
AISB Journal

The Interdisciplinary Journal of
Artificial Intelligence and the Simulation of Behaviour

Volume 1 – Number 1 – December 2001

The Journal of the
Society for the Study of Artificial Intelligence

and the Simulation of Behaviour
http://www.aisb.org.uk

Published by
The Society for the Study of

Artificial Intelligence and
Simulation of Behaviour

http://www.aisb.org.uk/

ISSN 1476-3036
c December 2001

Contents

Preface . ii
Geraint A. Wiggins

Editorial: Special Issue on Agent Technology . 1
Eduardo Alonso, Simon Colton, Daniel Kudenko, Luc Moreau,
Michael Schroeder and Kostas Stathis

Automated Servicing of Agents . 5
Frances M. T. Brazier and Niek J. E. Wijngaards

BDI Agents and Constraint Logic . 21
Stuart Chalmers and Peter M. D. Gray

Using Cognition and Learning to Improve Agents’ Reactions . 41
Pedro Rafael Graça and Graça Gaspar

Designing Agents for a Virtual Marketplace . 61
Kaveh Kamyab, Frank Guerin, Petar Goulev and Ebrahim Mamdani

Modelling Simple Market Structures in Process Algebras with Locations 87
Julian Padget

Towards Agent-Based Service Composition Through
Negotiation in Multiple Auctions .109
Chris Preist, Andrew Byde, Claudio Bartolini and Giacomo Piccinelli

Autonomous Reflectors over Active Networks:
Towards Seamless Group Communication .125
Lidia Yamamoto and Guy Leduc

Market Diversity and Market Efficiency:
The Approach Based on Genetic Programming .147
Chia-Hsuan Yeh and Shu-Heng Chen

Preface

Preface

It is with great pleasure that I welcome the reader to the first issue of AISBJ, the Interdis-
ciplinary Journal of Artificial Intelligence and the Simulation of Behaviour.

AISBJ has evolved from the former AISB Quarterly, which began life as a newsletter,
and then developed into a quarterly referreed journal. Now, finally, AISBJ has formed
its own separate species, leaving AISBQ to excel in its original function as a quarterly
newsletter for the membership of AISB.

The past few years have been an important period for AISB (whose full name is
SSAISB, the Society for the Study of Artificial Intelligence and the Simulation of Be-
haviour). We have changed from a shrinking, financially challenged, relatively passive
grouping into a growing, fiscally controlled and stable organisation for the promotion
of AI and Cognitive Science in the UK. We have exceeded predictions annually for the
past three years in terms of the success of the AISB Convention, in a format first tried
out at Edinburgh in 1999, and we expect to continue this success in April 2002 at Impe-
rial College in London. For the first time, as well, the Society has its own web site, at
www.aisb.org.uk, and materials and submission methods for AISBJ are published
there.

The time is indeed ripe, therefore, for a formal mechanism for the promulgation of
the writing of AISB members and others, which reflects the nature of the Society at work.
AISB Conventions are multi-disciplinary events, bringing together researchers from all
areas of AI and Cogntive Science, and also others from outside those fields. AI, in partic-
ular, has tended to fragment in the past decade, for good reason, as it matures as a field,
broadening and deepening. While this is clearly the consequence of positive develop-
ments, it can also be a drawback, and AISBJ aims, at the referreed journal level, to bridge
the potential gaps arising from specialisation, just as the AISB Convention does at the
conference level.

This inaugural issue is a fine example, based around agent technology, but bringing
together papers developed from three separate specialist symposia in the 2001 Convention
at York. I would congratulate Simon Colton, his co-editors, reviewers and all the authors
of these papers on producing an excellent first volume of the new Journal, especially in
the face of the technical teething problems that always dog such a new enterprise.

Special thanks must go to Medeni Fordham, AISB’s office manager, who has been
closely and patiently involved with the design and administration of the new Journal, and
to Penousal Machado, of the University of Coimbra, in Portugal, who, together with his
creative program, NeVar, produced the cover design.

Now it’s over to the AISB community. Please submit your excellent work to the new
Journal, to help make it our mouthpiece on the world stage.

Geraint A. Wiggins
Chair, AISB

AISB Journal 1(1), c 2001
http://www.aisb.org.uk

Editorial: Special Issue on Agent Technology

Eduardo Alonso?, Simon Coltony, Daniel Kudenko�,
Luc Moreauz, Michael Schroeder? and Kostas Stathis?

? Department of Computing, City University, London, Northampton Square, Lon-
don, EC1V OHB, UK. feduardo,msch,kostasg@soi.city.ac.uk

y Division of Informatics, University of Edinburgh, 80 South Bridge, Edinburgh,
EH1 1HN, UK. simonco@dai.ed.ac.uk

� Department of Computer Science, University of York, Heslington, York, YO10
5DD, UK. kudenko@cs.york.ac.uk

z Department of Electronics and Computer Science, University of Southampton,
Southampton, SO17 1BJ, UK. L.Moreau@ecs.soton.ac.uk

1 Introduction

For the last two decades, agent-based technology has been applied to building intelligent
systems. The ability of agents to make their own decisions and adapt to and learn from
their environment is a very powerful tool for implementing intelligent systems of general
competence. In addition, the study of multi-agent systems — collections of specialised
agents working in parallel — has helped us to solve complex problems not previously
solved using a centralised approach. Moreover, agent-based simulators have been used
to better understand cooperation and competition in society. It is therefore not surpris-
ing that agent-based systems have been successful in many varied domains, including e-
commerce, online learning, medicine, entertainment, human-computer interaction, busi-
ness management, traffic control and conflict simulation.

Because agent technology is such a key area of Artificial Intelligence, and as Britain
is strongly represented in this area, the Society for the Study of Artificial Intelligence and
the Simulation of Behaviour decided to make agent technology the theme of their 2001
convention (AISB’01), held in York. Five invited talks in the plenary sessions at AISB’01
were on agent-based topics. Nick Jennings discussed “Automated Haggling: Building
Artificial Negotiators”, Lyndon Lee described the “Multi-Agent Research at British Tele-
com”, Andrew Jones spoke “On the Concept of Trust”, Christoph Benzmüller presented
“An Agent Based Approach to Reasoning” and Jim Doran described “Agents and Ecosys-
tem Management: from the Fraser River to Boolean Networks”.

Furthermore, the convention included symposia on (a) Software Mobility and Adap-
tive Behaviour, (b) Information Agents for Electronic Commerce, and (c) Adaptive Agents
and Multi-Agent Systems. We invited certain authors from these symposia to submit ex-
tended papers to this special issue, so that we could present a broad cross-section of
cutting edge agent technology in one volume. In the three sections below, we briefly de-
scribe the three subdomains of agent technology represented here, and the specific work
from the authors with papers in this volume.

Editorial: Agent Technology

2 Adaptive Agents and Multi-Agent Systems

When designing agent systems, it is impossible to foresee all the potential situations an
agent may encounter and specify an agent behaviour optimally in advance. Agents there-
fore have to learn from and adapt to their environment. This task is even more complex
when nature is not the only source of uncertainty, and the agent is situated in an environ-
ment that contains other agents with potentially different capabilities, goals, and beliefs.
Multi-Agent Learning, i.e., the ability of the agents to learn how to cooperate and com-
pete, becomes crucial in such domains.

Even though Machine Learning (ML) has been studied extensively in the past, ML
research has been mostly independent of agent research and only in recent years has it
received more attention in connection with Agents and Multi-Agent Systems. This is
in some ways surprising, because the ability to learn and adapt is one of (if not the)
most important feature of intelligence and autonomy. Nowadays, the integration of ML
technology into agent systems has become a major challenge.

Research in Machine Learning for agents and multi-agent systems is still in the begin-
ning stages, and many issues are still unresolved. Amongst these issues are the question of
the source and the proper selection of training data (e.g., the credit assignment problem),
how to achieve coordinated and specialized behaviour in a team of learning agents, the
timeliness of learning problems, and many more (see, for example, (Sen and Weiss, 1999)
and (Kazakov and Kudenko, 2001) for overviews). While reinforcement learning has be-
come the predominant learning technique for agents, very recently the focus is shifting
towards hybrid solutions that incorporate other ML approaches. We expect to see this
trend gaining momentum in the near future.

The Symposium on Adaptive Agents and Multi-Agent Systems at AISB’01 was a pi-
oneering experience, as no symposium on learning agents had been organized previously
in the UK. With the symposium, we intended to increase awareness and interest in adap-
tive agent research in the European AI community, and encourage further research and
collaboration between Machine Learning experts and Agent Systems experts. Last but
not least, we intended to give a representative overview of current research in the area of
adaptive agents in Europe and worldwide. For this Special Issue, we have chosen three
papers from our symposium. Firstly, Frances M. T. Brazier and Niek. J. E. Wijngaards in-
troduce automated servicing as a way of designing adaptable agents, an idea that does not
draw on the classical view of machine learning, but sees adaptation as an externally driven
process. Secondly, Pedro Rafael Graça and Graça Gaspar propose an agent-architecture
to deal with real-time (group communication) problems where it is important both to react
to constant changes in the environment and to learn to recognize the generic tendencies
in the sequence of those changes. Finally, Chia-Hsuan Yeh and Shu-Heng Chen’s paper
presents an economic simulation based on an artificial stock market. Their simulation is
used to study how economic heterogeneity improves market efficiency.

3 Information Agents for Electronic Commerce

Internet connectivity is creating an information-centric society where millions of people
access large amounts of information stored in distinct and possibly heterogeneous data
sources, on a daily basis. Frequently, pieces of information from different sources can be
combined to create new and often more meaningful information. As a way of automating
this process, a research strategy is currently being devoted to the development of infor-
mation agents (Klusch, 1999), software components that can act on behalf of individual

http://www.aisb.org.uk

Alonso, Colton, Kudenko, Moreau, Schroeder and Stathis

users to manage intelligently the information one typically finds in distributed networks
like the Internet.

However, as the complexity of creating new information increases (finding the right
pieces to produce a new one can be quite time consuming), the concept of information
is slowly transforming itself from a freely accessible entity to that of a product with a
price. This transformation has opened up new markets where information is traded elec-
tronically much the same way a physical product is (Cohen and Stathis, 2001). However,
the importance of information markets is that physical products are not excluded, in that
these too can be represented as pieces of information.

The symposium on Information Agents for Electronic Commerce at AISB’01 pre-
sented current research on a wide range of issues, in particular, where activities for trad-
ing information in an electronic market could take place between people, organizations
or both (Dignum and Sierra, 2001). The papers selected for this special issue address the
three particular aspects of service composition, user-agent interaction, and specification
of agent behaviour using computational logic and constraints.

In “Towards Agent-Based Service CompositionThrough Negotiation in Multiple Auc-
tions”, Chris Preist, Andrew Byde, Claudio Bartolini and Giacomo Piccinelli go beyond
the use of auctions for basic services and investigate how to compose services and in
particular how to use auctions to negotiate about such composed services. In “Design-
ing Agents for a Virtual Marketplace”, Kaveh Kamyab, Frank Guerin, Petar Goulev and
Ebrahim Mamdani design an adaptive virtual sales assistant, which builds on a Belief De-
sires and Intentions (BDI) architecture and fuzzy rules to engage in interaction with the
user. Finally, in “BDI Agents and Constraint Logic”, Stuart Chalmers and Peter M. D.
Gray declarative specify an electronic commerce application where the internal architec-
ture of the agents is based on the BDI model too, but in this case, using constraints as the
main representation and implementation formalism.

4 Software Mobility and Adaptive Agents

Mobile agents have emerged as a paradigm for structuring distributed applications. A
mobile agent is a program, which can, at runtime, make autonomous decisions about the
locations where it will continue its execution (Lange and Ishima, 1998). Other methods
for providing software mobility have been proposed, including evolutionary and self-
organising systems, ants, mobile agents, mobile code and active networks.

Software mobility can bring robustness, performance, scalability or expressiveness to
systems. It has been used successfully in different application domains, including network
management, Internet resource discovery, electronic market places and interaction with
mobile users. The topic of mobility is the object of active research, and many varied as-
pects are under investigation, such as communications between mobile entities, languages
to express mobility and their typing, management of resources and security infrastructure
for mobile code. The development of a theoretical framework for describing and rea-
soning about systems with mobility has also received much attention. In particular, the
Ambient calculus (Cardelli and Gordon, 1998) introduces the idea of a location delimited
by boundaries and operations to move across such boundaries.

For this Special Issue, we have chosen two papers from the symposium on Software
Mobility and Adaptive Behaviour. First, Lidia Yamamoto and Guy Leduc present a re-
flector service to maintain application level-connectivity in the presence of network-level
multicast failures; this service relies on mobile code and makes use of migration to adapt
its behaviour to the network configuration. Second, Julian Padget presents a specification

http://www.aisb.org.uk

Editorial: Agent Technology

of electronic institutions in process algebras extended with locations; he examines some
key aspects of a prototypical e-institution using the Seal and type-safe Ambient calculi in
order to compare their properties.

Acknowledgements

We wish to thank everyone involved in the organisation of the AISB’01 convention, in-
cluding the invited speakers, symposium organisers, conference office staff, the technical
support and secretarial staff, and the helpdeskers, without whom the conference would
have collapsed. In particular, we would like to thank the programme committee members
for the three AISB’01 symposia represented here, for their help in attracting, selecting and
reviewing papers, not just for the symposia, but also for this volume: Jean-Pierre Briot,
Mark D’Inverno, Michael Fisher, Christophe Giraud-Carrier, Lyndon Lee, Michael Luck,
Scott Moss, Joerg Mueller, Simon Parsons, Jeremy Pitt, Chris Preist, Omer Rana, Marek
Sergot, Carles Sierra, Francesca Toni, Jan Vitek, Gerd Wagner, Ian Wakeman and Mike
Wooldridge.

Special thanks to Enric Plaza for giving an invited talk at the symposium on Adaptive
Agents and Multi-Agent Systems, and the AgentLinkII network for funding his visit. We
wish to join Geraint Wiggins in thanking Medeni Fordham for her invaluable help in the
production of the AISBJ. We wish to praise Geraint himself for his inspiration in getting
the AISB Journal off the ground. Not only did he suggest the split from the AISBQ and
that the first issue be on agents, but, as chair of SSAISB, he has also been involved with
every aspect of creating this new journal.

References

Cardelli, L. and Gordon, A. (1998). Mobile Ambients. In Nivat, M., editor, Foundationsof
Software Science and ComputationalStructures, Lecture Notes in Computer Science,
volume 1378, pages 140–155. Springer-Verlag.

Cohen, M. and Stathis, K. (2001). Strategic change stemming from E-commerce: im-
plications of multi-agent systems on the supply chain. Journal of Strategic Change,
10:139–149.

Dignum, F. and Sierra, C. (2001). Agent Mediated Electronic Commerce. The European
AgentLink Perspective. Lecture Notes in Computer Science, volume 1993. Springer-
Verlag.

Kazakov, D. and Kudenko, D. (2001). Machine learning and inductive logic programming
for multi-agent systems. In Luck, M., Marik, V., Stepankova, O., and Trappl, R.,
editors, Multi-Agent Systems and Applications. Springer-Verlag.

Klusch, M. (1999). Intelligent Information Agents - Agent-Based Information Discovery
and Management on the Internet. Springer-Verlag.

Lange, D. and Ishima, M. (1998). Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley.

Sen, S. and Weiss, G. (1999). Learning in multi-agent systems. In Weiss, G., editor,
Multi-Agent Systems. MIT Press.

http://www.aisb.org.uk

AISB Journal 1(1), c 2001
http://www.aisb.org.uk

Automated Servicing of Agents

Frances M. T. Brazier and Niek J. E. Wijngaards

Intelligent Interactive Distributed Systems Group,
Faculty of Sciences, Vrije Universiteit Amsterdam,

de Boelelaan 1081a; 1081 HV Amsterdam, The Netherlands
frances@cs.vu.nl ; niek@cs.vu.nl

Abstract

Agents need to be able to adapt to changes in their environment. One way to
achieve this, is to service agents when needed. A separate servicing facility, an agent
factory, is capable of automatically modifying agents. This paper discusses the feasi-
bility of automated servicing.

1 Introduction

Agents typically operate in dynamic environments. Agents come and go, objects appear
and disappear, and cultures and conventions change. Whenever the environment of an
agent changes to the extent that it is unable to cope with (parts of) the environment, the
agent needs to adapt. Changes in the social environment of an agent, for example, may
require modifications to existing agents. A new agent communication language, or new
protocols for auctions, are examples of such changes. An agent may be able to detect
gaps in its abilities; but it may not be able to fill these gaps with its own built-in learning
mechanisms. Whether the need for servicing is detected by an agent itself, or by another
agent (automated or human) is irrelevant to the concept involved: external assistance may
be needed to perform the necessary modifications.

This paper discusses the feasibility of a service for automated revision. In Section 2,
needs for adaptation are discussed. An automated servicing facility, an agent factory, is
described in Section 3. An example of adapting an agent, based on an existing prototype
automated servicing service, is provided in Section 4. The feasibility of such a service for
automated revision is discussed in Section 5, in which the agent factory is also compared
to related approaches. The results presented in this paper are discussed in Section 6.

2 Adaptive Agents

Both static and mobile agents may encounter the need for adaptation. In this section, an
example is used to illustrate a few situations in which external adaptation is feasible.

The focus in this example is on an information gathering agent. The information gath-
ering agent is assumed to be mobile. Its task is to find information for a researcher about
travel arrangements needed to attend a conference. To this purpose, the agent communi-
cates with three other agents (a personal assistant agent, a travel agent, and a bank agent)
and interacts with the World-Wide Web.

Automated Servicing of Agents

Example 1. The personal assistant agent informs the information gathering agent about
its preferences with respect to travel agents, and about the researcher’s travel preferences.
The personal assistant agent has acquired some of this information directly from the re-
searcher, and has acquired some over the course of time from the researcher and from
its own experience. The information gathering agent maintains a profile of the personal
assistant agent, and adapts this profile on the basis of interaction with the personal assis-
tant agent (e.g., as encountered in negotiation settings (Bui et al., 1996)). Note that in
this example personification is not aimed at personalising an agent’s representation of a
human user (e.g., see (Soltysiak and Crabtree, 1998; Wells and Wolfers, 2000)), but the
profile of the personal assistant agent.

Example 2. The information gathering agent consults the World-Wide Web to find dates
and a location for the aforementioned conference. The conference page is annotated in an
ontology that is unfamiliar to the agent. For example, OIL (Fensel et al., 2000; Horrocks
et al., 2001) has been used instead of XML (Bray et al., 2000). One way to approach this
problem is to have the information gathering agent acquire understanding of this ontology.
Another option is to use an intermediary agent (e.g., brokers/matchmakers (Wong and
Sycara, 2000)) to find an agent capable of translating between ontologies, e.g. via SOAP,
(the Simple Object Access Protocol (Box et al., 2000)). In this last case, the agent needs
to “travel” and collaborate with its new assistant during interaction with the conference
site.

The information gathering agent also wishes to discuss possible travel arrangements
with the travel agent. The travel agent indicates that it only “speaks” a specific language
and protocol. The information gathering agent needs to acquire this agent language and
protocol. This is comparable to the acquisition of a new ontology sketched above.

Example 3. During the discussion between the information gathering agent and the
travel agent, the issue of credit rating arises. The information gathering agent needs to
prove to the travel agent that it is trustworthy and has an acceptable credit rating. In
addition to security clearance on its own trustworthiness, the information gathering agent
needs additional information from the personal assistant agent. The information gathering
agent needs permission to ask a bank for this information and the name and address of a
specific bank agent. The bank agent, in turn, requires certificates and a guarantee from
the information gathering agent that specific security measures are in place, before it
will provide any other information. If the information gathering agent does not have this
functionality it may be possible to add this functionality to the agent. (Please note that
adding functionality may not be the only measure that needs to be taken in this case).

In each of the situations sketched above, an automated servicing process is to be used.
The types of adaptation involved are:

� Personalisation: an agent can be provided with profiles specific to its current co-
operation partners.

� Domain and languages: an agent can be adapted to include knowledge about a spe-
cific domain to understand a specific agent communication language and protocol.

� Functionality: new functionality or characteristics can be added to (or deleted from)
an agent.

http://www.aisb.org.uk

Brazier and Wijngaards

3 An Agent Factory

An automated agent servicing facility – an agent factory – is described in this section. The
agent factory, in essence, re-designs descriptions of agents. Previous research (Brazier
et al., 2000a; Brazier et al., 2000b) focussed on automated redesign of multi-agent systems
at a detailed (conceptual) level. The automated servicing service described in this paper
is an extension of this work in two ways.

The first distinction with the previous work is that the agent factory as presented in this
paper is not primarily focussed on re-designing agents on the basis of first principles on a
conceptual level, as described in (Brazier et al., 2000b). The agent factory uses building
blocks to construct, and adapt, agents. Building blocks can be templates, i.e. skeletons
that describe the architecture of a (larger) part of an agent. Components are building
blocks with specific functionality. Templates and components are combined according to
pre-defined rules.

The second distinction with previous work is a broadening of the scope of the re-
design process. The agent factory modifies not only the conceptual description of an
agent, but also its operational code. This necessitates knowledge about the relationship
between the conceptual description and detailed (operational) description of templates
and components.

On the basis of a need for adaptation, the automated servicing process re-configures
templates and components at both levels. Re-configuration (an instance of a re-design
process) of an agent first takes place at the conceptual level: templates and components
are removed and added until a satisfactory conceptual agent description is acquired. On
the basis of the configuration of templates and components in the conceptual description
of an agent, a detailed (operational) description of an agent is generated.

To facilitate the automated re-design of agents, a number of assumptions have been
made on the descriptions of an agent (Section 3.1). In addition, the agent factory has a
library of building blocks, the so-called templates and components (Section 3.2). The
configuration task of the agent factory (Section 3.5) is based on knowledge of the char-
acteristics and properties (Section 3.3), and the availability of templates and components
(Section 3.4).

3.1 Assumptions on the design of agents

The feasibility of an automated service for revision of agents depends largely on the as-
sumptions imposed on the design of the agents. The most important underlying assump-
tions for an agent adaptation service used in this paper are as follows.

The first assumption is that agents have a compositional structure. A compositional
structure greatly facilitates the possibilities of adding, removing and changing parts of an
agent. This principle is used throughout software design, ranging from describing pro-
cesses (e.g., JSD (Jackson, 1975)), via object-oriented programming (e.g., (Booch, 1991;
Pressman, 1997; Wieringa, 1996)) to component-based programming (e.g., (Hopkins,
2000)).

The second assumption is that re-usable parts of agents can be identified: templates
(i.e., skeletons) and components (i.e., building blocks). The agent factory can build
an agent by correctly configuring templates and components. This assumption relates
to design patterns (e.g., (Gamma et al., 1994; Pe~na-Mora and Vadhavkar, 1996; Riel,
1996)) and libraries of software with specific functionality (e.g., problem-solving mod-
els (Schreiber et al., 1999) or generic task models (Brazier et al., 1998)).

http://www.aisb.org.uk

Automated Servicing of Agents

The third assumption is that templates and components are described at two levels of
abstraction: a conceptual description and a detailed description. This assumption circum-
vents two problems. On the one hand, it is difficult to determine a conceptual description
on the basis of a detailed, operational description of (part of) a system (e.g., (Jackson,
1995)). On the other hand, it is again difficult to determine the operational description of
(part of) a system on the basis of a conceptual description (e.g., (Rumbaugh et al., 1999)).
In the case of the agent factory, the detailed description is also an operational description.

The fourth assumption is that properties and knowledge of properties are available
to describe templates and components. Interfaces provided and required by templates
and components need to be described (e.g., as is done in work on describing classes of
diagnostic (non-user-interactive) problem-solving methods by (Benjamins, 1995)).

A fifth assumption is that no commitments have been made to specific languages
and/or ontologies. The languages used for the descriptions of templates and components
on both levels of abstraction are left open, as are the descriptions, and contents, of the
properties and knowledge on properties to describe templates and components. The agent
factory is explicitly developed to be an open architecture.

information gathering
agent

op
c

ai
m

w
im cm m
ai

m
w

i

as
t

X
M

L

H
T

M
L

co-operative
agent

template

XML and
HTML

components

slots

{

{
{

Figure 1: Graphical representation of templates and components and their slots.

3.2 Templates and components

Templates and components are the building blocks with which agents are constructed.
Templates are skeletons which describe an architecture of a (larger) part of an agent. A
template is usually combined with a number of (other) templates and/or components. A
component is a building block with specific functionality.

For each conceptual description, a number of detailed, operational descriptions may
be devised. These operational descriptions may differ in the operational language (e.g.,
C, C++, Java), but also in, for example, the efficiency of the operational code.

Templates and components are configurable. However, templates or components can-
not be combined indiscriminately. The open slot concept is used to regulate the ways in
which templates and components may be combined. An open slot in a template or com-
ponent has associated properties that prescribe the properties of the entity to be ‘inserted’
in addition to the interface of the required building block.

A mapping relation is defined between building blocks containing conceptual descrip-
tions and building blocks containing detailed descriptions. Each conceptual building
block may be related to a number of detailed building blocks; the inverse may hold as
well.

http://www.aisb.org.uk

Brazier and Wijngaards

Templates specify the architecture of an information gathering agent. In figure 1, the
information gathering agent is shown to consist of seven processes (as explained in Sec-
tion 4). Each of these processes has a slot, which is filled by a combination of templates
and/or components. The open slot for the world interaction management process (wim),
is shown to be filled with two components, which provide specific functionality to interact
with web pages annotated in HTML and XML.

An “open-slot preserving” relationship is defined in the mapping relation between
building blocks, so that each open slot in a conceptual template or component is related
to an open slot in the associated detailed template or component. The open-slot preserv-
ing relationship between related conceptual and operational building blocks implies that
templates and components are combined in the same configuration at both levels of ab-
straction. The two-stage revision process facilitates the generation of operational code: on
the basis of the configuration of templates and components at a conceptual level, the de-
tailed, operational code is generated in a relatively straightforward manner, as explained
in the next section.

3.3 Details of templates and components

The building blocks used by the agent factory, templates and components, have the same
structure, as depicted in figure 2. This structure does not make a commitment to specific
conceptual or detailed (operational) description languages, but includes types of informa-
tion that are also included in structures designed to describe design patterns (e.g., (Gamma
et al., 1994)).

characteristics

pre-conditions

properties

template or component properties

open slot properties

template or component description

Figure 2: Structure of templates and components used by the agent factory.

The characteristics of a building block describe its name, creation dates, authors, ver-
sion information, and level of abstraction. This information is not related to the descrip-
tion inside the building block.

The pre-conditions contain assumptions and requirements of the interface of the build-
ing block that have to be satisfied by the environment (i.e., an open slot and the template
or component containing that open slot) in which this building block is to be placed. For
example, a building block which contains a specific sorting algorithm, may require as its
input an unordered list of elements, where each element consists of an unknown part and
an explicit key. In addition, the pre-conditions describe which languages are used in the
description.

The properties of a building block are divided into properties concerning the templates
and components, and properties concerning open slots. Examples of properties of a con-
ceptual template containing a skeleton for an agent are: it is autonomous, it is capable of
communicating with other agents, it is capable of interacting in the world, it is capable of
retaining information on other agents and the world. Properties of an open slot may be,
for example, that a specific open slot contains an agent communication language syntax

http://www.aisb.org.uk

Automated Servicing of Agents

expressed in XML. Template properties at a detailed (operational) level include properties
such as: an agent is a process, the size is so many bytes, and the datastructure is of a spe-
cific class. Properties of open slots are, for example, that the first argument in a specific
open slot contains the input-information for a specific process, and the second argument
contains a pointer to a data structure of a specific class for the results.

3.4 Retrieving building blocks

The agent factory is able to retrieve templates and components on the basis of needs for
adaptation. The re-design process inside the agent factory analyses needs for adaptation
and transforms these into requirements (on structure, functionality, and behaviour) on
agents to be constructed. The agent design is a configuration of templates and components
that satisfies these requirements.

Matching requirements on structure, functionality, and behaviour of (parts of) agents
to properties of templates and components is not trivial. Requirements may be incom-
plete, conflicting, or vague. To solve this problem, a matching process is needed which
has some understanding of the properties involved.

Properties are related to each other in property networks. This allows generic prop-
erties to be, for example, refined into a number of sets of more refined properties. Two
assumptions are made: if a more generic property of an agent holds, then at least one set
of refined properties holds. If all refined properties of one set hold, then the more generic
property also holds.

A number of refinements may exist for a specific property, each of which can be in-
cluded in a refinement tree. Refinement trees can be combined into property networks. In
these networks, it is possible to explore alternative refinements of a property. For exam-
ple, the property that a specific algorithm is a sorting algorithm can be refined into more
specific properties on efficiency, e.g. sorting algorithms in linear time, in O(nlog(n))

time, etc. Alternatively, the ‘sorting algorithm’ property may be refined into more spe-
cific properties on the number of keys used: one key, one primary key and one secondary
key, etc. Yet another alternative is that this property is, in itself, a refined property of a
property expressing that an algorithm is a classification algorithm.

The matching process has variable forms of interpretation. One form is that no inter-
pretation is used at all (syntactical or exact matching), so that a required property needs
to be explicitly present in a building block. An alternative is to use property refinement:
a high level property (e.g., an algorithm which orders a list of elements) for which no
building block can be found, can be refined into a more specific property (e.g., an algo-
rithm which orders an array of elements in O(n2) time), for which a building block can
be found. Usually, a building block will exist with a more specific property, which can
then fulfil the desired property.

A more elaborate means of query interpretation is by traversing semantic property
networks. This usually returns a ‘good guess’, but not necessarily an optimal answer as
a building block with similar properties is returned. The notion of ‘similar’ can be tuned
(e.g., what distance to travel through property networks).

3.5 The process of adaptation

The agent factory is able to adapt an existing agent on the basis of needs for adapta-
tion. The agent factory re-designs agents. The agent factory first obtains an initial set of
required properties (the needs for adaptation) and a description of the agent to be adapted.

http://www.aisb.org.uk

Brazier and Wijngaards

The initial set of required properties is analysed and manipulated (e.g., interpreted,
conflicts are resolved, etc.) to form a set of refined required properties that are still related
to the initial set, yet are more specific. This may already involve checking the library of
templates and components for the presence of templates and components with specific
properties (it makes no sense to require, for example, a sorting algorithm in O(1/n) time
if there are no such building blocks in the library).

On the basis of such a more specific set of required properties, the conceptual de-
scription of the agent is adapted. Building blocks are inserted, moved, and/or deleted,
until the required properties are satisfied if possible. Additional adaptation of the set of
required properties may be necessary (if, for example, the required properties prove to be
conflicting). A new set of required properties may be constructed, based on both the pre-
vious set of required properties and evaluations of the success or failure in constructing a
satisfactory conceptual description.

information gathering agent

own process
control

agent
interaction

management

world
interaction

management

cooperation
management

agent
specific task

maintenance
of agent

information

maintenance
of world

information

Figure 3: The seven processes inside the information gathering agent. Each process,
including the agent itself, has an interface. Between processes, information transfer is
defined (not shown).

At some point in this cycle, the conceptual description of an agent is analysed to check
whether it satisfies a specific set of required properties (based on the initial set of required
properties). If this point has been reached, the agent factory focusses on adapting the
detailed, operational description of the agent. If not, the agent factory may adapt the set
of required properties.

The operational description of an agent is based on the configuration of templates
and components in the conceptual description of the agent. If problems occur in combin-
ing operational descriptions from templates and components, either other templates and
components are used (with the same conceptual description and properties, but different
operational description and properties) or a different conceptual description of the agent is
needed. The process described above is then repeated with additional requirements (i.e.,
required properties).

4 Automated Servicing of an Information Gathering Agent

In this paper, an example is given of an agent that requires servicing. The adaptation of an
information gathering agent in this example is based on an existing prototype automated

http://www.aisb.org.uk

Automated Servicing of Agents

servicing service. The conceptual descriptions of the templates and components are spec-
ified in the DESIRE knowledge-level modelling language (Brazier et al., 1998) and the
operational descriptions are in Java.

The information gathering agent used in this example is based on a template contain-
ing a generic co-operative agent model (Brazier et al., 1996). Figure 3 illustrates the seven
processes distinguished in this generic model. This architecture models an agent that:

� reasons about its own processes (component Own Process Control, or opc),

� communicates with other agents (component Agent Interaction Management, or
aim),

� maintains information about other agents (component Maintenance of Agent Infor-
mation, or mai),

� interacts with the external world (component World Interaction Management, or
wim),

� maintains information about the external world (component Maintenance of World
Information, or mwi),

� participates in project co-ordination (component Co-operation Management, or cm)
and

� the agent’s specific tasks (component Agent Specific Tasks, or ast).

This model of a co-operative agent includes components for management of its own
processes, interaction with other agents including co-operation, interaction with the ex-
ternal (material) world, and an agent’s more specific tasks. In this model, a co-operative
agent receives messages from other agents, and observations in the external world (its
input). It sends messages to other agents and directs its own observations and actions in
the external world (its output).

In this section, two examples are given of adaptation of the information gathering
agent. In the first example, the information gathering agent is adapted to include func-
tionality for understanding a new language (Section 4.1). In the second example, the
information gathering agent is adapted to include new functionality for (more) secure
communications and co-operations (Section 4.2).

4.1 Shallow adaptation

Figure 4 depicts the information gathering agent and shows that both the agent interac-
tion management process (aim) and the co-operation management process (cm) are open
slots. The open slot of the agent interaction management process is filled by two com-
ponents providing functionality for understanding a communication language with the
personal assistant agent and an information provider agent (e.g., which provides access to
the World-Wide Web). The open slot of the co-operation management process is filled by
two components providing functionality for understanding how to co-operate (protocols)
with the personal assistant agent and an information provider agent.

One of the needs for adaptation identified in Section 2 was that the information gath-
ering agent needed to interact with the travel agent. The travel agent was able to indicate
that a specific language and protocol was to be employed. One way for the informa-
tion gathering agent to approach this problem is to use the agent factory to have itself

http://www.aisb.org.uk

Brazier and Wijngaards

information gathering
agent

op
c

ai
m

w
im cm m
ai

m
w

i

as
t

pe
rs

on
al

 a
ss

is
ta

nn
t c

om
m

.

pe
rs

on
al

 a
ss

is
ta

nt
 p

ro
t.

Figure 4: Partial description of the information gathering agent. The open slots for the
agent interaction management and co-operation management processes are filled with two
components each: agent communication languages and protocols.

information gathering
agent

op
c

ai
m

w
im cm m
ai

m
w

i

as
t

pe
rs

on
al

 a
ss

is
ta

nt
 c

om
m

.

pe
rs

on
al

 a
ss

is
ta

nn
t p

ro
t.

tr
av

el
-a

ge
nt

 c
om

m
.

tr
av

el
-a

ge
nt

 p
ro

t.

Figure 5: Partial description of the information gathering agent. The open slots for the
agent interaction management and co-operation management processes are filled with two
components each: agent communication languages and protocols.

http://www.aisb.org.uk

Automated Servicing of Agents

changed, such that it can understand the languages and protocols needed for interaction
with the travel agent.

In the first case, the agent factory searches its libraries of templates and components
and is able to find components that support the functionality required. In addition, these
components contain descriptions at both levels of abstraction, and each description needs
to be linked to the existing description of the information gathering agent. This results in
a description of the information gathering agent, as depicted in figure 5.

The information gathering agent is adapted to include functionality on a language and
protocol for interaction with the travel agent.

First, the new components are inserted into the conceptual description of the agent.
Once this has been achieved successfully, the operational parts of the components are
inserted into the operational description of the agent.

4.2 Deep adaptation

In another example in Section 2, one of the needs for adaptation arises from communi-
cation with a bank agent. This agent requires that the information gathering agent uses
specific security functionality. Again, the information gathering agent uses the agent fac-
tory to have itself adapted.

The agent factory now has two goals in adapting the information gathering agent.
Specific security functionality needs to be added, and functionality for understanding a
language and protocol shared with the bank agent. The latter case has been described in
the previous subsection.

information gathering
agent

op
c

ai
m

w
im cm m
ai

m
w

i

as
t

secure
comm.

secure
coop.

pe
rs

on
al

 a
ss

is
ta

nt
 c

om
m

.

tr
av

el
-a

ge
nt

 c
om

m
.

pe
rs

on
al

 a
ss

is
ta

nt
 p

ro
t.

tr
av

el
-a

ge
nt

 p
ro

t.

ba
nk

-a
ge

nt
 c

om
m

.

ba
nk

-a
ge

nt
 p

ro
t.

Figure 6: The information gathering agent is adapted to include functionality on secure
communication and co-operation, and functionality on understanding a language and pro-
tocol for interaction with the bank agent.

http://www.aisb.org.uk

Brazier and Wijngaards

Adapting the information gathering agent to include specific security functionality
is translated by the agent factory to the need to adapt the agent to include functionality
for secure communication and secure co-operation (as in both processes security-related
awareness is needed). Two conceptual templates have been retrieved from the library
available to the agent factory: a template for secure communication and a template for
secure co-operation. Both templates can be used together, as can be derived from their
characteristics, and both templates can be embedded in the current configuration of tem-
plates and components. Detailed templates are available for these conceptual templates,
which can also interface with detailed templates and components in the current detailed
configuration of the information gathering agent.

As shown in figure 6, the information gathering agent is modified in a non-trivial
manner: the two new templates are inserted into two of the open slots of the top-most
template, and the original fillings of these open slots are inserted into the open slots of the
new templates.

5 Feasibility

The feasibility of an agent factory hinges on a number of aspects. These aspects are
briefly described in Section 5.1. A comparison of the agent factory to other approaches in
constructing agents in described in Section 5.2.

5.1 Crucial aspects

A number of aspects are crucial to the feasibility of an agent factory. These aspects are
mainly related to building blocks; the templates and components. Inserting templates or
components into an open slot of a template or component involves understanding:

� the properties associated with the interface required by an open slot, which pre-
scribe properties of the interfaces of entities to be inserted,

� how properties relate to each other,

� how a description of the template or component to-be-inserted can be connected to
an open slot (this may involve a mapping of interfaces expressed in two different
conceptual description languages),

� how multiple components can be inserted into one open slot (cf. stacking blocks),
especially when different description languages are employed.

Experience with the current prototype has increased confidence in the feasibility of
the agent factory. This prototype is capable of automatically configuring relatively sim-
ple information retrieval agents from a limited set of building blocks. An agent can be
constructed and/or adapted, on the basis of a description of required functionality. This
prototype uses a framework for describing conceptual descriptions based on DESIRE (Bra-
zier et al., 1998) (simplified) and operational descriptions based on the programming lan-
guage Java. The performance of the current prototype is limited in both functionality and
resource usage. Current and future research focusses more on improving the functionality
of the agent factory than reducing its resource usage.

More research is needed (and is being conducted) to, for example, develop ontologies
for building blocks, extend the library with building blocks for other types of agents,
and assess genericity and specificity of (descriptions of) building blocks. The use of

http://www.aisb.org.uk

Automated Servicing of Agents

additional frameworks (such as UML) and languages (such as C) is also being pursued.
Current research includes development of a language to describe blueprints (including the
configuration of building blocks).

An application area in which the agent factory can play an important role is generative
migration (Brazier et al., 2002). In most of today’s agent systems migration of an agent re-
quires homogeneity in the programming language and/or agent platform in which an agent
has been designed. The agent factory supports generative migration: agents can migrate
between non-identical platforms and need not be written in the same language. Instead
of migrating the ‘code’ (including data and state) of an agent, a blueprint of the agent is
transferred. An agent factory generates new code on the basis of this blueprint. A proto-
type is currently being developed as a service of agent-oriented middleware: AgentScape.

5.2 Comparison to other approaches

The agent factory is in some ways comparable to component-based development, agent
construction kits, software reusability, case-based reasoning, configuration design, and
IBROW.

The agent factory’s approach to combining templates and components seems simi-
lar to the approach taken in component-based development of software (Hopkins, 2000;
Sparling, 2000). One distinction is that our approach includes annotations of templates
and components at two levels of abstraction (conceptual and operational). In component-
based development, interfaces are described for components (which are independent of
an operational language); this corresponds to the descriptions of interfaces of templates
and components and interfaces needed by open slots in templates and components. From
our perspective, component-based development provides a useful means to describe op-
erational descriptions of the building blocks used by the agent factory.

Currently, a relatively large number of tools and/or frameworks exists for the (usually
semi-automatic) creation of agents (not automated adaptation). Examples include e.g.
AgentBuilder (Reticular, 1999), D’agents/AgentTCL (Gray et al., 1997), ZEUS (Nwana
et al., 1999), NOMADS (Suri et al., 2000), Sensible Agents (Barber et al., 2001), and Tryl-
lian (Tryllian, 2001). All of these approaches commit to a specific operational description
of agents, and in some cases also commit to a specific conceptual description of their
agents. The agent factory does not make such commitments, making the agent factory
more general purpose (with all the common advantages and disadvantages).

The agent factory currently pragmatically circumvents a number of issues related to
software reusability (e.g., (Biggerstaff and Perlis, 1997)). A major problem is annotat-
ing reusable pieces of software such that they can be retrieved at a later time (by other
people) and reused with a minimal number of changes. In the agent factory, the latter
is endeavoured as well. The former is currently solved in a pragmatic way: templates
and components are annotated, and, when needed, a mapping is provided to other annota-
tions. This, however, is not a scalable solution, and, as such, is one of our current foci of
research. An important decision concerning standardisation is that the agent factory does
not aim to adhere to one specific standard, but a number of standards.

In case-based reasoning approaches (e.g., (Kolodner, 1993; Watson and Marir, 1994)),
libraries of cases are consulted to find a case which matches a problem, upon which re-
trieved cases are adapted. This approach differs from the agent factory in that cases are
modified internally, instead of combined with other cases. Techniques for retrieving cases
from case libraries are, of course, relevant to retrieving templates and components from
libraries.

http://www.aisb.org.uk

Brazier and Wijngaards

The approaches taken by design-as-configuration (e.g., as described in (Stefik, 1995),
CommonKads (Schreiber et al., 1999), and elevator configuration (Schreiber and Birm-
ingham, 1996)) focus on constructing a satisfactory configuration of elements on the basis
of a given set of requirements (also named: constraints). In most of these approaches, no
explicit manipulation of requirements is present, nor is a multi-levelled description of the
elements taken into account. Models and theories on configuration-based design are rele-
vant to the agent factory, in particular to the processes involved in combining conceptual
and operational descriptions.

The approach taken is similar, to some extent, to approaches such as IBROW (Motta
et al., 1999). In IBROW, semi-automatic configuration is supported of intelligent problem
solvers. Their building blocks are ‘reusable components’, which are not statically con-
figured, but dynamically ‘linked’ together by modelling each building block as a CORBA

object. The CORBA-object provides a wrapper for the actual implementation of a reusable
component. A Unified Problem-solving method development language UPML (Fensel
et al., 2001) has been proposed for the conceptual modelling of their building blocks. The
agent factory differs in a number of aspects, which include: multiple conceptual and de-
tailed languages, no pre-defined wrappers for detailed building blocks, agents consist of
one process, and the process of reconfiguration is an automated (re-)design process.

6 Discussion

An automated servicing process for agent adaptation is described in this paper. This
servicing process is the task of an agent factory. Agents are constructed from templates
and components. Adapting an agent entails adapting the configuration of templates and
components.

Five assumptions underly our approach: (1) agents have a compositional structure,
(2) re-usable parts of agents can be identified, (3) two levels of descriptions are used:
conceptual and operational, (4) properties and knowledge of properties and interfaces
of re-usable parts of agents are available, and (5) no commitments are made to specific
languages and/or ontologies.

The main advantage of an agent factory as an automated servicing process is that an
agent can easily obtain new functionality, without obliging the agent itself to have its own
adaptation mechanism. During their lifetime, agents acquire new skills and knowledge.

The agent factory is still being researched; the current research focusses on:

� building a library of templates and components,

� designing description languages for properties of interfaces of, and knowledge
about the use of, templates and components,

� learning from experiences with different conceptual and operational description
languages,

� designing and implementing more extensive prototypes of the agent factory,

� investigating security and trust in using an agent factory.

http://www.aisb.org.uk

Automated Servicing of Agents

Acknowledgements

The authors wish to thank the graduate students Hidde Boonstra and David Mobach for
their explorative work on the application of an agent factory for an information retrieving
agent. This work was supported by NLnet Foundation, http://www.nlnet.nl/.

References

Barber, K., McKay, R., MacMahon, M., Martin, C., Lam, D., Goel, A., Han, D., and
Kim, J. (2001). Sensible agents: An implemented multi-agent system and testbed.
In Proceedings of the Fifth InternationalConference on Autonomous Agents (Agents-
2001), pages 92–99.

Benjamins, V. (1995). Problem-solving methods for diagnosis and their role in knowl-
edge acquisition. International Journal of Expert Systems: Research & Applications,
8(2):93–120.

Biggerstaff, T. and Perlis, A., editors (1997). Software Reusability: Concepts and models,
volume 1. New York, ACM Press.

Booch, G. (1991). Object oriented design with applications. Redwood City, Benjamins
Cummins Publishing Company.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F.,
Thatte, S., and Winer, D. (2000). Simple object access protocol (soap) 1.1. Technical
report, W3C. http://www.w3.org/TR/SOAP/.

Bray, T., Paoli, J., Sperberg-McQueen, C., and Maler, E. (2000). Extensi-
ble markup language (xml) 1.0 2nd ed. Technical Report 20001006, W3C.
http://www.w3.org/TR/2000/REC-xml-20001006.

Brazier, F., Jonker, C., and Treur, J. (1998). Principles of compositional multi-agent
system development. In Cuena, J., editor, Proceedings of the 15th IFIP World Com-
puter Congress, WCC’98, Conference on Information Technology and Knowledge
Systems, IT&KNOWS’98, pages 347–360.

Brazier, F., Jonker, C., and Treur, J. (2000a). Compositional design and reuse of a generic
agent model. Applied Artificial Intelligence Journal, 14:491–538.

Brazier, F., Jonker, C., Treur, J., and Wijngaards, N. (2000b). Deliberate evolution in
multi-agent systems. In Gero, J., editor, Proceedings of the Sixth International Con-
ference on AI in Design, AID’2000, pages 633–650. Kluwer Academic Publishers.

Brazier, F., Jonker, J., and Treur, J. (1996). Modelling project coordination in a multi-
agent framework. In Proc. Fifth Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, WET ICE’96, pages 148–155. Los Alamitos, IEEE
Computer Society Press.

Brazier, F., Overeinder, B., van Steen, M., and Wijngaards, N. (2002). Agent factory:
Generative migration of mobile agents in heterogeneous environments. In Proceed-
ings of the AIMS workshop at SAC-2002. to appear.

http://www.aisb.org.uk

Brazier and Wijngaards

Bui, H., Kieronska, D., and Venkatesh, S. (1996). Learning other agents’ preferences
in multiagent negotiation. In Proceedings of the National Conference on Artificial
Intelligence (AAAI-96), pages 114–119.

Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., and Klein, M.
(2000). Oil in a nutshell. In Dieng, R., editor, Proceedings of the 12th European
Workshop on Knowledge Acquisition, Modelling, and Management (EKAW’00), vol-
ume 1937 of Lecture Notes in Artificial Intelligence, pages 1–16. Springer-Verlag.

Fensel, D., Motta, E., Benjamins, V., Crubezy, M., Decker, S., Gaspari, M., Groenboom,
R., Grosso, W., van Harmelen, F., Musen, M., Plaza, E., Schreiber, A., Studer, R.,
and Wielinga, B. (2001). The unified problem-solving method development lan-
guage UPML. Knowledge and Information Systems. to appear.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1994). Design Patterns: Elements
of reusable object-oriented software. Addison Wesley Longman, Reading, Mas-
sachusetts.

Gray, R., Kotz, D., Cybenko, G., and Rus, D. (1997). Agent Tcl, chapter 4, pages 58–95.
Manning Publishing. W. Cockayne and M. Zyda, editor.

Hopkins, J. (2000). Component primer. Communications of the ACM, 43(10):27–30.

Horrocks, I., van Harmelen, F., Patel-Schneider, P., Berners-Lee, T., Brickley, D., Con-
noly, D., Dean, M., Decker, S., Fensel, D., Hayes, P., Heflin, J., Hendler, J., Lassila,
O., McGuinness, D., and Stein, L. (2001). Daml+oil. Technical report, DAML.
http://www.daml.org/2001/03/daml+oil-index.html.

Jackson, M. (1975). Principles of Program Design. Academic Press.

Jackson, M. (1995). Software Requirements and Specifications. Addison-Wesley, Wok-
ingham, England.

Kolodner, J. (1993). Case-Based Reasoning. Morgan Kauffman, San Mateo, California.

Motta, E., Fensel, D., Gaspari, M., and Benjamins, V. (1999). Specifications of knowledge
component reuse. In Proceedings of the 11th International Conference on Software
Engineering and Knowledge Engineering (SEKE-99), pages 17–19, Kaiserslautern,
Germany.

Nwana, H., Ndumu, D., Lyndon, L., and Collis, J. (1999). Zeus: A toolkit and approach
for building distributed multi-agent systems. In Proceedings of the Third Interna-
tional Conference on Autonomous Agents (Autonomous Agents’99), pages 360–361.

Pe~na-Mora, F. and Vadhavkar, S. (1996). Design rationale and design patterns in reusable
software design. In Gero, J. and Sudweeks, F., editors, Artificial Intelligence in
Design (AID’96), pages 251–268, Dordrecht, The Netherlands. Kluwer Academic
Publishers.

Pressman, R. (1997). Software Engineering: A practitioner’s approach. Computer Sci-
ence. McGraw-Hill, fourth edition.

Reticular (1999). AgentBuilder: An integrated toolkit for constructing intelligent software
agents. Reticular Systems Inc, white paper edition. http://www.agentbuilder.com.

http://www.aisb.org.uk

Automated Servicing of Agents

Riel, A. (1996). Object-Oriented Design Heuristics. Addison Wesley Publishing Com-
pany, Reading Massechusetts.

Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The unified modeling language refer-
ence manual. Addison Wesley, Reading, Massachusetts.

Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de Velde,
W. V., and Wielinga, B. (1999). Knowledge Engineering and Management, the Com-
monKADS Methodology. MIT press.

Schreiber, G. and Birmingham, W. (1996). Special issue on sisyphus-vt. International
Journal of Human-Computer Studies (IJHCS), 44. editors.

Soltysiak, S. and Crabtree, B. (1998). Knowing me, knowing you: Practical issues in the
personalisation of agent technology. In Proceedings of the third internationalconfer-
ence on the practical applications of intelligent agents and multi-agent technology
(PAAM98), pages 467–484, London.

Sparling, M. (2000). Lessons learned through six years of component-based development.
Communications of the ACM, 43(10):47–53.

Stefik, M. (1995). Introduction to Knowledge Systems. Morgan Kaufmann Publishers
Inc., San Francisco, California.

Suri, N., Bradshaw, J., Breedy, M., Groth, P., Hill, G., Jeffers, R., Mitrovich, T., Pouliot,
B., and Smith, D. (2000). Nomads: Toward a strong and safe mobile agent system.
In Proceedings of the Fourth International Conference on Autonomous Agents, pages
163–164. ACM Press.

Tryllian (2001). Agent development kit. Technical report, Tryllian.
http://www.tryllian.com/sub documentation/whitepapers/english/Technical white
paper ADK v1.0.pdf.

Watson, I. and Marir, F. (1994). Case-based reasoning: a review. The Knowledge Engi-
neering Review, 9(4):327–354.

Wells, N. and Wolfers, J. (2000). Finance with a personalized touch. Communications of
the ACM, Special Issue on Personalization, 43(8):31–34.

Wieringa, R. (1996). Requirements Engineering: Frameworks for Understanding. Wiley
and Sons.

Wong, H.-C. and Sycara, K. (2000). A taxonomy of middle-agents for the internet. In
Proceedings of the Fourth International Conference on Multi-Agent Systems (IC-
MAS’2000), pages 465–466.

http://www.aisb.org.uk

AISB Journal 1(1), c 2001
http://www.aisb.org.uk

BDI Agents and Constraint Logic

Stuart Chalmers and Peter M. D. Gray

Department of Computing Science, University of Aberdeen
King’s College, Aberdeen, AB24 3UE, United Kingdom

schalmer@csd.abdn.ac.uk ; pgray@csd.abdn.ac.uk

Abstract

Using Constraint Logic Programming and a data model approach, we provide an
agent with a flexible way to plan and direct its actions and to manipulate and represent
its knowledge. We use constraint solving techniques developed in the KRAFT project
to provide the agent with a sophisticated reasoning and deliberation process. We
explore the declarative use of constraints within a BDI Agent framework to represent
knowledge as complex quantified constraints and apply these techniques to a courier
scenario where cooperating agents communicate, delegate and exchange desires and
information using Generalised Partial Global Planning mechanisms to solve a given
set of tasks.

1 Introduction

Multi-agent systems are emerging as an important software model for next generation
computing problems that deal with distributed tasks in dynamic, heterogeneous environ-
ments. The ability to cooperate and share knowledge is essential in an environment where
agents are executing, scheduling and exchanging tasks, whilst simultaneously judging the
impact that non-local events and new information have on their decision making process.

An agent operating in such an environment must be able to exchange and delegate
tasks in order to satisfy deadlines and resource constraints. To this end, they must be
able to reason rationally about their current capabilities and status, as well as those of
other agents. Beliefs, Desires, Intentions (BDI) agents (Rao and Georgeff, 1995) use
three intentional attitudes to model an agent’s internal state and provide it with such a
reasoning process.

Of particular interest is the performance of such agents in highly dynamic environ-
ments where preset, deterministic plans may become redundant by the time of execution.
BDI agents provide a way of specifying plans at such a high level as to leave the specific
implementation to the agent at run-time. This is very different from Object Oriented Pro-
gramming systems where messages to objects invoke procedural methods which lead to
foreseen changes of state.

The way in which the agent collates and uses the information available to it will affect
its choice of plan. What is needed is a way of making all possible information available
to the agent, so that it has enough autonomy to make the most appropriate decision given
its surroundings, its current beliefs, and its current status.

BDI Agents and Constraint Logic

1.1 Representing Information using Constraints

Traditionally, constraints have been used as a representation of restrictions relating to
a set of data values. More recently constraints have been looked at as a representation
for knowledge in a distributed agent-based environment (Eaton et al., 1998; Gray et al.,
1999b). Our research is concerned with using the declarative nature of constraints within
a BDI Agent framework which expresses an agent’s Desires as complex quantified con-
straints. Thus the Intentions will become plans to achieve them, depending on current
Beliefs.

Constraints are used to model a description of part of a desired goal state which the
agent is free to achieve in any number of different ways. In doing so, the agent can take
account of other constraints it has undertaken to satisfy by combining all the information
into a CLP (Constraint Logic Programming) problem. This representation means that
the agent is not just responding to a sequence of messages, one at a time as in Object
Oriented programming; instead it is able to plan its behaviour by taking into account both
the message and other constraints. Further, if the desired state is impossible to achieve
(over constrained) because of too many different desires, it has to relax some constraints,
by delegating or exchanging tasks with other agents, which is an important aspect of
agent behaviour in multi-agent systems. The constraints thus become mobile (Gray et al.,
1999a).

The constraints can refer to the configuration in space of a number of objects, con-
strained by various relationships and inequalities described in predicate logic. This has
been successfully used in the KRAFT project (Preece et al., 1999), but there the agents
were ‘information seeking’, extracting the constraint information from databases and re-
turning them to a central planner. Here the agents are themselves capable of planning and
interacting with other agents and are using temporal, rather than spatial constraints.

The great virtue of constraints is that they remove unnecessary procedurality from
specifications. Thus it is much easier to combine constraint information from different
sources when it is expressed as First Order Logic clauses than when it appears as indepen-
dently constructed pieces of code. We can transform constraints to use a local ontology
or data model as a common basis (Hui and Gray, 2000). In this form, we can easily treat
it as a CLP and thus provide a decision making process which can take into account many
disparate factors, which is vital when providing autonomy in a highly dynamic environ-
ment.

1.2 Structure of the Paper

We start by looking at an E-commerce scenario which requires agent autonomy, using
couriers. Sections 3 and 4 show how these agents work as BDI agents, and how they
can reason using a CLP solver. Section 5 discusses the agent coordination model and how
constraints are exchanged, and tasks delegated. The final sections discuss implementation
details, evaluation and closely related work before concluding.

2 The Design of an E-commerce Scenario

2.1 Test Environment

We have designed a group of cooperating agents using a constraint based architecture
which operate as couriers in a map-like environment (Fig. 1).

http://www.aisb.org.uk

Chalmers and Gray

Aberdeen

Dundee
Edinburgh

Glasgow

Newcastle

Inverness

Figure 1: Courier Agents in a Test Environment

Each courier is given a set of tasks to complete by a specific deadline and they must
each individually try to construct and execute a schedule which will allow them to com-
plete their given tasks by their respective deadlines. The agents have to take into account
the job of collecting items from customers and delivering them before a set time at a spec-
ified location. They must be able to take on and reorganise jobs, and be able to take into
account road closures, flight delays, traffic jams, etc. Couriers must be able to cooperate
with each other if deadlines cannot be met, or if they are unable to get all parcels delivered
due to the time or distance involved. In these situations, they must be able to delegate and
redistribute the tasks amongst other couriers who are more capable of completing the task
given the constraints imposed. We wish to show that by using a constraint based delib-
eration process for our agents, and by representing each agent’s desires as constraints,
we can provide a flexible (though not always optimal) way of giving the agent enough
autonomy to deal with unexpected situations and with incomplete information in such an
environment, whilst maintaining desired goals.

2.2 The Courier Scenario

A courier agent starting at 7am in Glasgow has 3 parcels to deliver, each by a specific
deadline:

� parcel1 : Dundee! Glasgow, Deadline: 5pm, Payoff: 10

� parcel2 : Edinburgh! Inverness, Deadline: 12pm, Payoff: 7

� parcel3 : Glasgow! London, Deadline: 11pm, payoff: 8

Each parcel has an associated payoff, which is the amount the agent will get upon delivery
of each parcel by its specific deadline. Using a simple scheduling algorithm, the agent
decides that it can, based on the initial information it knows, deliver these 3 parcels to
their destinations by the given times. It builds up the initial schedule shown on the left in
Fig. 2 (deliver parcel2 by 10am, parcel1 by 3pm and parcel3 by 11pm).

The courier agent takes this schedule information and begins by building plans for
the delivery of parcel2. It finds a plan that takes the route Glasgow!Edinburgh
!Dundee!Inverness, which it begins executing by travelling towards Edinburgh.

During the journey, it receives information that the road is blocked between Edinburgh
and Dundee. By looking at its possible options for delivering this parcel, it finds another
route, Glasgow!Edinburgh!Aberdeen!Inverness. This journey will take
longer to complete, so the agent cannot deliver the parcel by 10am as expected, but still
by the deadline, 12pm.

http://www.aisb.org.uk

BDI Agents and Constraint Logic

parcel1

parcel2

parcel3

7 8 9 10 11 12 1 2 3 4

task

time

...115

parcel1

parcel2

parcel3

7 8 9 10 11 12 1 2 3 4

task

time

...115

Figure 2: Schedule before and after BDI loop information

It reschedules its other tasks accordingly with this new information, and finds that
it can only deliver one of the remaining parcels, parcel1 by the deadline (5pm) or
parcel3 by its deadline (11pm). Since parcel1 has a greater payoff, it decides to try
and exchange or delegate the other delivery, parcel3 (right diagram in Fig. 2).

The Agent broadcasts the task of delivering parcel3 to others in the environment
to ask if there is anyone who can exchange this task, or have it delegated to them.
Another agent operating in the same environment, AgentB, broadcasts that it is will-
ing to exchange one of its parcel deliveries, parcel12, that involves taking a parcel
from Glasgow to Newcastle by 7pm, as it cannot complete this task given its own con-
straints. AgentA builds a preliminary schedule with parcel12, along with parcel1
and parcel2, and finds that it can incorporate this new task in with its existing ones.
parcel12 has a payoff of 5, which is less than that of parcel3, but still means that
the agent will receive some benefit from delivering it. An exchange of tasks takes place
and the agent continues on with its planning and execution for delivering parcel2.

Our research represents each of these tasks as constraints, and explores the decision
making processes that the agent takes when deciding on which plan to implement for
each task, and more importantly, the decision making process which leads to the specific
choice of plan implementation. By modelling this decision making process as a CLP, we
can show that this representation is effective in situations where many different disparate
sources of knowledge need to be considered when reasoning, and that this representation
provides an effective way of providing the agent with enough autonomy to deal with
unexpected events and occurrences as and when they happen.

3 The BDI Agent Architecture

3.1 The Agent Architecture

The agent architecture is split into 2 parts (Fig. 3), the coordination/scheduling layer,
which interacts with other agents and schedules multiple tasks, and the BDI layer, based
on the Beliefs, Desires, Intentions model of a deliberative system (Rao and Georgeff,
1995). We have tried, in the design of this architecture, to allow as much scope to use
the agent deliberation process and BDI layer (and its separate parts) in different scenarios
with the minimal amount of change.

The reason for this layered approach is to make the agent coordination and scheduling
mechanisms independent of the constraint based BDI agent implementation we have con-
structed. By separating the CLP deliberation process from the coordination/scheduling
layer, we show that it is not restricted to one specific coordination or scheduling model
and can be re-used within existing agent communities with minimal alterations.

http://www.aisb.org.uk

Chalmers and Gray

Coordinator

Task Scheduler

Main
BDI Loop

Plan Library

Beliefs
Data Model

ECLiPSe
Deliberation

Process

BDI Layer

Coordination/
scheduling layer

Figure 3: Agent architecture.

3.2 Interacting Layers

The coordination/scheduling layer in each individual agent manages the agent’s tasks at
a high level and coordinates the agent’s communication and interaction with others while
the BDI layer constructs and executes plans for individual tasks and manages the agent’s
interaction with the environment.

Information is passed between the two layers as the agent progresses in its task schedul-
ing and execution. The coordination and scheduling layer gives the BDI layer the current
task to be completed. The BDI layer chooses and executes an action or subplan accord-
ingly.

Information flow in the opposite direction provides details about the execution of the
current plan (such as what action/subplan the agent has committed to, current completion
time estimates for the task). Using this information, the coordination/scheduling layer can
build up a more detailed schedule which will take into account new information gathered
as the agent progresses (as seen in the example in section 2.2).

This information passed to the scheduler is comparable to that used in (Clement and
Durfee, 2000). In their system, the planner constructs summary information by instantiat-
ing abstract plans and finding possible conflicts at lower subplan levels. This information
is then used to coordinate multiple agents’ actions.

3.3 The Main BDI Loop

Do
 options := option_generator(event_queue,B,D,I)
 selected-options := deliberate(options,B,D,I)
 update-intentions(selected-options,I)
 execute(I)
 get-new-external-events();
 drop-succesful-attitudes(B,D,I)
until quit

Figure 4: Main BDI loop

Fig. 4 shows a pseudo-code version of a BDI agent algorithm, which forms the basis
for the design of the BDI layer. This algorithm controls the agents planning and its in-

http://www.aisb.org.uk

BDI Agents and Constraint Logic

teraction with the environment and operates on the main data structures in the BDI layer
agent architecture.

The BDI algorithm is based on the idea of a deliberative system, which uses a sym-
bolic representation of what it perceives the current state of the world to be. This represen-
tation can be used to reason logically about the system’s views and its actions (Genesereth
and Nilsson, 1987).

In a BDI loop, the agent receives events internally from the desires (in this case pack-
ages to deliver) and externally (information about road closures, delays etc.) from the
environment, and uses these, along with its current Beliefs (B), Desires (D) and Inten-
tions (I) to generate a set of possible next options represented as executable plans. It then
selects one of these possible options based on the status of its B, D and I values. This is
represented by our constraint mechanism, which takes the Beliefs and maps them to finite
domains in a constraint problem. It then uses the Desires and Intentions (as constraints)
in the constraint solving mechanism to choose and then execute the best plan from those
available. Finally, any new external events (caused by the execution of the plan or oth-
erwise) are added to the event queue and the agent checks to see whether it can mark as
completed any of its goals that have been achieved, before carrying on.

BDI agent behaviour can be explained in terms of human-like attitudes (Intentions).
These attitudes provide a level of abstraction that is easy to understand and can be rep-
resented symbolically in a deliberative system. These attitudes can be grouped into 2
distinct types (Wooldridge and Jennings, 1995) which, when combined provide the basis
of the agents deliberative system :

� What you know (information attitudes): belief, knowledge etc.

� Reasons for actions (pro-attitudes): desires, intention, obligation, etc.

BDI agents use a combination of information and pro-attitudes, Beliefs, Desires and
Intentions (Rao and Georgeff, 1995; Bratman, 1987; Bratman et al., 1999; Cohen and
Levesque, 1990). Various views and interpretations of the meaning of each attitude exist,
but the following definitions are generally accepted:

� Beliefs represent the views held about the current state of the world, as perceived
by the agent.

� Desires are the goals and aims you wish your agent to achieve.

� Intentions are the actual processes being executed so that desires may be fulfilled
(or sub-goals which are needed for the completion of a desire).

We have constructed a planning and execution model for our courier scenario based upon
this BDI architecture and the algorithm in Fig. 4. It receives the task of delivering a parcel
from the coordination/scheduling layer and chooses and executes a plan to complete this
task.

The desires of our agents are the tasks that it is given to complete (in the courier
scenario this is the parcels it has to deliver). We formulate these as constraints specifying
a desired state, or how we want the agent’s beliefs about the state of the environment to
be (what parcels are where). The process of choosing and executing a succession of plans
gradually alters the agent’s beliefs about the state of the environment (and the environment
itself) until the constraints representing the desires are satisfied.

http://www.aisb.org.uk

Chalmers and Gray

known_objects

Agentlocation

Parcel

Connection

Time

from

to

visited

location

location destination

carrying

other_agents

Entity

Single-Valued
Function
Multi-Valued
Function

Figure 5: Agent’s Belief data model

3.4 Representing Beliefs, Desires and Intentions

We use a data model representation for the agent’s beliefs (Fig. 5). This holds infor-
mation such as the current status of the environment and the status of the agent itself.
The entities (Connection, Square, etc.) hold the actual data, while the functions repre-
sent the relationships between the entities (e.g. the connections to and from a location).
Our data model representation of the agent’s beliefs is constructed using P/FDM 1, an ob-
ject database constructed on semantic data modelling principles from the functional Data
Model (Shipman, 1981). This database is constantly updated to reflect the changes to the
agent and the environment as and when they happen. The advantage of this approach is
that the data model can be used to express the semantics of the agent’s beliefs as well as
the beliefs themselves, and can express complex relationships between objects and data
values in those beliefs.

There is an existing P/FDM constraint language, COLAN (Bassiliades and Gray,
1994) (based on Shipman’s DAPLEX language), that can be used to express the desires
in terms of the beliefs. Initially COLAN was used for specifying database integrity con-
straints, but has been shown to be a powerful and expressive language for representing
and describing knowledge. The following shows an example task in COLAN, describing
the delivery of a parcel to Glasgow by 7pm along with its First Order Logic equivalent.

Constrain each p in parcel

such that name(p) = parcel1

and time(p) = the t in time

such that current time(t) = 1900

to have location(p) = glasgow

(8p,t) parcel(p) & name(parcel1,p) & time(p,t)

& current time(t,1900) ! location(p,glasgow).

There has been extensive work carried out on integrating P/FDM data model frameworks
into finite domain CLP problems in the KRAFT project (Hui and Gray, 2000) and in using
First Order Logic to express and generate CLP code in terms of this data model. Our tech-
niques for transforming the information from the desires and beliefs into a finite domain
constraint problem are largely based on this work, but in KRAFT, constraints are used as
problem specifications to find solutions to complex distributed design problems.

1For further details, see http://www.csd.abdn.ac.uk/�pfdm

http://www.aisb.org.uk

BDI Agents and Constraint Logic

4 The Agent Deliberation Process
as a Constraint Problem

The agent’s BDI layer generates possible courses of action as a set of plans, then delib-
erates on and chooses the most suitable one. This choice is dependent on the agent’s
deliberation process, and the information available to this process at that time. We have
formulated this deliberation process as a CLP, using the agent’s beliefs as the basis for the
construction of the domains in the CLP and the agent’s desires as the constraints on those
domains.
During the deliberation process, the agent must be able to choose its next course of ac-
tion. It must deliberate on a number of possible plans available to it and decide on the
most appropriate, based on a number of factors. These include:

� The current status of the task being executed.

� The agent’s beliefs about the current environment.

� The deadline to be met for the task currently being executed.

In the courier scenario, these factors include the current parcel or message the agent is
delivering, the agent’s knowledge about road delays, traffic jams etc., the deadlines that
the parcels or messages must be delivered by and what other parcel deadlines the agent
has to meet. Building on existing finite domain formulation techniques we have developed
a way of combining these disparate information sources by constructing them as a CLP
and then using this as the agent’s decision making process.

4.1 Constructing Possible Worlds

The agent’s beliefs about the state of the environment, the tasks the agent has to do (its de-
sires) and its current task status (intentions) are used as a basis for the deliberation process
(from Fig. 4, the B,D and I variables in the deliberate function of the BDI algorithm).

The beliefs are a reflection of how the agent views the current state of the world so
they naturally form the basis for the agent’s deliberation process. Since we are using a
data model approach to hold the agent’s beliefs, and to provide the semantics to describe
the domain, we formulate agent desires in terms of the entities, attributes and relationships
contained in the data model and use these desires as specifications of the required tasks.

The advantage of using this data model approach is that each entity class in the data
model can be easily viewed as a finite domain, with the object instances themselves as the
elements in that domain. The object attributes and functions can then be used to form the
basis for variables in the constraints.

Our agent’s deliberation process needs to take into account possible future actions and
events, as well as the current state. It must be able to judge how the current action will
affect future events, and how the current choice of action will affect the decisions it has
to make in the future. Given that the current environment is constantly changing, we are
unable to definitely predict future events, but we can plan the agent’s actions to a specified
depth of lookahead and then refine and replan as we encounter changes.

Although the environment changes, the agent still maintains long term, high level
desires which will remain unaffected (e.g. a parcel must be delivered by a deadline, but
the actual method of delivery is not specific). What will be affected by the changes is the
way in which these high level desires are carried out. What we are using the CLP process
to do is to allow the agent to exercise a degree of autonomy in carrying out the high level

http://www.aisb.org.uk

Chalmers and Gray

desires it has. We provide it with the various implementations of each high level task and
give the agent an intelligent method for choosing the most appropriate implementation.

When the agent begins its deliberation process it first constructs a possible worlds
model (Rao and Georgeff, 1995) which contains all possible solutions and the interim
states needed to get to those solutions in a connected tree like structure. To populate the
tree with candidate solutions, we find all the actions possible from the current state, then
apply these actions and add these as new branches to the tree. Therefore, if the agent is
currently at time t, that node of the tree will lead to x1 possible states the agents beliefs
could have at time t+1 if a specific action towards the completion of a plan was carried
out.

We then take these x1 states and find the actions available from each of them. We can
then apply these, and add the resulting new states to the tree (x2 solutions at time t+2).
This process can be continued to a given depth (i.e. how far you want your agent to plan
ahead).

The resulting populated structure contains all the possible states of the agents beliefs
for the next n specified steps (what states the agent’s belief data model would take were it
to choose a specific way of carrying out all possible ways of doing these n steps towards
completing the high level task). We therefore have a possible worlds tree like structure
which preserves the information about the hierarchical position of each state in relation
to the others, with each state containing the agent’s beliefs, if the action leading to the
desired goal state were to be carried out.

4.2 From Possible Worlds to CLP

Constrain all c in connection
such that name(from(c)) = ’Manchester’
to have name(to(c)) <> ’Leeds’

"The road between Manchester
and Leeds is inaccesible"

constrain each p in parcel
such that name(p) = ’supplies’and
time(p)= (the t in time such that
current_time(t) = 2300)
to have location(p) = ’Bradford’

"Take supplies to Bradford by 11pm"

constrain all c in connection
such that name(c) = ’London_to_Brighton’
to have travel_time(c) = 4

"The road from London to Brighton
has delays of 4 hours"

Current Desire

Environment Information

finite domain
representation of the

"possible worlds"
model

t

t+1

t+2

t+3

Figure 6: The Agent’s Deliberation Process as a CLP

To construct the deliberation process as a CLP, we transform this structure into finite
domains in ECLiPSe (ECRC and IC-Parc, 2000). The constraints are then posted against
these finite domains and any invalid states are eliminated. Fig. 6 shows an example of the
constraints that can be posted in the CLP. The constraints come from various sources, but
can all be combined to influence the agent’s reasoning process.

http://www.aisb.org.uk

BDI Agents and Constraint Logic

Each node in the possible worlds structure holds a populated data model (Fig. 5),
representing the agent’s beliefs for that particular state. The code fragment below shows
part of the P/FDM data representation for a small part of one of these states. The entities
and their values in the data model are represented using the object/3 construct, and the
functions and their relationships to other objects are shown by the fnval/3 construct.
The representation of the objects and the object functions as term structures gives us a
uniform representation of the agent’s beliefs, and allows for easy modification given any
additions or changes to the data model representation.

object(agent,agent1).

fnval(agent id,agent1,ozzy).

fnval(agent time,agent1,1800).

fnval(carrying,agent1,parcel1).

fnval(agent location,agent1,location12).
fnval(visited,agent1,location3).

fnval(visited,agent1,location2).

object(location,location12).

fnval(location name,location12,glasgow).

object(parcel,parcel1).

fnval(name,parcel1,supplies).

4.3 Solving the CLP using the ECLiPSe Propia Library

The ECLiPSe Propia library (ECRC and IC-Parc, 2000) supports generalised constraint
propagation. Using the infers most operator we can specify the finite domains for
the CLP problem using the following ECLiPSe goals (see section 6):

object(agent,agent id,ID) infers most.

fnval(agent id,ID,AGENT NAME) infers most.

fnval(agent time,ID,AGENT TIME) infers most.

fnval(carrying,ID,PARCEL ID) infers most.

fnval(agent location,ID,LOCATION ID) infers most.

fnval(visited,ID,LOCATION ID) infers most.

object(square,LOCATION ID) infers most.

fnval(location name,LOCATION ID,LOC NAME) infers most.

object(parcel,PARCEL ID) infers most.
fnval(name,PARCEL ID,PARCEL NAME) infers most.

This makes the possible values of each attribute of each object (as well as the variables
representing the objects themselves) into a finite domain CLP variable. For example, the
above code fragment would create ten finite domains, one for each object and one for
each fnval construct (so LOC NAME from the above fnval would represent the finite
domain containing all location names from every state in every node in the tree that con-
tains similar constructs). We can now post constraints from our various sources over these
domains. Any elements which are eliminated from the solution space by the constraints
will propagate through the rest of the domains, eliminating all belief states which do not

http://www.aisb.org.uk

Chalmers and Gray

satisfy the required constraints. The remaining belief states are the valid options available
to the agent in the possible worlds model. What is left therefore is a pruned version of the
possible worlds tree structure containing the remaining valid states given the constraints
imposed.

From the remaining tree structure, a valid chain of actions and subplans can be found
that, when executed, will lead the agent to the desired state, and to the completion of the
given task. This can then be returned by the deliberation process as the chosen plan to
execute in the main BDI loop. If the problem is over-constrained, there is the possibility
that no solution is available for this plan, in which case the agent will try to coordinate,
by delegation or exchange, this task with another agent that is able to complete it.

5 Scheduling and Cooperation

Lesser, when discussing multi-agent coordination (Lesser, 1998), argues that a multi-
agent system must exhibit the following characteristics:

� A high level representation of its state and goals (medium to high-grain granularity)

� Problem solving must be at this high, abstracted level so that the agent has the
ability to react quickly to change and can use its autonomy to decide at run-time
on the method of problem solving most appropriate for the goal, given the current
situation.

� The agents must have a broad representation, not only of the current state of the
environment, but (possibly incomplete) knowledge of the capabilities, problem-
solving progress and current status of other known agents so that an agent does not
repeat or re-derive existing results or transmit outdated or unrelated information to
other agents.

Our agent architecture fulfils these requirements as follows: Since constraints are used
as a declarative representation of the tasks, the high-grain granularity is accomplished,
because no task is given a specific method of completion. Tasks can also be split into
subtasks by agents, allowing smaller medium-grain tasks to be exchanged. Any exchange
of tasks between the agent’s cooperation and scheduling layers will only deal with tasks
specified in these high level terms. The actual low level execution of the tasks is done by
the agent’s BDI layer.

We provide the representation of other agents and their capabilities by the use of the
data model as a representation of the agents beliefs. This belief schema allows the agent to
represent information on other agents through the cyclical other agents relationship
back to the Agent entity (Fig. 5).

5.1 Agent Coordination model

We are using existing Generalised Partial Global Planning techniques (GPGP) (Decker
and Lesser, 1995) as a basis for the agent communication model. Our main aim is to
show the advantages of using constraints and CLP in an agent architecture, so we are
basing our work on an existing coordination mechanism, rather than constructing a new
model, which we believe is beyond our scope. The GPGP approach is appropriate in this
scenario for a number of reasons. Firstly, it has been used and tested in similar domains
such as the DVMT (Durfee et al., 1987). Secondly, the architectural base suggested for the
agents is also similar to our own constraint based architecture (consisting of a scheduler,

http://www.aisb.org.uk

BDI Agents and Constraint Logic

coordination module and a beliefs database). Lastly, the GPGP coordination mechanisms
are designed to be domain independent, which allows us to expand the current work to
other scenarios in the future.

GPGP consists of five main coordination mechanisms which generalise and extend
the Partial Global Planning algorithm. These mechanisms are designed to be used in any
combination, as they each address a particular coordination feature of a task environment.

We have classified the main message primitives communicated between agents in the
courier scenario as follows:

� Inform Agents about environment information - used to tell other agents of any
developments in the environment such as flight delays and traffic jams.

� Tell Agent’s current task completion status - used to help with the scheduling of
other agents’ tasks and to help the decision process during task delegation.

� Notify Agents of task completion - used when your agent has completed a task,
the outcome of which is relied upon by another agent.

� Delegate Task/Accept Task - used to give an agent a task and to notify an agent of
acceptance of a task.

Three of the five coordination mechanisms from GPGP (Update non-Local Viewpoint,
Communicate Result and Handle Hard Coordination relationship) are closely related to
the types of information we are exchanging and we have used these as the basis for com-
munication and coordination of our CLP based agents. We have also added our own
delegate/accept mechanism. We believe these 3 GPGP primitives (along with our extra
primitive) are adequate enough to form the basis of a coordination model, given the cur-
rent test environment, and we have the option of extending the work to encompass other
primitives if needed.

5.2 Scheduling Agent Desires

Each agent has a given set of tasks, each with an associated payoff, which they will
attempt to complete within the given constraints. The agent’s aim is to complete as many
tasks as possible, so that they will receive the maximum payoff possible. This also means
that each agent will willingly cooperate with others if possible (in that they will accept
another’s task if they can) because it will increase the total payoff that the agent will
receive. Communication between agents takes place when a single agent cannot complete
its given set of tasks and requires the assistance of other agent(s) to complete one or more
of them. The agent must find out what task or tasks it cannot complete by creating,
as it plans and executes, a schedule showing the start and estimated completion times of
current and future tasks. The agent’s scheduler therefore takes the agent’s desires and tries
to find a suitable schedule for completing these desires given the specified constraints. The
constraints on the schedule come from various sources:

� The maximisation of total task payoff.

� The location of the task in relation to the current agent location.

� The agent’s estimated completion time for the task

� Precedence of tasks (i.e. Task1 must be completed before Task2).

http://www.aisb.org.uk

Chalmers and Gray

The scheduler is written using the ECLiPSe finite domain constraint library. We represent
the above constraints as Prolog facts, which are then incorporated into the CLP solving
process. The following set of facts shows the internal scheduler representation of two
tasks, the first to move a parcel from Inverness to Aberdeen and the second to move a
parcel from London to Glasgow, given to an agent with the starting location Plymouth.

task(move token(parcel1, inverness, aberdeen), 4).

task(move token(insert, glasgow, inverness), 3).

task(move token(parcel2, london, glasgow), 2).
task(move token(insert, plymouth, london), 1).

desire(4, 2400, 400).

desire(3, 2000, 400).

desire(2, 2900, 900).
desire(1, 2000, 500).

payoff(4, 5).

payoff(3, 0).

payoff(2, 1).
payoff(1, 0).

before([plymouth, london],[london, glasgow]).

before([london, glasgow],[glasgow,inverness]).

before([glasgow,inverness],[inverness,aberdeen]).

The task/2 structure specifies the task and its associated task id in the scheduler.
The desire/3 structure shows the task id along with the latest possible completion
time and task length and the payoff/2 structure shows the payoff associated with each
task. The before/2 structure is created at runtime to show the agent’s initial scheduler
ordering, based on its location and the spatial layout of each of its given tasks. The agent
starts with a generic map of the test scenario, showing the layout, position and connec-
tions of all major points. From this map the agent can get the necessary information for
the constructs used by the scheduler. The map is continually altered by the agent to re-
flect new information gathered as it progresses through the environment (such as blocked
roads).

Although the agent has only two tasks to complete, there are two extra tasks inserted
into the schedule as insert tasks. These insert tasks allow the agent to account for the
movement from the completion point of one task to the start point of another (Fig. 7). It
also allows the agent to incorporate getting from its initial location to the starting point
of the first task. All of the above facts are generated dynamically each time the agent is
given a set of tasks to schedule.

Each task is represented as a finite domain of start times over which the scheduler tries
to construct a schedule. If no schedule can be found which allows for the completion of
each task, then the schedule which maximises the total payoff is returned and used as the
basis for the selection of tasks to delegate and exchange during coordination between the
agents.

http://www.aisb.org.uk

BDI Agents and Constraint Logic

Inverness

DundeeDundee

Aberdeen

EdinburghEdinburgh

NewcastleNewcastle

Glasgow

LeedsLeedsBradfordBradford

LondonPlymouth

’insert’ task

Task

Manchester

Figure 7: Schedule with ‘insert’ tasks

5.3 Task Delegation and Agent Behaviour

When the scheduler is unable to find a complete schedule for all the agent’s given tasks,
the agent needs to decide on one or more candidate tasks to delegate or exchange with
other agents. The method we are using is to find the schedule with the greatest total
payoff. When a full task schedule cannot be found, a selection process judges suitable
candidates for delegation by first looking at the task with the lowest payoff and then the
tasks with the most overlaps with other tasks. The scheduler is re-run without this task
to check that there is now a complete and executable schedule. If the schedule is still not
viable, then a selection process finds the best combination of lowest payoff/most overlaps
for each task to get a suitable candidate. Although not an optimal scheduling heuristic,
this method has provided the necessary means for demonstrating our agents abilities in
a cooperating environment. The agent will try to maximise its payoff and only try to
delegate tasks when absolutely necessary.

The delegate protocol is used to broadcast the task for delegation to others in the
system, and the accept protocol is used to notify the agent of others willing to take on
the task. At present, if two or more agents choose to accept the task, an arbitrary decision
is made as to the recipient. This could be extended to take into account the beliefs the
agent currently has about the status of the other agents.

As well as sending delegate messages, the agent may also receive delegate messages.
If an agent receives a delegate message from another agent then it will do a preliminary
schedule run (as described above) with the new task added to check whether it is able to
slot in this task alongside its existing ones. If it is possible, then it will send an accept
message to the agent and wait for a response (the agent will receive either the task itself
or a no-task notification).

Modifying the scheduler and the way in which the scheduler selects and delegates
tasks can be seen as modifying the agent’s behaviour, as the scheduling algorithm decides
which tasks to delegate and which to accept.

6 Implementation

The constituent parts of the agent are implemented as independent Prolog processes,
which communicate through a socket based LINDA architecture (Carriero and Gelertner,
1989). This is a Prolog blackboard communication model which allows asynchronous

http://www.aisb.org.uk

Chalmers and Gray

Cooperation/Scheduling
Layer

Internal
Linda Server

BDI Layer
Deliberation

Process

Agent1

Communal
Linda Server

Agent2

Agent3

Environment Information
repository

Figure 8: Agent communication through LINDA servers

message passing between individual Agents (Fig 8). Messages can be posted to the com-
munal server, and messages can be retrieved by individual agents querying the server. The
constituent agent processes also use this LINDA blackboard model for internal commu-
nication, allowing processes to post and retrieve messages within the agent in private. In
our example scenario, we also use an environment information repository, which acts as a
source of constantly changing environment information. This essentially acts as the eyes
and ears of our agent, passing information (road connections, traffic jams, etc.) particular
to that agent’s location.

We are using CCQL (Constraint Communication Query Language) (Preece et al.,
1999) as the agent communication language, which is based on the KQML knowledge
sharing language (Finin et al., 1994).

The agent deliberation process is written in EcLiPse, using the Propia constraint li-
brary. This library is an EcLiPse implementation of generalised constraint propagation.
The idea is that a collection of facts containing any number of variables can be expressed
as finite domains and generalisations can be made about those variables (if possible).

location(aberdeen, agent1, parcel1).
location(edinburgh, agent1, parcel12).
location(aberdeen, agent2, parcel10).
location(glasgow, agent2, parcel12).

In the example above, there are four facts describing two agents, their possible locations
and what they could be carrying. Each variable in the facts is turned into a finite domain
using the infers most command.

location(CITY,AGENT,CARRYING) infers most.

This specifies CITY, AGENT and CARRYING as finite domains containing the elements
specified in the location/3 construct:

CITY = CITY{[aberdeen,edinburgh,glasgow]}
AGENT = AGENT{[agent1, agent2]}
CARRYING = CARRYING{[parcel1, parcel10,parcel12]}

If we apply the constraint CARRYING #n= parcel12:

http://www.aisb.org.uk

BDI Agents and Constraint Logic

CITY = aberdeen
AGENT = AGENT{[agent1, agent2]}
CARRYING = CARRYING{[parcel1, parcel10]}

We can see that the constraint mechanism removes parcel12 from the CARRYING
domain. It also infers that CITY is restricted to aberdeen by using the relationships
between the variables specified by the location/3 construct to propagate this infor-
mation. Although only a simple example, when used in the deliberation process described
in section 4, where we are dealing with several hundred facts and complex relationships
between those facts, this generalisation process greatly reduces the domain sizes, and al-
lows us to infer as much information as possible from whatever is available. It also means
that a set of facts (such as those from the P/FDM database we are using) can be easily
transformed into finite domains for use in a CLP solver.

The scheduler is also written in ECLiPSe and is constructed as a finite domain con-
straint problem using the ECLiPSe finite domain library. The Belief data model is held
in a P/FDM database. P/FDM is a Prolog based implementation of the functional Data
Model (Shipman, 1981) which incorporates many object-oriented features. It is developed
and maintained at Aberdeen university, and has been used on a number of large projects,
from distributed knowledge manipulation to three dimensional protein structure represen-
tation. The Desires are represented in COLAN (based on Shipman’s Daplex language), a
high-level query and constraint language used initially to specify database integrity con-
straints in P/FDM. We have found this constraint language, and the data model represen-
tation, to be independent of the problem domain and it has proved useful in its ability
to represent first order logic constraints over finite domains of objects in a database, or
subranges of integers or enumerated types.

7 Evaluation

The main constraint solving mechanism has been used extensively in the KRAFT project
as a way of solving configuration tasks. This has proved to be an effective solution and
has been tested on real world scenarios from the communications industry. The constraint
mechanism provides a way in which product specifications from numerous vendors can
be used, along with user defined specifications to provide effective solutions to complex
configuration problems.

We have tested this mechanism in a courier scenario, where the problem is of a tem-
poral nature, rather than spatial. In this courier environment, we have used the techniques
to deliberate on constraint problems containing between 500 and 5000 facts of the type
described in section 4.3. These facts represent from 1–5 lookahead actions for the agent,
with 3–5 options at each stage of the decision process (in total up to 770+ options). We
have looked at various representations of these options in the decision making process,
and have received near instantaneous results from the CLP process when retrieving an-
swers. Each agent has its own CLP, so there is no centralised planner, meaning the average
sizes of the tree structures created by each agent are manageable.

Whilst the scheduler implementation is basic, and the scheduling strategies used not
comparable to most dedicated schedulers, it has been built for the purpose of showing the
capabilities of the CLP solver and the autonomy which it provides, and the use of con-
straints in the representation of the desires, rather than to show sophisticated scheduling
procedures. The modularity of the system means that new scheduling algorithms can be
substituted for the current one if needed. Currently, there is no facility for task splitting
(e.g. an agent may take a parcel some distance towards its destination, then pass it to

http://www.aisb.org.uk

Chalmers and Gray

another agent which finishes the journey). We have also to look at the idea of task in-
tegration, where one task may be completed during the execution of another. This also
brings in the idea of redundancy, which has not been considered in this scenario (although
the GPGP has a Handle Simple Redundancy method).

We are also concerned with the representation of the tasks themselves in the scheduler.
We are looking at making them more flexible, and allowing the scheduler the ability to
‘relax’ the constraints. This would involve using a task quality metric (other than the
currently implemented ‘payoff’) which would allow the agent to complete the task at a
later time, but would give the resulting task a lower quality of completion.

With a more sophisticated scheduler, we could investigate ideas such as task split-
ting, redundancy, task integration and constraint relaxation but we believe that the current
scheduler helps demonstrate the main focus of our research.

8 Related Work

We are modelling the agent’s behaviour and deliberation using techniques from the KRAFT
project. Here, constraints are used as problem specifications, combined with a data model
approach, to find solutions to distributed design problems. The various data sources used
have their own constraints that are fused together and re-used in the context of a solution-
space data model. Much of the agent deliberation process is based on this work, and in
particular the techniques outlined in (Hui and Gray, 2000). Whereas KRAFT has been
concerned with spatial configuration problems, we are applying the techniques developed
to temporal problems and situations.

The Distributed Intelligent Agents Group, headed by Edmund Durfee at Michigan
University have used GPGP (Generalised Partial Global Planning) and other planning
algorithms, such as hierarchical planning and plan summary information, to implement
multi-agent planning systems that work on an evacuation travel scenario testbed (Clement
and Durfee, 2000). Whilst being similar in approach, the agents used by Durfee et.al are
not intentional, and we aim to use information inferred from the agent’s constraints in
place of summary plan information. O-PLAN (Tate et al., 1996) also uses an evacuation
scenario as a testbed environment. It uses a hierarchical planning system, along with
domain constraint knowledge to direct its search for plans. Again, we are using intentional
agents rather than specifically designed planning agents and we are making use of the
agent’s data model to represent beliefs and constraints specific to those beliefs, as well as
more general domain constraint knowledge. In (Hofmann et al., 1998) they also explore
giving an agent enough autonomy to act and make decisions independently. Although
using mobile agents rather than BDI agents, they state that the agent must have “the
ability to operate independently of the user and persist in their determination to execute
their assigned task”.

The main idea common to all these projects is that the agent has to be able to adapt to
change in a highly dynamic environment, while still planning and scheduling events on a
larger, more long-term scale.

Our current work is concerned with the use of this agent architecture on a transport
domain. In future, we wish to look at the way in which the formal and practical aspects of
constraints and this reasoning and the constraint solving methods developed can be used
with cooperating and competing agents in larger e-commerce scenarios. We also wish
to look at developing the ideas of relaxing and negotiating constraints touched upon in
section 7.

http://www.aisb.org.uk

BDI Agents and Constraint Logic

9 Conclusions and Future Work

We have described a method for giving an agent autonomous decision making capabilities
in a dynamic, multi-agent environment. We have shown that using range-restricted, First
Order Logic constraints provides a powerful and expressive method for describing Desires
in a BDI agent architecture. The use of a data model means that we can express agent
Beliefs using complex semantic relationships and provide the agent with a local ontology
which can be used as a basis for transforming and combining Desires, represented as
constraints, from many disparate sources. Thus the agent is able to take into account
information from the environment, from other agents as well as its own Beliefs, giving it
an intelligent, autonomous mechanism for planning and deliberating.

From our initial tests in a courier scenario, we have seen that the deliberation process
allows an agent to plan and execute given tasks, based not only on the task’s delivery
deadline, but also on the current information it has on road closures, flight delays etc. and
to make informed decisions based on its current situation.

While not an always optimal planning mechanism, we believe that our CLP approach
gives an agent the ability to reason and plan in an environment where it may have incom-
plete information which can change over time, and the ability to deal with a rich variety of
constraints in many combinations and with new and unplanned events as and when they
occur.

Our current work is concerned with the use of this agent architecture on a transport
domain. In future, we wish to look at the way in which the formal and practical aspects of
constraints and the reasoning and constraint solving methods developed can be used with
cooperating and competing agents in larger e-commerce scenarios. We also wish to look
at developing the ideas of relaxing and negotiating constraints touched upon in section 7.

Acknowledgements

This work is supported by an EPSRC grant under the supervision of Prof. P.M.D. Gray.
The work is based on work previously completed during the KRAFT project, and in par-
ticular the work of Kit-Ying Hui and Alun Preece. The KRAFT project was funded by
grants from BT and EPSRC.

References

Bassiliades, N. and Gray, P. M. D. (1994). Colan: a functional constraint language and its
implementation. In Data and Knowledge Engineering 14, pages 203–249. See also
http://www.csd.abdn.ac.uk/�pfdm/user manual/section2 3 4.html.

Bratman, M. E. (1987). Intentions, plans and practical reason. Harvard University Press,
Cambridge, MA.

Bratman, M. E., Israel, D. J., and Pollack, M. E. (1999). Plans and resource-bounded
practical reasoning. In Computational Intelligence, volume 4, pages 349–355.

Carriero, N. and Gelertner, D. (1989). Linda in context. In Communications of the ACM,
32(4).

http://www.aisb.org.uk

Chalmers and Gray

Clement, B. J. and Durfee, E. H. (2000). Performance of coordinating concurrent heirar-
chical planning agents using summary information. In Pre-Proceedings of the Sev-
enth International Workshop on Agent Theories, Architectures and Languages, pages
202–216.

Cohen, P. R. and Levesque, H. J. (1990). Intention is choice with commitment. In Artifi-
cial Intelligence 42(3).

Decker, K. and Lesser, V. R. (1995). Designing a family of coordination algorithms. In
UMass Computer Science Technical Report 94-14.

Durfee, E. H., Lesser, V. R., and Corkill, D. (1987). Coherent cooperation among com-
municating problem solvers. In IEEE Transactions on Computers C-36(11), pages
1275–1291.

Eaton, P., Freuder, E., and Wallace, R. (1998). Constraints and agents: Confronting
ignorance. In AI Magazine 19(2):50-65.

ECRC and IC-Parc (2000). ECLiPSe Library Manual. www.icparc.ic.ac.uk/eclipse/.

Finin, T., Fritzon, R., McKay, D., and McEntire, R. (1994). KQML as an agent commu-
nication language. In Proceedings of the Third International Conference on Infor-
mation and Knowledge Management (CIKM’94).

Genesereth, M. R. and Nilsson, N. (1987). Logical foundations of AI. Morgan Kaufmann
Publishers: Santa Mateo, CA.

Gray, P. M. D., Embury, S. M., and Kemp, G. J. L. (1999a). The evolving role of con-
straints in the functional data model. In Journal of Intelligent Information Systems,
volume 12, pages 113–117. Kluwer Academic Press.

Gray, P. M. D., Hui, K., and Preece, A. D. (1999b). Finding and moving constraints in
cyberspace. In Proc. AAAI Spring Symposium on Intelligent Agents in Cyberspace
(SS-99-03), pages 121–127.

Hofmann, M. O., McGovern, A., and Whitbread, K. R. (1998). Mobile agents on the
digital battlefield. In Proceedings of the Second International Conference on Au-
tonomous Agents. ACM Press.

Hui, K. and Gray, P. M. D. (2000). Developing finite domain constraints – a data
model approach. In Proceedings of the 1st International Conference on Computa-
tional Logic, pages 448–462. Springer-Verlag. See also http://www.csd.abdn.ac.uk/
�apreece/Research/KRAFT.html.

Lesser, V. R. (1998). Reflections on the nature of multi-agent coordination and its impli-
cations for an agent architecture. In Autonomous Agents and Multi-Agent Systems,
pages 89–111. Kluwer Academic Publishers.

Preece, A. D., Hui, K., Gray, W. A., Marti, P., Bench-Capon, T. J. M., Jones, D. M., and
Cui, Z. (1999). The KRAFT architecture for knowledge fusion and transformation.
In Bramer, M., Macintosh, A., and Coenen, F., editors, Research and Development
in Intelligent Systems XVI (Proc ES99), pages 23–38. Springer.

Rao, A. S. and Georgeff, M. P. (1995). BDI agents: From theory to practice. In Proceed-
ings of the First International Conference on Multi-Agent Systems.

http://www.aisb.org.uk

BDI Agents and Constraint Logic

Shipman, D. W. (1981). The functional data model and the data language DAPLEX. In
ACM Transactions on Database Systems 6(1), pages 140–173.

Tate, A., Drabble, B., and Dalton, J. (1996). O-Plan: a knowledge-based planner and its
application to logistics. In Advanced Planning Technology. AAAI Press.

Wooldridge, M. and Jennings, N. R. (1995). Intelligent agents: Theory and practice. In
The Knowledge Engineering Review, volume 10, pages 115–152.

http://www.aisb.org.uk

AISB Journal 1(1), © 2001
http://www.aisb.org.uk

Using Cognition and Learning to Improve
Agents’ Reactions

Pedro Rafael Graça and Graça Gaspar
Department of Computer Science

Faculty of Sciences of the University of Lisbon
Bloco C5 - Piso 1 - Campo Grande, 1700 Lisboa, Portugal

E-mail: prafael@di.fc.ul.pt, gg@di.fc.ul.pt

Abstract

This paper proposes an agent architecture to deal with real-time problems
where it is important both to react to constant changes in the state of the environ-
ment and to recognize generic tendencies in the sequence of those changes. Reac-
tivity must satisfy the need for immediate answers; cognition will enable the
perception of medium and long term variations, allowing decisions that lead to an
improved reactivity. Agents are able to evolve through an instance-based learning
mechanism fed by the cognition process that allows them to improve their per-
formance as they accumulate experience. Progressively, they learn to relate their
ways of reacting (reaction strategies) with the general state of the environment.
Using a simulation workbench that sets a distributed communication problem, dif-
ferent tests are made in an effort to evaluate the utility of the multi-agent system
architecture and the importance of the individual features of agents, the utility of
using a set of different strategies, and the significance of the learning mechanism.
The resulting conclusions point out the most significant aspects of the generic
model adopted, helping to put it in perspective as a solution for other problems.

1 Introduction

1.1 Motivation

Reaction, cognition and the ability to learn are among the most fundamental aspects of
human behaviour. Daily, we react to a non-deterministic and constantly changing world,
often facing unknown situations that nevertheless need immediate answer (for example,
crossing an unknown street for the first time); we constantly rely on our cognitive abil-
ity to classify the surrounding environment (for example, choosing the best place to
cross the street); we use our experience to select actions for specific situations (for ex-
ample, quickly crossing the street when the sign turns red). Generally, cognition and the
ability to learn lead to the accumulation of experience, allowing better decisions that
improve the selection of actions. This is the central idea of the agent architecture pro-
posed in this paper: the agents have a reaction module that allows them to answer in
real-time, a cognition module that successively captures and classifies images of the
environment, and a learning module that accumulates experience that progressively al-
lows a better selection of actions.

Using cognition and learning to improve agents’ reactions

http://www.aisb.org.uk

1.2 Environment

A real-time group communication simulated environment (reproduced by a simulation
workbench) supported the development and study of the proposed architecture. Prone to
non-deterministic and continuous changes (traffic fluctuations), such an environment
emphasizes the need for immediate reactions. At the same time, the cyclic occurrence of
similar environment states (for example, periods with low traffic level) and the repeti-
tion of changing patterns (for example, brisk increases of traffic level) point to the util-
ity of a cognitive system that enables a form of learning, allowing the use of
accumulated experience.

In this distributed communication environment, where the traffic level is variable
and messages can be lost, each agent is responsible for sending and eventually resend-
ing (when losses occur) a set of messages. Each agent’s goal is to optimise the timeout
interval for resending lost messages, in such a way that the sending task is completed as
soon as possible and the communication system is not overloaded by unnecessary re-
sending. The agent chooses from a set of tuning strategies that over time it learns to
relate to the state of the communication system, progressively improving its perform-
ance.

1.3 Related work

In the context of concrete applications of multi-agent systems in traditional telecommu-
nication problems, our main goal is to put in perspective the relationships between the
generic problems observed in a distributed application and the generic answers that a
multi-agent system is able to offer, in an abstraction level more concerned with proper-
ties than with detail. Even though no studies similar to ours were found (involving reac-
tion, cognition and machine learning in a telecommunication problem), many other
investigations in the field of multi-agent systems and telecommunications address
problems in real-time environments that share many of the essential characteristics. A
wide diversity of studies address problems such as routing, traffic congestion, scalabil-
ity, fault location, and cooperative work, to mention only a few. Work on this area has
been conducted by Albayrak (1999) and Hayzelden et al (1999).

Mavromichalis and Vouros (2000) and Malec (2000) propose layered agent archi-
tectures to address the problem of controlling and balancing reactivity and deliberation
in dynamic environments requiring real-time responsiveness. These perspectives show
some similarities to our work, but they do not incorporate a machine learning mecha-
nism.

Weiβ (2000) discusses the relationship between learning, planning and reacting,
proposing an extension to a single-agent architectural framework to improve
multi-agent coordination. The learning mechanism is used in order to determine the best
way of alternating between reaction-based and plan-based coordination. In this particu-
lar, our study is significantly different: our learning mechanism concerns how to react in
environments where reaction is a necessity rather than an option.

Work concerning a learning approach in some regards close to ours can be found in
the writing of Prasad and Lesser (1999). They propose a system that dynamically con-
figures societies of agents, using cognition and/or communication as the basis for
learning specific-situation coordination strategies.

Graça and Gaspar

http://www.aisb.org.uk

2 A group communication problem

2.1 Motivation

The communication problem used in this investigation was idealized following two
main requirements:

• the preservation of the generic properties of a real-time distributed application;

• the avoidance of complex situations that could make the interpretation of results a
more difficult task.

To meet the first requirement, we selected a group communication problem, a typi-
cal and intuitive real-time distributed situation, offering a high degree of versatility con-
cerning the desired complexity level involved. To meet the second requirement, we
used a simulation workbench that reproduced the selected problem, simplifying acces-
sory aspects and preserving all the essential properties that ensure the accuracy and ex-
pressiveness of the results.

As a good example of the benefits introduced by the simplifications that took place,
it is considered that, although normal messages can be lost in the communication proc-
ess, acknowledgments cannot. Since from the message sender point of view both of
these losses are equivalent and undistinguishable, the occurrence of acknowledgment
losses would increase complexity without enriching the study or its results.

2.2 Description

The problem in question was conceived in order to serve a generic purpose, but the de-
scription of a real and specific situation will help to clarify its outlines. Imagine a team
of stockbrokers, each of them working on a different stock market. Suppose that, in or-
der to coordinate the team’s global action, there is a synchronization rule that estab-
lishes that each individual can only perform an action after being informed of every
other team member’s intention. Consider that it is important to perform as many opera-
tions as possible and that the communication between stockbrokers takes place in a tele-
communication system where the traffic level is variable and messages can be lost. This
scenario corresponds to the distributed communication problem adopted in this investi-
gation.

Each agent is associated to a communication node, having the responsibility of
sending and resending (when losses occur) a message to each other node. When a mes-
sage arrives to its destination, an acknowledgment is sent back to the message sender. In
each communication season, the users (each associated to a node) exchange messages
with each other. One season ends when the last message (the one that takes more time to
successfully arrive) reaches its destination.

The traffic level on the communication network varies over time, influencing the
reliability: an increase of traffic level causes a decrease of reliability, increasing the
occurrence of message losses; a decrease of traffic level has the opposite effect. The
better the agents are able to adapt to the sequence of changes, the more accurate be-
comes the chosen instant for resending lost messages. Increased accuracy improves the
communication times, causing the duration of seasons to decrease.

It is important to notice that the communication problem described takes place at
application level. In environments where the sequence of events is very fast (imagine a
millisecond time scale) the ability for reacting very quickly is often more important than
the ability for choosing a good reaction. The time needed to make a good choice can
actually be more expensive than a fast, even if worse, decision. Because of this, the

Using cognition and learning to improve agents’ reactions

http://www.aisb.org.uk

agent architecture proposed in this paper is better suited for problems where the time
scale of the sequence of events justifies efforts such as cognition or learning. This does
not mean that quick answers to the environment are not possible: deliberation (recog-
nising, learning and deciding) can easily become a background task, only showing its
influence on the quality of reactions when there is enough time to identify environ-
mental states and use previously acquired experience. On the worst case (millisecond
time scale) this influence will tend to be null and agents will react without deliberating.
The better the deliberation process can accompany the sequence of events, the greater
will this influence be.

3 Agent architecture

3.1 Introduction

Considering the communication problem adopted, the agents’ task is to tune the timeout
interval for resending lost messages, so that the duration of the communication seasons
and the occurrence of unnecessary resending are both minimised. In their tuning task,
agents must deal with information at different time scale perspectives: they must imme-
diately react to constant variations in the state of the environment and also be able to
recognize tendencies in the sequence of those variations so that a learning mechanism
can be used to take advantage of accumulated experience.

To react to constant variations, each agent uses one of several tuning strategies at
its disposal. To evaluate the quality of a tuning strategy in a communication context (for
example, during a low traffic period) the period during which that strategy is followed
cannot be too short; to allow the search for better strategies, this period should not last
too long. These opposing desires led to the introduction of the satisfaction level concept,
a varying parameter that regulates the probability of a strategy change decision (the
lower the agent’s satisfaction level is, the more likely it will decide to adopt a new strat-
egy). As will be briefly explained below, this satisfaction level depends on two addi-
tional aspects:

• the detection of changes in the state of the environment (communication condi-
tions);

• the self-evaluation of the agents’ performance.

To recognize non-immediate tendencies in the sequence of environment state
changes, the agent uses its cognition system. The information collected in each commu-
nication season is gathered in a memorization structure. This structure is periodically
analysed in order to abstract from the details of basic states, fusing sequences of those
basic states into generic states classified in communication classes and detecting im-
portant variations in the state of the communication system (for example, a transition
from a traffic increase tendency to a traffic decrease tendency). The result of this analy-
sis influences the satisfaction level; for example, a change of the communication class,
or the detection of an important variation, can cause the satisfaction level to decrease,
motivating the agent to choose a new tuning strategy (possibly fitter to the new condi-
tions).

Progressively, agents learn to relate the tuning strategies and the communication
classes. The establishment of this relationship depends on two classification processes:
the classification of the agents’ performance and the classification of the generic state of
the environment (the communication classes processed by the cognitive system).

A scoring method was developed in order to classify the agents’ performance. As
the duration of the timeout interval depends on the tuning strategy in use, the qualifica-

Graça and Gaspar

http://www.aisb.org.uk

tion of an agent’s performance in a sequence of seasons is a measure of the fitness of
the strategy used to the communication class observed during those seasons.

The diversity of states of the environment emphasizes the utility of studying a
multi-agent system where different individuals may have different characteristics.
While an optimism level regulates the belief in message losses (the more pessimistic the
agent is, the sooner it tends to conclude that a message was lost), a dynamism level
regulates the resistance to stimulation (the less dynamic the agent is, the less it reacts to
changes, the longer it keeps using the same strategy). Each different agent has a specific
behaviour and interprets the surrounding environment in a different way.

In this section, after introducing some terminology (subsection 3.2), the details of
the proposed agent architecture are presented in the following order:

• the tuning strategies (subsection 3.3);

• the scoring method (subsection 3.4);

• the cognitive system (subsection 3.5);

• the learning system (subsection 3.6).

Finally, a diagram (subsection 3.7) and an illustration of an operating agent (subsection
3.8) give a global perspective of the architecture.

A more detailed description of this agent architecture is given by Graça (2000).

3.2 Terminology

The period of time needed to successfully send a message (including eventual resend-
ing) and to receive its acknowledgement is called total communication time. When a
message successfully reaches its destination at the first try, the communication time is
equal to the total communication time; otherwise, it is the time elapsed between the last
(and successful) resending and the reception of the acknowledgement.

The ending instant of the timeout interval is called resending instant. It is consid-
ered that the ideal resending instant of a message (the instant that optimises the delay)
is equal to the communication time of that message.

The difference between the resending instant and the ideal resending instant is
called distance to the optimum instant.

A high increase or decrease of traffic level immediately followed by, respectively, a
high decrease or increase is called a jump. A high increase or decrease of traffic level
immediately followed by stabilization is called a step.

3.3 Tuning strategies

To follow the fluctuations of the communication system, each agent constantly (every
communication season) adjusts the resending instant. It is possible to imagine several
ways of making this adjustment: following the previous communication time, following
the average of the latest communication times, accompanying a tendency observed in
the succession of communication times, etc. A tuning strategy is a way of adjusting the
resending instant. It is a simple function whose arguments include the communication
times observed on previous seasons and the optimism level, and whose image is the
resending instant to be used on the following season.

A set of ten tuning strategies is available to the agents, including for example: a re-
active strategy (according to this strategy, the communication time observed in season t
is used as resending instant in season t+1), an average strategy (as shown in Figure 1,
each resending instant is defined according to the average of all previous communica-

Using cognition and learning to improve agents’ reactions

http://www.aisb.org.uk

tion times), a semi-reactive average strategy (the last communication time is weighted
by one tenth in the average calculus), an almost reactive average strategy (as shown in
Figure 2, the last communication time is weighted by one third in the average calculus),
a reactive ignoring jumps strategy (works like the reactive strategy but keeps the same
resending instant when jumps occur). A TCP strategy, reproducing the real procedure
adopted by the TCP/IP protocol (see Peterson and Davie (1997) for details), was also
included in this set. According to this strategy (Figure 3) the more unstable the commu-
nication conditions are, the bigger is the safety margin used (higher resending instants).

Average Strategy

100

120

140

160

180

200

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

Season

C
o

m
m

u
n

ic
a

ti
o

n
 T

im
e

Communication time

Resending Instant

Figure 1: Average tuning strategy

Almost Reactive Average Strategy

100

120

140

160

180

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Season

C
o

m
m

u
n

ic
at

io
n

 T
im

e

Communication time

Resending Instant

Figure 2: Almost reactive average tuning strategy

TCP Strategy

100

150

200

250

300

1

8

15

22

29

36

43

50

57

64

71

78

85

92

99

Season

C
o

m
m

u
n

ic
at

io
n

 T
im

e

Communication time
Resending instant

Figure 3: TCP tuning strategy

It is expected that the diversity of strategies helps to match the diversity of envi-
ronmental states: different tuning strategies will be differently fitted to the different
communication classes. For example, when traffic fluctuations are unpredictable, a re-

Graça and Gaspar

http://www.aisb.org.uk

active strategy will probably produce better results than an average-based strategy; the
opposite will probably occur if the traffic level tendency is to vary within a sufficiently
well determined interval. The goal of the learning system is precisely to select for each
communication class the strategies that produce better results.

As mentioned before, the optimism level regulates an agent’s belief in message
losses: the more pessimistic the agent is, the sooner it tends to conclude that a message
was lost, the sooner it tends to resend it. Agents with different optimism levels use the
same tuning strategy differently: based on the same unmodified resending instant given
by the strategy, a pessimistic agent shortens the delay and an optimistic agent widens it
(Figure 4 shows this effect).

 Effect of the Optimism Level

90
110
130
150
170
190
210

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Season

Unmodified resending instant
Pessimistic agent
Optimistic agent

R
es

en
di

ng
 I

ns
ta

nt

Figure 4: Effect of the optimism level on strategies

This differentiation (along with the dynamism level) opens the possibility of estab-
lishing relations between certain types of agents (for example, highly pessimistic) and
certain communication conditions (for example, constant traffic level).

3.4 Performance evaluation

The evaluation of the agents’ performance has three main goals:

• to measure the significance of different individual features: it may be possible to
determine a measure of the fitness of certain agents’ characteristics to the commu-
nication conditions, if a specific type of agent (for example, very optimistic) tends
to receive higher or lower scores under those conditions;

• to allow the agents to adjust their procedure: poor performance causes a decrease
of the satisfaction level, and eventually leads to a change of strategy;

• to support the classification of training examples: this will be detailed further
ahead, in the learning system subsection.

At the end of each season, each agent has information that allows it to qualify its
performance. The score obtained helps each individual to answer the following ques-
tion: how accurate were the resending instants chosen? As it will be detailed in the
learning system subsection, the successive scores will help to answer another question:
how fitted is the chosen strategy to the communication class currently observed?

The main performance evaluation score is obtained considering the sum of dis-
tances to the optimum1 instants, adding a penalty for each message unnecessarily resent
(the lower the score, the better the performance).

1 The concept of optimum instant was presented at section 3.2.

Using cognition and learning to improve agents’ reactions

http://www.aisb.org.uk

To clarify this system, consider the following example:

• agent A sends 3 messages during a communication season, to agents B (mAB), C
(mAC) and D (mAD);

• the resending instant for mAB is 150 time units;

• the resending instant for mAC is 180 time units;

• the resending instant for mAD is 140 time units;

• the acknowledgement from mAB arrives after 146 time units;

• the acknowledgement from mAC arrives after 183 time units (an unnecessary re-
send occurred);

• the acknowledgement from mAD arrives after 270 time units (this means the first
message wasn’t acknowledged, and the second one’s acknowledgement arrived
after 130 time units).

Given this situation, agent A would get:

• 4 points for mAB (150-146);

• 6 points for mAC (183-180=3, penalty for unnecessary resend2: 3*2=6);

• 10 points for mAD (140-130);

Agent A’s final score is 20 points. For example if the resending instant for mAB were
155 time units (further away from the optimum instant by 5 time units), the score would
have been 25 points (worse than 20).

Two additional auxiliary scoring mechanisms are also used in order to evaluate the
agents’ performance3. Each of these mechanisms ranks the agents on each season (from
first to last place), according to each of the following criteria:

• the necessary time to complete the sending task (the best one is the first to receive
all acknowledgements);

• the quality of the chosen resending instants (same criteria as the main method de-
scribed above).

At the end of each season, each agent is scored according to its rank (the first of n
agents gets 1 point, the second 2 points, and so on until the last that gets n points).
The information about every agent’s performance is gathered and processed at the end
of each season in order to establish the rank. On a simulation workbench this is a trivial
task because all the information is locally available. On a real situation, a way of gath-
ering the information and broadcasting the results would have to be studied.

The purpose for these auxiliary mechanisms is to allow the agents to compare each
other’s performance. When the communication conditions are unstable the resending
instants are more difficult to set and, although the agent’s performance may be good
(considering the complexity involved), the main score (determined in an absolute way)
will tend to be lower. In these cases, the auxiliary scores (determined in a relative way)
can help each agent to correctly evaluate the quality of its performance.

3.5 Cognitive system

The information memorized after each season is continuously analysed and processed in
order to provide the agent with an image of the world. The memorization structure,

2 The penalty for unnecessary resend equals the distance to the optimum instant: the larger the distance the
bigger the penalty.
3 These auxiliary scoring mechanisms weren’t considered in the classification of training examples, but they
also influence the satisfaction level.

Graça and Gaspar

http://www.aisb.org.uk

more than just an information repository, is a fundamental part of the cognitive system;
among other information (arguments for the tuning strategies), it stores:

• a short memory block: contains each ten consecutive average communication times
and the average performance score during those ten seasons (state of the environ-
ment in the last few seasons);

• a global memory block: the result of a process of synthesis of past short memory
blocks (state of the environment during a wider period).

Every ten seasons, a short memory block is processed in order to obtain information that
is then added to the global memory block. This synthesised information includes: a set
of parameters that characterize the traffic oscillation (for example, how many increases
of traffic level were observed during the ten seasons), the communication class ob-
served, and the average performance score.

A communication class is a generic classification of the state of the environment.
Such a classification is determined from the parameters that characterize the traffic con-
ditions (obtained from each short memory block), and has three dimensions: the traffic
level (high, medium, low, variable), the traffic variation tendency (increase, decrease,
constant, alternating, undetermined) and the sudden variations occurrence (jumps,
steps, jumps and steps, none).

The detection of variations in the communication system is based on the following
principle: the greater the difference between the global communication class (the com-
munication class of the global memory block) and the communication classes of the last
short memory blocks, the more likely it is that a significant variation is occurring. A
metric of three-dimensional distance between communication classes was developed in
order to apply this idea (considering, for example, that the difference between a high
and a medium traffic level is smaller than the difference between a high and a low traf-
fic level). The distance between two communication classes is obtained by adding the
distances between each dimension’s members.

The detection of variations causes the satisfaction level to progressively decrease,
motivating the agent to choose a new tuning strategy more adequate to the new commu-
nication class. When a variation is first detected, the decrease of satisfaction is generally
small; in this way, if the variation is merely transitory its impact will be minimal. How-
ever, if the variation is progressively confirmed, the decrease in the satisfaction level is
continuously accentuated: the more obvious and significant the variation is, the larger
becomes the satisfaction level decrease.

3.6 Learning system

The agents must be able to adapt to the conditions of the communication system, se-
lecting the best strategies for each communication class. This requirement appeals for a
learning mechanism that builds up and uses accumulated experience. When its perform-
ance isn’t satisfactory (bad score), an agent must learn that the strategy used in the cur-
rent communication class is probably not adequate. If the performance is good, the
agent must learn the opposite.

The learning mechanism is based on the following cyclic process associated to in-
ternal state transitions:

• Finalization of the previous state (a new training example is stored);

• Prevision of a communication class and selection of a tuning strategy for the next
state;

• Beginning of the new state.

Using cognition and learning to improve agents’ reactions

http://www.aisb.org.uk

When the satisfaction level is low (bad performance and/or variation detected), an agent
may decide to finalize its current state. The dynamism level associated to each agent
makes it possible for two agents to act differently when facing the same conditions: a
more dynamic individual is more likely to feel dissatisfied and will consequently
change its state more often then a more conservative individual.

An agent’s state (from the learning mechanism perspective) consists of a sequence
of communication seasons, characterized by a global communication class, a strategy in
use, and a performance score. When an agent decides to end the current state, this char-
acterization is used to build a new training example, a <communication class, tuning
strategy, performance score> triple. The training examples are stored into a
two-dimensional table (the experience table) that contains the average score for each
<communication class, strategy> pair, recalculated every time a correspondent training
example is added. The more training examples (concerning a particular communication
class) an agent stores, the higher is its experience level (in that class).
This form of case based learning has some specific characteristics: the learning cases
are processed instead of being stored (only necessary information is preserved); it ad-
mits an initially void base of cases; it is dynamic, in the sense that new learning cases
cause previous information to be progressively adjusted (recalculation of the average
score). This learning mechanism has therefore some resemblance to a simple way of
reinforcement learning4.

Before initiating a new state, the agent must predict a communication class and
choose a new strategy. The prediction of a communication class for the next state is
based on the following complementary ideas: if the state transition was mainly moti-
vated by bad performance, the communication class remains the same; if it was moti-
vated by the detection of variations, then those variations are analysed in order to
predict a new communication class. This analysis considers the latest three short mem-
ory blocks, using their data to determine a new communication class (assuming that the
lately detected variations characterize the new state of the communication environ-
ment). If transition patterns were to be found in the sequence of states, this prediction
process could be enhanced by the use of another learning mechanism that were able to
progressively determine which transitions were more likely to occur.

To select a new strategy an agent may consult the experience table (selecting the
best strategy according to the predicted communication class), choose randomly5 (when
it has no previous experience or when it decides to explore new alternatives), or consult
a shared blackboard (described ahead). The random selection of strategies is the pre-
ferred option when the agent has a low experience level, being progressively abandoned
when the experience level increases (even when experience is very high, a small prob-
abilistic margin allows random selections).

The shared blackboard is used as a simple communication method for sharing
knowledge between agents. Every ten seasons, the most successful agents (those who
receive better scores) use it to register some useful information (strategy in use and
communication class detected), allowing others to use it in their benefit. When the
agents do not use this communication mechanism, learning is an individual effort; if it is

4 Our initial idea was indeed to use reinforcement learning, but a more careful study revealed incompatibilities
between this learning mechanism and the addressed problem: on the state transition process, there is no neces-
sary relationship between the action an agent selects (new tuning strategy), and the following state (that in-
cludes the communication class, which is generally not influenced by the agent’s choice); moreover, a state is
only identified at the moment of its conclusion. These facts oppose the most basic principles of reinforcement
learning.
5 Random selection could be replaced by another specific distribution (such as Boltzmann distribution).

Graça and Gaspar

http://www.aisb.org.uk

used in exclusivity (as the only way to select a new strategy), learning does not occur6.
When it is optional, it enables a simple way of multi-agent learning: by sharing their
knowledge, the agents allow others to benefit from their effort, eventually leading each
other to better solutions earlier than it would happen otherwise.

When a new state begins, the agent’s memory (short and global blocks) is initial-
ised. If, in a short period of time (first thirty seasons), the predicted communication
class proves to be a wrong prevision (because the analysis was wrong or because the
conditions changed), the agent may choose to interrupt the new state to correct it. In this
case, regarding the interrupted state, no training example is considered.

3.7 Agent architecture diagram

Figure 5 summarizes the agent architecture presented in this paper.

Communication
System

Strategy

Message Management

OptimismDynamism

Memory

Blackboard

Data
Processor

Satisfaction

Strategy
Management

Experience

AgentAgent
Learning Module

Cognition Module

Reaction Module

Data
Structure

Agent
Property

Processing
Unit

Legend:

Figure 5: Agent architecture diagram

The reaction module includes a message management unit, responsible for sending
and resending messages according to the strategy in use (modified by the optimism
level). The strategy is changed when the strategy management unit produces such a de-
cision.

The data processor unit included in the cognition module is responsible for analys-
ing the information that is constantly memorized, evaluating the environment (commu-
nication classes) and the performance (score). Conditioned by the dynamism level, the
result of this analysis influences the satisfaction level. Whenever a state transition oc-

6 An agent whose only method of strategy selection is consulting the blackboard is considered opportunistic:
he develops no learning effort and always relies on other agents’ work.

Using cognition and learning to improve agents’ reactions

http://www.aisb.org.uk

curs, the data processor sends necessary information to the learning module so that a
new training example can be created and stored.

The strategy management unit included in the learning module is responsible for
the state transition decision (conditioned by the satisfaction level) and its related opera-
tions. It stores the training examples in the experience data unit.

3.8 Learning with agent Adam

The following description illustrates a sequence of operations of a specific agent during
a learning state. This example can help to clarify the concepts presented along this sec-
tion, showing how they are applied in a practical situation.

Agent Adam, a very optimistic and very dynamic individual, was using an aver-
age-based strategy to tune the resending instants. Since he is very optimistic, the re-
sending instants are delayed accordingly (a less optimistic agent following the same
strategy would resend earlier than Adam). The strategy was producing good results (he
was receiving high scores) in a communication environment characterized by a low and
constant traffic level, with no sudden variations; this communication class was being
observed in the last 50 seasons (that far, the duration of the current state). Adam’s satis-
faction level was high and a change of strategy was not in consideration.

After ten more seasons had passed, the latest short memory block was analysed and
some jumps were detected. Initially, detection of this new condition caused only a small
decrease of the satisfaction level; but when it was confirmed by two additional short
memory blocks and reinforced by low scoring (the adopted strategy was now producing
bad results), it motivated a quick decrease of the satisfaction level that led to a strategy
change decision. If Adam were less dynamic, the decrease of the satisfaction level
would have been slower and such decision would probably take a longer time to occur.

Following the strategy change decision, a new training example was stored, de-
scribing the good results of the previous strategy under the previous communication
class (low and constant traffic level, with no sudden variations). If the same conditions
were met in the future, this information could then be helpful for the selection of a tun-
ing strategy.

Considering the latest short memory blocks, a new communication class was pre-
dicted: low and alternating traffic level, with jumps. Since Adam had no memory of
operating under such conditions, he couldn’t rely on previous experience to select a new
tuning strategy. So, putting aside a random selection alternative, he decided to consult
the blackboard. Understanding that Amy, a very successful agent that had been receiv-
ing the highest scores, had detected the same communication class, Adam selected the
same tuning strategy that she was using, and then begun a new state.

Even if Amy’s strategy were a bad choice for Adam, he would have in the future
(when the same communication class were detected and a random selection of strategy
decided) the opportunity for testing other strategies (explore other possibilities) and find
out which one would serve him better in this situation. Moreover, he would (given
enough opportunities) eventually select untested strategies even if a good strategy were
already found (this would allow him to escape local minimums in local search). How-
ever, if Amy’s strategy were a good choice for Adam, it would allow him not only to
perform better but also to accelerate his learning effort (a good reference point in terms
of tuning strategy would allow him to quickly discard worst alternatives).

Graça and Gaspar

http://www.aisb.org.uk

4 Tests and results

4.1 Introduction

Using a simulation workbench for the group communication problem described, a sig-
nificant number of tests were made. In this section we describe the most relevant of
those tests and discuss their results. To support these tests, several traffic variation
functions were created. Some reflect traffic variation patterns as they are found in real
communication situations; others set interesting situations that help the evaluation of the
different aspects of the agent architecture.

Each simulation is composed by a sequence of one thousand communication sea-
sons. Each test is composed by a sequence of five hundred simulations. The average of
the agents’ added distances to the optimum instants (from hereon referred simply as
distance) is the value chosen to express the results.

4.2 Tuning strategies and cognitive system

The initial tests were focused on the tuning strategies. The original set of strategies was
tested separately (no cognition or learning) under different traffic conditions. These
tests led to the introduction of additional strategies (to cover important specific situa-
tions) and to an important (and expected) conclusion: different communication classes
have different more adequate strategies.

The tests made to the cognitive system allowed its progressive refinement. In its fi-
nal version, the system was able to classify the communication conditions in a very sat-
isfactory manner. The possibility of capturing the essential aspects of a complex
real-time environment in a classification system opened the door to the introduction of
the learning mechanism.

4.3 Learning mechanism

The learning mechanism produced a clear and important result: the progressive decrease
of the distance. The more complex the traffic variation function is (in other words, the
greater the number of communication classes needed to capture the evolution of traffic
conditions), the slower is this decrease.

In simple situations, where a single tuning strategy is highly adequate to the traffic
function, the learning curve tends to approach the results that would be obtained if only
that strategy was used7 (figure 6). In more complex situations, when the diversity of the
traffic variation function appeals to the alternate use of two or more strategies, the ad-
vantage of the learning mechanism becomes evident (figure 7).

Figure 7 emphasizes an important result: the alternated use of different strategies
can match the diversity of communication classes, producing, in some situations, better
results than those produced by any single strategy available.

To confirm this result, special tests were made. Three different sets of available
tuning strategies were considered in these tests: set A included the best strategy (the one
producing better global results if used in exclusivity on the chosen context) and four
other strategies (chosen randomly); set B included the five remaining strategies; a full
set always included all ten. In each test, each of these sets was used separately and the

7 When we mention that only a single strategy is used, we mean that the same tuning procedure is kept
throughout the simulations. In these cases, the learning mechanism remains inactive.

Using cognition and learning to improve agents’ reactions

http://www.aisb.org.uk

respective results were compared. These tests showed clearly that, in some situations,
the diversity of strategies is more important then the global fitness of any particular
strategy. The full set often produced the best results (especially on complex traffic
variation contexts) and, in some cases (as the one in figure 8), set A produced the worst
results (even though it contained the best strategy).

Learning Mechanism
(simple traffic variation function)

100

110

120

130

140

150

1 29 57 85 11
3

14
1

16
9

19
7

22
5

25
3

28
1

30
9

33
7

36
5

39
3

42
1

44
9

47
7

Experience (simulations)

D
is
ta
n
ce

Learning

Best strategy (no learning)

Figure 6: Learning in a simple traffic variation context

Learning Mechanism
(complex traffic variation function)

175

195

215

235

255

275

1

28 55 82 10
9

13
6

16
3

19
0

21
7

24
4

27
1

29
8

32
5

35
2

37
9

40
6

43
3

46
0

48
7

Experience (simulations)

D
is
ta
n
ce

Learning

Best strategy (no learning)

Figure 7: Learning in a complex traffic variation context

Strategies and Learning

170

190

210

230

250

270

290

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

30
1

33
1

36
1

39
1

42
1

45
1

48
1

Experience (simulations)

D
is
ta
n
ce

Set A

Set B

Full set

Figure 8: Comparing the performance of different sets of strategies
on the same traffic variation context

From these results emerges the idea that, in certain traffic variation contexts, there
is no single strategy that can be used to match the performance of alternating a set of
different strategies.

4.4 Optimism and dynamism levels

Various tests showed that the optimism level could clearly influence the agents’ per-
formance. When the traffic level has a low variation or while it continuously decreases,

Graça and Gaspar

http://www.aisb.org.uk

pessimistic agents usually have a better performance; when the traffic level has a high
variation or while it continuously increases, an optimistic posture tends to be better.
The next two figures show the results of testing five different sets of agents grouped by
their optimism levels (all having neutral dynamism levels). Figure 9 refers to testing on
a traffic variation context where the traffic level predominantly increases: periods of
traffic increase are intercalated with abrupt and instantaneous traffic level decreases,
producing a typical sawtoothed pattern. Since optimistic agents tend to delay their re-
sending instants, they have better chances to avoid unnecessary resending under such
conditions8 and achieve a better performance.

Optimism level and Learning

270

290

310

330

350

370

390

410

430

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

Experience (simulations)

D
is
ta
n
ce

Highly pessimistic
Pessimistic
Neutral
Optimistic
Highly optimistic

Figure 9: The influence of the optimism level (sawtooth traffic variation pattern)

When a traffic variation context in which there is no predominant variation is consid-
ered, high optimism or pessimism postures are usually not adjusted (figure 10).

Optimism level and Learning

45

55

65

75

85

95

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

18
3

19
7

21
1

22
5

23
9

Experience (simulations)

D
is
ta
n
ce

Highly pessimistic
Pessimistic
Neutral
Optimistic
Highly optimistic

Figure 10: The influence of the optimism level (traffic context with no
predominant variation)

8 A pessimistic posture, according to which delays are believed to result from message losses, tends to antici-
pate the resend. Such a posture is generally penalized when the delay is a consequence of a traffic level in-
crease. In these cases, it pays off to wait a little longer before resending (optimistic posture).

Using cognition and learning to improve agents’ reactions

http://www.aisb.org.uk

As is evidenced by figure 10, the relation between the optimism level and perform-
ance can be complex: although an optimistic posture produces the best results, a highly
optimistic posture is worse than a highly pessimistic posture.

The effect of the dynamism level on the agents’ performance wasn’t made clear by
the tests. It was observed that extremely dynamic agents had more difficulty in learning
(they eventually achieved the same distance of others but took more time to do so).

4.5 Communication between agents

As described before, the agents may use a simple communication method (blackboard)
as an alternative way of selecting a new strategy. To test and evaluate the impact of in-
troducing this alternative, we considered two different sets of agents: agents that only
used their individual experience table (no communication), and agents that alternated
between their experience table and the blackboard. Results showed that the alternation
between consulting the experience table and consulting the blackboard could improve
the agents' performance (figure 11).

Comunication between Agents

140

150

160

170

180

190

200

210

220

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

Experience (simulations)

D
is
ta
n
ce

Experience table only

Experience table and communication

Figure 11: Learning with and without communication

Encouraged by this observation, new tests were made in order to compare the per-
formance of a set of agents that learn without using the blackboard with the perform-
ance of an opportunistic agent that only uses the blackboard (only uses the experience
of others and doesn’t learn by itself). These tests showed that, regardless of the traffic
function in use, the opportunistic agent’s performance was never worse then the learn-
ing agents’ performance. Moreover, when complex traffic variation functions were
used, the opportunistic agent clearly beat the agents that were able to learn (figure 12).

Communicating or Learning

130

140

150

160

170

180

190

200

210

220

1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

40
7

43
6

46
5

49
4

Experience (simulations)

D
is
ta
n
ce

Learning Agents (no communication)

Opportunistic Agent (no learning)

Figure 12: Performance of an opportunistic agent

Graça and Gaspar

http://www.aisb.org.uk

It is important to notice that, in this case, the opportunistic agent achieves a clearly
better performance since the first simulation, and reaches its best performance level
within the first ten simulations. This is a clear sign that the learning task could be opti-
mised, that the interactions between agents (namely the knowledge sharing) can im-
prove global performance (even at early stages), and that having agents with different
tasks or roles can benefit the collective effort and enhance the results.

5 Conclusions

The good results achieved with the proposed agent architecture in a simulated group
communication problem showed its adequacy to a real-time environment. Reacting
through the use of different tuning strategies, classifying the environment through a
cognitive system, and progressively determining the fitness of those strategies to spe-
cific communication classes, the agents were able to significantly improve their per-
formance. Furthermore, in some situations, the alternation of strategies allowed by the
learning mechanism achieved results that were clearly superior to those obtainable using
a single strategy, leaving the idea that having an expressive variety of options can be a
good way of addressing the complexity and dynamism of the environment.

The optimism and dynamism levels added versatility and adaptability to the agents.
The optimism level revealed a special relevance, significantly influencing the agents’
performance in various situations. The accurate characterization of these situations
could motivate the online variation of this level, allowing increased adaptation to the
environment.

The use of the blackboard as a knowledge sharing method improved overall per-
formance. Furthermore, especially under complex traffic variation functions, opportun-
istic non-learning agents had better performance than learning non-communicating
agents.

6 Final discussion

The success achieved by opportunistic agents indicates that it would be interesting and
potentially useful to study the use of a mixed agent society in which the existence of
different roles could lead to an improvement of collective performance. More than that,
the members of this society could be exchanged according to their performance (from
time to time, the worst active agents would be replaced) or even according to the col-
lective experience (for example, under unknown conditions agents with the ability of
learning would be preferred, but under well known conditions the opportunistic agents
would become predominant).

The study of ways of coordination and interaction between agents to optimise the
learning task is a promising field of development of the proposed architecture towards
further improvement of global performance. The expressive results obtained with a
simple communication mechanism suggest that an additional effort towards basic coor-
dination could easily introduce a distributed learning perspective into the proposed
model. This, along with the introduction of specific agent roles, could allow the reduc-
tion of the collective learning cost.

The generic properties of a multi-agent system successfully matched the generic
problems found in a typical telecommunication problem, reinforcing the idea that the
affinities between Distributed Systems and Distributed Artificial Intelligence justify
further research. Globally, more than showing the utility of the proposed agent archi-
tecture to the problem in question, the encouraging results indicate that the generic

Using cognition and learning to improve agents’ reactions

http://www.aisb.org.uk

model is a potentially adequate solution for similar problems, namely for those where a
real-time environment constantly demands immediate reactions and continuously ap-
peals for cognition.

To help to put in perspective the generic aspects of the architecture, consider the
following real-time communication problem. Imagine a multimedia conference where it
is important that the participants keep visual contact with each other. During the confer-
ence, the video image frames are continuously transmitted on a communication system
prone to traffic fluctuations. This problem is also concerned with the imperfection of the
telecommunication system in a group communication situation. In this case it becomes
important to set an adequate frame transmission rate so that the video image’s quality is
as good as possible (it is expected and possibly unavoidable that on high traffic situa-
tions this quality decreases, being advisable to decrease the frame transmission rate so
that congestion doesn’t worsen). To apply the proposed agent architecture to this prob-
lem, a set of transmission strategies (for example, frame repetition strategies, frame
skipping strategies, fixed transmission rate, etc.) and a method of performance evalua-
tion (based on the quality of the video image) would have to be defined. Other than that,
the essential aspects of the architecture would be easily applicable.

On a first glance, and as an example of a problem belonging to a different area of
study (not centred on the communication process), our architecture seems to match the
generic properties of the Robocup environment. Robocup sets a constantly changing
environment that requires real-time responsiveness and, at the same time, strongly ap-
peals for cognition. The alternative ways of reacting (running towards the ball, stopping,
shooting at goal, passing, etc.) could be converted into strategies, and a learning mecha-
nism could progressively determine their fitness to specific states of the environment.
To determine the real extent of this simplistic and superficial analogy, further investiga-
tion is obviously required.

If reaction, cognition and the ability to learn are among the most fundamental as-
pects of human behaviour, they may well emerge as fundamental aspects of artificial
agents that dwell on artificial worlds that become more and more similar to our own.

Acknowledgement

This work was supported by the LabMAC unit of FCT

References
Albayrak, S. (Ed.) (1999). Intelligent agents for telecommunication applications.

Springer.

Graça, P. R. (2000). Performance of evolutionary agents in a context of group commu-
nication. M. Sc. thesis, Department of Computer Science of the University of Lisbon
(in Portuguese).

Hayzelden, A. L. G., Bigham, J., Wooldridge, M., Cuthbert, L. (Eds.) (1999). Software
agents for future communication systems. Springer.

Malec, J. (2000). On augmenting reactivity with deliberation in a controlled manner. In
proceedings of the workshop on Balancing Reactivity and Social Deliberation in
Multi-Agent Systems, Fourteenth European Conference on Artificial Intelligence,
Berlin. 89-100.

Mavromichalis, V. K. and Vouros, G. (2000). ICAGENT: Balancing between reactivity
and deliberation. In proceedings of the workshop on Balancing Reactivity and Social

Graça and Gaspar

http://www.aisb.org.uk

Deliberation in Multi-Agent Systems, Fourteenth European Conference on Artificial
Intelligence, Berlin. 101-112.

Peterson, L. L. and Davie, B. S. (1997). Computer networks: a systems approach.
Morgan Kaufmann Publishers.

Prasad, M. V. N. and Lesser, V. R. (1999). Learning situation-specific coordination in
cooperative multi-agent systems. Autonomous Agents and Multi-Agent Systems,
2:173-207.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: an introduction. The MIT
Press.

Weiβ, G. (2000). An architectural framework for integrated multiagent planning, react-
ing, and learning. In proceedings of the Seventh International Workshop on Agent
Theories, Architectures, and Languages, Boston.

AISB Journal

http://www.aisb.org.uk

AISB Journal 1(1), c 2001
http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

Kaveh Kamyab, Frank Guerin, Petar Goulev and Ebrahim Mamdani

Department of Electrical and Electronic Engineering,
Imperial College of Science, Technology and Medicine

London, SW7 2BT, United Kingdom
k.kamyab@ic.ac.uk ; f.guerin@ic.ac.uk ;

k ; e.mamdani@ic.ac.uk

This paper is conc
e-commerce virtual m
believability, conversat
multi-agent architectur
for representing, reaso
abstractions such as be

awareness. Fuzzy mo

A portal is an access point
provided can include, for ex
information and stock quot
and appearance to suit the
Netscape, present the user
ing placed on developing 3
chat rooms, that the next g
igate through this virtual s
users (via their avatar) or
implement these embodied
bodies as well as adequate
undertaken in the SoNG pr
been working on designing
graphics and animation (fo
agent technology; the desig
and is currently in its final
tecture for the agents, in p
to conversation protocols a
animations for the agent. I
user’s preferences in terms
oulev@ic.ac.u
p.g
Abstract

erned with the design of animated agents for applications in
arketplaces. This brings challenges such as personalisation,
ional skills and multimodal interaction. We have developed a
e for a virtual sales assistant. Agents use high level abstractions
ning and planning human-like dialogs. These include mental
lief, desire and intention as well as social abstractions such as

gn interactions through the development
ehaviour and endow agents with social
role relationships and commitments. We desi
of protocols which specify conventions of b
delling is used to model a user’s preferences and subjective
y between existing technologies has the
xt generation of virtual marketplaces.
perception of product attributes. This synerg
potential to fulfil the requirements for the ne

1 Introduction
to internet resources and services. The resources and services
ample, a directory of services, a search facility, news, weather
es. Portals also provide personalisation, changing the content
needs of the user. Current portals such as Yahoo, Excite and
with a 2D interface. However, a great deal of effort is be-

-D virtual environments, for example virtual marketplaces and
eneration of portals could offer. Users would be able to nav-
pace and enter shops to inspect goods and interact with other
with embodied software agents. The technology required to
agents includes the realistic animation of synthetic faces and

conversational skills. This integration of technologies is being
oject (PortalS Of Next Generation). Our project partners have

the virtual world, the user interface and the facial and body
r synthetic characters). The synthetic characters are driven by
n of the agents is the subject of this paper. SoNG is ongoing
integration phase. In this article, we comment on our archi-

articular how the inputs to an agent are interpreted according
nd appropriate output is generated in the form of speech and
n addition we outline how a user profile is built to model the
of products and interaction.

mailto:myphoneagent@goulev:1099/JADE

Designing Agents for a Virtual Marketplace

Within the virtual marketplace of SoNG, several demonstration applications shall be
developed, including a theatre booking system, a clothes shop and a telephone shop. Here
we report only on the latter. This is primarily considered to be an online information
site, where the user has access to several services, which present typical telecommunica-
tion equipment. Products will be presented by an Embodied Conversational sales Agent
(ECA). This paper is primarily concerned with the design of ECAs with particular em-
phasis on providing enhanced interaction to human users.

Animated embodied agents capturing some of the emotional qualities and related be-
haviours associated with humans are being increasingly employed in the development of
a new generation of interfaces for a wide variety of applications (e.g. online tutoring,
storytelling, online help, e-commerce and so on). There are many researchers who are
advancing this new generation, for example (André et al., 2000), (Bates, 1994), (Lester
et al., 1997b) and others. Embodied agents promise to improve the user’s subjective
experience while interacting with computer applications. These improvements include
providing the user with intuitive multimodal interfaces consisting of natural language un-
derstanding and generation, augmented by the use of realistic facial and body animations.
In addition, the use of affect, “computing which relates to, arises from or deliberately
influences emotions” (Picard, 1997), can play a key role in ensuring that such characters
are able to generate animation appropriately selected for the emotional context of the in-
teraction. Finally, personalisation of services enables the simplification of the interface
by adapting behaviour to the user and presenting the user with information which he or
she is genuinely interested in.

The use of embodied agents introduces a whole new set of social implications. In
particular, a debate has flared up between advocates of embodied interface agents and
advocates of Direct Manipulation (DM) interfaces. The latter maintain that over anthro-
pomorphising can result in the user generating false mental models and false expectations
of the actual capabilities of the system (Norman, 1997), (Maes and Shneiderman, 1997),
(Dehn and van Mulken, 2000). This is due to a human tendency to respond socially to
agents perceiving them as competent and capable (Reeves and Nass, 1996). In addition,
DM advocates believe that the use of animated graphics can be more of a distraction from
rather than an enhancement of interaction. This would lead to more time-consuming ap-
plications and less user satisfaction. On the other hand, embodied agents may help lower
the ‘getting started’ barrier by allowing for the emulation of human-human communica-
tion (Adelson, 1992). Furthermore, some compelling results have been found supporting
the positive impact embodied agents have on factors such as likeability, engagingness,
perceived intelligence, and many more. The relationship between users and applications
is discussed in section 2.1.

Aside from the presumed advantages of using embodied agents, they introduce a mul-
timodality into the interface that provides flexibility to the user, but also introduces consid-
erable design and implementation overheads to the designers of such systems. In partic-
ular, we consider contextually aware, believable agents with the capability of conversing
with the user via natural language. Thus support for context sensitivity, synchronised
face and body animation and Text To Speech (TTS) output and dialogue capabilities must
be considered at the design stage. In this paper we describe a design approach which
addresses these issues, linking agent behaviour, user dialogue and personalisation. Com-
munication is considered from a social perspective through the design of interaction pro-
tocols.

Here is a short description of the content. In section 2, we give a brief overview of the
issues arising in the design of agents with personality and personalisation. We also discuss
issues of particular relevance in an e-commerce application. In section 3, we give an

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

overview of the agent architecture employed. In section 4, we describe how interactions
are designed, beginning with a storyboard and progressing to an interaction protocol.
Section 5 describes the low level implementation details and includes a short walkthrough
describing how the various different components interact to produce a behaviour. Section
6 discusses some related work. Finally, section 7 outlines issues that must be tackled in
the future and then summarises and draws some conclusions.

2 Agents with Personality and Personalisation Know-How

The use of ECAs in an e-commerce application such as the one developed on SoNG
requires designers to consider how agent behaviour must be correlated with the underlying
functionality of the e-commerce system. In addition, how will agents’ behaviours be
generated and how might this effect the user of the system?

The agent’s function is to provide users with personalised product suggestions match-
ing their needs. In order to provide this information, the agent must learn about user’s
preferences in terms of the products available. The agent’s behaviour must also be appro-
priately selected to support the function of a shopkeeper. As shown in section 2.1, there
is evidence that a correlation exists between users’ perception of agent behaviour (e.g.
quality and frequency of interactions and animations) and their liking of and trust 1 in the
underlying system. We can think of such behaviour as being a function of the agent’s
‘personality’. This result may call for the need to personalise the agent’s personality to
the user’s preferences.

2.1 User Modelling and Personalisation

User modelling is a technique used to build and maintain user profiles containing in-
formation about the user which is relevant to the application domain. User profiles may
contain user data such as name, gender and address, but they may contain what the system
presumes are the user preferences, knowledge and goals.

The importance of user modelling emerged throughout the eighties largely from re-
search in dialogue systems. One of the earliest such systems was ELIZA, which re-
sponded to keyword matching. Often its human communication partners assumed they
were communicating remotely over Teletype with another human (Weizenbaum, 1966).
However, ELIZA didn’t take context into account, which sometimes caused the system to
generate inappropriate responses when it was unable to “understand” the user.

At a later stage in the development of dialogue systems, it was recognised that a
system should generate assumptions about the user that may be relevant to the task domain
at hand. In particular, these include the user’s goals, the plans with which the user intends
to achieve these goals and the knowledge or beliefs the user has about the domain. The
assumptions were to aid the system to converse more naturally (e.g. to supply additional
relevant information, avoid redundancy in answers and explanations and detect the user’s
wrong beliefs about the domain (Kobsa, 1990)).

Throughout the 70’s and 80’s, another AI application which generated much inter-
est was Intelligent Tutoring Systems (ITS). The predecessors to ITS, Computer Assisted
Instruction (CAI) systems, already recorded and evaluated the student’s interactions, but
no emphasis was put on educational psychology or, more importantly, the student’s level

1Here we use the everyday definition of the word trust, i.e. the user’s reliance on the ability and integrity of
the system.

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

of expertise. (Sleeman and Brown, 1982) first coined the term ITS to distinguish these
systems from the traditional CAIs. ITSs brought the concept of knowledge representation
to student modelling to aid the tutoring process.

In addition, research on intelligent help systems, game playing and in the field of
Human-Computer Interaction (HCI) also identified the need for user modelling. As a re-
sult of such a proliferation of use, user modelling evolved into a discipline in itself. More
recently, it has been applied to the broad discipline of personalisation, where services
and application content are tailored in order to satisfy user preferences. These include
Information Retrieval (IR) and Filtering (IF) systems, customisable interfaces and so on.

Despite its promise to solve the development issues in many disciplines, user mod-
elling came under a lot of criticism in the early 90’s for failing to deliver (McCalla, 1992)
and this was attributed to a number of causes. Intrusiveness of data gathering methods,
privacy issues and failure to take the wider user context into account resulted in systems
that often made erroneous assumptions and couldn’t win over user confidence.

However, utilizing personalisation and the ‘one-to-one’ marketing paradigm under-
lying it, is of great importance for today’s businesses (Peppers and Rogers, 1993). For
example, good sales assistants have the ability to make accurate assumptions about the
user and use the information gathered to tailor their service. Furthermore, regular cus-
tomers receive an even more personalised service, not only because of their tastes, but
because the sales assistant knows how best to interact with them. For instance, a good
restaurant waiter is one who knows which is your favourite table and knows what your
favourite dish is. However, this knowledge comes from passive observation of the cus-
tomer’s behaviour and it comes with the awareness that some people like to choose their
own table and change dish at every visit. In order to provide this quality of service, in-
formation must be gathered regarding the customer’s tastes, background, personality and
habits. Not surprisingly, great advances have been made in the area of personalisation
for use on e-commerce websites (e.g. Amazon.com, CDnow, eBay, etc), and there are
indications that there are substantial commercial benefits to this (Fink and Kobsa, 2000).
Thus, a user-modelling component is an essential part of an e-commerce system such as
the SoNG application. However, measures need to be taken to avoid the pitfalls high-
lighted in previous user modelling systems. In particular, we need to address issues of
data collection, privacy and the wider user context.

2.1.1 Data Collection and Privacy

The issues of data collection and privacy are intrinsically related. Acquiring data about
a user is not a trivial task. A lot of data can be acquired from a user’s conversation and
by observing a user’s behaviour (Orwant, 1996). (Kay, 1993) identifies three distinct
categories of user model information.

1. The information explicitly given by the user to the system, either by request or
voluntarily. For example the user states that he/she is a novice user of the system.

2. The information gathered by observation including monitoring user actions and
dialogue history.

3. The information that the user has been told about and hence is aware of.

Indeed, requesting information about a user from the user can have extremely detrimental
effects. Firstly, it may appear to be an invasion of the user’s privacy. Users may be wary
of how and by whom the information will be used. Secondly, users actually have a poor

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

ability to describe their own preferences. Often, what they say they like and what they
actually like are not the same thing. Finally, as stated in the paradox of the active user
(Carroll and Rosson, 1987), people are more motivated to start using things than to take
the initial time to learn about them or to set up a lot of parameters. So, information
should be gathered via the observation of user interaction (what does the user ask for,
what does the user need) or when a user explicitly states that he or she likes a specific
product attribute.

A non-invasive method of data collection has the advantage that users are less prone
to be aware of an invasion of their privacy. This helps maintain a relationship of trust
between the user and the agent. In any case, a user will be more willing to reveal infor-
mation to an entity it trusts rather than one it mistrusts. The user’s willingness to give
up his/her private information helps a user modelling system, but does not address the
problem of privacy. Deeper considerations must be made. Many commercial websites are
beginning to self-regulate their own handling of confidential user information by adhering
to and contributing to initiatives such as (TRUSTe, 2001) and (P3P, 2001). This shows
that privacy must be guaranteed in order to attract customers by establishing relationships
of trust.

2.1.2 User Context

Just as the first dialog systems were criticised for not taking user context into account
at all, many user modelling systems can be criticised for not taking enough of the user
context into account. User needs and interests depend on many parameters, including
personal and sociological aspects (personality, momentary needs, moods, etc) and these
parameters change over time (Hanani et al., 2001). Traditionally, the context modelled
has been strictly that relating to the application. In Information Filtering systems, user
modelling has been content-based, in ITS systems it has been knowledge-based, in e-
commerce systems it has been product-based, and so on. Recently, however, this trend
began to curb. For example, the realisation that learning is greatly dependant on moti-
vation and emotions has resulted in the application of Affective User Modelling (AUM)
to the area of ITS (Elliot et al., 1999), (Paiva and Martinho, 1999). It is possible that
AUM can be applied to e-commerce systems too (a satisfied customer is a happy cus-
tomer, or more to the point, a happy customer is a satisfied customer), but its use needs to
be evaluated. The difficulty lies not only in gathering the data, but also in knowing what
to do with it. It is clear, though, that each application domain necessitates its own unique
considerations with regard to the content of the user model.

Due to its deeper social implications, the use of embodied agents introduces a new set
of dimensions that weren’t considered for DM interfaces. These dimensions are bound to
have an effect on the user models employed. Many studies have been carried out which
attempt to evaluate the effect of likeability, engagingness, perceived intelligence, believ-
ability, adaptability and motivational qualities of an embodied agent on a user (Koda and
Maes, 1996), (Moon and Nass, 1996), (King and Ohya, 1996), (Lester et al., 1997b),
(Charlton et al., 2000). Some compelling results have been found supporting embodied
agents. (Koda and Maes, 1996) found that the use of animated faces in an interface im-
proved the likeability of the system and engaged users more, leading them to attribute
higher levels of intelligence to the agent. The results were more pronounced if the face
used a realistic animation of a human face. (Charlton et al., 2000) found a strong rela-
tionship between likeability and perception of intelligence (the more a system is liked, the
more it is perceived to be intelligent) indicating a need for personalisation of the embod-
ied agent. In fact, (Moon and Nass, 1996) suggest that users prefer adaptable animated

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

interfaces that become more similar to the user over time, a result which perhaps stems
from the natural human tendency to present oneself in a manner which pleases the per-
son we are interacting with (Sproull et al., 1996). (King and Ohya, 1996) found that
animated agents were more likely to be seen as intelligent, but this could give a false im-
pression of the real system intelligence. Take, for example, the SoNG embodied agent.
The agent’s personality and behaviour can influence the user’s perception of it and the
service it provides. Thus, as found by (Charlton et al., 2000), if a user likes the character
they are interacting with, he or she will consider it to be more intelligent and competent,
and as a result the user will trust the agent more. It is thus important to model the user’s
preferences in terms of personalities and behaviours which they like to interact with.

2.2 Personality

Personality is widely studied in human psychology, yet no single defining theory exists.
Two broad approaches are taken when defining personality: explanatory and descrip-
tive. The latter and most popular approach concentrates on creating taxonomies of lexical
descriptions of behavioural traits, generally associated with personality, which can help
identify individual differences between people. This is referred to as the trait theory. The
lexical approach assumes that socially relevant personality characteristics have become
encoded in our language (Fujita, 1996), and is hence limited to the description of sur-
face behaviour rather than the underlying mechanisms of personality. Many variations in
the trait theory have been studied such as the Big Five (John, 1990) and the Giant Three
(Eysenck, 1991). In the SoNG project, we make use of a subset of the Big Five the-
ory, a description of which is given below. For an example of explanatory approaches to
defining personality, see (Moffat, 1997).

2.2.1 The Big Five Theory:

The most widely used of the aforementioned theories is the Big Five, which is generally
agreed to define the following categories:

1. Extroversion: activity and energy level traits, sociability and emotional expressive-
ness.

2. Agreeableness: altruism, trust, modesty, prosocial attitudes.

3. Conscientiousness: Impulse control, goal directed behaviour.

4. Neuroticism: emotional stability, anxiety or sadness.

5. Openness: Breadth, Complexity, and depth of an individual’s life.

Although the names given to the five categories vary according to different theorists,
their meanings remain largely unchanged. (John, 1990) presents a survey of a range
of approaches to the Big Five theory and the variations in terms used.

The Big Five theory has been successful in categorising personalities empirically by
the use of a personality questionnaire, although its success is only measured relative to
other taxonomies of personality. In fact, of 300 adjectives used in the personality check
only 112 have been successfully associated with one of the five categories (John, 1990).
Thus, large parts of the personality sphere are not considered by the theory. Other prob-
lems highlighted by (Fujita, 1996) include high correlation between the five categories
and, most importantly, the criticism that the theory may only be the structure of the per-
sonality lexicon, and not personality. However, no competing theories have proved to be

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

any more complete than the Big Five theory. In fact, theories such as the Giant Three are
essentially a subset of the Big Five, where Agreeableness and Conscientiousness are re-
placed by Psychoticism, and Openness – sometimes linked with intelligence – is omitted.
In particular, the Big Five theory is a progressive research program, and has been subject
to a much greater extent of practical experimentation than other theories, making the Big
Five theory the most widely used.

The many taxonomies and theories of personality leave us in the dark when it comes
to stating what personality is. According to (Picard, 1997), personality can be thought of
as a predisposition governing the likelihood of focused emotional responses. The stance
taken on SoNG is that personality accounts for consistent patterns of behaviour (Pervin
and John, 1993) and thus has a bearing on the agent’s behaviours. We use a subset of the
big five traits to describe the personality of embodied agents, which includes Extraversion
(activity, sociability and expressiveness), Agreeableness (prosocial attitudes) and Open-
ness (depth of the agent’s background encapsulated in a persona). Conscientiousness and
Neuroticism are not considered, because the agent must exhibit impulse controlled, emo-
tionally stable behaviour.

3 Architecture Overview

Here we describe the general architecture employed for our agents. There are three dif-
ferent agents involved in a typical interaction with the user: an embodied sales agent, a
disembodied search agent and a disembodied database agent. The user sees only one,
the embodied sales agent. The user may ask for a product in natural language, the sales
agent then sends a request to a search agent who queries one or more database agents and
returns with the required information (see Figure 1). The sales agent is the most complex
since it will interact with the virtual world to find out about changes in the world (such as
a user speaking or moving) and to effect changes (facial and body animations and speech
output for the agent’s virtual body).

As depicted in Figure 1, the architecture of agents is divided into three parts, which are
clearly labelled for the sales agent. Firstly there is the Observation part (top left), which
is responsible for interpreting natural language from a human user and messages from
other agents through the Event Interpreter. It also interprets other events in the virtual
world such as the movement of the human’s avatar. The interpretation of these events is
recorded as a change to the agent’s Mental State (which constitutes the second part). The
mental state contains an Internal State which uses an explicit representation of beliefs,
desires and intentions (Rao and Georgeff, 1992). Among the agent’s beliefs are beliefs
about the beliefs, desires and intentions of other inhabitants of the virtual world. For
example the preferences of the human users (see section 5.1). In addition to representing
its internal mental attitudes, an agent also maintains a copy of the Social State. The social
state represents common knowledge and endows the agent with an awareness of its social
context (see section 4.1). Finally, the Action Execution part uses the current mental state
to decide what actions the agent should do next. In addition to selecting actions, the
Action Planner may also modify the mental state, for example, it may decide to add a
new desire or intention.

The architecture of the search and database agents contains some of the same mod-
ules as the sales agents, but does not require those modules which deal with human in-
teraction. The modular architecture allows each of our agents to be built with re-usable
components. For example, both embodied and disembodied agents will use the same
module for interpreting the meaning of events in the world, but embodied agents will use

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

������������

�������

����	
�
�	�
���

����	�

������

������

��������

	�	
��

�
�	���	�	�

MENTAL MENTAL MENTAL MENTAL
STATESTATESTATESTATE

OBSERVATIONOBSERVATIONOBSERVATIONOBSERVATION

ACTION EXECUTION

�������

��
����	�

����	����

�����

���

	�

���������
����

	�������
 �����

���	
��������

	�	
��

�
�	���	�	�

�����
�

���

	�

�������

����	

�
�	�
���

����	

�!"#�

����$����

��������������

	�	
��

�
�	���	�	�

�����
�

���

	�

�������

����	
�
�	�
���

����	

�����"���
%��&�

�$�"#��
�������

�����

'��&�

Figure 1: Modular Agent Architectures.

a natural language processor while disembodied ones will not. The agents communicate
among themselves using an agent communication language (ACL). The natural language
processor translates a natural language sentence into an ACL message so that the sales
agent’s event interpreter treats this message in the same way as a message from another
agent. An aim of this design is to raise the level of agent-agent interactions. An agent will
process a message from another synthetic agent in the same way as a message from a hu-
man user, considering its effect on mental attitudes and also the social perspective of the
society of agents. Thus agent communication involves high level abstractions and is not
simply the exchange of procedural directives. This is important since we are designing
agents for an e-commerce application, and this technology might be applied in scenarios
where different vendors contribute their own database agents. In such competitive mar-
kets, self interested agents might not be trusted to give the search agent the lowest price,
as discussed in (Singh, 1998).

4 Designing Interactions

Our embodied agents interact with humans in the virtual world by observing natural lan-
guage text input and responding using both verbal and non-verbal communication. We
wish to go beyond a simple stimulus-response behaviour with keyword matching. In order
for an artificial agent to be able to communicate effectively with a human, it must be able
to interpret the meaning of incoming communications, update its mental state and plan
its own communications. In fact, it must understand something of the human-level mean-
ing of the communication. Clearly, achieving a human level understanding is beyond our
reach, but we can take some steps towards this goal by identifying certain high level men-

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

tal abstractions (such as belief, desire and intention) and social abstractions (such as role
relationships and commitments) which can be used to characterise the meaning of human
communications. Thus the semantics of communications is defined in terms of these high
level abstractions. The agent maintains an explicit representation of these abstractions (in
its mental state) and reasons using this.

In addition, the interpretation and planning of communication should be sensitive to
the context. We concentrate on giving our agents an awareness of three aspects of context
as follows:

1. The domain of discourse: The agent will be aware that both the communications it
observes and those it generates should be relevant to the shopping domain in which
it is situated.

2. The history of the discourse: The agent maintains a record of the discourse, which
helps it to interpret and plan communication. For example, if the agent has just pro-
posed to demonstrate a product for the human and the human responds positively,
then the agent can interpret this response as an acceptance of the proposal.

3. The social roles occupied by the conversational partners: The agent is aware of its
role as a sales assistant and its associated obligations, for example it must greet a
human user who enters the shop and it must respond to queries.

4.1 Developing Social Rules for an Interaction

We begin our development by inventing storyboards for interactions. A story can be
analysed and generalised to a class of interactions which follow a similar pattern. This
pattern constitutes a protocol for the interaction which can be encoded in terms of a set of
rules which describe the social conventions governing such interactions. These rules can
be encoded logically for our sales agents and will constrain the agent’s planning process
while it is executing such a conversation. In this way, we simplify the choices available to
an agent and ensure that it will behave in a way compatible with the expectations of the
human users who are accustomed to dealing with socially aware individuals.

We identify roles for each participant. In our story (see Figure 2), there are two roles:
the sales agent is playing the role of Shopkeeper and the human user is playing the role
of Customer. We chart out the paths the conversation can take as shown in the protocol
diagram (see Figure 3), taking care to reuse existing states as much as possible. The
diagram shows a UML-style statechart diagram where states are states of the conversation
(partial social states) and the arcs between them describe the action in the virtual world
which effects the state change. The lower part of each state bubble lists actions to be
performed whilst in that state.

We now develop rules to describe the effects of communication. It has long been
recognised by philosophers that the rules governing communication are constitutive rules.
Searle describes these rules as follows:

“Constitutive rules constitute (and also regulate) an activity the existence of
which is logically dependent on the rules.” (Searle, 1965)

These rules take the form “X counts as Y”, for example making a promise counts as an
undertaking to do some action simply because this is the convention of usage. Thus it is
a social convention that a certain speech act has a certain meaning, and these conventions
have evolved over time. It is Searle’s contention that:

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

<user enters shop>

Phone Agent : “Good Morning John.”
“Welcome back to the phone shop.”
“We have some new phones for you:
the Nokia 6110 and the Nokia 3210.”

“Would you like to see them?”

User : “Yes, the Nokia 6110 please.”

<Demonstration>

User : “hhhmm. . . I would like something a little lighter”

Phone Agent : “How about the Nokia 3330?”

<Demonstration>

User : “How much does it cost?”

Phone Agent : “It costs 150 pounds.”

User : “OK, I’ll take it.”

Phone Agent : “One Nokia 3330 has been added to your shopping cart.”

User : “Do you have any matching leather case ?”

Phone Agent : “No, I’m sorry, we don’t sell leather cases.”
“However, we have some nice faxes.”

User : “No thanks.”
“Bye!”

Phone Agent : “Good-bye! I hope you come back soon.”

Figure 2: A Storyboard for an Interaction in the Phone Shop.

“. . . the semantics of a language can be regarded as a series of systems of
constitutive rules. . . ” (Searle, 1965)

The idea of basing the semantics of communication on conventional meaning is now
receiving attention in the field of multi-agent systems (Singh, 1998). The necessity to
endow agents with social role awareness (Prendinger and Ishizuka, 2001) and to repre-
sent social commitments (Traum and Rickel, 2001) has also been recognised by those
designing embodied agents for virtual worlds.

Our approach uses an explicit representation of the social state which represents social
facts that are currently true. Social facts include commitments and expressed mental
attitudes (Guerin and Pitt, 2000). The notion of expressed mental attitudes allows us
to distinguish between an agent’s publicly expressed mental attitudes and its personal
internal mental attitudes, which need not be identical. For example, if an agent makes a
request we will say that the agent has expressed a desire, but we do not really know if the
agent has that desire internally. Thus the semantics of our speech acts are defined as social
rules which capture the conventional meaning of communicative acts in our virtual society
and describe the social relations (for example roles and commitments) that hold between
its inhabitants. Table 1 lists the speech acts that will be needed, and their semantics.

The left side of Table 1 gives the speech act name only (we assume the act is success-
fully performed and contains a sender, receiver and content) and the right side gives the

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

1 Start

2 Preparation for Interaction

do / load usermodel

4 Awaiting User Response

do / monitor user response

Customer enters shop

Shopkeeper
greets customer

3 Attend to User

do / find preferred products

Shopkeeper
gives new
product
information

Shopkeeper
offers
product

6 Purchase Choice

do / monitor user response

5 Preparing Product Demo

do / access database agent

Customer
accept to

see product

Customer
Rejects

Shopkeeper gives
demonstration of
goods

Customer
rejects

7 Purchase

Customer
accepts

8 End

conclude
purchase

Customer
requests

a product

Shopkeeper
reports
product
unavailable

Figure 3: Shopkeeper-Customer Protocol.

Speech Act Name Expressed Mental Attitude

query E-DESIRE sender KNOW sender content
proposition=content

request E-DESIRE sender DO (receiver, content)

offer E-WILLING sender DO (sender, content)
E-DESIRE sender KNOW sender DESIRE receiver DO (sender, content)

inform E-BELIEF sender content

confirm E-BELIEF sender proposition

disconfirm E-BELIEF sender NOT proposition

salute E-HAPPY sender DONE (receiver, enter shop)

Table 1: Speech Act Semantics

semantics of the act. The expressions on the right are written in a social facts language.
E-DESIRE and E-BELIEF denote a publicly expressed desire and belief respectively (the E- pre-
fix stands for expressed). E-HAPPY denotes an expression of the state of happiness. E-KNOW

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

is for knowledge, meaning the agent believes that a proposition is true or that it is false.
E-WILLING describes the willingness of an agent x to adopt an intention, provided that an-
other agent y desires it. The semantics describe the facts that are added to the social
state after the performance of the speech act. Both the sender and receiver of a message
maintain a copy of the social state and update it as messages are sent or received. The
state is updated first with the speech act semantics and secondly with the protocol rules
(see section 4.2). The terms sender, receiver and content are replaced by their values in
the speech act. The query speech act adds to the social state an expressed desire of the
sender to know if the content is true. It also assigns the term proposition a certain value
in the social state. When this term occurs in the semantics of an act it is replaced by the
existing social fact. Thus the acts confirm and disconfirm (which need no content) are
only meaningful after a query. The offer speech act adds two propositions to the social
state. Firstly, the sender expresses a willingness to do the action specified in the content.
Secondly, the sender expresses a desire to know if the receiver desires this action to be
done. Where content appears within a DO (. . .) or DONE (. . .) expression, it is an expression
in the action language described in the Appendix, otherwise it is a true or false expression
in the social facts language. This type of semantics can be formalised using denotational
semantics (Guerin and Pitt, 2001).

Note that the social state is merely a set of propositions which can be represented
by text strings. There is no requirement that these propositions are logically consistent
and logical implication does not follow automatically, it must be explicitly specified by
a rule if desired. The absence of a proposition from the social state does not entail the
validity of its negation. Thus if an agent does not believe a proposition or its negation, its
attitude with respect to that proposition is in an undefined state. This can be formalised
with a three valued logic, but in this paper we focus only on implementing a system. The
propositions in the social state will be explicitly used by the protocol rules to define new
states when a communication happens.

4.2 Protocol Constraints

The speech act semantics above define speech acts as changes to the social state. The
protocol can define a set of commitments for each conversational participant based on the
current social state. An analysis of our storyboards leads to the identification of those
social facts which are relevant to a description of the state of the conversation and hence
constrain the possible future paths. The social facts identified in different storyboards
can combine in different ways to describe the social state for a more general class of
conversations. Since the total number of possible social states can be large, we restrict
our attention to partial states of the conversation. A partial state describes some aspect
of the conversation which is relevant to the commitments that arise in a given state. In
this way, we generalise from our stories to produce a set of rules which describe the
social conventions governing such interactions. These rules are encoded logically for
our sales agents and constrain the agent’s planning process while it is executing such
a conversation. This simplifies the choices available to an agent and attempts to make it
behave in a way compatible with the expectations of human users. The rules are described
informally in Table 2. The left hand side shows the condition characterising the partial
social state and the right hand side describes the social commitments which arise in such
partial states. All these commitments are for the Shopkeeper, in this protocol we cannot
constrain the actions of the human Customer. Each entry on the right hand side should be
prefixed with “COMMITTED in role:Shopkeeper” meaning that the agent playing the role of
Shopkeeper is committed.

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

State Condition Social Commitments Arising

Initial (empty) state greet the Customer AND

inform the Customer that this is the phone shop

elapsed time exceeds limit give new product information OR

offer to demo a product for the Customer

Customer E-DESIRE to know about (disconfirm AND offer an alternative) OR

the availability of a product (confirm AND demo the product)

Customer E-DESIRE product demo demo the product

Customer E-DESIRE to purchase inform that the product was added to cart

Table 2: Speech Act Semantics

Our protocol is initiated by a non-speech action, namely the entrance of a user avatar
in the shop. When the interaction begins, there is a blank social state and this creates a
commitment for the Shopkeeper to express happiness that the Customer has entered, and
to tell the Customer that this is the phone shop. Included in the social state is a timer
variable, each agent’s copy of this fact is periodically updated by the agent platform.
Another social fact elapsed keeps track of how much time has elapsed since the last speech
act in the conversation. As shown in table 2, if this value exceeds a certain predefined limit
then the Shopkeeper is committed to perform a speech act so as to avoid a long silence.
In some states, the Shopkeeper is committed to more than one action, for example if
the Customer queries the availability of a product and the Shopkeeper decides that it is
available, then the shopkeeper is committed to confirm the availability and offer to give a
demonstration.

5 Implementation

The implementation is built using JADE (JADE, 2000), a FIPA (FIPA, 2000) compliant
agent platform that provides the infrastructure for agent communication using the FIPA
Agent Communication Language (ACL), although it does not implement the FIPA se-
mantics. SoNG agents implement a cyclic behaviour which involves checking new inputs,
followed by an internal planning phase after which chosen actions are executed. To im-
plement internal planning and reasoning we use JESS (JESS, 2000) to build a rule based
action planner for each agent. JESS operates on a Knowledge Base (KB), which repre-
sents each agent’s public data (social model) and private data (beliefs about the state of
the world, the user and the discourse, as well as desires and intentions). Each agent is able
to make inferences about events in the environment and update its beliefs. Furthermore,
each agent makes decisions according to its internal state. A rule base is constructed and
loaded into the JESS engine at runtime. A rule is activated if its pre-conditions are true.
In addition, the JESS KB can be stored as data in relational databases to maintain product
information in the e-commerce application.

5.1 User Model

The use of user modelling in SoNG is apparent in two contexts: the personalisation of
content, i.e. which goods match the user’s preferences, and the personalisation of inter-

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

action. Modelling a user’s product preferences allows the agent to tailor suggestions to
the user’s specific requirements, and modelling a user’s interaction preferences allows the
agent to vary the intensity and quality of conversation and animation. The user model is
constructed as a set of JESS facts, which are loaded into the agent’s knowledge base at the
start of a session. Three categories of facts are stored: firstly, those that represent a user’s
beliefs, goals and preferences, secondly, those that represent circumstantial information
that the system gathered about the user and, finally, those that represent fuzzy variables
whose membership functions are determined by the user.

0
0.2
0.4
0.6
0.8

1
1.2

0
0.1

5 0.3 0.4
5 0.6 0.7

5 0.9

Preference

Dislike
Indifference
Interest
Like

0
0.2
0.4
0.6
0.8

1
1.2

0

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

Price in £s

very cheap

cheap

medium

expensive

very
expensive

0
0.2
0.4
0.6
0.8

1
1.2

0 30 60 90 12
0

15
0

18
0

Weight in Grams

very light

light

medium

heavy

very heavy

(a)

(c)

(b)

Figure 4: Examples of Fuzzy
Set and constituent membership
functions for (a) user preference,
(b) product price and (c) product
weight.

The first category is represented as a set of be-
liefs that the agent holds about the user. These
include beliefs about the user’s presumed knowl-
edge of the domain, i.e. products or places that
the agent has told the user about during the course
of the conversation and hence the user knows ex-
ist. Any object that is stored in this category can
be referred to directly in conversation, without the
need for any introduction. In addition, the user’s
presumed goals will be stored as well. Finally, the
agent holds beliefs about the user’s preferences. As
the agent’s interaction with the user will be mainly
through natural language, a linguistic representa-
tion of a user’s preferences with respect to specific
product attributes (e.g. brand, model, price, colour,
etc.) was selected.

An ideal candidate for such a representation is a
fuzzy variable for which linguistic expressions can
be used to describe fuzzy concepts in an English-
like manner. Four such terms are used: like, inter-
est, indifference, and dislike (see Figure 4(a)). Two
types of preferences are modelled: preferences with
respect to particular product attributes and prefer-
ences with respect to the personality of the agent.
The latter will determine the intensity and qual-
ity of the agent interaction (see Section 5.4). Cur-

rently, SoNG agents support an explicit model of users’ domain specific goals and knowl-
edge and product and personality preferences as detailed in Appendix B.

Updates to a user’s product preferences will assign a fuzzy value from the afore-
mentioned fuzzy variable to specific product attributes. When suggesting a product to the
user, the agent will select the product with the most “liked” attributes. In the event that
more than one product is selected by this method, the agent will compare the remaining
attributes of each product, selecting the product with the most attributes of “interest” to
the user, and so on. Attributes that the user “dislikes” are not to be recommended.

Another factor that needs to be modelled is the user’s interaction pattern. In particular,
when was the last time the user visited the shop. Was it recently or did some time elapse.
Also, what product did the user buy at his or her last visit, if any. This sort of information
will allow the agent to greet the customer with utterances such as: “Hi John, I haven’t
seen you for a long time. How are you finding the Motorola WAP phone you bought last
month?”. A user’s response will allow the agent to gather feedback about its model of
the user’s preferences. The second category of facts stored in the user model represents

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

circumstantial data such as that collected about the user. In particular, three types of
information are stored: the user’s profile information (e.g. gender, age, nationality, etc.),
the time and date of the user’s previous sessions, and the products the user has bought in
the past. These are represented as per the following example:

(user-profile (user-id id001) (name John) (gender male)(age 23)
(address nil) (country UK) (nationality UK))

(session-info (arrival-time "2001-09-19 05:35:26")
(departure-time "2001-09-19 05:37:11") (session-id 6))

(purchase (product-type "mobile") (model "7110") (brand "Nokia")
(price 200) (features "WAP" "large display") (session-id 6))

The user profile serves the purpose of identifying possible interaction preferences the
user might have (i.e. as a function of gender, age and nationality). Keeping track of the
regularity of a user’s visit can indicate to the agent the relative satisfaction or dissatisfac-
tion with the service provided. Finally, the purchase information is used to update user’s
preferences for various attributes of the product.

Additional fuzzy sets are used to model qualitative descriptions of products referring
to attributes such as price (ranging between 0 and 1000) and weight (ranging between
0 and 1000 grams). For example, a product can be described by linguistic terms such
as “cheap” or “expensive” and “light” or “heavy”. Users’ perception of the meaning of
these qualitative product descriptions may differ and can be modelled by varying the dis-
tribution of membership functions within a given fuzzy set. A wealthy user will have
a different perception of a “cheap” phone than a poorer user. As the membership func-
tions for these concepts are determined by the user, their fuzzy set data is stored in the
user model and loaded at the beginning of each session. Examples of the membership
functions can be seen in Figure 4(b) and (c).

Amongst other things, we have identified the need to model the user’s preferences
about the personality and behaviour exhibited by the agent. The agent’s personality is
represented in JESS by means of three fuzzy variables, each describing a personality trait
(e.g. closed, neutral, open), defined in a JESS fact as follows:

(personality (openness "open") (extraversion "extravert")
(agreeableness "agreeable"))

This is thus stored as a fact in the user model, to be loaded at the start of a session.
Two methods are available for inferring the user preference. Firstly, by monitoring the
user’s utterances, the agent identifies utterances such as “Go away”,“You’re annoying!”
as indications that the user thinks the agent is trying to interact too frequently and in an
annoying manner. This will cause a decrease in extraversion and agreeableness in the
agent’s personality. On the other hand, utterances such as “I need help!” and “You’re
too grumpy?” will have the opposite effect. Secondly, as it is not necessarily the case
that the user will provide the agent with such information, the agent can make use of
the Law of Similarity Attraction (Reeves and Nass, 1996). This states that people tend
to like personalities similar to their own, in particular when people try to become like
them. Thus by monitoring user utterances and their behaviour in the virtual world the
agent can attempt to adapt its personality to the user. A user who speaks a lot and moves
frenetically around the shop (as a measure of the average number of position changed
event notifications per minute) is deemed to be more extraverted and a user who is polite
is deemed to be agreeable. Also, a user who is willing to talk about matters outside the
shop domain is deemed to be more open. As mentioned above, (Moon and Nass, 1996)
found this method of personality adaption to be effective.

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

5.2 Natural Language Parser

The Natural Language Processor (NLP) is responsible for the accurate recognition and
interpretation of a client’s utterances. The NLP module creates an ACL message in order
to represent the user’s communication in a manner compatible with the SoNG specifica-
tions (Figure 5). The information flow through NLP is influenced by three main factors
- the parser, rules and dictionaries. All of them can be used for tuning the recognition
process. The parser, based on the Link Grammar (Lafferty et al., 1992) parser, is the
most stable component. However, for some inputs, it can generate multiple outputs. A
rule base is used to identify which of these outputs is the most correct for the current
conversational context. The products and service dictionaries make the specialisation of
the agent possible. Generally speaking, if the NLP is more specialised, it has a better
chance of identifying the customers utterances. Therefore, this dictionary has to be built
carefully to achieve optimal functionality with a limited number of words. The NLP uses
two different methods to recognise human input. The first one is based on ELIZA and
uses keyword matching for simple categories such as salutation and confirmation. The
main problem with this approach is that context cannot be taken into account. However,
it can still be used if, for example, we assume that “yes” always means confirmation and
“Hi” is always a salutation. Despite these problems, this method is the fastest and most
simple for programming and debugging. For more complex sentences, a rule based sys-
tem is implemented. For a better understanding, an example is shown on Figure 5 which
is based on the story board in Figure 2.

User Utterance:
How much does it cost?

Parser Output:
 +---------------Xp--------------+
 | +------Bsm------+ |
 | | +---Ifd---+ |
 +--Wq--+--H-+ +-SIs+ | |
 | | | | | | |
LEFT-WALL how much does.v it cost.v ?

ACL Message:

(user, myphoneagent@goulev:1099/JADE,
query, price_of:this, 34, 1)

Sender Receiver

 Sequence Number List of parameters

 Performative keyword Conversation ID

Figure 5: A User Utterance and its Coding Stages.

As shown in the example, the parser
recognises six links (Xp, Wq, H, Bsm,
Ifd and SIs, the meaning of the dif-
ferent links is beyond the scope of
this paper) but we are only interested
in two of them. They are marked
with arrows and represent a question
of type “HOW + ”. The linkage “H”
connects the word “how” to “much”
or “many”. “SI” means subject-verb
inversion. In order to convert this
linkage information to the ACL mes-
sage displayed in the bottom right cor-
ner of Figure 5 we have to define
a rule which is activated when both
linkages H (associated with “much”)
and SI are present. The word on the
right hand side of the SI linkage is
taken to be the subject of the conver-
sation. The rule actually inserts new
facts that may be used later. A per-

formative is identified (see Section 1) and a speech act is constructed corresponding to
the user input. In some cases, one NL utterance corresponds to more than one speech act.

5.3 Environment Awareness

The SoNG embodied agent is aware of events occurring in its 3D environment. Events
are communicated by the SoNG MPEG4 player via an External Authoring Interface (EAI)

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

(VRML, 1997). The agent is equipped with four sensors, which alert it of events in the
environment and some user states. These are:

1. Proximity Sensor: alerts the agent of the position and orientation of the user’s avatar
with respect to a fixed point in the 3D scene. This enables the agent to face and
approach the user’s avatar. In addition, it alerts the agent when the user’s avatar
enters or leaves the shop.

2. Visibility Sensor: alerts the agent when a particular object is in the user’s field of
view.

3. Collision Sensor: alerts the agent when the user’s avatar collides with an object.
This is especially useful for detecting when the user’s avatar collides with the
agent’s.

4. Touch Sensor: alerts the agent when the user clicks on a object, for example a
phone.

These sensors allow the agent to have awareness of its context.
This is helpful in disambiguating utterances received from the
user, which refer to objects in the 3D world. For example, when
the user refers to “this phone”, the agent has a knowledge
of what object the user is clicking on, and matches that with the
reference. Furthermore, the agent can keep track of the user’s
interaction with objects and movements in the 3D space.

5.4 Action Planner

The agent uses an explicit representation of beliefs, desires and intentions (BDI archi-
tecture) to reason about its contextual information and plan communicative acts. In our
system, desires and intentions can make use of a language which we have developed for
representing agent actions (see Appendix A). We design our agents to respect their social
commitments, which constrain the agent’s choices and simplify the planning process by
providing a limited set of possible actions. The decision making within these choices is
made based on the values returned by other modules within the agent, for example the
choice of product to suggest to the user is based on the products preferred by the user ac-
cording to the user model. When the agent has decided what action it will take, the speech
and gestures it has chosen (for example pointing) will be performed with the characteristic
behaviour of the agent.

In addition, the agent’s personality has a bearing on the outcome of the action planner.
Its effect is twofold: firstly the agent’s levels of extraversion will have a direct effect
on the social fact elapsed time limit. The more extraverted the agent is, the lower the
limit, and viceversa, the less extraverted the agent is, the higher the limit. In addition,
within the limit, the frequency of agent utterances also vary in a similar fashion. As the
agent’s personality is a function of user preferences, it is assumed that higher levels of
extraversion correspond to increase help and assistance towards the user.

Secondly, the personality also has an effect on the quality of the agent interaction. An
increase in levels of extraversion also increases the degree of emotional expressiveness in
the agent’s utterances, just as increased agreeableness will increase the politeness. Other
than the agent’s utterances, personality also has an effect on the intensity of the agent’s
animation.

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

When the agent needs to control its embodied representation, the output of the Action
Planner – in terms of speech and behaviour scripts – are merged into an Avatar Markup
Language (AML) script (Kshirsagar et al., 2002). AML is an XML based format, also
developed within SoNG, which allows for the timely synchronisation and merging of
face animations, body animations, lip synching and text-to-speech. Furthermore, AML
allows for the specification of parameterised behaviour calls such as walking, pointing
and facing, which each take 3D coordinates as input. To support this functionality, the
AML Processor maintains an internal record of the current position of the agent’s avatar
in the 3D scene.

5.5 Current Status: System Walkthrough

Figure 6: Sales Agent in Phone Shop.

Here we analyse part of a simple interaction which shows how all the modules de-
scribed above interact to produce the desired behaviour. The first event is the entrance of
a user in the phone shop. The event semantics for this initiates an interaction following
the Shopkeeper-Customer protocol, with the user that entered playing the role of Cus-
tomer, and the agent playing the role of Shopkeeper. The existence of an empty partial
state leads to the creation of a commitment for the Shopkeeper to greet the Customer. A
planning rule in the agent is triggered by this commitment and the belief that the agent
knows the name of this user, creating the intention to send a speech act which results in
“Good morning John” being sent to the output terminal. The agent loads the user model
for the Customer that entered, this includes loading the fuzzy preferences of the user. To
make it an effective sales agent, the agent has the following desire:

(in shopkeeper-customer
(find list_of: telephone: date:

last_interaction(in role: customer));
(tell in role: customer list_of: telephone: price:

preference(in role: customer))
)

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

This is an action expression. The syntax of this language is given in Appendix A.
When the agent is engaged in a Shopkeeper-Customer, protocol the desire is asserted for
this specific interaction, giving a composition of two actions to be executed sequentially:

(find list_of: telephone: date: last_interaction(in role:customer))

The agent playing the role of Customer is substituted and the date of his last interac-
tion is found, giving:

(find list_of: telephone: date: 2000-02-27 01:52:27)

At present, the agent does not have knowledge about the required subject, but it be-
lieves that the search agent does, so it sends a query to the search agent:

query,"list_of: telephone: date:2000-02-27 01:52:27"

This starts an interaction with the search agent who is now committed to reply to the
phone agent. Since it doesn’t have the required information itself, it forwards the query to
a database agent who it believes knows about phones. In the database agent, the query is
asserted and a list of phones is generated, this is then passed back to the search agent who
replies to the phone agent with the list as content. This is a list of phones released since
the user last visited but not necessarily matching the user’s preferences. When the phone
agent receives the list of phones, it asserts each phone as a fact, matching each parameter
of the phone with the user’s fuzzy description for that parameter. For example, where the
price is represented by a numerical value in the phone list received from the search agent,
the phone agent will assert this as an “expensive” or “cheap” price according to the user’s
fuzzy terms stored in the user model. Now that the agent has completed the find part of
the action expression, it proceeds with:

(tell John list_of: telephone: price: preference(John))

The agent refines the phone list according to the user’s preferences and informs the
user of any new phones which match his preferred price range. In the meantime, the user
model states that John’s last session was more than two months ago. The agent formulates
a speech output by applying its personality traits to a template expansion mechanism that
selects an appropriate output for the current dialogue context. Finally, the agent fulfils its
social obligation and utters:

“Good Morning John. Welcome back to the phone shop. We have some new phones
for you: the Nokia 6110 and the Nokia 3210. Would you like to see them?”

6 Related Work

The design of embodied conversational agents is a topic which has attracted a great deal
of interest from the research community in recent years. Embodied agents are used in a
number of application domains including online tutoring, interactive storytelling, online
help, news reading and e-commerce systems. Although these agents take on a variety
of forms, some of the underlying techniques are very similar. However, the research
emphasis is often quite different.

Peedy the parrot (Ball et al., 1997) is a character developed by Microsoft Research
in a project called Persona, to assist a user in selecting and playing musical tracks. Its
implementation is based on the Microsoft Agent API, which supports the development
of desktop based animated agents. Its developers outline three requirements for assistive

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

interfaces which motivate the work on Persona: 1) “Support interactive give and take”
through support for mixed initiative interaction. 2) “Recognise the cost of interaction and
delay”. An assistive interface should only interact with the user if the cost of making a
mistake is higher than that of interrupting the user. Finally, 3) “Acknowledge the social
and emotional aspects of interaction”. This is just like human assistants learning what the
appropriate behaviour is depending on time of day, task and the mood of the people they
are interacting with.

REA (Cassell et al., 1999) is a fully immersed animated agent that acts as a female real
estate advisor. It is built on experience gained from Gandalf and Animated Conversation
and combines the qualities of both those systems. In particular, aside from generating
verbal and non-verbal output and supporting turn taking, REA is able to recognise verbal
and non-verbal input directly from the human user by means of sensors. In addition, REA
is able to give signals that indicate the state of a conversation. Empirical studies have
been carried out to identify appropriate signals (Cassell et al., 2001).

REA’s architecture is based on the Functions, Modalities, Timing and Behaviour
(FMTB) conversational framework. Here (conversational) functions can be of two types:
interactional, i.e. serving the purpose of regulating conversation, and propositional, i.e.
functions that convey the content of the conversation. Modalities include speech as well
as facial animations and gestures such as hand waves and head movements. Timing high-
lights the need for prompt response as well good synchrony between output behaviours.
Finally, behaviours are identified as those building blocks used to convey conversational
functions. Many other systems have attempted to map gestures and animations to conver-
sational functions. COSMO (Lester et al., 1997a), for example, uses pointing as a means
of resolving ambiguity in conversations when an object is referred to in the environment.

Although most efforts have been spent on studying the relationship between animated
agents and human users, some research has looked at the relationship between multiple
animated agents conversing and interacting with each other. Indeed, (André et al., 2000)
have been looking at using teams of animated agents in a car sales scenario interacting
with each other and a human user simultaneously. This metaphor enforces the need for
explicit models of social roles and personalities in order to vary the behaviour of the
participants in the conversation.

7 Conclusion and Future Work

The work described here is concerned with the design and development of 3D embodied
agents which are capable of carrying out conversations with users and tailoring services
to user preferences, where conversations are enriched by meaningful facial expressions
and body animations.

We have presented an architecture and implementation for agents situated in a vir-
tual marketplace. We have designed a distributed modular architecture for agents, which
means that the various different agents can be built from re-usable blocks. The issue of
believable interaction is central to our study. In order to achieve this and create the im-
pression of intelligence, we need to break away from prescripted interaction and develop
an architecture which allows emerging behaviour. This is made possible by incorporating
a model of personality in the agent, which varies along the dimensions of extraversion,
agreeableness and openness.

In our implementation, we have successfully integrated all modules described in this
paper to create an architecture for a believable embodied agent. This agent was inserted
into a multi-agent system the purpose of which is to provide database search facilities

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

to the end user. Finally, we interfaced the system with an MPEG4 3D player to which
animations are streamed and from which event notifications are received. The contribution
of this work is twofold. Firstly, to identify the issues involved in the development of
embodied agents for e-commerce applications. Secondly, to demonstrate a design which
effectively tackles these issues.

Now that the system is fully integrated, we must study the effectiveness of this type
of system on real users. In particular, tests will be carried out to evaluate the use of
personalisation and personality traits to adapt the behaviour of the embodied agent to the
user. Also, in the next stage of development we plan to investigate the possibilities of
enriching the agent’s personality model by developing it on top of an explicit emotion
engine. By the same token, we need to be able to acquire users’ emotional states and we
plan to develop the NLP module to allow for this functionality.

Acknowledgements

We are very grateful for the extensive comments given by the anonymous reviewers which
led to significant improvements in the paper. This work has been undertaken with the
financial support of the SoNG project (IST-1999-10192), part of the EU-funded Informa-
tion Societies Technology (IST) programme.

References

Adelson, B. (1992). Evocative agents and multi-media interface design. In Proceedings of
the UIST’92 (ACM SIGGRAPH Symp. on User Interface Software and Technology),
Monterey, pages p352–356.

André, E., Klesen, M., Gebhard, P., Allen, S., and Rist, T. (2000). Integrating models
of personality and emotions into lifelike characters. In Proceedings of Affect in
Interactions. Springer-Verlag.

Ball, G., Ling, D., Kurlander, D., Miller, J., Pugh, D., Skelly, T., Stanosky, S., Thiel, D.,
and Wax, T. (1997). Lifelike computer characters: The persona project at microsoft
research. In Bradshaw, A., editor, Software Agents, pages p191–222. The AAAI
Press/The MIT Press, Cambridge, MA.

Bates, J. (1994). The role of emotion in believable agents. Communications of the ACM,
37(7):122–125.

Carroll, J. and Rosson, M. (1987). The paradox of the active user. In Carroll, J., edi-
tor, Interfacing Thought: Cognitive Aspects of Human-Computer Interaction. MIT
Press, Cambridge, MA.

Cassell, J., Bickmore, T., Camphell, L., Vilhjalmsson, H., and Yan, H. (1999). The human
conversation as a system framework: Designing embodied conversational agents. In
Cassell, J., editor, Embodied Conversational Agents. MIT Press.

Cassell, J., Nakano, Y., Bickmore, T., Sidner, C., and Rich, C. (2001). Annotating and
generating posture from discourse structure in embodied conversational agents. In
Proceedings of the Workshop on Multimodal Communication and Context in Em-
bodied Agents, Autonomous Agents.

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

Charlton, P., Kamyab, K., and Fehin, P. (2000). Evaluating explicit models of affective
interactions. In Proceedings of the Workshop on Communicative Agents in Intelligent
Virtual Environments.

Dehn, D. M. and van Mulken, S. (2000). The impact of animated interface agents: a
review of empirical research. International Journal of Human-Computer Studies,
52:p1–22.

Elliot, C., Lester, J., and Rickel, J. (1999). Lifelike pedagogical agents and affective
computing: an exploratory synthesis. In Wooldridge, M. and Veloso, M., editors, AI
Today.

Eysenck, H. (1991). Dimensions of personality. Personality and Individual Differences,
12(8).

Fink, J. and Kobsa, A. (2000). A review and analysis of commercial user modeling
servers for personalization on the world wide web. User Modeling and User-Adapted
Interaction, 10:p209–249.

FIPA (2000). Fipa specification. In Foundation for Intelligent Physical Agents.
http://www.fipa.org/specs/fipa2000.tar.gz.

Fujita, F. (1996). The big five taxonomy,
http://www.iusb.edu/%7Effujita/Documents/big5.html.

Guerin, F. and Pitt, J. (2000). A semantic framework for specifying agent communication
languages. In Fourth International Conference on Multi-Agent Systems (ICMAS-
2000), pages 395–396. IEEE Computer Society, Los Alamitos, California.

Guerin, F. and Pitt, J. (2001). Denotational semantics for agent communication languages.
In Autonomous Agents 2001, Montreal, pages 497–504. ACM Press.

Hanani, U., Shapira, B., and Shoval, P. (2001). Information filtering: Overview of issues,
research and systems. User Modeling and User-Adapted Interaction, 11:p203–259.

JADE (2000). Jade project home page available at http://sharon.cselt.it/projects/jade.

JESS (2000). JESS, the Java Expert System Shell. Sandia National Laboratories.
http://herzberg.ca.sandia.gov/jess/.

John, O. P. (1990). The big five factor taxonomy: Dimensions of personality in the nat-
ural language and in questionnaires. In Pervin, L., editor, Handbook of personality:
Theory and research.

Kay, J. (1993). Pragmatic user modelling for adaptive interfaces. In M. Schneider-
Hufschmidt, T. K. and Malinowski, U., editors, Adaptive user Interfaces: Principles
and Practice.

King, J. and Ohya, J. (1996). The representation of agents: Anthropomorphism, agency
and intelligence. In Proceedings of CHI’96.

Kobsa, A. (1990). User modelling in dialog systems: Potentials and hazards. AI and
Society, 4:p214–240.

Koda, T. and Maes, P. (1996). Agents with faces: The effects of personification of agents.
In Proceedings of HCI’96, London.

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

Kshirsagar, S., Guye-Vuillème, A., and Kamyab, K. (2002). Avatar markup language,
submitted to the 7th international conference on 3d web technology, web3d 2002.

Lafferty, J., Sleator, D., and Temperley, D. (1992). Grammatical trigrams: A probabilistic
model of link grammar. In Proceedings of the AAAI Conference on Probabilistic
Approaches to Natural Language, October.

Lester, J., Voerman, J., Towns, S., and Callaway, C. (1997a). Cosmo - a life-like animated
agent with deictic believability. In Working notes of the IJCAI workshop on animated
agents: Making Them Intelligent.

Lester, J. C., Converse, S. A., Kahler, S. H., Barlow, S. T., Stone, B. A., and Bhogal, R. S.
(1997b). The persona effect: Affective impact of animated pedagogical agents. In
CHI, pages 359–366.

Maes, P. and Shneiderman, B. (1997). Direct manipulation vs. interface agents: A debate.
Interactions, 4(6).

McCalla, G. (1992). The central importance of student modelling to intelligent tutoring.
In Costa, E., editor, New Directions in Intelligent Tutoring Systems, pages p108–131.
Springer-Verlag, Berlin.

Moffat, D. (1997). Personality parameters and programs. In Trappl, R. and Petta, P., ed-
itors, Creating Personalities for Synthetic Actors: Towards Autonomous Personality
Agents. Springer-Verlag.

Moon, Y. and Nass, M. (1996). Adaptive agents and personality change: Complementar-
ity versus similarity as forms of adaptation. In Proceedings of CHI’96.

Norman, D. (1997). How might people interact with agents. In Bradshaw, A., editor,
Software Agents, pages p49–55. The AAAI Press/The MIT Press, Cambridge, MA.

Orwant, J. (1996). For want of a bit, the user was lost. IBM Systems Journal, 35:p398–
416.

P3P (2001). Platform for privacy preferences (p3p) project, http://www.w3c.org/p3p.

Paiva, A. and Martinho, C. (1999). A cognitive approach to affective user modeling. In
Proceedings of the Workshop on Affect in Interactions Towards a New Generation of
Interfaces, held in conjunction with the 3 rd i3 Annual Conference.

Peppers, D. and Rogers, M. (1993). The One-to-One Future. Doubleday, New York.

Pervin, L. and John, O., editors (1993). Personality: Theory and Research. Wiley and
Sons.

Picard, R. (1997). Affective Computing. The MIT Press.

Prendinger, H. and Ishizuka, M. (2001). Social role awareness in animated agents. In
Autonomous Agents 2001, Montreal, pages 270–277. ACM Press.

Rao, A. S. and Georgeff, M. P. (1992). An abstract architecture for rational agents. In
Principles of Knowledge Representation and Reasoning: Proceedings of the Third
International Conference (KR ’92), pages 439–449. Morgan Kaufmann Publishers,
San Mateo, CA, USA.

http://www.aisb.org.uk

Designing Agents for a Virtual Marketplace

Reeves, B. and Nass, C. (1996). The Media Equation: How People Treat Computers,
Television, and New Media Like Real People and Places. Cambridge University
Press, Cambridge, England.

Searle, J. R. (1965). What is a speech act ? In Philosophy of Language. edited by A.P.
Martinich, Third edition. Oxford University Press.

Singh, M. (1998). Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12):40–47.

Sleeman, D. and Brown, J. (1982). IntelligentTutoring Systems. Academic Press, London,
UK.

Sproull, L., Subramani, M., Kiesler, S., Walker, J., and Waters, K. (1996). When the
interface is a face. Human-Computer Interaction, 11:p97–124.

Traum, D. and Rickel, J. (2001). Embodied agents for multi-party dialogue in immersive
virtual worlds. In Autonomous Agents 2001 Workshop on Multimodal Communica-
tion and Context in Embodied Agents, Montreal.

TRUSTe (2001). Truste, http://www.truste.org.

VRML (1997). Vrml97, http://www.web3d.org/technicalinfo/specifications/vrml97/index.htm.

Weizenbaum, J. (1966). Eliza: A computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9:p36–45.

Appendix A: Action Expression Language
<Action expression> ::=<Actor>,<AE>

<Actor> ::=<who>

<AE> ::=<AE1> ;<AE2> j
(if<cond> then<AE>) j
(in<prot><AE>) j
(assign var=<value>) j
(get position<who>) j
(point<coords>) j
(walk<coords>) j
(tell <who><what>) j
(find<what>) j
(demo<object description>) j
(buy<object description>) j
(sell <object description>)

<cond> ::= (protocol=<prot>) j
(var=<value>)

<prot> ::= shopkeeper-customer

<who> ::= role:<role expression> j
in role:<role name> j
<agent identifier> j
me

<role expression> ::=<role name>,<interaction id>

<role name> ::=<string value>

<interaction id> ::=<number>

<value> ::=<what>

<coords> ::= in front<who> j
<number>,<number>

<what> ::= is there: <object description> j
list of: <object description> j
price of: <object description> j

http://www.aisb.org.uk

Kamyab, Guerin, Goulev and Mamdani

is: <object description> j

<object description> ::=<object type>: <parameters> j
gcomparative this<parameter> j
lcomparative this <parameter> j
comparative this<parameters> j
this

<object type> ::= this j
<product type>

<product type> ::= mobile j
fax j
telephone j
pda

<parameters> ::=<parameter>:<parmvalue>+

<parameter> ::= manufacturer j
model j
weight j
price j
date j
colour

<parmvalue> ::=<string value> j
last interaction(<who>)

Appendix B: JESS Belief Structure
(belief

(agent User)
(content<Content>)

)

Content ::= exists <Concept>
preference<FuzzyPreference><Concept>
goal<Goal><Concept>

FuzzyPreference ::= like
interest
indifference
dislike

Goal ::= buy
enquire
see

Concept ::= product<product type>
manufacturer<string value>
price<string value>
personality<string value>

http://www.aisb.org.uk

AISB Journal

http://www.aisb.org.uk

AISB Journal 1(1), c
�

2001
http://www.aisb.org.uk

Modelling Simple Market Structures in Process
Algebras with Locations

Julian Padget

Department of Computer Science, University of Bath
Bath, BA2 7AY, United Kingdom

jap@cs.bath.ac.uk

Abstract

One potential barrier to electronic trading is the almost complete absence of any
guarantees, for either trading party, that each will meet their obligations. Trust can
be acquired from the use of a well-known name with an established reputation, when
people are involved, but if the traders are software agents, names mean very little in
the absence of reputation models. Thus, we aim to establish confidence by the use of
verifiable trading frameworks, which we call electronic institutions, and which spec-
ify rules for interaction, roles that (electronic) agents may play, the forms of discourse
(via speech acts) in which agents may participate and the obligations that agents may
acquire. We are aiming to ground our specification of electronic institutions in pro-
cess algebras augmented with places and in this paper we examine the specification
of some key aspects of a prototypical e-institution using the Seal and (typed Safe)
Ambient calculi, in order to compare their properties. Places offer a nice correspon-
dence with some aspects of our modelling approach, but although the type systems
do permit the statement of some desirable (static) properties, our needs are not fully
met, nor are there yet adequate tools to support our objectives.

1 Introduction

Our long term objective is the construction of electronic trading institutions from formal
specifications (Rodrı́guez et al., 1997; Noriega, 1997) and as one aspect of that, in (Padget
and Bradford, 1999; Esteva and Padget, 2000) we applied the � -calculus to the modelling
of communication in an idealized auction house. However, although the exercise helped
illuminate some aspects of interactions in the institution and lead to design improvements,
the approach was ultimately frustrating because of the way in which purely technical is-
sues affected what was supposed to be a high-level specification. Also, as has been widely
observed, various technical features of the � -calculus simply do not fit the reality of net-
worked computation1. Furthermore, while the conceptual modelling of the institution had
evolved as a collection of linked scenes (the so-called performative structure), within each
of which agents participated in conversations defined by a set of illocutionary acts formed
into prescribed orders, and the movement of agents between scenes, these concepts and
actions had no counterparts in our process algebraic specification. Hence, the appear-
ance of the Ambient calculus (AC) (Cardelli, 1997), the Seal calculus (SC) (Castagna

1Specifically: synchronous communication and the passing of names (channels) imply the need to be able to
solve distributed consensus.

Modelling Simple Market Structures

and Vitek, 1999) and more generally, the augmentation of the � -calculus with locations
(Wojciechowski and Sewell, 2000) seemed to offer new promise for our objective of a
sound theoretical basis for electronic institutions, by providing explicit notions of place
and mobility. Yet more positive still has been the evolving body of work on typing to
establish mobility properties for these algebras, since mobility types offer an avenue to
the statement and verification of static accessibility properties.

Our approach to specifying an electronic institution rests on the principle of the norm
(North, 1991) which can be described as:

a principle of right action binding upon the members of a group and serving
to guide, control, or regulate proper and acceptable behavior
(Merriam-Webster, Inc., 2001).

Norms are the principles that characterize an institution and act both to enable people
to recognize an organization as being a particular kind of institution and to know approx-
imately the form of the stylized conversations which typify interaction with that sort of
institution. Norms can also be relatively abstract, expressing desires like “fairness” and
“honesty” without any indication of how such situations might be achieved or maintained,
but successive refinement of a norm, in the context of a particular trading scenario, leads to
the definition of policies, then to protocols and eventually, as we aim to demonstrate later
in this paper, to a level where process algebra may be employed. What we are expecting
is that process algebras will enable us to specify the framework of the institution, being
its static structure and topology, the mobility of the agents within it, being restrictions on
which agents may go where, and provide the communication infrastructure.

The remainder of the paper is structured as follows:
�

in Institutions and norms (section 2), we expand on the notion of a norm and the re-
lationship between institutions, norms and organizations and follow with an overview
of the FishMarket (Rodrı́guez et al., 1997) work to date;

�
in Mapping the market (section 3), we outline some of the issues in realizing a market
using the concepts of process algebra with places;

�
in Market structure (section 4), we get down to the detail of the Seal and Ambient
calculus, modelling agent communication and modelling agent mobility.

�
in Related and future work (section 5) we give a short description of work that has
influenced ours, mention that which we have yet to evaluate fully and outline our
current activities.

2 Institutions and Norms

Most human interactions are governed by conventions or rules of some sort, having their
origins in society or the laws that society has developed. Most of these rules have become
so common-place that we follow them and operate with their defining framework while
hardly being aware of their existence. As an example, consider the case of one person
taking the role of a purchaser in a shop and another taking the role of an employee of
the shop. Even from this simple scenario, we have already conveyed a large amount
of contextual information, since we have the expectation that the interaction will move
through approximately three scenes:

(i) identification of goods/service
(ii) evaluation of options

(iii) conclusion of the transaction

http://www.aisb.org.uk

Padget

NORMS P
O

L
IC

IE

SPOLICIESPOLICIES
PO

L
IC

IE
S

PO
LICIES POLICIES POLIC

IE
S

INSTITUTIONS ORGANIZATIONS

characterize

borrow

establish

clone: restrict/extend

instantiate

inherit

Figure 1: A possible relationship between norms, institutions and organizations

In addition, we have constrained the behaviour of the participants in that we suggested
that each is playing a role, which creates expectations in the other party as much as it in-
hibits the acts of the role-player. But why should each party play a role and follow through
a sequence of scenes? We are not qualified, nor do we want to pass opinion on the socio-
logical aspects raised by the question, instead our focus rests on how keeping in character
and adhering to the pattern is a means to maintain the over-arching norms of the (generic)
trading institution, such as “fairness” and “honesty” mentioned in the previous section.
However, as we hinted earlier, norms such as these are unenforceable, so there must be
other forces at play which aim to uphold them, and if we were to drill-down to a more
detailed, more precise description, we would find all manner of more concrete policies
and protocols intended to fulfill those purposes. For example, the purchaser probably has
a strong belief that s/he will not be defrauded because there may be a complex set of legal
constraints which can be employed should the goods prove unsatisfactory or the service
deficient. Likewise, the supplier also benefits from the support of a legal framework that
ensures payment. At a lower level, a protocol dictates that the payment, say the swipe
of a credit card, may normally only be taken at the conclusion of the transaction (practi-
cal exceptions to this appear in hotels or in car rental). Both of these situations are still
testament to norms guiding, controlling or regulating acceptable behaviour, although the
norms themselves are much more specific and we are inclined to use different terminol-
ogy, namely policy and protocol (not that we intend to suggest that three levels is right or
sufficient).

The aim of the preceding scenario has been to draw attention to the distinction be-
tween the kind of trading model (shop) and the norms (etc.) that enable it, so that we may
take a step back and consider from a wider perspective the relationship between norms,
the institutions that are characterized by particular sets of norms and then the organiza-
tions that may either be instances of institutions or – by dint of being unique or just few
in number – organizations that combine a bespoke set of norms (see figure 1). In addi-
tion, to complete the picture, organizations may invent new business models, which may
be copied by other organizations and either simplified or built upon further, while other
organizations may invent new norms which may be put back into the pool. Observing the
distinction between institutions and organizations from a computing perspective, we can

http://www.aisb.org.uk

Modelling Simple Market Structures

NORMS
statements

of principle

POLICIES
procedures to

maintain principles

RULES
individual

regulations

PERFORMATIVE
STRUCTURE

structuring
of scenes

SCENES
structuring

of conversations

PROTOCOLS
specification

of conversations

ILLOCUTIONS
components

of conversations

PROCESS ALGEBRA
mobility and

type constraints

implementation

SPECIALIZATION

simpler rules support special cases

or parts of the norm

GENERALIZATION

more complex rules cover

a collection of constraints

Figure 2: Refinement of norms

appeal to the object-oriented notions of class and instance, respectively, which to some
extent mirrors their natures in practice due to their relative speed of change: institutions
evolve slowly and change their norms rarely, while organizations tend to be much more
dynamic (North, 1991). Finally, we emphasize the point made earlier that some norms
are unenforceable, but even if they are not explicitly stated, we can infer their existence
from the policies in place which maintain them. Thus it may be the policies that maintain
norms which flow through figure 1 as much as the norms themselves.

We conclude this overview of institutions and norms by picking up an earlier theme in
which we referred to norms, policies and rules as some of the different levels of detail that
might emerge as a result of studying or designing trading structures. The conventions on
human interaction typically cover language, meaning and behaviour with a consequential
decrease in uncertainty, reduction in conflict of meaning, creation of expectations of out-
come and simplification of the decision process by restricting the set of potential actions.
As a result of considering these issues, we have broken down interactions into ordered
collections of scenes (see for example the three scenes in the shop scenario), which we
call a performative structure (see figure 3), scenes into protocols – effectively stylized
conversations – and protocols into illocutions (speech acts in the sense of (Searle, 1969)).
Thus a kind of hierarchy begins to emerge (see figure 2) which starts out with the norms,
policies and rules, then as we descend into more and more detail, getting closer to the
implementation, brings in the organizational notions just mentioned. The purpose of this

http://www.aisb.org.uk

Padget

Buyers’
Admission

Buyers’
Settlement

ENTER
Auction
Scene

EXIT

Sellers’
Admission

Sellers’
Settlement

[z:a] � [x:b] �

[x:b] � � ���
[x

:b]
�

[x:s]
�

[y
:b

a]
�

[x:b]
	

[x:bac]

[x:b] �

[x:s]
�

[y:sa]

[x:sac]
�

[x
:s]

�

Figure 3: Performative structure of the Fish Market

diagram is to put the process algebra aspect in context and identify how it forms a po-
tential link from the specification in terms of the performative structure, its scenes and
its protocols both to a framework for verification and beyond that to a reliable implemen-
tation. The third component of our specification after the performative structure and the
scenes are the normative rules, being the obligations that agents acquire as a result of
their actions within the institutions. A fuller description of our declarative specification
language appears in (Esteva et al., 2001).

2.1 FishMarket overview

Much of our work, since we started in 1995, has taken as a reference point the physical
market for auctioning fish in the town of Blanes on the Costa Brava. From this physical
model we have abstracted what we call scenes, for the admission of buyers, the admission
of sellers, the auction room (where a standard downward bidding/Dutch auction format is
employed), buyers’ settlement, sellers’ settlement and a back-room accommodating the
accountant, quality assessor and other institutional functionaries. For a detailed account
of the evolution, see (Rodrı́guez, 2001).

2.1.1 Performative structure

For each activity that can take place in the institution, there is a corresponding scene,
in which interactions between agents are articulated through agent group meetings that
follow a well-defined communication protocol – in fact, in our institutions, agents may
only interact within the context of a scene. This has been described and discussed in detail
in (Noriega, 1997), while a more technical treatment appears in (Rodrı́guez, 2001). This
set of scenes and the connections between them – what roles agents may play in them,
how many of each role, to which scenes they may move – constitute the performative

http://www.aisb.org.uk

Modelling Simple Market Structures

structure for the electronic institution (see Figure 3). The purpose of this diagram is to
show the different scenes which comprise the institution by means of a transition graph.
Thus, the black circle on the left hand side denotes the start scene and that on the right
hand side surrounded by a line is the end scene. In between, there are scenes (rectangles
with rounded corners) and arcs connecting them. The arcs are labelled with variable:role
pairs, where role (in the case of the FishMarket) may be one of: a: auctioneer, b: buyer,
ba: buyers’ admitter, bac: buyers’ accountant, s: seller, sa: sellers’ admitter and sac:
sellers’ accountant. Additionally, it is important to know that the system is intended to
be initialized by injecting the (staff) agents via the start scene, whence they traverse the
performative structure to reach their allotted scenes. Subsequently, buyers and sellers
will also enter the market via the start scene and follow the paths according their choice
but under the constraints of the roles they have adopted and under the constraints of any
obligations they may have acquired through their actions. To illustrate the last remark,
note that a buyer may go either to the buyers’ settlement scene or to the exit scene upon
leaving the auction scene, but a buyer is only permitted to leave if they have paid for any
goods for which they have bid successfully.

We have to admit to a slight simplification in the performative structure shown in fig-
ure 3, in that the full specification – as it currently stands – also incorporates so-called
synchronization scenes between each of the institution-specific scenes. Their purpose
is to capture constraints on the numbers and roles of agents traversing the performative
structure and temporal constraints such as two agents (playing particular roles) having to
be present before a scene can commence. However, since we concentrate on communica-
tion and mobility in this paper and do not address these aspects of the specification, here
we prefer to keep to the simpler structure. A complete description of the synchronization
language appears in (Rodrı́guez, 2001).

2.1.2 Scenes and conversations

While the objective of the performative structure is to convey the big picture of the in-
stitution, the purpose of scenes is to focus the designer’s attention on the detail of an
interaction limited to one topic. Thus it is that within each scene, we use a transition
graph labelled with illocutions to define the structure of a conversation and to identify the
states at which an agent may join or leave the scene and which agents may say which
illocutions (see the Buyers’ Settlement scene in Figure 4). The purpose of this diagram
is to formalize what an agent may say, which agents may say what, in what order things
may be said and at what points a conversation may begin and end (denoted by the access
and exit nodes). It is extremely rigid and intentionally so, because the purpose of the con-
versation is to exchange or elicit particular information, rather than have a wide-ranging
unstructured conversation. For this reason too, we also specify exactly the form of an
illocution – there is not even any room for variation here, for the simple reason that it
would unnecessarily complicate the design of the institution for, as far as we have been
able to see, no qualitative gain.

It is not our intention to make this a tutorial on our notation, not least because it is still
evolving, but the labels on the graph do demand some explanation. Each arc is labelled
with an illocution, which are expressions in the communication language constructed as
formulae of the type

���������	��
������������
��������������
where

�
is an illocutionary particle,

���

(sender) and
���

(receiver) are terms which can be either agent variables or agent iden-
tifiers,

 �
and

 �
are terms which can be either role variables or role identifiers,

�
is an

expression in the representation language and
�

is a term which can be either a time
variable or a time constant. The representation language is a parameter to the dialogic

http://www.aisb.org.uk

Padget

w � w � w �

w � w �

w �

w � w �

I1 I2

I3I1

I1

I4

I5

I6

I1

closing

closing

closing

I4

I4

Where

a denotes an access node

b denotes an exit node

c denotes an access/exit node

and the illocutions are as follows:
I1 (request (?x b) (?y

bac) (update-credit
?value))

I2 (accept (!y bac) (!x
b) (accept
"update-credit"))

I3 (deny (!y bac) (!x b)
(deny ?deny-code))

I4 (request (?x b) (?y
bac) statement)

I5 (inform (!y bac) (!x
b) (statement (?g1
?p1) ... (?gn
?pn)))

I6 (pay (!x b) (!y bac)
(payment ?value))

Figure 4: Conversation graph and illocutions for Buyers’ Settlement

specification and might typically be KIF (Genesereth and Fikes, 1992) or FOL (for first
order logic). The intention is to allow for the encoding of the knowledge to be exchanged
among agents using the vocabulary offered by the ontology. These propositions are then
embedded in the language in accordance with speech act theory (Searle, 1969), by means
of the illocutionary particles. In the example appearing in Figure 4, the particles are re-
quest, accept, deny, inform, and pay. Within the sender/receiver, in the concrete
syntax of the example, the variable is annotated with a question mark to indicate a fresh
binding (in the spirit of logical variables) or with an exclamation mark to indicate a ref-
erence to and comparison with the previous binding of that variable. The role identifiers
are the same as those given for the performative structure of figure 3. As two examples,
consider (i) I1, I2, which denotes a buyer requesting to update their credit line and re-
ceiving acknowledgement (ii) I4, I5, I6, which denotes a buyer requesting their statement
of account, receiving it and then paying it. Again, more detail appears in (Esteva et al.,
2001).

2.1.3 Governors

A novel feature of our design that is also due some explanation is the use of so-called
governor agents, which mediate between external agents and the institution. The benefits
of using these mediators are in improved security for both traders and the institution and
a simplification of the institution itself, both of which are consequences of the software

http://www.aisb.org.uk

Modelling Simple Market Structures

engineering factors of reduced coupling and increased cohesion, as we now explain. Gov-
ernors serve several purposes: (i) the governors move around the scenes of the institution
on behalf of their external agents because neither do we want to give an external agent
potential access to institution internals, nor do we expect that any agent would normally
want to put itself in such a position (ii) they may be able to answer questions posed by the
external agent about what is permitted or what is expected in different scenes and conver-
sations (iii) they shall ensure adherence to the performative structure and the conversation
protocol, thus simplifying the development of the institution as a whole (iv) they may
communicate with other governor agents regarding the running of the institution.

3 Mapping the market

The outline in the previous section identifies two levels of specification: the performative
structure, which is a linked set of scenes, and the scenes themselves, which are conver-
sation graphs. Hence, we can see that the two levels are not substantially different, but
that the levels serve to emphasize structure and hide detail – indeed, we expect to con-
struct a scene library in future work, and that scenes may then be re-used in different
electronic institutions. The graphical notation is being developed as a high-level means of
capturing the requirements of a market designer, but there is also a corresponding textual
representation, described in detail in (Esteva et al., 2001).

3.1 The role of process algebra

The discussion in section 2 explained how process algebra might fit into an hierarchy of
norms. We now discuss in some more detail those aspects of process algebra research that
might help to achieve those goals.

We have four objectives in trying to use process algebra with locations to formalize
the specification of institutions:

(i) To obtain a precise description of the components of the institution and their inter-
actions.

(ii) To provide a formal framework within which the design can be verified.
(iii) To provide a formal framework within which the design can be validated against

standard correctness requirements for distributed systems.
(iv) To provide a formal framework within which the design can be animated to verify

institutional norms.
However, it is the first and last issues that hold the most interest for us: the first, because
without it we can do nothing and the last because we see norms as the key to generating a
reputation for and trust in electronic trading institutions. We will now set out how we can
relate the components of our institutional specification to the elements of process algebra
with locations.

It may be debatable whether it is necessary or desirable to reflect in the process algebra
model the two-level structure of scenes and conversations: the institution as a whole
could be viewed as the composition of conversation graphs, where the exit nodes of one
graph are linked to the access nodes of another, modulo the actions of the synchronization
nodes. A first reaction might therefore be to propose the use of Petri nets; this direction
is explored and rejected in (Rodrı́guez, 2001). The attraction of process algebra with
locations is that it intuitively supports the idea of associating scenes (see above) with static
locations and agents/governors with mobile locations. Also, within a typed framework –
but these are still evolving very rapidly – it will be possible to prove that certain locations

http://www.aisb.org.uk

Padget

are immobile, and that other locations have mobility within certain groups of locations
(Castagna and Vitek, 1999; Cardelli et al., 2000; Ghelli et al., 2001). Furthermore, work
on typing interactions within locations (exchange types (Cardelli and Gordon, 1999))
enable us to specify what illocutions may be exchanged.

Initially, we thought exchange types were insufficiently precise, because they specify
all the objects that may be exchanged within a location, whereas we also wanted to make
it clear that some illocutions could only be said by one party and heard by another (for ex-
ample, only the auctioneer should be able to declare a bidding round open). However, the
combination of exchange types and polymorphism (Amtoft et al., 2001) seems to resolve
this, while adding the notion of orderly communication as a sequence of types where the
sequence relates to the passage of time. This last approach may also support our aim of
prescribing valid sequences of illocutions from an agent’s perspective. The conversation
graphs provide a means to show which illocutions may follow from one another, but in
that sense they are a conversation-centric specification. For an agent, playing a particu-
lar role, it only makes sense to say certain things: for example, an auctioneer does not
buy in its own auction, nor does a buyer announce new lots; such illocutions are incom-
patible with their roles. One way to tackle this issue might be through some adaptation
of role-based access (RBAC) models (Sandhu et al., 2000) or dynamically typed access
control (DTAC) (Tidswell and Jaeger, 2000). A rather different approach might assign
types (labels) to every state of the conversation graph and then construct partitions based
on possible conversation trajectories. A third strategy we are considering might use the
illocution names as types and then examine a trace semantics behaviour of an agent again
following the ideas set out in (Amtoft et al., 2001).

We are developing an institution specification language, which is described in (Esteva
et al., 2001), but while this is serving to capture various requirements of electronic orga-
nizations, various aspects of it need to be grounded in different formalisms appropriate to
need. For example, as we noted earlier, logic may form a part of an agent communication
language. To ground the computational and mobility aspects, we are investigating process
algebra since it could provide:

1. a computational foundation for a distributed implementation, using experimental
programming languages like Nomadic Pict (Wojciechowski and Sewell, 2000),
JavaSeal (Bryce and Vitek, 1999), or Ambients in JoCaml (Fournet et al., 2000).

2. type systems, which can be used to verify some kinds of norms. For example,
exchange types might be used for conversations, mobility types might be used for
accessibility, sequence types might be used for analyzing the progression of con-
versations.

3. logics on top of process algebra combined with model checking to verify higher-
level norms. For example: modal logic (Cardelli and Gordon, 2000) can answer
whether there is an ambient of type A below this ambient; temporal logic can de-
termine whether an agent in scene

�
will eventually go to scene � ; deontic logic

(Lomuscio and Sergot, 2001) can express the idea that an agent whose bid is ac-
cepted is obliged to buy the lot.

4 Market structure

The background to our work on institutional modelling, given in section 2.1, drew upon
our experience with the Blanes Fish Market and our modelling of that as an electronic
institution. Of course, in the process of that modelling, we have abstracted many aspects
with the objective of establishing more general principles which can be applied in a variety

http://www.aisb.org.uk

Modelling Simple Market Structures

of contexts. For the purpose of this discussion we do not attempt to present a complete
model of the Fish Market using ambient or seal calculus, but instead focus on exploring
the issues surrounding communication (between external agent and governor, governor
and governor and governor and staff agent) and mobility (between scenes).

We stated at the outset that one of the objectives of this paper was to compare the
properties of the Seal calculus and the Ambient calculus and so in this section we will
be sketching specifications of communication and mobility support without reference to
any particular institutional structure. Hence we begin with brief sketches of the syntax
and semantics of Seal and ambient calculus and then turn to its application, bearing in
mind the twin objectives of wanting to specify a computational model and establishing
sufficient type information to verify some of the low level norms.

4.1 (Safe) ambient calculus

The two axes of the Ambient calculus (AC) are communication and mobility. The funda-
mental unit of AC is the notion of an ambient, which is a place within which processes
may interact by writing messages into the ambient and reading them from it – hence
reading and writing are decoupled and asynchronous. It is not possible for processes in
different ambients to interact. Thus communication is a localized activity and it is only
via movement that two processes in different ambients can arrive in the same ambient and
hence interact. The unit of mobility is the ambient – not individual processes, but rather, a
collection of processes and the messages that may be in transit between them. A process
within an ambient may execute a capability to (make the whole ambient) enter a sibling
ambient or move out of its enclosing (parent) ambient – these are called objective moves,
because it is the ambient that moves itself – or an ambient may be dissolved, unleashing
its constituents into the enclosing ambient – a subjective operation, because a process ex-
ecutes a capability in one ambient to carry out the operation on another. The effect of each
of these operations is conveniently imagined as reorganizations of a tree (see Figure 7):

� in detaches the sub-tree rooted at the moving ambient and re-attaches it as a child
of the target ambient

� out detaches the sub-tree as above and re-attaches it as a child of the parent of the
parent

� open attaches all the children of the subject ambient as children of the ambient
performing the open

A sequence of mobility operations is called a path or a capability and may be passed
as a message from one process to another. Attempting a move, when the target ambient
is not present (that is, as sibling or parent) causes the process executing that operation
to block until the named ambient appears. However, other processes may continue to
execute and the ambient enclosing the blocked process may still undergo other objective
or subjective moves.

A summary of the syntax of AC appears in Figure 5, from which it will be observed
that we have adopted the extension of co-actions, introduced in Safe Ambients (Levi and
Sangiorgi, 2000). Under this variant of AC, for every action (in, out, open) there is a cor-
responding co-action (in, out, open) and for any action to succeed, the collaborator in the
action (a sibling, child or parent ambient, respectively) must engage in the corresponding
co-action, that is, both parties to the ambient operation must synchronize. The role of the
co-actions is made explicit in the reduction rules of figure 6. For the sake of space, we
have omitted the rules for structural congruence that complete the semantics by defining
legal reorganizations of terms that bring reacting components together.

http://www.aisb.org.uk

Padget

�
::= � inactivity� � � �

composition� � �
replication� �����

�	��
�
�
� ��� � � restriction� �
 � action�
n � ��� ambient� �
x
�

bind input� �����
output

�
::= x variable (read)�

n name (new)� ��� �
enter

�
� ��� �

allow enter
�

� ����� �
exit

�
� ����� �

allow exit
�

� ��� �!� �
open

�
� ��� �!� �

allow open
�

� "
empty path� �
 �$# path

Figure 5: Ambient calculus syntax from (Cardelli and Gordon, 1999) augmented with
co-actions from (Levi and Sangiorgi, 2000)

n � ��� m
 � �&% � �
m � �'� m
)(� *�+

m � n � � �&% � � (� (in)
m � n � ��� � m
 � �&% � � ��� �

m
)(� *�+
n � � �,% � �

m � (� (out)��� �!�
n
 � �

n � ������% � *�+ � �,%
(open)�

x
�
 � ������� *�+ �.-

x / �10
(communication)

Figure 6: Safe Ambient calculus reduction rules

A

B: 2 3 c C: 2 3 c

D

465
A

C: 798,: c

B D: 798,: c

465 A: 7<;,=93 c

C: 7;,=>3 c

B

D

465
A

B D

Figure 7: Safe Ambient operations as tree transformations

4.2 Seal calculus

The seal calculus (Castagna and Vitek, 1999) can be viewed as a reaction to the ambi-
ent calculus in that its design is based on a strong rejection of one of the key ambient
calculus operations, namely open. The criticism is that opening an ambient unleashes un-
known processes and messages into the ambient doing the opening including capabilities
that may move the ambient somewhere else or permit the opening of sub-ambients. The
adoption of co-actions, as described in the preceding section, ameliorates the situation,
by at least ensuring agreement between the subject and the object of an operation. But in
the absence of typing, neither calculus can say anything about the nature of processes in
sub-ambients. Thus the key features to note about the seal calculus are: (i) that seals may
not be dissolved, thus preventing one major source of security violations in the ambient
calculus (ii) that seals may be trapped, since no seal may move without the assistance of
its parent (enclosing seal), and also thereby increasing security by preventing autonomous
movement.

A summary of SC appears in figure 8 and as with the ambient calculus earlier, this

http://www.aisb.org.uk

Modelling Simple Market Structures

�
::= � inactivity� � � �

composition� � �
replication� �'�

x
� �

restriction� �
 � action�
x � ��� seal

�
::= x � � y � input�

x � � y � output�
x � y send�
x � y receive� ::= � local communication� �

upward communication�
z downward (name of subseal)

Figure 8: Seal calculus syntax from (Ghelli et al., 2001)

x � � u �
 � �
x � � v �
 % *�+ �.-

u / v
0 �,%

(write local)
xy � u

�
 � �
y � x � � v �
 % � (� *�+ �.-

u / v
0 �

y � % � (� (write out)
xy � v

�
 � �
y � x � � u �
 % � (� *�+ � �

y � % - u / v
0 � (� (write in)

x � u
 � �
x � v
 % �

v � (� * + � �
u � (� �,% (move local)

xyu
 � �
y � x � v
 % �

v � (� � s � * + � �
u � (� � y � % �

s
�

(move out)
xyv
 � �

v � (� � y � x � u
 % �
s
� * + � �

y � % �
s
�
u � (�<� (move in)

Figure 9: Seal calculus reduction rules

Z: xy � u �	��

Y: x � � v ������ �

write out��� Z:
�� u � v �

Y: ��� �

Z: xy � v �	��

Y: x � � u �	�������

write in��� Z: �
��

Y: ��� u � v �

Z: xyu ��

Y: x � v ����� s

V: � ���

move out��� Z: �
��

Y: ��� s U: � ���

Z: xyv ��

Y: x � u ����� s V: � � �

move in��� Z: �
��

Y: ��� s

U: � ���

Figure 10: Seal calculus reductions as tree transformations

is followed by the reduction rules in figure 9 minus the structural congruence rules and
lastly there are illustrations of the reductions as tree transformations. A point to note is
that communication in the Seal calculus is synchronous and channel-based – so too is
seal mobility. Furthermore it is important to know that communication and mobility are
denoted differently, communication using the notation of parentheses familiar from the

� -calculus while mobility uses and . A channel is annotated with a superscript to show
whether the communication/move is with the parent, indicated by up-arrow (

�
), local,

indicated by star (�) or with a sub-seal, indicated by the name of the sub-seal.

4.3 Agent communication

We now turn back to one of the two problems we identified at the beginning of this section:
communication. After considering a number of fixed designs (such as requiring that all
scenes be siblings, that is, a flat structure), we concluded it was desirable to abstract

http://www.aisb.org.uk

Padget

information about scene topology from the governors, which have to communicate with
(i) staff agents (ii) other governors (iii) external agents on whose behalf they are acting
and essentially borrow a standard solution from networking by having each scene provide
a proxy, which we call the scene manager (SM), and whose purpose is to permit location
transparent communication between the agents listed above and the governor. The very
idea of location transparency seems to clash with the precept of communication being
strictly local, but is necessary, both to simplify the logic of the governor – it should not
have to know the position of a scene in the hierarchical structure of the institution in
order to be able to send a message – and more importantly because the (external) agent
should not know that information. There is also the issue of the secrecy of the messages
themselves, both between governor and agent and between the agent and the outside, but
in both AC and SC, this can readily be resolved by wrapping a message in a (mobile)
location, although encryption alone may be enough. More sophisticated solutions are
described in (Abadi and Gordon, 1999). We are now in a position to state an informal
specification of the market.

The market as constituted consists of six immobile locations: the all-enclosing FISH-
MARKET, and five inner, sibling locations – BUYERS’ ADMISSION, SELLERS’ ADMIS-
SION, AUCTION, BUYERS’ SETTLEMENT and SELLERS’ SETTLEMENT. The mobile
agents comprise (i) external agents, which may only enter and exit the FISHMARKET

(ii) governors, which may not exit the FISHMARKET, but may enter and exit the five in-
ner locations (iii) the staff agents (the admitter, the auctioneer and the accountant), which
may not exit the FISHMARKET and may only enter and exit their corresponding scenes.
The governors and the staff agents only communicate using the illocutions defined for a
particular scene. External agents may use any illocution, including those defined in the
published market ontology (not specified here, but part of the institution definition lan-
guage we are developing), at any time and in any order – it is the job of the governor to
respond as best they can, but to ensure that the defined conversation structure is adhered
to within each scene, while attempting to carry out the expressed intentions of the external
agent.

Our consideration of communications begins with the following two assumptions: that
the external agent will be immobile (or leave an immobile representative/proxy) within
the market for the duration of all its transactions and that the market representative – the
governor – will move between the scenes of the market, interacting with the staff agents
and communicating with the external agent it represents. Thus, an external agent enters
a location identified as the FISHMARKET, which creates a GOVERNOR for it, which then
moves between the market scenes where the real action takes place, following the perfor-
mative structure. Hence, at the highest level we could describe the market (independently
of seal or ambient calculus) as:

FISHMARKET �� BUYERS-ADMISSION�
SELLERS-ADMISSION�
AUCTION-SCENE�
BUYERS-SETTLEMENT�
BUYERS-SETTLEMENT

Then, within each scene, a scene manager (SM) will fulfill the following requirements:
1. mediation of local one-to-one and broadcast message traffic
2. management of agent transport (addressed in the following subsection)
3. relay of messages between governors and associated external agents

which can be written (and visualized), still independent of choice of calculus, as:

http://www.aisb.org.uk

Modelling Simple Market Structures

SCENEMANAGERSEAL ��
repeat

-
inform

� �
m � � �

 if ���
subseals

then inform
� �

m ��� �
else route message m from � to

�
�
enter � �
 add � to routing tables�
leave

�

�

 add

�
to routing tables�

exit
� � � �

 delete � from routing tables

 leave � � �
broadcast

���
m
�

�� � ��� ��� subseals
�
	 � ���� � � � inform

� �
m ��� �0

GOVERNORSEAL ��
repeat

-
inform � � m ��� �
 process inform�

other agent services0
GOVERNORSEAL

� Id � inform
�
message � name � exit

�
name � broadcast

�

message � name
�

ADMISSIONSEAL
� Id � � enter

�
GOVERNORSEAL � leave

�
GOVERNORSEAL

�
Figure 11: Seal scene manager, governor and types

SCENE �� SCENEMANAGER���
�	� GOVERNOR

��
�
�
��� � � GOVERNOR
�

SCENEMANAGER

�
� ����� � �

where
�

� and
� �

are the names of the seals/ambients containing governors created to act
on behalf of the external agents. A complete specification of such a SM is too long and
contains too much irrelevant detail for the space available, so instead we restrict ourselves
to examining the interface provided in each case and a sketch of the specification, looking
at the infrastructure for scenes and their interaction with governors.

4.3.1 A Seal calculus approach

We have taken some pseudo-language syntax liberties which we hope the reader will for-
give – and understand – to provide some simple control structures. As was noted earlier,
the seal calculus provides synchronous channels and this leads to a SM that operates over
consistently named shared channels to communicate both with sub- and super-seals, of-
fering the following interface (see Figure 11) from the governor’s point of view:

� inform � � m ��� � is a read operation receiving a tuple containing a message � and an
agent identifier � from the scene manager agent.

http://www.aisb.org.uk

Padget

SCENEMANAGERAMB ��
repeat

-��� �!�
put� �����������
	��

m ����� � � �
 if ���
subambients

then get � �����������
	�� m ����� � �,�
 ��� � �
else route message m from � to

�� ���������� � � � �
 add � to routing tables� ��������� � � � �
 delete � from routing tables
 get � ����������� ����� � self
�,�
 ��� � �� ��������������������

m ��� � �
 � � ��� � � subambients
�
	 � ���� � � � � ����������	�� m ����� � �&�0

GOVERNORAMB ��
repeat

-��� �!�
get� �����������
	��

m ��� � �
 process inform� ����������� �
move

� �
 prepare to move
 move�
other agent services0

msgs � inform ! enter ! exit ! leave ! broadcast

put/get
�
messages #" � -

governors � staff
0 �%$ " � msgs

�
GOVERNORAMB

�
governors &" � -

scenes
0 �%$ messages � inform ! leave ! others

�
ADMISSIONAMB

�
SCENE " � #" �'$ messages � msgs

�
Figure 12: Ambient scene manager and governor

� inform � � m ��� � sends a tuple containing a message � and an agent identifier � from
the governor to the SM, which will then forward it to the agent � .

� exit � � � � is used by the governor to signal to the SM that it (agent �) wants to leave
the scene.

� broadcast � � m �
sends a message � from the governor to the SM for broadcasting to

all the other agents in the scene.
Following the typing conventions presented in (Ghelli et al., 2001), we can assert types
for the governor and for the admission scene (see Figure 11). The format of these types
specifies whether the agent is mobile (() or immobile ()), followed by the interface,
listing the names and types of the channels over which it may communicate. Thus, the
governor type means that it is mobile and communicates on the three named channels,
and the admission scene type means that it is immobile and admits the transmission of
seals with governor interfaces over the channels enter and exit. As we shall see later, the
ambient group typing of (Cardelli et al., 2000) provides information about which kinds of
locations the governor may enter, while that information is implicit (but provided in the
admission scene type) in this particular Seal type system.

4.3.2 An Ambient calculus approach

Communication in AC is somewhat different, which is underlined if one tries to replicate
the nature of the Seal calculus solution: it rapidly becomes very awkward, involving much
opening of ambients and their reconstitution with the message unleashed from the open-

http://www.aisb.org.uk

Modelling Simple Market Structures

put �msg �

SM

BLACK
BOARD

put � msg � get � msg �

GOV �

put � msg � get � msg �

GOV �

get �msg�
put � ����� �

out GOV �

in SM

���
	�� put get � ����� �

out SM

in GOV �

open get

Figure 13: Communication between governors via the Scene Manager blackboard

ing. The real message is that trying to build a channel-like solution is the wrong metaphor
in AC, because although each ambient does contain a single anonymous channel, com-
munication is asynchronous and with the use of disjoint sum types, that single channel
becomes, in effect, multiple named channels, or rather a pool (c.f. (Gelernter and Car-
riero, 1992)) which uses type information to match messages with read requests (a similar
but more detailed observation on polymorphism and ambients appears in (Amtoft et al.,
2001)) and starts to look rather similar to the ideas outlined in SecureSpaces (Bryce et al.,
1999). In spirit however, it is much closer to a classical AI component: the blackboard.

Thus, our solution to communication in an AC specification takes that principle and
implements a blackboard at scene ambient level by means of the single asynchronous
channel in each ambient, and communication is achieved by creating ambients named get
and put which move between the governor and SM ambients and are opened to release the
message within and post it on the recipient’s blackboard. In retrospect, it might have been
convenient to use objective moves (the means in the ambient calculus for one ambient
to move another), so that a governor might write

� � ����� �
 ��� sm
 put � � m ��� � � where � is
the governor ambient name and meaning “move out of � , in to SM and then become the
ambient put � � ����������	 � m ��� �,� � , which when opened will release the message on to the SM
blackboard”. However, we decided to restrict ourselves for now to subjective operations,
so it is a matter of the governor creating an ambient named put which will subsequently
move out of the governor, and be dissolved by the SM, so unleashing the inform message
for posting on the blackboard.

Meanwhile, the SM reads the messages posted on the blackboard. In the case of
an inform message, it checks to see if the intended recipient is a sub-ambient (that is,
another governor), and if so, constructs a get ambient containing the message, which

http://www.aisb.org.uk

Padget

enters the target ambient. The target ambient dissolves the get, unleashing the inform
message, which gets posted on the governor’s internal blackboard and is subsequently
processed. The passage of a message from one governor to another is shown in figure 13.
If the target is not a sub-ambient, the message will somehow be routed to the recipient,
assuming it is known within the institution. The broadcast message is simply broken
into multiple inform messages and the enter and exit messages perform book-keeping for
message routing.

Looking at this from the governor’s point of view, it engages in the following activi-
ties:

� put � � ����������	�� m � TO � self
�,�
 ����� self

�
puts a message on to the blackboard for agent

TO. The SM will forward the message by wrapping it in a get ambient.
�
��� �!�

get is used by an agent to open ambients from the SM’s blackboard in order
subsequently to be able to receive

��������
	
and

�� ���
messages.

� put � � �������� � self
�&�
 ����� self

�
informs the SM of an agent’s presence (since moves

are subjective in AC, the SM must be informed explicitly of an agent’s presence,
otherwise it will not receive any messages, but see later in this section).

� put � � ��� ��� �
self

�,�
 ��� � self
�

informs the SM that an agent would like to depart and
the reply will include a capability to exit the scene.

Following the typing conventions presented in (Cardelli et al., 2000), where a type is a
4-tuple proto-type

� � � � �� �'$ d � e� , where:

a is this type
b is the set of ambient types over which this may move (objective)
c is the set of ambient types over which this may be moved (subjective)
d is the set of ambient types this may open
e is the set of message types exchangeable within this ambient

We can now assert types (see the bottom of figure 12) for (i) the blackboard messages
(put and get), to say they do not undergo objective moves, but do cross governors and staff,
open nothing and exchange messages of type msgs, where we have additionally defined
msgs as the sum of inform, enter, exit, leave and broadcast (ii) for the governor to say
they do not undergo objective moves, but do cross scenes, open messages and exchange
messages of type msgs and other (unspecified) internal types and (iii) for the scenes to say
they do not undergo objective moves, do not cross anything (that is, they are immobile),
but do open messages and exchange messages of type msgs.

4.4 Agent mobility

The second aspect on which we focus, is the movement of governors between scenes.
We put forward one view of our institution at the beginning of section 3, in which it was
“just” the composition of conversation graphs. However, as we pointed out at the time,
that ignores the semantics imposed by the synchronization nodes. In addition, it throws
away any potential security measures that might be enabled through a strong separation
of scenes based on mapping them to locations. Indeed, it is conceivable that the scenes
within an institution could reside on distinct machines, using a location based model. Al-
though it is tempting to see the merging of scenes as a simplification of the institutional
structure and a means to remove an apparent need for mobile processes, we prefer to re-
tain the distinction between the performative structure and conversations in the high-level
institutional specification. Likewise, we consider it valuable to reflect that separation in
the process algebraic modelling and only to consider its removal as a form of implemen-

http://www.aisb.org.uk

Modelling Simple Market Structures

TRANSPORTAMB

�
route passenger

� ��
go � ��� go
 route
 � �������� � passenger

�,�
 ��� �!� go
�

TRANSPORTAMB

�
transporters #" � -

scenes
0 �%$ " � " �

TRANSPORTSEAL

�
route

� ��
load � passenger

 repeat -
if nextdest then go � � nextdest

�
else

���������

 find next destination0

 unload � passenger

TRANSPORTSEAL
� Id � load

�
GOVERNORSEAL � unload

�
GOVERNORSEAL � go

�
name

�
Figure 14: Transport agents

tation optimization, in the same way as modules do not have a physical representation in
most compiled programs, and as in classical cases of strength reduction.

Having put forward a justification for our choice, we now proceed to look at the move-
ment of agents between scenes as the movement of mobile locations between immobile
locations.

Almost the only apparent concession to security in the preceding section on com-
munication is that an agent is unable to leave without collaborating with the SM: in SC
because a seal may only be moved by its parent and in AC, because that is the only way
to obtain an exit capability. Of course, there is a qualitative difference here: all movement
is mediated by the parent in SC, but it was a design decision to involve the SM in the
AC solution. There are additional consequences too: once issued, that capability could be
communicated and re-used. A development of the idea of affine types mentioned at the
conclusion of (Cardelli and Gordon, 1999) might offer a solution here. Another solution
might be to utilize the famous indirection principle of computing and handle all mobility
via transport ambients, which are created on demand with fixed destinations, issue a capa-
bility for the agent that wants to move to enter it, and then dissolve the transport ambient
upon arrival at its destination. This approach could be taken a step further and incorporate
the registration on arrival action, rather than making it the responsibility of the governor.
A similar approach could also be described in SC following that of the web-crawler speci-
fication that appears at the end of (Bugliesi and Castagna, 2001). Sketches of both appear
in Figure 14.

The SC solution is fairly straightforward: the passenger is loaded into the transport
seal via the parent and for each step of the path, the transport seal sends a message on the
go channel to its parent until it has reached its destination; at this point the passenger is
unloaded, again mediated by the parent of the transport seal. The route is a sequence of
seal names over which the variable nextdes iterates. The type is read as comprising three
channels: load and unload for the input and output of the seal to be transported, plus go
which is the name of the channel to be used for general transport by all participating seals.

The AC solution requires a little more explanation (see figure 14), although its speci-
fication is briefer. The issue is that some local synchronization at each end of the journey
is necessary to facilitate the ambient solution, in that the transporter should only start to
move once the passenger ambient has entered it, furthermore, it should only be dissolved

http://www.aisb.org.uk

Padget

once it has arrived at the destination. Thus it is that we can specify synchronization on
the arrival of the passenger (

���
go) , then follow the path specified in the route capa-

bility, generate the message
������� �

passenger
�

to be received by the SM at the target
scene and finally synchronize on the dissolving of the ambient on arrival at the destina-
tion (

��� �!�
go). It is important to note that we have used an ambient named go and this

should not be confused with the objective move operator of the same name. As mentioned
earlier, an objective move solution is also feasible.

The open operation of AC has been the target of some criticism lately (Castagna and
Vitek, 1999; Ghelli et al., 2001), which is not unjustified in an insecure setting, but as
can be seen from its restricted application here in the context of a fixed framework, it can,
along with composite capabilities, lead to elegant and safe solutions.

4.5 Comparison

Most of the observations on the differences have been made in the preceding text, but
to put forward a concrete conclusion to this evaluation process, we feel that despite the
security objective behind the seal calculus, the ambient calculus, in the form extended by
co-actions, offers a richer environment for the kind of modelling we wish to carry out,
coupled with the increasing body of work on logics on top of ambient calculus which
should enable us to express and verify a wide range of the norms that characterize insti-
tutions.

5 Related and future work

All the related work we are aware of is in the domain of type analysis and static analysis
of various flavours of process algebra. The main body of work we have not referred to
above is that of (Nielson and Nielson, 2000) on the use of Flow Logic to discover or es-
tablish properties of process algebraic specifications from static analysis. Our preliminary
conclusion, however, is that the type and logic technologies appear more promising for
the application we have described.

At the time of writing, we are still in the modelling stage, exploring appropriate
metaphors for expressing our high-level structure in the entities provided by various pro-
cess algebras. Although much of our current practical development is based on the Jade
platform, it does not address the kinds of security issues that concern us, for which reason
we are both interested, but cautious about, experimenting both with the implementation
of Ambients on top of JoCaml (Fournet and Schmitt, 1999; Fournet et al., 2000) and the
JavaSeal kernel (Bryce and Vitek, 1999).

We are also in the process of developing an institution specification language which
has both a textual and graphical form – the latter corresponding to the designs in figures 3
and 4 – and tools for its analysis and transformation, including translating down to a
stylized form of ambient calculus. However, what we really need are tools to analyze
and eventually animate those ambient specifications, carry out type checking and type
synthesis – prototype and evaluate the various process algebra type systems that are being
proposed – and verify and analyze mobility patterns within the institution so that we can
assert that the defining norms of the institution are upheld. Tools for type systems and
logics for process algebra are few, largely due to the diversity of approaches currently
under exploration, although the temporal logic system of (Ciancarini et al., 2000) seems
promising.

http://www.aisb.org.uk

Modelling Simple Market Structures

Acknowledgements

Thanks to Marc Esteva and Carles Sierra for extended discussions on the FishMarket.
Christian Queinnec’s LiSP2TEX package was used to typeset the fragments of ambient
and seal calculus. Further useful commentary on the conference version of this paper was
supplied by Giuseppe Castagna, Silvano dal Zilio, Andrew Gordon and the AISB’01 ref-
erees. This work was partially supported by the Royal Society and the Consejo Superior
de Investigaciones Cientificas.

References

Abadi, M. and Gordon, A. D. (1999). A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1–70.

Amtoft, T., Kfoury, A., and Pericas-Geertsen, S. (2001). What are polymorphically-
typed ambients? In Sands, D., editor, Programming Languages and Systems, 10th
European Symposium on Programming, ESOP 2001, volume 2028 of Lecture Notes
in Computer Science, pages 206–220. Springer Verlag.

Bryce, C., Oriol, M., and Vitek, J. (1999). A Coordination Model for Agents Based
on Secure Spaces. In Ciancarini, P. and Wolf, A., editors, Proc. 3rd Int. Conf. on
Coordination Models and Languages, volume 1594 of Lecture Notes in Computer
Science, pages 4–20, Amsterdam, Netherlands. Springer-Verlag, Berlin. revised into
Coordinating Processes with Secure Spaces and to appear in Science of Computer
Programming (Autumn 2001).

Bryce, C. and Vitek, J. (1999). The JavaSeal mobile agent kernel. In First International
Symposium on Agent Systems and Applications (ASA’99)/Third International Sym-
posium on Mobile Agents (MA’99), Palm Springs, CA, USA.

Bugliesi, M. and Castagna, G. (2001). Secure safe ambients. In Proc. of the 28th ACM
Symposium on Principles of Programming Languages, London. ACM Press.

Cardelli, L. (1997). Mobile Ambient Synchronization. Technical Report SRC Tech Note
1997-013, Digital.

Cardelli, L., Ghelli, G., and Gordon, A. D. (2000). Ambient groups and mobility types.
In van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P. D., and Ito, T., editors,
Theoretical Computer Science: Exploring New Frontiers of Theoretical Informat-
ics, Proceedings of the International IFIP Conference TCS 2000 (Sendai, Japan),
volume 1872 of LNCS, pages 333–347. IFIP, Springer.

Cardelli, L. and Gordon, A. D. (1999). Types for mobile ambients. In ACM, editor, POPL
’99. Proceedings of the 26th ACM SIGPLAN-SIGACT on Principles of programming
languages, January 20–22, 1999, San Antonio, TX, ACM SIGPLAN Notices, pages
79–92, New York, NY, USA. ACM Press.

Cardelli, L. and Gordon, A. D. (2000). Anytime, anywhere: Modal logics for mobile
ambients. In Conference Record of POPL’00: The 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 365–377, Boston, Mas-
sachusetts.

http://www.aisb.org.uk

Padget

Castagna, G. and Vitek, J. (1999). Seal: A framework for secure mobile computations. In
Bal, H., Belkhouche, B., and Cardelli, L., editors, Internet Programming Languages,
number 1686 in LNCS, pages 47–77. Springer.

Ciancarini, P., Franzè, F., and Mascolo, C. (2000). Using a Coordination Language to
Specify and Analyze Systems Containing Mobile Components. ACM Transactions
on Software Engineering and Methodology, 9(2):167–198.

Esteva, M. and Padget, J. (2000). Auctions without auctioneers: distributed auction pro-
tocols. In Moukas, A., Sierra, C., and Ygge, F., editors, Agent-mediated Electronic
Commerce II, volume 1788 of Lecture Notes in Artificial Intelligence, pages 20–38.
Springer Verlag.

Esteva, M., Padget, J., and Sierra, C. (2001). Formalizing a language for institutions and
norms. In Tambe, M. and Meyer, J.-J., editors, Intelligent Agents VIII, Lecture Notes
in Artificial Intelligence. Springer Verlag. to appear.

Fournet, C., Lévy, J.-J., and Schmitt, A. (2000). An asynchronous distributed implemen-
tation fo mobile ambients. In van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses,
P. D., and Ito, T., editors, Theoretical Computer Science: Exploring New Frontiers
of Theoretical Informatics, Proceedings of the International IFIP Conference TCS
2000 (Sendai, Japan), volume 1872 of LNCS, pages 348–364. IFIP, Springer.

Fournet, C. and Schmitt, A. (1999). An implementation of ambients in JoCaml. In Pro-
ceedings of the 5th ECOOP Workshop on Mobile Object Systems (MOS’99), Lisbon,
Portugal.

Gelernter, D. and Carriero, N. (1992). Coordination languages and their significance.
Communications of the ACM, 35(2):97–107.

Genesereth, M. R. and Fikes, R. E. (1992). Knowldege interchange format version 3.0
reference manual. Technical Report Report Logic–92–1, Logic Group, Computer
Science Department, Stanford University.

Ghelli, G., Castagna, G., and Zappa Nardelli, F. (2001). Typing mobility in the seal
calculus. In Proceedings of CONCUR 2001, volume 2154 of LNCS, pages 82–101.
Springer.

Levi, F. and Sangiorgi, D. (2000). Controlling interference in ambients. In Conference
Record of POPL’00: The 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 352–364, Boston, Massachusetts.

Lomuscio, A. and Sergot, M. (2001). On multi-agent systems specification via deontic
logic. In Tambe, M. and Meyer, J.-J., editors, Intelligent Agents VIII, Lecture Notes
in Artificial Intelligence. Springer Verlag. to appear.

Merriam-Webster, Inc. (2001). Merriam-Webster on-line Dictionary. Merriam-Webster.
http://www.m-w.com/.

Nielson, F. and Nielson, H. R. (2000). Shape analysis for mobile ambients. In Conference
Record of POPL’00: The 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Boston, Massachusetts. ACM, ACM Press.

Noriega, P. (1997). Agent mediated auctions: The Fishmarket Metaphor. PhD thesis,
Universitat Autonoma de Barcelona.

http://www.aisb.org.uk

Modelling Simple Market Structures

North, D. C. (1991). Institutions, Institutional Change and Economic Performance. Cam-
bridge University Press.

Padget, J. and Bradford, R. (1999). A � -calculus model of the spanish fishmarket. In
Proceedings of AMET’98, volume 1571 of Lecture Notes in Artificial Intelligence,
pages 166–188. Springer Verlag.

Rodrı́guez, J., Noriega, P., Sierra, C., and Padget, J. (1997). FM96.5 A Java-based Elec-
tronic Auction House. In Proceedings of 2nd Conference on Practical Applications
of Intelligent Agents and MultiAgent Technology (PAAM’97), pages 207–224, Lon-
don, UK.

Rodrı́guez, J.-A. (2001). On the Design and Construction of Agent-mediated Institutions.
PhD thesis, Universitat Autonoma de Barcelona.

Sandhu, R., Ferraiolo, D., and Kuhn, R. (2000). The NIST model for role-based access
control: Towards a unified standard. In Proceedings of the 5th ACM Workshop on
Role-Based Access Control (RBAC-00), pages 47–64, N.Y. ACM Press.

Searle, J. R. (1969). Speech acts. Cambridge University Press.

Tidswell, J. F. and Jaeger, T. (2000). Integrated constraints and inheritance in DTAC. In
Proceedings of the 5th ACM Workshop on Role-Based Access Control (RBAC-00),
pages 93–102, N.Y. ACM Press.

Wojciechowski, P. T. and Sewell, P. (2000). Nomadic Pict: Language and infrastructure
design for mobile agents. IEEE Concurrency, 8(2):42–52.

http://www.aisb.org.uk

AISB Journal 1(1), c 2001
http://www.aisb.org.uk

Towards Agent-Based Service Composition
Through Negotiation in Multiple Auctions

Christ Preist, Andrew Byde, Claudio Bartolini and Giacomo Piccinelli

Hewlett-Packard Laboratories
Filton Road, Stoke Gifford, Bristol, BS32 8QZ, United Kingdom

Chris Preist@hp.com ; Andrew Byde@hp.com ;
Claudio Bartolini@hp.com ; Giacomo Piccinelli@hp.com

Abstract

Service composition is the act of taking several component products or services,
and bundling them together to meet the needs of a given customer. In the future,
service composition will play an increasingly important role in e-commerce, and au-
tomation will be desirable to improve speed and efficiency of customer response. In
this paper, we discuss the technical issues surrounding the automation of dynamic
electronic service composition, using a fictitious company, FreightMixer, to demon-
strate the process. We focus specifically on the issue of appropriate negotiation strate-
gies for service composition, and present the specification of an algorithm to provide
a robust solution to these problems in the context of multiple simultaneous auctions.
We present a worked example to demonstrate the behaviour of the algorithm, and
discuss related and future work.

1 Introduction

Over the past few years, Electronic Commerce has become an increasingly central part of
the economy. An Internet presence is considered an essential part of doing business, rather
than an exotic add-on to a company. More and more transactions, both from business to
consumer and between businesses, are taking place online. Simple fixed cost business
transactions are often automated at one or both ends, and auctions are overwhelmingly
conducted by automated auctioneer software. Agent technology has been proposed as a
means of automating some of the more sophisticated negotiations which businesses are
involved in (e.g. (Jennings et al., 1996)). In this paper we look at a specific class of
business process that will become increasingly important in the virtual economy: service
composition. We consider the different technical issues that must be addressed if service
composition is to be automated, and focus specifically on algorithms for the purchase of
composite services from a group of auctions.

Over the last decade, companies have been encouraged by business consultants (Pe-
ters et al., 1984) to focus on their core competences. By trying to do everything – welding,
graphic design, supply chain management, customer care, keeping the photocopiers run-
ning, producing good food in the office canteen – companies run the risk of being ‘jack
of all trades, but master of none’. As a result of this there is a danger that other smaller
companies focused on the same core business will outperform them. To avoid that risk,
and become more competitive, large companies are going through a process of ‘disaggre-
gation’. In some cases, this can mean splitting a large company into several parts, each

Towards Agent-Based Service Composition

of which can focus on one core business (such as the recent move by Hewlett Packard to
separate it’s test and measurement business from its computing business, creating a new
company, Agilent, from the former). In other cases, it can mean outsourcing more and
more of a company’s activities to other companies, maintaining only those activities that
it truly excels in.

This trend is beginning to have an impact on many E-businesses, as well as traditional
bricks-and-mortar companies. Companies would like to be able to outsource some of their
activities over the Internet. Initially, this has focused on semi-permanent arrangements,
with the web acting as an intermediary. (For example, career guidance information is
provided to HP employees via a web-based third party). However, as this trend is becom-
ing increasingly important, much research and development effort has been focusing on
a new vision for the Internet – e-services. E-services are virtual entities that provide a
service over the network through an open standard interface. The service may be infor-
mation, such as the latest stock prices, or may be a virtual representation of some physical
good or activity, such as a contract to transport a crate from one location to another. Be-
cause the service is offered through an open standard interface, any client familiar with
this standard can use it. Furthermore, the output from one service can be fed directly
into another service. This makes the creation of composite services and complex business
processes which cross organizational boundaries possible. Potentially, this can be done
automatically and dynamically, and agent technology will play a key role in this.

This leads to the emergence of an important role in the virtual economy – the service
composer. As companies focus on their core competencies, other companies can focus on
creating composite packages. This is not new – travel agents, among others, have done
exactly that for years – but what is new is that it will be able to take place dynamically,
automatically, over the Internet. In this paper, we discuss the technical issues that must
be overcome if this is to come about, and focus specifically on negotiation algorithms.
Firstly, in x2, we introduce the problem of service composition, and discuss which techni-
cal issues must be overcome if it is to be automated in e-commerce. In x3, we present an
example service composition scenario involving a virtual company, “FreightMixer”. In
x4, we focus specifically on the problem of participating in multiple auctions to purchase
service bundles. We present an algorithm specification, and give an example of the al-
gorithm’s behaviour. We then discuss related work, and finish by presenting conclusions
and future work.

2 Issues in Service Composition

In an automated B2B transaction, the participants must go through three conceptually
separate phases; matchmaking, negotiation and service delivery. (This lifecycle is an ab-
straction of that used in (Jennings et al., 1996)). We briefly describe these three phases,
and then discuss how an enterprise involved in service composition participates in them.
We conclude the section with an example scenario, taken from the freight services do-
main, that will illustrate the concepts discussed.

2.1 Matchmaking Phase

Matchmaking is the process of putting service providers and service consumers in contact
with each other. For matchmaking to take place, services that wish to be dynamically
located must publish details of themselves, and entities wishing to locate such services
must search for these details. Some of the services advertising themselves for match-

http://www.aisb.org.uk

Preist, Byde, Bartolini and Piccinelli

making will be simple end-providers that can be negotiated with directly. Others may
be brokers, auction houses and marketplaces that offer a locale for negotiating with and
selecting among many potential providers offering similar services.

The services advertise a service description; a formal specification of the nature of the
service they offer. Usually this information will be held in a central matchmaking direc-
tory. The facilitator agents of KQML (Finin and Fritzson, 1994) provide one approach to
handling this.

When an entity wishes to locate a service of a certain type, it queries the matchmaker
with a service request. This request takes a similar form to the service description, but
may have certain fields unbound or constrained. The matchmaker returns a set of pointers
to negotiations with appropriate service providers; in some cases, these negotiations are
1-1, while others may be auctions, exchanges, etc. Each pointer may also have a contract
template associated with it, showing the associated terms and conditions of the negotia-
tion. (Of course, some of these may be uninstantiated or semi-instantiated, and therefore
open to negotiation). Standardization is essential to allow effective matchmaking. FIPA
(Dale and Mamdani, 2001) is currently developing one approach. UDDI provides a less
rich, but more widely supported, alternative.

2.2 Negotiation Phase

After matchmaking, a service consumer is faced with a variety of potential negotiations.
Its aim is to procure the best service, taking into account factors such as price, speed of
delivery, etc. To do this, it will participate in one or more of these negotiations. Different
negotiations will have different market mechanisms – sets of rules determining how the
negotiation should take place. The simplest such mechanism consists of a single service,
offering itself at a fixed, non-negotiable, price. Other services may be willing to enter in
to 1-1 bargaining with potential customers, or conduct auctions. Others may post their
availability through exchanges, together with many other similar services. As a result of
this negotiation, the different parties will agree a contract with terms and conditions that
give each member certain rights (such as the right to use a certain service) and obligations
(such as the obligation to pay a certain price), (Dignum and Weigand, 1995; Tan and
Thoen, 1999; Norman and Reed, 2000).

2.3 Service Delivery Phase

Once the terms and conditions of service execution have been agreed by the participant
to negotiation, service execution can start. That involves interaction between the service
provider and the service consumer, to act according to the terms and conditions estab-
lished during the negotiation process.

2.4 Service Composition

Service composition is the act of purchasing several component services, combining them,
and selling them as a single composite service. The service composer responsible for the
generation of the composite service must purchase the component services from a group
of suppliers and will sell the composite service to one or more customers. In x3, we will
give a detailed example of a company responsible for shipping freight. The company,
FreightMixer, is the service composer. It is approached by a customer with a request to
ship a crate from London to San Francisco. However, it does not own any cargo facilities
of its own. Instead, it subcontracts, and arranges cargo space on a set of linked flights

http://www.aisb.org.uk

Towards Agent-Based Service Composition

from London to San Francisco. The airlines running these flights are the suppliers, and
the individual flights are the component services.

Of course, the concepts of component and composite services are relative, based on
the perspective of the service composer. A supplier may in turn be a service composer, and
view the component service as a composite service from their perspective. Similarly, the
buyer may be a service composer, using this service as a component in a larger composite
service. For example, the shipping of the crate may be on behalf of a conference venue
organiser, who is using the display materials in the crate to prepare a conference in San
Francisco. The shipment is a component service, and the conference is the composite
service.

The composite nature of the service affects the behaviour of the composer in all phases
of the business transaction, and requires some modification to the standard, static view of
these phases.

Matchmaking is traditionallyviewed as a lookup process to find service providers able
to meet a requester’s needs, prior to the requester selecting and/or negotiating with them.
Service providers simply advertise information about the service they offer in a database,
and requesters use this database to make their selection. However, if the virtual economy
is to encourage dynamic service composition, more flexibility will be necessary at this
stage. A provider will have some idea of the general services it is interested in offering,
but will not know the full details. At any given time, it can estimate these details based on
the current state of markets. Hence, if it is to participate in matchmaking, the matchmaker
must play a more active role. It must route potential service requests to service composers,
which then respond with a dynamic service advertisement detailing the closest service to
the request they can offer. This advertisement should not be treated as binding – it is
simply an estimate based on the current market situation. Negotiation would be required
to reach a binding contract.

In a context of dynamic service composition, additional requirements will be imposed
on the service description to be advertised by the matchmaker and on the queries the
system can deal with. The description should include abstract roles such as “insurance
provider”. The customer will know that these will be filled by subcontractors found by the
service composer, but it will not know a priori who will take these roles. The service com-
poser will dynamically negotiate with potential subcontractors to determine exactly who
will perform these tasks. Service composers must take into account any restrictions that
potential customers may wish to place over who plays the roles. For example, a customer
may want to ensure that all subcontractors are members of appropriate trade bodies. For
this reason, the service provider may need to give information to the customers during the
matchmaking process about the names and/or details of potential subcontractors.

When the composer is either advertising a composite service or responding to a re-
quest through the matchmaker, then it needs models of how to decompose a service de-
scription into base service types that it can try to procure. Initially, this will be done at
the service specification level. From a declarative description of the high level service,
it will generate declarative descriptions of the sub-services which can be used during
matchmaking to locate potential subcontractors.

The way in which a service request can be decomposed is not unique. The composer
may generate many alternatives in advance, and then place requests for the base services.
Alternatively, it can use the currently advertised services to inform the generation process.
Which of these two strategies is appropriate will depend on whether the base services
work in a “push” or “pull” advertising mode.

In the negotiation phase, the service composer will be involved in many interlinked
negotiations. For any single bundle of base service types, the composer will be involved

http://www.aisb.org.uk

Preist, Byde, Bartolini and Piccinelli

in at least one, but more likely many negotiations to acquire instances of each service
type. Furthermore, the service composer may simultaneously negotiate to purchase al-
ternative bundles, in an effort to find which bundle is best. Ideally, it would like to do
this in a non-committing way. However, some forms of negotiations (such as auctions)
require participants to make a commitment when placing a bid, and provide no guarantees
of success. When participating in negotiations of this kind, the provider of the composite
service must take care to avoid buying incomplete or overly large bundles. Furthermore,
the service composer may be simultaneously negotiating with potential clients. In this
case, it must trade off its expectation of winning such negotiations against any commit-
ments it makes in the negotiations to purchase base services.

As we have seen in the matchmaking phase, the composite service provider relies
on the declarative description of the sub-services when generating potential bundles of
base services. During negotiation, the service provider must ensure that the base services
truly can inter-operate to provide the composite services. The declarative representation
of the services can only guarantee this if the community as a whole defines standards
of inter-operability. If this is not the case, the declarative description will have to be
refined. In addition to the specification of the services, the parties will need to agree
on the protocol that they will use to communicate during service delivery (e.g. what
exchange of messages will take place to make a payment) and on the implementation
of the interactions between the parties (e.g. what is the format of the messages that are
exchanged). For more details on service composition, see (Piccinelli and Lynden, 2000;
Piccinelli and Mokrushin, 2001)

At the end of the negotiation phase, the service agreement forms the basis of a con-
tract. Usually contracts will be between two parties. There will be one contract between
the requester and the service provider, and one contract between the service provider and
each subcontractor. However, in some circumstances, multi-party contracts may be ap-
propriate. They provide additional security to the service provider by offloading risk onto
the subcontractors and onto the client.

After the contract has been formed, service delivery can commence. During ser-
vice delivery, it is the responsibility of the service provider that the execution proceeds
smoothly. Therefore the service provider will orchestrate the execution flow and ensure
that each component service inter-operates appropriately. The orchestration relies upon a
monitoring infrastructure that makes use of all the levels of service descriptions – declar-
ative specification, procedural protocols and implementation of interactions. The subcon-
tractors will play roles that appear in these descriptions. In order to fulfill these roles,
each subcontractor will obtain an appropriate view over the original description which it
will execute.

3 Example Scenario: FreightMixer

In order to illustrate these concepts, we now present a scenario to show the issues involved
in service composition, and the impact of combined negotiation techniques. The scenario
is taken from the freight domain. FreightMixer is an imaginary transport company that
exploits cheap last-minute sales of excess hold space. While it may not be the quickest
service, it aims to be the cheapest. Electronic marketplaces are both a source of resources
(individual flight legs) and a channel for products (composite flights for a given customer).

FreightMixer does not own any transport infrastructure. Instead, it aims to dynam-
ically design a cost-effective solution, using whatever third-party services are currently
available cheaply. It composes these individual services together into a value-added solu-

http://www.aisb.org.uk

Towards Agent-Based Service Composition

tion which can be offered to customers at a premium. Its business model revolves around
the dynamic acquisition of transport services at a competitive price, and the profitable
sale of the composite service. Hence, effective negotiation techniques are crucial to the
procurement as well as to the sales function of the company.

The knowledge that FreightMixer has of the freight market is the main asset of the
company, and the very basis on which its competitive advantage is built. Crucial aspects
of this knowledge are captured electronically, allowing algorithms to automatically design
and implement end-to-end solutions. In particular, it must have domain knowledge about
when two flight legs can be linked together, and how to do this. It must know how much
time is required to get the crate from one plane to the other, how to contract with appro-
priate ground staff in different airports to arrange the hand-over, and what paperwork is
necessary to enter different airports.

We now apply the three-stage model of business transactions to a typical deal gen-
erated by FreightMixer, and discuss what functionality a service composition company
requires.

3.1 Matchmaking Phase

During the matchmaking phase, FreightMixer acts in two distinct sets of markets:
(i)In the markets for end-to-end cargo services, it acts as a potential seller. It observes the
advertised requirements of potential customers in this market.
In the markets for hold space on flights (and possibly ships), it acts as a potential buyer.
It observes the availability and cost of different options in these markets.

In its role as service composer, it must (a) understand requirements of the poten-
tial customers which are currently requesting services in the end-to-end cargo markets,
and identify a service which could meet their needs (b) identify the alternative ways this
service can be created from component services (i.e., hold space on specific flights) (c)
identify potential sellers of these component services in the markets for hold space on
flights.

As an outcome of the matchmaking phase, FreightMixer will have a list of negotiation
options. Each option will consist of the following:

� A potential buyer, or set of buyers, who are currently requesting a service in the
end-to-end cargo marketplaces.

� A service specification which meets the needs of these buyers.

� One or more alternative decompositions of this service into component services.

� A list of sellers in the markets for hold space who are offering to sell individual
component services appearing in these decompositions.

For example, assume FreightMixer observes a Request For Quotes reverse auction
for sending a 1 tonne crate from London to San Francisco, with the best offer currently
at 210. Using its database of service models, FreightMixer identifies alternative combi-
nations of flights which might potentially meet these needs. It identifies a direct route
from London(LHR) to San Francisco(SFO), and also identifies alternative routes via
Chicago(ORD), New York(JFK) and Boston(BOS). It then checks the auctions for ex-
cess hold space and finds that appropriate auctions exist for all legs except LHR to JFK.
The remaining alternatives it has are shown in Figure 1.

Hence, FreightMixer has an option consisting of the buyer conducting the reverse auc-
tion, three alternative ways of generating the required service from component services

http://www.aisb.org.uk

Preist, Byde, Bartolini and Piccinelli

SFO

f
d

b

c

a

e

ORD

LHR

BOS

Figure 1: Graph of services

(fLHR-SFOg, fLHR-ORD & ORD-SFOg or fLHR-BOS & BOS-SFOg) and potential
sellers for each of the component services. The options would also include subsidiary
services (e.g. insurance, re-packaging, temporary storage) which we shall not discuss.

FreightMixer may also choose to pro-actively advertise certain composite services
during the matchmaking phase. If it expects demand for certain services, it can go out
and provisionally negotiate for the individual components while waiting for clients to
respond to the advertisement.

3.2 Negotiation Phase

During the negotiation phase, FreightMixer must again participate in two sets of markets.
It must participate as a seller in the markets for end-to-end cargo services, negotiating over
the terms and conditions of sale with the various buyers identified in its set of options. It
must participate as a buyer in the markets for hold space on flights, negotiating with
potential sellers of component services identified in the option set. Often, this will involve
parallel negotiation in multiple marketplaces, and the use of different trading mechanisms
(e.g. exchanges, auctions, RFQs). Furthermore, it may involve the negotiation of multiple
complex parameters, for example: pricing policy, interaction processes, time constraints,
and payment procedure.

One of the key problems FreightMixer faces is that of making commitments when
negotiating simultaneously with customers and suppliers. It would like a scenario which
avoids it making commitments to sell a service which it may not be able to deliver, or to
buy a service it may not need. Hence it favours a scenario such as:

1. FreightMixer negotiates a price with a customer. The customer agrees to definitely
buy the service, but FreightMixer doesn’t commit to providing it.

2. Based on this known sale price, FreightMixer negotiates with several potential
providers of component services. It agrees deals to maximise its profit, and com-
mits to those deals.

3. FreightMixer returns to the customer, and commits to the original deal.

Notice that this scenario requires the customer to commit to an uncertain deal, to al-
low FreightMixer to avoid risk. A similar, dual, scenario where the component service
providers commit to a deal without FreightMixer also committing will also give this.

http://www.aisb.org.uk

Towards Agent-Based Service Composition

However, neither of these scenarios can be relied upon. Firstly, buyers (resp. suppliers)
may not want to use such a scenario as it places risk on them. Secondly, many mar-
ket mechanisms (such as auctions) require commitment if FreightMixer is to negotiate in
them.

Hence a more likely scenario, based on the example above, is:

1. FreightMixer observes the RFQ auction to ship a crate to SFO, and estimates (based
on prior experience) what offer it would need to place to be likely to win, and the
risk of losing associated with such an offer.

2. Based on the income it would receive, and taking into account the risk associated
with the chance of losing, FreightMixer determines the maximum it is prepared to
spend on procuring the composite service.

3. Using this as an upper bound, it places bids in the auctions for some of the com-
ponent services. (e.g., space on the flights from LHR to BOS and BOS to SFO).
It must do this in such a way to procure an appropriate set of components for the
cheapest price. In x4, we discuss this problem in more detail, and present a solution.

4. If it wins these auctions, it returns to the RFQ auction and places an offer there.

The outcome of this second phase is a series of contracts with suppliers that make sure
that FreightMixer can deliver a composite service to the customer, and a contract with the
end customer.

3.3 Service Execution

When FreightMixer has bought appropriate components to meet a customers need, and
successfully negotiated with the customer to agree a contract, service can be delivered.
During the service delivery phase, FreightMixer must ensure that the hand-over of the
good at each stage of the journey takes place smoothly and appropriate paperwork is
carried out.

A detailed discussion of the problems deriving from this phase is beyond the scope of
this paper. For more information see (Salle et al., 2001; Morciniec et al., 2001).

In this way, FreightMixer is able to provide the same functionality as a large com-
pany despite the fact that its only assets are its market knowledge and organization ability.
Using this expertise, it can compete with established transport companies with large in-
frastructures. We believe that service composition will play an important role in the future
of e-commerce.

4 A Negotiation Algorithm Specification
to Purchase Service Bundles

We now turn our attention to one specific aspect of the service composition problem –
that of negotiating to purchase composable services. For the purposes of this initial work,
we make certain restrictions on the scenario discussed above. Firstly, we assume that
the service composer is buying from a set of auctions only. Secondly, we assume the
customer of the service composer is offering to pay a certain fixed price. Hence, initially,
we ignore the issue of simultaneously negotiating with the customer. We hope to address
this in future work.

http://www.aisb.org.uk

Preist, Byde, Bartolini and Piccinelli

We consider how an agent involved in service composition should behave when par-
ticipating in a set of auctions. Its aim is to buy a set of services which can be composed
to sell on as a bespoke composite service, possibly to a specific customer with special
requirements. There may be several ways of creating this composite service out of indi-
vidual services for sale in the auctions. The agent’s task is to purchase one such set of
services which can be composed, without accidentally purchasing additional, unnecessary
services.

In this section, we propose a possible approach for doing this. We first present the de-
cision problem the agent is faced with, and then present the specification of an algorithm
to perform service composition in this environment.

4.1 Specification of the Decision Problem

We assume our agent is participating in a set of auctions, A. These auctions all start at
roughly the same time, but may finish at different times. Each auction is selling one good
or service. The auctions are English auctions with a fixed closing time. Participants can
place bids at any time, provided the new bid is a minimum increment, �, above the last
bid. We choose units in which this minimum increment is 1. At the closing time, the good
or service for sale is sold to the highest bidder at the price they bid. We also assume that
the bid increment of each auction is very small with respect to the value of the good or
service for sale.

To each subset A � A we associate a number v(A), the “value” to the agent of
winning the auctions A. By structuring the valuation of the agent as a function v : 2 A !
R, we allow for complements and substitutes in the normal fashion. We define a bid set
to be a pair (A;p), where A � A and p : A!Zis a price function. The “utility” to the
agent of winning a bid set (A;p) is:

u(A;p) = v(A) �
X
a2A

p(a):

Our agent maintains a probabilistic model of the expected outcomes of each auction,
based on past performance of similar auctions. (Discussion of some possible ways of
generating this model is provided in (Preist et al., 2001a)).

To each auction a 2 A is associated a price distributionPa :Z! [0; 1] representing
the belief that, with probabilityPa(p), auction a will close at price p. We set

Fa(p) =
X

p0�p

Pa(p
0)

as the agent’s believed probability that auction a will close at or above price p. For subsets
A � A we define PA(p) to be the believed probability that the auctions in A will close at
the prices specified by a price function p : A!Z:

PA(p) =
Y
a2A

Pa(p(a)); (1)

and likewise FA, the probability that that the auctions in A will close at or above the
prices specified by p:

FA(p) =
Y
a2A

Fa(p(a)): (2)

http://www.aisb.org.uk

Towards Agent-Based Service Composition

If the price in auction a is q, then the agent believes that the probability of a bid at price
p � q winning is:

Pwin(a; p; q) :=
Pa(p)

Fa(q)
: (3)

Similarly, for a collection of auctions A with current prices q : A ! R, the probability
of the auctions closing at prices p is:

Pwin(A;p;q) =
PA(p)

FA(q)
: (4)

4.2 Specification of the algorithm

We now consider how the agent can use these beliefs to calculate information about ex-
pected future utility of deals it may win. Firstly, we define the notion of the expected
utilityE(B;A;q) of a set of auctions B, given a set of observed prices q, and given that
the agent holds active bids in auctions A:

E(B;A;q) = v(B) �C(B \A;q)�C(B nA;q+ 1) (5)

where the function C(S;q0) is the expected cost of winning the auctions S at prices
greater than or equal to q0:

C(S;q0) =
X
p0�q0

X
a2S

Pwin(a;p
0(a);q0(a))p0(a): (6)

The expected utility of a set of auctions is thus the value of the bundle, minus the ex-
pected cost of winning each of the auctions. The latter is calculated by using the believed
probability that the auction will finish at each given price, if our agent places a bid at that
price. We restrict p0 > q for auctions B nA, in (5) because we know that the agent does
not hold bids in these auctions at prices q, and so has no probability of winning at these
prices.

The expression (5) gives us some idea of the intrinsic value of a bundle of goods B,
but is not the expected return for placing a single bid in the auctions in B. In general,
such a bid does not have an expected return: we must reason over complete strategies.

Consider the expected value (given that prices are currently q, and the agent holds the
active bids A) of the following strategy, which we call “commitment to B”: The agent
chooses a set of auctions B, and for all future time steps, will always bid on any elements
of B in which it does not hold active bids. If the agent sticks to this commitment, then we
know its future choices, and so precise formulae for expected return can be calculated.

Let S be a possible set of auctions that the agent may win using this strategy: B �

S � A[B. The probability that the auctions S nB will not be outbid, while the auctions
A n S are, is:

Pret(S;A;q) =
FAnS(q + 1)PSnB(q)

FAnB(q)

Given this eventuality, the expected utility is evaluated in the same way as (5), except
that instead of v(B), the value we obtain is v(S), and we occur additional costs for each
auction in S nB that we win.

http://www.aisb.org.uk

Preist, Byde, Bartolini and Piccinelli

It follows that the expected value for following the commitment to B is:

Ec(B;A;q) = E(B;A;q) +
X

B�S�A[B

Pret(S;A;q)
�
(v(S) � v(B)) �

X

a2SnB

q(a)
�

(7)
The terms in this expression for which S = B are the desired outcomes. The other terms
correspond to obtaining some non-empty collection S nB of goods that do not contribute
to our desired bundle B. Although they could still provide positive value, it is anticipated
that in the service composition arena, where goods tend to complement one another, the
slight increase of v(S) with respect to v(B) will not be large enough to compensate for
the increase in costs

P
a2SnB q(a), and each of these terms would have a negative impact

on the expected value of the commitment.
The algorithm (COMPOSER) we propose is that at each time step the agent calculates

the commitment B which has largest expected utility Ec(B;A;q) given the currently
held bids A and prices q, and places the minimal bids required to take the lead in B nA.
In practice, this means it will bid initially in the auctions which have highest a-priori
expected utility. It will continue to compete in these auctions, placing more bids when
outbid. However, if sufficient competing bids are placed to reduce the expected utility of
this set of auctions, then it may change to another set of auctions, for another bundle. It
will do this if the expected gain from changing to this new bundle outweighs the expected
cost of currently held bids which appear in the old bundle but not in the new bundle.

There are two obvious problems with this algorithm:

� By its very nature, our algorithm does not in fact commit, since it re-evaluates its
options at each opportunity. However, the value Ec(B;A;q), which is truly the
expected value of committing to bid on B, and hence is not the expected value
according to the specified algorithm, is none-the-less (we claim) a good indication
of the optimal choice to make. The estimate we use is conservative, in that the agent
chooses a single bundle that will give the best overall expected utility. Choosing
a different bundle for each possible outcome can only improve on this. We have
adopted this approach initially, as we believe that it will provide good performance
in the majority of situations. Experimentation and further analysis will be necessary
to test this hypothesis.

� In practice, if the number of auctions is large, it will be difficult to evaluate (7)
given realistic computational resource bounds. Ideally, if we had perfect informa-
tion and unlimited computation time, we would calculate this accurately. Finding
appropriate simplifications which still give good results is a topic to which we will
return in the future work section.

4.3 Worked Example

To illustrate how this analysis operates, we return to the FreightMixer scenario described
in x3. Based on past histories of similar auctions to the ones that were selected during the
matchmaking phase, FreightMixer creates beliefs about the expected distribution of clos-
ing prices of these auctions. We assume that the closing prices are uniformly distributed
over the following sets:

http://www.aisb.org.uk

Towards Agent-Based Service Composition

a : f40; 45; : : : ; 135; 140g
b : f20; 25; : : : ; 95; 100g

c : f130; 135; 140; 145;150g
d : f50; 55; : : : ; 105; 110g
e : f80; 85; : : : ; 115; 120g
f : f30; 35; : : : ; 65; 70g

(8)

Before bidding begins, the agent holds no bids. We assume that the current price function
q0 lies just below all of the above prices. The expected utilities of committing to each of
the bundles which we seriously consider are therefore the same as the expected values of
the bundles:

E(fa; bg; ;;q0) = 50

E(c; ;;q0) = 60

E(fd; fg; ;;q0) = 70

E(fe; fg; ;;q0) = 50

(9)

The agent therefore chooses to bid in fd; fg, even though the bundle fa; bg has greater
initial value1. This can be seen as sensible, given that by bidding for fa; bg the agent
runs the risk of ending up committed to this bundle, even though it is non-optimal in
expectation. It can be argued that the risk of such a commitment is low, since if the
prices in a or b become prohibitively high, then the agent can simply wait, and with high
probability will be outbid in these auctions, and so de-committed from them. It follows,
however, that the agent also has a correspondingly low probability of winning fa; bg at
these low prices: it is precisely the payoff between the chance of a good deal and the
chance of being committed to a bundle which our algorithm seeks to address.

This payoff between expected return and commitment explicitly comes into effect in
this example if prices in d or f rise without the auctions closing.

Suppose that prices in c, d and f have risen to 140, 75, 40. If the agent holds no bids,
it should bid in c, since the expected cost of c given these prices is 147.5, whereas the
expected cost of fd; fg is 97:5 + 57:5 = 155. Even if the agent holds the active bid in
auction f , then the expected loss from accidentally winning f , which is the cost of f , 40,
multiplied by the probability that no other agent will bid in f , 0.16666, is less than the
difference between the expected costs of c and fd; fg, and so it is still preferable to bid
for c despite the risk of winning f .

If, on the other hand, the agent holds the leading bid in d, then the potential cost of
winning d is too high (expected loss 13.333) to risk bidding for c, despite the fact that c
is, by now, expected to do better than fd; fg.

The benefit of this algorithm over a greedy one is clear in the same situation: a greedy
algorithm would continue to pursue fd; fg in preference to c until its current aggregate
price was as large as that in c. For example, if prices in c, d and f were 145, 95 and 45
(and the agent held no bids) then a greedy algorithm would bid in fd; fg in preference to
c. The reason why this is foolish is that the probability of winning one of these auctions
but not the other (at these prices), is large: 40%. If the agent wins one, then it is committed
to bidding for the other, despite its large expected cost.

1The bid-price for the bundle fa; bg is 60, much lower than that of fd; fg, at 80.

http://www.aisb.org.uk

Preist, Byde, Bartolini and Piccinelli

5 Related Work

Research into automated negotiation has long been an important part of distributed AI and
multi-agent systems. Initially it focused primarily on negotiation in collaborative problem
solving, as a means towards improving coordination of multiple agents working together
on a common task. (Laasri et al., 1992) provide an overview of the pioneering work in
this area. As electronic commerce became increasingly important, the work expanded to
encompass situations with agents representing individuals or businesses with potentially
conflicting interests. The Contract Net (Smith, 1980) provides an early architecture for
the distribution of contracts and subcontracts to suppliers. It uses a form of distributed
request-for-proposals. However, it does not discuss algorithms for determining what price
to ask in a proposal. (Jennings et al., 1996) use a more sophisticated negotiation proto-
col to allow the subcontracting of aspects of a business process to third parties. This is
primarily treated as a one-to-one negotiation problem, and various heuristic algorithms
for negotiation in this context are discussed in (Faratin et al., 1998). (Vulkan and Jen-
nings, 1998) recast the problem as a one-to-many negotiation, and provide an appropriate
negotiation protocol to handle this.

Other relevant work in one-to-one negotiation includes the game-theoretic approach
of (Rosenschein and Zlotkin, 1994) and the logic-based argumentation approach of (Par-
sons et al., 1998). As much electronic commerce involves one-to-many or many-to-many
negotiation, the work in the agent community has broadened to explore these cases too.
The Michigan AuctionBot (Wurman et al., 1998) provides an automated auction house
for experimentation with bidding algorithms. The Spanish Fishmarket developed by
(Rodriquez-Aguilar et al., 1997) provides a sophisticated platform and problem specifi-
cations for comparison of different bidding strategies in a Dutch auction, where a variety
of lots are offered sequentially. The Kasbah system (Chavez et al., 1997) featured agents
involved in many-to-many negotiations to make purchases on behalf of their users. How-
ever, the algorithm used by the agents (a simple version of those in (Faratin et al., 1998))
was more appropriate in one-to-one negotiation, and so gave rise to some counter-intuitive
behaviours by the agents. (Preist and van Tol, 1998) and (Cliff and Bruten, 1998) present
adaptive agents able to effectively bid in many-to-many marketplaces, and are the first
examples of work which borrow techniques from experimental economics to analyze the
dynamics of agent-based systems. (Preist, 1999) demonstrates how these can be used to
produce a market mechanism with desirable properties. (Park et al., 1998) and (Park et al.,
1999) present a stochastic-based algorithm for use in the University of Michigan Digital
Library, another many-to-many market.

(Gjerstad and Dickhaut, 1998) use a belief-based modeling approach to generating
appropriate bids in a double auction. Their work is close in spirit to ours, in that it com-
bines belief-based learning of individual agents bidding strategies with utility analysis.
However, it is applied to a single double auction marketplace, and does not allow agents
to bid in a variety of auctions. (Vulkan and Preist, 1999) use a more sophisticated learning
mechanism that combines belief-based learning with reinforcement learning. Again, the
context for this is a single double auction marketplace. Unlike Gjerstad’s approach, this
focuses on learning the distribution of the equilibrium price. The work of (Garcia et al.,
1998) is clearly relevant. They consider the development of bidding strategies in the
context of the Spanish Fishmarket tournament. Agents compete in a sequence of Dutch
auctions, and use a combination of utility modeling and fuzzy heuristics to generate their
bidding strategy. Their work focuses on Dutch rather than English auctions, and on a
sequence of auctions run by a single auction house rather than parallel auctions run by
multiple auction houses.

http://www.aisb.org.uk

Towards Agent-Based Service Composition

In our previous work, (Preist et al., 2001a), we have presented algorithms which allow
agents to participate simultaneously in multiple auctions for the purchase of a number of
similar goods. In (Preist et al., 2001b), we show how agents using these algorithms in
multiple auctions can create a more efficient and stable market. It is interesting to contrast
our analysis with that of (Greenwald and Kephart, 1999). They demonstrate that the use of
dynamic price-setting agents by sellers, to adjust their price in response to other sellers,
can lead to an unstable market with cyclical price wars occurring. We, however, show
that (in a very different context) the use of agents improves the dynamics and stability of
the market. From this, we can conclude that agent technology is not a-priori ‘good’ or
‘bad’ for market dynamics, but that each potential role must be studied to determine its
appropriateness.

In this paper, we have extended our earlier work to develop algorithms to purchase
heterogeneous bundles of goods from multiple auctions. An alternative approach is to
attempt to provide the right market mechanism in the first place, providing a centralized
point of contact for all buyers and sellers to trade. (Sandholm, 2000) proposes a sophisti-
cated marketplace able to handle combinatorial bidding, and able to provide guidance to
buyers and sellers as to which market mechanism to adopt for a particular negotiation. In
the long term, as the different auction houses merge or fold and only a few remain, this
approach will be ideal. In the short term, we expect improved market dynamics will occur
through autonomous agents in multiple auctions.

6 Conclusions and Future Work

In the future, service composition will play an essential role in e-commerce. Composite
service products will be created on the fly in response to customer requests. However, if
this is to happen, several technical problems must be overcome.

We have focused on the key problem of effective negotiation for service composi-
tion, and presented the specification of an algorithm to perform this task. The algorithm
competes in multiple simultaneous auctions, placing appropriate bids to create service
bundles. In future work, we will focus on the two areas mentioned as problematic at the
end of x4.2.

Firstly, we will pursue formal methods to calculate the expected value of a speci-
fied bidding algorithm. We already have a closed form (7) for the value of the scale of
strategies described as “committed”, but not (for example) for COMPOSER. By finding ex-
pressions which bound, or better still equal (in expectation) the value that can be extracted
from a given algorithm, we can be sure that a given algorithm has theoretical performance
properties which otherwise we would have to guess at, or simulate.

On the other hand, theoretical models for algorithm effectiveness are useless if those
algorithms are impractical, and so another main focus of our future work in this area will
be finding algorithms which are of low complexity. There is likely to be a payoff between
complexity and optimality; it is our goal to develop practical algorithms which have high,
well understood value.

Throughout the paper, we have made assumptions regarding risk which are often not
appropriate in practice. In particular we have assumed risk-neutrality, whereas in reality
many potential users of service aggregation algorithms are risk-averse. In future work we
will extend the algorithmic analysis we have just described to cases involving alternative
risk profiles. We also plan to address the problem of simultaneous negotiation not only
with the suppliers, but also with the purchasers. We would also like to generalize the work
beyond the English auction, and to allow auctions to have staggered opening times.

http://www.aisb.org.uk

Preist, Byde, Bartolini and Piccinelli

References

Chavez, A., Dreilinger, D., Guttman, R., and Maes, P. (1997). A real-life experiment in
creating an agent marketplace. In Proc. 2nd Int. Conf. on the Practical Application
of Intelligent Agents and Multi-Agent Systems.

Cliff, D. and Bruten, J. (1998). Less than human: Simple adaptive trading agents for CDA
markets. In Proc. of the 1998 Symposium on Computation in Economics, Finance,
and Engineering: Economic Systems.

Dale, J. and Mamdani, E. (2001). Open standards for interoperating agent based systems.
forthcoming.

Dignum, F. and Weigand, H. (1995). Modelling communication between cooperative sys-
tems. In Proc. 7th Conf. on Advanced Information Systems Engineering (CAiSE’95),
pages 140–153.

Faratin, P., Sierra, C., and Jennings, N. (1998). Negotiation decision functions for au-
tonomous agents. Robotics and Autonomous Systems, 3-4(24):159–182.

Finin, T. and Fritzson, R. (1994). KQML as an agent communication language. In
Proc. Third International Conference on Information and Knowledge Management
(CIKM’94). ACM Press.

Garcia, P., Giminez, E., Godo, L., and Rodriguez-Aguilar, J. (1998). Possibilistic-based
design of bidding strategies in electronic auctions. In Proc. 13th Biennial European
Conference on Artificial Intelligence.

Gjerstad, S. and Dickhaut, J. (1998). Price formation in double auctions. Games and
Economic Behaviour, 22(1):1–29.

Greenwald, A. R. and Kephart, J. O. (1999). Shopbots and pricebots. In Proc. 16th Int.
Joint Conf. on Artificial Intelligence.

Jennings, N. R., Faratin, P., Johnson, M. J., O’Brien, P. O., and Wiegand, M. E. (1996).
Using intelligentagents to manage business processes. In Proceedings of the First In-
ternational Conference on the Practical Application of Intelligent Agents and Multi-
Agent Technology (PAAM-96), pages 345–360.

Laasri, B., Laasri, H., Lander, S., and Lesser, V. (1992). Generic model for intelligent
negotiating agents. International Journal of Intelligent and Cooperative Information
Systems, 2(1):291–317.

Morciniec, M., Salle, M., and Moynihan, B. (2001). Towards regulating electronic com-
munities with contracts. In Proc. 2nd Workshop on Norms and Institutions in MAS,
at Autonomous Agents 2001.

Norman, T. J. and Reed, C. (2000). Delegation and responsibility. In Proc. 3rd UK
Workshop on Multi-Agent Systems.

Park, S., Durfee, E., and Birmingham, W. (1998). Emergent properties of a market-based
digital library with strategic agents. In Proc. 2nd Int. Conf. on Multi-Agent Systems.

Park, S., Durfee, E., and Birmingham, W. (1999). An adaptive agent bidding strategy
based on stochastic modelling. In Proc. 3rd Int. Conf. on Autonomous Agents.

http://www.aisb.org.uk

Towards Agent-Based Service Composition

Parsons, S., Sierra, C., and Jennings, N. R. (1998). Agents that reason and negotiate by
arguing. Journal of Logic and Computation, 8(3):261–292.

Peters, T., Austin, K., and Peters, T. J. (1984). A Passion for Excellence : The Leadership
Difference. Warner Books.

Piccinelli, G. and Lynden, S. (2000). Concepts and tools for e-service development. In
Proc. 7th Int. Workshop HP OVUA.

Piccinelli, G. and Mokrushin, L. (2001). Dynamic e-service composition in DySCo. part
of the 21st Int. Conf. on Distributed Computing Systems (ICDCS-21).

Preist, C. (1999). Commodity trading using an agent-based iterated double auction. In
Proc. 3rd Int. Conf. on Autonomous Agents.

Preist, C., Bartolini, C., and Philips, I. (2001a). Algorithm design for agents which par-
ticipate in multiple simultaneous auctions. In Dignum, F. and Cortes, U., editors,
Agent Mediated Electronic Commerce III, Lecture Notes in AI. Springer Verlag.

Preist, C., Byde, A., and Bartolini, C. (2001b). Economic dynamics of agents in multiple
auctions. In Proc. 5th Int. Conf. on Autonomous Agents.

Preist, C. and van Tol, M. (1998). Adaptive agents in a persistent shout double auction.
In Proc. 1st Int. Conf. on the Internet, Computing and Economics. ACM Press.

Rodriquez-Aguilar, J., Noriega, P., Sierra, C., and Padget, J. (1997). A Java-based elec-
tronic auction house. In Proc. Second International Conference on the Practical
Application if Intelligent Agents and Multi-Agent Systems, pages 207–224.

Rosenschein, J. and Zlotkin, G. (1994). Rules of Encounter. MIT Press.

Salle, M., Morciniec, M., and Moynihan, B. (2001). A conceptual architecture for market
governance in trusted electronic marketplaces. In Proc. 2nd Workshop on Norms and
Institutions in MAS, at Autonomous Agents 2001.

Sandholm, T. (2000). eMediator: A next generation electronic commerce server. In Proc.
4th Int. Conf. on Autonomous Agents.

Smith, R. G. (1980). The Contract Net protocol: High level communication and control in
a distributed problem solver. IEEE Transactions on Computing, 12(29):1104–1113.

Tan, Y. and Thoen, W. (1999). A logical model of directed obligations and permissions
to support electronic contracting. International Journal of Electronic Commerce,
3(2):87–104.

Vulkan, N. and Jennings, N. (1998). Efficient mechanisms for the supply of services in
multi-agent environments. In Proc. 1st Int. Conf. on the Internet, Computing and
Economics. ACM Press.

Vulkan, N. and Preist, C. (1999). Automated trading in agents-based markets for commu-
nication bandwidth. In Proc. 2nd UK Workshop on Multi-Agent Systems.

Wurman, P., Wellman, M., and Walsh, W. (1998). The Michigan internet AuctionBot: A
configurable auction server for human and software agents. In Proc. 2nd Int. Conf.
on Autonomous Agents.

http://www.aisb.org.uk

AISB Journal 1(1), c 2001
http://www.aisb.org.uk

Autonomous Reflectors
over Active Networks:

Towards Seamless Group Communication

Lidia Yamamoto and Guy Leduc

Research Unit in Networking, University of Liège
Institut Montefiore, B28, B-4000 Liège, Belgium

yamamoto@run.montefiore.ulg.ac.be ; leduc@run.montefiore.ulg.ac.be

Abstract

We present a reflector service that seeks to maintain application-level connectiv-
ity in the presence of network-level multicast failures. The service is based on the
dynamic deployment of autonomous reflectors modelled as mobile agents on top of
an active network infrastructure. It is able to repair multicast tree failures by building
a self-organising tree of reflectors, which will be connected to each other via uni-
cast. The scheme is decentralised and takes into account node and link resources to
find agent locations that lead to low cost tree configurations. We focus on the ba-
sic decision mechanisms related to code mobility during the tree construction and
destruction phases, namely: cloning, migration, merging and termination. We show
some preliminary simulation results that confirm the viability of the approach and
discuss directions for further research.

1 Introduction

The demand for multimedia group communication is growing, and multicast is widely
recognised as an important service to enable efficient group communication. However,
multicast protocols still face deployment obstacles, and the quality experienced by many
users is still unsatisfactory.

One of the fallback solutions used is to establish multicast reflectors to serve users
that have no multicast access. A reflector is a user-level gateway application that acts
as a proxy between a multicast-enabled network and a set of unicast users. It forwards
packets from the multicast group to all unicast clients, and from every unicast client to
the multicast group and to all other unicast clients. This guarantees that connectivity is
maintained within the session, in spite of the fact that some participants have no access to
IP multicast, or in the presence of failures in the multicast tree.

Existing reflector software must typically be installed manually, which is an extra
burden for the session organisers and users. Besides that, even the session organisers
seldom have enough knowledge about the current network conditions in order to be able
to choose an optimum location for a reflector. What happens then is that reflectors are
typically placed close to the main session source, and all multicast disabled participants
must connect to it as clients. This generates an amount of redundant traffic which is
proportional to the number of reflector clients, and therefore obviously does not scale to
large sessions where potentially large portions of the network might need the reflector
service.

Autonomous Reflectors over Active Networks

It would be interesting to be able to dynamically install reflectors when there are
connectivity failures or administrative restrictions to multicast traffic. The location of re-
flectors should be automatically determined according to the network conditions observed
during the session.

We have designed an autonomous reflector based on mobile code that runs on top
of an active network execution environment. The candidate locations for such reflector
agents are active network (AN) (Tennenhouse et al., 1997) or active server (AS) nodes
(Amir, 1998; Fry and Ghosh, 1999). These nodes run an execution environment (EE)
capable of downloading and executing the reflector’s code, and of discarding it when no
longer used.

Our reflectors are autonomous and decide when to migrate to other nodes, clone in
order to cope with increasing demand, merge with other reflectors, or disappear when
no longer needed. The decisions are based solely on local knowledge available at the
terminals or active nodes where they run. This guarantees that reflector code is deployed
only where needed and when needed, and that after the session finishes all the reflectors
will be automatically eliminated. The idea is that reflectors progressively move from
the affected session members towards a well-known main centre of interest, until failure
points are successfully bypassed, such that data coming from the main centre of interest
can reach such members.

Additionally, reflectors that do not receive sufficient demand die out, and those which
are overloaded spawn others to less loaded nodes. Using such a scheme, a tree of reflec-
tors emerges as a result of failure detection, and disappears by itself when the failure is
repaired. It should be noticed that the reflectors are not able to diagnose nor repair failures
by themselves. Their objective is only to maintain application-level connectivity in the
presence of network-level multicast failures. Network management mechanisms to detect
and repair such failures are orthogonal and outside the scope of this work.

The paper is structured as follows: Section 2 gives a brief overview of the relevant
concepts in our context as well as related work in the area. Section 3 describes the au-
tonomous reflector scheme to build reflector trees. Section 4 explains the decision model
that each agent adopts while building the tree. Section 5 shows some simulation results.
Section 6 describes the current state of our Java implementation. Section 7 concludes the
paper.

This article is an extended version of an earlier work (Yamamoto and Leduc, 2001a).
Sections 2 and 3 have been reorganised and enhanced to clarify some ambiguities detected
in the initial article. The merge procedure has been revised and is briefly described in
Section 4.5.

2 Background

2.1 Multicast over the Internet

Multicast communication models for the Internet have received considerable attention
since the early 1990s. However, multicast protocols are still not widely available on the
global Internet, and the experimental Multicast Backbone has been slow to take off. Wide-
area MBone sessions still fail due to multicast problems in some sections of the network.
It is very difficult for the session participants to diagnose a failure and eliminate it during
the lifetime of the session. The network conditions are unstable, it is difficult to monitor
traffic and to detect points of failure, etc. The result is poor quality for the users.

There are several reasons for such a situation. One of them is the design of the pro-

http://www.aisb.org.uk

Yamamoto and Leduc

tocols that usually requires modifications in the network routers and little support for
incremental deployment. For a new protocol to be deployed over the Internet, it needs
to be agreed upon, standardised, and manufacturers must implement compatible versions.
Incremental deployment is difficult in this context, due to different paces of development
and upgrade in different parts of the global network.

In the case of multicast, security concerns are also an obstacle to deployment, since
multicast reinforces the risk that attackers easily flood the network with unwanted data.
Therefore, many providers are reluctant to allow IP Multicast in their networks, and fire-
walls can block multicast traffic. Some instabilities come from the fact that multicast is
still considered as an experimental service in many places, and therefore it is given low
priority over the operational tasks.

New network-layer solutions such as REUNITE (Stoica et al., 2000) and HBH (Costa
et al., 2001) propose the use of the standard unicast addressing model to build multicast
distribution trees, such that unicast-only regions can be supported in a transparent way,
and therefore facilitate incremental deployment. However, such solutions still require
compatible peers, and would need to be agreed upon and standardised as other protocols,
before being deployed. While these new protocols are being discussed, application-layer
solutions such as Narada (Chu et al., 2000) offer the users an alternative to waiting for a
larger scale availability of network-layer solutions. However, due to the lack of network
support, application-layer solutions are difficult to implement and often lead to inefficient
overlay topologies.

2.2 Active Networks and Active Servers

Many of the deployment difficulties described for multicast are also shared by other In-
ternet protocols such as IPv6, Mobile IP, etc. Research on Active Networking (AN) (Ten-
nenhouse et al., 1997) came as a response to such deployment difficulties, among other
motivations. Active networking enables the dynamic deployment of protocols and ser-
vices over a set of programmable routers. The nodes of an active network are capable
not only of forwarding packets as usual but also of loading and executing mobile code.
The code can come in the form of active extensions or capsules. Active extensions are
complete modules that implement a given service, while capsules contain small pieces of
code (or a reference to the code) that are executed in every AN node they visit.

Since AN raises security issues which are still being studied and debated upon, some
researchers have proposed the Active Server (AS) approach (Amir, 1998; Fry and Ghosh,
1999) as a shorter term alternative to AN. AS nodes are end systems that allow the secure
downloading of mobile code such that new services can be deployed on-demand.

2.3 Existing Reflector Systems

Several commercial and non-commercial reflector systems are available, e.g. (Highfield,
1998; Live Networks, Inc., 2000; Kirstein and Bennett, 2000) (with additional references
on page 27 of (Kon et al., 2000)). These systems are typically software packages that
must be manually installed at the sites that will provide the reflector service. Therefore,
the location of reflector sites must be decided beforehand, and cannot be easily changed
during the lifetime of the multimedia session. Changes in reflector location or configura-
tion generally lead to temporary service disruption.

In (Baldi et al., 1998) mobile reflectors that can clone or migrate appear as part of a
videoconference architecture for active networks. The authors focus on software design
issues, and the actual algorithms and criteria for placing such reflectors are not covered.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

A multicast reflector has been mentioned as an example application over the AS envi-
ronment ALAN (Fry and Ghosh, 1999). It has been used to transmit MBone sessions via
unicast to sites not connected to the MBone, and has the potential to move across ALAN
nodes. However, dynamic reflector placement algorithms seem not to have been proposed
in this context yet.

In (Kon et al., 2000) a distributed framework to manage a network of reflectors is
proposed, based on dynamic code distribution and (re)configuration. Reflectors are used
to support network and terminal heterogeneity. Within this framework, it is possible to
manage networks containing a large number of reflectors. Each reflector has a limited
degree of autonomy, such as reconfiguring the neighbour nodes to bypass a reflector that
failed. For most other operations, however, the reflector elements need to be managed by
a privileged user, the reflector administrator, who decides where to install new reflectors
or to remove reflectors from the network. To take such decisions, the administrator needs
to have a global view of the network topology and characteristics, which is not trivial
to obtain from the wide-area Internet or the MBone. Another difficulty is to cope with
participants dynamically joining and leaving the session, and the corresponding reflector
tree reconfiguration in order to maintain a tree which always tracks the optimum. (Kon
et al., 2000) report that in one experiment they were forced to deny approximately one
million connection requests due to lack of bandwidth on the reflector sites. This could
have been avoided if reflectors were able to automatically clone themselves to other sites
in order to cope with the additional demand.

2.4 Market-based resource control

A considerable amount of research results in the area of market-based control are available
mainly in the agents field (Clearwater, 1996). This work provides algorithms inspired by
optimisation and economy theories for distributed control of resource usage, with many
applications to computer and telecommunication networks. In (Gibney et al., 1999) a
market-based mechanism to set up circuit switching paths with resource reservation is
described. Closer to the AN perspective, in (Tschudin, 1997) an open resource allocation
scheme based on market models is applied to the case of memory allocation for mobile
code.

In (Najafi, 2001) a cost model for active networks is proposed, which takes into ac-
count the cost of processing a flow in the active nodes as well as the transmission costs.
The author includes an algorithm that converges to the minimum cost for a flow that may
be transformed in several active nodes before reaching its destination. He has also pro-
posed a single agent positioning algorithm in which an agent can decide to reposition
itself in the network in order to reduce the session cost.

2.5 Placing functionality and routing in active networks

The problem of choosing active nodes to place a given programmable functionality has
been identified as a routing problem (Najafi, 2001; Choi et al., 2001). The potential
of active routing is broadly discussed in (Maxemchuck and Low, 2001). The extensive
simulation results in (Kiwior and Zabele, 2001) show that the performance of a reliable
multicast protocol that makes use of active network nodes heavily depends on the location
of the active nodes.

Several proposals in this area such as (Akamine et al., 2000; Duysburgh et al., 2000;
Safaei et al., 2001; Choi et al., 2001; Partridge et al., 2001) require knowledge of the
whole network graph in order to compute the active paths. Solutions of this kind are

http://www.aisb.org.uk

Yamamoto and Leduc

feasible to place generic services to be used by a wide range of active applications within
a domain. However, they generally do not scale beyond a single domain, and are not
feasible when the applications themselves need to find optimum locations for their active
elements, depending on their own specific characteristics and constraints.

In (Wen et al., 2001) a framework is proposed for composing customised multicast
protocols for active networks out of elementary building blocks. Our approach could
benefit from such a framework to build the reflector service using similar blocks.

2.6 Self-deploying services

In the context of agents and active networking, a number of proposals for self-deploying
services have been made. In (Shehory et al., 1998) a framework is proposed in which
agents deal with overload by cloning, passing tasks to others, merging, or dying. Agents
decide when to clone according to the loads of the different resources they use, such as
memory, processing and communication resources. The possible decisions that the agent
can take are described by a decision tree, and the optimum decision is calculated via dy-
namic programming. In (Tschudin, 1999a) an election service based on active packets is
developed, that deploys itself to every reachable node. In a later work (Tschudin, 1999b)
the same author addresses the security issues involved with a necessary self-destruction
mechanism for such kind of services.

In (Roadknight and Marshall, 2000), the issue of quality of service differentiation is
addressed by using a distributed genetic algorithm inspired by the behaviour of bacteria.
The authors show that the amount of servers and their location in the network evolve ac-
cording to the user demand for a given type of service and a requested trade-off between
latency and packet loss. The potential of genetic techniques such as the ones proposed
by (Roadknight and Marshall, 2000) is the increased variability to find new solutions and
adapt to new situations not envisaged at the beginning. However, in an environment where
nodes and links are heterogeneous, propagating successful rules (“genes”) to neighbour-
ing nodes might not necessarily be a good idea, since a rule that is successful in one node
might fail completely in another node due to different resource constraints. In the context
of self-organising systems, biologically-inspired and market-based techniques seem com-
plementary, and an interesting research challenge would be to combine the best of both
worlds to obtain new adaptation mechanisms.

3 Autonomous Reflectors

In this section, we describe our autonomous reflector scheme. We start with some defini-
tions and assumptions, and then describe the basic mechanisms for building and destroy-
ing trees of reflectors.

3.1 Definitions and terminology

� Reflector, or reflector agent: Software package that implements the reflector func-
tionality and can be loaded on the active nodes on-demand. Each reflector is
uniquely identified within the session. Each active node may hold only one in-
stance of a reflector for a given session (although several reflector instances for
different sessions running on the same node may share the same code).

� Client reflector: Reflector A is said to be a client of reflector B when A is a child of
B on the tree.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

� Server reflector: Reflector B is said to be a server for reflector A when B is A’s
parent on the tree.

� Connection: A logical client-server connection between two reflectors A and B.
Packets are exchanged over this logical connection using direct unicast addressing.

� Terminal reflector: A reflector that is a leaf of the tree.

� Intermediate reflector: A non-leaf reflector.

� Root reflector: The root of a reflector tree. It is a reflector agent that is either located
at the RP or receiving data from the RP via native multicast.

� RP or rendez-vous point: Predefined target node towards which the reflector trees
will be built.

� Downstream: The flow direction from the RP towards the root reflector, or from the
root reflector towards the leaves of the reflector tree.

� Upstream: The direction from the tree leaves towards the root reflector or from the
root reflector towards the RP.

� Clone: To send a copy of a reflector to another node; the clone will initially have
its original reflector as a client.

� Migrate: To move to a given destination node, by sending a clone there, transferring
the agent state to the clone (mainly its client list) and terminating.

� Merge: To combine two reflectors into a single one, by merging their client lists
and terminating one of the reflectors. A merge operation is often used only as an
abstraction, as two reflectors that intend to merge may negotiate a different config-
uration before the merging actually takes place (see Section 4.5).

� Terminate: To terminate the execution of a reflector at a given node (its code may
remain cached for a certain amount of time until it is garbage collected).

3.2 Assumptions and Limitations

We assume that some basic default unicast routing service interconnecting all active nodes
is available, such that at any moment it is possible for an active application to obtain the
next hop to a given destination. This service can be either provided by the Execution
Environment itself, or installed as active extension code with a well-defined interface
exported to the active applications that need it. By default it can simply map directly to IP
routing, but more sophisticated techniques such as application-layer routing (Ghosh et al.,
2000) could also be available to provide optimised paths according to specific criteria. We
assume that unicast routing is robust: rerouting around failed unicast links is out of the
scope of this work.

The current failure detection mechanism is very simple: a reflector simply attempts
to join the multicast group, listen for a while, and if no multicast packets arrive then it
assumes that there is a failure. It also assumes a failure when there is an error while at-
tempting to join the group at a given network interface, meaning that no multicast support
is available for this interface.

Another assumption is that there is only one main centre of interest that generates
content for the session (e.g. the lecturer’s site). This centre of interest or main source

http://www.aisb.org.uk

Yamamoto and Leduc

will also be called the rendez-vous point (RP). All other session participants are also
allowed to generate content to the session, as it is generally the case with RTP sessions
(Schulzrinne et al., 1996), that nowadays are widespread on the MBone. So the system
is not constrained to Single Source Multicast. However, these other sources of data will
be considered as secondary from the point of view of the mobile reflectors, which means
that when there is a multicast failure affecting only the reception of secondary sources,
the system of reflectors will not attempt to repair it.

It is assumed that all session members learn the RP address in advance, together with
other group information, that is generally advertised by standard session announcement
mechanisms such as SIP or SAP (Handley et al., 1999; Handley et al., 2000), which are
outside the scope of the paper.

One might argue that assuming a single centre of interest is not a realistic approach,
but in practice it is often the case that a single centre of interest exists or can be defined
close to where most of the “action” occurs in the session. Besides that, if multicast is
down for a particular member, it is likely to be down for other members too, but detecting
it for each member individually would be too costly for large sessions. Therefore, the
repair tree of reflectors is bidirectional, so that all participants affected by a failure share
a single tree to distribute and receive content to/from the rest of the session.

The reflectors we propose are only able to repair multicast trees using unicast: mul-
ticast tree failures will cause a tree of reflectors to be formed, which will be connected
to each other via unicast. Since multicast routing and active network unicast routing
are independent, the unicast tree of reflectors might not coincide with the corresponding
multicast subtree for a given set of session members. One can imagine that it would be
interesting to use unicast only to bypass “broken” segments of a tree, using multicast
everywhere else. This would result in a significantly smaller amount of reflectors being
deployed. While this is an interesting possibility, it raises many new difficulties related
to the self-organisation of disjoint subgroups within a session, with corresponding alloca-
tion of multicast group addresses, underlying topology discovery to make sure subgroups
don’t overlap, etc. Therefore we leave this possibility open for future study.

3.3 Tree Construction

The reflectors start at leaf nodes co-located or close to the session members, and then
progressively move, clone and merge with other reflectors along their respective unicast
paths towards a rendez-vous point (RP). As discussed in the previous paragraph, the RP
role is typically assigned to the main source of content in the session. This leaf-initiated
approach is similar to filter placement schemes based on RSVP, such as the AMNet pro-
totype described by (Wittmann et al., 1998).

We distinguish two types of reflectors: terminal and intermediate. Terminal reflectors
are located as close as possible to the end systems and do not move, while intermediate
reflectors are dynamically placed on other active nodes in the network, and might move
from one node to another according to the network conditions.

A terminal reflector ideally serves one local client, which is the user application that
generates and/or treats session content (e.g. MBone tools such as vic or rat). A termi-
nal reflector must be installed at each end system that wishes to make use of autonomous
reflectors, or as close as possible to the end system (or set of end systems) to be served.
The terminal reflector works as a proxy between the actual multicast group and the user
application, so that the direct use of multicast or the use of reflectors is hidden from the
application. This allows the use of reflectors based on mobile code without requiring any
change to existing applications. Terminal reflectors are intermediate reflectors that have

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

their migration rules disabled. They must be fixed because the existing tools are not able
to detect moving peers.

The tree of reflectors organises itself in a client-server hierarchy. Each intermediate
reflector serves a number of clients that are located downstream from it and directly con-
nected to it via unicast. All intermediate reflectors are both servers for a number of clients
and clients of an upstream reflector, except the root of the tree which only acts as a server.

a ctive node reflectornon− a ctive node

bidirectiona l unica st flow upstrea m opera tion

RP

clone

cloneclone

merge

P1 P2 P3

(a)

R P

P 1 P 2 P 3

T1

(d)

R P

P 1 P 2 P 3

T2

T1

(b)

R P

P 1 P 2 P 3

T1

clone

(e)

R P

P 1 P 2 P 3

T1
m igra te

m erge

(c)

R P

P 1 P 2 P 3

(f)

Figure 1: Tree construction example.

Figure 1 shows a tree construction example for a session consisting of an RP and
three session members P1, P2, and P3. When a participant detects the absence of native
multicast connectivity to the RP (by trying to listen to the multicast group as described in
Section 3.2), its terminal reflector sends another reflector to the next AN hop towards the
RP. This operation is called upstream cloning (Fig. 1(a)). The clone reflector spawned in
this way is not an exact copy of the original reflector, since it is an intermediate reflector,
but it serves the same session and has the same goals. In our case, the goal is to maintain
application connectivity when native multicast fails or is absent, such that at least the data
coming from the main session source reaches all session members.

When two reflectors belonging to the same session meet at the same active node, they
merge into a single reflector (Fig. 1(a)(c)). Two reflector trees, T1 and T2 (Fig. 1(b)),
result from the operations shown in Fig. 1(a). If native multicast traffic from the RP is
detected by an intermediate reflector, it becomes a root reflector and stays in the node.

http://www.aisb.org.uk

Yamamoto and Leduc

Otherwise, it either clones or migrates to the next active hop towards the RP. Figure 1(c)
shows an upstream migration. A hierarchy of reflectors results from this process (Fig.
1(d)(e)(f)).

Since each agent reflects every packet received, the result is a bidirectional shared tree
such as CBT (Ballardie, 1997). For example, in Figure 1(d), if T1 is receiving multicast
from RP, then the flow coming from RP will be sent in unicast to P1, P2, and P3; and the
flow coming from P1 will be copied to P2, P3, and to the multicast group.

While network-layer protocols typically deal with outgoing interfaces, the reflectors
deal with unicast client connections directly: a copy of each packet is sent to each client,
even when several clients share the same outgoing interface. A packet is never looped
back to a client, even in the presence of route and interface asymmetry such that the
incoming and outgoing interfaces to a given client are different. This strict hierarchy
must be observed at all times in order to ensure that loops in the bidirectional tree do not
occur.

Each reflector includes a local selector that selects data from either multicast or unicast
channels, to ensure that no duplicate packets are forwarded downstream, and that packets
coming from downstream are forwarded only to the selected channel (either multicast or
parent reflector).

Applying this bottom-up tree construction algorithm, a reflector that succeeds bypass-
ing the failure point becomes the root of its reflector tree. This method that not only one
tree but several ones might arise in response to an absence of native multicast, in case
multiple reflectors cross a failure point at different nodes. This can happen, for example,
if the failure “point” is not a single link but a whole network with multicast capabilities
disabled for some reason.

The repair trees will be located as close as possible to the concerned participants, and
will not interfere with the rest of the session running in native multicast. The drawback is
that the tree is built following the reverse path to the RP, which might lead to suboptimal
downstream paths when routes are asymmetric.

3.4 Termination

A reflector that runs out of clients automatically terminates itself. If native multicast
connectivity is somehow restored, reflectors start receiving data from the main source
via the multicast channel, and disconnect from their upstream reflectors. The latter will
eventually die out due to lack of clients. Each reflector contains a local selector module
that is responsible for discarding duplicate packets, and for ensuring that packets going
upstream are forwarded to the selected channel (either native multicast or parent reflector).

If a reflector terminates abnormally, its children will detect the absence of traffic com-
ing from their parent and will restart the tree construction process to rebuild the affected
portion of the tree.

3.5 Communication among reflectors

AN Capsules are used to implement a signalling mechanism among neighbouring reflec-
tors so that a given intermediate reflector can inform its downstream clients of its current
location, and to keep the reflector tree alive. Capsules are also used to prospect the state of
an upstream node before making a decision to clone or migrate, and to enable two agents
to take merge decisions jointly, as will be explained in Sections 4.4 and 4.5.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

4 Reflector decisions

Reflectors can use resource control based on market mechanisms (Clearwater, 1996) to
make decisions to either clone, merge, migrate or terminate themselves. Such mecha-
nisms can also be used to dynamically decide on the maximum number of clients to ac-
cept at a given machine, in order not to cause link or CPU overload. Another usage is to
make downstream cloning decisions: for example, in the case of an overloaded reflector,
a number of clones can be sent downstream to handle part of the clients.

In this paper, we concentrate on the basic decision mechanisms related to code mo-
bility during tree construction and destruction, that is, cloning, migrating, merging and
terminating. We are currently working on the additional mechanisms related to tree re-
shaping and load control.

Each reflector has costs associated with its consumption of node and network re-
sources. The tree of reflectors is organised in a client-server hierarchy, such that server
reflectors sell session data to their clients, and buy data from their server reflector. A re-
flector uses the revenues that come from its clients to pay for resource usage in the active
nodes and for the services of the upstream reflector.

4.1 Resource usage costs

Each reflector has associated fixed costs and variable costs for the use of node resources.
The fixed costs do not vary with the number of clients that a reflector has, and correspond
to the costs of using the mobile code platform. They represent the minimum processing
plus storage cost that the mobile agent incurs, even when no clients are connected. Note,
however, that the fixed costs are not constant in general, as they may vary as a function of
the load level of the resource in question (CPU, memory).

The variable costs increase with the number of clients, and correspond to the link
transmission costs to all clients, plus the processing costs for all packets. These costs
may also vary according to the total load of the corresponding resource (link bandwidth
or processing).

From the cost point of view, having many clients is good for a reflector because the
fixed costs are shared among all the clients, but if the number of clients becomes too
large, the demand for one or more resources might exceed the supply (congestion situa-
tion), leading to an increase in processing and link prices, with possible packet losses and
consequent degradation in quality for the end user.

Every time a new reflector is added to the tree, there is an increase in costs corre-
sponding to the resources that the new reflector needs. However, this increase might be
compensated by a decrease in costs for other reflectors, e.g. because their load is allevi-
ated.

The cost of processing at an active node is also related to the delay penalty imposed
to the end user due to the use of a tree of reflectors. The delay penalty is the ratio between
the actual delay experienced by an end user and the delay that would be experienced if
the user could connect directly to the multicast session without the help of reflectors. If
the processing power were infinite, the extra delay imposed by a reflector would be null.
On the other hand, a very low processing power would incur a high additional delay. The
same is valid for a machine with high processing power but which is overloaded, such
that the processing time available to a reflector is very low. Therefore, if a reflector tries
to choose nodes that have low processing costs, it is likely to be moving towards a lower
delay penalty for its users.

http://www.aisb.org.uk

Yamamoto and Leduc

4.2 Definitions

We begin by providing some definitions of terms that will be used later in this section:

ni: a reflector that runs at a given node i.
nc: number of clients of reflector ni.
ri;j: reflector j, the j-th client of reflector ni, for j = 1; : : : ; nc.
Ri;j: data sending rate of reflector ri;j to ni (upstream direction).
S: data sending rate of the main source.
nk: number of terminal reflectors in session.

SR: total rate of the session (session bandwidth)

SR = S +

X

1�k�nk

Rk (1)

for all terminal reflectors rk with sending rate Rk.

cfi: fixed costs at node ni (do not vary with nc).
cvi(nc): variable costs at node ni (vary with nc).
cvpi(nc): processing costs at ni; depend on the amount of data treated per second.
cvli(nc): total link costs at ni: represent the costs associated with the total amount of
bandwidth emitted by reflector ni to each link that leads to clients of ni, and to the parent
reflector if any.

cti(nc): total cost at node ni when nc clients are present: the sum of fixed and variable
costs, as follows:

cti(nc) = cfi + cvi(nc)

= cfi + cvpi(nc) + cvli(nc)
(2)

4.3 Estimating costs

In order to make a decision to either clone or to migrate, a reflector first needs to estimate
the costs that would result from choosing either option. A simple decision strategy would
then be just to choose the configuration with the lowest cost. However, there are a number
of difficulties in obtaining such estimation. Actually, this is a typical problem of making
decisions in the presence of risks, and decision analysis could be applied here, as in (She-
hory et al., 1998). In this section, we present a first simplified approach to the problem.
Further research is necessary in order to extend it to a more general case.

One of the main difficulties is that, at the beginning, when the reflector still hasn’t
reached the main source (directly via multicast or via another server reflector), it is not
able to measure the actual resource consumption that will result when it reaches it. When
that happens, it goes into full operation mode, but at this moment, it is too late to revise
its previous decisions concerning cloning or migrating. Especially, if the reflectors un-
derestimate the aggregate sending rates of all the session members beyond the multicast
failure point while building the tree, several points of congestion might appear as soon as
the tree becomes fully operational.

A solution to this problem would be to rely on an estimation of the total rate of the
session (session bandwidth), that must be available somehow before the session starts.
In practice it is possible to obtain such information by looking at the media types in the

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

SDR session announcements. Additionally, if RTCP is used (Schulzrinne et al., 1996),
and assuming that only a limited number of session members send significant amounts of
data to the group, the session bandwidth grows very little with the total session size.

Using such an upper bound, resources could be reserved at the active nodes along the
path in order to guarantee that enough resources are available when the reflectors reach
the main source. However, resource reservation might not be available at all nodes, and
most of the nodes might not even be active. Besides that, if the session bandwidth is
overestimated, too many costs might incur with little extra benefit for the end user. We
adopt a simple solution that relies on an upper bound on the session bandwidth to simplify
the cost calculations, but does not reserve resources on the nodes.

Next, we quantify each cost component in our context. We begin with the processing
costs.

4.3.1 Processing costs

Network packets constitute the bulk of the data treated by a reflector. Therefore, the pro-
cessing costs during a given interval increase with the number and size of the packets
treated. Every packet received is reflected to everyone else. Thus every packet from the
upstream channel (reflector or multicast) is copied to every client, and every packet from
a client is copied to the upstream channel plus all the other clients except itself. For a
reflector that has already reached the main source (directly via multicast or via another
server reflector), the total number of bits per second treated at ni is:

sti(nc) = spi(nc) + sci(nc) (3)

where:
spi(nc) is the data rate sent from the parent to all child reflectors of ni

sci(nc) is the data rate sent from all child reflectors of ni to all others and to the parent.

spi(nc) = nc � (SR �
X

1�j�nc

Rj) (4)

sci(nc) =

X

1�j�nc

((nc� 1) �Rj + 1 �Rj)

= nc �
X

1�j�nc

Rj

(5)

Substituting equations 4 and 5 in 3, we have:

sti(nc) = nc � SR (6)

Assuming constant prices, and processing costs that increase linearly with the data
rate treated, we have:

cvpi(nc) = ppi � sti(nc)

= ppi � nc � SR
(7)

where:
ppi is the (constant) processing price per bit per second at node ni.

http://www.aisb.org.uk

Yamamoto and Leduc

4.3.2 Link costs

The link usage costs include the costs for bandwidth and queuing. Here we consider
only the bandwidth costs for simplification. There are only costs associated with the
transmission of packets, not with the reception of packets. Thus the link costs are the sum
of the costs to reflect a packet from the parent reflector to all child reflectors, and from
each child to every other child plus the parent.

Assuming constant link prices, the total link cost for n i can be written as:

cvli(nc) = pli;p �
X

1�j�nc

Rj +

X

1�j�nc

(pli;j � (SR � Rj)) (8)

where:
pli;j is the price per unit of bandwidth on the link in n i that leads to the client ri;j.
pli;p is the price per unit of bandwidth on the link in n i that leads to the parent reflector of
ni (or the candidate parent in case a decision to clone or to migrate is about to be made).

If the link price is the same for all clients and equal to pl i;l, or when all clients of ni

share the same link l, we can rewrite the link cost as:

cvli(nc) = pli;p �
X

j

Rj + pli;l � (nc � SR �
X

j

Rj) (9)

4.3.3 Cost of the cloning configuration

If we are going to send a clone from the origin node n i to an upstream destination node
nd, the cost of the resulting clone configuration can be calculated as:

ctci;d = cti(nc) + ctd(1)

= cfi + cvpi(nc) + cvli(nc) + cfd + cvpd(1) + cvld(1)
(10)

Here cti(nc) represents the total cost of running the agent at the current node when the
agent is fully operational, while ctd(1) is the cost of a new agent running at the upstream
node nd with a single node (ni) as a client.

4.3.4 Cost of the migration configuration

When migrating to an upstream destination nd, a reflector ni carries its client list along
with it. Assuming symmetric unicast routing paths, the traffic will continue to go through
node i, therefore consuming the same amount of bandwidth resources at the links leading
to each client reflector. Since the reflector itself will disappear from node ni, there are
neither fixed nor processing costs associated with it anymore at this node. Therefore, the
cost of the resulting configuration after migration can be calculated as:

ctmi;d = cvli(nc) + ctd(nc)

= cvli(nc) + cfd + cvpd(nc) + cvld(nc)
(11)

4.4 Making a decision

We would like to make a decision to either clone or migrate, based on the total costs of
resources for each configuration.

A simple decision strategy is to choose the configuration with the lowest cost:

if ctmi;d > ctci;d then clone else migrate. (12)

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

In order to simplify the calculations, we rewrite the above rule as:

if ctmi;d � ctci;d > 0 then clone else migrate. (13)

The costs of each configuration are given by equations 11 and 10, therefore we have:

ctmi;d � ctci;d = cvpd(nc)� cvpd(1)� cvpi(nc)

+ cvld(nc)� cvld(1)� cfi

(14)

Note that the fixed costs at nd, as well as the link costs at ni have disappeared since
they are the same in both configurations. With symmetric unicast paths and no multipath,
all the traffic from nd to ni will go through a single link. Thus, assuming linear costs
for link resources, we can use equation 9 to calculate the terms cvld(nc) and cvld(1).
Assuming linear costs also for processing resources, equation 7 can be used to calculate
cvpd(nc), cvpd(1), and cvpi(nc). After these operations we obtain:

ctmi;d � ctci;d = SR � ((nc� 1) � (ppd + pld;i)� nc � ppi)� cfi (15)

which can also be written as:

ctmi;d � ctci;d = SR � nc � (ppd + pld;i � ppi)� cfi

� SR � (ppd + pld;i)
(16)

The first line of the right side of equation 16 represents the increase in costs asso-
ciated with the migration configuration, while the last line corresponds to the increase
associated with the cloning configuration. When nc is high, the migration configuration
tends to become more expensive than the cloning configuration. Therefore, the cloning
configuration will generally be preferred for high nc, unless the fixed or processing costs
at ni are prohibitive.

With this result, we obtain an easy way to make a decision, by using equation 15
to choose the cheapest configuration. As discussed earlier, an estimation on the upper
bound of SR is considered available before the session starts. The number of clients, nc,
is known at ni, as well as the local cost cfi and price ppi. Consequently, before making a
decision, the agent needs to obtain the following information from its neighbour n d:
ppd: processing price per unit
pld;i: link price per unit for the outgoing interface from n d to ni.

The information above is collected by a Prospecting capsule that is sent to the des-
tination node before the cloning or migration action actually takes place. The costs for
the intermediate links on the direct and reverse paths between nodes i and d have to be
taken into account as well. The Prospecting capsule partially does this by accumulating
into pld;i the sum of the link costs for the active nodes on the path from node d to node
i. When some nodes are inactive, an approach similar to the equivalent link abstraction
(Sivakumar et al., 2000) could be used to estimate the transmission costs of a non-active
network cloud.

This is the strategy adopted to obtain the simulation results shown in this paper. Al-
though it seems a little simplistic, this strategy already takes into account an important
criterion which is the delay penalty for the user which is imposed by the use of the re-
flectors instead of native IP multicast. As discussed earlier, this delay penalty is implied
within the processing costs.

http://www.aisb.org.uk

Yamamoto and Leduc

In classical multicast algorithms such a decision dilemma usually doesn’t apply, be-
cause only link resources are typically taken into account. In this case we can make
ppd = ppi = cfi = 0, and our calculations reduce to:

ctmi;d � ctci;d = SR � pld;i � (nc� 1) (17)

In the above we have:
For nc > 1 : ctmi;d � ctci;d > 0 and we choose to clone.
For nc � 1 : ctmi;d � ctci;d � 0 and we choose to migrate.

These observations confirm that when bandwidth is the only scarce resource, cloning
is the default choice except in the trivial case (nc � 1), since migration always implies
duplicating packets on the link from nd to ni when nc > 1, and therefore causes the total
costs to increase.

4.5 Merging

When two reflectors belonging to the same session meet at the same active node, they
merge into a single reflector. This operation involves the union of both client lists and any
other necessary information. Since this might result in resource overload, a preliminary
negotiation between both agents is desirable to achieve favourable configurations. For
instance, when sending the Prospecting capsule to an upstream neighbour to find out about
costs, the capsule could also be programmed to look for the presence of another reflector
for the same session, and check its current resource consumption. An outcome of the
negotiation could be that the server delegates some of its own clients to the prospecting
reflector, in order to balance the load and reduce costs.

It is possible to show that assuming linear costs and symmetric paths, the same rule
(Rule 13) with equation 15 can still be applied to take a joint merge decision involving
two reflectors. Due to lack of space, the analysis is not shown here but can be found
in a separate report (Yamamoto and Leduc, 2001b). The resulting merge procedure is
to consider as if all clients of the reflector at node nd that share the outgoing interface
towards ni (ncd;i) were attached to node ni so that we can make nc nc + ncd;i in
Equation 15; and then apply Rule 13. If the rule says “migrate” then the reflector at node
ni migrates to nd. Otherwise (“clone”), and ni attaches itself to nd as a client, and nd

transfers its ncd;i clients to ni.
To implement this mechanism, a Prospecting capsule is first sent from node ni to nd.

The capsule goes back to ni with the values of ppd and pld;i and ncd;i (which is zero when
no reflector for the group is running at nd). The reflector at ni then uses these values in
Rule 13 to take a local decision to clone or to migrate. If the rule advises a clone decision
and ncd;i > 0, then the reflector at d will take action to transfer its ncd;i clients to ni,
after the cloning operation has been successfully completed. Otherwise everything occurs
as described in Section 4.4.

4.6 Terminating

Since reflectors must “pay” for resource usage in the active nodes, and their clients are
their sole source of income, they will be automatically eliminated by the active platform
when there are no further clients. However, there is a risk that sudden changes in load can
make prices increase in unpredictable ways, causing fully operational reflectors to die out
prematurely.

In our current implementation, this problem is still not solved, and in our view it can
only be solved with the help of load control operating at shorter time scales than the ones

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

in which the reflectors operate. This requires adaptive (elastic) flows or transcoding, and
here we are assuming that the reflectors merely repair connectivity failures, and don’t
interfere with the session data contents.

5 Simulation results

We have performed some simulation experiments using ns-2, in order to visualise the tree
construction and destruction mechanisms. The topology for the simulations is illustrated
in Figure 2 (Left). All links have a fixed capacity of 10Mbit/s and a propagation delay
of 10ms. The main session source is located at node S. The leaves of the tree contain
terminal reflectors that join the session at random times from t=0s to t=10s. All nodes are
active and have the same prices for resources: pp = 1, pl = 1, and cf = 1 �8 �C where C
is the size of the mobile code in bytes, and is currently set to 50000, which is the current
approximate size of the bytecode in our Java prototype.

S
A

B

L1

L2

N1

N2
N3

N4

N5

N6
N7

N8
N9 N10

N1

N2

N3

N4

N7

N8
N9

N6

N10

N5

Figure 2: Left: Topology used in the simulations. Right: Two sample reflector trees over
the topology on the left. Top Right: tree that results from the failure of L1, rooted at N1.
Bottom Right: tree that results from the failure of L2, rooted at N5.

The multicast communication via links L1 and L2 is interrupted at t=20s. As a result,
two reflector trees appear. Both trees starts at around t=24s, but the tree on the upper side
of the topology is ready at t=29s, while the second one is only ready at t=37s. After this
construction phase all terminal reflectors affected by failures are served by an intermediate
reflector. The resulting trees are shown in Figure 2 (Right).

At t=70s the multicast communication via L1 and L2 is restored. Most reflectors
detect this a couple of seconds later, and disconnect from their parent reflectors, which
die out between t=77s and t=80s.

Figures 3(A), (B), and (C) show the aggregate session data rate received by three
sample session participants: A, B, and C, respectively, whose location on the tree can be

http://www.aisb.org.uk

Yamamoto and Leduc

observed in Figure 2 (Left). The main source rate is 500kbps while all the other session
members send around 10kbps each.

Participant A happened to join the group at around t=10s, while B joined at the be-
ginning, t=0s. During the failure period, although the multicast feed to node A is up and
running, it receives less aggregate traffic until the reflector tree is fully operational, since
during this period it doesn’t receive the multicast packets coming from the participants
that have stayed on the other side of the failure point. Participants B and C suffer from
the failures until about t=30s and t=38s, respectively. After that, their respective level of
reception becomes about the same as the one of A, as if they were also unaffected by the
failure. When the multicast feed is restored, sudden peaks of traffic arrive at B and C,
due to duplicate packets sent once via multicast and again via the reflector. These packets
are eliminated by the terminal reflectors before being sent to the applications. We can
verify this by looking at the sequence numbers received by the decoder connected to C,
on Figure 3.

0

500000

1e+06

1.5e+06

2e+06

0 10 20 30 40 50 60 70 80 90 100

R
at

e
(b

ps
)

Time (s)

(A)

receiver A

0

500000

1e+06

1.5e+06

2e+06

0 10 20 30 40 50 60 70 80 90 100

R
at

e
(b

ps
)

Time (s)

(B)

receiver B

0

500000

1e+06

1.5e+06

2e+06

0 10 20 30 40 50 60 70 80 90 100

R
at

e
(b

ps
)

Time (s)

(C)

receiver C

0

2000

4000

6000

8000

10000

12000

14000

0 10 20 30 40 50 60 70 80 90 100

S
e

q
u

e
n

ce
 n

u
m

b
e

r

Time (s)

decoder of receiver C

Figure 3: (A), (B), and (C): Data rate of three sample participants. (A): unaffected by mul-
ticast failure. (B) and (C): affected by failures of L1 and L2 respectively. (D): Sequence
numbers received by the decoder of participant C.

In order to visualise the dynamics of the mobile code operations of migrating, moving,
merging and terminating, we describe them in Figure 4 for the upper reflector tree on the
topology. For compactness, we number events in time with integer numbers starting from
1, followed by the code of the operation performed. From t=24s to t=26s, all terminal
reflectors spawn upstream clones. Since the order in which each terminal reflector sends
a clone won’t have any influence on the subsequent operations, we assign event number 1
to all. This is indicated as “1C” in the figure. The next event is event 2, and it’s a cloning
operation from node N4 towards its upstream neighbour. This is indicated as “2C”. By
following the sequence of events in this way, it is possible to track the main actions that
lead to the tree configuration shown in Figure 2 (Top Right), and to its subsequent de-
struction (“T” operation). Although the merging operations are not indicated, they can be
deduced as well, since they occur whenever a reflector arrives at a node where another
one is already present.

The results above are intended to illustrate the basic behaviour of our autonomous
reflectors in ideal conditions. They are not intended to show a realistic picture of a real

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

1C

1C 1C

1C

1C

1C 1C

1C

1C

1C
3M

5M

9C

7C

4M

8M

10T

11T

1C

12T

13T

2C

6M

N1

N2

N3

N4

Figure 4: Dynamics of mobile code operations. The event numbers are shown beside the
arrows or the node names, followed by the code of the operation: C (clone), M (migrate),
T (terminate).

network. The topology is regular, the network is unloaded, all nodes are active, the delays
are short and the paths for unicast and multicast traffic coincide.

In our simulations, we have noticed little impact of increased network latencies or
moderate load on the results, even when the propagation delay on each link is increased
to the order hundreds of milliseconds. However, we have often observed much larger
latencies for joining live MBone sessions, as well as variable loss patterns. Thus we can
expect higher reaction times for our reflectors in such a situation.

Further results, including the revised merge configuration, the impact of varying node
and link prices, and of the amount of non-active nodes can be found in (Yamamoto and
Leduc, 2001b). We are currently working on random topologies with concurrent sessions
to assess the loading sharing capabilities and the distance to the global optimum.

6 Implementation

We are currently implementing a prototype of the mobile reflectors in Java using an archi-
tecture that allows the code to be easily ported to any EE that supports active extensions
with minor modifications. The architecture is organised in three planes: data plane, moni-
toring plane, and control plane. This structure roughly follows the one suggested by (Blair
et al., 1999).

The data plane is responsible for the blind forwarding of multicast and unicast data.
Its core is inspired by the Mug reflector (Highfield, 1998): in Mug, a node that sends a
RTP/UDP packet to the reflector is added to its client list; a client that stays idle (i.e. sends
no more packets) for some time is removed from the client list. A selector is attached
to the Mug-like core in order to switch between the multicast and the unicast upstream
channels. The selector is controlled by the control plane. The data plane treats packets
seamlessly whether they come from another reflector or from a multicast application such
as the MBone media tools vic or rat.

The monitoring plane keeps track of the current resource usage and performance pa-

http://www.aisb.org.uk

Yamamoto and Leduc

rameters of the data plane. To monitor CPU usage, we are currently integrating the CPU
accounting facilities provided by J-Seal2 portable resource control framework (Binder
et al., 2001). This requires some adaptations to the calculations in Section 4 to take into
account measured resource consumption values besides estimated ones.

The control plane uses the data available in the monitoring plane to make decisions.
Its core is a state machine with transitions triggered by events generated at the monitoring
plane.

This architecture allows new strategies to be easily added to the control plane without
affecting the other planes. It also maps naturally to the Bond platform (Bölöni and Mari-
nescu, 1999), which opens up future possibilities for dynamic updates to the state machine
through “agent surgery” (Bölöni and Marinescu, 1999). The communication mechanism
among neighbouring reflectors takes the form of capsules such as in ANTS (Wetherall
et al., 1998). Alternatively, the communication could be made via an existing agent mes-
sage passing mechanism (e.g. Bond, see (Bölöni and Marinescu, 1999)). Both offer extra
flexibility for enhancements and preclude the need to specify application-specific message
formats and develop the corresponding parsers.

7 Conclusions and Future Work

We have described a decentralised scheme based on mobile code, to build a loosely con-
nected network of autonomous reflectors that seeks to maintain session connectivity in
the presence of multicast failures. The self-organising nature of the scheme ensures its
robustness, scalability and autonomy properties, which make it suitable for sessions of
any size, while minimising the necessary amount of human intervention.

For the moment each reflector treats only one media stream (e.g. either audio, or
video, or whiteboard). In order to deal with several media, we plan to group multiple
physical reflectors (each treating one media type) into a single logical reflector for cloning
and migration purposes. In the near future, experiments over the MBone can be envisaged
in the framework of the European COST Action 264, and with the help of existing active
network overlays such as the ABone.

We plan to integrate the work presented in this paper with previous work on conges-
tion control (Yamamoto and Leduc, 2000b; Yamamoto and Leduc, 2000a) such that reflec-
tors also perform application-oriented filtering and/or transcoding of data in the presence
of congestion, in a network which is likely to be only sparsely populated by active nodes.
Other possible extensions include: exploring alternative paths, supporting strong route
asymmetries and non-linear costs, multiple or changing centres of interest, QoS guaran-
tees. It would also be interesting to generalise the technique for other group applications
that require self-organisation.

Acknowledgements

This work has been carried out within the TINTIN project funded by the Walloon region
in the framework of the programme “Du numérique au multimédia”. Part of this work
was performed while the main author was a visiting researcher at Lancaster University.
We would like to thank David Hutchison, Steven Simpson, Mark Banfield, Laurent Mathy,
Stefan Schmid, and Katia Saikoski for their helpful support. We would also like to thank
Allex Villazón (University of Geneva), Sandrine Calomme (University of Liège), and the
anonymous reviewers for their insightful comments.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

References

Akamine, H. et al. (2000). An Approach for Heterogeneous Video Multicast Using Active
Networking. In Proceedings of IWAN 2000, Springer LNCS 1942, pages 157–170,
Tokyo, Japan.

Amir, E. (1998). An Agent-based Approach to Real-time Multimedia Transmission over
Heterogeneous Environments. Ph.D. dissertation, University of California at Berke-
ley.

Baldi, M., Picco, G. P., and Risso, F. (1998). Designing a Videoconference System for
Active Networks. In Mobile Agents’98.

Ballardie, A. (1997). Core Based Trees (CBT) Multicast Routing Architecture. Internet
rfc 2201 (experimental), IETF.

Binder, W., Hulaas, J. G., Villazón, A., and Vidal, R. (2001). Portable Resource Control
in Java: The J-SEAL2 Approach. In ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA-2001), Tampa Bay, Florida,
USA.

Blair, G. S., Andersen, A., Blair, L., and Coulson, G. (1999). The Role of Reflection
in Supporting Dynamic QoS Management Functions. In IEEE/IFIP International
Workshop on Quality of Service (IWQoS), London, UK.

Bölöni, L. and Marinescu, D. C. (1999). A Multi-Plane State Machine Agent Model.
Technical Report CSD-TR 99-027, Purdue University. Also a poster at the Fourth
International Conference on AUTONOMOUS AGENTS (Agents 2000) Barcelona,
Spain, June 2000.

Choi, S. Y., Turner, J., and Wolf, T. (2001). Configuring Sessions in Programmable
Networks. In Proceedings of IEEE INFOCOM 2001, Anchorage, Alaska.

Chu, Y., Rao, S. G., and Zhang, H. (2000). A Case for End System Multicast. In Pro-
ceedings of ACM Sigmetrics, pages 1–12, Santa Clara, CA, USA.

Clearwater, S. H., editor (1996). Market-based Control: A Paradigm for Distributed
Resource Allocation. World Scientific Publishing.

Costa, L. H. M. K., Fdida, S., and Duarte, O. C. M. B. (2001). Hop by Hop Multicast
Routing Protocol. In Proceedings of ACM SIGCOMM 2001, San Diego, CA, USA.

Duysburgh, B. et al. (2000). Data Transcoding in Multicast Sessions in Active Networks.
In Proceedings of IWAN 2000, Springer LNCS 1942, pages 130–144, Tokyo, Japan.

Fry, M. and Ghosh, A. (1999). Application level active networking. Computer Networks,
31(7):655–667.

Ghosh, A., Fry, M., and Crowcroft, J. (2000). An Architecture for Application Layer
Routing. In Proceedings of IWAN 2000, Springer LNCS 1942, pages 71–86, Tokyo,
Japan.

Gibney, M., Jennings, N., Vriend, N., and Griffiths, J. (1999). Market-based call routing
in telecommunications networks using adaptive pricing and real bidding. In Pro-
ceedings of the IATA’99 Workshop, Springer LNAI 1699, Stockholm, Sweden.

http://www.aisb.org.uk

Yamamoto and Leduc

Handley, M., Perkins, C., and Whelan, E. (2000). Session Announcement Protocol. In-
ternet rfc 2974 (experimental), IETF.

Handley, M., Schulzrinne, H., Schooler, E., and Rosenberg, J. (1999). SIP: Session Initi-
ation Protocol. Internet rfc 2543 (standards track), IETF.

Highfield, J. (1998). Mug multicast packet reflector. URL
http://www.stile.lboro.ac.uk/ cojch/mug/mug.html.

Kirstein, P. T. and Bennett, R. (2000). RE 4007 MECCANO Project Final Report. URL
http://www-mice.cs.ucl.ac.uk/multimedia/projects/meccano/ deliverables/.

Kiwior, D. and Zabele, S. (2001). Active Resource Allocation in Active Networks. IEEE
JSAC, 19(3):452–459.

Kon, F., Campbell, R., and Nahrsted, K. (2000). Using Dynamic Configuration to Manage
A Scalable Multimedia Distribution System. Computer Communication Journal.
Elsevier Science, Fall 2000.

Live Networks, Inc. (2000). URL http://www.live.com/.

Maxemchuck, N. F. and Low, S. H. (2001). Active Routing. IEEE JSAC, 19(3):552–565.

Najafi, K. (2001). Modelling, Routing and Architecture in Active Networks. Ph.D. disser-
tation, University of Toronto, Canada.

Partridge, C., Snoeren, A. C., Strayer, W. T., et al. (2001). FIRE: Flexible Intra-AS
Routing Environment. IEEE JSAC, 19(3):410–425.

Roadknight, C. and Marshall, I. W. (2000). Differentiated Quality of Service in Applica-
tion Layer Active Networks. In Proceedings of IWAN 2000, Springer LNCS 1942,
pages 358–370, Tokyo, Japan.

Safaei, F., Ouveysi, I., Zukerman, M., and Pattie, R. (2001). Carrier-Scale Pro-
grammable Networks: Wholesaler Platform and Resource Optimization. IEEE
JSAC, 19(3):566–573.

Schulzrinne, H., Casner, S. L., Frederick, R., and Jacobson, V. (1996). RTP: A Transport
Protocol for Real-Time Applications. Internet RFC 1889 (update in progress).

Shehory, O., Sycara, K., Chalasani, P., and Jha, S. (1998). Agent Cloning: An Approach
to Agent Mobilityand Resource Allocation. IEEE Communications Magazine, pages
58–67.

Sivakumar, R., Han, S., and Bharghavan, V. (2000). A Scalable Architecture for Active
Networks. In Proceedings of IEEE OPENARCH 2000, Tel-Aviv, Israel.

Stoica, I., Ng, T. S. E., and Zhang, H. (2000). REUNITE: A Recursive Unicast Approach
to Multicast. In Proceedings of IEEE INFOCOM 2000, Tel-Aviv, Israel.

Tennenhouse, D. L. et al. (1997). A Survey of Active Network Research. IEEE Commu-
nications Magazine, 35(1):80–86.

Tschudin, C. (1997). Open resource allocation for mobile code. In Proceedings of the
Mobile Agent’97 Workshop, Berlin, Germany.

http://www.aisb.org.uk

Autonomous Reflectors over Active Networks

Tschudin, C. F. (1999a). A Self-Deploying Election Service for Active Networks. In
Proc. 3rd International Conference on Coordination Models and Languages (CO-
ORDINATION’99), Springer LNCS 1594, pages 183–195, Amsterdam, The Nether-
lands.

Tschudin, C. F. (1999b). Apoptosis - The Programmed Death of Distributed Services. In
Vitek, J. and Jensen, C., editors, Secure Internet Programming - Security Issues for
Mobile and Distributed Objects, Springer LNCS 1603, pages 253–260.

Wen, S., Griffioen, J., and Calvert, K. L. (2001). Building Multicast Services from Uni-
cast Forwarding and Ephemeral State. In Proceedings of IEEE OPENARCH 2001,
Anchorage, Alaska, USA.

Wetherall, D. J., Guttag, J. V., and Tennenhouse, D. L. (1998). ANTS: A Toolkit for
Building and Dynamically Deploying Network Protocols. In Proceedings of IEEE
OPENARCH’98, San Francisco, CA, USA.

Wittmann, R., Krasnodembski, K., and Zitterbart, M. (1998). Heterogeneous Multicasting
based on RSVP and QoS Filters. In SYBEN’98, Zürich, Switzerland.

Yamamoto, L. and Leduc, G. (2000a). An Active Layered Multicast Adaptation Protocol.
In Proceedings of IWAN 2000, Springer LNCS 1942, pages 180–194, Tokyo, Japan.

Yamamoto, L. and Leduc, G. (2000b). An Agent-Inspired Active Network Resource
Trading Model Applied to Congestion Control. In Proceedings of the MATA 2000
Workshop, Springer LNCS 1931, pages 151–169, Paris, France.

Yamamoto, L. and Leduc, G. (2001a). Autonomous Multicast Reflectors over Active
Networks. In AISB’01 Symposium on Software Mobility and Adaptive Behaviour,
pages 40–49, York, UK.

Yamamoto, L. and Leduc, G. (2001b). Autonomous Reflectors: Note on the Merge Op-
eration. Technical report, University of Liège.

http://www.aisb.org.uk

AISB Journal 1(1), c 2001
http://www.aisb.org.uk

Market Diversity and Market Efficiency: The
Approach Based on Genetic Programming

Chia-Hsuan Yeh� and Shu-Heng Cheny

� Department of Information Management, Yuan Ze University, Chungli, Taoyuan
320, Taiwan, imcyeh@saturn.yzu.edu.tw

y Department of Economics, National Chengchi University, Taipei 11623, Taiwan,
chchen@nccu.edu.tw

Abstract

The relation between market diversity and market efficiency has been studied.
Economic heterogeneity is a fundamental driving force and an essential property in
the economic systems. People who have different perspectives, technologies, or en-
dowments may benefit from their trading behaviour which constitutes economic activ-
ities. In this paper, economic simulation based on the growing field of artificial stock
markets is employed to study this issue. Market size and different learning styles
are used to discuss the influence of heterogeneity. Simulation results have demon-
strated that more participants and individual learning cause higher degree of traders’
diversity, which, in turn, enhances market efficiency.

1 Introduction

The relationship between competitiveness and market performance has been discussed for
a long time. In a competitive economic environment, each firm or individual is unable to
influence the market. It has been mentioned in economics courses that the competitive
market is more efficient and has higher social welfare. Therefore, it is the desirable pic-
ture that economists intend to draw. The concept of competitiveness is related to market
size, i.e., the number of market participants. The idea here is that the larger economy
contributes to microeconomic heterogeneity, for example, behaviour and strategies, prof-
itability and market shares, production technology and efficiency. People having different
perspectives about the future implies that there exists room for the economic activity and
they may benefit from their trading behaviour. In other words, the higher degree of het-
erogeneity may provide more opportunities for trading. It is also an important seed of
innovation.

However, few papers have addressed the influence of the number of agents in the eco-
nomic simulation literature. Usually, the number of agents in the simulated economies
is determined arbitrarily or under the consideration of computational load. In (Arifovic
et al. (1997)), they mentioned that the minimal number of strings (agents) for effective
search is usually taken to be 30, according to the artificial intelligence literature. How-
ever, the point of view from optimization is quite different from the agent-based simulated
economies (and/or the real world). (Aoki (1999)) pointed out that there exists different
statistical properties when the number of agents (N) goes to infinity. (Egenter et al.
(1999)) have shown that the behaviour of the simulated market becomes quite smooth or

Market Diversity and Market Efficiency

periodic and thus predictable if N ! 1. (Den Haan (2001)) also described the impor-
tance of the number of different agents. In the framework of asset-pricing models, several
properties depend on the number of types of agents. For example, the dynamics of interest
rate, investment behaviour, and agent’s welfare. In this paper, we try to restudy its relation
to the market efficiency. This issue is very important in the financial market because it
is well known that the thin and thick markets may have different financial properties and
phenomena.

Economic simulations have been widely used in the study of economics. In order to
model the interaction between many heterogeneous agents, the techniques of evolutionary
computation were employed, for example, artificial neural nets, genetic algorithms (GAs)
and genetic programming (GP). Different representations for agents’ behaviour will influ-
ence what they can learn, which may explain different scenarios. Genetic programming
serves this purpose better than other techniques. Therefore, GP is applied to modeling the
evolution of traders’ behaviour in this paper.

However, there are two ways to implement GP, namely, single-population GP and
multi-population GP. The former is a way to model social learning, whereas the latter
focuses on individual learning (Chen and Yeh (2001)). In this paper, we also attempt to
figure out how differently the relationship between market size and efficiency may emerge
under these two different versions of GP. All these issues are studied within the context
of agent-based artificial stock markets, which is probably the most powerful tool to study
behavioural finance with.

The organization of this paper is as follows. In section 2, we present the framework
of the agent-based artificial stock market. The implementation of social learning and
individual learning is described in section 3. Experimental designs and simulation results
are shown in sections 4 and 5 respectively. Section 5 concludes.

2 Model Description

The basic framework of the artificial stock market considered in this paper is the standard
asset pricing model employed in (Grossman and Stiglitz (1980)). The dynamics of the
market is determined by an interaction of many heterogeneous agents. Each of them,
based on his forecast of the future, maximizes his expected utility.

2.1 Traders

For simplicity, we assume that all traders share the same constant absolute risk aversion
(CARA) utility function:

U(Wi;t) = �exp(��Wi;t); (1)

where Wi;t is the wealth of trader i at period t, and � is the degree of relative risk aver-
sion. Traders can accumulate their wealth by making investments. There are two assets
available for traders to invest. One is the riskless interest-bearing asset called money, and
the other is the risky asset known as the stock. In other words, at each period, each trader
has two ways to keep his wealth, i.e.,

Wi;t = Mi;t + Pthi;t (2)

where Mi;t and hi;t denote the money and shares of the stock held by trader i at period t
respectively, and Pt is the price of the stock at period t. Given this portfolio (M i;t,hi;t), a

http://www.aisb.org.uk

Yeh and Chen

trader’s total wealth Wi;t+1 is thus:

Wi;t+1 = (1 + r)Mi;t + hi;t(Pt+1 +Dt+1) (3)

where Dt is per-share cash dividends paid by the companies issuing the stocks and r is
the riskless interest rate. Dt can follow a stochastic process not known to traders. Given
this wealth dynamics, the goal of each trader is to myopically maximize the one-period
expected utility function:

Ei;t(U(Wi;t+1)) = E(�exp(��Wi;t+1) j Ii;t) (4)

subject to Equation (3), where Ei;t(:) is trader i’s conditional expectations of Wt+1 given
his information up to t (the information set I i;t).

It is well known that under CARA utility and Gaussian distribution for forecasts,
trader i’s desire demand, h�i;t+1 for holding shares of risky asset is linear in the expected
excess return:

h�i;t =
Ei;t(Pt+1 +Dt+1)� (1 + r)Pt

��2i;t
; (5)

where �2i;t is the conditional variance of (Pt+1 +Dt+1) given Ii;t.
The key point in the agent-based artificial stock market is the formation of E i;t(:). In

this paper, the expectation is modeled by genetic programming. The detail is described in
the next section.

2.2 Price Determination

Given h�i;t, the market mechanism is described as follows. Let b i;t be the number of shares
trader i would like to submit a bid to buy at period t, and let o i;t be the number of shares
trader i would like to offer to sell at period t. It is clear that:

bi;t =

�
h�i;t � hi;t�1; h�i;t � hi;t�1;

0; otherwise:
(6)

and

oi;t =

�
hi;t�1 � h�i;t; h�i;t < hi;t�1;

0; otherwise:
(7)

Furthermore, let

Bt =

NX
i=1

bi;t; and Ot =

NX
i=1

oi;t (8)

be the totals of the bids and offers for the stock at period t, where N is the number of
traders. Following (Palmer et al. (1994)), we use the following simple rationing scheme:

hi;t =

8<
:

hi;t�1 + bi;t � oi;t; if Bt = Ot;

hi;t�1 +
Ot

Bt
bi;t � oi;t; if Bt > Ot;

hi;t�1 + bi;t �
Bt

Ot
oi;t; if Bt < Ot:

(9)

All these cases can be subsumed into

hi;t = hi;t�1 +
Vt

Bt

bi;t �
Vt

Ot

oi;t (10)

where Vt � min(Bt; Ot) is the volume of trade in the stock.

http://www.aisb.org.uk

Market Diversity and Market Efficiency

According to Palmer et al.’s rationing scheme, we can have a very simple price ad-
justment scheme, based solely on the excess demand B t �Ot:

Pt+1 = Pt(1 + �(Bt �Ot)) (11)

where � is a function of the difference between B t and Ot. � can be interpreted as the
speed of adjustment of prices. The � function we consider is:

�(Bt �Ot) =

�
tanh(�1(Bt �Ot)) if Bt � Ot;

tanh(�2(Bt �Ot)) if Bt < Ot
(12)

where tanh is the hyperbolic tangent function:

tanh(x) �
ex � e�x

ex + e�x
(13)

The price adjustment process introduced above implicitly assumes that the total num-
ber of shares of the stock circulated in the market is fixed, i.e.,

Ht =
X
i

hi;t = H: (14)

In addition, we assume that dividends and interests are all paid by cash, therefore:

Mt+1 =
X
i

Mi;t+1 = Mt(1 + r) +HtDt+1: (15)

2.3 Formation of Expectations

As to the formation of traders’ expectations,E i;t(Pt+1+Dt+1), we assume the following
functional form for Ei;t(:).1

Ei;t(Pt+1 +Dt+1) =

8<
:

(Pt +Dt)(1 + �1fi;t � 10
�4); if � 104 � fi;t � 104;

(Pt +Dt)(1 + �1); if fi;t > 104;
(Pt +Dt)(1� �1); if fi;t < �104

(16)
The population of fi;t (i=1,...,N) is formed by genetic programming. That means, the
value of fi;t is decoded from its GP tree gpi;t.

As to the subjective risk equation, we modified the equation originally used by (Arthur
et al. (1997)):

�2i;t = (1� �2)�
2

t�1jn1
+ �2[(Pt +Dt �Ei;t�1(Pt +Dt))

2]: (17)

where

�2t�1jn1 =

Pn1�1

j=0 (Pt�j � P tjn1)
2

n1 � 1
(18)

and

P tjn1 =

Pn1�1

j=0 Pt�j

n1
(19)

1There are several alternatives to model traders’ expectations. The interested reader is referred to (Chen et
al. (2001)).

http://www.aisb.org.uk

Yeh and Chen

In other words, �2
t�1jn1

is simply the historical volatility based on the past n1 observa-
tions.

Given each trader’s expectations, Ei;t(Pt+1 +Dt+1), according to Equation (5) and
his own subjective risk equation, we can obtain each trader’s desire demand, h �i;t+1 shares
of the stock, and then how many shares of stock each trader intends to bid or offer based
on Equation (6) or (7).

3 The Framework of Social and Individual Learning

In this paper, genetic programming is employed to model the formation of traders’ ex-
pectations. In agent-based computational economics, there are two different styles to
implement GP, namely, single-population GP and multi-population GP. While, from the
optimization point of view, the choice of the two styles (architectures) may have an ef-
fect on the search efficiency, it brings different implications for the agent-based economic
modeling. In the framework of single-population GP (SGP), each agent is represented by
a tree (forecasting model, computer program). The evolution of this population of agents
is performed through natural selection and genetic operations (reproduction, crossover,
and mutation) on all of these trees (agents). In this case, agents can learn from other
agents’ experiences, and hence we call this social learning. On the other hand, in the
framework of multi-population GP (MGP), each agent is endowed with a population of
trees. Evolution is respectively manipulated in terms of the population of trees for each
agent. In this case, agents learn only from their own experiences and reasoning, and hence
we call this individual learning.

According to (Vriend (2000)) and (Vriend (2001)), there is an essential difference
between individual and social learning, and the underlying cause for this is the so-called
spite effect. The spite effect may occur in a social learning GA, but can never occur in
an individual learning GA. To see how the spite effect can influence the outcome of the
evolutionary process, Vriend uses the two different GAs to simulate the learning process
of an oligopoly game. The simulation results show that while the individual learning GA
moves close to the Cournot-Nash output level, the social learning GA converges to the
competitive Walrasian output level.

Vriend’s finding pushes us to think harder of the choice of the two styles of learn-
ing. But, SGP (social learning) has another issue which is generally overlooked. (Harrald
(1998)) criticized the traditional implementation of social learning. He mentioned the tra-
ditional distinction between the phenotype and genotype in biology and doubted whether
the adaptation can be directly operated on the genotype via the phenotype in social pro-
cesses. In particular, it is not easy to justify why we can learn or imitate other agents’
strategies (genotype) by means of their actions (phenotype).

Motivated by this criticism, (Chen and Yeh (2001)) proposed a modified version of
social learning. The idea is to include a mechanism, called the “business school”. The
business school serves as a faculty of researchers or a library. Knowledge in the business
school or library is open for everyone. Traders can consult the researchers when they are
under great peer pressure or economic loss. More precisely, the business school can be
viewed as a collection of forecasting models. SGP (social learning) can then be applied
to model the evolution of the business school without inviting Harrald’s criticism. 2

Each researcher (forecasting model) is represented by a GP parse tree. Initially, the
forecasting models (GPt=1) are randomly generated based on the function set and termi-

2For more details, please see (Chen and Yeh (2001)).

http://www.aisb.org.uk

Market Diversity and Market Efficiency

nal set given in Table 1. For example,

��
��
�

��
��
Pt�1 ��

��
–

��
��
Pt�3 ��

��
Pt�6

�
�

�
�

Q
Q

Q
Q

Each tree in the initial population of GP trees (forecasting models) is randomly generated
by either the growth method or the full method based on a toss of fair coin. 3 In the
initialization stage, the maximum depth of a tree is restricted to 6. The performance
of each forecasting model is determined by the pre-assigned fitness function, i.e., mean
absolute percentage error (MAPE).

In the business school, the forecasting models will be evaluated with a pre-specified
schedule, say once for every m1 trading days. The evaluation procedure proceeds as
follows. At the evaluation date t, each old model (model at period t � 1, GP t�1) shall
compete with a new model which is generated from GP t�1 itself by using one of the
following four genetic operators: reproduction, mutation, crossover, and immigration,
each with a probability pr, pm, pc, and pI (Table 1). The winner, the one with lower
MAPE, will be selected as a model of the next generation, GP t. When the evaluation is
done over all the old models, a new generation of forecasting models (GP t) is then born.
The four genetic operators are detailed as below.

� Reproduction:
Two forecasting models are randomly selected from GP t�1. The one with lower
MAPE over the last m2 days’ forecasts is chosen as the new model.

� Mutation:
Two forecasting models are randomly selected from GP t�1. The one with lower
MAPE over the last m2 days is chosen as a candidate, and has a probability of pM
(Table 1) being mutated. There are several ways to implement mutation. What is
implemented here is known as tree mutation. If a tree is chosen to be mutated,
one of its nodes is randomly selected, and the subtree originating from the node is
replaced by a new subtree which is randomly generated. For example, consider the
forecasting model A, whose tree structure is shown in figure 3. Suppose that the
point M is chosen as the mutation point. Then the subtree originated from point M
is removed and is replaced by a subtree B, which is randomly generated. And the
result is the new model C.4

� Crossover:
Two pairs of forecasting models are randomly chosen, (gp j1;t�1, gpj2;t�1) and
(gpk1;t�1, gpk2;t�1). The one with lower MAPE in each pair is chosen as a parent.
The crossover operation is a sexual operation that starts with two parental models.
One of the nodes for each parent is selected randomly, and the subtrees originating
from the nodes are exchanged. Two offspring are then produced. One of them is
randomly chosen as the new model. For example, consider Tree A and B shown
above as the parents, and points M and N are the crossover points. After crossover
by exchanging the subtrees originating from M and N, the two offspring are Tree
A

0

and Tree B
0

as shown in figure 3.

3For more details, please refer to (Koza (1992)).

4But, if Tree A is not mutated (with a probability 1� PM), then A will automatically be the new model.

http://www.aisb.org.uk

Yeh and Chen

Tree A

M

Tree B

N

Tree C

Figure 1: Tree structure for model A

� Immigration:
A forecasting model is randomly created as the new model. This operator is used to
approximate the concept of imagination.

As to the evolution of traders’ behaviour, each trader is endowed with N I forecasting
models. These forecasting models are used to predict E i;t(U(Wi;t+1)). In the beginning,
they are also randomly generated. The performance of these forecasting models is mea-
sured by profits, not MAPE, under a validation process. Traders’ adaptation proceeds as
follows. At the evaluation date t, each trader has to make a decision. Should he change his
forecasting model used in the previous period? This decision is affected by two psycho-
logical factors, namely, peer pressure and a sense of self-realization. Generally speaking,
if a trader’s profits earned in the last period is inferior to many other traders, or his prof-
its come to a historical low, then he will have a higher motivation, and hence a higher
probability, to change.

The probabilities that traders consider to change a model can be mathematically de-
scribed as follows. First, suppose that traders are ranked by the net change of wealth over
the last n2 trading days. Let �W n2

i;t be this net change of wealth of trader i at time period
t, i.e.,

�Wn2
i;t �Wi;t �Wi;t�n2 ; (20)

and, let Ri;t be her rank. Then, the probability that trader i will change a model at the end

http://www.aisb.org.uk

Market Diversity and Market Efficiency

Tree A
0

N

Tree B
0

M

Figure 2: Tree structure after crossover

of period t is assumed to be determined by:

pi;t =
Ri;t

N
: (21)

The choice of the function pi;t is quite intuitive. It simply means that:

pi;t < pj;t; if Ri;t < Rj;t: (22)

In other words, the traders who come out top shall suffer less peer pressure, and hence
have less motivation to change models than those who are ranked at the bottom.

In addition to peer pressure, a trader may also decide to change a model out of a sense
of self-realization. Let the growth rate of wealth over the last n2 days be:

Æn2i;t =
Wi;t �Wi;t�n2

jWi;t�n2 j
; (23)

and let qi;t be the probability that trader i will change a model at the end of the tth trading
day, then it is assumed that:

qi;t =
1

1 + exp
Æ
n2
i;t

: (24)

The choice of this density function is also straightforward. Notice that

lim
Æ
n2
i;t
!1

qi;t = 0; (25)

http://www.aisb.org.uk

Yeh and Chen

Table 1: Parameters of the Stock Market

The Stock Market

Shares of the stock (H) 100 (500)

Initial money supply (M1) 100 (500)

Interest rate (r) 0.1

Stochastic process (Dt) Uniform distribution,

U(5.01,14.99)

Price adjustment function tanh

Price adjustment (�1) 0.2 � 10�4

Price adjustment (�2) 0.2 � 10�4

Parameters of Genetic Programming

Function set f+;�;�;%,sin,cos,exp,Rlog,

Abs,sqrtg

Terminal set fPt; Pt�1; � � � ; Pt�10; Pt +Dt;

� � � ; Pt�10 +Dt�10g

Selection scheme Tournament selection

Tournament size 2

Probability of creating a tree by reproduction (pr) 0.10

Probability of creating a tree by immigration (pI) 0.20

Probability of creating a tree by crossover (pc) 0.35

Probability of creating a tree by mutation (pm) 0.35

Probability of mutation (PM) 0.30

Probability of leaf selection under crossover 0.5

Mutation scheme Tree mutation

Replacement scheme (1+1) Strategy

Maximum depth of tree 17

Maximum number in the domain of Exp 1700

Number of generations 4000

Business School

Number of faculty members (F) 500

Criterion of fitness (Faculty members) MAPE

Evaluation cycle (m1) 20

Sample size (MAPE) (m2) 10

Search intensity in Business School (I�s) 5

Traders

Number of traders (N) 100

Number of ideas for each trader (NI) 1 (A), 10 (B), 25 (C)

Degree of RRA (�) 0.5

Criterion of fitness (Traders) Increments in wealth (Income)

Evaluation cycle (n2) 1

Search intensity by trader himself (I�
h

) 5

�1 0.5

�2 0.0133

http://www.aisb.org.uk

Market Diversity and Market Efficiency

and
lim

Æ
n2
i;t
!�1

qi;t = 1: (26)

Therefore, the traders who have made great progress will naturally be more confident and
hence have little need for changing ideas, whereas those who suffer devastating regression
will have a strong desire for changing ideas.

In sum, for trader i, the decision to change a model can be considered as a result
of a two-stage independent Bernoulli experiment. The success probability of the first
experiment is pi;t. If the outcome of the first experiment is success, the trader will change
a model. If, however, the outcome of the first experiment is failure, the trader will continue
to carry out the second experiment with the success probability q i;t. If the outcome of the
second experiment is success, then the trader will also change a model. Otherwise, the
trader will keep her model unchanged. Based on the description above, the probability of
changing the idea (ri;t) for trader i at period t is:

ri;t = pi;t + (1� pi;t)qi;t =
Ri;t

N
+
N �Ri;t

N

1

1 + exp
Æk
i;t

(27)

Once the trader decides to change, how he changes depends on the two styles of learn-
ing. In the case of social learning, he will register to the business school, and randomly
catch a model there. In the case of individual learning, he will search a new model on his
own by running genetic programming on the population of his N I existing models (think
tank).

Once he gets a new model, he will test the new model with the historical data and see
whether the new model will bring him more profits than the old one. If it does, the old
model will be replaced by the new model. Otherwise, he will keep on searching in the
business school (in the case of social learning) or his think tank (in the case of individual
learning) until either he succeeds or he fails for a pre-specified time, I �s or I�h (Table 1).
The process of traders’ evolution is also shown in Flowchart 1.

4 Experimental Designs

In order to examine the effect of market size on market efficiency, we consider exper-
iments associated with two different market sizes (numbers of participants). The small
market, M1, has 100 traders, whereas the large market, M2 has 500 traders. Furthermore,
to see the effect of social and individual learning on market efficiency, three scenarios
corresponding to different styles of learning are proposed. Traders in Market A follow
the social learning scheme (driven by SGP), and traders in Markets B and C follow the
individual learning scheme (driven by MGP).

Markets B and C are distinguished by the number of models (N I) (the size of think
tank) assigned to each trader. In SGP, market size (number of traders) and population size
(number of GP trees or models) refer to the same thing, because each trader is represented
by one model in SGP. However, in MGP, market size and population size refer to two
different things. Therefore, it is important to distinguish these two different size effects
on market efficiency. In this paper, traders in Market B are endowed with 10 models,
whereas traders in Market C are equipped with 25 models.

Therefore, in total, we conduct six distinct experiments, namely, (M 1; A), (M1; B),
(M1; C), (M2; A), (M2; B), (M2; C). Each experiment consists of 10 trials of 4000
trading periods. In terms of genetic programming, the number of generations is not nec-
essarily the same as the number of trading periods. In fact, the former is the latter divided

http://www.aisb.org.uk

Yeh and Chen

<HV

<HV

1R <HV

1R

1R

1R <HV

<HV 1R

1R

<HV

1R <HV

L ,QGLYLGXDO "

1 � 1XPEHU RI WUDGHUV

)ORZFKDUW �� 7UDGHUV
 6HDUFK 3URFHVV

*HQ � *HQ � � &RPSXWLQJ WKH LQFUHPHQW LQ ZHDOWK

�: �

�

Q

WL
� IRU HDFK LQGLYLGXDO DQG

UDQNLQJ WKHP �5L�W�3UREDELOLW\ RI FKDQJLQJ

PLQG IRU WUDGHU L�

UL�W SL�W � �� � SL�W� TL�W

3UREDELOLW\ RI ORRNLQJ IRU QHZ

LGHDV IURP EXVLQHVV VFKRRO�

SL�W
60

.HHS WKH RULJLQDO PRGHO

L 1 "

5DQGRPO\ VHOHFW D QHZ PRGHO

IURP EXVLQHVV VFKRRO ZLWK D

XQLIRUP GLVWULEXWLRQ

9DOLGDWLQJ E\0$3(

,6 �

,6 � ,6 � �

L � L � �

,6 � ,6 "

L � �

:RUN RXW QHZ LGHDV

E\ KLPVHOI
*HQHUDWH D QHZ LGHD E\ PHDQV

RI IRXU JHQHWLF RSHUDWRUV

9DOLGDWLQJ

E\

æ :L�W
Q�

,K� ,K "
,K � ,K � �

by evaluation cycle. In the case of Markets B and C, since GP is applied to traders, and
the evaluation cycle (n2) is 1 (Table 1), the number of generations is 4000, i.e., the same
as the number of trading periods. Nevertheless, in Market A, GP is not applied to traders
but to the business school, and the evaluation cycle (m1) for the business school is 20
(Table 1); therefore the number of generations is only 200.

Each simulation will generate a time series data with 4000 observations of price. To
avoid the effect of initialization, we shall drop the first 1000 observations, and base our
analysis only on the last 3000 observations.

5 Simulation Results

5.1 The Efficiency Measure

The purpose of our experiments is to examine the effect of market size and learning styles
on market efficiency. Before proceeding further, we have to give market efficiency a tech-
nical notion so that our our numerical results can be presented and analyzed accordingly.
In financial econometrics, the market is said to be efficient if the return series fr tg is
unpredictable, where:

rt = ln(Pt)� ln(Pt�1): (28)

Technically speaking, a series is unpredictable if there exists no linear and nonlinear
structures in it, or the series is independent. To test whether a series is independent, we
followed the procedure of (Chen et al. (2001)). This procedure is composed of two steps,
namely, the PSC filtering and the BDS testing. We first applied the Rissanen predictive
stochastic complexity (PSC) to filter the linear process. The PSC criterion is frequently
used as a model selection tool in time series analysis. By using the criterion, we can

http://www.aisb.org.uk

Market Diversity and Market Efficiency

determine the best linear structure, i.e., the best ARMA (AutoRegressive and Moving
Average), of the time series in question.5 Once the linear signals are filtered, any signals
left must be nonlinear. The next step is then to apply the BDS test (Brock et al. (1996)),
one of the most frequently used tests for nonlinearity, to the residual series, i.e., the series
after PSC filtering. The null hypothesis of the BDS test is that the series in question is
identically and independently distributed. If we fail to reject the null hypothesis, then the
series is said to be independent. Since the BDS test statistic under a large sample follows
a standardized normal distribution, it is quite easy to have an eyeball check on the results.

5.2 Results: Price and Market Efficiency

The two-stage econometric procedure as outlined above gives three statistics for each
market experiment, namely, PSC, R2, and BDS. They are all shown in Table 2. The
(p; q) under the column “PSC” is the orders p and q selected based on the Rissanen PSC
criterion. The column “R2” reports the coefficient of determination derived by running the
PSC-selected ARMA(p; q) regression. The column “BDS” gives the BDS test statistic.
If the return series is independent, there shall be completely no structure, be it linear or
nonlinear, found in the series. In our statistical language, p, q, and R 2 should all be zero;
the BDS test should be as low as possible, but not greater than a critical value, say, 1.96. 6

Using these reference numbers, we can get a quick grasp of our simulation results.
First of all, we would like to draw readers’ attention to the experiment (M 2; C). As

detailed in the previous section, the market in the experiment has three characteristics,
large number of traders, large population size, and individual learning. Based on the
reference numbers given above, one can easily see that the return series generated by
this experiment are all independent. The only exception is Run 2, which has a linear
structure being detected (p = 1). But the associated R2 is so small (0.009) that one can
hardly be interested in this linear signal. So, one can generally conclude that markets with
large number of participants, each learning with the evolution of his own large number of
forecasting models, is highly efficient in the sense that the efficient market hypothesis is
sustained (return series is unpredictable).

From (M2; C), we have three directions to move in. We would first like to know what
will happen when the number of forecasting models assigned to each trader is reduced.
To answer this question, we move from (M2; C) to (M2; B). In contrast, markets under
(M2; B) have stronger linear structures: the AR(1) signal is detected in seven out of the
ten markets, while their associated R2s are generally very low. Furthermore, in one case
(Run 6), nonlinear structure is also found (BDS =2.107). All this evidence suggests that

5The ARMA process is a canonical linear time series model. Given a time series fXtg, we say that fXtg

follows a AR(p) process if
Xt = a0 + �

p

i=1
aiXt�i + "t; (29)

and fXtg follows a MA(q) process if

Xt = b0 +�
q

j=1
bj"t�j + "t; (30)

where "t is a Gaussian white noise, i.e.,

"t � N(0; �2); and E("s; "t) = 0 if s 6= t: (31)

fXtg is said to follow a ARMA(p,q) process, if

Xt = c0 +�
p

i=1
aiXt�i + �

q

j=1
bj"t�j + "t (32)

6The exact number depends on the chosen significance level of the test.

http://www.aisb.org.uk

Yeh and Chen

Table 2: PSC Filtering and BDS Test

Market Size: M1

Market A Market B Market C

Run PSC R2 BDS PSC R2 BDS PSC R2 BDS

1 (2,2) 0.104 7.860 (2,3) 0.057 5.479 (2,3) 0.045 6.349

2 (3,3) 0.089 7.749 (0,2) 0.049 7.104 (3,0) 0.046 6.561

3 (2,2) 0.072 6.845 (2,2) 0.047 6.369 (0,0) None 4.948

4 (1,2) 0.086 8.462 (2,2) 0.066 6.988 (2,2) 0.085 8.153

5 (3,3) 0.082 7.750 (0,2) 0.029 6.802 (4,5) 0.086 6.274

6 (2,2) 0.072 6.909 (0,2) 0.033 7.052 (2,2) 0.056 6.099

7 (2,3) 0.102 6.958 (1,2) 0.091 10.831 (0,2) 0.047 7.726

8 (1,0) 0.058 6.890 (1,0) 0.051 7.012 (3,4) 0.085 6.413

9 (4,5) 0.133 7.431 (0,2) 0.061 7.777 (1,2) 0.044 6.073

10 (0,3) 0.058 6.956 (2,2) 0.057 5.727 (0,2) 0.031 5.833

Average 0.086 7.381 0.054 7.114 0.058 6.443

Market Size: M2

Market A Market B Market C

Run PSC R2 BDS PSC R2 BDS PSC R2 BDS

1 (1,0) 0.012 3.947 (1,0) 0.006 0.385 (0,0) None -0.009

2 (1,0) 0.011 3.096 (1,0) 0.007 1.479 (1,0) 0.009 0.788

3 (1,0) 0.018 2.971 (0,0) None 0.801 (0,0) None 0.455

4 (1,0) 0.015 2.076 (1,0) 0.007 0.373 (0,0) None -0.163

5 (1,0) 0.009 3.452 (0,0) None 0.319 (0,0) None 0.591

6 (1,0) 0.011 3.221 (1,0) 0.005 2.107 (0,0) None 0.180

7 (1,0) 0.029 2.635 (0,0) None 0.003 (0,0) None 0.678

8 (2,3) 0.027 3.529 (1,0) 0.009 1.292 (0,0) None 1.565

9 (1,0) 0.011 3.866 (1,0) 0.010 0.945 (0,0) None 1.154

10 (0,2) 0.025 3.944 (1,0) 0.013 0.034 (0,0) None 1.318

Average 0.0168 3.274 0.008 0.774 0.009 0.656

The BDS test statistic is asymptotically normal with mean 0 and standard deviation 1. The signifi-
cance level of the test is set at 0.95. In BDS test, the distance parameter (standard deviations) is set
to be 1, and the embedding dimension is set to be 5.

the number of forecasting models can have a positive effect on the market efficiency. The
larger the number, the higher the efficiency.

The second direction to move in is to consider the effect of the number of market
participants (market size), i.e., to move from (M2; C) to (M1; C). From PSC, we can
see that the linear structure is even stronger than the case (M2; C). Linear signals are
pervasively found in all markets, with Run 3 as the only exception. Some of the linear
signals are even highly structured, say, Run 5. Looking at BDS, none of these markets
fail to reject the null hypothesis. As a result, all markets are not efficient. The striking
fact is that in experiment (M2; C), we have all markets efficient, but then all inefficient in
(M1; C). The only change is the number of participants. Therefore, the market size can
have a dramatic impact on the market efficiency. The more the participants, the higher
the efficiency.

The third direction to move in is to examine the effect of social learning. Here, we
move from (M2; C) to (M2; A). From all the three statistics, one can easily see that
all markets under (M2; A) are relatively inefficient. Hence, the social learning scheme
represented by SGP with the business school can have a negative impact upon market
efficiency.

http://www.aisb.org.uk

Market Diversity and Market Efficiency

5.3 Results: Trading Volume and Market Diversity

In addition to price dynamics, another important observation in stock markets is trading
volume. The trading volume serves as an important indicator of the diversity of traders’
expectations. Consider an extreme case where all traders hold the same expectation (fore-
cast). With the same expectation, traders always stand in the same position, either all
to buy or all to sell at any given price. In this case, no trade can possibly happen in
the market, and this corresponds to the famous no-trade theorem in neo-classical eco-
nomics (Tirole (1982)). On the other hand, if traders’ expectations are diversified (het-
erogeneous), then optimistic traders can easily be matched to pessimistic traders at many
different prices, and one can expect a large trading volume appearing in the market.

To have a slice of the idea that the trading volume is very different among the exper-
iments, Graphs 1-3 plot the time series of the trading volume observed in a typical run
of the three market experiments (M1; A), (M1; B), and (M1; C). By presenting these
figures together, one can immediately see that the market (M1; A) is rather quiet as op-
posed to the other two. Its trading volume is almost nil during many of the trading days.
Therefore, except for a few cases, traders in market (M1; A) share very similar forecasts.

Of course, three individual cases may tell us little about what causes the difference in
the diversity of traders’ expectations. To be more systematic, Table 3 gives us two sum-
mary statistics of all experiments. One is the average daily trading volume (the “Mean”
column), and the other is the volatility of the daily trading volume (the “Std. Dev.” col-
umn). Based on this table, one can articulate the main factors which contribute to the
diversity of traders’ expectations, and there are two factors, learning styles and market
size.

First, learning styles. To see how learning styles can change the diversity of traders’
expectations, let us compare the experiment of social learning ((M 1; A)) to the experiment
of individual learning ((M1; B), (M1; C)). The ten markets in the experiment (M1; A)
are all very quiet. On average, the mean trading volume over these ten markets is only
0.15 units, whereas the same figure in the other two experiments are 15 (M 1; B) and 14
(M1; C) units respectively, i.e. almost 100 times higher. This sharp contrast also appears
in the comparison between the experiment (M2; A) and the experiments (M2; B) and
(M2; C). For the former, the mean trading volume is only 1 unit, but for the latter, the
figure jumps to 81 and 79.

These figures clearly show that social learning and individual learning can have a dra-
matic impact upon the diversity on traders’ expectations. This result may not come to
us as a surprise. If traders learn and adapt via a pool of common knowledge (business
school, library,...), then the diversity of them is constrained by the diversity of the pool.
Since direct imitation (reproduction) in the business school is feasible, competitive fore-
casting models can be disseminated to a large number of faculty members, which reduces
the diversity of the pool, and the diversity of traders’ expectations. On the other hand,
traders who learn and adapt on their own would not allow other traders to imitate their
best forecasting models which are kept as a business secret. Therefore, dissemination of
knowledge is more difficult to proceed in the context of individual learning, and hence it
tends to maintain a greater diversity of traders’ expectation.

Second, market size. To see the effect of market size on market diversity, the exper-
iment (M1; A) is compared to the experiment (M2; A), i.e., the one with one hundred
traders to the one with five hundred traders. From Table 3, one can see that when the
number of traders increases by a factor of 5, the mean daily trading volume also increases
by about 9 to 10 times, from 0.15 units to 1 units. But, caution should be exercised on
interpreting these numbers. The thing is that when market size increases by 5 times, the

http://www.aisb.org.uk

Yeh and Chen

)LJXUH � � 7LPH 6HULHV 3ORW RI WKH 7UDGLQJ 9ROXPH �0DUNHW $�)LUVW 5XQ�

�

�

��

��

��

��

��

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

7UDGLQJ 'D\

7
U
D
G
LQ
J
9
R
OX
P
H

)LJXUH � � 7LPH 6HULHV 3ORW RI WKH 7UDGLQJ 9ROXPH �0DUNHW %�)LUVW 5XQ�

�

��

��

��

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

7UDGLQJ 'D\

7
U
D
G
LQ
J
9
R
OX
P
H

)LJXUH � � 7LPH 6HULHV 3ORW RI WKH 7UDGLQJ 9ROXPH �0DUNHW &� 6L[WK 5XQ�

�

��

��

��

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

7UDGLQJ 'D\

7
U
D
G
LQ
J
9
R
OX
P
H

http://www.aisb.org.uk

Market Diversity and Market Efficiency

total number of shares also increases by that amount (so that share per capita remains
unchanged). Therefore, it would not surprise us if trading volume only increases in pro-
portion to the increase in market size. However, here we see that the trading volume in-
creases by more than 5 times, in fact to double that figure; therefore, the effect of market
size on market diversity is not superficial. One can confirm this finding by the other two
sets of experiments under individual learning, i.e., f(M1; B), (M2; B)g, and f(M1; C),
(M2; C)g. By comparing the same figure pairwisely, one can see once again that when
market size increases by five times, the trading volume increases by more than five times.

There is a simple explanation for the impact of market size upon market diversity. In
the case of social learning, even though there is only a single pool of common knowledge,
a larger number of traders (students) implies a larger sampling of the pool, and hence a
greater diversity. In the case of individual learning, since there is no channel for direct
dissemination of knowledge, a larger number of traders implies more secrets kept by
individuals, and hence also a greater diversity.

But, this explanation is only one-way and may oversimplify the situation. The mar-
kets which we study are typical examples of co-evolving systems. What has not been
mentioned in the explanation above is the interaction among different components of the
market. For example, in the case of social learning, a greater diversity of traders’ expecta-
tions may result in more complex aggregate (price) phenomena, which in turn also nurse
the diversity of the business school. Furthermore, a pool with a greater diversity may
make traders’ expectations even more diversified. This reinforcing mechanism can go on
and on, which eventually increases the trading volume by far more than 5 times.

As we have discussed earlier, in the context of individual learning, there is another key
parameter which has an effect on market efficiency, i.e., population size. However, it is
interesting to note that population size does not have a positive effect on trading volume.
If we compare the experiment (M1; B) to the experiment (M1; C), we see the mean daily
trading volume decreases from 15 units to 14 units when population size increases from
10 to 25. A similar result is also observed in the other pair of experiments, f(M 2; B),
(M2; C)g.

Why does population size have a negative effect on the diversity of traders’ expecta-
tions? The reason is also intuitive. In the case of social learning, each trader can base
their final decision only on one model, no matter how many models, be it 10 or 25, they
are able to process. As a result, the diversity of traders’ expectations is not directly af-
fected by population size. Nonetheless, a larger population size equips each trader with a
better capability to process information. Hence, if there is a best model at a point in time,
the chance of discovering this model improves for all traders. Even though they do not
come up with the same model, it is still likely that they find similar ones. That explains
why the diversity of traders’ expectations and the trading volume may actually drop in the
presence of a larger population size.

5.4 Results: Portfolio and Market Diversity

In the previous section, market diversity was studied from the perspective of the trading
volume. There is another way to observe market diversity, i.e, trader’s portfolios. A
portfolio is the distribution of traders’ wealth into money and shares of the stock. If at any
point in time, traders’ are homogeneous in their portfolio decision, then they must hold
the same shares of stock, and the variance (diversity) of shares held among all traders is
zero. Therefore, the variance of shares held provides us another measure with which to
examine market diversity.

Corresponding to graphs 1-3, graphs 4-6 present the time series plots of the variance

http://www.aisb.org.uk

Yeh and Chen

Table 3: Trading Volume

Market Size: M1

Market A Market B Market C

Run Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 0.150 1.384 16.216 13.034 15.189 12.805

2 0.277 1.328 17.665 14.517 15.363 13.067

3 0.410 1.998 15.373 13.785 15.613 13.035

4 0.150 0.928 16.713 13.898 15.843 13.323

5 0.049 0.285 15.122 13.405 13.702 12.439

6 0.080 0.480 14.342 12.345 14.613 12.380

7 0.044 0.328 13.955 11.980 12.892 12.168

8 0.172 1.242 15.174 13.116 12.841 11.371

9 0.059 0.329 14.365 12.535 14.820 12.369

10 0.105 1.134 14.153 12.447 14.838 12.503

Average 0.150 0.944 15.308 13.106 14.571 12.546

Market Size: M2

Market A Market B Market C

Run Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 0.728 5.172 73.330 47.525 71.622 49.105

2 0.935 4.042 82.657 53.155 82.150 53.602

3 0.718 7.004 84.541 50.787 82.813 51.563

4 0.778 5.195 72.865 50.061 76.502 49.392

5 1.112 8.127 95.009 60.465 86.131 57.656

6 1.319 6.277 85.942 52.902 79.125 52.582

7 0.409 1.807 74.807 48.631 90.215 55.193

8 0.877 7.791 78.962 50.327 70.133 45.129

9 1.944 10.873 81.123 53.567 78.114 49.935

10 1.453 7.110 83.132 51.648 78.295 52.167

Average 1.0273 6.340 81.237 51.907 79.510 51.632

of shares held in the three different market experiments. A large degree of homogeneity
of portfolios is observed in the experiment (M1; A). In many of the trading days, the
variance is almost zero, which suggests that traders hold the same amount of shares. But
(M1; B) and (M1; C) give quite different pictures.

Table 4 gives the mean variance of all experiments. We shall not give detailed accounts
of the results here, because the findings are the same as those in Table 3. Briefly speaking,
a greater diversity of portfolios is observed under a larger market size and individual
learning. However, a larger population size slightly reduced the diversity.

5.5 Market Diversity and Market Efficiency

The experimental results obtained above can be summarized as two effects on market
efficiency (price predictability), namely, the size effect and the learning effect. The size
effect says that the market will become efficient when the number of traders (market
size) and/or the number of models (GP trees) processed by each trader (population size)
increases. The learning effect says that the price will become more efficient if traders’

http://www.aisb.org.uk

Market Diversity and Market Efficiency

)LJXUH � � 7KH 9DULDQFH RI 6WRFN 6KDUHV EHWZHHQ 7UDGHUV �0DUNHW $�)LUVW 5XQ�

�

���

���

���

���

�

���

���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

7UDGLQJ 'D\

9
D
U
LD
Q
F
H

)LJXUH � � 7KH 9DULDQFH RI 6WRFN 6KDUHV EHWZHHQ 7UDGHUV �0DUNHW &� 6L[WK 5XQ�

�

�

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

7UDGLQJ 'D\

9
D
U
LD
Q
F
H

)LJXUH � � 7KH 9DULDQFH RI 6WRFN 6KDUHV EHWZHHQ 7UDGHUV �0DUNHW %�)LUVW 5XQ�

�

�

��

��

��

��

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

7UDGLQJ 'D\

9
D
U
LD
Q
F
H

http://www.aisb.org.uk

Yeh and Chen

Table 4: The Mean Variance of Stock Shares between Traders

Market Size:M1 Market Size: M2

Run Market A Market B Market C Market A Market B Market C

1 0.004 1.743 1.652 0.003 1.733 1.722

2 0.008 2.034 1.757 0.004 1.961 1.937

3 0.012 1.837 1.768 0.005 1.916 1.870

4 0.007 1.957 1.780 0.005 1.732 1.866

5 0.001 1.690 1.601 0.005 2.299 2.047

6 0.002 1.556 1.688 0.006 1.967 1.966

7 0.001 1.584 1.451 0.002 1.782 2.110

8 0.006 1.700 1.433 0.007 1.826 1.612

9 0.001 1.642 1.618 0.017 1.982 1.794

10 0.003 1.576 1.679 0.010 1.825 1.918

Average 0.005 1.732 1.643 0.006 1.902 1.884

adaptive behaviours become more independent and private. Coming to market diversity,
we observe very similar effects except with population size: market diversity does not go
up with population size.

These findings motivate us to search for a link between market diversity and market
efficiency. A suggested argument is: a larger market size, and a more isolated learning
style will increase the diversity of traders’ expectations, which in turn make the market
become more active (high trading volumes), and hence more efficient (less predictable).
While the statement is somewhat plausible, we cannot give it a formal proof. In fact, in
complex adaptive systems, the route from cause to effect are sometimes so complicated
that no one can follow every step of it. Nevertheless, since the argument is empirically
relevant, it can be taken as a hypothesis to test with real data.

Consider the Taiwan stock market as an example. A large proportion of market par-
ticipants are individual investors who have little control of the market. Based on our
“theorem” that a large market size implies efficiency, the Taiwan stock market should be
efficient. However, empirical evidence has shown that this market is not that efficient
(Chen and Tan (1996)). What is missing here? By our “theorem”, the answer rests on
social learning. Actually, in this market, individual traders usually consult the profes-
sionals from companies, institutions and even mass media., which is exactly a kind of
social learning. Also, take the United States as another example. In the U.S. stock mar-
ket, a large proportion of market participants are institutional investors, and each has their
own research department. This is more similar to individual learning. By our “theorem”,
this market should be very efficient. Empirical studies have shown that it is indeed the
case (Chen and Tan (1996)).

6 Concluding Remarks

In this paper, the relation between market diversity and market efficiency is investigated.
The simulation results reveal that the important driving force which makes market effi-
ciently is market diversity. The increase of market size contributes to the market efficiency

http://www.aisb.org.uk

Market Diversity and Market Efficiency

by means of introducing greater diversity into the market. Moreover, individual learning
further reinforces the effect, whereas population size plays a mixing role. These three
factors co-influence the market dynamics.

Of course, there are some other determinants for market efficiency. For example,
the degree of traders’ prudence. This behavioural parameter concerns the number of
periods (time horizon) which the traders look back at while making their forecasts. A
prudent trader cares about long-term profits, which, in our framework, corresponds to
a long evaluation cycle (n2). Also, in a more flexible design, traders should be able
to adaptively switch between individual learning and social learning, rather than getting
stuck with only one learning style. The effects of these determinants are left for further
research.

Acknowledgements

Research support from NSC grants No. 89-2415-H-214-002 is gratefully acknowledged.
This paper was revised from its original version by taking the advice and comments of
four anonymous referees. The authors are very grateful for their painstaking review of
this paper. Of course, all remaining errors are the authors’ sole responsibility.

References

Aoki, M (1999). Aggregate Dynamics and Agent Interactions in Economic Model: A
Stochastic View. Concluding lecture given at the Fourth Workshop on Economics
with Heterogeneous Interacting Agents (WEHIA’99), Genoa, Italy.

Arifovic, J., Bullard, J. and Duffy, J. (1997). The Transition from Stagnation to Growth:
An Adaptive Learning Approach. Journal of Economic Growth, Vol. 2, pp. 185-209.

Arthur, W. B., Holland, J. H., LeBaron, B., Palmer, R. and Taylor, P. (1997). Asset pric-
ing Under Endogenous Expectations in an Artificial Stock Market. In The Econ-
omy as an Evolving Complex System, Vol. II, W. B. Arthur, S. Durlauf, and D. Lanl
(eds.), Santa Fe Institute Studies in the Sciences of Complexity, Proceedings Volume
XXVII, Reading, MA: Addison-Wesley. pp. 15-44.

Brock, W., Dechert, D. Scheinkman, J. and LeBaron, B. (1996). Test for Independence
Based on the Correlation Dimension. Econometric Reviews, Vol. 15, pp. 197-235.

Chen, S.-H. and Tan, C.-W. (1996). Measuring Randomness by Rissanen’s Stochastic
Complexity: Applications to the Financial Data. In Information, Statistics and In-
duction in Science, D. L. Dowe, K. B. Korb and J. J. Oliver (eds.), Singapore:World
Scientific, pp.200-211.

Chen, S.-H., Lux, T. and Marchesi, M. (2001). Testing for Non-Linear Structure in an
Artificial Financial Market. Journal of Economic Behaviour and Organization, Vol.
46, Issue 3, pp. 327-342.

Chen, S.-H. and Yeh, C.-H. (2001). Evolving Traders and the Business School with Ge-
netic Programming: A New Architecture of the Agent-Based Artificial Stock Mar-
ket. Journal of Economic Dynamics and Control, Vol. 25, Issue 3-4, pp. 363-393.

http://www.aisb.org.uk

Yeh and Chen

Chen, S.-H., Yeh, C.-H. and Liao, C.-C. (2001). On AIE-ASM:Software to Simulate Ar-
tificial Stock Markets with Genetic Programming. In Evolutionary Computation in
Economics and Finance, S.-H. Chen (ed.), Heidelberg:Physica-Verlag. pp. 107-122.

Den Haan, W. J. (2001). The Importance of the Number of Different Agents in a Hetero-
geneous Asset-Pricing Model. Journal of Economic Dynamic and Control, Vol. 25,
Issue 5, pp. 721-746.

Egenter, E., Lux, T. and Stauffer, D. (1999). Finite-Size Effects in Monte Carlo Simula-
tions of Two Stock Market Models. Physica A, Vol. 268, pp 250 - 256.

Grossman, S. J. and Stiglitz J. (1980). On the Impossibility of Informationally Efficiency
Markets. American Economic Review, 70, pp. 393-408.

Harrald, P. (1998). Economics and Evolution. The panel paper given at the Seventh In-
ternational Conference on Evolutionary Programming, March 25-27, San Diego,
U.S.A.

Koza, J. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. The MIT Press.

Palmer, R. G., Arthur, W. B., Holland, J. H., LeBaron, B. and Taylor, P. (1994). Artificial
Economic Life: A Simple Model of a Stockmarket. Physica D, 75, pp. 264-274.

Tirole, J. (1982) On the Possibility of Speculation under Rational Expectations. Econo-
metrica, 50, pp. 1163-1181.

Vriend, N. (2000). An Illustration of the Essential Difference between Individual and
Social Learning, and Its Consequence for Computational Analysis. Journal of Eco-
nomic Dynamics and Control, Vol. 24, Issue 1, pp. 1-19.

Vriend, N. (2001). On Two Types of GA-Learning. In Evolutionary Computation in Eco-
nomics and Finance, S.-H. Chen (ed.), Heidelberg:Physica-Verlag. pp. 233-243.

http://www.aisb.org.uk

AISB Journal

http://www.aisb.org.uk

	page27: 27
	page29: 29
	page47: 47
	page51: 51
	page54: 54
	page55: 55
	page56: 56
	page68: 68
	page74: 74
	page78: 78
	page91: 91
	page93: 93
	page132: 132
	page24a: 24
	page25b: 25
	page34: 34
	page46a: 46

