AISB Symposium on
Al and Grid Computing

Recent advances in computer science facilitate a paradigm shift towards large
scale computing — the Grid, with ‘parallel and distributed’ computing playing
an important role. The Grid paradigm offers an important abstraction for com-
bining national and continent wide computational resources, to enable applica-
tion scientists and domain experts to work more effectively, and, subsequently,
to do better science. Driven by the unprecedented increase in Internet usage,
Grid-oriented computing will provide the next phase in the way we manage
and disseminate knowledge. The Grid can be seen as a mechanism for integrat-
ing resources, which can range in complexity from dedicated parallel machines
(maintained by national centres) to low-end clusters of workstations, connected
by Beowulf/Linux, for instance. Managing such diverse computational platforms
has been an active research area, and systems such as GLOBUS (Argonne) and
Legion (Virginia) are often quoted as core infrastructure for managing Grid
services. An alternative perspective, which subsumes the resource management
aspect, involves viewing Grids as an integration of information services, which
range from application specific data repositories, to data mining tools that can
support the extraction of useful knowledge from such data.

Activity in Grid computing has also accelerated recently as a result of ad-
vances in information technology and its use, such as:

— Component based software development

— High speed networks

— Standardisation of interfaces to databases and data repositories
— Virtual machines and cluster computing

— Public domain and community software licensing arrangements
— On-demand (on-use) software payment schemes

— Network aware interfaces and visualisation

To make effective utilisation of resources across a Grid that spans organi-
sational boundaries, it is imperative that the underlying infrastructure support
intelligence. Intelligent software is required to undertake resource and service
management, service discovery, service aggregation/decomposition, and support
performance management. Commercial systems will also require the underlying
infrastructure to respect site autonomy, and particular site specific policies on
usage.

The objective of this symposium is to bring together researchers in computer
science and Al to discuss issues in managing Grid services and resources. Six
papers are presented in this symposium, covering aspects of developing distribu-
tion mechanisms for computing, such as the paper by P. Mathieu, J.C. Routier,
and Y. Secq on “RAGE”. Another aspect discussed is middleware to connect
Grid based applications, such as the paper by S. Newhouse et al. on ICENI,

work by Brazier et al., and by M. Allen et al. on Jini based systems. A third
aspect is the availability of software development libraries, such as “JFIPA” by
Amund Tveit, and the need to deploy agents on a large scale (especially in the
context of the emerging area of Web Services), as described by S. Thompson for
the European “AgentCities” project.

We are grateful to the review committee for participating, and included:

|

Luc Moreau, University of Southampton
Wolfgang Emmerich, UCL

David Walker, Cardiff University

Rajkumar Buyya, Monash University, Australia
Robert Allan, Daresbury Laboratory

— Jan Wakeman, University of Sussex

— Jim Austin, University of York

— Steven Newhouse, Imperial College, London

— Julie McCann, Imperial College, London

— Philippe DeWilde, Imperial College, London

— Steffen Moeller, University of Rostock, Germany
— Cefn Hoile, BT Labs

|

|

Michael Schroeder (City University, UK)
and Omer Rana (Cardiff University, UK)
March 2002

Adaptation Engine: an Agent-Based Framework for ad-hoc

Service Life-Cycle Management for Meta-Computing

M. Allen, E. Grishikashvili, N. Badr and A. Taleb-Bendiab
School of Computing and Mathematical Sciences
Liverpool John Moores University
Byrom Street, Liverpool, L3 3AF, UK
{m.allen, cmsnbadr, cmsegris, a.talebbendiab}@livjm.ac.uk

Abstract

The cluster and grid-computing paradigm offers support for large scale, widely distributed, high-
performance computational systems. Several of such architectures and frameworks have been
developed aimed at primarily large parallel computations in support of scientific, engineering
calculations and problem solving. With the emergence of the “service-oriented” business pattern
for low-cost e-business, and increasing users’ need for high-volumes of multimedia contents and
applications, we argue that the rapidly maturing grid technology will offer commercial
opportunities for the development of a range of systems, infrastructures and services to support
high-utilisation and availability of global computing and data resources for widely distributed
enterprises. However, before this becomes a reality much research work is required to address a
number of well documented grid issues including; ubiquity, high-assurance, flexibility, ease of use
and alignment with emerging industrial standards. In this paper we argue for the potential of new
distributed systems, aimed at e-business and commercial enterprises, leveraging the strands of
research from cluster computing, grid computing, agent systems and data description languages.
Based on an on-going research work, which focuses on high-assurance composable systems
engineering, this paper will outline a service-oriented approach and associated agent description
languages, which are wed to facilitate the construction and management of ad-hoc federated

software services.

1. Introduction

Over recent years the metacomputing concept and
technology has been “rediscovered” by wider-based
academic and business communities. Their interests,
whilst encompassing the need to access high-
throughput computing facilities, are driven by
commercial pressures: to reduce the cost of ownership
of data-intensive applications and high-volume data
storage systems, and to improve utilisation of
organisational assets including; computational, data
and physical resources.

Many grid and escience initiatives are now underway,
based on meta-computing systems, such as Globus
(Foster L 1997), Legion (Natrajan A. 2001),
Information Power Grid (Grid), NetSolve (Casanova
H.) Ninf (Ninf), AppLes (Project), Nimrod (Buyya
2000), DISCWorld (Hawick K. et al 1999), Unicore
(UNICORE), EcoGrid (EcoGRID), and iGrid (Brown
)} to provide frameworks, middleware architecture and
user applications to ease and facilitate communities
access to widely distributed high-performance
computational resources, high-cost scientific facilities
and data resources.

A detailed review of these projects and systems is out
of the scope of this paper, the reader is referred to the
above references. However, in this paper we list the

five key grid categories'which are detailed in Foster
and Kesselman (Foster [1999);

¢ Distributed Supercomputing: Where a grid
of clustered computers is formed enabling
the utilisation of under utilised computers,
resulting in cost-effective access to a super
computer capability. For example the
Beowulf system (Ridge D. 1997), PVM
(Sunderam 1990) and MPI (MPI) were
developed to support clusters.

¢ High-throughput computing: Where loosely
coupled tasks can be farmed to a widely
distributed system exploiting unused
processor cycles®. Some examples are the
SETI@home (SETI@home) and the THINK
(Project) projects

¢ On-demand computing: Which facilitate the
provision of scarce distributed resource on a
just-in-time basis such as; providing
software applications network services,
memory and/or storage space when needed.

! Some of the resource management problems are discussed in [12).
2 These clusters or grids are used to explore and exploit distributed
super computing and high-throughput computing.

e Data-intensive computing: Which facilitate
access and aggregation of new information
from geographically distributed data
sources.

e Collaborative computing: Which enable
distributed workers or virtual team workers
to co-operate and share computation
resources.

e Storage Computing: A Storage Area
Network (SAN) (Network) is a high-speed
special-purpose network that connects
different types of data storage devices with
associated data servers on behalf of a larger
network of users. Typically, a storage area
network is part of the overall network of
computing resources for an enterprise. A
storage area network is usually clustered in
close proximity to other computing
resources but may also extend to remote
locations for backup and archiving, using
wide area network technologies.

2. Middleware

However, in view of the distributed heterogeneous
nature of grid computing nodes including their
software and network systems management, and user
management mechanisms, a middleware approach is
currently adopted in a number of projects underway to
provide “seamless” access, integration and co-
ordination of dispersed grid resources and executions
(processing jobs).

There are several middleware standards and supporting
technologies emerging including; CORBA (CORBA),
EIB (Microsystems), Jini (Microsystems), Web
Services (E. Christensen 2001), JXTA (JXTA),
DAML (DAML). These standards can be leveraged
through middleware to enable grid solution
development, and deployment and their seamless
integration with enterprise systems including legacy
systems. In addition the capacity of XML to provide
machine-understandable data description completely
independent of language, platform and environment
greatly enhances the possibilities for large scale,
widely distributed and heterogeneous systems.

3. Agents and the Grid

Grid computing offers the infrastructure to support
distributed computing. The predicated behaviours of
software agents, such as agility, flexibility,
responsiveness, adaptation, autonomy and learning,
offer even greater benefits for low-cost and low-
maintenance computing. Integrating the two paradigms
would therefore seem to be a proposition with potential
for great benefits to commercial and non-commercial

domains. In response to these assertions a number of
research works are currently proceeding to investigate
the application of software agents within, or
supporting, a grid environment.

We model our agents as service providers and
consumers. Each communicating with other agents to
acquire access to resources or services they need to
achieve their own goals. These services vary from
managing access to scarce or expensive resources, both
computational and physical (such as mathematical
equations or theorem provers), to providing
information as to the current state of the grid, to
managing the life cycle of applications.

Software agents can take on a number of different roles
within a grid environment including:

e Information agents: Where software agents
gather and supply, to users or other agents,
information on the current state of the grid.

e Wrapper agents/adapters: For integrating
legacy system and data.

e Proxy agents: For representing users in the
system.

o Management agents: Which manage
computational execution (job), and
coordinate and manage other agents and
systems.

e Resource controllers: To control access to
scarce resources. Within a grid environment
an autonomous agent monitors the execution
of a job, through peerto-peer
communication with other agents that
collaborate to execute and complete the job.
In essence this means that some of the
management tasks of a grid architecture can
be performed and/or encapsulated into
collaborative agents operating in the grid
environment; leading to a decentralised
peer-to-peer model of administrative
organisation and management.

e Computational agents: That carry out the
users computations.

4. Agent Grid Frameworks

Cougaar (DARPA 2001) is an architecture developed
by DARPA, to provide large-scale cognitive agents
architecture. The Cougaar project recognised the
inadequacy of existing software-engineering
techniques for building highly complex systems
involving many thousands of different objects.
Originally developed to support military logistics it has
potential to be used in a wide range of modelling and
development domains.

CoAbs (CoABS)is another DARPA funded project
concerned with building agent oriented grid
computing. The project is investigating various aspects
of agent computing including robustness, team
computing and service description languages. Both the
CoAbs and Cougaar projects are aligned with DARPA
Agent Mark-up Language (DAML) initiative (R.
Medvidovic 1998). The latter is leveraging XML and
RDF to create a range of machine understandable agent
and agent services description languages and
ontologies advocated for the semantic web vision
(web). For a full description of the initiative the reader
is referred to the DAML website (DAML).

Williams and Takb-Bendiab (MJ. Williams 1998),
described an architecture independent multi-agent
framework, which was developed in Python
programming language for CORBA compliant
adaptive software agents. Where the developed
environment supports dynamic configuration, where
both agents and users can re-configure the system to as
fine a granularity as is needed (or is authorised). The
framework provided a set of modules including:

o Generic Agent Shell: This module provides
the base operations an agent (in this system)
can provide. They include: an extended
contract-net negotiation protocol, a simple
communications language, a service
executor/scheduler, a configuration
language, an internal monitor process, a
security module, and a reasoner. The shell
also dlows any module to be replaced so
that other reasoning paradigms/scheduling
methods can be used at a later date.

o Agent Definition Language: Agents are
viewed as intelligent service providers.
Using ADLe we define agents in terms of
the services they provide. These services are
then defined in terms of the atomically
executable tasks that make them up. These
tasks are described in an interpreted
language.

e Agent Re-Configuration Language: This
script based language instantiates agents
defined in ADLe earlier with a behaviour
and binds them to their respective
machines/resources. This configuration is
performed at runtime, meaning that agents
can reconfigure themselves on demand. The
configuration language also provides a
means to update tasks, services and agent
configurations at runtime (both
programmatically and interactively). A
generic shell is wrapped around the
instantiation providing the agent with
negotiation and communication skills.

o Communication wrappers: The agent shell
(and therefore the agent itself) is unaware of
the communication method it is using.
Currently wrappers have been developed
that allow the agent to communicate using
sockets, CORBA (CORBA) or via WWW
Servers. It is up to the developer to choose
which one their agent uses. The CORBA
based wrapper is implemented on top of
Prism Technology’s OpenBase and
OpenOrb (Technology), a CORBA
compliant distributed object platform.

In the remainder of this paper, we outline an
application of a software agent framework (MJ.
Williams 1998) to support rapid creation, monitoring
and modification of middleware support services for
ad-hoc marketplace collaboration..

In the next section we outline a set of description
languages. The supporting application is currently
being ported from Python to the emerging web services
standard.

The ADLe, a snippet of which is illustrated in Figure 1,
describes an agent in terms of the services it provides,
the services it requires (from other agents) and the
resources it requires. This idea permits the invocation
of an agent at run time that takes on the characteristics
it needs to complete its allotted task.

The agent is composed from the XML descriptions
created by the user. This environment provides for the
development of an agent-based invocations service.
This will allow seamless access and management of
federated metacomputing resources and services (R
Medvidovic 1998). Software agents are used to
discover, supply and manage the lifecycle of any
specific service cluster (federation) that is required to
provision a given marketplace contract.

5. Agent Definition Language

As shown in Figure 1, outlining a “snippet” XML-
based Agent Description Language (ADLe), an agent is
modelled as both a service provider and consumer with
access to local resources, such as code and
environment required to perform its execution. For
instance, an agent of name name, provides a set of
services provide_services_set, and it uses a list of other
services wuse_services_set and requires a specified
resources_set. Also, an agent’s service binding can be
negotiable or not to enable a Jini-like leasing and
renewal of contracts as required by the contract net
protocol (Smith 1980.).

<?xml version="1.0" encoding="UTF-8"
?>

<!DOCTYPE Agent Inventory System
"agent.dtd">

<agent-definition>

<comments>This is a
comment</comment s>
<version>l</version>
<class_def>extend_class</class_def>
<agent-defn-name name="agent" />
<provides>service-
description</provides>
<uses>service-description</uses>
<requiress

<resource-
descriptionsresources_set</resource-
descriptions>

</requires>

</agent-definition>

Figure 1: An example of an agent meta description

In addition, in this framework, we define resources
(Fig. 1) as core and/or low-level computational
resources required by an agent to operate in its grid
environment. For example the services own codebase
(software components and references to jar, dll, etc)
and local computational resources and environment
attributes. The resources description is represented
using the emerging W3C Resources Description
Framework (RDF) (Framework)

6. Service Description Language

The services are defined in terms of the tasks or
services required to perform them in order to satisfy
the request. A task is atomically executable from the
point of view of the agent executing it. If a service uses
a task then it will be local to that agent; if it uses a
service then it will tend to be a service provided by

another service provider including agents and web
services.

<?xml version="1.0" encoding="UTF-8"
?>

<!DOCTYPE Service Inventory System
"service.dtd"s>

<gervice>

<comments>This is an example of a
service description.</comments>
<version>1l.1l</version>
<service-description

name="provide service set"
negotiable="yes" type="public"
AAA="certificate">
<execution-model model="sequence"/>
<collection>

<task-list task="task_1"
negotiable="yes" type="public"
ADA="certificate"/>

<task-list task="task_2"/>
<task-list task="task_n"/>
</collection>
</service-description>

</services>

Figure 2: An example of a service meta description.

Services are listed in the form of their XML tags.
Attributes, following the 'service' tag, define the
behaviour of the service. nonnegotiable means that an
agent will provide this service at all times (i.e. it is not
negotiable). The public and private attributes tell the
service executor whether the service is a local service
for internal use. The service definition defaults to being
negotiable, public and non-concurrent.

The service definition is interpreted by the service
executor when a request for that service comes in (if it
is agreed upon). It is executed as a transaction that fails
if any of te tasks within it fail. Within the service
there are multiple levels of transactions allowing the
sequence, parallel and try statements to also be
transactional. Nested parallel, sequence and try
commands allow a degree of control over how the
tasks will be executed. parallel executes a set of tasks
in parallel and sequence in sequence. The #ry statement
tries each task in turn until one succeeds at which point
it exits successfully. If all the tasks within the
statement fail then the whole fry fails and so the
transaction/service itself fails.

Tasks were originally defined in Python, an object-
oriented, interpreted language. An interface between
Python and the C++ shell was provided by the use of
the Python API, embedding the Python executor in the
shell. As part of the updating we are now porting the
program and tools to Java but the use of meta
languages to describe agent behaviours aids language
independence.

7. Service Assembly Process

The agent that begins and manages user-entered jobs
acquires its list of activities from the users’ script. This
script defines the tasks to be performed, the location of
user data, and the output destination. Qutput may be a
file, or files, of transformed data or a visual
presentation tool. The script is encoded into XML, or
some XML defined schema, and is produced by a
visual tool. This transforms the users requirements into
the XML script, developed from the Agent (Re-
)Configuration language defined in (MJ. Williams
1998).

After the definition level, we have a set of agent
‘classes' available to instantiate. Agents that provide the
same services should have the same agent definition. It
is only upon instantiation, when they are given a
behaviour that they will differ.

There are two ways the user can configure the system,
at compile time or at run time. At compile time the
initial system configuration is placed in a script that
starts the system up. At run time the user connects to a
local configuration manager and types configuration

commands interactively. At run time, agents are also
given the ability to configure themselves. This allows
them to be much more adaptable to their environment.

The commands available to the user are:

e inst - This creates an instantiation of an
agent class at a particular machine (that has
to be running a configuration manager as
well). It also tells the configuration manager
from which file it should pick up the
behavioural description from.

e form group - This groups a set of agents.
This forms a secure group that only accepts
reconfiguration commands from within
itself.

e form composite - This also groups a set of
agents. However, it differs from the form
group command in that externally the group
appears to be a single agent.

e update - This allows a
service/task/behaviour on an agent to be
updated 'on-the-fly'. The update occurs
immediately, but any outstanding contracts
using the previous service/task will be
honoured using the old version.

e merge - This command merges two agents.
Currently this is implemented using a
version of the form composite command.

e migrate - The specified agent is moved to a
new machine.

e pass - This allows knowledge or service/task
definitions to be passed between agents. An
argument specifies whether the information
is to be removed or not from the source.
When the wuser is controlling the
configuration process it allows the addition
of new services to agents.

e authorise - This command provides access
to the authorisation database within an
agent.

e set - This command gives access to various
debugging controls on agents in the system
(not described here).

e registration — This command registers the
agent with a service advertising service.

The two languages described above -- Agent Definition
Language and Agent re-configuration Language, will
underpin the development of our agent-based
adaptation middleware services, which will be applied
in the context of reconfigurable meta-computing.

8. Agents in a grid architecture

In order to operate effectively agents require
information. Where are the resources tat the agent
needs to carry out its instructions? An agent that
supplies the specified resource as a service manages
the resources themselves. Finding the service agent
clearly requires a centralised information service such
as the Grid Information Service that is part of the
Globus project (Foster 1. 1997). Or at least access to
the information service must be through well-known
published addresses — the information itself can be
distributed throughout the grid.

In the grid architectural diagram from (Foster 1. 2001)
five layers are shown. These are:

1. Problem Solving Environment (The human
interface).
2. Middleware Common Services
o Applications and supporting tools.
o Application development Support
3. Grid Common Services
4. Local resources (The fabric of the grid).

Our agents inhabit layers 1 and 2. They aid the
development of application software by providing
runtime choices for the elements of the application
development support layer. This layer includes MPI,
CORBA, Condor, Jini and OLE/DCOM services but
our agents are not constrained to a particular
communications solution. The agent contacts the layer
2 service managers to arrange connections to level 3
services. The protocol or mechanism chosen for this is
transparent to the initiating agent and consequently to
the application developer. This is a low-level resource
described in the ADLe and Resource Definition.

Figure 3: Grid Architecture

An important ingredient of a long running and robust
grid is a capacity for on-the-fly re-configurability. This
applies mainly to changes and additions that occur over
time and not by the change in the grid topology caused
by node loadings or network failures. This is already
handled by the local management substrate built into
the agents. A toolset to support dynamically re-
configurable multragent system is described in (MJ.
Williams 1998).

9. A Configuration Scenario

For the purpose of this paper, a scenario is described
below, which is based m an industrial case study
conducted with a UK aerospace organisation. The
study focused on business process modelling to support
e-work and resource sharing across the company’s
global network of design services. In particular,
aerospace engineering design work is chosen for this
scenario’. The workflow for a user to define and
submit a given job to the job manager includes:

1. Define and submit a given user’s job including its
associated constraints, input data sources, output
destinations, job logging and error handling
information.

2. Interpret the job description (script) and instantiate
a job manager agent to organise and carry out the
required tasks.

3. A job management agent needs to be kept
informed of the jobs’ progress or of any problems
that occur while the job is running. For example if
a node running a requested service goes down.
This requires monitoring activity on behalf of the
job management agent. Two elements will know
the current status of a running service agent, the
agent itself and the agent platform under which it
runs. Only the agent itself can know the status of
the job(s) it is running therefore in the first
instance monitoring will be in the form of peer to
peer communication between the job management
agent and the service provider. However, an agent
that is in difficulties, because of some computation
that has caused an internal malfunction, may not
know of its problems or maybe unable to reply to a
job progress enquiry. In this instance
communication with the agent platform would be
required.

4. Delegate: an agent, representing a user/job pairing,
reads the generated script and sets out to discover
if the resources needed are available and where
they can be found. This agent communicates
directly with the agents that supply the required

® Since it relies on high computational resources, high-value
commercial and proprietary engineering design software, access to
high volumes of data and knowledge sources, and data storage and
data visualisation facilities.

services and requests that the service be provided -
and supply relevant information.

S. Serve and compute: The service agents carry out
their tasks directing results either back to the job
management agent or to a pre-determined storage
area. When a service agent completes its allocated
task it informs the job management agent.

6. Inform: When all tasks are complete the job
management agent informs the user in the case of
non-real time computation — or directs the results
to the users interface program.

7. Generate report — directs the results to the users
interface program and/or generate a report
document, which can be accessible through a
portal technology.

The specific task focused on agent based support for
distributed design teams.

e To distribute the designers’ work to other
members of the design team and or job farm.
For instance, it provides is distribution of
designers’ daily work to other team
members. This service is made up of two
sub services, which are to gather the local
data, the latest versions of documents, and
transmit the information that these
documents have altered to the other proxy
agents. The service that the agent requires is
the address look up for the agents it contacts,
the communication sub service.

e To gather information design and
management information from a legacy data
repository and other sources.

e To act as a sentinel, looking over the
designers shoulder to seek out similar
documents that the designer is working on
and present these documents to the designer
with a persuasive argument as to why he
should view them.

e To perform engineering and costing
calculations.

¢ To transparently manage the designers’ use
of physical and computational resources.

In a peer-to-peer mode, these proxy agents representing
the team member and other serve/compute agents are
formed into a group. Thus enabling group-based
communication and control of resources and re-
configuration. At a more detailed level the steps of the
agent’s life cycle are:

e Load ADLe (uses GAS and Data
Repository).

o Load defined behaviours (uses Behaviour
Service).

Load authorisation (from authorisation

service). The execution capability of any

reconfiguration and/or change s

controlled by group owner authorisation

and/or its delegation to other authorised

agents. The user or system manager

initiates the change, either by sending an

update command, which contains a file

address for the new behaviour. This may

be either a change to a current behaviour

or the addition of a completely new

behaviour.

Registers service with advertising service.

Forms a composite (this is the group of

agents representing the designer).

Run code loaded from behaviours (each

behaviour in its own thread).

e Get the list of folder/directories to
check for document changes.

e Get the time to check for document
changes.

Check Documents.

Get proxy addresses.

Transmit Changes.

Tk § it

£

| ¢ PG
i S L7 TR S
" |

S S l QM’\M
‘~~——r~—»~‘ o alkais L
Teemiliagr ‘1 y

Tt S8 R s

Figure 4: State chart of Designer Proxy Agent

L LOCAL LOOKUP SERVICE

Figure 5: System services

The architecture (as shown in figure S5)
provides services for monitoring the system,
assembling and configuring agents,
registering services, grouping agents and
providing primitive services, initially
through Jini core services. Resource and
Service Repository: Above we discussed the
need for information. Agents require
information to make decisions about how
and where they undertake their actions, as
well as which services are available and
where they can be acquired. In (Enrich01
2001) we describe the development of an
Inventory Management program to
administer legacy data used to support
virtual teams of new product developers.
This system will be developed further to
become an information provider (the Grid
information service of level 4) for the agents
operating in the grid environment.

Dynamic Class Loader (Behaviour Loader):
Existing agent behaviours, as encoded into
the ADLes will also be stored and managed
through the repository. The repository
makes use of XML encoded meta data to
provide services to those requiring the stored
information. This can be agents requesting
behaviours as well as humans.

Scripter: A graphic tool to allow users to
describe agent behaviours, services and
resources.

Interpreter/parser The information here,
encoded into DAML+OIL, is information
advertising the services available to the grid
and the status of those services at the current
time.

¢ Dynamic Topology Manager (maybe
including the configuration Manager)

e Agent Resources manager (including broker
and matchmaking) The expanded Inventory
Management (IM) system, which is now a
Resource Information Broker and
Repository (RIBR), is itself a grid of service
providing agents. It is currently
implemented through Java servlets acting as
a portal to the repository with custom SOAP
(SOAP) messaging.

10. Conclusions and Future Work

The meta-computing paradigm offers support for large
scale, widely distributed, high-performance
computational systems. Several of such architectures
and frameworks have been developed aimed at
primarily large parallel computations in support of
scientific, engineering calculations and problem
solving. With the emergence of the “service-oriented”
business pattern for low-cost e-business, and the
increasing users’ needs for high-volumes of multi-
media contents and applications, we argue that the
rapidly maturing grid technology will offer commercial
opportunities for the development of a range of
systems, infrastructures and services to support high-
utilisation and availability of global computing and
data resources for widely distributed enterprises.
However, before this becomes a reality much research
work is required to address a number of well
documented grid issues including; ubiquity, high-
assurance, flexibility, ease of use and alignment with
emerging industrial standards. In this paper we argue
for the potential of new distributed systems, aimed at e-
business and commercial enterprises, leveraging the
strands of research from cluster computing, grid
computing, agent systems and data description
languages. Based on an on-going research work, which
focuses on high-assurance composable systems
engineering, this paper will outline a service-oriented
approach and associated agent description languages,
which are used to facilitate the construction and
management of ad-hoc federated software services.

The updated system, translated into Java and making
use of more recently developed meta languages, will
provide a cross platform, experimental architecture for
exploring the development of robust, agile and
adaptive middle ware in support of virtual teams and
commercial, ebusiness activities whilst allowing use
of existing protocols and applications.

The growing maturity and understanding of grid and
agent based systems offers potential for the above in
the search for reduced cost computational support.

Our agent description languages were originally
developed before the emergence and acceptance of
XML, RDF, OIL and DAML. Thus, we are currently
reviewing DAML and the DAML “dialect” to develop
a description language translation service from our
developed languages to DAML and WSDL.

Acknowledgements

This work is financed by the UK EPSRC
(GR/M02958) under the Systems Engineering for
Business Process Change (SEBPC) initiative and
EPSRC CASE award in collaboration with Prism
Technologies Ltd, Gateshead. Thanks are also due to
the project academic partners at the Centre for CSCW,
Lancaster University.

References

AppLes Project — http://apples_ucsd.edu/

Brown, M et al, The International Grid (iGrid):
Empowering Global Research Community Networking
Using High Performance International Internet
Services,
http://www-fp.globus.org/documentation/papers.htm}.
Buyya, R., Abramson, D, and Giddy, J., Nimrod/G:
An Architecture for a Resource Management and
Scheduling System in a Global Computational Grid,
HPC ASIA"2000, China, IISEE CS Press, USA, 2000.
Casanova H., Dpongarra J., (1997) Netsolve: A
Network Server for Solving Computational Science
Problems, International Journal of Supercomputing
Applications and High Performance Computing, Vol.
11, No. 3

CoABS http://coabs.globalinfotek.com

CORBA http://www.corba.org/

DAML http://www.daml.org/

DARPA (2001). Cougaar, BBN Technologies
http://www.bbn.com/abs/caa.htm!

Erik_Christensen, Microsoft Francisco Curbera, IBM
Research Greg Meredith, Microsoft Sanjiva
Weerawarana, Web Services Description Language
(WSDL) 1.1W3C Note 15 March 2001 IBM Research
EcoGRID -
http://www.csse.monash.edu.aul-rajkumarlecogrid/
Enrich project http:/www.cms.livim.ac.uk/erich/
Enterprise Java Beans http://java.sun.com/products/ejb/
Foster 1. and C. Kesselman (eds.). The Grid: Blueprint
for a New Computing Infrastructure, Morgan
Kaufmann, 1999.

Foster 1., Kesselman C., (1997) Globus: A
Metacomputing Infrastructure Toolkit, International
Journal of Supercomputer Applications, 11(2): 115-12
Foster 1., Kessleman C., Tuecke S., The Anatomy of the
Grid, International Journal of Suoercomputer
Applications, 2001

Grid Protocol Architecture Working Group Johnston
W., http://www-itg.ibl.gov/GPA

Hawick K. etal, DISCWorld. An Environment for
Service-Based Metacomputing, Future Generation
Computing Systems (FGCS), Vol. 15, 1999.

Information Power Grid http://www.ipg.nasa.gov/
JXTA http://www jxta.org/

JINT http://www.sun.com/jini/

MJ Williams and A. Taleb-Bendiab, 1998, 4 Toolset
for Architecture Independent, Reconfigurable Multi-
Agent Systems, Proceedings of First International
Workshop on Mobile Agents, Lecture Notes in
Computer Science, Springer- Verlag, 1998, pp210-222.
Message Passing Interfac
hitp://www-unix.mcs.anl. gov/mpi/

Natrajan A., Humphrey M., Grimshaw A., Grids:
Harnessing Geographically-Separated Resources in a
Multi-Organisational Context High Performance
Computing Systems, June 2001.

Ninf - http://ninf.¢tl. go jp/

OMG CORBA http://www.omg.com/

Prism Technology http://www.prismtechnologies.com/
Richard Medvidovic N. Taylor David S. Rosenblum
Software Architecture and Conponent Technologies:
Bridging the Gap Peyman Oreizy Nenad Workshop on
Compositional Software Architectures Monterey,
California January 6-8, 1998

Ridge D., Becker D., Merkey P., Sterling T., Beowulf:
Harnessing the Power of Parallelism in a Pile-of-PCs
Proceedings, IEEE Aerospace, 1997

Resource Definition Framework
http://www.w3.0org/RDF/

R. Smith. The contract net protocol: High-level
communication and control in distributed problem
solver. IEEE Transactions on Computers, 29(12):1104-
-1113, December 1980.

Semantic web http://www.semanticweb.org/
SETI@home http://setiathome.ssl.berkeley.edu/
Storage Area Network INM Redbook sg24547

SOAP http://www.w3.org/TR/SOAP/

Sunderam V. S., PVM: A Framework for Parallel
Distributed Computing, Concurrency: Practice and
Experience, 2, 4, pp 315--339, December 1990.
THINK Project http://members.ud.com/home.htm/
UNICORE - http://www.unicore.org/

The Agentcities Network

& Other Information Spaces
Simon Thompson

The Agent Team

Intelligent Systems Lab
BTexact Research

Ipswich.

An Agentcity! is an agent platform that conforms to a subset of the FIPA
interoperability open standard and has been federated with the Agentcities
network to form a part of a global information space. Each Agentcity is intended
to be open, providing a forum for the registration and location of agents from
diverse service providers. In this paper we describe the Agentcities network, and
discuss how Agentcities is related to the Semantic Web, Web Services and The
Grid and point to the challenges that face the Agentcities effort in the future.

1 Introduction

The Agentcities initiative has developed out of the
FIPA agent standards body with the objective of
deploying a world wide network of agent platforms.
In Willmott, Dale, Burg, Charlton, & O’Brien 2001
the group responsible for the initial Agentcities
vision outline their intentions and plans for the
development of the Agentcities network. In this
paper the direction that the initiative is taking in the
personal view of the author is described and some of
the challenges that are being generated by the
attempt to build a world wide agent system are
outlined.

1.1 The Agentcity Philosophy

The philosophy behind Agentcities can best be
summed up with the phrase “structured diversity is
superior to imposed unanimity” (Greaves 2001).
Open networks are not useful if we insist that they
are used for one purpose in one particular way.
Instead we want systems like the Web, which was
developed for the purpose of exchanging information
about high energy physics, and has evolved into a
multi-use, e-learning, intranet, news distribution and
e-commerce platform.

1.2 The Agentcities Initiative

Agentcities is “an initiative to create a global
network of agent platforms and services to which
researchers can connect their agents” (Willmott et-al

1

2001). Agentcities is based on the work that has been
done by the FIPA agent community recently. These
activities have produced two key resources that have
enabled the initiative to be kick-started:

e A set of consensual, relatively mature normative
standards developed by a community in a
concerted long term effort

¢ A body of open source software, including high
level reasoning tools like JESS, agent toolkits
like Zeus and PARADE, agent platforms like
AAP, JADE and FIPA-OS and parsers like
Atomik and SABLE-CC.

However, it would be wrong to imply that
Agentcities is simply an effort to deploy FIPA
agents. The initiative aims to create a functional and
useful network, and many aspects of this activity fall
outside the scope of FIPA. Some examples:

¢ We wish to deploy a payment infrastructure on
the network, and clearly the work done by web
based payment schemes and XML
authentication and security working groups will
be fundamental.

e We wish to deploy ontology-servers on the
network, and the efforts of the semantic web &
description logic communities will inform our
activity here.

In the rest of this paper we describe what an
Agentcity is (section 2); the uses of an Agentcity
(section 3); some of the components under
development (section 4); the activities underway
(section 5); how Agentcities is related to other

ACKNOWLEDGMENTS: The research described in this paper is partly supported by the

European Commission project Agentcities.RTD, reference IST-2000-28385. The author

would 1like to thank the members of the various Agentcities initiatives around the
world. The opinions reflected in this paper are those of the author and are not
necessarily those of all the partners developing the Agentcities concept. The author

would also like to thank Dr. Hamid Gharib,

Robert Ghanea-Hercock & Dr Heather

MacCann for their helpful comments on early drafts of this paper.

initiatives (section 6 & 7); some of the challenges
Agentcities faces (section 8) and how to join the
effort (section 9).

2 The Elements of an Agentcity

Internal Infrastructure
Standard

Transport @ <——> ‘

“‘C%> - ./'

S Em" e
J _UJ

Service Directory

Name Directory

(DF) (AMS)
<> Interface
@ Agent
I;)eldr:ctm(t)e; Information
Services Store
Figure 1. An Agentcity

Figure 1 shows the component parts of an Agentcity,
based on the FIPA agent platform specifications
(FIPA-00087, 00027). An agent can contact the
Agentcity via the ACC (Agent Communication
Channel) standard message transport (fig 1. 1).
Currently FIPA-IIOP and HTTP transport interfaces
are widely deployed on the network, however only
HTTP has proved practically useful to this point.
Other transports can be provided on the ACC and
three transports that do not conform to FIPA
standards have also been made available by various
network users (these are Zeus-TCP/IP; AAP-MTP &
FIPA-OS-RMI). It is expected that many others (eg.
SOAP) will also be deployed and used, but in order
to inter-operate with the rest of the network the
ability to utilise FIPA-HTTP is required.

The ACC can forward messages to agents that are
part of the Agentcity (fig 2. 2), or the message can
be sent to the Agentcities directory services (fig 3.
3). There are two service directories: a FIPA-AMS
(Agent Management Service) and a FIPA-DF
(Directory Facilitator). The AMS directory provides
a mechanism for namespace management in the
Agentcity and the DF provides a way to register and
locate services. The intended use of an Agentcity in
an open environment requires that we provide a
service ontology, by which we mean a descriptive
categorisation, which can be used to reason about the

applicability of a service to a task. This ontology will
be based on DAML-S.

2.1 Agentcity Agent Attributes

Membership of an Agentcity has implications for the
attributes and capabilities of an agent. Firstly the
agent must be able to take part in conversations with
other agents on the Agentcity. Secondly, Agentcities
agents have a four layer transport model.

This model is shown in Figure 2 and described
below:

= The agent must be able to receive messages on a
FIPA transport channel (ACC). Currently HTTP
is the default implementation, but in theory any
message transport is admissible.

= The agent must be able to parse, process and
generate FIPA-ACL messages

» The agent must be able to parse and process the
content field of those messages which will
contain content in one of the Agentcity content
languages. Currently the two content languages
chosen are FIPA-SL2 and KIF.

= Finally the agent must be able to make sense of
the elements that it has parsed the content into:
it must be able to map the tokens of the message
to an ontology. We have chosen to use DAML-
Oil as our ontology description language.

In Figure 2 a possible agent architecture is shown
which deals with the message as it is parsed. Clearly
information from each of the top three layers of
parsing is used in the overall handling of the
message - for example an “inform” message with
content “((=(iota ?x (film_to_see ?x)) cinema
‘name ucg ‘type multiplex :time 20:00 :film
die_hard))” - is required when deciding on an
appropriate response. The agent needs to understand
the message intent (inform), the type of information
(a particular film time/place that is a film_to_see)
that is being sent to it and the instance information in
the content (a cinema film with a time in 24 hr
format).

However, these requirements do not imply that an
Agentcities agent must posses “‘competent”
reasoning ability for the content language that it
utilises. For example, it is unnecessary for an agent
that advertises data access and storage services to be
able to answer questions of logical inference about
the data items it stores. The agent must be able to
perform the tasks that it advertises, and address
messages within the scope of those services. Other
messages can simply be dealt with using the FIPA
performative: “not-understood”.

The other attributes an agent needs to be considered
part of an Agentcity is the ability to register itself
and the services that it can provide with the

Omntology Layer
Effectors > r (DAML-OIL) I

Content Language Layer
'N (FIPA-SL && v || KIF)

3NN Message Structure Layer
ﬂ (FIPA-ACL)

\lﬁ Transport Layer]
(FIPA-HTTP)
L 7 ¢

TCP/IP or other transport stack

Agentcities directories. To do this the agent must be
able to represent the services that it can perform in
the Agentcities service description format.

Figure 2. Agentcities message model and possible
handling architecture

The FIPA service language & DF spec uses service
identifiers to tag a service. Using languages like
DAML-S should allow knowledge about the service
to be registered with the DF. This service knowledge
should allow other agents to plan the utilisation of
the service as part of composite offerings.

3 Applications and Scenarios

The features of any network are motivated by its
application. Agentcities is no exception; the network
is aimed at decentralised business applications in
which a number of organisations and individuals
collaborate to generate some economic good. The
trial scenarios under development in the .RTD
project are:

= a group evening organiser, which is an
application that will allow individuals to arrange
an evening out using the current state of
restaurant bookings, cinema film availability &
reviews and transport solutions to decide on
what to do.

= An event organiser that will allow an event to be
organised and advertised using the network
resources. This will include checking venue
suitability, ticketing & catering.

We envisage these two scenarios joining together as
the events that are supported by the network are used
as options by evening organiser agents. For example,
a music festival may be organised over the network
and advertised as an entertainment service. An

evening organiser agent may locate it, and offer it to
the group as one part of an evening out.

In order to implement this sort of application the

network must have the following properties:

= It must be accessible to providers - SME’s must
have a mechanism that they can use to create a
presence on the network.

= It must be accessible to users - it must be easy to
create information flows from the network to
users.

= There must be mechanisms for paying for
services securely.

= There must be mechanisms for agreeing the
price of services.

= There must be mechanisms for integrating the
information from various services together.

4 Component Services

In order to address the application level requirements
that we have identified, a number of other services
need to be available in the Agentcities network.
Some of these are currently under development in
the .RTD project:

e A secure payment system that will allow agents
to exchange money (or tokens) for service
execution. The service will also offer interfaces
that will allow user accounts to be managed.

e An ontology service that will allow for
ontologies to be shared between agents & agent
developers, providing facilities for storage,
retrieval and versioning. Later implementations
of the service may provide ontology based
reasoning and query services

e A distributed market place that provides a forum
for the location of auctions and information on
running auctions as well as auction execution.

» SME-Access — a portal that will permit users to
customise and launch agents using a web based
interface without the need for them to host an
agent platform on a server of their own

5 Agentcities Activities

The Agentcities initiative has spawned a host of
concrete projects which are now underway.

o Agentcities.rtd; a research activity funded under
the EU Framework-5 program that has the
objective of bootstrapping the Agentcities
network.

e Agentcities.net; a network of excellence, again
funded by EU. The network has funds to
provide 30 grants of €10,000; a prize of up to
€25,000; 70 grants of 6 month duration of €750
for student exchange and a support for a set of
working groups. The network will disseminate

THE WEB
= Semantics: natural

language
= Use: support human
inferencing
= Contexts: multiple,
dynamic
High l
performance Web based
indexes, servers BROWSER access
and retrieval

Semantic:Web
Web Services
Grid Middleware -
- & Infrastructure.

eb based
access

SERVICE AGENTCITIES

DIRECTORIEW\ = Sematics : mixed, ad-hoc
formalism

= Use: delegation &

THE GRID/ GRID Services _ VIRTUALL
=> Sematics: explicit, MACHINE
complete

= Use: computation i
= Context:m:ingle Grid Agents g;?i?gzz;)f information
< > Contexts: explicitly linked
Agent Enabled
Grids

Figure 3. Relationships and uses for present and future information spaces and technologies.

and test the results of the .rtd project and will
provide support for investigators in the EU who
are not part of the .rtd and wish to contribute to
and influence the networks development.

e Agentcities Australia; a research project funded
by the state government of Victoria in Australia
which is investigating the development of
flexible interaction protocols between agents in
Agentcities.

e Agentcities Finland; which is developing links
to wireless platforms from Agentcities

e Agentcities Canada; which aims to support the
deployment of a Canada wide agent network.

In addition to these funded and running projects,
consortiums have been formed in many other
countries including Mexico, USA, France and Spain
to co-ordinate national efforts and to bid for support
from funding bodies.

To manage the interaction between the various
independently funded projects an independent open
forum has been established — “The Agentcities
Taskforce” (ACTF). The ACTF will act to co-
ordinate the various Agentcities activities, and as a
focus for dissemination of the initiative’s
achievements. The other function of the ACTF will

be to provide a single point of contact through which
Agentcities can interact with international standards
bodies such as the Grid forum.

Section 9 of this paper gives information on how to
get involved with these activities.

6 Relationship to other Initiatives

6.1 The Semantic Web

The Semantic Web initiative (Berners-Lee ‘98) is an
attempt to provide the standards and technology that
is required to add semantics to the world wide web.
The objective is to provide mechanisms that allow
competent expression of information in a machine
processable form. That is to say to allow machines to
perform inferences over the knowledge, data and
information sources that are deployed on the WWW
using variants of the HTTP protocol (such as HTTPS
and HTTPR).

The activities of the Semantic Web community have
led to the development of the DAML markup
language, a dialect of RDFS which is implemented
in XML. Many variants of the DAML markup

language are under development by many diverse
projects and initiatives, including DAML-OIL (a
description logic based ontology description
language), DAML-S (a top ontology for services)
and many others. Recently the W3C has started to
discuss the development of OWL (Ontology Web
Language) which is seen as a standardisation of
DAML-OIL (although there appears to be some
debate about this).

Essentially the Semantic Web is evolving into a set
of standards for representing information and the
things that can be done with information, such as
querying and advertising.

6.2 Web Services

Web Services are a collection of tools and interfaces
that enable the interoperation of separately
developed corporate information systems such as e-
procurement and e-sourcing systems. The .Net
initiative is the Microsoft developed proprietary
equivalent of web services. The component parts of
a web service system are

¢ A UDDI server for the sharing of names and
service access ports.

e WSDL interfaces that describe the calling
interface to the programs & business objects that
have been deployed. WSDL provides an XML
encoded equivalent to the OMG’s IDL which
describes the parameters and return types of
methods that can be invoked on the remote
object.

e SOAP method invocation transports; SOAP is a
mechanism for performing remote method
invocation over the HTTP transport.

Other elements of a web services type system
include protocols and methods for trust,
authentication and security, and protocols and
methods for login and session management.

7 Agentcities vs. Computational
Grids

A Computational Grid can be defined as “a hardware
and software infrastructure capable of providing
dependable, consistent and inexpensive access to
high end computing resources”(Foster & Kessleman
1998). It is interesting to contrast the approaches of
the Agentcities initiative and the Grid community:

= Grid development emphasises computation and
storage, Agentcities emphasises delegation,
inference and belief.

= Grid computing requires new middleware and
communications systems with enhanced
performance; Agentcities relies on existing

middleware and assumes current levels of
performance.

= Globus (Foster & Kesselman 97) & Legion
(Lewis & Grimshaw 96) enabled Grid’s present
resources as a single virtual machine or unified
data model; “the grid is your peer”, while
Agentcities provides service, peer location and
communication infrastructure, but no unified
information model. Other "Grid" software
include as Pastry (Rowstron & Drushel 2001)
and OceanStore (Kubiatowicz et-al 2000)

While the Agentcities approach and the Grid
approach are somewhat different it is clear that both
systems will share a mutual environment: the world
of the Semantic Web and Web Services. In addition
to this the high performance computing emphasis of
grid research is generating a new generation of high
capacity, high performance networks. An
infrastructure of computing surfaces and stores will
obviously be useful in the context of web based
services and in the context of Agentcities style agent
systems. For example, Grid infrastructure could be
used for providing extensions or equivalents to
Google’s web page index that is now over
2,000,000,000 pages in size. Currently Google type
indexes must be run on a Linux cluster of over
10,000 servers (Google 2001). It is also likely that
high performance indexing, computation and
network search will expand the space of plausible
Agentcities applications.

At the same time the aim of providing a virtual
machine that represents the computational,
programmatic and data resources required by a user
implies that the instruments and resources in The
Grid will need to be proactive and self organising to
some degree. For example, a Biologist logging on to
The Grid should find that his Grid VM provides
optimised access to the human genome database,
specialist DNA visualisation codes and a set of
processors suited to his computation needs. Further
more the instruments to be used should have taken
and cached readings that will be required in the user
session during slack time over night. She or he
should not need to be aware of the process that
underpins this, and should not be banned or
prevented from accessing other resources, it is just
that the most likely needs of the user should be the
needs best addressed by the system as a whole. This
sort of behaviour is often seen as the domain of
agent technology.

Figure 3 represents one view of the relationship of
the network computing initiatives. The use cases of
“The Web”, “The Grid” and “Agentcities” are
qualitatively different; Web based systems support
human “in the head” style reasoning; to us Grid
based systems support computation and Agentcities

support delegated reasoning. We believe that the
Web Services and Grid infrastructures that are under
development will be useful to all three types of
interaction. We also believe that the semantic
markup and reasoning standards and systems which
will become the Semantic Web will also be crucial
to all three. Other views are proposed as part of the
Open Grid Services Architecture and in De-Roure
et-al 2001,

In any case, the relationship of the various
communities developing these initiatives will always
be shifting, and will always be subject to the
vagaries of fashion and politics within the academic
and commercial worlds. One thing is clear; there is a
great deal that can be usefully learned and shared, by
each community by engaging with and monitoring
the activities of the others.

8 Open Questions and the way
Forward

Several interesting questions have already been
posed by the development and deployment of the
Agentcities network.

8.1 The institution of an Agentcity.

Initially each node in the network has deployed a
single agent platform for its geographic location, but
it has rapidly become obvious that some locations
are likely to have a number of platforms that support
them. The initial example of this is the London
Agentcity, where Imperial College and Queen
Mary’s College University of London, have
deployed two platforms that they plan to operate co-
operatively as Londonl and London2 to form the
London Agentcity. However like all big cities
London has a host of Universities and internet
service providing companies and several of these, in
addition to IC and QMUL, have joined the
Agentcities network of excellence and expressed
interest in deploying an Agentcity node.

Obviously in the early stages of the project this
problem can be easily managed at a personal level
by co-operation and collaboration. However, if we
accept that there is not a workable system of network
authority then it is obvious that a more sophisticated,
de-facto or self organising system of managing the
representation of an area is required. This may take
the form of a subscription based mechanism, where
platforms subscribe to one another and agree that
they form part of the same institution and share
information on a different basis from the way that
they interact with the rest of the network. For
example platforms that form an Agentcity may have
DF’s that are more willing to accept federated
requests from one another than from DF’s on the
open network. Alternatively some sort of indexing
and clustering service may be required to create and

maintain the knowledge that services about London
should be part of the London Agentcity.

8.2 Firewalls and Security

Until the Agentcities initiative very few deployments
of FIPA-agent-platforms on the open internet had
taken place. While there were a large number of in
house agent networks in use, these were almost all,
with a few notable exceptions like Imperial
College’s FIPA-NET, operated behind a firewall.
Because of this, security & deployment management
have not been explicitly considered by the agent
community until recently.

A clear example of this is that there are no standard
Agent port numbers in TCP-IP. MTP (part of AAP)
uses 4549 as a standard number, and also explicitly
considers firewall configuration and policy issues in
its design (McCabe 2001), but while HTTP
nominates port 80, the use of it as an agent message
transport does not adopt any such convention.
Currently the first five platforms (alphabetically) in
the platform directory wuse ports 8080,
3194,1045,7778 & 1099. The result of this is that
while a platform can be deployed behind a firewall,
which has only one incoming port, all outgoing ports
have to be left open in order to be assured that a
message received can be replied to.

This is a security risk as it makes Agentcities
machines tempting targets as zero-day servers for
hackers; being able to contact a number of other
machines on different ports makes setting up an
illicit forwarding and redistribution network easier.
It would also make it less easy to control and catch
the spread of Trojans over the network.

As the network develops, this issue will have to be
resolved. It is probable that platforms will wish to
have multiple in ports and therefore out ports as
well; perhaps a range from 8000 to 8025 should be
adopted as admissible port numbers to allow
developers to deploy multiple ACC’s on one
platform or multiple platforms on one machine. The
potential to deploy multiple ACC’s is especially
important if we are to build a scaleable network;
current e-commerce Ssites expect peak traffic in the
region of 60 hits per second (Harkins 2001). It is
certain that at least these volumes will be required if
e-commerce operations are to be profitable, and
given the nature of agent systems it seems likely that
messaging volumes in agent to agent applications
will be much higher still, and that, for future
applications, the messaging volumes will be
exponentially higher.

9 Getting involved

9.1 Connecting to the Network

A simple way of getting started is to download one
of the open source FIPA compliant agent platforms
that are available.

Currently the following open source platforms are
being used on the network, as are several proprietary
platforms.

= AAP
http://sourceforge.net/projects/networkagent

= FIPA-OS,
http://fipa-os.sourceforge.net

= Leap/JADE
http://sharon.cselt.it/projects/jade/

= Zeus

http://www.btexact.com/projecis/agents/zeus

Once a platform has been obtained you will need to
configure your firewall to accept requests on the port
that you have chosen and to permit outgoing requests
to other agents. The platform can then be registered
on the Agentcities web site in order for the meta
directory agents to include your platform in their
search.

The Agentcities Task Force has issued a document
that describes in detail how to create an Agentcity
and how to connect it to the network (Constantinescu
etal 2002). This describes in detail how a platform
can be configured to become part of the network.

9.2 Other ways to be involved

A general mail list is run by the ACTF and is open to

all to join at

= http://srv0] lausanne.agenteities.net/dotorg/listin
fo/discussion

Agentcities.NET is open to applications by all EU

based organisations and runs a number of working

groups and information days that are open to

participation by all.

10 Summary

Agentcities is a project that is deploying FIPA agent
technology in an open field trial. Applications are
being developed that emphasise the unique attributes
of agent technology, and as a result several
interesting questions about the structure of the
network and the systems that are needed to utilise it
have arisen.

This paper has described the progress made in the
short period of time that the network has been
running, and the directions that the work is taking at
this time.

Agentcities is an open initiative, and this paper is
intended as an invitation to the reader to participate
in creating a world-wide open environment in which
autonomous, adaptive agents can be deployed.

11 References

Berners-Lee, T. “A Roadmap to the Semantic Web”,
http://www.,w3.org/Designlssues/Semantic.html,
September 1998.

Constantinescu, 1., Dale, J. & Willmott, S.
“Connectiong to the Agentcities Network
Recommendation.”, Agentcities Task Force
Recommendation Document actf-rec-00002
http://www.agentcities.org/rec/00002/actf-rec-
00002a.pdf

De Roure, D., Jennings, N., & Shadbolt, N.
"Research Agenda for the Semantic Grid: A Future
e-Science Infrastructure”,
http://www.semanticgrid.org/v1.9/semgrid.pdf

Fikes, R. & McGuinness, D. L. An Axiomatic
Semantics for RDF, RDF Schema, and DAML+OIL.
Knowledge Systems Laboratory, January, 2001.

Foster, I. and Kesselman, C. (1997) “Globus: A
Metacomputing Infrastructure”, International
Journal of Supercomputing Applications, 11(2): 115-
128, 1997.

Foster,I and Kesselman, C. (1998) (eds) “The Grid:
Blueprint for a New Computing Infrastructure”,
Morgan Kaufman Publishers, 550pp.

Google (2002) “Tech
http://www.google.com/press/highlights

Highlights”,

Greaves, M.T. (2001) “Communication and
Conversation in FIPA Agents”
fipa.umbc.edu/18/greaves.pdf

Harkins, P. (2001) “Building a Large-scale E-
commerce Site with Apache and mod_perl”,
Perl.Com, O’Reilly Newsletter,
http://perl.com/pub/a/2001/10/1 7/etoys.html

Kubiatowicz, J., Bindel, D., Chen, Y., Czerwinski,S.
Eaton, P. Geels, D., Gummadi, R., Rhea, S.,
Weatherspoon, H., Weimer, W. Wells, W. and
Zhao,B. OceanStore: An Architecture for Global-
Scale Persistent Storage , Appears in Proceedings of
the Ninth international Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS 2000), November 2000.

Lewis, M.J. & Grimshaw, A. (1996) “The Core
Legion Object Model”, Proceedings of the Fifth
IEEE International Symposium on High

Performatince Distributed Computing, 1EEE
Computer Society Press, Lost Alamitos, California,
August 1996.

McCabe, F (2001) “InterAgent Communications
Reference Manual”,
http://sourceforge.net/docman/display_doc.php?doci
d=3288&proup 1d=3173

Rowstron, A & Druschel, P. "Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems". IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), Heidelberg, Germany, pages 329-350,
November, 2001

Willmott, S. N., Dale, J., Burg, B., Charlton, C. and
O'Brien, P. (2001) “Agentcities: A Worldwide Open
Agent Network", Agentlink News,8, ppl3--15,
November
http://www.AgentLink.org/newsletter/8/AL-8.pdf

jfipa - an Architecture for Agent-based Grid Computing

Amund Tveit
Department of Computer and Information Science, NTNU
IDI/NTNU, N-7491 Trondheim, Norway
amund.tveit@idi.ntnu.no
http://www.jfipa.org/amund/

Abstract

With the increasing focus on grid development, there is a need for proper abstractions for modelling grid applica-
tions. Viewed from a distributed Al perspective the most suitable abstraction is the concept of agents. In this paper an
agent-based architecture for grid computing is considered. The architecture enables routing and handling of FIPA ACL

messages.

1 Introduction

With the increasing importance and potential of the In-
ternet as an efficient global communication and comput-
ing infrastructure, the development and popularity of con-
cepts and technologies related to grid computing has ac-
celerated. The grid has been described as “coordinated
resource sharing in dynamic, multi-institutional virtual
organizations” (Foster et al. (2001)). These virtual or-
ganizations (VO) and their members are interconnected
by a network, typically the Internet. Some examples of
resource sharing are cpu-intensive processing (e.g. phys-
ical simulations), data storage and online services

If grid computing is considered from a Distributed Ar-
tificial Intelligence (DAI) perspective (Moulin and Draa
(1996)), it is clearly not a type of Distributed Problem
Solving (DPS), since there is no or little central control
in the grid. Its resemblance with a Multi-Agent System
(MAS) is much higher, since entities in a MAS and the
grid have autonomous behavior (i.e. distributed control).

Autonomy is one of the key abstraction features of
agents (Wooldridge and Jennings (1995)). Other features
of agents relevant for grid entities include social ability,
as well as reactive and pro-active intelligence. This justi-
fies the selection of agents as the main abstraction for grid
entities.

1.1 Grid Routing Issues

However, since one often talks about the grid, it means
that the whole Internet and the VOs can be seen as the
edges and nodes of a graph representing the grid. This
graph is very large, and far from being complete, which
means that a message sent between two nodes need to
travel a path through intermediary nodes before arriving

at its final destination. The process of finding this path is
called a routing algorithm.

Three important metrics of an efficient routing algo-
rithm are the number of intermediate nodes in a path, the
path cost, and the delay (Tel (2000)). They should all be
minimized according to expression (1).

min (c1 - hops + cg - pathcost + c3 - delay) (1)

When messages are forwarded through the grid based
on other criterias than the receiver address, e.g. service
description or price, the process is commonly called au-
tomatic brokering. Even though these processes have new
metrics dependent on the query (e.g. quality, cost or rel-
evance of the result), the fundamental metrics of routing
are still of importance.

1.2 Problem

The overall problem is: how to enable efficient routing
and brokering in an agent-based grid?

More particularly, how to create an architecture: 1)
that is pluggable with respect to routing algorithms, 2)
has a simple and easy-to-use API, 3) has high processing
and 10 performance, and 4) has a robust implementation.

The rest of this paper is organized as follows. Sec-
tion 2 describes and discusses the architecture, section 3
describes the implementation, section 4 describes related
work, and finally the conclusion with future work.

2 Architecture

2.1 Architectural Goals

The overall goal of the jfipa architecture is to become a
simple, yet efficient and extensible, router architecture
supporting agent-based grid computing. Agents should
be able communicate using the speech act-based (Searle
(1969)) FIPA Agent Communication Language (ACL).
The primary supported encoding of the ACL should be

XML, and the primary communication protocol (application-

level) should be HTTP.

As the j in jfipa insinuates, java is the primary im-
plementation language, but also other common program-
ming languages will be able to use jfipa through a planned
XML-RPC interface.

2.2 Scalability Goals and Approach

The jfipa architecture should be able to scale in several
different dimensions: 1) increase in the agent identifi-
cation address space (Postel and Touch (1999)) (related
to future IPv6-based Internet), and 2) an increase in to-
tal number of agents (Rana and Stout (2000)) (residing
on different jfipa-nodes) and messages. The primary ap-
proach of enabling this scalability is through efficient rout-
ing of ACL messages by supporting pluggable routing
algorithms. Other scalability-enabling approaches (e.g.
caching) is outside the scope of jfipa.

23 jfipa Overview

A

i ﬂ Resolver
Agent(s)
Agent(s)
Local

FIPA ACL Messages
(HTTPIXML)
Agent(s)

Figure 1: jfipa Overview

Figure 1 shows the three main components of the jfipa
architecture. Resolver agents provide routing and bro-
kering support for incoming ACL messages, and the lo-
cal agents provide any type of service that is not related
to routing or brokering. The jfipa Agent Communica-
tion Channel (ACC) provides support for communication,
parsing and queueing of ACL messages, as well as admin-
istration of the resolver and local agents. Remote agent(s)
are agents that access the jfipa architecture externally us-
ing FIPA ACL.

Note that the term local agent doesn’t necessarily mean
that the agent and the jfipa ACC reside on the same com-
puter with the same network address, but it does mean

that the local agents use the services of the communica-
tion channel, hence it doesn’t need to have its own FIPA
ACL handling mechanisms.

24 jfipa ACC Architecture

Resolver Agent Rasoiver
Connections Agent(s)

Locat Agent Local
< Connections i Agent(s)

Figure 2: Agent Communication Channel

Figure 2 shows the four main components of the jfipa
ACC. The Inbox is where incoming ACL messages are re-
ceived (i.e. from remote agents), Outbox is where the in-
ternally generated or routed messages are being sent from
(i.e. messages from local or resolver agents). Resolver
Agent Connections and Local Agent Connections handles
ACC communication for the resolver and local agents, re-
spectively.

The reason for having the Inbox and the Outbox han-
dling communications instead of the Resolver and Local
agents themselves, is that logging and administration be-
comes simpler.

2.5 Inbox

Figure 3: ACC Inbox

ConnectionHandler handles incoming network requests
and inserts them into the ObservableMessageQueue, which
notifies a Postal Agent about the new message. Connec-
tion between the ObservableMessageQueue and the Postal
Agents are based on the Observer Design Pattern (Gamma
et al. (1995)).

2.6 Postal Agent Architecture

The postal agent extracts and parses the HTTP message
its FIPA ACL XML-encoded envelope and message. It
continues by checking if the message is addressed to a

Figure 4: Postal Agent Architecture

particular local agent, otherwise it passes on the message
to the resolver agents for potential routing or brokering.

The Postal agents also handles the repository of reg-
isted local and resolver agents.

2.7 Agent Connections Architecture

The Resolver Agents Connections and Local Agents Con-
nections architectures are very similar, except that the lat-
ter also supports forwarding of messages to the prior based
on the results from local agent processing. Support for
creating a large number' of (sophisticated) local agents is
outside the scope of jfipa, and is supposed to be handled
by other agent platforms that only use jfipa for external
Fipa-based interaction (e.g. Agora Matskin et al. (2000)).
Connections between jfipa and the other agent platform is
done using two observer design patterns, where the local
agent is the observer of the Incoming Messagehandler’s
queue and the observable for the Outgoing Messagehan-

dler.
> Incoming Messagehandier
Message | (Distributed)
Queus | Observable N
< + Outgoing Messagohandier i
! Message | (Distributed) Local

"4
Queus Observer Agent(s)

S,

Figure 5: Agent Connections Architecture

In order to support interactions between few (non-
sophisticated) local agents (e.g. wrapper agents for exist-
ing legacy systems), jfipa will use a hashtable of incom-
ing/outgoing message queues where each hash key rep-
resents the name of a local agent, this ensures efficient
(O(1)) sending of messages. The receiving agent gets
notified about messages by using observing its message
queue.

2.8 Routing Issues

The main data structures for a routing algorithm are rout-
ing tables. Routing tables have information about the net-

Imore than 100 agents

work topology, or in other words, knowledge about which
direction (peer/neighbour) to best send/forward messages.

If the network is small (few nodes and edges) and rel-
atively static (slow changes in topology), routing tables
can efficiently being calculated using shortest path algo-
rithms, e.g Beliman Ford’s (BF) or Dijkstra’s algorithm
(Cormen et al. (1990)).

The main disadvantage of the shortest path algorithms
is that they don’t scale well with rapid increase in network
size and changes in topology. They tend to be suboptimal
because they are sending all traffic to the same destina-
tion through a single path (i.e. using only one peer per
destination), instead of dividing the traffic among several
paths (David H. Wolpert and Turner (2000))

The application of machine learning algorithms in adap-
tive routing, in particular reinforcement learning, has been
shown to improve network throughput by up to three and
a half times than routing with the BF algorithm (David
H. Wolpert and Turner (2000)). The main reasons for
the improved performance is that the reinforcement al-
gorithms adapt to the traffic by being less bound to only
one path per destination than the case for BF. The per-
centage of which peers should forward which messages
to a particular receiver is stored in a proportion vector p’
(X;pi = 1, if the BF algorithm had such a vector it would
store a 1 in precisely one of the positions in the vector)

These promising results by the applying machine learn-
ing for efficient routing motivates the support for plug-
gable routing algorithms in the architecture, as shown in
figure 6.

2.9 Resolver Agent Architecture

’l Static Routing Engine N @

< A Dynamic Routing Engine @@
‘ Reactive | Proactive

Figure 6: Resolver Agent Architecture

Static Routing Engine supports simple routing based
on routing table lookups.

Dynamic Routing Engine supports two types of rout-
ing. The first is the Reactive router, it routes or prunes
the current incoming message (i.e. stimulus-response on
incoming messages).

The second is the Proactive router, it tries do larger
changes such as altering topology based on clustering-
ideas in excess cpu periods. The motivation behind this
is to try to reduce the number of network hops for ACL
messages by putting semantically similar agents closer. In

the case of a recommender system, this could be done by
calculating the proximity between every pair of peers of
resolver agents (based on historic messages to/from the
peer) and notify all pair of peers that has a high resem-
blance (Tveit (2001b)).

Peer Agent Directory is the routing table, with infor-
mation about other jfipa nodes and agents.

Other tasks of the proactive router could be to try to
estimate changes in topology based on analysis of mes-
sages (frequency, resolver information, content etc.), in
order to optimize the routing tables. Interaction detection
is another possible task, e.g. figuring out when there is
an auction and which type of auction etc. The proactive
router could also do statistical calculations and estimates
in order to try to improve performance.

Interactions with other resolver agents related to feed-

back on routing decisions is either done using the inbox/outbox

FIPA-ACL based network IO mechanisms (possibly with
the development of routing ontologies), or by proprietary
network IO in the Dynamic Routing Engine.

3 Implementation

The implementation of jfipa is still work in progress, so
far a set of efficient parsers (for HTTP, XML-encoded
FIPA Envelopes and Messages) have been made, as well
as the overall architectural choices.

3.1 jfipa benchmark

Figure 7 compares jfipa parsing performance with state-
of-the art XML parsers. Crimson is Sun Microsystems
own XML parser, now taken over by the Apache project,
and Xerces is being described as “the next generation,
high-performance XML parser”. Both were clearly out-
performed by jfipaZ.

Each measurement point is the average of 10000 pars-
ing rounds of a FIPA XML Envelope, this is done in order
to make the parsers initialization costs neglible. A spreed-
sheet containing measurements and test-files can be found
at jfipa.org/publications/2002/jfipaBenchmark.xls.

One of the main reasons for the performance differ-
ences performance is that Crimson and Xerces need to
build an memory model at runtime of the XML DTD
in order to validate the XML document (XML-encoded
FIPA Envelope in the test case). jfipa allready has this
model pre-runtime since it is specialized towards han-
dling XML-encoded FIPA ACL Envelopes and Messages.
Other optimization approaches in jfipa is efficient reuse of
allocated objects, avoidance of slow String-based opera-
tions, and buffered 10.

2Measurements were done on a Dell Inspiron 4100 w/1GHz PHI
CPU, 512MB ram, W2K

Figure 7: jfipa XML Parsing performance

3.2 Code structure

The code structure of jfipa is divided in three main pack-
ages:

1. api
2. implementation
3. test

The test package is testing the api methods (i.e. inter-
faces), but with the selected implementation. The motiva-
tion behind this structure is that it should be easy to test
new implementations with existing test code, e.g. porting
the implementation package to support java for mobile
devices (J2ME).

3.3 Code quality

In order to ensure that the jfipa code is fairly solid, unit
tests are created, this allows quick retesting of the whole
system each time changes are made.

3.4 Open Source Licence

jfipa is under the MIT Open Source licence. As opposed
to the Gnu Public Licence (GPL) and the Lesser Gnu Pub-
lic Licence (LGPL), the MIT open source licence is rather
non-problematic regarding commercial utilization of the
software.

3.5 jfipa Code Availability

The jfipa source code is being hosted by VA Software’s
SourceForge.net on http://jfipa.sf.net/. For documentation
and examples, the jfipa homepage - http://www.jfipa.org
is the place to look.

4 Related Work

The architectures that resemble jfipa most, is JATLite (Jeon
et al. (2000)) and JATLite ACL. JATLite supports mes-
sages of the Knowledge Query and Manipulation Lan-
guage (KQML), and JATLite the messages with the Lisp-

syntax of FIPA ACL. Lately there seems to have been lit-
tle development on JATLite, and the code doesn’t take
advantage of newer java language opportunities.

The SoFAR multi-agent framework et al. (2000) is de-
signed for distributed information management tasks in a
grid environment, it operates on a higher abstraction level
than the message-oriented JATLite and jfipa, since it is
centered around agent services and is geared towards hu-
man users and not only agents.

There also exists several other FIPA-based multi-agent
frameworks (e.g. FIPA-OS Poslad et al. (2000) and Jade
Bellifemine et al. (2000)), but they are much more com-
prehensive since they seem to try to support the whole
FIPA standard, and not as geared towards routing and bro-
kering mechanisms as jfipa.

5 Conclusion

In this paper an architecture for agent-based grid com-
puting has been presented. The main contribution is the
architecture itself, as well the (in-progress) open source
implementation of it.

The jfipa architecture is pluggable with respect to rout-
ing algorithms, its API is evolving towards becoming sim-
ple to use (the current jfipa implementation is a refactor-
ing of the first implementation with emphasis on simpli-
fying API), the (parsing) processing performance is high,
and the implementation is fairly robust mainly due to the
many unit tests applied.

Ongoing and future work include finishing the imple-
mention the architecture and apply it in large-scale grid
experiments of data mining in massive multiplayer com-
puter games. The primary research problem will be knowl-
edge discovery of player logoff patterns in order to get 1)
a player stability metric for massive multiplayer games,
and 2) being able to do counter-actions, e.g. automatic
recommendations based on collaborative filtering in or-
der to keep players longer (and generating more revenue
for the game provider). Integration of jfipa software with
Agent-Oriented Software Engineering methodologies is
also a possible direction, we refer to Tveit (2001a) for a
overview of such methodologies.

Other areas considered investigating is the simulation
of financial products (e.g. derivatives) related to the up-
coming market of carbon dioxide quoate trading (see Point-
Carbon.com). jfipa will eventually be integrated with the
Agora Multi-Agent framework (Matskin et al. (2000)), in
order to make Agora support FIPA ACL communication.

Acknowledgements

I'would like to thank my Agentus colleague Thomas Brox
Rgst for fruitful discussions on java performance, as well

as my supervisor Mihhail Matskin. This work is sup-
ported by the Norwegian Research Council in the frame-
work of the Distributed Information Technology Systems
(DITS) program and the (EIComAg) project.

References

Fabio Bellifemine, Agostino Poggi, and Giovanni Ri-
massa. Jade - a fipa-compliant agent framework. In
Proceedings of the 5th International Conference on the
Practical Application of Intelligent Agents and Multi-
Agent Technology (PAAM), pages 97-108, 2000.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L.
Rivest. Introduction to Algorithms. MIT Press, 1990,

Chris J. Merz David H. Wolpert, Sergey Kirshner and
Kagan Turner. Adaptivity in agent-based routing for
data networks. In Proceedings of the Fourth Interna-
tional Conference on Autonomous Agents, pages 396—
403. ACM, june 2000.

Luc Moreau et al. SoFAR with DIM Agents. In Jeffrey
Bradshaw and Geoff Arnold, editors, Proceedings of
the 5th International Conference on the Practical Ap-
plication of Intelligent Agents and Multi-Agent Tech-
nology (PAAM 2000), pages 369-388, Manchester,
UK, 2000. The Practical Application Company Ltd.

Ian Foster, Carl Kesselman, and Steven Tuecke. The
anatomy of the Grid: Enabling scalable virtual orga-
nization. The International Journal of High Perfor-
mance Computing Applications, 15(3):200-222, Fall
2001. ISSN 1094-3420.

Erich Gamma, Richard Helm, Ralph Johson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

Heechol Jeon, Charles Petrie, and Mark R. Cutkosky.
Jatlite: A java agent infrastructure with message rout-
ing. IEEE Internet Computing, pages 87-96, March—
April 2000.

Mihhail Matskin, Ole Jgrgen Kirkeluten, Svein Bjarte
Krossnes, and @ystein Szle. Agora: An infrastructure
for cooperative work support in multi-agent systems.
In Tom Wagner and Omer F. Rana, editors, Infrastruc-
ture for Agents, Multi-Agents and Scalable Multi-Agent
Systems, Lecture Notes in Computer Science, volume
1887, pages 28—40. Springer-Verlag, 2000.

Bernhard Moulin and Brahim Chaib Draa. An overview
of distributed artificial intelligence. In Greg M. P.
O’Hare and Nicholas R. Jennings, editors, Fundamen-
tals of Distributed Artificial Intelligence, pages 3-56.
John Wiley and Sons, 1996.

Stephan Poslad, Phil Buckle, and Robert Hadingham.
Open source, standards and scalable agencies. In Pro-
ceedings of the fourth International Conference on In-
telligent Agents. ACM, 2000.

Jon Postel and Joe Touch. Network infrastructure. In
Ian Foster and Carl Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure, chap-
ter 21, pages 552-562. Morgan Kaufmann Publishers,
Inc., 1999.

Omer F. Rana and Kate Stout. What is scalability in multi-
agent systems? In Proceedings of the fourth Interna-
tional Conference on Intelligent Agents, pages 56-63.
ACM, june 2000.

John R. Searle. Speech acts: An Essay in the Philosophy
of Language. Cambridge University Press, 1969.

Gerard Tel. Introduction to Distributed Algorithms, chap-
ter 4, pages 103-154. Cambridge University Press, 2
edition, 2000.

Amund Tveit. A Survey of Agent-Oriented Software
Engineering. Proceedings of the First NTNU CSGS
Conference, http://www.jfipa.org/publications/AOSE/,
May 2001a.

Amund Tveit. Peer-to-peer based recommendations for
mobile commerce. In Proceedings of the First Interna-
tional Workshop on Mobile Commerce, pages 26-29,
Rome, Italy, July 2001b. ACM.

Michael J. Wooldridge and Nicholas R. Jennings. Intelli-
gent agents: Theory and practice. The Knowledge En-
gineering Review, 2(10):115-152, 1995.

AISB Symposium on
AI and Grid Computing

Recent advances in computer science facilitate a paradigm shift towards large
scale computing — the Grid, with ‘parallel and distributed’ computing playing
an important role. The Grid paradigm offers an important abstraction for com-
bining national and continent wide computational resources, to enable applica-
tion scientists and domain experts to work more effectively, and, subsequently,
to do better science. Driven by the unprecedented increase in Internet usage,
Grid-oriented computing will provide the next phase in the way we manage
and disseminate knowledge. The Grid can be seen as a mechanism for integrat-
ing resources, which can range in complexity from dedicated parallel machines
(maintained by national centres) to low-end clusters of workstations, connected
by Beowulf/Linux, for instance. Managing such diverse computational platforms
has been an active research area, and systems such as GLOBUS (Argonne) and
Legion (Virginia) are often quoted as core infrastructure for managing Grid
services. An alternative perspective, which subsumes the resource management
aspect, involves viewing Grids as an integration of information services, which
range from application specific data repositories, to data mining tools that can
support the extraction of useful knowledge from such data.

Activity in Grid computing has also accelerated recently as a result of ad-
vances in information technology and its use, such as:

— Component based software development

- High speed networks

— Standardisation of interfaces to databases and data repositories
— Virtual machines and cluster computing

— Public domain and community software licensing arrangements
— On-demand (on-use) software payment schemes

— Network aware interfaces and visualisation

To make effective utilisation of resources across a Grid that spans organi-
sational boundaries, it is imperative that the underlying infrastructure support
intelligence. Intelligent software is required to undertake resource and service
management, service discovery, service aggregation/decomposition, and support
performance management. Commercial systems will also require the underlying
infrastructure to respect site autonomy, and particular site specific policies on
usage.

The objective of this symposium is to bring together researchers in computer
science and Al, to discuss issues in managing Grid services and resources. Six
papers are presented in this symposium, covering aspects of developing distribu-
tion mechanisms for computing, such as the paper by P. Mathieu, J.C. Routier,
and Y. Secq on “RAGE”. Another aspect discussed is middleware to connect
Grid based applications, such as the paper by S. Newhouse et al. on ICENI,

Laying the Foundations for the Semantic Grid

Steven Newhouse, Anthony Mayer, Nathalie Furmento,
Stephen McGough, James Stanton and John Darlington
London e-Science Centre,

Imperial College of Science, Technology and Medicine,

180 Queen’s Gate,

London SW7 2BZ, UK
icpc-sw@doc.ic.ac.uk
http://www-icpc.doc.ic.ac.uk/components/

Abstract

Information relating to the resources, applications and the user’s wishes are key to the transparent and effective exploita-
tion of the federated resources within Computational Grids. These federated data, computational or software resources
are owned by real organisations and made available as services to different computational communities or virtual organi-
sations spanning multiple administrative boundaries. Higher-level services use the information relating to the resources’
capability and the mechanisms for service fulfilment to automatically discover interoperable services and select the most
appropriate service for the user with minimal human intervention.

Within this paper we describe a service-oriented Grid architecture that utilises existing web service protocols to federate
resources into computational communities. The service-oriented information contained in the computational commu-
nities is exploited by higher-level services to ensure effective utilisation of the resources by both its providers (the
resource owners) and consumers (the users). We believe the systematic definition, presentation and exploitation of such
information constitutes the first step towards the construction of a Semantic Grid.

1 Background

Computational Grids have provoked widespread interest
within the scientific and engineering community over the
last decade (1). There are now many global projects fo-
cussing on the development of Grid middleware and the
mechanisms needed by the applied science community to
effectively exploit these infrastructures (2). These projects
are all being driven by the needs of a diverse applied
science community involving both data and compute in-
tensive applications (e.g. EU Datagrid, PPDG, Griphyn,
NASA’s Information Power Grid).

Heterogeneous resources within these Grids are forged
into a single virtual organisation through the use of mid-
dleware. The Grid middleware collects and publishes in-
formation relating to the resources within the organisa-
tion while providing secure platform neutral interfaces to
the underlying resources. Globus is one such widely de-
ployed middleware that uses the Metacomputing Direc-
tory Service (MDS) to hold and distribute information
through a hierarchical network of MDS server within a
virtual organisation (3). Access to the resources within a
virtual organisation is controlled through a ‘gatekeeper’
which verifies a user’s identity through an X.509 public
key certificate.

The specification, development and standardisation of
Grid related protocols is taking place through the Global

Grid Forum (http://www.gridforum.org/), formed through
the merging of activities in North America, Europe and
Asia. Its role, through the activity of its research and
working groups in areas such as security, information man-
agement, applications, etc., is to provide a collaborative
forum for researchers in industry, computer science and
the applied science communities. Its meetings now attract
several hundred researchers from around the world.

The activity within the Grid community can be com-
pared to that within the Web community a decade ago. At
that time there was an active worldwide research commu-
nity developing competing and incompatible protocols,
and innovative functionality within the server and client
browsers. Coordination and standardisation of these ac-
tivities was left by the community to the World Wide Web
Consortium (W3C). Since 1994 it has guided the evolu-
tion of the Hyper-text Markup Language (HTML) and
produced the several new standards such as the Extensible
Markup Language (XML).

The recent emergence of business to business e-commerce

has exposed the limited capabilities of existing web pro-
tocols when used to develop higher-level services. Cur-
rently, the division between page content and its presen-
tation is frequently blurred within HTML encoded web
pages. The W3C has been instrumental in developing ap-
proaches that enable a clear separation between the con-
tent (encoded as an XML schema) and its visual repre-

4 GRID SERVICES

rescheduling as ‘better’ resources become available or com-
putational steering of the application (6).

3 Grid Programming Model

It is impossible to proscribe a Grid programming language
on the diverse applications within the e-science commu-
nity. Likewise, it is difficult to proscribe a programming
model uniess it provides the flexibility to encompass ex-
isting legacy applications and those compatible with cur-
rent software engineering practices.

We are prototyping a component based model that al-
lows legacy applications to be encapsulated as a single
component with defined interfaces (7; 8). Our model al-
lows a component’s interface to be matched to any num-
ber of valid implementations. The decoupling between
a components interface and implementation allows the
component to be deployed on the ‘best’ currently avail-
able execution platforms within a distributed Grid envi-
ronment (9). For example, each component may have
several implementations such as different algorithms (e.g.
iterative or direct solvers) for different platforms (e.g. So-
laris or Linux) for different architectures (e.g. serial or
parallel). We describe the component interface, its im-
plementations and capabilities through CXML - an XML
schema for Component applications (10)

More generally, we define an application as a net-
work of linked components where we are able to describe
the frequency and data volume of their interactions. By
combining our knowledge of these interactions with in-
formation as to how a component’s implementation will
behave on a particular platform, with data relating to the
platforms current state, we are able to optimise its per-
formance within a particular policy (5). The decoupling
between an interface and its implementation also allows
us, by storing persistent data outside of the component,
to migrate an application’s components to other resources
during execution.

In our model, a user submits a job (as an applica-
tion specification) to the ‘Grid’ by placing a CXML de-
scription of the application network and the user require-
ments into the public computational community. The ap-
plication mapper matches the components used in the ap-
plication to the implementations that exist within the re-
sources in the computational community. The application
network is instantiated on distributed resources with the
best component implementations to maximise a user de-
fined criteria. The effective deployment of the application
across distributed resources is enabled by the rich meta-
data relating to the resources, application structure and
implementations available to the higher-level services. A
component expects to be deployed into a local ‘Grid con-
tainer’ that provides access to a minimal set of basic ser-
vices. The detailed definition of these container services
is currently under investigation.

4 Grid Services

Our experiences with ICENI and other infrastructures, such
as Globus, have demonstrated the need for a minimum
set of services to support e-science within computational
Grids. We characterise these services into two groups:
low-level services that interface directly to the underlying
Grid fabric or provide essential services and higher-level
services utilising these lower-level services. All services
are registered with a Registry Service in the local compu-
tational community that exchanges information with its
peers in other organisations.

4.1 Registry Service

The Registry Service (like the Jini Lookup Service) pro-
vides a ‘known’ point for information exchange between
clients and other services. The local private registry ser-
vice within an organisation federates its internal services
into a community wide infrastructure through the actions
of the domain manager. The domain manager ‘pushes’ in-
formation relating to capability and usage policies of the
local community’s services to (potentially) several public
community wide Registry Services within different vir-
tual organisations.

The domain managers and community wide Registry
Service can be viewed as part of a peer-to-peer network.
We intend to use this structure to propagate the services
within one community to other computational communi-
ties. Propagation continues while there is an intersection
between the acceptable useage policies of services from
the remote domain with the local user community. This
approach should ensure that all users allowed to use a re-
source will have access to it providing there is at least an
indirect link between the two communities. Modelling of
this infromation structure and an examination of the ser-
vice propagation distance is underway.

4.2 Low-level Services

The local private Registry Service will contain a number
of low-level services:

o Service Register — provides a mechanism for ser-
vice registration, discovery and instantiation

o Authentication — verification of the user or host us-
ing X.509 certificates

o Authorisation — expression of a resources’ usage
and access control policy

e Execution Resources — invoke a deployed compo-
nent on a resource

o Software Resources — an index of the locally de-
ployed software components

7 CONCLUSIONS

the Jini service discovery mechanisms. The ICENI ser-
vices are made available to clients using a web service
protocol through a proxy embedded within an applica-
tion server. See Figure 2. Both the internal ICENI and
SOAP encoded web services messages use the same XML
schema to describe the message content.

6 The Semantic Grid

The Grid middleware now being developed to support e-
Science within the UK and elsewhere is evolving into a
service-oriented architecture built upon standard web pro-
tocols such as XML, SOAP, WSDL and UDDI. While
developing protocols within such a framework promotes
interoperability there is no certainty that these protocols
will always be understood. It is here, we feel, that a Se-
mantic Grid will start to develop as services become ca-
pable of discovery and self-organisation.

Tim Berners-Lee defines the Semantic Web as ‘an ex-
tension of the current web in which information is given
well-defined meaning, better enabling computers and peo-
ple to work in cooperation.” (12). Likewise, the Seman-
tic Grid can be described as an ‘extension of the current
Grid in which information and services are given well-
defined meaning, better enabling computers and people to
work in cooperation’. In such an environment it is essen-
tial that information relating to the needs of the user and
their applications, and the resource providers and their
networking, storage and computational resources all have
easily discovered and defined meaning that can be used
by higher-level services to effectively exploit the Grid.

The development of these service-oriented ontologies
will enable compatible services to autonomously build
the large complex distributed computing environment that
constitutes the Grid. Fundamental to this goal is the ex-
pression of Grid services through well defined protocols.
From these protocols we are able to understand the capa-
bilities of the service and, potentially, reason as to how
it can interact with other services to meet the needs of

Web Services
Client

WSDL

XML + SOAP 1

WSDL
Apglication
erver

ICENI ICENI ICENI

Client Service Client

\ L A l}
XML XML

Figure 2: Extending ICENI to support interaction with
web services.

the users. This reasoning can take place at several lev-
els, from service composition and application assembly
to the representation and exploitation of knowledge gen-
erated through data and computation services (13). The
mechanisms for exploiting the service and data ontolo-
gies within the Semantic Grid may range from simple
schedulers, application mappers and resource brokers to
sophisticated, autonomous, mobile and intelligent agents.

7 Conclusions

Computational Grids are demonstrating a convergence of
many existing areas of computer science research. The
high performance computing community are developing
new algorithms to support heterogeneous wide area com-
putation between different supercomputers. Applications
are having to deploy to new resources expecting only the
services available within a ‘standard container’ environ-
ment. Users and applications are discovering distributed
resources and services maintained through a network of
peer-to-peer directory services. The autonomous discov-
ery and assembly of a Grid environment from the avail-
able services is reducing the complexity involved in con-
structing a complex software environment while improv-
ing robustness through multiple services.

We consider the movement towards a Semantic Grid
(at both the service and knowledge layers) as essential in
simplifying the effective utilisation of sophisticated dis-
tributed services. The description of these services (using
existing web-service protocols) will enable their intelli-
gent composition and exploitation with minimal human
interaction. The transparent and optimal delivery of so-
phisticated computational and data services to the applied
science community will be key to the successful adoption
of e-science.

We have shown how ICENI will continue to use Jini
as a registration and service discovery mechanism while
exposing its functionality within a web services frame-
work to promote interoperability with other infrastruc-
tures. The XML schemas governing the interaction be-
tween different ICENI services will continue to be de-
veloped and encapsulated within SOAP for use by the
web services interface. Services within our computational

communities will be propagated to other organisations through

a peer-to-peer mechanism.

Acknowledgements

Steven Newhouse gratefully acknowledge the formal and
informal discussions that have taken place within the Ar-
chitectural Task Force of the UK e-Science Core Pro-
gramme which have helped clarify some if the issues dis-
cussed within this paper.

Multi-Agent Support for Internet-Scale Grid Management

B.J. Overeinder, N.J.E. Wijngaards, M. van Steen, and EM.T. Brazier
Department of Computer Science, Faculty of Sciences, Vrije Universiteit Amsterdam,
de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{bjo,niek,steen, frances}@cs.vu.nl

Abstract

Internet-scale computational grids are emerging from various research projects. Most notably are the US National Tech-
nology Grid and the European Data Grid projects. One specific problem in realizing wide-area distributed computing
environments as proposed in these projects, is effective management of the vast amount of resources that are made
available within the grid environment. This paper proposes an agent-based approach to resource management in grid
environments, and describes an agent infrastructure that could be integrated with the grid middleware layer. This agent
infrastructure provides support for mobile agents that is scalable in the number of agents and the number of resources.

1 Introduction

Computational grids are wide-area (Internet-scale) dis-
tributed environments that differ from conventional dis-
tributed computing by their focus on large-scale resource
sharing, innovative applications, and high-performance
orientation (Foster et al., 2001).

In a grid architecture, four levels of management can
be distinguished: fabric, connectivity, single resource,
and collective multiple resources. The fabric layer typ-
ically constitutes computational resources, storage re-
sources, network resources, and code repositories. The
connectivity layer deals with easy and secure communi-
cation by providing single sign on, delegation, integration
with various local security solutions, and user-based trust
relationships. The resource layer is concerned with indi-
vidual resources, and the two primary classes of resource
layer protocols are information protocols and manage-
ment protocols. The collective multiple resources layer
provides directory services, co-allocation, scheduling,
and brokering services, monitoring and diagnostics ser-
vices, data replication services, grid-enabled program-
ming systems, workload management systems and col-
laboration frameworks (problem solving environments),
etc.

In particular, coordinating collective resources is a
complex high-level task that integrates the multiple re-
sources into a wide-area distributed system. Many of
the services in this layer can be effectively facilitated by
applying multi-agent systems. Co-allocation, schedul-
ing, and brokering services, monitoring and diagnostic
services, workload management and collaboration frame-
works, community authorization servers, community ac-
counting and payment services, and collaborative services
are processes that require intelligence, autonomy, and so-
cial capabilities: all qualities that are characteristic to

intelligent agents (Wooldridge and Jennings, 1995).

A distinct problem is scalability in Internet-scale dis-
tributed systems like the Grid. In this paper, scalability
refers to scalability of the wide-area distributed comput-
ing infrastructure and services, not of applications. Ser-
vices such as resource management, co-allocation, and
scheduling must deal with scalability problems that ap-
pear in large-scale, wide-area distributed systems (Wijn-
gaards et al., 2002). Centralized (client-server) ap-
proaches have scalability problems as there is one cen-
tral authority coordinating the activities. Hierarchical ap-
proaches already direct to a scalable solution, but peer-to-
peer interaction strategies as embraced by agent technolo-
gies seems to be the most promising approach to provide
scalable and adaptive services.

This paper presents a multi-agent infrastructure,
called AgentScape, that can be employed for an agent-
based approach to integrate and coordinate distributed re-
sources in a computational grid environment. In particu-
lar, scalability, heterogeneity, and interoperability are dis-
cussed in perspective to a grid environment and the pro-
posed multi-agent infrastructure.

2 Background

A number of initiatives to apply agents in computational
grids have been initiated in recent years. Manola and
Thompson (1999) present an overview of different per-
spectives to grid environments and describe DARPA’s
Control of Agent-Based Systems (CoABS) agent grid.
In the CoABS Grid, a number of application level and
functional requirements hold. Specifically, applications
are considered to have multi-year lifetimes, evolving and
changing requirements, are adaptable and scalable, and
allows for system management without explicitly mon-

itoring all components all the time. Practically, agent

technology is expected to help to provide more reliable,
scalable, survivable, evolvable, adaptable systems, and
help to solve data blizzard and .information starvation
problems. From a functional point of view, the CoABS
Grid knows not only about agents, but also about their
computational requirements, and about available compu-
tational (and other) resources. Hence, the CoABS Grid
provides a unified, heterogeneous distributed computing
environment in which computing resources are seam-
lessly linked.

Bradshaw et al. (2001) remark that “cyberspace” is
currently a lonely, dangerous, and relatively impoverished
environment for software agents. Consequently, most of
today’s agents are designed for “solitary, poor, nasty,
brutish, and short” lives of narrow purpose in a relatively
bounded and static computational world. They argue that
focusing greater attention to making the environment in
which agents operate more capable of sustaining various
types of agents and collaboration groups, would simplify
some of these problems. The CoABS Grid provides the
infrastructure for large-scale integration of heterogeneous
agent frameworks. The CoABS Grid capabilities have
been extended by integrating the NOMADS agent envi-
ronment for strong mobility and safe execution and the
KAoS framework for policy-based management of agent
domains to support long-lived agents and their communi-
ties (Bradshaw et al., 2001).

A good example of an agent grid is presented by Rana
and Walker (2000). They identify the need to combine
problem-specific problem solving environments (PSEs),
facilitating interoperability between various tools and
specialized algorithm each PSE supports. An agent based
approach to integrate services and resources for estab-
lishing multi-disciplinary PSEs is described, in which
specialized agents contain behavioral rules, and can mod-
ify these rules based on their interaction with other agents
and with the environment in which they operate.

Another type of application of agents in distributed
or parallel computing is typically with master-slave com-
putations in wide-area distributed environments (Ghanea-
Hercock et al., 1999). In these systems, large computa-
tions are initiated under control of a coordinating agent
that distributes the computation over the available re-
sources by sending mobile agents to these resources. In
this perspective it is in some way similar to the Condor
system or the SETI@home experiment, which also incor-
porate coordination and distributing the computation of
the available resources. Essentially, the added value of
the distributed computing agent systems is similar to the
agent grid: coordination and seamless integration of the
available distributed resources.

Principal idea behind a grid infrastructure is resource
sharing and providing services. The introduction al-
ready outlined the four levels of management that can
be determined in the process of sharing resources over
a wide-area network. With respect to providing services
in a grid environment, Foster et al. (2002) presented an

Open Grid Services Architecture that addresses the chal-
lenges to achieve various qualities of service when run-
ning applications on top of different native platforms.
The architecture builds on concepts and technologies
from the Grid and Web services communities. The ar-
chitecture defines a uniform exposed service semantics;
defines standard mechanisms for creating, naming, and
discovering transient Grid service instances; provides lo-
cation transparency and multiple protocol bindings for
service instances; and supports integration with underly-
ing native platform facilities. The Open Grid Services
Architecture also defines interfaces and associated con-
ventions, mechanisms required for creating and compos-
ing sophisticated distributed systems, including lifetime
management, change management, and notification. Ser-
vice bindings can support reliable invocation, authenti-
cation, authorization, and delegation, if required. The
resource sharing mechanisms are complementary to the
Grid services, but can be incorporated to implement a
service-oriented architecture.

3 AgentScape: A Scalable Multi-
Agent Infrastructure

AgentScape is a middleware layer that supports large-
scale agent systems. The rationale behind the design de-
cisions are (i) to provide a platform for large-scale agent
systems, (ii) support multiple code bases and operating
systems, and (iii) interoperability with other agent plat-
forms. The consequences of the design rationale with re-
spect to agents and objects, interaction, mobility, security
and authorization, and services are presented in the fol-
lowing subsections.

3.1 The AgentScape Model

The overall design philosophy is “less is more,” that is,
the AgentScape middleware should provide a minimal but
sufficient support for agent applications, and “one size
does not fit all,” that is, the middleware should be adap-
tive or reconfigurable such that it can be tailored to a
specific application (class) or operating system/hardware
platform.

Figure 1: AgentScape conceptual model.

Agents and objects are basic entities in AgentScape. A
location is a “place” in which agents and objects can re-
side (see Fig. 1). Agents are active entities in AgentScape
that interact with each other by message-passing commu-
nication. Furthermore, agent migration in the form of
weak mobility is supported (Picco, 2001). Objects are
passive entities that are only engaged into computations
reactively on an agent’s initiative. Besides agents, ob-
jects, and locations, the AgentScape model also defines
services. Services provide information or activities on be-
half of agents or the AgentScape middleware.

Scalability, heterogeneity, and interoperability are im-
portant principles underlying the design of AgentScape.
The design of AgentScape includes the design of agents,
objects and services, interactions, migrations, security
and authorization, as well as the agent platform itself. For
example, scalability of agents and objects is realized by
distributing objects according to a per-object distribution
strategy, but not agents. Instead, agents have a public
representation that may be distributed if necessary.

The basic idea in the AgentScape model is that most
of the functionality is provided by the agent interface im-
plementations such that the middleware (or the agent rep-
resentation of the middleware) can be designed to perform
basic functions. This approach has a number of advan-
tages. First as the middleware must provide basic func-
tionality, the complexity of the design of the middleware
can be kept manageable and qualities like robustness and
security of the middleware can be more easily asserted.
Additional functionality can be implemented in the agent-
specific interface implementation (see Fig. 2).

Agent + Interface

Agent specific interface implementation \
(can be simple proxy or wrapper routine):
- createAgent
- kiliMe
- moveMe
— - putMessa

et """ (" Location Manager/Middieware interface: \
= - create_agent
= - start_agent
[
Location Manager/ Middl | - suspend
* __ - move J

Figure 2: The AgentScape interface model.

Agent-agent interaction is exclusively via message-
passing communication. Asynchronous message passing
has good scalability characteristics with a minimum of
synchronization between the agents. Tuple spaces also
provide a mechanism for communication that does not en-
force synchronization between the communicating part-
ners, but also cannot enforce the actual receipt of the in-
formation.

Agent migration between locations is based on weak
mobility. The state of the agent is captured (e.g., the vari-
ables referenced by the agent) but not the context of the

agent (e.g., stack pointer and program counter).

3.2 An AgentScape Architecture

The four basic concepts agents, objects, locations, and
services are further implemented in the AgentScape ar-
chitecture. Agents and objects are supported by agent
servers and object servers respectively. Agent servers
provide the interface and access to AgentScape to the
agents that are hosted by the agent server. Similarly, ob-
jects servers provide access to the objects that are hosted
by the object server. A location is a closely related col-
lection of agent and object servers, possibly on the same
(high-speed) network, on hosts which are managed in the
same administrative domain.

Depending on the policy or resource requirements,
one agent can be exclusively assigned to one agent server,
or a pool of agents can be hosted by one agent server. The
explicit use of agent servers makes some aspects in the
life cycle model of agents more clear. An active agent is
assigned to, and runs on a server; a suspended agent is
not assigned to an agent server. In this model, starting a
newly created, or activating an existing suspended agent,
is similar, and some design decisions of the agent life cy-
cle can be simplified.

The use of agent and object servers is transparent to
the agents. Hence, agent servers do not belong to the
AgentScape model from the agent perspective. However,
an agent could ask the middleware to determine on which
agent server the agent runs.

The AgentScape Operating System (AOS) forms the
basic fundament of the AgentScape middieware. An
overview of the AgentScape architecture is shown in
Fig. 3. The AOS offers a uniform and transparent inter-
face to the underlying resources and hides various aspects
of network environments, communication, operating sys-
tem, access to resources, etc. The AgentScape API is
the interface to the middleware. Both agents and services
(e.g., resource management and directory services) use
this interface to the AOS middleware.

The design of the AgentScape Operating System is
modular. The AOS kernel is the central active entity that
coordinate all activities in the middleware. The mod-
ules in the AOS middleware provide the basic function-
ality. Below a brief overview of the most important mod-
ules is given. The life-cycle module is responsible for
the creation and deletion of agents. The communication
module implements a number of communication services,
e.g., similar to UDP, TCP, and streaming, with different
qualities-of-service. Support for agent mobility is imple-
mented in the migration module. The location service as-
sociates an agent identifier with an address (or contact-
point). There are also location services for objects and
locations. The security architecture is essential in the de-
sign of AgentScape, as it is an integral part of the mid-
dleware. Many components in the middleware have to
request authentication or authorization in order to execute

Resource
Management

Agent

agent/process
AgentScape OS Kernel
9 ape K table
N agent . m.
security container life cycle com

module management module module

bind protocol location migration

module services module

Figure 3: An AgentScape middleware architecture.

their tasks.

In AgentScape, interoperability between agent plat-
forms can be realized in two ways. First by conforming to
standards like FIPA or OMG MASIF. These agent plat-
form standards define interfaces and protocols for inter-
operability between different agent platform implementa-
tions. For example, the OMG MASIF standard defines
agent management, agent tracking (naming services), and
agent transport amongst others. The FIPA standard is
more comprehensive in that it defines also agent commu-
nication and agent message transport, and even defines
an abstract architecture of the agent platform. A second
approach to interoperability is realized by reconfiguration
or adaptation of the mobile agent. This can be accom-
plished by an agent factory as described by Brazier et al.
(2002), which regenerates an agent given a blueprint of
the agent’s functionality and its state, using the appropri-
ate components for interoperability with the other agent
platform.

3.3 AgentScape Prototype

The current prototype implementation of the AgentScape
architecture provides the following basic functionality:
creation and deletion of agents, communication between
agents and middleware, and weak migration of agents.
The AgentScape Operating System kernel and some basic
services are implemented in the programming language
Python, while the agent server is implemented in Java.
As a proof of concept, the middleware not only supports
agents written in different programming languages, but its
components are implemented in different programming
languages.

4 Supporting Agent-Based Grid
Management

Resource management is one of the central components of
wide-area distributed computing systems like a grid archi-
tecture. There have been various projects focused on grid
computing that have designed and implemented resource
management systems with a variety of architectures and
services. Krauter et al. (2002) describe a comprehensive
taxonomy for resource management architectures. The
design objectives and target applications for a Grid moti-
vate the architecture of the resource management system.

Decentralized, peer-to-peer interaction, resource trad-
ing, and machine learning are typically application areas
where multi-agent systems are a potentially effective so-
lution. Based on the definition of, for example, the Open
Grid Services Architecture (Foster et al., 2002), multi-
agent systems can be integrated with grid environments to
provide services such as resource management. To inte-
grate multi-agent systems, middleware support for agents

should also be integrated with the grid environment.

For the interoperability of AgentScape and a grid en-
vironment, or more specifically a grid middleware, two
levels of interoperability are important: runtime system
and middleware level.

First, interoperability, extensibility and adaptivity at
the runtime system level is incorporated in the agent in-
terface, that is, code associated with an agent’s implemen-
tation. Agents can provide their own implementation of
a runtime system which makes calls on the middleware.
This makes the agents adaptable to different environments
and extensible if other runtime services are required. The
interfaces can be loaded dynamically, and after migration

of the agent to another platform, a platform specific inter-
face implementation can be bound to the agent. This flex-
ibility makes the agent highly adaptive and extendible.

Second, interoperability and adaptivity at the middle-
ware level is provided by the component-based design of
the incorporated functionality of the middleware. That is,
the components that implement the required functionality
have a clearly defined interface, and can be replaced with
other implementations. For example, the standard com-
munication module that is included with AgentScape, can
be replaced by a communication module supported by the
grid middleware. This is also according the Globus design
philosophy where existing or proprietary technologies can
be incorporated in the Globus system (Foster et al., 2001).

Agent-based methods for coordination and control
mechanisms in heterogeneous distributed system is a new
and active research area. Minsky and Ungureanu (2000)
formulate the requirements for agent-based coordination
and control: (i) coordination policies need to be enforced;
(ii) the enforcement needs to be decentralized; (iii) co-
ordination policies need to be formulated explicitly; and
(iv) it should be possible to deploy and enforce a pol-
icy incrementally. Minsky and Ungureanu describe a
law-governed interaction mechanism that satisfy these
principles, and can be used as a model for an agent-based
approach to coordination and control of resource man-
agement system.

S Summary and Future Work

Computational grids are often used for computationally
intensive applications. Grids are currently expanding to
Internet-scale sizes. Management issues, including task
allocation and resource management, becomes a very im-
portant issue. Agent-based approaches may facilitate the
management of these large-scale grids. Unfortunately, al-
most all of the current agent-based systems are not devel-
oped for large-scale environments; CoABS is a notable
exception.

AgentScape, a large-scale distributed agent system,
designed to support heterogeneity and interoperability, fa-
cilitates extensibility: it is relatively easy to build agent
environments “on top of” AgentScape. AgentScape is
also relatively easily adapted to different (lower-level) op-
erating systems and network infrastructures. As such,
AgentScape can be relatively easily integrated with other
environments and support agent-based approaches to grid
Tesource management.

Future work is further development of the AgentScape
prototype. An elaborate management system will be
incorporated to deal with performance, security, fault-
tolerance, and accounting. Other research issues are scal-
able services for agents, such as name, location, and
directory services. Agent-based scheduling and resource
allocation algorithms have to be developed and evaluated
on the AgentScape middleware.

References

J. M. Bradshaw, N. Suri, A. J. Cafias, R. David, K. Ford,
R. Hoffman, R. Jeffers, and T. Reichherzer. Terraform-
ing cyberspace. Computer, 34(7):48-56, July 2001.

E M. T. Brazier, B. J. Overeinder, M. van Steen, and
N. J. E. Wijngaards. Agent factory: Generative migra-
tion of mobile agents in heterogeneous environments.
In Proceedings of the ACM Symposium on Applied
Computing (SAC 2002), Madrid, Spain, March 2002.

Pt

. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
The physiology of the Grid: An open Grid services
architecture for distributed systems integration.
http://www.globus.org/research/papers/-
ogsa.pdf, January 2002.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
Grid: Enabling scalable virtual organizations. International
Journal on High Performance Computing Applications, 15
(3):200-222, Fall 2001.

R. Ghanea-Hercock, J. C. Collis, and D. T. Ndumu. Co-
operating mobile agents for distributed parallel processings.
In Proceedings of the Third Annual Conference on Au-
tonomous Agents, pages 398-399, Seatle, WA, April 1999.

K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and
survey of grid resource management systems for distributed
computing. Software: Practice and Experience, 32(2):135-
164, February 2002.

F. Manola and C. Thompson. Characterizing the agent
grid. http://www.objs.com/agility/tech-
reports/990623-characterizing-the-agent-
grid.html, June 1999.

N. Minsky and V. Ungureanu. Law-govemned interaction: A
coordination and control mechanism for heterogeneous dis-
tributed systems. ACM Transactions on Software Engineer-
ing and Methodology, 9(3):273-305, July 2000.

G. P. Picco. Mobile agents: An introduction. Microprocessors
and Microsystems, 25(2):65-74, April 2001.

O. F. Rana and D. W. Walker. ‘The Agent Grid’: Agent-based
resource integration in PSEs. In Proceedings of the 16th
IMACS World Congress on Scientific Computing, Applied
Mathematics and Simulation, Lausanne, Switzerland, August
2000.

N.J. E. Wijngaards, B. J. Overeinder, M. van Steen, and E M. T.
Brazier. Supporting Internet-scale multi-agent systems. Data
and Knowledge Engineering, 2002. (To appear).

M. J. Wooldridge and N. R. Jennings. Intelligent agents: The-
ory and practice. The Knowledge Engineering Review, 10(2):
115-152, 1995.

RAGE: an agent framework for easy distributed
computing

P. Mathieu, J.C. Routier, and Y. Secq

Laboratoire d’Informatique Fondamentale de Lille - CNRS UPRESA 8022
UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE
59657 Villeneuve d’Ascq Cedex
{mathieu,routier,secq}Qlifl.fr

Abstract. This paper presents the RAGE framework. RAGE stands for
Reckoner AGEnts. It is an agent framework for the easy design of dis-
tributed computing environment. RAGE has been developped using the
MAGIQUE multi-agent framework. Because distribution, cooperation and
organization are key concepts in multi-agent systems, they are natural
solutions for the design of such applications. The use of MAGIQUE has
contributed to an easy development of RAGE and provides to the appli-
cation the capacity to smoothly evolve and adapt. The goal of this article
is not only to present RAGE but also to show how the development and
evolutions of such an application with a multi-agent system is simple.

1 Introduction

One application field of multi-agent systems (MAS) is Distributed Problem Solv-
ing, and one typical example of such problems is the distributed calculus. Because
distribution, cooperation and organizations are key concepts in MAS, they are
natural solutions for the design of applications of distributed computing.

The use of a multi-agent framework allows the designer to get rid of the
problems that would have been generated by the distribution and the communi-
cations between (what would have been) clients. Indeed these are primitives in
multi-agent infrastructures and are often even hidden to the designer. Moreover,
the agent approach (or paradigm) leads the designer to a natural decomposi-
tion of the problem in term of tasks and roles. The notion of role has been
largely emphathized in works related to actor languages [7], subject oriented
programming [6], and of course in the multi-agent field [4]. This notion relies
on the specification of the behaviour of an actor/agent. In a sense, roles can be
seen as an equivalent of interfaces (or pure abstract classes) in object oriented
programming. The main difference resides in the fact that interactions are not
constrained with interfaces (anybody can invoke a method), while with roles one
can ensure that the request comes from the right role. The other point with roles
is that they identify the functional requirements and are not tied to particular
agents.

For all these reasons we claim that multi-agent systems are appropriate in-
frastructures for the design and development of flexible framework for distributed
calculus applications.

This paradigm of dynamic construction of agent from skills, has several ad-
vantages :

— development becomes easier : modularity is given by the skills,

— efficiency : skills distribution can be dynamilly adapted,

— robustness : critical skill can be preserved,

autonomy and evolutivity : runtime customization available through adap-
tation to runtime environment.

The organisational model. In MAGIQUE, there exists a basic default organi-
sational structure which is a hierarchy. It offers the opportunity to have a default
automatic delegation mechanism to find a skill provider.

The hierarchy characterizes the basic structure of acquaintances in the MAS
and provides a default support for the routing of messages between agents. A
hierarchical link denotes a communication channel between the implied agents.
When two agents of a same structure are exchanging a message, by default it
goes through the tree structure.

With only hierarchical communication, the organisation would be too rigid,
thus MAGIQUE offers the possibility to create direct links (i.e. outside the hierar-
chy structure) between agents. We call them acquaintance links (by opposition
of the default hierarchical links). The decision to create such links depends on
some agent policy. However the intended goal is the following: if some request
for a skill occurs frequently between two agents, the agent can take the deci-
sion to dynamically create an acquaintance link for that skill. The aim is of
course to promote the “natural” interactions between agents at the expense of
the hierarchical ones.

With the default acquaintance structure, an automatic mechanism for the
delegation of request between agents is provided. When an agent wants to exploit
some skill it does not matter if he knows it or not. In both cases the way he
invokes the skills is the same. If the realization of a skill must be delegate to
another, this is done transparently for him, even if he does not have a peculiar
acquaintance for it. The principle of the skill provider search is the following:

o the agent knows the skill, he uses it directly
o if he does not, several cases can happen

o first he has a particular acquaintance for this skill, this acquaintance is
used to achieve the skill (ie. to provide service) for him,

o he is a supervisor and someone in his hierarchy knows the skill, then he
forwards (recursively through the hierarchy) the realisation to the skilled
agent,

o he asks its supervisor to find for him some gifted agent and his supervisor
applies the same delegation scheme.

One first advantage of this mechanism of skill achievement delegation is to
increase the reliability of the multi-agent system: the particular agent who will
perform the skill has no importance for the “caller”, therefore he can change

inherits some predefined patterns). The user has mainly to know two concepts:
what is a task and what is a a result. A task can be seen as the algorithm that is
distributed, while a result represents the data produced by the task and which
must be stored.

The user of the framework has to define what should be distributed, and
what is the global scheduling of its main algorithm. The task defines the chunk
of algorithm that will be distributed among agents. The simplest way for the
user to create a task is to subclass the AbstractTask class and to define the
only two methods:

abstract public void compute();
abstract public boolean finished();

The complexity for the user is then not bigger than writing a JAVA Applet.
Therefore, the end user has a rather OO view of the framework: he extends one
class to tailor it to his distributed application and uses the underlying framework
without necessary explicitly knowing what happens.

3.2 Implementation with Magique: the designer point of view

The design of the framework has loosely followed the GAIA methodology [12]
and has been defined through those steps: first, definition of the roles involved in
the framework and their abilities (or skills), second, definition of the organization
of roles in the system and finally, the mapping of roles on agents.

The first step identifies the main entities of the application, and the abilities
they have to assume. This step describes also the interactions between roles.
The second step defines the number of agents playing a particular role and their
position in the organization. Then, the last step do the mapping between the
agents and the role(s) they play.

The first task is to define the roles. A short analysis of the problem allows
to determine a set of roles that can be distinguished to bring a solution to the
problem of distributed calculus. Here is a short description of these roles:

Boss role is responsible of all the interactions with the user part

Task Dispatcher role has to dispatch tasks and deal with the fault tolerancy.

Platform Manager role manages the agents that will compute the tasks, and
must ensure that there are always available tasks for these agents.

Reckoner Agent role is the worker of the framework, it computes tasks, and
send back the results of this computation.

Repositories Manager role manages the storage of results.

Result Repository role is a mirror of the database of results.

As we implemented the system with MAGIQUE, we have put in concrete form
those roles with the corresponding skills. For example, the Platform Manager
role is defined by a MAGIQUE skill that implements its goal: getting tasks and
dispatching them to Reckoner Agents. A role is then defined by a set of skills that

Here we have briefly seen the designer vision: the determination of roles and
their interactions and then the choice of the organization. The agent oriented
approach has allowed a quick development of the application. Moreover, we see
that even if finally the user has not necessarily an agent vision of the application,
the design was agent oriented.

3.3 Experiments done with RAGE

To evaluate the framework, we have done some experiments that are ranging
from simple examples to complex applications. The first experiment is a tutorial
example that computes an approximation of PI. It is based on a Monte Carlo
method and illustrates how simple it is to create a task and to run the framework.
The second tutorial experiment is a naive implementation for prime number de-
composition, which enabled us to evaluate the scaling of the infrastructure. The
third sample is bigger, it is an exploration of the underlying structure of the
Donkey sliding block game. The algorithm consists in an exhaustive generation
of game states graphs[2]. It is interesting as it works in two stages and shows how
computation can be canceled. The last sample is an application for solid mechan-
ics : it is an implementation of the two-dimensional displacement discontinuity
method[8]. Those experiments along with the framework can be downloaded at
http://www.lifl.fr/SMAC/projects/magique/examples.

4 Conclusion

The presented application, RAGE, is an easy to use framework for distributed
computing. It allows to develop, distribute and run calculus on heterogeneous
framework with no need of background in distributed computing or agents tech-
nologies. The user can only direct its efforts towards his very calculus.

This article argues that multi-agent paradigms: agent animacy, organization
and roles, are key notions to support the analysis, design and implementation
of open large-scale distributed systems. It is particulary significant that those
application models are in adequation with multi-agent paradigms. It has been
illustrated with an application of distributed computing, but could be extended
to other classes of applications (like CSCW(10]).

From our point of view, RAGE demonstrates that agent oriented program-
ming is an appropriate framework for the development of such distributed ap-
plications. And as a consequence, the resulting framework is easy, first, for the
user who has a calculus to do, and, second, for the designer who wants to extend
the capacities of the framework.

References

1. N.E. Bensaid and P. Mathieu. A hybrid and hierarchical multi-agent architecture
model. In Proceedings of PAAM’97, pages 145-155, 1997.

Laying the Foundations for the Semantic Grid

Steven Newhouse, Anthony Mayer, Nathalie Furmento,
Stephen McGough, James Stanton and John Darlington
London e-Science Centre,

Imperial College of Science, Technology and Medicine,

180 Queen’s Gate,

London SW7 2BZ, UK
icpec-sw@doc.ic.ac.uk
http://www-icpc.doc.ic.ac.uk/components/

Abstract

Information relating to the resources, applications and the user’s wishes are key to the transparent and effective exploita-
tion of the federated resources within Computational Grids. These federated data, computational or software resources
are owned by real organisations and made available as services to different computational communities or virtual organi-
sations spanning multiple administrative boundaries. Higher-level services use the information relating to the resources’
capability and the mechanisms for service fulfilment to automatically discover interoperable services and select the most
appropriate service for the user with minimal human intervention.

Within this paper we describe a service-oriented Grid architecture that utilises existing web service protocols to federate
resources into computational communities. The service-oriented information contained in the computational commu-
nities is exploited by higher-level services to ensure effective utilisation of the resources by both its providers (the
resource owners) and consumers (the users). We believe the systematic definition, presentation and exploitation of such
information constitutes the first step towards the construction of a Semantic Grid.

1 Background

Computational Grids have provoked widespread interest
within the scientific and engineering community over the
last decade (1). There are now many global projects fo-
cussing on the development of Grid middleware and the
mechanisms needed by the applied science community to
effectively exploit these infrastructures (2). These projects
are all being driven by the needs of a diverse applied
science community involving both data and compute in-
tensive applications (e.g. EU Datagrid, PPDG, Griphyn,
NASA’s Information Power Grid).

Heterogeneous resources within these Grids are forged
into a single virtual organisation through the use of mid-
dleware. The Grid middleware collects and publishes in-
formation relating to the resources within the organisa-
tion while providing secure platform neutral interfaces to
the underlying resources. Globus is one such widely de-
ployed middleware that uses the Metacomputing Direc-
tory Service (MDS) to hold and distribute information
through a hierarchical network of MDS server within a
virtual organisation (3). Access to the resources within a
virtual organisation is controlled through a ‘gatekeeper’
which verifies a user’s identity through an X.509 public
key certificate.

The specification, development and standardisation of
Grid related protocols is taking place through the Global

Grid Forum (http://www.gridforum.org/), formed through
the merging of activities in North America, Europe and
Asia. 1Its role, through the activity of its research and
working groups in areas such as security, information man-
agement, applications, etc., is to provide a collaborative
forum for researchers in industry, computer science and
the applied science communities. Its meetings now attract
several hundred researchers from around the world.

The activity within the Grid community can be com-
pared to that within the Web community a decade ago. At
that time there was an active worldwide research commu-
nity developing competing and incompatible protocols,
and innovative functionality within the server and client
browsers. Coordination and standardisation of these ac-
tivities was left by the community to the World Wide Web
Consortium (W3C). Since 1994 it has guided the evolu-
tion of the Hyper-text Markup Language (HTML) and
produced the several new standards such as the Extensible
Markup Language (XML).

The recent emergence of business to business e-commerce

has exposed the limited capabilities of existing web pro-
tocols when used to develop higher-level services. Cur-
rently, the division between page content and its presen-
tation is frequently blurred within HTML encoded web
pages. The W3C has been instrumental in developing ap-
proaches that enable a clear separation between the con-
tent (encoded as an XML schema) and its visual repre-

4 GRID SERVICES

rescheduling as ‘better’ resources become available or com-
putational steering of the application (6).

3 Grid Programming Model

It is impossible to proscribe a Grid programming language
on the diverse applications within the e-science commu-
nity. Likewise, it is difficult to proscribe a programming
model unless it provides the flexibility to encompass ex-
isting legacy applications and those compatible with cur-
rent software engineering practices.

We are prototyping a component based model that al-
lows legacy applications to be encapsulated as a single
component with defined interfaces (7; 8). Our model al-
lows a component’s interface to be matched to any num-
ber of valid implementations. The decoupling between
a components interface and implementation allows the
component to be deployed on the ‘best’ currently avail-
able execution platforms within a distributed Grid envi-
ronment (9). For example, each component may have
several implementations such as different algorithms (e.g.
iterative or direct solvers) for different platforms (e.g. So-
laris or Linux) for different architectures (e.g. serial or
parallel). We describe the component interface, its im-
plementations and capabilities through CXML - an XML
schema for Component applications (10)

More generally, we define an application as a net-
work of linked components where we are able to describe
the frequency and data volume of their interactions. By
combining our knowledge of these interactions with in-
formation as to how a component’s implementation will
behave on a particular platform, with data relating to the
platforms current state, we are able to optimise its per-
formance within a particular policy (5). The decoupling
between an interface and its implementation also allows
us, by storing persistent data outside of the component,
to migrate an application’s components to other resources
during execution.

In our model, a user submits a job (as an applica-
tion specification) to the ‘Grid’ by placing a CXML de-
scription of the application network and the user require-
ments into the public computational community. The ap-
plication mapper matches the components used in the ap-
plication to the implementations that exist within the re-
sources in the computational community. The application
network is instantiated on distributed resources with the
best component implementations to maximise a user de-
fined criteria. The effective deployment of the application
across distributed resources is enabled by the rich meta-
data relating to the resources, application structure and
implementations available to the higher-level services. A
component expects to be deployed into a local ‘Grid con-
tainer’ that provides access to a minimal set of basic ser-
vices. The detailed definition of these container services
is currently under investigation.

4 Grid Services

Our experiences with ICENI and other infrastructures, such
as Globus, have demonstrated the need for a minimum
set of services to support e-science within computational
Grids. We characterise these services into two groups:
low-level services that interface directly to the underlying
Grid fabric or provide essential services and higher-level
services utilising these lower-level services. All services
are registered with a Registry Service in the local compu-
tational community that exchanges information with its
peers in other organisations.

4.1 Registry Service

The Registry Service (like the Jini Lookup Service) pro-
vides a ‘known’ point for information exchange between
clients and other services. The local private registry ser-
vice within an organisation federates its internal services
into a community wide infrastructure through the actions
of the domain manager. The domain manager ‘pushes’ in-
formation relating to capability and usage policies of the
local community’s services to (potentially) several public
community wide Registry Services within different vir-
tual organisations.

The domain managers and community wide Registry
Service can be viewed as part of a peer-to-peer network.
We intend to use this structure to propagate the services
within one community to other computational communi-
ties. Propagation continues while there is an intersection
between the acceptable useage policies of services from
the remote domain with the local user community. This
approach should ensure that all users allowed to use a re-
source will have access to it providing there is at least an
indirect link between the two communities. Modelling of
this infromation structure and an examination of the ser-
vice propagation distance is underway.

4.2 Low-level Services

The local private Registry Service will contain a number
of low-level services:

o Service Register — provides a mechanism for ser-
vice registration, discovery and instantiation

e Authentication — verification of the user or host us-
ing X.509 certificates

e Authorisation — expression of a resources’ usage
and access control policy

¢ Execution Resources - invoke a deployed compo-
nent on a resource

¢ Software Resources — an index of the locally de-
ployed software components

7 CONCLUSIONS

the Jini service discovery mechanisms. The ICENI ser-
vices are made available to clients using a web service
protocol through a proxy embedded within an applica-
tion server. See Figure 2. Both the internal ICENI and
SOAP encoded web services messages use the same XML
schema to describe the message content.

6 The Semantic Grid

The Grid middleware now being developed to support e-
Science within the UK and elsewhere is evolving into a
service-oriented architecture built upon standard web pro-
tocols such as XML, SOAP, WSDL and UDDI. While
developing protocols within such a framework promotes
interoperability there is no certainty that these protocols
will always be understood. It is here, we feel, that a Se-
mantic Grid will start to develop as services become ca-
pable of discovery and self-organisation.

Tim Berners-Lee defines the Semantic Web as ‘an ex-
tension of the current web in which information is given
well-defined meaning, better enabling computers and peo-
ple to work in cooperation.’” (12). Likewise, the Seman-
tic Grid can be described as an ‘extension of the current
Grid in which information and services are given well-
defined meaning, better enabling computers and people to
work in cooperation’. In such an environment it is essen-
tial that information relating to the needs of the user and
their applications, and the resource providers and their
networking, storage and computational resources all have
easily discovered and defined meaning that can be used
by higher-level services to effectively exploit the Grid.

The development of these service-oriented ontologies
will enable compatible services to autonomously build
the large complex distributed computing environment that
constitutes the Grid. Fundamental to this goal is the ex-
pression of Grid services through well defined protocols.
From these protocols we are able to understand the capa-
bilities of the service and, potentially, reason as to how
it can interact with other services to meet the needs of

Web Services
Client

WSDL

4
XML + SOAP)

WSDL

Apglication
erver

ICENI ICENI ICENI
Client Service Client
\

[| A
XML XML

Figure 2: Extending ICENI to support interaction with
web services.

the users. This reasoning can take place at several lev-
els, from service composition and application assembly
to the representation and exploitation of knowledge gen-
erated through data and computation services (13). The
mechanisms for exploiting the service and data ontolo-
gies within the Semantic Grid may range from simple
schedulers, application mappers and resource brokers to
sophisticated, autonomous, mobile and intelligent agents.

7 Conclusions

Computational Grids are demonstrating a convergence of
many existing areas of computer science research. The
high performance computing community are developing
new algorithms to support heterogeneous wide area com-
putation between different supercomputers. Applications
are having to deploy to new resources expecting only the
services available within a ‘standard container’ environ-
ment. Users and applications are discovering distributed
resources and services maintained through a network of
peer-to-peer directory services. The autonomous discov-
ery and assembly of a Grid environment from the avail-
able services is reducing the complexity involved in con-
structing a complex software environment while improv-
ing robustness through multiple services.

We consider the movement towards a Semantic Grid
(at both the service and knowledge layers) as essential in
simplifying the effective utilisation of sophisticated dis-
tributed services. The description of these services (using
existing web-service protocols) will enable their intelli-
gent composition and exploitation with minimal human
interaction. The transparent and optimal delivery of so-
phisticated computational and data services to the applied
science community will be key to the successful adoption
of e-science.

‘We have shown how ICENI will continue to use Jini
as a registration and service discovery mechanism while
exposing its functionality within a web services frame-
work to promote interoperability with other infrastruc-
tures. The XML schemas governing the interaction be-
tween different ICENI services will continue to be de-
veloped and encapsulated within SOAP for use by the
web services interface. Services within our computational

communities will be propagated to other organisations through

a peer-to-peer mechanism.

Acknowledgements

Steven Newhouse gratefully acknowledge the formal and
informal discussions that have taken place within the Ar-
chitectural Task Force of the UK e-Science Core Pro-
gramme which have helped clarify some if the issues dis-
cussed within this paper.

