the ALICE package and, ii) to test the quality of the
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synchronization between the character expressions, produced by the animation system
(FACE) and the dialogues managed by the DMS module.

A first experiment was performed in order to verify the capability of the DMS module
to dialogue with users (in this experiment no 3D character has been used). A sample of
10 users was selected, with different skills and knowledge about our system. Users were
asked to interact with Cindy during an entire week, and to report their comments and
suggestions.

During the first 3 days, users were free to choose the topics of the conversation, in
order to get acquainted with the system. In the second part of the week, the topics of the
conversation were imposed (Computer Science, Gossip and Sports, Politics and Religion).

All the interactions have been recorded in order to analyze quantitative and qualita-
tive factors. Over the period of the experimentation, 1,096 dialogues were recorded (an
average of 100 dialogues for each user). The dialogues length ranges from 20 minutes to
293 minutes and each user spent, on average, 70 minutes per day interacting with Cindy.

The mean length of the dialogues was 126 minutes over the free conversation period
and 108 minutes over the guided conversation period.

From the analysis of the log files we noticed several situations in which Cindy was
not able to keep the dialogue going with the users. We classified these situations in 6
different categories. Table 3 shows the frequency observed in the logs with respect to
each provided category. At the end of the experiment, users were asked to report their
own opinions about their dialogues with Cindy (see Table 4).

Table 3: Frequency of the most common errors.
Category Frequency
Quoted Question 29%
Fall-back 20%
Misunderstood Question 16%
Wrong Answer 15%
Evasive Answer 11%
Unknown topic 6%

Table 4: User evaluation of the dialogues.
Evaluation Frequency
Interesting 80%
Funny 80%
Ambiguous 80%
Intelligent 60%
Involving 40%
Sensible 40%
Real 30%
Up-to-date 30%

From the analysis of the separate dialogue logs, both positive and negative character-
istics emerged.

� Positive characteristics. In some dialogues, the Event Interpreter module exhibits
a sort of ironic behavior. In another situation the module has been able to defend
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itself from the critics of a user. In several situations the chatterbot gave some non-
sense answer but, unexpectedly, users found it very nice and were attracted by it.

� Negative characteristics. The chatterbot is not able to manage indefinite pro-
nouns. In very complex dialogues concerning many different interrelated topics,
the chatterbot was not able to continue the dialogue. This situation occurred more
frequently when dialogues were on very specific topics like Science, Religion or
Sport.

Motivated by the quite positive results, we performed a second experiment whose aim
was to test both the reactions of users in front of a 3D character and the effectiveness of
our animation system. This time, the same ten users of the first experiment, were asked to
freely converse with Cindy and to report their impressions about the 3D interface (Tables
5 and 6).

Table 5: User evaluation of the facial expressions.
Not at Very Few Don’t Sufficient Quite Very

all few care good good
Human-like 17% 50% 33%
Sensible 17% 33% 50%
Useful 17% 17% 33% 16.5% 16.5%
Coherent 17% 33% 33% 17%
Pleasing 17% 50% 17% 16%
Funny 17% 33% 33% 17%
Distracting 50% 33% 17%

Table 6: User evaluation of the overall interaction.
Not at Very Few Don’t Sufficient Quite Very

all few care good good
Polite 33% 17% 50%
Efficient 17% 17% 16% 50%
Simple 17% 17% 66%
Proficient 17% 33% 33% 17%
Pleasing 17% 50% 17% 16%
Exciting 17% 17% 33% 17% 16%

From the analysis of the separate dialogue logs and from the collected statistics, we
devised that most of the users considered Cindy very simple and funny. However, many
users complained about the fact that the chatterbot is not able to internally store the current
context of dialogues. Some users would have preferred to have the possibility to modify
the look of the character on their taste (in particular, male users would have preferred to
change some aesthetic features of Cindy).

Some typical situations occurred in this experiment have been: i) users insulted Cindy
(see Fig. 3), in this case Cindy had a disappointed expression; ii) users were very kind
with Cindy (see Fig. 4), in this case Cindy had a joyful expression.
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User> What are you?
Cindy> I am the latest result in artificial intelligence, which can reproduce
the capabilities of the human brain with greater speed and accuracy.
User> You are stupid.
Cindy> (disappointed) I will remember you said that when robots take over the World.

Figure 3: A user insults Cindy

User> I’m nice.
Cindy> Let me be the judge of that.
User> Am I nice?
Cindy> You seem nice to me.
User> I would like you to know that you are very nice.
Cindy> (happy) Ok, is that a fact. Thanks, I like you too.

Figure 4: A user is very nice with Cindy
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4 Conclusions and Future work

In this paper we presented a first prototype of a 3D agent able to entertain users by chatting
with them on several topics. The preliminary experiments performed so far showed that
users were quite satisfied of the 3D agent and, in several situations, they were amused by
Cindy’s non sense answers.

Even if we can rely on a well performing prototype, our work will be aimed to give
a more natural behavior to our agent. This can be achieved improving dialogues, and
eventually, the text processing capabilities of the ALICE chatterbot, and giving Cindy a
full proactive behavior: the XCS should be able not only to learn new rules to generate
facial expressions but also to modify dialogue rules, to suggest interesting links and to
supply an effective help during some site navigation.

Moreover, Cindy has been built up to be used as working prototype by which we
intend to improve the capability of the DMS in order to address issues concerning both
multi- lingual interactions and text-to-speech technologies.
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