AISB’02 Convention

35" April 2002
Imperial College

Proceedings of the AISB’(2
Symposium on Adaptive Agents and
Multi-Agent Systems

Contents

Symposium Preface
E. Alonso, D. Kudenko and D. Kazakov

Relational Reinforcement Learning for Agents in Worlds with Objectsc.coiiiiiinnenen 1
S. DZeroski

Adaptive Agents to Heterogeneous Platforms, New Protocols & Evolving Organizations 9
L. Magnin, V. T. Pham, A. Dury, N. Besson and H. Sahraoui

Dynamic Adaptation of Replication Strategies for Reliable Agentsooooiiiiinnn.e, 20
J-P. Briot, Z. Guessoum, S. Charpentier, S. Aknine, O. Marin and P. Sens

On Learning by EXchanging AdVICEc.cvuiiiiiiiiiiiiiiiiii e 29
L. Nunes and E. Oliveira

An Agent Architecture to Design Self-Organizing Collectives: Principles and Application 41
G. Picard and M-P. Gleizes

Environmental Risk , Cooperation and Communication Complexityc.coooviviveiiniiinnnn 51
P. Andras, G. Roberts and J. Lazarus

Stochastic Simulation of Inherited Kinship-Driven Altruismc..ccoveiiiiiiiiiiiniiniinen 60
H. Turner and D. Kazakov

Evolving Preferences Among Emergent Groups of Agentscoovviiiiiiiiiiiiiniiniiinann: 67
P. Marrow, C. Hoile, F. Wang and E. Bonsma

Controlling the Adaptation of a Population of Agentscccovviiiiiiiiiiiiiiiiiinnicinen, 75
P. De Wilde
HOSHIE AZBNLS ...oviniiiie ittt e e ettt ettt e et e e e e e e e e 81

R. Ghanea-Hercock

Improving on the Reinforcement Learning of Coordination in Cooperative Multi-Agent Systems 89
S. Kapetanakis and D. Kudenko

A Framework for Coherence-Based Multi-Agent Adaptivityc..ocovverveniiniiiinienenninnn.. 95
N. Lacey and H. Hexmoor

Regular Behaviour of Learning Agents in Minority Gamesccooevviiieniiriiinnininninnnninns 105
A. Lisitsa and I. Potapov

“To do or not to do””: The Individual’s Model for Emergent Task Allocation 111
K. Schelfthout and T. Holvoet

Generative Migration of AZENtsoc.vviiiiiiiiiiii i 116
F.M.T. Brazier, B.J. Overeinder, M. van Steen and N.J.E. Wijngaards

Architectural] Principles for Social Influence among Benevolent Agents 120
H. Hexmoor

An Agent-Based Network Management SYStemcccoiiviiiiiiiiininiiiiin e, 125
D.N. Legge and P.R. Baxendale

Symposium Preface
Adaptive Agents and Multi-Agent Systems (AAMAS-II)

The Symposium on Adaptive Agents and Multi-Agent Systems (AAMAS-II) is a
continuation of AAMAS. AAMAS was held as part of AISB’01 in York, March 2001.
AAMAS was a pioneering experience, as no symposium on learning agents had been

organised previously in the UK. The success of the symposium has encouraged us to
organise AAMAS-]IL

The goals of the symposium are as follows:

¢ Increase awareness and interest in adaptive agent research in the AI community
and encourage further research

e Encourage collaboration between ML experts and Agent system experts

e Give a representative overview of current research in the area of adaptive agents
in Europe and world-wide

We sincerely thank our invited speaker, Saso Dzeroski, and our programme
committee, Kurt Driessens, Peter Edwards, Eugenio Oliveria, Michael Schroeder,
Kostas Stathis, and Niek Wijngaards, and other reviewers, Chris Child, David
Mobach, Ana Paula Rocha, and Sander van Splunter.

We would like to thank the AgentLink2 network for their financial support.

Eduardo Alonso, Daniel Kudenko and Dimitar Kazakov

Relational Reinforcement Learning
for Agents in Worlds with Objects

SaSo Dzeroski
Institut JoZef Stefan
Jamova 39, SI-1000 Ljubljana, Slovenia
Saso.Dzeroski @ijs.si

Abstract

In reinforcement learning, an agent tries to learn a policy, i.e., how to select an action in a given state of the environment,
so that it maximizes the total amount of reward it receives when interacting with the environment. We argue that
a relational representation of states is natural and useful when the environment is complex and involves many inter-
related objects. Relational reinforcement learning works on such relational representations and can be used to approach
problems that are currently out of reach for classical reinforcement learning approaches.

1 Introduction

In reinforcement learning, an agent tries to learn a pol-
icy, i.e., how to select an action in a given state of the
environment, so that it maximizes the total amount of re-
ward it receives when interacting with the environment.
In cases where the environment is complex and involves
many inter-related objects, a relational representation for
states is natural. This typically yields a very high num-
bers of possible states and state/action pairs, which make
most of the existing tabular reinforcement learning al-
gorithms inapplicable. Even the existing reinforcement
learning approaches that are based on generalization typ-
ically use a propositional representation and cannot deal
directly with relationally represented states.

We introduce relational reinforcement learning, which
uses relational learning algorithms as generalization en-
gines within reinforcement learning. We start with an
overview of reinforcement learning ideas relevant to re-
lational reinforcement learning. We then introduce sev-
eral complex worlds with objects, for which a relational
representation of states is natural. An overview of differ-
ent relational reinforcement learning algorithm developed
over the last five years is presented next and illustrated
on an example from the blocks world. Finally, some ex-
perimental results are presented before concluding with a
brief discussion.

2 Reinforcement Learning

This section gives an overview of reinforcement learning
ideas relevant to relational reinforcement learning. For an
extensive treatise on reinforcement learning, we refer the
reader to (Sutton & Barto, 1998). We first state the task of
reinforcement learning, then briefly describe Q-learning.

Inits basic variant, Q-learning is tabular: this is unsuitable
for problems with large state spaces, where generalization
is needed. We next discuss generalization in reinforce-
ment learning and in particular generalization based on
decision trees. Finally, we discuss the possibility of inte-
grating learning by exploration (as is typically the case in
reinforcement learning) and learning from guidance (by a
human operator or some other reasonable policy).

2.1 Task definition

The typical reinforcement learning task using discounted
rewards can be formulated as follows:

Given
¢ aset of possible states S.
o a set of possible actions A.
e an unknown transition functiond: § x A — S.

e an unknown real-valued reward function
r:SxA-—-R.

Find a policy 7* : § — A that maximizes

o0
VT(st) = Z Vet
=0
for all s; where 0 < v < 1.

At each point in time, the reinforcement learning agent
can be in one of the states s; of S and selects an action
as = m(sy) € A to execute according to its policy 7. Ex-
ecuting an action a, in a state s; will put the agent in a new
state s;41 = 6(s, a¢). The agent also receives a reward
Ty = {84, a¢). V7 (s) denotes the value (expected return;
discounted cumulative reword) of state s under policy .

Table 1: The ¢)-learning algorithm.
Initialize Q(s, a) arbitrarily
Repeat (for each episode)
Initialize s
Repeat (for each step of episode)
Choose a from s using policy derived from @
Take action a, observe r, s’
Q(s,a) « r +ymaz,Q(s',a")
s+ ¢
Until g is terminal

It will be assumed that the agent does not know the
effects of the actions, i.e., § is unknown to the agent, and
that the agent does not know the reward function r. The
task of learning is then to find an optimal policy, i.e., a
policy that will maximize the discounted sum of the re-
wards. We will assume episodic learning, where a se-
quence of actions ends in a terminal state.

2.2 Tabular Q-learning

Here we summarize Q-learning, one of the most com-
mon approaches to reinforcement learning, which assigns
values to state-action pairs and thus implicitly represents
policies. The optimal policy #* will always select the ac-
tion that maximizes the sum of the immediate reward and
the value of the immediate successor state, i.e.,

m*(8) = argmaz,(r(s,a) + 'yV"'(d(s, a)))
The Q-function for policy = is defined as follows :
Q.’r (S, Cl) = T'(S, a) + 7‘/" (6(*3’ a’))

Knowing @Q*, the Q-function for the optimal policy, al-
lows us to rewrite the definition of 7* as follows

7*(s) = argmaz,Q* (s, a)

An approximation to the Q-function, Q, in the form of a
look-up table, is learned by the following algorithm.

The agent learns through continuous interaction with
the environment, during which it exploits what it has
learned so far, but also explores. In practice, this means
that the current approximation @ is used to select an ac-
tion most of the time. However, in a small fraction of
cases an action is selected randomly from the available
choices, so as to explore and evaluate unseen state/action
pairs.

For smoother learning, an update of the form Q(s, a) +
Q(s,a) + afr + ymazaQ(s',a’) — Q(s, a)] would be
used. This is a special case of temporal-difference learn-
ing, where algorithms such as SARSA also belong. In
SARSA, instead of taking the maximum over possible ac-
tions, the action a’ is also chosen according to the same
policy and the following update rule is used Q(s,a) +
Q(s,a) + alr + vQ(s',a") — Q(s,a)]. For the algorithm
in Table 1, the learned action-value function @ directly
approximates @*, regardless of the policy being followed.

2.3 Generalization / G-trees

Using a tabular representation for the learned approxima-
tion to the Q-function or V-functions is only feasible for
tasks with small numbers of states and actions. This due
to both space problems (large table), but also time prob-
lems (time needed to fill the table accurately). The way
out is to generalize over sates and actions, so that approx-
imations can be produced also for states (and possibly ac-
tions) that the agent has never seen before.

Most approaches to generalization in reinforcement
learning use neural networks for function approximation
(Bertsekas & Tsitsiklis, 1996). States are represented by
feature vectors. Updates to state-values or state-action
values are treated as training examples for supervised learn-
ing. Nearest-neighbor methods have been also used, es-
pecially in the context of continuous states and actions
(Smart & Kaelbling, 2000).

Table 2: The G-algorithm.
Create an empty leaf

While data available do
Sort data down to leaves
Update statistics in leaves
If a split is needed in a leaf,
then grow two empty leaves

The G-algorithm (Chapman & Kaelbling, 1991) is a
decision tree learning algorithm that updates its theory in-
crementally as examples are added. An important feature
is that examples can be discarded after they are processed.
This avoids using a huge amount of memory to store ex-
amples. At a high level, the G-algorithm (Table 2) stores
the current decision tree, and for each leaf node statistics
for all tests that could be used to split that leaf further.
Each time an example is inserted, it is sorted down the
decision tree according to the tests in the internal nodes;
in the leaves, the statistics of the tests are updated.

2.4 Exploration and guidance

Besides the problems with tabular Q-learning, large state/
action spaces entail another type of problem for reinforce-
ment learning. Namely, in a large state/action space, re-
wards may be so sparse that with random exploration (as
is typical at the start of a reinforcement learning run) they
will only be discovered extremely slowly. This problem
has only recently been addressed for the case of continu-
ous state/action spaces.

(Smart & Kaelbling, 2000) integrate exploration in
the style of reinforcement learning with human-provided
guidance. Traces of human-operator performance are pro-
vided to a robot learning to navigate as a supplement to its
reinforcement learning capabilities. Using nearest-neigh-
bor methods together with precautions to avoid overgen-
eralization, (Smart & Kaelbling, 2000) show that using
the extra guidance helps improve the performance of re-
inforcement learning.

clear(d).
clear(c).

d
on(d,a).
a on(a,b).

on(b,floor).
b ¢ on(c,floor).

move(d,c).

Figure 1: Example state and action in the blocks-world.

3 Some Worlds with Objects

In this section, we introduce three domains where using a
relational representation of states is natural and involves
objects and relations between them. The number of possi-
ble states in all three domains is very large. The three do-
mains are: the blocks world, the Digger computer game,
and the Tetris computer game.

3.1 The blocks world

In the blocks world, blocks can be on the floor or can be
stacked on each other. Each state can be described by a
set (list) of facts, e.g., s = {clear(c), clear(d), on(d, a),
on(a, b), on(b, floor), on(c, floor)} represents the state
in Figure 1. The available actions are then move(X,Y)
where X #Y, X is a block and Y is a block or the floor.
The number of states in the blocks world grows very fast
with the number of blocks. With 10 blocks, there are close
to 59 million possible states.

We study three different goals in the blocks world:
stacking all blocks, unstacking all blocks (i.e., putting all
blocks on the floor) and putting a specific block on top of
another specific block.

In a blocks world with 10 blocks, there are 3.5 mil-
lion states which satisfy the stacking goal, 1.5 million
states that satisfy a specific on(A,B) goal and one state
only that satisfies the unstacking goal. A reward of 1 is
given in case a goal-state is reached in the optimal num-
ber of steps; the episode ends with a reward of 0 if it isn’t.

3.2 The Digger game

Digger! is a computer game created in 1983, by Windmill
Software. It is one of the few old computer-games which
still hold a fair amount of popularity. In this game, the
player controls a digging machine or “Digger” in an envi-
ronment that contains emeralds, bags of gold, two kinds
of monsters (nobbins and hobbins) and tunnels. The ob-
ject of the game is to collect as many emeralds and gold
as possible while avoiding or shooting monsters.

In our tests we removed the hobbins and the bags of
gold from the game. Hobbins are more dangerous than
nobbins for human players because they can dig their own
tunnels and reach Digger faster as well as increase the mo-
bility of the nobbins. However, they are less interesting

thttp://www.digger.org

Figure 2: A snapshot of the DIGGER Game.

for learning purposes, because they reduce the implicit
penalty for digging new tunnels (and thereby increasing
the mobility of the monsters) when trying to reach cer-
tain rewards. The bags of gold we removed to reduce the
complexity of the game.

A state representation consists of the following com-
ponents: coordinates of digger (e.g., digPos(6, 9)), infor-
mation on digger (of the form digInf (digger_dead,
time_to.reload, level_done, pts.scored,
steps_taken), e.g., digInf(false, 63, false,0,17),
tunnels as seen by digger (range of view in each direction,
e.g., tunnel(4,0, 2, 0)), list of emeralds (e.g., [em(14, 9),
em(14,8),em(14,5),...]), list of monsters (e.g.,
[mon(10, 1, down), mon(10, 9, down)]), and information
on the fireball fired by the digger (coordinates, travelling
direction, e.g., fb(7,9,right)). The actions are of the
form moveOne(X) and shoot(Y), where X and Y are
in [up, down, le ft,right].

Figure 3: A snapshot of the TETRIS Game.

3.3 The Tetris game

Tetris? is a widespread puzzle-video game played on a
two-dimensional grid. Differently shaped blocks fall from
the top of the game field and fill up the grid. The object
of the game is to keep the blocks from piling up to the top
of the game field. To do this, one can move the dropping
blocks right and left or rotate them as they fall. When one
horizontal row is completely filled, that line disappears
and the player scores points. When the blocks pile up to
the top of the game field, the game ends.

2Tetris was invented by Alexey Pazhitnov and is owned by The Tetris
Company and Blue Planet Software.

In the tests presented, we only looked at the strategic
part of the game, i.e., given the shape of the dropping and
the next block, one has to decide on the optimal orienta-
tion and location of the block in the game-field. (Using
low level actions — turn, move left or move right — to
reach such a subgoal is rather trivial and can easily be
learned by (relational) reinforcement learning.) We rep-
resent the full state of the Tetris Game, the type of the
next dropping block included.

4 Relational
Reinforcement Learning

Relational reinforcement learning (RR1L) addresses much
the same task as reinforcement learning in general. What
is typical of RRL is the use of a relational (first-order)
representation to represent states, actions and (learned)
policies. Relational learning methods, originating from
the field of inductive logic programming (Lavrac & Dze-
roski, 1994), are used as generalization engines.

4.1 Task definition

While the task definition for reinforcement learning (as
specified earlier in this paper) applies to RRL, a few de-
tails are worth noting. States and actions are represented
relationally. Background knowledge and declarative bias
need to be specified for the relational generalization en-
gines.

The possible states would not be listed explicitly as
input to the RRL algorithm (as they might be for ordinary
reinforcement learning). A relational language for speci-
fying states would rather be defined (in the blocks world,
this language would comprise the predicates on(A, B)
and clear(C)). Actions would also be specified in a re-
lational language (move(A, B) in the blocks world) and
not all actions would be applicable in all states; in fact the
number of possible actions may vary considerably across
different states.

Background knowledge generally valid about the do-
main (states in S) can be specified in RRL. This includes
predicates that can derive new facts about a given state.
In the blocks world, a predicate above(A, B) may define
that a block A is above another block B. Declarative bias
for learning relational representations of policies can also
be given. Together with the background knowledge, this
specifies the language in which policies are represented.
In the blocks world, e.g., we do not allow policies to refer
to the exact identity of blocks (A = a, B = b, etc.).

4.2 The RRL algorithm

The RRL algorithm is obtained by combining the classi-
cal Q-learning algorithm (Table 1) and a relational regres-
sion tree algorithm (Blockeel et al., 1998). Instead of an

Table 3: The RRL algorithm
for relational reinforcement learning.
Initialize Qo to assign O to all (s, a) pairs
Initialize Examples to the empty set.
e:=0
while true
generate an episode that consists of states sq to s;
and actions ag to a;—; through the use of
a standard Q-learning algorithm,
using the current hypothesis for Q,
for j=i-1to O do
generate example z = (sy, a;, §;),
where §; =1, + ymaz, Qe(sj+1 ,a')
if an example (s;,a;, Gora) exists in Examples,
replace it with z,
else add to Examples
update Q. by applying TILDE to Examples,
ie., Qe+1 = TILDE(Examples)
for j=i-1toOdo
for all actions ay possible in state s; do
if state action pair (s;, ax) is optimal
according to Qe+1
then generate example (s;, ax, c) wherec = 1
else generate example (s, ax, c) wherec = 0
update P,: apply TILDE to the examples (s;,ax, c)
to produce P, ;
e=e+1

explicit lookup table for the Q-function, an implicit repre-
sentation of this function is learned in the form of a logical
regression tree, called a Q-tree. After a Q-tree is learned,
a classification tree is learned that classifies actions as op-
timal or non-optimal. This tree, called a P-tree, is usually
much more succinct than the Q-tree, since it does not need
to distinguish among different levels of non-optimality.

The RRL algorithm is given in Table 3. In its initial
implementation (Dzeroski et al., 1998), RRL keeps a ta-
ble of state/action pairs with their current Q-values. This
table is used to create a generalization in the form of a
relational regression tree (Q-tree). The Q-tree is then the
policy used to select actions to take by the agent. The
reason the table is kept is the nonincrementality of the re-
lational regression algorithm used.

In complex worlds, where states can have a variable
number of objects, an exact Q-tree representation of the
optimal policy can be very large and also depend on the
number of objects in the state. For example, in the blocks
world, a state can have a varying number of blocks: the
number of possible values for the Q-function (and the
complexity of the Q-tree) would depend on this number.
Choosing the optimal action, however, can sometimes be
very simple: in the unstacking task, we simply have to
pickup a block that is on top of another block and put it
on the floor. This was our motivation for learning a P-tree
by generating examples from the Q-tree.

m%ve(c,ﬂoor) move(b,c) move(a,b)

r= = =1

Q=081 5os iy move(a,foor
Q=0

c|—> — —>la

b b b b

a clla Clla C

Figure 4: A blocks-world episode for relational Q-learning.

Table 4: Examples for TILDE generated from the blocks-world Q-learning episode in Figure 4.

Example 1 Example 2

Example 3 Example 4

gvalue(0.81).
move (c, floor) .
goal(on(a,b)).

gvalue(0.9).
move (b, c) .
goal(on(a,b)).

clear(c). clear{b).
on(c,b). clear(c).
on(b,a). on(b,a).

on(a, floor).
on{c, floor).

on(a,floor).

goal(on(a,b)).

gvalue(l1.0).
move(a,b) .

gvalue(0.0).
move(a, floor) .
goal(on({a,b)).

clear(a). clear(a).
clear(b). on{a,b).
on{b,c). on(b,c).

onf{(a, floor).
on(c, floor).

on{c, floor).

4.3 Anexample

To illustrate how the RRL algorithm works, we use an
example from the blocks world. The task here is to stack
block a on block b, i.e., to achieve on(a, b). An example
episode is shown in Figure 4. As for the tabular version of
Q-learning, updates of the Q-function are generated for all
state/action pairs encountered during the episode. These
are also listed in the figure.

The examples generated for TILDE from this episode
are given in Table 4. Note that a Q-value of zero is as-
signed to any state/action pair where the state is terminal
(the last state in the episode), as no further reward can be
expected. From these examples, the Q-tree in Figure 5 is
learned.

The tree correctly predicts zero Q-value if the goal
is already achieved and a Q-value of one for any action,
given that block A is clear. This is obviously overly opti-
mistic, but does capture the fact that A needs to be clear
in order to stack it onto B. Note that the goal on(A, B)
explicitly appears in the Q-tree.

If we use the Q-trees to generate examples for learn-
ing the optimality of actions, we obtain the P-tree in Fig-
ure 6. Note that the P-tree represents a policy much closer
to the optimal one. If we want to achieve on(A, B), it is
optimal to move a block that is above A. Also, the action
move(A, B) is optimal whenever it is possible to take it.

4.4 Incremental RRL/TG trees

The RRL algorithm as described in the previous section
has a number of problems. It needs to keep track of an
ever increasing number of examples, needs to replace old
Q-values with new ones if a state-action pair is encoun-
tered again, and builds trees from scratch after each episode.

The G-tree algorithm (also mentioned earlier) does not
have these problems, but only works for propositional
representations. (Driessens et al., 2001) upgrade G-tree
to work for relational representations yielding the TG-tree
algorithm. At the top level, the TG-tree algorithm is the
same as the G-tree algorithm. It differs in the fact that TG
can use relational tests to split on; these are the same type
of tests that TILDE can use. Using TG instead of TILDE
within RRL yields the RRL-TG algorithm.

Table 5: The G-RRL algorithm: This is the RRL-TG
algorithm with integrated guidance (k example traces).
Initialise Qg to assign O to all (state, action) pairs
for (i =0;i < ksi++){

transform trace; into (state, action, qualue) triplets

process generated triplets with TG algorithm

transforming Q; into Qi+1

}
run normal RRL-TG starting with Q & as the

initial Q-function hypothesis

4.5 Integrating
experimentation and guidance in RRL

Since RRL typically deals with huge state spaces, sparse
rewards are indeed a serious problem. To relieve this
problem, (Driessens & Dzeroski, 2002) follow the ex-
ample of (Smart & Kaelbling, 2000) and integrate ex-
perimentation and guidance in RRL. In G-RRL (guided
RRL), traces of human behavior or traces generated by
following some reasonable policy (that could be learned
previously) are provided at the beginning and are followed
by ordinary RRL. The algorithm is given in Table 5.

root : goal.on(A,B) , numberofblocks(C)
on{(A,B) ?
+--yes: [0]
+--no: clear(a) 7
+--yes: [1]
+--no: clear(gE) ?
+--yes: [0.9]
+--N0: [0.81]

, actionmove(D,E)

Figure S: A relational regression tree (Q-tree) generated by TILDE from the examples in Table 4.

root : goaloon(A,B) , numberofblocks(C)
above (D,a) ?

+--yes: optimal

+--no: actionmove(A,B) ?
+--yes: optimal
+--no: nonoptimal

actionmove (D, E)

Figure 6: A P-tree for the three blocks world generated from the episode in Figure 4.

5 Experiments

Here we summarize the results of experiments with RRL.
RRL was extensively evaluated experimentally on the
blocks world by (Dzeroski et al., 2001). We first summa-
rize these results. We then proceed with an overview of
the most recent experiments with RRL, which involve the
use of guidance in addition to pure reinforcement learning
(Driessens & Dzeroski, 2002), i.e., the use of the G-RRL
algorithm. These experiments involve the three domains
described earlier in this paper: the blocks world, the Dig-
ger game and the Tetris game.

5.1 Blocks world experiments with RRL

(Dzeroski et al., 2001) conduct experiments in the blocks
world with 3, 4, and 5 blocks, considering the tasks of
stacking, unstacking and on(a, b) mentioned earlier. They
consider both settings with a fixed number of blocks (ei-
ther 3, 4 or 5) or a varying number of blocks (first learn
with 3 blocks, use this to bootstrap learning with 4 blocks,
and similarly learn with 5 blocks afterwards). In addition
to the state and action information, the RRL algorithm
was supplied with the number of blocks, the number of
stacks and the following background predicates: equal/2,
above/2, height/2 and di f ference/3 (an ordinary sub-
traction of two numerical values).

The experiments show that RRL is effective for dif-
ferent goals: it was successfully used for stacking and un-
stacking, and after some representational engineering also
for on(a, b). Policies learned for on(a, b) can be used for
solving on(A, B) for any A and B. Both can learn opti-
mal policies for state spaces with a fixed number of blocks
(both with Q- and P-trees), but this becomes more difficult
when the number of blocks increases. An explanation for

this is that the sparse rewards problem becomes more and
more severe as the number of possible states skyrockets
with an increasing number of blocks.

Even when learning from experience with a fixed num-
ber of blocks, RRL can learn policies that are optimal for
state spaces with a varying number of blocks. Q-functions
optimal for state spaces with a fixed number of blocks
are not optimal for state spaces with a varying number of
blocks. But we can learn optimal P-functions from the Q-
functions. These P-functions often are optimal for state
spaces with a varying number of blocks as well. RRL can
also learn from experience in which the number of blocks
is varied. Starting with a small number of blocks and
gradually increasing this number allows for a bootstrap-
ping process, where optimal policies are learned faster.

If the Q-tree learned doesn’t work, then the P-tree
won’t work either. But once a Q-tree is learned that does
the job right (even for states with a fixed number of blocks),
one is better off using the P-tree learned from it. The lat-
ter usually generalizes nicely to larger numbers of blocks
than seen during training.

5.2 Experiments with G-RRL

The experiments with G-RRL involve the three domains
described earlier: the 10-blocks world, the Digger game
and the Tetris game. Only Q-trees were built.

The blocks world

In the blocks world, the three tasks mentioned earlier

(stacking, unstacking and on(a, b)) were addressed. Traces
of the respective optimal policies were provided at the

beginning of learning, followed by an application of the

RRL-TG algorithm.

Stacking

09
08 |

i
|
° 07
g osl e l'
§ 057 % |
5 04 Pl ,r 1
< 03+ | |
02 { : ‘original RAL' —+—
“ | B 'S races) -
0.1 td ! ‘20 waces' -6

0 200 400 600 800 1000 1200 1400
Number Of Episodes

Figure 7: The learning curves of RRL and G-RRL for the
stacking task.

On(A.B)

1

08

06

04

Average Reward

0.2

0 S H
o 2000 4000 6000 8000 10000
Number of Episodes

Figure 8: The learning curves of RRL and G-RRL for the
on(a,b) task.

In summary, a moderate number of optimal traces helps
the learning process converge faster and/or to a higher
level of performance (average reward).

The learning curves for the stacking and on(a, b) prob-
lems are given in Figures 7 and 8. G-RRL is supplied
with 5, 20, and 100 of optimal traces. Providing guidance
clearly helps in the on(a, b) case, but less improvement is
achieved when more traces are provided.

For stacking, better performance is achieved when pro-
viding 5 or 20 traces. However, providing 100 traces ac-
tually causes worse performance as compared to the orig-
inal RRL algorithm. The experiment takes longer to con-
verge and during the presentation of the 100 traces to G-
RRL no learning takes place. The problem is that we sup-
ply the system with optimal actions only and it overgener-
alizes, failing to distinguish between optimal and nonop-
timal actions.

The Digger game

In the Digger Game, in addition to the state and action
representation mentioned earlier, predicates such as
emerald/2, nearestEmerald/2, monster /2,
visible Monster /2, distanceTo/2, getDirection/2,
lineQfFlire/1, etc., were provided as background know!-
edge for the construction of the Q-tree. Since it is hard to
write an optimal policy, we used a policy generated in ear-
lier work (Driessens & Blockeel, 2001) by RRL (which
already performed quite well).

The Digger Game
1000 _—
800 o aRiag2l p

R IR0 500

Average Reward
-3
8

‘original RAL" ——

'S races’ -3¢~

. '20 vaces’ g3~

0 200 400 600 800 1000
Number Of Episodes

Figure 9: Learning curves for RRL and G-RRL for the
Digger game.

The Tetris Game

6

5

S

Average Reward
N w

-

‘oniginal RRL' ——

'5 traces’ -—-x—

0 g N 20 races' —a-

] 2000 4000 6000 8000 10000
Number Of Episodes

Figure 10: Learning curves for RRL and G-RRL for the
Tetris game.

Figure 9 shows the average reward obtained by the
learned strategies over 640 digger test-games divided over
the 8 different Digger levels. It shows that G-RRL is
indeed able to improve on the policy learned by RRL.
Although the speed of convergence isn’t improved, G-
RRL reaches a significantly higher level of overall per-
formance.

The Tetris game

For the Tetris game, RRL could use the following predi-
cates (among others): blockwidth/2, blockheight/2,
rowSmaller/2, topBlock /2, holeDepth/2,
holeCovered/1, fits/2, increasesHeight/2,
fillsRow/2 and fillsDouble/2. Like with the Digger
Game, it is very hard (if not impossible) to generate an
optimal or even “reasonable” strategy for the Tetris game.
This time, we opted to supply G-RRL with traces of non-
optimal playing behavior from a human player.

The results for learning Tetris with RRL and G-RRL
are below our expectations. We believe that this is due
to the fact that the future reward in Tetris is very hard to
predict, especially by a regression technique that needs to
discretize these rewards like the TG algorithm. However,
even with these disappointing results, the added guidance
in the beginning of the learning experiment still has its
effects on the overall performance. Figure 10 shows the
learning curves for RRL and G-RRL supplied with 5 or
20 manually generated traces. The data points are the av-
erage number of deleted lines per game, calculated over
500 played test games.

6 Discussion

Relational reinforcement learning (RRL) is a powerful
learning approach that allows us to address problems that
have been out of reach of other reinforcement learning
approaches. The relational representation of states, ac-
tions, and policies allows for the representation of objects
and relations among them. Background knowledge that is
generally valid in the domain at hand can also be provided
to the generalization engine(s) used within RRL and adds
further power to the approach.

We expect RRL to be helpful to agents that are sit-
uated in complex environments which include many ob-
jects (and possibly other agents) and where the relations
among objects, between the agent and objects and among
agents are of interest. The power of the representation for-
malism used would allow for different levels of awareness
of other agents, i.e., social awareness (Kazakov & Ku-
denko, 2001). Knowledge about the existence and behav-
ior of other agents can be either provided as background
knowledge or learned.

There are many open issues and much work remains
to be done on RRL. One of the sorest points at the moment
is the generalization engine: it turns out that G-trees and
TG-trees try to represent all policies followed by the agent
during its lifetime and can thus be both large and ineffec-
tive. Developing better incremental and relational gener-
alization engines is thus a priority. Finding better ways
to integrate exploration and guidance also holds much
promise for RRL. Finally, we are seeking to apply RRL
to difficult, interesting and practically relevant problems.

Bibliographic notes

This paper summarizes research on relational reinforce-
ment learning that has previously been published else-
where. Relational reinforcement learning (RRL) was in-
troduced by (Dzeroski et al., 1998) and further extended
and experimentally evaluated on the blocks world by (Dze-
roski et al., 2001). (Driessens et al., 2001) replaced the
non-incremental generalization engine in RRL the with
TG-tree algorithm, a relational version of the G-algorithm,
yielding the RRL-TG algorithm.

(Driessens & Blockeel, 2001) applied RRL to the Dig-
ger game problem. (Driessens & Dzeroski, 2002) ex-
tended RRL-TG to take into account guidance from exist-
ing reasonable policies, either human generated or learned.
They applied G-RRL to the Digger and Tetris games.

Acknowledgements

The author would like to thank Hendrik Blockeel, Kurt
Driessenes and Luc De Raedt for the exciting and pro-
ductive cooperation on the topic of relational reinforce-
ment learning. Special thanks to Kurt Driessens for some
of the figures and results included in this paper.

References

Bertsekas, D.P,, & Tsitsiklis, I.N. (1996). Neuro-Dynamic
Programming. Belmont, MA: Athena Scientific.

Blockeel, H., De Raedt, L., & Ramon, J. (1998). Top-
down induction of clustering trees. In Proc. 15th Inter-
national Conference on Machine Learning, pages 55—
63. San Francisco: Morgan Kaufmann.

Chapman, D., & Kaelbling, L. P. (1991). Input generaliza-
tion in delayed reinforcement learning: An algorithm
and performance comparisions. In Proc. 12th Interna-
tional Joint Conference on Artificial Intelligence, pages
726-731. San Mateo, CA: Morgan Kaufmann.

Driessens, K., & Blockeel, H. (2001). Learning Digger
using hierarchical reinforcement learning for concur-
rent goals. In Proc. 5th European Workshop on Rein-
forcement Learning, pages 11-12. Utrecht, The Nether-
lands: CKI Utrecht University.

Driessens, K., & DZeroski, S. (2002) Integrating ex-
perimentation and guidance in relational reinforcement
learning. Submitted for publication.

Driessens, K., Ramon, J., & Blockeel, H. (2001). Speed-
ing up relational reinforcement learning through the
use of an incremental first order decision tree algo-
rithm. In Proc. 12th European Conference on Machine
Learning, pages 97-108. Berlin: Springer.

Dzeroski, S., De Raedt, L., & Blockeel], H. (1998). Re-
lational reinforcement learning. In Proc. 15th Interna-
tional Conference on Machine Learning, pages 136—
143. San Francisco, CA: Morgan Kaufmann.

Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Rela-
tional reinforcement learning. Machine Learning, 43,
7-52.

Kazakov, D., & Kudenko, D. (2001). Machine learning
and inductive logic programming for multi-agent sys-
tems. In Luck, M., Marik, V., Stepankova, O., and
Trappl, R., editors, Multi-Agent Systems and Applica-
tions, pages 246-270. Berlin: Springer.

Lavrag, N. and DZeroski, S. (1994). Inductive Logic Pro-
gramming: Techniques and Applications., New York:
Ellis Horwood.

Smart, W. D., & Kaelbling, L. P. (2000). Practical rein-
forcement learning in continuous spaces. In Proc. 17th
International Conference on Machine Learning, pages
903-910. San Francisco, CA: Morgan Kaufmann.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
Learning: An Introduction. Cambridge, MA: MIT
Press.

Adaptive Agents to Heterogeneous Platforms,
New Protocols & Evolving Organizations

Laurent Magnin*

Viet Thang Pham*

Arnaud Dury* Nicolas Besson*

Houari Sahraoui**

CRIM, 550 Sherbrooke Street West, Suite 100
Montréal, Québec, Canada H3A 1B9
{firstname.lastname } @crim.ca
Tel. +1 (514) 840 1234 - Fax. +1 (514) 840 1244

* Université de Montréal, Québec, Canada
sahraouh @iro.umontreal.ca

Abstract

Adaptive agents provide a natural and clean way to deal with heterogeneous, distributed and unpredictably evolving
environments, such as Internet. In this paper, we present a model of agents that are able to adapt themself to their
environment by several ways. Using a middleware approach, our agents, called Guest, can run, communicate and move
between different multiagent platforms, which are a priori incompatible. Guest agents can also change dynamically
their capabilities, based on the concept of plug-ins. To build multiagent applications, Guest agents are able to organize
themselves into centralized or distributed hierarchies. These agents can even change automatically their organizational
models to adapt to their evolving environment, using metamodeling technique.

1 Introduction

Multiagent systems are probably one of the most suitable
approaches to build applications in open, heterogeneous,
evolving and distributed environments, such as the Inter-
net (7) (8). Being autonomous, agents running in such
complex environments for a long period of time need to
be self-adaptive to different platforms and new protocols.
To bring this important caracteristic to agents, instead of
a top-down approach where the main focus is on func-
tionalities or behavior adaptation, we follow a bottom-up
approach: it is useless to provide learning capabilities to
agents if they don’t have first basic tools to deal with such
environments.

This paper will present some of the means we are us-
ing to achieve this vision. First, we propose a model of
agents that are able to run, communicate and move be-
tween different multiagent platforms. This model is based
on a middleware between such agents and platforms (sec-
tion 2). We then describe briefly the implementation of
this model on a kind of agents called Guest, which can be
used the same way regardless of the kind of servers they
run on (section 3). Next, we introduce a framework called
plug-ins that allows agents to dynamically add, remove or
upgrade their capabilities, such as understanding of new
communication language, reasoning algorithm, etc. (sec-
tion 4). Third, we propose two kinds of dynamic agent

hierarchies, one is based on a middleware for the central-
ized context, while the other is designed using plug-ins
for the distributed scenario (section 5). Lastly, we present
a metamodel of agent control mechanisms to allow such
agents to automatically adapt to their environments using
the tools we early described (section 6).

2 Adaptation to heterogeneous
multiagent platforms

An agent could only run on its own platform. For exam-
ple, an Aglets agent can only use an Aglets based server,
not a Grasshopper based one. The opposite is also true.
Considering limited multiagent applications, this is not a
real problem. However, future agents running in Internet-
based open applications will have to be able to adapt them-
selves to heterogeneous servers provided by different part-
ners.

Three feasible solutions to this interoperability prob-
lem can be envisioned: the use of standards (3) (11), the
use of converters between platforms (15) and the creation
of a generic interface (middleware approach). As (2), we
choose the last one: we implement our generic agents
(9) by using interfaces (see figure 1), more precisely by
providing an intermediate layer called Guest between our
Guest agents and the targeted agent platforms (all Java

Guest Agent

Agent

Guest Interface

Agent platform

Virtual Machine

Hardware

Figure 1: Guest interface

based). This layer is a two-sided entity: on one side, the
Guest AP] that is visible to an application programmer, on
the other side a platform-dependent layer, which we pro-
vide. In that way, our agent will be able to run and even-
tually talk to native agents on these different agent plat-
forms while maintening the same functionality thanks to
interfaces (one per platform). That does not imply that all
of the platforms need to integrate these Guest interfaces:
it is only when a Guest agent reaches an agent server that
the Guest Java classes need to be downloaded from a spe-
cific server by the Java Virtual Machine (JVM) without
modifying the server behavior. This method does not im-
pose a new standard, or more precisely parties who want
to use the genericity of the Guest API do not require that
Guest becomes a standard. This point is essential to the
success of our approach.

A Guest agent is made up of two facets: one is spe-
cific to the platform expected to carry the agent, the other
one is independent of any platform. Moreover, in order
for this Guest agent to move from one platform to an-
other, it should be able to change dynamically its specific
facet while maintaining its internal status. It is generally
impossible to get access to the source code of agents asso-
ciated with the targeted platforms. As a result, it is impos-
sible to implement these generic agents by a modification
of their code which is offered by the platforms. We must
resort to interfacing with the public methods proposed by
these agents. Therefore, our solution consists in designing
a Guest agent modeled as the sum of two interconnected
agents. The first one (so-called native agent) inherits from
the agent class of the targeted agent platform. The sec-
ond one (so-called generic agent with the purpose of im-
plementing the agent function) inherits from the generic
agent class Guest. It is the only part of the agent that will
move between servers when the agent migrates !. Conse-
quently, our agents are simultaneously perceived by plat-

L As is the case on many other agent platforms, the current state of the
running agent will not been saved and restored when the agent migrates
from one server to another. It is the duty of the agent programmer to
solve this problem by using specific methods which are called just before
and after the migration

10

forms as being native and by their originators as being
platform-independant Guest agents. Our model requires
slightly more resources than a native model: memory con-
sumption and CPU overhead are limited, but are far from
being doubled.

A critical constraint has to be mentioned: all the se-
lected platforms require using their own Java Virtual Ma-
chines. When a composite Guest agent migrates, the generic
part will be handed over to the targeted JVM right af-
ter the native part is created on it. Upon completion, the
composite agent will be removed from its originating plat-
form, thus ending the migration process. One of the con-
ditions for the agent migration is to ensure that the Guest
agent is serializable.

As mentioned above, our Guest agents must have Guest
interfaces adapted to specific multiagent platforms if they
are intended to be operational. There are already Guest
interfaces on those Java based platforms:

e ASDK, Aglets Software Development Kit (1), orig-
inally developed by the IBM Tokyo Research Lab-
oratory.

e CorbaHost, our own Java server implementation on
top of Corba (Orbix by IONA(4)) 2.

o Grasshopper (5), commercial product of German
firm IKV++.

e Jade (6), an open source platform which is Fipa
compliant 3.

e Voyager (12), commercial product of ObjectSpace.

3 Generic Guest Agents

Our goal is not only to have agents that can run on dif-
ferent platforms but also not to care about the platform
they run on. In other words, the agent programmer will
work with the uniform interface we provide, but will not
have to deal with specific code for the different targeted
platforms. For example, the agent programmer can use
the same addressing schema to represent addresses of dif-
ferent servers, regardless of their platforms. We achieve
this by providing a complete and operational set of agent
features through the methods provided by the GuestAgent
class. Of course, the API of such methods is the same re-
gardless which platform the agent is running on.

3.1 How to deal with specific features of the
platforms ?

By providing always the same interface to our Guest agents,
do we restrict the features allowed to them to the most

2We developped this server to offer the bridge between our Guest
agents and the world of CORBA.

3We specially choose this platform to provide Fipa communication
capabilities to our Guest agents.

Guest Agent

Guest
Interface

Platform’s
Features
Virtual
Machine

Hardware

Figure 2: Equivalent features provided by native plat-
forms

common denominator of the different platforms they can
run on? In other words, in order to be provided by Guest
should a feature be available on all targeted platforms?
If so, only limited functionalities would be given to the
agents. Also, only platforms providing all of Guest cur-
rent features would be able to be added to the targeted
platforms.

Fortunately, this constraint does not hold. To explain how
we deal with this problem, we have to divide the features
in three sets. The first one contains features that are quite
similar for all platforms. For example, Aglets, Grasshop-
per and Voyager provide the ability to send a message to
an agent by calling a proxy.function(args) like method,
0, the Guest interface can implement this functionality
simply by calling the native method of the targeted plat-
form. In figure 2, we show that the Guest code (the black
square on the first column) is merely a simple function
call. In the second case, a feature is different on the tar-
geted platforms. For example, the naming services are
different for Aglets, Grasshopper and Voyager. To solve
this problem it is possible to implement this feature inde-
pendently, inside the interface. In figure 3, we show that
Guest implements the same functionality on the three dif-
ferents platforms (the functionality being the black area
on the second column of fig. 3). That way, Guest pro-
vides a uniform type of addresses for agents running on
these three platforms.

Last case, a feature can be unavailable on some plat-
forms. For example, Voyager does not provide a function
that returns all of the agents running on a specific server.
Such a function can be implemented from scratch for this
platform. At the same time, this function can also be
based on a call to the native functions provided by Aglets
and Grasshopper. In figure 4, we show in the third col-
umn that the Guest implementation (the black area of the
figure) varies from platform to platform, from a simple
function call (on aglets and voyager) to a full implemen-
tation (on grasshopper).

In conclusion, our middleware approach allows us to
provide a uniform set of functionalities to universal agents

"

Guest Agent

Guest
Interface

Platform’s
Features
Virtual
Machine

Har dware

Figure 3: Different features provided by native platforms

Guest Agent

Guest
Interface

Platform’s
Features
Virtual
Machine

Hardware

Figure 4: Lack of features provided by native platforms

despite the fact that the targeted platforms could have var-
ious features and goals.

3.2 Guest Agent Model
3.2.1 Agent’s life cycle

No matter on what server a Guest agent executes, the
agent can be in one of the following states:

e STATUS.CREATION : agent is built, but has not
been initialized and can not communicate with other
agents.

e STATUS EXECUTION : agent finishes initializa-
tion, can communicate with other agents and can
be fully used.

o STATUS_MIGRATION: a mobile agent is in this
state when it is on the way to its destination. Such
a moving agent can not directly receive and process
messages, but all the messages sent to the agent
during this period are buffered and later forwarded
to it.

e STATUS_SAVE: when an agent stops temporarily

its work and saves itself on disk, it is changed to

Migration
faile dMigration

MigrationError

preMigra! auto

Creation

O: preExecution

preSake

Removal

preRemaval .

Execution

auto

pogiRestore

failedSave
SaveError

Figure 5: The agent life cycle

this state. An agent at this state can not receive mes-
sages and does not do anything. However, such an
agent can be woke up by itself or by another agent
to continue its task.

s STATUS_REMOVAL: agent enters this state when
it prepares to die. An agent in this state can not be
moved or saved.

The other two states: MIGRATION ERROR and SAVE .-

ERROR are temporal states and are used internally by
GuestAgent.

This life cycle model is the most common part of the
different life cycles of the four targeted platforms. More-
over, it is sufficient to express different states and to sup-
port all the basically necessary functionalities of a univer-
sal agent. For example, states of a JADE agent, which
strictly follows the Agent Platform Life Cycle in FIPA

specification, can be easily mapped into states of our model:

AP_INITIATED — STATUS_CREATION, AP_ACTIVE
— STATUS_EXECUTE, AP_DELETED — STATUS RE-

MOVAL, AP_TRANSIT — STATUS_MIGRATION. AP_SUS-

PENDED and AP_WAIT should be represented as a sub-
state of the STATUS _EXECUTE, because an agent in these
states is still alive and the actions of SUSPEND and WAIT
can only be activated by an agent on itself.

3.2.2 AgentURL

In the Guest platform, the address of an agent is uniformly
represented by a GuestURL. A GuestURL has the syntax
of a common URL: platform_protocol://host name —
IP_address:port{/optional]

e platform protocol represents the protocol support-
ing the specific native platform. For example, Guest

platform supports Grasshopper, Voyager, Aglets, Cor-

baHost ¢ and JADE by offering the following proto-
cols: GH, VY, AG, CH and JD, respectively. Based
on this signature, agent can correctly activate the
appropriate native part to accomplish its task ;

“4CorbaHost is 2 small agents server on top of Corba we created.

12

e host_name is the domain name of the computer on
which the agent executes. It can be replaced by the
IP address of this computer ;

e port is an integer indicating the port on which the
native server is listening ;

e optional is used to represent the platform-dependant

extension of the GuestURL. For example, the Grasshop-

per agent needs to include Place and Region in its
address, this extension is therefore necessary.

This form has proved to cover all the representative forms
of agent addresses of the four targeted platforms. For ex-
ample, an Aglets server uses the following string to repre-
sent its address: “atp://halida.crim.ca:4434”. This address
can be easily transformed into the GuestURL as "AG://
halida.crim.ca:4434” and vice versa.

3.2.3 Agent communication

Any Guest agent can send and receive Guest messages
through an uniform API. As the communication between
Guest agents running on the same platform use the na-
tive layers provided by the platform, the communication
between heterogenous platforms is based on Java RMI
This mechanism enables the delivery of Guest messages
between heterogeneous platforms, but does not allow the
processing of native messages exchanged between non-
Guest agents. Such capability is nevertheless possible us-
ing direct access to the native agent, which is also sup-
ported by the uniform APIL. However, that code is platform-
specific and may not be executed on all platforms. Guest
platform supports three communication modes between
agents: synchronous, asynchronous and future reply. While
the first two modes use the communication service of the
native platform, the last one is completly implemented in
Guest based on the synchronous communication mode.

4 Adaptive agents based on plug-ins

In an open, evolving multiagent world, new algorithms
and services will be put into use during the life-cycle of
an agent or system. For example, a new compression al-
gorithm may be used to compress messages, or a new kind
of cryptographic signature may be released. To adapt to
that kind of environments, our agents need to be able to
apply "on the fly” these new algorithmes and services,
without having to restart any part of the system. More
precisely, we want to be able to design “new capabilities”
in an agent-independent way, and then allow our Guest
agents to use them on demand.

Guest agents are currently able to operate on heteroge-
noeous platforms, thanks to the interface layer on top of
native agents. This interface layer encompass creation
and destruction of the native agent, message sending and
receiving, migration, etc and is therefore sufficient in terms
of agents programming. But it is fixed at the runtime and

SENDER

GuegtAgont
sandGuestMeassage
{message, dest}

sendGuestMessage —P
(massage) .
GuestProxy
sendGuestMessage
(message)

H NativeProxy
) sendGuestMessage
: (message)

e M o e UM sua EE mm G WA e N e W e e

RECEIVER

GuestAgent
handieGuestMessage
(message)

handleGuestMessage
(message)

NativeAgent
handleGuestMessage
(message)

synchronous/ asynchronous
communication of the native plaform

Figure 6: Two base communication modes

not suitable for dynamically adding new capabilities to an
existing agent: any modification implied to this interface
requires the restart of all the agent servers on which Guest
agent are running. Therefore, we need a more convenient
way 10 solve this problem. Our solution is to embed in
the kernel of the Guest agent a framework called plug-in.
A plug-in is a component (compiled code of one or some
objects) which can be associated with an agent and im-
mediately offer some new services. This framework has
several clear advantages:

¢ Enable Guest agent to modify dynamically its capa-
bilities and therefore adapt to the evolving environ-
ment. For example, one agent can learn” to com-
press/decompress data by loading a compression
plug-in. When it no longer needs these functions,
it can simply forget” it by unloading the plug-in.
The agent can even “upgrade” its compression tech-
nique by changing the current compression plug-in
for a more sophisticated plug-in;

e Enable reuse and sharing of services: a compres-
sion plug-in can be developped and deployed by a
third party. It can then be used as an Off-The-Shelf-
Component.

A plug-in can perform any of the following three types
of actions:

o Observe the change of the associated agent state
and possibly prevent this change in some cases (mi-
gration or deactivation of the agent);

o Observe the communication of the associated agent
(sending and receiving a message) and possibly in-
tercept an incoming/outgoing message;

13

¢ Offer a library of new services to the agent. These
services can be used by indicating the name of the
service and all the necessary parameters, or by first
obtaining a plug-in reference and then accessing to
the services using normal function call on this ref-

erence.
Agent load - load
unload S | vnload - GuestPlugin
invoke i invake
stateChanged | 8 latateChanged
msgArived & | msgAnived HGUZTt
® andler

Figure 7: Plug-in framework

The relationship between a plug-in and an Guest agent
is clearly defined in the base class GuestPlugin. This class
contains necessary methods for the load, unload and dis-
covery of a plug-in. Every plug-in must extend this class
in order to cooperate correctly with the agent and offer its
services to the agent user. All the new services (high-level
functionality) of a plug-in are exposed to the agent user
through its reference and can be easily accessed by simple
function calls. Moreover, these services can be normally
used outside the agent via the associated agent’s proxy,
without having to modify this one. All the actions of
observing/intercepting agent state/communication events
are low-level functionality of a plug-in and separately han-
dled by a "secret part” of the plug-in, called handler. A
handler makes part of a plug-in and is totally hidden from
outside the plug-in in order to prevent unattended and
unauthorized access. Every handler must extend the base
class GuestHandler and implements some of the prede-

fined interfaces to declare what kind of events it is inter-
ested in. For example, a handler which implements the in-
terface ISynGuestMessageHandler will be automatically
called by the associated agent each time a synchronous
communication event is fired.

Moreover, the mecanism of event handling is not a
mere chaining, but is in fact more sophisticated. Upon
loading, a plug-in exports to the agent its activation func-
tion. This function is a filter, applied on incoming mes-
sages and events, deciding on which ones the plug-in of-
fers its services. For example, a dedicated decompression
plug-in would ask for activation only when compressed
messages are received. It would then ask for activation
for each potentially encapsulated compressed message.
Any given plug-in can be used any number of times dur-
ing the processing of a message or an event. This allows
us to provide new capabilities (for instance compression
and cryptography), even if we don’t know in advance the
proper layering of the message by the other agents (do
they first sign, and then compress? Or do they compress,
and then sign?). This is a very important capability in the
kind of open environment we developed Guest for.

Qur design ensures the maximum dynamicity for the
modularization by allowing a plug-in to be associated with
an agent at any time during the agent’s life and removed
whenever the user no longer needs it. The deployment of
these plug-ins is also flexible: one plug-in doesn’t have to
be bundled in the packages but can be downloaded from
an Internet site.

Using the plug-in framework, we already developed a
graphical interface that allows a special user to visually
observe the Guest agents on the network (using different
native platforms), see figure 8.

X ARegion viewer

(5

19 (@ pvthang.7000 :
i @ & Agent2:Working |

- “®. ReglonViewer627024535
9 @) pvthang:8000
9 1. Agant3: Warking
+~ :® ReglonViewer-1697620316
9 (&) pvthang:e000
4 @ & Agentt :Working
«: RegionViewer-1046443494
3 onthe way

Figure 8: Guest Graphical interface

This was done by creating plug-in which intercepts
the changes of agent’s state during the migrations and in-
forms the GUI to visually reflect these changes on the
screen. Consequently, an agent can be observed only by
associating with it this plug-in even if this agent was not
initially supposed to offer this service. By the same way,
it will be possible to allow a Guest agent to be compatible
with standards of agent interactions, such as KQML(19),

14

Fipa (3) or any new standard that can be defined in the
future.

In the next section, we will show how to use the plug-
in framework to intergrate the distributed hierarchical agent
model in Guest.

5 Adaptive hierarchical multiagent
systems

Not only agents need to be adaptive, but also organiza-
tions of agents need to be. Working on different kind of
such organizations, we will focus on this paper on a spe-
cific one: agents’ hierarchies’, which can be dynamically
modified.

We developed two different ways of building such hi-
erarchies that are described in the following sections. The
first one uses our middleware approach by implementing
at the agent level the platform interface: each agent can
now be seen as an agent server, which is able to receive
and run other agents. The second one uses a specific plug-
in we developed that can dynamically modify the routing
of messages between agents to offer the functional ap-
pearance of a hierarchy.

5.1 Agents as servers
5.1.1 Principles

In the context of the Guest platform, an agent server is
a container which is able not only to provide resources
(such as CPU time) and communication service to other
agents, but also to monitor and control the life cycle of
these agents. We have designed Guest agents to be able to
act as servers (parent agent), i.e. they can accept and exe-
cute other agents (children agents). These internal agents
in turn can also be servers for other agents and so on re-
cursively. Finally we have a group of agents organized
into a hierarchy. In this hierarchy, only the root agent
needs to be connected to the native platform, through the
Guest interface. The other agents are just connected to
their corresponding parent agents through the parent/child
interface, which is mostly the same as the Guest interface.

This hierarchical model simplifies the design of a mul-
tiagent system, particularly for those whose processing
can be divided into hierarchical tasks: the native platform
sees a hierarchy as a unique agent, and the outside world
may be given a unique entry-point (the root agent) for the
hierarchy. The parent agent has total control on its chil-
dren: migration, destruction, etc. and the root agent is
thus able to control all the agents in the hierarchy. For
example, when an application has to migrate from one
server to another (because of harware failure, for exam-
ple) it only needs to ask the root agent to move, then the

5 A hierarchy in our platform is a direct acyclic graph of binary par-
ent/child relations.

Parent/Child
Interface

/ Native
Platform

Figure 9: Agents as servers

Native/Guest
interface

whole hierarchy will move together. The organization is
maintained and the application resume its work normally
right after it arrives at the new destination. The commu-
nication between parent and child agents is local and very
efficient. The consumed resources are considerably re-
duced because only one native agent is required for the
whole hierarchy. The hierarchical model is thus one of
the most natural ways to “agentify” a whole multiagent
systems, except that it requires that all the agents in the
hierarchy reside on the same server.

5.1.2 Implementation

This hierarchical model is implemented in the kernel of
the Guest platform. To represent the structure of the hi-
erarchy, the concept of GuestURL is extended to encap-
sulate not only the address of the server of the agent but
also the path from the root of the hierarchy to this agent.
That way, integration of an agent into a hierarchy is done
by a migration where the URL of the target is another
agent instead of a real server. The life cycle of the chil-
dren is monitored and intercepted by a mechanism similar
to the one used by the plug-in. All the messages sent to a
child will be firstly received by its parent and then be for-
warded (according to the parent policy) to it. We added a
new interface into the GuestAgent to allow it to manage
children’ communication and their execution threads, this
interface is similar to the native agent interface but has
some new specific functions for the hierarchy : add, re-
move, etc. The child can be dynamically connected to its
parent through this interface and has the impression that
it is fostered by a server. The communication between
the parent and its children is implemented as direct func-
tion calls, thus greatly increasing the speed of exchanging
messages (compared to the usage of the ’send a message”
primitive).

To overcome the limit that all the agents must be on
the same server, we propose in the next section another
hierarchical model, using rerouting technique.

15

5.2 Dynamic rerouting
5.2.1 Principles

Rerouting messages between agents is the other method
we use to model the creation of dynamic hierarchies be-
tween multiple cooperating agents. This mechanism al-
lows a group of agents to organize themselves into a more
efficient multi-agent structure by dynamically rerouting
messages received by the structure. The main idea be-
hind this concept of rerouting is: in order to function as a
hierarchy, a group of agents needs to have a leader (root
of the direct acyclic graph describing the hierarchy) that
receive and dispatch all the messages for the group (this
process is recursive, as is the case with the previous hi-
erarchy model). If an agent in a hierarchy, that is not the
root of this hierarchy, receives a message then it reroutes
it to the root of its hierarchy. We are in fact replicating
the way the previous model of hierarchy (see 5.1) works,
but in this new model, agents don’t need to be physically
on the same server. The rerouting of messages will du-
plicate the way the previous hierarchy works, without its
constraints of physical locality. This model is not without
its flaw: the number of messages exchanged will increase,
compared to the previous model of hierarchy (see 5.1).

Figure 10: Building a hierarchy using dynamic rerouting

5.2.2 Implementation

This dynamic rerouting is implemented by a specific plug-
in, the Hierarchical plug-in. This plug-in offers the fol-
lowing services:

¢ ask a potential father to register the agent (create a
new Father-Child link)

o ask the father to unregister oneself (Child ask to de-
stroy the link its Father)

¢ obtains the list of all the childs of the agent

o find whether or not a given agent is a children

¢ find whether or not a given agent is a grand-children

¢ allow each agent to express its acceptance policy
for accepting a new child

o allow each agent to express its acceptance policy
for letting a child leaving the hierarchy

e allow the Guest graphical interface to display the
hierarchy as a tree

Group creation is implemented by a two-way hand-

shake between the agent willing to join the group, and his
desired leader in this group. The agent sends a request
to the desired leader, and upon acceptance reroutes all of
his incoming messages to this leader for approval. This
mechanism, being used in a recursive way, leads to the
creation of a hierarchy between agents.
Group destruction follows the same principle: each agent
willing to leave the group generates a request to its direct
father. This request can be forwarded through child to fa-
ther to grandfather etc. up to the root of the hierarchy.
The acceptance policy is based on the acceptance of each
father, from the agent up to the root (that is, each father
can express a veto on the decision). Upon entering 2 hi-
erarchy, an agent looses its ability to process directly any
incoming message. It will from now on have to ask its
direct father for the authorization to process the incoming
message (see figure 10). This ensures a uniform process-
ing of the request by a unique agent (the leader), even
if the outside agents are not yet aware of the new orga-
nization, and erroneously send their request to an agent
inside the group. We now introduce a possible use of
this model, considering the following context: how to add
load-balancing capability to an application ?

5.2.3 Load-balancing example

A capacity that is usually not straightforward to imple-
ment for a system, but is easily implemented using this
kind of hierarchy, is the capacity of load-balancing for
an application. Load-balancing is the process by which
a computation requiring lots of ressources (memory or
CPU time usually) is distributed among a network of com-
puters, according to the load of each computer, and the
computation itself. Using Guest agents and hierarchies,
a simple way of implementing load-balacing is feasible:
an agent is created to realize a piece of the computation
(for instance, an agent that is able to render a pixel, in
a raytracing application). This agent loads the hierarchy
plugin we describe in 5.2.1. This agent then connects to a
GuestRegion® to discover the other servers. As this agent
receives pixel-rendering requests from an outside (poten-
tially non-agent oriented) application, it creates clones of
itself, and these clones register themselves as children to
the first agent. Each clone is able to move to a server with
a lighter load than its own. The first created agent will be

6A GuestRegion is a specific service of Guest that allows agents to
track existing agents and servers.

16

the only agent known to the outside world, and will pro-
cess requests and dispatch them among pixel-rendering
agents. These pixel-rendering agents won’t respond to
any other agent, and would automatically forward to their
father any incoming message. In this context Guest pro-
vides a way to keep track of all pixel-rendering agents, to
allow them to choose the server with the mininum load
while keeping their link with the dispatcher agent and to
enforce the rule that rendering agents will respond only
via their dispatcher father.

5.3 Designing a hierarchy using both appro-
aches

Hierarchy is a useful way of modeling certain execution
strategies in multi-agent systems. We described in the
precedent section the use of hierarchies to add load-balancing
capability to an application. This use of the concept of
hierarchy (and its current implementation in Guest) can
be refined even further. The distributed hierarchy we de-
scribed in figure 10 is inefficient in terms of number of
messages exchanged: for each message received by an
agent inside the hierarchy, another one is generated to for-
ward the incoming message to the root of the hierarchy.
We describe now the inefficiency problem associated with
distributed hierarchy when the number of agents is infe-
rior to the number of servers, and a way to optimize the
efficiency of a distributed hierarchy by combining it with
a centralized hierarchy each time two or more agents are
on the same server.

5.3.1 The problem: inefficiency of the distributed hi-
erarchy

Suppose we have three servers, and ten agents in a hierar-
chy, distributed among these servers. We cannot use the
highly efficient (in terms of messages exchanged) central-
ized hierarchy,because we have to use several servers, and
the distributed hierarchy that we have to use is less effi-
cient in terms of number of messages exchanged (due to
the re-routing process). The solution we now describe is
simply to combine both.

5.3.2 Combining both hierarchies

We introduce a new execution strategy, that allows us to
automatically minimize the number of messages exchanged
inside a hierarchy. The strategy is simply to adapt the kind
of link between two agents according to the servers they
are on. The hierarchic link between two agents on the
same server will be of the first kind (see 5.1), whereas the
link between two agents on different servers will be of
the second kind (see 5.2). When an agent in a hierarchy
migrates, the type of link with its own parent is changed.
Using both hierarchies, we are now able to minimize the
number of messages exchanged at the strict minimum,
because we no longer have to reroute message between

agents on the same server. We discuss in section 6 the use
of meta-modelling to allow for automatic adaption of the
hierachy.

6 Self-adaptive agents by
metamodeling

Until now, we presented “*base bricks”, which allow to
modify, even in the course of execution, the control mech-
anisms and the functionalities associated with a Guest
agent. However, the question of the layout of these bricks
still remains unanswered. How to prevent, for example,
two plug-ins, which are incompatible, to be used at the
same time within the same agent? How to ensure that the
use of one particular plug-in automatically leads to the
installation of another plug-in, essential to the first one?

The first approach to solve these issues (approach which
we could called ascendance) would consist in describ-
ing all these constraints in the form of rules. This ap-
proach could prohibit a certain number of configuration
or add/remove some plug-ins associated with the agent,
when certain particular conditions or actions are met.

However this solution seems too limited to be able to
deal with complex and especially nonforeseeable configu-
rations, such as the case with the Internet. This is why we
prefer the descendant approach, based on the description
of the agent in the form of the abstract models which can
be instantiated in fine. Furthermore, such models allow a
greater generalization to take place.

In order to more easily be able to manipulate these
models, we should represent them in a uniform fashion.
In other words, we should model them in a form which
would become the de facto metamodel (18) of the agents.
Our work is to research the mechanisms allowing to model
the transformation from one model to another, and these
changes, of course, can be defined by the same (static)
metamodel. This metamodel should allow not only to de-
scribe all the possible transformations, but also to enable
the correct transformation of one agent from a state cor-
responding to a given model to another state described by
another model.

The principal of our model is the horizontal separation
between the “control” part of the agent and its "function”
part, based on the research in (21) (20) and validated in
the development process of the platform Guest. The “con-
trol” part is application-independant and presents in all or
most agents. For example, the communication or the ca-
pacity of migration of an agent, or even the agent model
itself, can be classified as “control” part. Meanwhile, the
capacity of learning or reasoning of an agent belongs to
the “function” part, because it is application-dependant or
at least domain-dependant. If our model can support au-
tomatic adaptation to the “control” part of agent, which is
possible because this part is application-independant, the
task of making an adaptive agent is much more easier and
can be semi-automatically done. For example, we already

17

have two models of hierarchical agent, one is most appro-
priate in the centralized scenario, while the other is prefer-
able in the distributed context. The rest of agents (percep-
tion, deliberation, action) is unchanged. If the “control”
part of agents is adaptive, agents can therefore transpar-
ently "switch” from one hierarchical model to the other
model when the scenario changes from centralized to dis-
tributed one or vice versa.

The figure 11 presents our model of agent, which dis-
tingushes between “control” and "function” part, along
with the concept of plug-in.

"'—ﬂ Plugins (ilbrarles} l
v

{ Function

H

Metacontrol layer

m HandlerManager o

< gmm
] IExternalHandlers aTs
BI—» » 252
c @5 &
o =3 c
5 InternalHandlers a8 “

ﬁlfe cycle] t:ommunication—l

Figure 11: Metamodel of agent

LResources l

In this model, the Metacontrol layer plays a crucial
role, that is to connect different pieces of agent control,
agent function and agent services (plug-ins) in the cor-
rect manner. Its architecture is inspired by the Java In-
foBus technology (22), the semantic of the connection
between different parts is captured in the types of events
and in the handler’s type. We will demonstrate how this
model works in the case of two types of hierarchical agent
model.

PARENT CHILD
Metacantral layer
HandlerManager T
s=m
ExternalHandlers §, % ; Metacontrol layer
9 532
',‘g' g - HandlerManager -
cursifandier g g
CRe wrstiandle: 1) § Externallandlers| i%g
=] ——» 2 3 =
H xS

Figure 12: Centralized hierarchical agent

The model of centralized hierarchical agent is repre-
sented in the figure 12. In this model, the CRecursHan-
dler is an internal handler, the bold line indicates that this
handler is viewed by the child agent as an agent server.

The parent and child agent are in the same JVM and all
the communications between parent and child are direct
function call, thus very efficient. The CRecursHandler
will control all the events related to the creation, destruc-
tion, migration and communication of the child agent.

PARENT

RecursionPlugin | P e ~~.
Phd]

CHILD

RecursionPlugin

N
Met trol Matacontrol layer
atacontro] Myer 9 yt

HandlerMgnager s Handl}lhnagnr -
- sem sgm
171 7]
] ' i35
F -8 =3 g

£ £

Figure 13: Distributed hierarchical agent

In the model of the distributed hierarchical agent, agent
needs to use an external handler, DRecursHandler, which
can be downloaded from a Web site and activated im-
mediately after it is initialized. All the communications
from/to the child agent are intercepted by this handler and
rerouted to the parent agent to be authorized. The dotted
link indicates that the rerouting is done through network
communication.

As a consequence, the dynamic transformation from

dleware approach. Based on a generic interface, Guest
agent applications are able to execute the same way with-
out worrying about the incompability between different
agent platforms on which agents are running. To be adap-
tive, Guest agents can dynamically update their capabili-
ties at runtime by adding or removing on demand plug-ins
dedicated to specific tasks like the authorization of migra-
tion or the handle of secured communication. Our Guest
agents also supports two organizational models: central-
ized and distributed hierarchy. Finally, we provide a meta-
model which allows agents to automatically change their
control mechanisms, such as organizational model, to adapt
to their environment.

Guest is already a full-fledged prototype with support
for interoperability between Aglets, Corba, Jade, Grasshop-
per and Voyager platforms. The plug-ins framework is
fully functional, both of the hierarchical models are im-
plemented and currently tested. We are working on the
implementation and validation of the presented metamodel.
Applications of the Guest platform in the real world cur-
rently include a completed work in the industrial building
management context.

8 Acknowledgements

This work is done at the CRIM laboratory and mainly
founded by it. We have also to acknowledge the efforts
of Nekrouf Ziani for HostCorba implementation and of

one model to another model is just simple as the activation/desac-1y,n Guentchey for his experiments on Jade, which were

tivation of the corresponding handler. We are now work-
ing on the next step, that is to offer agents the faculty to
automatically adapt themselves to their environment by
using these transformations.

For example, when an agent, or even a branch, of the
centralized hierarchy recognizes that the server on which
it resides is overloaded, it wants to move to another less
busy server, while assuring the integrity of the hierarchi-
cal organization by changing to the distributed hierarchy.

In order to do that, agent needs to use a third handler,
which is external and handles events of type "CPU over-
loaded”. Whenever an agent receives a signal from the
server that it is overloaded, this handler will be activated
and realize the transformation of the agent’s hierarchical
model.

7 Conclusion

Today’s multiagent applications must deal with new con-
straints of open and complex environments, of which the
Internet is the most typical example. The development
of these applications requires that agents become generic
and adaptive to their evolving environment, i.e. neither
linked to specific execution platforms or to a unique stan-
dard, nor fixed to a limited set of models and services.
This is why, in this paper, we have presented a new
model of uniform agents, called Guest, using the mid-

18

as other students who worked on this project, supported
by Laurent Magnin’s personal Research Grant from the
Natural Sciences and Engineering Research Council of
Canada.

References

{1] Aglets Workbench, http://aglets.sourceforge.net/

[2] Control of Agent Based

http://coabs.globalinfotek.com/

Systems,

(3] Fipa, Foundation for Intelligent Physical Agents,
http://www.fipa.org/

4] Orbix by IONA, http://www.iona.com/ Con-

current Objects: Briot-Gasser Interview”
http://www.lis.uiuc.edu/ gasser/AgentsAndObjects-
07.html

[5] Grasshopper, Grasshopper by IKV++,
http://www.grasshopper.de/

[6) The Java Agent DEvelopment Framework,
http://jade.cselt.it/

{7] Joshi, A. and M. P. Singh (1999). Multiagent Sys-
tems on the Net. Communications of the ACM 42
(March 1999) pp. 39-49. Communications of the

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17}

ACM 42 (March 1999) pp. 79-80. R. H. Guttman, et
al., Agents That Buy and Sell, Communications of
the ACM 42 (March 1999) pp. 81-91. First Interna-
tional Workshop on Mobile Agents for Telecommu-
nication Applications (MATA 99), Ottawa, Canada,
October 6-8, 1999

Magnin L., "Internet, environnement complexe pour
agents situés, Proceedings of the Intelligence artifi-
cielle situe conference, Paris, October 25-26, 1999,
pp-213-221.

Magnin L. and Alikacem E.H., Guest: Mul-
tiplatform Generic Agents, Proceedings of the
First International Workshop on Mobile Agents for
Telecommunication Applications (MATA 99), Ot-
tawa, Canada, October 6-8, 1999, pp. 507-514.

Magnin L., et al,, "Our Guest agents are wel-
come to your agent platforms”, The 17th ACM
Symposium on Applied Computing, Special Track
on Agents, Interactions, Mobility, and Systems
(AIMS), Madrid, Spain, March 10 - 14, 2002.
I’organisation dans les SMA. Application la concep-
tion des Syst?mes Coopratifs Distribus et Quverts,
Ph.D. thesis, University Paris VI, Paris, 1998. Mar-
ketplace, Proceedings of Autonomous Agents, Seat-
tle, ACM, May 1999.

[18] Revault N., Sahraoui H.A., Blain G., Perrot, J.-F. A
Metamodeling Technique: The MétaGen System”.
Tools Europe proceedings, (1995).

{19] KQML, http://www.cs.umbc.edwkqml

[20] Min-Young Yoo, Une approche componentielle
pour la modélisation d’agent coopératifs et leur val-
idation. Thése de doctorat de I’université Paris VI,
2000.

[21] Jacques Ferber, Les systémes multi-agents, InterEd-
itions, 1996.

[22] http://java.sun.com/products/javabeans/infobus.

OMG, MASIF: Mobile Agent
System Interoperability Facility,
http://www.fokus.gmd.de/research/cc/ima/masif/index.html
Voyager, Voyager by ObjectSpace,

http://www.objectspace.com/voyager/

Wong, D., N. Paciorek, et al., Java-based Mobile
Agents, Communications of the ACM 42 (March
1999) pp. 92-102.

Wooldridge, M., Intelligent Agents, Multiagent Sys-
tems (ed. by G. Weiss, Cambridge, London, The
MIT Press, 1999) pp. 27-78.

Tjung D., Tsukamoto M. and Nishio S., A con-
verter Approach for Mobile Agent System Integra-
tion: A Case of Aglet to Voyager, Proceedings of the
First International Workshop on Mobile Agents for
Telecommunication Applications (MATA 99), Ot-
tawa, Canada, October 6-8, 1999, pp. 179-195.

William Harrison and Harold Ossher, Subject-
oriented programming: a critic of pure objects,
in Proceedings of OOPSLA 93, Washington D.C.,
Sept. 26-Oct 1, 1993, pp. 411-428.

Gregory Kiczales, John Lamping, Cristina Lopez,
Aspect-Oriented Programming, in Proceedings
of the European Conference on Object-Oriented
Programming (ECOOP), Finland. Springer-Verlag
LNCS 1241. June 1997.

19

Dynamic Adaptation of Replication Strategies for Reliable Agents

Jean-Pierre Briot; Zahia Guessoum; Sébastien Charpentier;
Samir Aknine; Olivier Marin; Pierre Sens
LIP6, Université de Paris 6
BP 169, 4 place Jussieu, F-75252 Paris Cedex 5
Jean-Pierre. Briot@lip6.fr; Zahia.Guessoum@lip6.11; charpentier @ mangoosta.net;
Samir. Aknine @lip6.fr; Olivier.Marin @lip6.fr; Pierre.Sens @lip6.fr

Abstract

To make large-scale multi-agent systems reliable, we propose an adaptive application of replication strategies. Critical
agents are replicated to avoid failures. As criticality of agents may evolve during the course of computation and problem
solving, we need to dynamically and automatically adapt the number of replicas of agents, in order to maximize their
reliability and availability based on available resources. We are studying an approach and mechanisms for evaluating the
criticality of a given agent (based on application-level semantic information, e.g. messages intention, and also system-
level statistical information, e.g., communication load) and for deciding what strategy to apply (e.g., active replication,

passive) and how to parameterize it (e.g., number of replicas).

In this paper, we first present the replication mechanism and the framework named DarX that we developed to repli-
cate agents. We then describe a new model to evaluate dynamically the criticality of agents. Then we describe the
implementation of this model with the DarX fault-tolerant framework.

1 Introduction

A multi-agent system is a set of autonomous and inter-
active entities called agents (Avouris and Gasser, 1992).
Recent real-life applications (e.g., intensive care monitor-
ing, air traffic control and process control) are often dis-
tributed and must run continuously without any interrup-
tion. As a distributed system, however, multi-agent sys-
tems are exposed to possibility of failure of their hardware
and/or software components. The failure of one compo-
nent can often evolve into the failure of the whole system.
To make these large-scale multi-agent systems reliable, an
obvious solution is the introduction of redundancy: dupli-
cation (replication) of the critical components.

Replication mechanisms have been successfully ap-
plied for various distributed applications (Guerraoui and
Schiper, 1997), e.g. data-bases. But in most cases, repli-
cation is decided by the programmer and applied stati-
cally, before the application starts. This works fine be-
cause the criticality of components (e.g., main servers)
may be well identified and remains stable during the ap-
plication run.

Opposite to that, in the case of dynamic and adap-
tive multi-agent applications, the criticality of agents may

evolve dynamically during the course of computation. More-

over, the available resources are often limited. Thus, si-
multaneous replication of all the components of a large-
scale system is not feasible. The idea is then to auto-
matically and dynamically apply replication mechanisms
where (to which agents) and when it is most needed. In

20

this paper we will describe our approach to this objective
and the realized tool to build easily reliable multi-agent
systems.

This paper is organized as follows. Section 2 presents
fault tolerance concepts and replication principles. Sec-
tion 3 introduces a new approach of dynamic control of
replication. Section 4 presents the DarX framework that
we developed to replicate agents. This framework intro-
duces novel features for dynamic control of replication.
Section 5 describes our approach to compute agent crit-
icality in order to guide replication. Section 6 describes
the implementation of this solution and our preliminary
experiments.

2 Fault-Tolerance

2.1 First and Simple Example

We consider the example of a distributed multi-agent sys-
tem that helps at scheduling meetings. Each user has a
personal assistant agent which manages his calendar. This
agent interacts with:

e the user to receive his meeting requests and asso-
ciated information (a title, a description, possible
dates, participants, priority, etc.) ,

¢ the other agents of the system to schedule a meet-
ing.

If the assistant agent of one important participant (initia-
tor or prime participant) in a meeting fails (e.g., his ma-

chine crashes), this may disorganize the whole process.
As the application is very dynamic - new meeting negotia-
tions start and complete dynamically and simultaneously -
decision for replication should be done automatically and
dynamically.

2.2 Type of Faults

To achieve fault-tolerance, several distributed systems repli-
cate their critical components. In this section, we define a
classification of failures in multi-agent systems.

In computing systems, faults can for example occur in
different sections of source code, and can result in a wide
range of consequences. In distributed systems, another
kind of faults can be considered: the communication fail-
ures.

A fault classification scheme is often used to catego-
rize faults that have the same characteristics. The de-
fined categories can then be used to collect statistics about
faults and devise methods for fault prevention and detec-
tion. Thus, several classifications of failures have been
proposed.

A. Fedoruk and R. Deters propose a classification of
failures in multi-agent systems (Fedoruk and Deters, 2002).
They group failures in five categories:

e Program bugs,
e Unforeseen states,

Processor faults,

o Communication fault,

Emerging unwanted behavior.

However, it is not easy to define the unwanted states of
an agent because he is often adaptive. Moreover, a multi-
agent system has no global control. So, the emerging un-
wanted behavior can be detected by an external observer,
but it cannot be easily determined automatically by the
system itself.

In our proposed solution, we consider, two categories
of failures:

e Processor faults,

e Communication fault.
We think that our approach could also be applied to other
categories of failures.
2.3 Techniques of Replication

This section, first, summarizes the principles of replica-
tion. It then points out the limits of current replication
techniques and replication tools.

21

2.3.1 Principles of Replication

Replication of data and/or computation is an effective way
to achieve fault tolerance in distributed systems. A repli-
cated software component is defined as a software compo-
nent that possesses a representation on two or more hosts
(Guerraoui et al., 1989). There are two main types of
replication protocols:

¢ activereplication, in which all replicas process con-
currently all input messages,

e passive replication, in which only one of the repli-
cas processes all input messages and periodically
transmits its current state to the other replicas in or-
der to maintain consistency.

Active replication strategies provide fast recovery but
lead to a high overhead. If the degree of replication is n,
the n replicas are activated simultaneously to produce one
result.

Passive replication minimizes processor utilization by
activating redundant replicas only in case of failures. That
is: if the active replica is found to be faulty, a new replica
is elected among the set of passive ones and the execu-
tion is restarted from the last saved state. This technique
requires less CPU resources than the active approach but
it needs a checkpoint management which remains expen-
sive in processing time and space.

The active replication provides a fast recovery delay.
This kind of technique is dedicated to applications with
real-time constraints which require short recovery delays.
The passive replication scheme has a low overhead under
failure free execution but does not provide short recovery
delays. The choice of the most suitable strategy is directly
dependent on the environment context, especially the fail-
ure rate, and the application requirements in terms of re-
covery delay and overhead. Active approaches should
be chosen either when the failure rate becomes too high
or the application design specifies hard time constraints.
Otherwise, passive approaches are preferable.

2.3.2 Limits of Current Replication Techniques

Many toolkits (e.g., (Guerraoui et al., 1989) and (van Re-
nesse et al., 1996)) include replication facilities to build
reliable applications. However, most of them are not quite
flexible enough to implement adaptive replication mech-
anism.

Therefore we designed a specific and novel frame-
work for replication, named DarX (see details in section
4), which allows dynamic replication and dynamic adap-
tation of the replication policy (e.g., passive to active,
changing the number of replicas).

3 Towards Dynamic Replication and
Adaptive Control

Several solutions have been proposed to replicate distributed

systems. These solutions are often used by the designer
to replicate the system components before run time. The
number of replicas and the replication strategy are explic-
itly and statically defined by the designer before run time.
However, these solutions are not suitable to multi-agent
systems. The solution we propose is mainly characterized
by dynamic replication and adaptive control.

3.1 Dynamic Replication

Several replication strategies (mainly, active and passive)
can be used to replicate Agents. As explained in Section
2.3.1, each strategy has its pros and cons, the tradeoff be-
ing recovery speed versus overhead. Thus, the choice of
the most suitable strategy relies on the environment con-
text.

In most multi-agent applications, the environment con-
text is very dynamic. So, the choice of the replication
strategy of each component, which relies on a part of
this environment, must be determined dynamically and
adapted to the environment changes.

Moreover, a multi-agent system component which can
be very critical at a moment can loose its critically later.
If we consider the replication cost which is very high, the
number of replicas of these components must be therefore
dynamically updated.

Thus, the solution we propose allows to dynamically
adapt the number of replicas and the replication strategy.
This solution is provided by the framework DARX (see
section 4).

3.2 Adaptive Control

DarX provides the needed adaptive mechanisms to repli-
cate agents and to modify the replication strategy. Mean-
while, we cannot always replicate all the agents of the
system because the available resources are usually lim-
ited. In the given example (section 2.1), we can con-
sider more than 100 assistant agents and resources that
do not allow to duplicate more than 60 agents. The prob-
lem therefore is to determine the most critical agents and
then the needed number of replicas of these agents.
We distinguish two cases:

o the agent’s criticality is static,
o the agent’s criticality is dynamic.

In the first case, multi-agent systems have static organi-
zation structures, static behaviors of agents, and a small
number of agents. Critical agents can be therefore identi-
fied by the designer and can be replicated by the program-
mer before run time.

22

In the second case, multi-agent systems may have dy-
namic organization structures, dynamic behaviors of agents,
and a large number of agents. So, the agents criticality
cannot be determined before run time. The agent criti-
cality can be therefore based on these dynamic organiza-
tional structures. The problem is how to determine dy-
namically these structures to evaluate the agent critical-
ity? Thus, we propose a new approach for observing the
domain agents and evaluating dynamically their critical-
ity. This approach is based on two kinds of information:
semantic-level information and system-level information.

4 Darx

DarX is a framework to design reliable distributed appli-
cations which include a set of distributed communicating
entities (agents). Each agent can be dynamically repli-
cated an unlimited number of times and with different
replication strategies (passive and active).

4.1 Darx Architecture

DarX includes group membership management to dynam-
ically add or remove replicas. It also provides atomic
and ordered multi-cast for the replication groups’ internal
communication. For portability and compatibility issues,
DarX is implemented in Java.

group 1

RemoteTusk

r
Agent

"I TaskShell

Task Supervision

RemoteTask [™™,

group 2

Figure 1: DarX application architecture

A replication group is an opaque entity underlying ev-
ery application agent. The number of replicas and the
internal strategy of a specific agent are totally hidden to
the other application agents. Each replication group has
exactly one leader which communicates with the other
agents. The leader also checks the liveness of each replica
and is responsible for reliable broadcasting. In case of
failure of a leader, a new one is automatically elected
among the set of remaining replicas.

Yime (ms)

0 i
100 200 400 800 3200

Massage size (bytes)

Figure 2: Communication cost as a function of the repli-
cation degree

DarX provides global naming. Each replicated agent
has a global name which is independent of the current lo-
cation of its replicas. The underlying system allows to
handle the agent’s execution and communication. Each
agent is itself wrapped into a TaskShell (Figure 1), which
acts as a replication group manager and is responsible for
delivering received messages to all the members of the
replication group, thus preserving the transparency for the
supported application. Input messages are intercepted by
the TaskShell, enabling message caching. Hence all mes-
sages get to be processed in the same order within a repli-
cation group.

An agent can communicate with a remote agent, unre-
garding whether it is a single agent or a replication group,
by using a local proxy implemented by the RemoteTask
interface. Each RemoteTask references a distinct remote
entity considered as the leader of its replication group.
The reliability features are thus brought to agents by an
instance of a DarX server (DarxServer) running on ev-
ery location. Each DarxServer implements the required
replication services, backed up by a common global nam-
ing/location service.

4.2 Measurements

Our first experiments and measurements of DarX are very
promising. We evaluated several costs and made compar-
isons with other systems (see (Marin et al., 2001)).

In this paper, we just show the cost of sending a mes-
sage to a replication group using the active replication
strategy. Figure 2 presents three configurations with dif-
ferent replication degrees. In the RD-1 configuration, the
task is local and not replicated. In the RD-2 (resp. RD-
3) configuration, there is one (resp. two) replica(s); the
leader being on the sending host and the other replica(s)
residing on one (or two) distinct remote host(s).

23

5 Adaptive Control of Replication

We will now detail our approach for dynamically evaluat-
ing criticality of each agent in order to perform dynamic
replication where and when best needed.

5.1 Hypothesis and principles

We want some automatic mechanism for generality rea-
sons. But in order to be efficient, we also need some
prior input from the designer of the application. This de-
signer can choose among several approaches of replica-
tion: static and dynamic.

In the proposed dynamic approach, the agent critical-
ity relies on two kinds of information:

e System-level information. It will be based on stan-
dard measurements (communication load, process-
ing time...). We are currently evaluating their sig-
nificance to measure the activity of an agent.

e Semantic-level information.

Several aspects may be considered (importance of agents,

independence of agents, importance of messages...). We
decided to use the concept of role, because it captures the
importance of an agent in an organization, and its depen-
dencies to other agents.

Note that our approach is generic and that it is not
related to a specific interaction language or application
domain. Also agents can be either reactive or cognitive.
We just suppose that they communicate with some agent
communication language such as ACL (FIPA, 1997) and
KQML (Finin et al., 1994).

5.2 Example

The application designer will manually evaluate critical-
ity of the roles, corresponding to their "importance” in the
organization and in the computation.

In the example introduced in section 2.1, we are con-
sidering two roles: Initiator and Participant (Finin et al.,
1994). Their respective weights will be set by the appli-
cation designer to respectively 0.7 and 0.3 (see 1).

Table 1: Examples of roles and their weights

Roles Weights
Initiator 0.7
Participant | 0.3

5.3 Architecture

In order to track the dynamical adoption of roles by agents,
we propose a role recognition method. Our approach is
based on the observation of the agent execution and their

interactions to recognize the roles of each agent and to
evaluate his processing activity. This is used to dynami-
cally compute the criticality of an agent.

System
t lysi
Tnteraction s eciia e
Ev ats Events Replication

~ ‘Domain Agents

Figure 3: General architecture for replication control

In order to collect the data, we associate an obser-
vation module to each DarxServer on each machine (see
section 4). This module will collect events (provided by
DarxServer). A role analysis is then associated to each
agent (leader of the group replica) of this machine, by
considering his sent and received messages.

The basic architecture controlling the replication of
agents is shown in Figure 3.

The next sections describe the role analysis and activ-
ity analysis methods that we propose.

5.4 Role Analysis

We consider two cases. In the first case, each agent dis-
plays explicitly his roles or interaction protocols. The
roles of each agent are thus easily deduced from interac-
tion events. In the second case, agents do not display their
roles nor their interaction protocols. The agent roles are
deduced from the interaction events by the role analysis
module.

In this analysis, attention is focused on the precise or-
dering of interaction events (exchanged messages). The
role module captures and represents the set of interaction
events resulting from the domain agent interactions (sent
and received messages).

We associate to each agent an entity that analyses the
associated interaction events. This analysis determines
the roles of the agent. Figure 4 illustrates the various steps
of this analysis.

To represent the agent interactions, several methods
have been proposed such as state machines and Petri nets
(Fallah-Seghrouchni et al., 1999). For our application,
state machines provide a well suitable representation. Each
role interaction model is represented by an augmented
transition network (ATN) (Woods, 1970). A transition
represents an interaction event (sending or receiving a mes-
sage). Figure 5 shows an example of ATN that represents
the interaction model of the role Initiator described below.

A library of roles definition is used to recognize the
active roles. To facilitate the initialization of this library,

Observation

Interaction Events
A
Radle Definition Pattern Matching
Library Role recognition Roles

Figure 4: Roles recognition

receiveMessage(''re fuse™)

receiveMessage("propose”)

sendMessage("CFP)

®)
©)

(L ampyy,)adessafydataar

sendMessage("reject)

sendMessage("accept”)

{uMruaoguy, YaBuss PR\ 933

Figure 5: Example of ATN

we have introduced a role description language. Each role
is represented by a set of interaction events. This language
is based on a set of operators (similar to those proposed
in (M. Wooldridge and Kinny, 1999), see Table 2), inter-
action events and variables.

Interaction events represent the exchanged messages.

We distinguish two kinds of interaction events: ReceiveMes-

sage and SendMessage. The attributes of the SendMes-
sage and ReceiveMessage interaction events are similar
to the attributes of ACL messages:

e SendMessage(Communicative act, sender, receiver,
content, reply-with, ...).

¢ ReceiveMessage(Communicative act, sender, receiver,

content, reply-with, ...).

Table 2: Operators

Operators | Interpretation

AB Separate two consecutive events
AlB Or

A||B Parallel events

(A)* O time or more

(A)+ 1 time or more

(A)n n time or more

[A] Facultative

In order to be able to filter various messages, we in-
troduce the "wild card” character ?. For example, in the
interaction event ReceiveMessage ("CFP”, ”X”, ”Y”, ?),
the content is unconstrained. So, this interaction event
can match any other interaction event with the communi-
cation act CFP, the sender "X, the receiver ”Y” and any
contents.

initiator participants

cfp

propose, refuse

accept, reject

confirm

Figure 6: Contract net protocol

In the example of scheduling meetings, the assistant
agents use the contract net protocol (FIPA, 1997) (see 6)
to schedule a meeting. The interaction model of the ini-
tiator role is deduced from the contract net protocol. It is
described in Table 3.

This description represents the different steps (sent
and received messages) of the Initiator. It can be inter-
preted as follows (FIPA, 1997).

o A call for proposals message is sent to the partici-
pants from the initiator following the FIPA Contract
Net protocol.

o The participants reply to the initiator with the pro-
posed meeting times. The form of this message is
either a proposal or a refusal.

o The initiator sends accept or reject messages to par-
ticipants.

o The participants which agree to the proposed meet-
ing inform the initiator that they have completed the
request to schedule a meeting (confirm).

Table 3: Description of the role Initiator

(SendMessage("CFP”, Agent,?,7,M1))+ .

((SendMessage(’accept”, Agent,?,?, M2, M1)) |
(SendMessage('reject”, Agent,?,7, M2, M1)))+ .
(ReceiveMessageEvent(confirm”, ?, Agent,?,M2))+ .

((ReceiveMessageEvent("propose”, 7, Agent,?,M2, M1)) |
(ReceiveMessageEvent("refuse”, 7, Agent, 2, M2, M1)))+.

25

Note that in many cases, roles can be deduced before
the end of the associated sequence of interaction events
(final state of the associated ATN). In the scheduling meet-
ings example, the role Initiator may be recognized as soon
as the "CFP”’ message is received, as it is unique to this
role.

5.5 Activity Analysis

In multi-agent systems, the internal activity of agents can-
not be observed, because it is private. The observation is
restricted to events. To evaluate the degree of the agent
activity, we use system events that are collected at the sys-
tem level. We are considering two kinds of events: CPU
time and communication load. We are currently evalu-
ating the significance of these measures as indicators of
agent activity, to be useful to calculate agent criticality.

For an agent Agent; and a given time interval At,
these events provide:

e The used time of CPU (cp;),
e The communication load (cl;).

¢p; and cl; may be then used to measure the agent
degree of activity aw; as follows:

aw; = (dy xep;/ At + dy x cl;/CLY/(d1 +d2) (1)

where:

o CL is the global communication load,

e d; and d; are weights introduced by the user.

5.6 Agent Criticality

The analysis of events (system events and interaction events)
provides two kinds of information: the roles and the de-
gree of activity of each agent. This information is then
processed by the agent’s criticality module. The latter re-
lies on a table T (an example is given in Table 1) that
defines the weights of roles. This table is initialized by
the application designer. Table 3 gives examples of roles
and their weights.

The criticality of the agent Agent; which fulfills the
roles 71 to 73, is computed as follows:

wi=(ar* ¥ Tlrig] +az % aw;)/(al +a2) (2)

Jj=1,m

Where: a; and ay are the weights given to the two
kinds of parameters (roles and degree of activity). They
are introduced by the designer.

For each Agent A, its criticality w; is used to com-
pute the number of his replicas.

5.7 Replication
An agent is replicated according to:
e w;: his criticality,
e W: the sum of the domain agents’ criticality,

e rm: the minimum number of replicas which is in-
troduced by the designer,

e Rm: the available resources which define the max-
imum number of possible simultaneous replicas.

The number of replicas nb; of Agent; can be determined
as follows:

nb; = rounded(rm + w; * Rm /W) 3)

Table 4: Examples of agents, their weights and the asso-
ciated number of replicas

Agents Criticality

per agent

Number of replicas
per agent

Agentl, Agent2,

Agent3, Agent 4 0,9 2

Agent5, Agent6,
Agent7, Agent8,
Agent9, Agentl0,
Agentll, Agentl2,

Agentl3, Agentld | 0.5 1

Agentl5, Agentl6,
Agentl7, Agentl8,
Agentl9, Agent20,
Agent21, Agent22,

Agent23, Agent24 | 0.2 0

Table 4 gives an example of agents, their criticality
and the associated replicas when Rm = 20 and rm= 0.
Note that (rm=0) means that the agent is not replicated.

The numbers of replicas are then used by DarX to up-
date the number of replicas of each agent.

6 Experiments

We made some preliminary experiments using the sce-
nario of agents scheduling their meetings, as introduced
in section 2.1.

Agents take randomly roles of Initiator, choose Partic-
ipants for scheduling meetings or remain inactive (with-
out any role). Several meetings are scheduled simultane-
ously. The number of critical agents (which can be either
Initiator or Participant) is 60% of the number of agents.

As the distributed observation module implementa-
tion has not been completed yet, we have run these pre-
liminary experiments on a single machine. In order to

26

simulate the presence of faults, we implemented a failure
simulator randomly stopping the thread of an agent (cho-
sen randomly). The number of the introduced faults was
set equal to the number of agents. We repeated several
times the experiments with a variable number of resources
(number of replicas that can be used).

From these first experiments, we found that the num-
ber of resources should be at least equal to the number of
critical agents.

We are currently working on more experiments and
measurements in order to better evaluate our adaptive con-
trol architecture and to compare it to other control meth-
ods (including random replication).

7 Related Work

Several approaches address the multi-faced problem of
fault tolerance in multi-agent systems. These works can
be classified in two main categories. A first approach
focuses especially on the reliability of an agent within
a multi-agent system. This approach handles the seri-
ous problems of communication, interaction and coordi-
nation of agents (and their replicas) with the other agents
of the system. The second approach addresses the dif-
ficulties of making reliable an agent, particularly a mo-
bile agent, which is more exposed to security problems
(Pleisch and Schiper, 2001) (Silva and Popescu-Zeletin,
1998) (Johansen et al., 199) (Strasser et al., 1998). This
second approach is beyond the scope of this paper.
Within the family of reactive multi-agent systems, some

systems offer high redundancy. A good example is a sys-
tem based on the metaphor of ant nests. Unfortunately:

e we cannot design any application in term of such
reactive multi-agent systems. Basically we do not
have yet a good methodology.

¢ we cannot apply such simple redundancy scheme
onto more cognitive multi-agent systems as this would
cause inconsistencies between copies of a single
agent.

Some work (Decker et al., 1997) offers dynamic cloning
of specific agents in multi-agent systems. But their mo-
tivation is different, the objective is to improve the avail-
ability of an agent if it is too congested. The agents con-
sidered seem to have only functional tasks (with no chang-
ing state) and fault-tolerance aspects are not considered.

S. Hagg introduces sentinels to protect the agents from
some undesirable states (Hagg, 1997). Sentinels represent
the control structure of their multi-agent system. They
need to build models of each agent to perform function-
alities and monitor communications in order to react to
faults. Each sentinel is associated by the designer to one
functionality of the multi-agent system. This sentinel han-
dles the different agents which interact to achieve the func-
tionality. The analysis of his believes on these agents en-
ables the sentinel to detect a fault when it occurs. Adding

sentinels to multi-agent systems seems to be a good ap-
proach, however the sentinels themselves represent fail-
ure points for the multi-agent system.

(Kumar et al., 2000) present a fault tolerant multi-
agent architecture that regroups agents and brokers. They
address the problem of recovering the multi-agent system
from only its broker failures.

(Fedoruk and Deters, 2002) propose to use proxies.
This approach tries to make transparent the use of agent
replication, i.e. enabling the replicas of an agent to act
as a same entity regarding the other agents of the system
which will not know that they are interacting with a group
of replicas. The proxy manages the state of the replicas.
To do so, all the external and internal communications of
the group are redirected to the proxy. However this in-
creases the workload of the proxy which is a quasi central
entity. To make it reliable, they propose to build, for in-
stance, a hierarchy of proxies for each group of replicas.
They point out the specific problems of read/write con-
sistency, resource locking also discussed in (Silva et al.,
2000).

In distributed computing, many toolkits include repli-
cation facilities to build reliable application. However,
many of products are not enough flexible to implement
an adapted replication. MetaXa (M.Golm, 1998) imple-
ments in Java active and passive replication in a flexible
way. Authors extended Java with a reactive metalevel ar-
chitecture. Like in DarX, the replication is transparent.
However, MetaXa relies on a modified Java interpreter.

GAREF (Guerraoui et al., 1989) realizes fault-tolerant Smalltalk

machines using active replication. Similar to MetaXa,
GARX uses a metalevel and provides different replication
strategies. But, it does not provide adaptive mechanism to
apply these strategies.

8 Conclusion

Large-scale multi-agent systems are often distributed and
must run without any interruption. To make these systems
reliable, we proposed a new approach to evaluate dynam-
ically the criticality of agents. This approach is based on
the concepts of roles and degree of activity. The agent
criticality is then used to replicate agents in order to max-
imize their reliability and availability based on available
resources.

To validate the proposed approach, we realized a fault-
tolerant framework (Darx). The integration of DARX with
a multi-agent platform, such as DIMA ieee99, provides
a generic fault-tolerant multi-agent platform. In order
to validate this fault-tolerant multi-agent platform, two

small applications have been developed (meetings schedul-

ing and crisis management system). They are intended at
evaluating our model and architecture viability. They aim
also at completing the model and adjusting the parame-
ters. The obtained results are interesting and promising.

However, more experiments with real-life applications are

27

needed to validate the proposed approach.

References

N. A. Avouris and L. Gasser. Distributed Artificial Intel-
ligence: Theory and Praxis, chapter Object-Oriented
Concurrent Programming and Distributed Artificial In-
telligence, pages 81-108. Kluwer Academic Publisher,
1992.

K. Decker, K. Sycara, and M. Williamson. Cloning for
intelligent adaptive information agents. In ATAL’97,
LNAI, pages 63-75. Springer Verlag, 1997.

A. El Fallah-Seghrouchni, S. Haddad, and H. Mazouzi.
Protocol engineering for multiagent interactions. In
MAAMAW’99, number 1647 in LNAI, pages 128-135.
Springer Verlag, 1999.

A. Fedoruk and R. Deters. Improving fault-tolerance by
replicating agents. In AAMAS2002, Boulogna, Italy,
2002.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML
as an agent communication language. In Third interna-
tional conference on information and knowledge man-
agement. ACM Press, November 1994,

FIPA.

Specification. part 2, agent commu-
nication language, foundation for intelli-
gent physical agents, geneva, switzerland.

http://www.cselt.stet.it/ufv/leonardo/fipa/index.htm,
1997.

R. Guerraoui, B. Garbinato, and K. Mazouni. Lessons
from designing and implementing garf. In Proceedings
Objects Oriented Parallel and Distributed Computatio,
volume LNCS 791, pages 238-256, Nottingham, 1989.

R. Guerraoui and A. Schiper. Software-based replication
for fault tolerance. IEEE Computer, 30(4):68-74, April
1997.

S. Hagg. A sentinel approach to fault handling in multi-
agent systems. In C. Zhang and D. Lukose, editors,
Multi-Agent Systems, Methodologies and Applications,
number 1286 in LNCS, pages 190-195. Springer Ver-
lag, 1997.

D. Johansen, K. Marzullo, F. B. Schneider, K. Jacob-
sen, and D. Zagorodnov. Nap: Practical fault-tolerance
for itinerant computations. In [9th IEEE Interna-
tional Conference on Distributed Computing Systems
(ICDCS), Austin, Texas, 199.

S. Kumar, P. R. Cohen, and H. J. Levesque. The
adaptive agent architecture: Achieving fault-tolerance
using persistent broker teams. In The Fourth
International Conference on Multi-Agent Systems
ICMAS, Boston,USA, 2000.

N. Jennings M. Wooldridge and D. Kinny. The method-
ology gaia for agent-oriented analysis and design. Al,
10(2):1-27, 1999.

O. Marin, P. Sens, J.-P. Briot, and Z. Guessoum. Towards
adaptive fault-tolerance for distributedmulti-agent sys-
tems. In ERSADS 2001, pages 195201, 2001.

M.Golm. Metaxa and the future of reflection. In OOP-
SLA -Workshop on Reflective Programming in C++
and Java, pages 238-256. Springer Verlag, 1998.

Stefan Pleisch and Andr Schiper. Fatomas - a fault-
tolerant mobile agent system based on the agent-
dependent approach. In In Proceedings of the IEEE
Int. Conf. on Dependable Systems and Networks
(DSN'01),2001.

F. De Assis Silva and R. Popescu-Zeletin. An approach
for providing mobile agent fault tolerance. In S. N,
Maheshwari, editor, Second International Workshop on
Mobile Agents, number 1477 in LNCS, pages 14-25.
Springer Verlag, 1998.

L. Silva, V. Batista, and J. Silva. Fault-tolerant execution
of mobile agents. In International Conference on De-
pendable Systems and Networks, pages 135-143, 2000.

M. Strasser, K. Rothermel, and C. Maihofer. Providing
reliable agents for electronic commerce. In W. Lamers-
dorf and M. Merz, editors, Int. Conference on Trends in
Distributed Systems for Electronic Commerce, number
1402 in LNCS, pages 241-253. Springer Verlag, 1998.

R. van Renesse, K. Birman, and S. Maffeis. Horus: A
flexible group communication syste. CACM, 39(4):76~
83, 1996.

W. Woods. Transition network grammar for natural lan-
guage analysis. Communication of Association of Com-
puting Machinery, 10(13):591-606, 1970.

28

On Learning by Exchanging Advice
Luis Nunes
Eugénio Oliveira
LIACC-NIAD&R;
FEUP Av. Dr. Roberto Frias 4200-465, Porto, Portugal.
Luis.Nunes @iscte.pt; eco@fe.up.pt

Abstract

One of the main questions concerning learning in Multi-Agent Systems is: “(How) can agents benefit from mutual
interaction during the learning process?”. This paper describes the study of an interactive advice-exchange mecha-
nism as a possible way to improve agents’ learning performance. The advice-exchange technique, discussed here,
uses supervised learning (backpropagation), where reinforcement is not directly coming from the environment but is
based on advice given by peers with better performance score (higher confidence), to enhance the performance of a
heterogeneous group of Learning Agents (LAs). The LAs are facing similar problems, in an environment where only
reinforcement information is available. Each LA applies a different, well known, learning technique: Random Walk
(hill-climbing), Simulated Annealing, Evolutionary Algorithms and Q-Learning. The problem used for evaluation is a
simplified traffic-control simulation. In the following text the reader can find a description of the traffic simulation
and Learning Agents (focused on the advice-exchange mechanism), a discussion of the first results obtained and sug-
gested techniques to overcome the problems that have been observed. Initial results indicate that advice-exchange can
improve learning speed, although “bad advice” and/or blind reliance can disturb the learning performance. The use of
supervised learning to incorporate advice given from non-expert peers using different learning algorithms, in prob-
lems where no supervision information is available, is, to the best of the authors’ knowledge, a new concept in the

area of Multi-Agent Systems Learning.
1 Introduction

1.1 Framework

The objective of this work is to contribute to an answer
to the question: “(How) can agents benefit from mutual
interaction during the learning process, in order to
achieve better individual and overall system perform-
ances?”. This question has been deemed a “challenging
issue” by several authors in recently published work
(Sen, 1996; Weif} and Dillenbourgh, 1999; Kazakov and
Kudenko, 2001; Matarié, 2001).

In the pursuit of an answer to this question, the objects
of study are the interactions between the Learning
Agents (hereafter referred as agents for the sake of sim-
plicity) and the effects these interactions have on indi-
vidual and global learning processes. Interactions that
affect the learning process can take several forms in
Multi-Agent Systems (MAS). These forms range from
the indirect effects of other agents’ actions (whether they
are cooperative or competitive), to direct communica-
tion of complex knowledge structures, as well as coop-
erative negotiation of a search policy or solution.

The most promising way in which cooperative learning
agents can benefit from interaction seems to be by ex-
changing (or sharing) information regarding the learning
process itself. As observed by Tan (1993) agents can
exchange information regarding several aspects of the
learning process: a) the state of the environment, b) epi-
sodes (state, action, reward triplets), or c) internal pa-
rameters and policies.

29

Exchanging environment states can be seen as a form of
shared exploration. Sharing this information may require
a large amount of communication, although the use of a
selective policy for the exchange of information may
reduce this cost. This type of interaction may be seen as
if each agent has extra sets of sensors spread out in the
environment, being able to have a more complete view
of its external state. This larger view of the state space
may require either pre-acquired knowledge on how to
interpret this information and integrate it with its own
view of the environment’s state, or simply be considered
as extra input providing a wider range of information
about the state. In the limit case, where all agents have
access to information regarding the state sensed by all
their peers, each agent could be seen as a classical Ma-
chine Learning (ML) system with distributed sensors if
we consider other agents’ actions as part of the envi-
ronment. One interesting difference, though, is the fact
that other agents sensors are not under the control of the
learning agent and the perspective they provide on the
world may be biased by the needs of the owner of the
$ensor.

Episode exchange requires that the agents are (or have
been) facing similar problems, requiring similar solu-
tions and may also lead to large amounts of communi-
cation if there is no criteria regulating the exchange of
information. In the limit case, where all agents share all
the episodes, this process can also be seen as a single
learning system, and produce very little new knowledge.
In fact, the exchange of too much data could lead all the
agents to follow the same path through the search space,
wasting valuable exploration resources.

Sharing internal parameters is another way in which
agents can benefit from the knowledge obtained by their
peers. Again, in the limit, this can be seen as the use of a
single learning agent if communication is unrestricted.
This type of information exchange requires that agents
have similar internal structures, so that they can easily
map their peers’ internal parameters into their own, or
that they share a complex domain ontology.

As can be seen in the above paragraphs the question is
not only: “what type of information to exchange?”, but
also “when to exchange information?” and “how much
information is it convenient to exchange?”. When con-
sidering human cooperative learning in a team, a com-
mon method to improve one’s skills is to ask for advice
at critical times, or request a demonstration of a solution
to a particular problem to someone who is reputed to
have better skills in the subject. This is what we have
attempted to translate into the realm of Multi-Agent
Systems Learning (MASL). Another interesting outcome
of our experiments concerns the degree of adequacy
different algorithms, being used by the agents, exhibit
for different situations considered in the scenario. How-
ever, this is not of great importance where MASL is
concerned, except in which regards an agent’s knowl-
edge about whom to request an advice to in each par-
ticular situation. It is our hope that different agents spe-
cialise in different situations, becoming, up to a certain
extent, complementary in the Multi-Agent System con-
text.

1.2 Rationale and summarized description

This paper reports experiments in which agents selec-
tively share episodes by requesting advice for given
situations to other agents whose score is, currently, bet-
ter than their own in solving a particular problem. Con-
sidering the discussion of the previous section, this op-
tion seemed the most promising for the following rea-
sons:

a) Sharing of episodes does not put heavy restrictions
on the heterogeneity of the underlying learning al-
gorithms;

b)Having different algorithms solving similar prob-
lems may lead to different forms of exploration of
the same search space, thus increasing the probabil-
ity of finding a good solution;

c)It is more informative and less dependent on pre-
coded knowledge than the exchange of environ-
ment’s states.

Experiments were conducted with a group of Learning
Agents embedded in a simplified simulation of a traffic
control problem to test the advantages and problems of
advice-exchange during learning. Each individual agent
uses a standard version of a well know, sub-symbolic,
learning algorithm (Random Walk, Evolutionary Algo-
rithms, Simulated Annealing, and Q-Learning). Agents
are heterogeneous (i.e., each applies a different learning
mechanism, unknown to others). This fact makes com-

30

munication of internal parameters or policies suffer from
the above-mentioned disadvantages, thus it was not con-
sidered. The information exchanged amongst agents is:
current state (as seen by the advisee agent); best re-
sponse that can be provided to that state (by the advisor
agent); present and best scores, broadcasted at the end
of each training stage (epoch).

The problem chosen to test the use of advice-exchange
has, as most problems studied in MASL, the following
characteristics:

a) Analytical computation of the optimal actions is
intractable;

b) The only information available to evaluate learning
is a measure of the quality of the present state of the
system;

¢)The same action executed by a given agent may
have different consequences at different times, even
if the system is (as far as the agent is allowed to
know) in the same state;

d)The agent has only a partial view of the problem's
state.

The simplified traffic control problem chosen for these
experiments requires that each agent learn to control the
traffic-lights in one intersection under variable traffic
conditions. Each intersection has four incoming, and
four outgoing, lanes. One agent controls the four traffic
lights necessary to discipline traffic in one intersection.
In the experiments reported here, the crossings con-
trolled by each of the agents are not connected.

The learning parameters of each agent are adapted using
two different methods: a reinforcement-based algorithm,
using a quality measure that is directly supplied by the
environment, and supervised learning using the advice
given by peers as the desired response. Notice that the
term “reinforcement-based” is used to mean “based on a
scalar quality/utility feedback”, as opposed to super-
vised learning which requires a desired response as
feedback. The common usage of the term “reinforce-
ment learning”, that refers to variations of temporal dif-
ference methods (Sutton and Barto, 1987), is a subclass
of reinforcement-based algorithms, as are, for instance,
most flavours of Evolutionary Algorithms.

2 Related Work

The advantages and drawbacks of sharing information
and using external teachers in variants of Q-Learning
(Watkins and Dayan, 1992) had some important contri-
butions in the early 90’s. Whitehead (1991) reports on
the usage of two cooperative learning mechanisms:
Learning with an External Critic (LEC) and Learning By
Watching (LBW). The first, (LEC), is based on the use
of an external automated critic, while the second
(LBW), learns vicariously by watching other agent’s
behaviour (which is equivalent to sharing state, action,
quality triplets). This work proves that the complexity of
the search mechanisms of both LEC and LBW is inferior

to that of standard Q-Learning for an important class of
state-spaces. Experiments reported in (Whitehead and
Ballard, 1991) support these conclusions.

Lin (1992) uses a human teacher to improve the per-
formance of two variants of Q-Learning. This work re-
ports that the “advantages of teaching should become
more relevant as the learning task gets more difficult”.
Results presented show that teaching does improve
learning performance in the harder task tested (a variant
of the maze problem), although it seems to have no ef-
fect on the performance on the easier task (an easier
variant of the same maze problem).

The main reference on related work is (Tan, 1993). Tan
addressed the problem of exchanging information during
the learning process amongst Q-Learning agents. This
work reports the results of sharing several types of in-
formation amongst several (Q-Learning) agents in the
predator-prey problem. Experiments were conducted in
which agents shared policies, episodes (state, action,
quality triplets), and sensation (state). Although the ex-
periments use solely Q-Learning in the predator-prey
domain, the author believes that: "conclusions can be
applied to cooperation among autonomous learning
agents in general”. Conclusions point out that “a) addi-
tional sensation from another agent is beneficial if it can
be used efficiently, b) sharing learned policies or epi-
sodes among agents speeds up learning at the cost of
communication, and c¢) for joint tasks, agents engaging
in partnership can significantly outperform independent
agents, although they may learn slowly in the begin-
ning“. Results presented in (Tan, 1993) also appear to
point to the conclusion that sharing episodes with peers
is beneficial and can lead to a performance similar to
that obtained by sharing policies. Sharing episodes vol-
unteered by an expert agent leads to the best scores in
the presented tests, significantly outperforming all other
agents in the experiments.

After these first, fundamental, works several variants of
information sharing Q-Learners appeared reporting good
results in the mixture of some form of teaching and rein-
forcement learning.

Baroglio (1995) uses an automatic teacher and a tech-
nique called "shaping” to teach a Reinforcement Learn-
ing algorithm the task of pole balancing. Shaping is de-
fined as a relaxation of the evaluation of goal states in
the beginning of training, and a tightening of those con-
ditions in the end.

Clouse (1996) also uses an automatic expert trainer to
give the agent actions to perform, thus reducing the ex-
ploration time.

Matarié¢ (1996) reports on the use of localized commu-
nication to share sensory data and reward as a way to
overcome hidden state and credit assignment problems
in groups of agents. The experiments conducted in two
robot problems, (block pushing and foraging) show im-
provements in performance on both cases. Later work by
the same author, (Matari¢, 2001) reports several good
results using human teaching and learning by imitation

31

in robot tasks. Experimental results can be found in
(Jenkins et al. 2000; Nicolescu and Matari¢, 2001; Ma-
tari¢, 2001b).

Brafman and Tenemholtz (1996) use an expert agent to
teach a student agent in a version of the “prisoner’s di-
lemma”. The agents implement variations of Q-
Learning.

Maclin and Shavlik (1997) use human advice, encoded
in rules, which are acquired in a programming language
that was specially designed for this purpose. These rules
are inserted in a Knowledge Based Neural Network
(KBANN) used in Q-Learning to estimate the quality of
a given action.

Berenji and Vengerov (2000) report analytical and ex-
perimental results concerning the cooperation of Q-
Learning agents by sharing quality values amongst them.
Experiments were conducted in two abstract problems.
Results point out that limitations to cooperative learning
described in (Whitehead, 1991) can be surpassed suc-
cessfully under certain circumstances, leading to better
results than the theoretical predictions foresaw.
Simultaneous uses of Evolutionary Algorithms (Holland,
1975; Koza, 1992) and Backpropagation (Rumelhart,
Hinton and Williams 1986) are relatively common in
Machine Learning (ML) literature, although in most
cases Evolutionary Algorithms are used to select the
topology or learning parameters, and not to update
weights. Some examples can be found in (Salustowicz,
1995) and (Yao, 1999). There are also reports on the
successful use of Evolutionary Algorithms and Back-
propagation simultaneously for weight adaptation (Top-
chy, Lebedko and Miagkikh, 1996; Ku and Mak, 1997,
Ehardh et al. 1998). Most of the problems in which a
mixture of Evolutionary Algorithms and Backpropaga-
tion is used are supervised learning problems, i.e.,
problems for which the desired response of the system is
known in advance (not the case of the problem studied
in this paper). Castillo et al. (1998) obtained good re-
sults in several standard ML problems using Simulated
Annealing and Backpropagation, in a similar way to that
which is applied in this work. Again, this was used as an
add-on to supervised learning to solve a problem for
which there is a well known desired response.

The use of learning techniques for the control of traffic-
lights can be found in (Goldman and Rosenschein, 1995;
Thorpe, 1997; Brockfeld et al. 2001).

3 Experimental Setup

This section will describe the internal details of the traf-
fic simulation, the learning mechanisms and the advice-
exchange technique.

3.1 The Traffic Simulator

The traffic simulator environment is composed of lanes,
lane-segments, traffic-lights (and the corresponding
controlling agents), and cars. Cars are “well behaved”,
in the sense that they:

a) Can only move forward;

b)Do not cross yellow or red-lights;

c)Move at a constant speed;

d)Do not crash into other cars.
Cars are inserted at the beginning of each lane, when-
ever that space is empty, with a probability that varies in
time according to a saw-tooth function, of the form:

plnsert(t) = (M —m){((¢ +Ty)%T)/T +m (1)
where T, is the initial delay, T is the period, m the mini-
mum probability for car insertion and M the maximum.
The parameters used in the experiments discussed here
for the generation of new cars in the beginning of each
lane were in the following ranges: 0<T,<T, 50<7<5000,
0.01<m<0.1, 0.01<M<0.3. In further experiments differ-
ent generation functions were used, mostly based in su-
perimposition of gaussian functions, but the results re-
ported here were acquired using the saw-tooth genera-
tion-function.

Figure 1: A screenshot of the graphic interface for the
Traffic Simulator, showing a partial view of a local sce-
nario.

The time-unit used throughout this description is one
turn. One turn corresponds to a period where each ob-
ject in the system is allowed to perform one action and
all the necessary calculations for it. Lanes have three
lane-segments: incoming (before the crossing, where
cars are inserted), crossing and outgoing. Each local
scenario (Figure 1) consists of four lanes, each with a
different movement direction and one crossing (the lanes
in a local scenario will be referred as North, South, East
and West, for the remainder of this description). In the
experiments reported here the local scenarios are not
connected, i.e., each lane has only one crossing and one
traffic light. Cars are inserted in its incoming lane-
segment and removed when they reach the extremity of
its outgoing lane-segment, after having passed the
crossing. Each incoming lane-segment was designed to

hold a maximum of 60 cars.

32

At the beginning of each green-yellow-red cycle, the
agents observe the state of environment for their local
scenario and decide on the percentage of green-time (g)
to attribute to the North and South lanes (the percentage
of time attributed to the East and West lanes is auto-
matically set at 1 — g. Yellow-time is fixed in each ex-
periment and lies in the interval [10, 15] turns). Two
types of description of the environment’s state are used,
the first is realistic in the sense that it is technically
achievable to collect that type of data in a real situation
and it is actually used by traffic controllers today. The
second, although it may be unfeasible in today’s traffic
monitoring systems, was considered to have relevant
information for the learning process.

In the first type of state representation, the state s(f), at
time ¢, is composed by four scalar values (sy, ss, S5 Sw),
where each component (s;) represents the ratio of the
number of incoming vehicles (n; (¢)) in lane i relative to
the total number of incoming vehicles in all lanes. This
state representation will be referred as count state repre-
sentation.

5, ()= ()

2.0
J

The second type of environment state has the same in-
formation as the one described above plus four scalar
values, each of which represents the lifetime (number of
turns since creation) of the incoming vehicle that is clos-
est to the traffic-light (life_first; (2)). To keep inputs
within the interval [0,1], this value was cut-off at a
maximum lifetime (lifemax), and divided by the same
value. Thus, the four extra scalar values are:
5,0 = E=FD ey s E Wy
life max
if life_first(t) < lifemax or 1 otherwise. The value of
lifernax was chosen to be 3 to 10 times the number of
turns a car takes to reach the crossing at average speed,
depending on the difficulty of each particular scenario,
which is mainly dependent on the parameters used for
car generation. This state representation will be referred
as count-time state representation. The state representa-
tions described above are similar to the ones that were
reported to have produced some of the best results in the
experiments conducted by Thorpe (1997) for the same
type of problem (learning to control traffic-lights at an
intersection). The normalization of the inputs to fit the
[0,1] interval was necessary, even at the cost of loss of
information, for two main reasons: a) it keeps the first
layer of sigmoids from reaching saturation too early in
the learning process; b) using percentages for the first
four elements of the state space allows a substantial re-
duction of the number of possible states, as described
below when the implementation of Q-Learning is dis-
cussed.
The quality of service of each traffic-light controller at
time ¢, is given by g(f), which was initially calculated
according to

(i,je{N,S.E\W}) (2)

3

D life, (1) In

) =1--
9 life max

4
where life(f) is the number of turns since creation of car
i at time t and lifemax has the same meaning as above.
The sum is made for all (n) cars in the incoming lane-
segments of a crossing. This measure did not provide
enough differentiation of “good” and “bad” environment
states, thus a logistic function was introduced, using g(?),
in (4), as input, to emphasize the difference in quality
between these two types of environment states. A com-
parative view of both functions can be seen in Figure 2,
the former in continuous line the latter in dashed line
style.

The car generation parameters in traffic simulator
proved difficult to tune. Slight changes led to simula-
tions that were either too difficult (no heuristic nor any
learned strategy were able to prevent major traffic jams),
or to problems in which both simple heuristics and
learned strategies were able to keep a normal traffic
flow with very few learning steps.

g(tci) Traffic Quality Functions

1

0.8 |
0.6 -
0.4 |
0.2 |

0 r " .
0 200 400 600 800 1000
tci

Figure 2: Two functions for the evaluation of traffic
quality based on the average time of life of the incoming
cars (tci).

The traffic simulator was coded in C++, with a Java
graphical interface (Figure 1). Agents are not independ-
ent processes, at this stage they are merely C++ objects
that are given a turn to execute their actions in round-
robin. On the one hand, this choice eliminates the
“noise” of asynchronous communication and synchroni-
zation of parallel threads, on the other hand, lighter
agents that perform simple but coarse learning tech-
niques (like Random Walk) are being slowed down by
the more computationally intensive learning algorithms
(like Q-Learning). This may prove an interesting ground
to cover in future experiments. The real-time competi-
tion between fast and simple learning strategies against
slower but more refined ones can have interesting con-
sequences in the effect of advice-exchange.

Although this was not an issue, the simulation runs
faster than real-time, even when all agents are perform-
ing learning steps. Simulations ran (usually) for 1600

33

epochs, where each epoch consists of 50 green-yellow-
red cycles, each consisting of 100 turns in which, on
average, approximately 150 cars were moved and
checked for collisions. Each simulation, with five dis-
connected crossings (i.e., four parallel learning algo-
rithms and one heuristic agent), took 4 to 5 hours to run
in a Pentium IV at 1.5 GHz. To generate a set of compa-
rable data, this scenario must be run twice: with and
without advice-exchange.

3.2 Learning Agents

This section describes the learning algorithms used by
each of the agents involved in the experiments, as well
as the heuristic used for the fixed strategy agent.

3.2.1 Stand-alone agents

The stand-alone versions of the learning agents are used
to provide results with which the performance of advice-
exchanging agents could be compared. The stand-alone
agents implement four classical learning algorithms:
Random Walk (RL), which is a simple hill-climbing
algorithm, Simulated Annealing (SA), Evolutionary Al-
gorithms (EA) and Q-Learning (QL). A fifth agent was
implemented (HEU) using a fixed heuristic policy. As
the objective of these experiments was not to solve this
problem in the most efficient way, but to evaluate ad-
vice-exchange for problems that have characteristics
similar to this, the algorithms were not chosen or fine-
tuned to produce the best possible results for traffic
control. The choice of algorithms and their parameters
was guided by the goal of comparing the performance of
a heterogeneous group of learning agents, using classical
learning strategies, in a non-deterministic, non-
supervised, partially-observable problem, with and
without advice-exchange.

All agents, except QL and HEU, adapt the weights of a
small, one hidden layer, neural network. Experiments
were conducted with several topologies, but the results
discussed below refer to fully connected networks of
4x4x1, when using count state representation, and
8x4x1, when using count-time state representation. The
weights of these networks were initialised randomly
with values in the range [-0.5, 0.5]. The hidden layer is
composed of sigmoids whose output varies in [-1, 1],
while the outer layer sigmoids’ output is in the range [0,
1]. This neural network will produce an output that will
be the percentage of green-time (gr) for the next green-
yellow-red cycle.

The Random Walk (RW) algorithm simply disturbs the
current values of the weights of the neural network by
adding a random value in the range [-d, d], where d is
the maximum disturbance, which will be updated after a
given number of epochs, (ne), according to d=yd, with
O<y <1, until it reaches a minimum value, (min_d). An
epoch consists of n green-red-yellow cycles. At the end
of an epoch, the new set of parameters is kept if the av-

erage quality of service in the controlled crossing during
that epoch is better than the best average quality
achieved so far. The values used for the parameters of
this algorithm in the experiments discussed here were in
the following intervals: d€ [0.5, 0.7], min_d=0.01,
v=0.99, n=50, n€ [3, 7]. These values apply also for the
decay of disturbance limits in the following descriptions
of SA and EA. When referring to the intervals in which
values were chosen, it is meant that in different experi-
ments several combinations of parameter values were
tested but the initial value for these parameters was al-
ways in the mentioned range.

Simulated Annealing (SA), (Kirkpatrick, Gelatt and
Vecchi, 1983), works in a similar way to Random Walk,
but it may accept the new parameters even if the quality
has diminished. New parameters are accepted if a uni-
formly generated random number p€ [0,1[, is smaller
than

~-AqIT

pa(t)=e . ()
where T is a temperature parameter that is decreased
during training in the same way as d in RW and 4q is
the difference between the best average quality achieved
so far and the average quality of the last epoch.
Evolutionary Algorithms (EA), (Holland, 1975;Koza,
92), were implemented in a similar way to the one de-
scribed in (Glickman and Sycara, 1999), which is re-
ported to have been successful in learning to navigate in
a difficult variation of the maze problem by updating the
weights of a small Recurrent Artificial Neural Network.
This implementation relies almost totally in the mutation
of the weights, in a way similar to the one used for the
disturbance of weights described for RW and SA. Each
set of parameters (specimen), which comprises all the
weights of a neural network of the appropriate size for
the state representation being used, is evaluated during
one epoch. After the whole population is evaluated, the
best n specimens are chosen for mutation and recombi-
nation. An elitist strategy is used by keeping the best b
specimens untouched for the next generation. The re-
mainder of the population is built as follows: the first m
are mutated, the remaining specimens (r) are created
from pairs of the selected specimens, by choosing ran-
domly from each of them entire layers of neural network
weights. The values used for the parameters of this algo-
rithm in the experiments discussed here were in the fol-
lowing intervals: n€ [7, 10], b€ [3, 7], mE (15, 25],
r€ [2, 5]. The size of the population was [20, 30].
Q-Learning (QL), (Watkins and Dayan 1992), uses a
lookup table with an entry for each state-action pair in
which the expected utility Q(s,a) is saved. Q(s,a) repre-
sents the expected utility of doing action a when the
environment is in state s. Utility is updated in the usual
way, i.e.,

Q(s,a) =Q(s,a) +a(r + fQ max(s) - Q(s,a)), (6)
where 5 is the state after performing action a, « is the
learning rate, S the discount factor and Q,..(s) is given
by

34

Qira () =max(Q(s, a)), M

for all possible actions a when the system is in state s.

The values of a (learning rate), in the different experi-
ments, were in the interval [0.5,0.7]. The learning rate is
updated after a given number of epochs, (ne), according
to a =Y a, with O<y <1, until it reaches a minimum value
(which in this case was 0.012). In the experiments dis-
cussed here ne=S. Parameter § (discount) was fixed in
each experiment. Different values for § were tested in
several experiments within the interval [0.6,0.8]. The
choice of action a, given that the system is in state 5, was
done with probability p(a|s) that is given by a Boltzman

distribution
Q(s.a)iT

P(aIS)-‘-W, (8)

where T is a temperature parameter whose initial value
was in the interval [0.3,0.7] and was decayed in a simi-
lar way to the one described for a.

Since the state of the environment is a real-valued vec-
tor, a partition of the space in a square lattice is required
to map environment states (continuous) to internal (dis-
crete) states. The decision of which is the state of the
environment at a given time is made by calculating the
Euclidean distance between the continuous valued world
state and each of the discrete state representations and
selecting the state with minimum distance. For the count
state representation this partition consists in states com-
posed of quadruples of the form: (x;, X;, X3, X4), for
which x; + x5 + x5 + x4= 1.0, and x; € {0, 0.1, 0.2, ...,
0.9, 1.0}. This reduction of the state space, compared to
the use of all possible quadruples with elements in {0.0,
0.1, 0.2,...}, is possible given that the representation of
the environment is composed of the percentages of vehi-
cles in each lane relative to the number of vehicles in all
lanes, thus being restricted to quadruples for which the
sum of all elements is 1.0. For the count-time state rep-
resentation the internal state is of the form: (x;, x,, X3,
X4, Xs, Xg, X7, Xg), where the first four parameters are
generated in the same fashion as in the previous case but
with a coarser granularity and, the last four elements, are
selected combinations of values in {0.0, 0.25, 0.5, 0.75,
1.0}. The number of states for the first and second case
is, respectively, 286 and 1225. In future experiments,
with more informative state-space representations, it
may become necessary to use a neural network to map
states to their correspondent utility as described in
(Barto, Sutton and Watkins, 1990; Lin, 1992). Actions,
i.e., green-time for the North and South lanes, are also
considered as discrete values starting from zero, up to
the maximum green time allowed, and differing by 0.05
steps.

The heuristic agent (HEU) gives a response that is cal-
culated in different ways, depending on the state repre-
sentation. The percentage of green-time (g) for the
North and South lanes is calculated by

max(iy,fig)

9

g =
max(n,,ng)+max(ug,ny)

for the count state representation, and in a similar way
accounting for the lifetime values for the first car in each
track for the count-time state representation. The idea is
that it seems reasonable to attribute a green time to the
North and South lanes proportionally to the magnitude
of the maximum number of cars (and the waiting times)
relative to that of the sum of these values for both pairs
of lanes.

3.2.2 Advice-exchange mechanism

The main expectation, when advice-exchange was cho-
sen, was that using advice from the more knowledgeable
agents in the system would improve the learning per-
formances of all agents. Since supervision is a more
efficient training method than reinforcement, (at the
expense of needing more information) then, when no
supervision information is available why not use advice
as supervision? Better yet, if agents have different
learning skills, which produce different types of prog-
ress through the search-space, they may be able to avoid
that others get stuck in local minima by exchanging ad-
vice. It is unlikely that all agents are stuck in the same
local minima and the exchange of information regarding
the appropriate answers to some environment states
could force others to seek better solutions.

The process of advice-exchange is conducted in a dif-
ferent way in the agents that use a neural network as
activation function and in the Q-Learning agent. The
heuristic agent does not participate in the experiments
concerning advice-exchange. Advice-exchange is pro-
hibited in the first 2 to 10 epochs of training, depending
on the experiments, to avoid random advice being ex-
changed and to allow some time for the agents to an-
nounce a credible best average quality value. All agents
broadcast their best result (i.e., best average quality
measured during one epoch) at the beginning of each
epoch.

At the beginning of each green-yellow-red cycle, agent i
(the advisee) evaluates its current average quality (cq;)
since the beginning of the present epoch. This quality is
compared with the best average quality (bg;), for all
agents j, broadcasted by other agents at the end of last
epoch. Let mbq, = max(bgy), for all agents j # i. If cg;
<d mbgq, where d is a discount factor (usually 0.8), then
agent i will request advice from agent k (the advisor)
who as advertised the best average quality. The request
for advice is sent having as parameter the current state
of the environment as seen by agent i. The advisor
switches his working parameters (neural network
weights in most cases) to the set of parameters that was
used in the epoch where the best average quality was
achieved and runs the state communicated by the advi-
see producing its best guess at what would be the appro-
priate response to this state. This response (the advised

35

percentage of green time for the north and south lanes)

is communicated back to the advisee. In the case where

advisees are RW, SA and EA agents, the communicated
result is backpropagated as desired response, using the
standard backpropagation rule (Rumelhart, Hinton and

Wlliams, 1986) to update the weights of the network

immediately after this pass. In some experiments an

adaptive learning rate backpropagation (Silva and Al-
meida, 1990) was used but results were not significantly
different. The values for the main backpropagation pa-
rameters used in the experiments discussed here were in

the following intervals: learning rate: [0.001, 0.05],

momentum: [0.3, 0.7].

Table 1: Steps of the advice-exchange sequence for an
advisee agent (i) and an advisor agent (k).

1. Agent i: receive the best average quality (bg))
from all other agents (j # i). Quality for Agent
iis cq;.

2. Agent i: get state s for evaluation,

3.Agent i: calculate k = arg maxi(bg),
for all agents (j # i).

4. Agent i: if cq; < d max(bg;):

a. Agent i: send agent k the current state s
and request advice.

b. Agent k: switch to best parameters and run
state 5 to produce its best guess at the
adequate response (g).

¢. Agent k: return g to Agent i.

d. Agent i: process advice (g).

5. Agent i: run state s and produce response g’.

When the Q-Learning agent is the advisor, switching to
best parameters corresponds simply in selecting the ac-
tion with best quality. In the case where the Q-Learning
agent is the advisee, the action that is closest to the
given advice (recall that actions are discrete values in
this case) is rewarded in a similar way to that described
in (6). Since in this case the state of the system after
action a is unknown, the value of Q,,.(s") is replaced by
a weighted average of the utilities of all the possible
following states when executing action a at state s:

Qi (@) = p(s'| a,5)Q s (57) (10)
where p(s’|a,s) is the probability of a transition to state
s’ given that action a is executed at state s and it is cal-
culated based on previous experience, as the number of
transitions (n#,-,,) to state s’ when performing action a at
the current state, s, relative to the total number of transi-
tions from current state by action q, i.e.,

Ssa, (11

t oo .
p(s'la,s) = e

ias
i

where S, is the set of states reachable from state s by
action a. This type of adaptation of the state utility was
proposed in Sutton’s (1992) Dyna.

After updating the internal parameters with the advised
information, the advisee agent gives the appropriate
response to the system following the normal procedure
for each particular algorithm.

4 Experimental Results

Before the discussion of the experimental results, let us
put forward a few brief remarks concerning the simula-
tion and experiments.

The type of problem we are dealing with is a difficult
topic for simulation. Several works have been done in
this area, and the simplifications made in this scenario
were, in great measure, inspired by previous works
mentioned in section 2. Nevertheless, the tuning of the
simulator for the problem at hand was not a trivial mat-
ter. The problems tended to be either too easy or too
hard, and, in the first experiments, only marginal differ-
ences could be observed in the quality measure during
training. The most interesting experiments conducted
were the cases where lanes had quite different behav-
iours from one another, ranging from a medium steady
flow, to high peaks of traffic intermediated with periods
with nearly no traffic at all. As observed in (Lin 1992),
when doing similar experiments with variants of Q-
Leaning, harder tests provided the best results for ad-
vice-exchange. However, there seems to be a fine line
between hard solvable problems and, apparently, in-
soluble tasks in which no learning strategy, nor heuristic,
could reach reasonable values of quality.

The interpretation of results is also not an easy task. The
fact that agents are running online, and most of them are
based on random disturbance, added to the stochastic
nature of the environment, produces very “noisy” quality
evaluations. The results presented here focus mainly on
the analysis of the evolution of the best quality achieved
up the present moment of training. Other measures also
give us an insight on the process, but, at the present
moment this seemed to be the one that could better il-
lustrate the main observations made during experiments.
The above-mentioned stochastic nature of the problem,
and the large simulation times, also forced a compro-
mise in the choice of parameters for car generation. Al-
though an even greater variety of behaviours could be
achieved with other type of functions, whose periods
span over a larger time-frame, this would require that
each training epoch would be much longer, so that a
comparison between values of different epochs would be
fair. A lot of care was put into making epochs equally
hard, in terms of frequency of cars generated.

One last remark concerning the discussion of results that
will follow. The amount data necessary for a sound sta-
tistical comparison and evaluation of this technique is
still being gathered. The preliminary results discussed

36

here, produced in a series of 30 full trials, give us an
insight on the problems and possible advantages of ad-
vice-exchange during learning, but data is still not suffi-
cient for a detailed evaluation of the advantages and
drawbacks of this technique. The above mentioned trials
were ran under different conditions, either in the pa-
rameters of car-generation, lane-size and car speeds, or
in the decay rates and other parameters of the algorithms
themselves.

Before starting experiments, some results were ex-
pected, namely:

a) Initial disturbance of the learning process due to
advice by non-expert peers, as reported by Tan
(1993) for cooperation amongst Q-Learning agents.

b) After a few epochs, fast, step-like, increases in
quality of response, as soon as one of the agents,
found a better area of the state space and drove other
agents that had poorer performances to that area.

c) Final convergence on better quality values than in
tests where no advice is exchanged.

d) Problems of convergence when using excess of ad-
vice, or high learning rates when processing advice.

e) Improved resistance to bad parameterisation (spe-
cial in algorithms like Simulated Annealing, which
have parameters, like temperature, that are difficult
to tune).

The actual observed results differed in some respects
from expectations. The initial disturbance, or slower
convergence, reported by Tan (1993) for Q-Learning
agents, was not observed as a rule, although it occasion-
ally happened. The exact opposite was also observed. In
some experiments we can find agents that use advice
climbing much faster to a reasonable quality plateau.
Occasionally learning was much slower afterwards
(probably a local maximum was reached) and this high
initial quality value was gradually surpassed by the
stand-alone algorithms during the rest of the training.
The second expectation, the appearance of high steps in
the quality measure, due to advice from an agent that
discovered a much better area of the search-space, was
observed, but seems to be far less common than ex-
pected. Figure 3 shows a detail of the initial phase of a
trial where we can see a typical situation of the de-
scribed behaviour. The Simulated Annealing agent
jumps to a high quality area, and “pulls” Random Walk
and Q-Learning into that area in a few epochs. In this
experiment the advice-exchanging algorithms did not
stop at this quality plateau, being able to obtain better
scores than their counterparts.

Buality Evolution of best values |
0.9 i
0.8 - i

1
ol
10 20 Fpochs
= HEU —e— ARW —%—ASA
—%—AEA —A—AQL

Figure 3: Detail of the initial phase of a trial where ad-
vice given by Simulated Annealing (ASA) led Random
Walk (ARW) and Q-Learning (AQL) agents on a sud-
den climb of more than 10%. Evolutionary Algorithms
also benefited from this jump, but the climb was less
steep and from a lower point.

Results where the final quality values for the best agent,
on trials with advice-exchange, is significantly better
than in the normal case were observed, but do not seem
to be as common as expected. Figures 4 to 7 show com-
parisons of the methods with and without advice-
exchange for one of the trials where advice-exchange
proved advantageous. Notice that all results are better
than the one obtained by the heuristic agent (HEU),
which was not frequent and denotes a particularly hard
problem. The most usual result is that agents climb to
the vicinity of the best agent’s quality in few epochs,
and make only minor improvements for rest of the trial.
The expectations referred in d) and e) were observed, as
was foreseen. In fact, several cases were observed in
trials without advice-exchange, where early freezing of
the temperature parameter or the decay of the explora-
tion rate, led to a sudden drop to a low-quality valley,
from which the algorithm did not escape for the rest of
trial. These events are rare in trials using advice-
exchange.

One of the most interesting problems observed was that
of ill advice. It was observed that some agents, due to a
“lucky” initialisation and exploration sequence, never
experience very heavy traffic conditions, thus, their best
parameters are not suited to deal with this problem.
When asked for advice regarding a heavy traffic situa-
tion, their advice is not only useless, but harmful, be-
cause it is stamped with the “quality” of an expert. In Q-
Learning this was easy to observe because there were
situations, far into the trials, for which advice was being
given concerning states that had never been visited be-

37

fore. In the next section some measures to prevent this
problem will be discussed.

i . Ewolution of best values
Quality
0.9 7
S
10.84
o
o |
\

—
0-6 T T T T 1 T T T T

0 200 400 600 800 1000
| —=HEU ——ASA ——SA | Epochs
1

Figure 4: Comparison of Simulated Annealing perform-
_ance, with (ASA) and without (SA) advice-exchange,
and the corresponding heuristic (HEU) quality for the

same trial.
Quality Evolution of best values
09
0.8
0.7
0.6 T T T T T T T T T T]
0 200 400 600 800 1000
wneen JEJ ~ ==——AFEA ——FA ! Epochs|

Figure 5: Comparison of Evolutionary Algorithms per-
formance, with (AEA) and without (EA) advice-
exchange, and the corresponding heuristic (HEU) qual-
ity for the same trial.

5 Conclusions and Future Work

As mentioned in the previous section, advice-exchange
seems to be a promising way in which agents can profit
from mutual interaction during the learning process.
However, this is just the beginning of a search, where a
few questions were answered and many were raised. A
thorough analysis of the conditions in which this tech-
nique is advantageous is still necessary. It is important
to discover how this technique performs when agents are
not just communicating information about similar
learning problems, but attempting to solve the same
problem in a common environment. The application of
similar methods to other type of learning agents, as well
as other problems, is also an important step in the vali-
dation of this approach.

Quality Evolution of best values
0.9 \
_-l—[

o [
‘ |’
107 - ‘
O.6 T T T T H T 1 T

0 200 400 600 800 1000
[L wwwwHEU ~ =—=AQL ——QL | Epochs

Figure 6: Comparison of Q-Learning performance, with
(AQL) and without (QL) advice-exchange, and the cor-
responding heuristic (HEU) quality for the same trial

. Evolution of best values
Quality
0.9 n
il
08 1 f——
0.7 w
0-6 T T T T L T T T T
0 200 400 600 800 1000
wemmen HEJ — ARW ——RW | Epochs

Figure 7: Comparison of Random Walk performance,
with (ARW) and without (RW) advice-exchange, and
the corresponding heuristic (HEU) quality for the same
trial

For the time being, a more realistic traffic environment
is under development based on the Nagel-Schreckenberg
model for traffic simulation (Nagel and Shreckenberg,
1992). We hope that this new formulation provides a
richer environment in which advice-exchange can be
more thoroughly tested.

One of the main problems observed with advice-
exchange is that bad advice, or blind reliance, can hin-
der the learning process, sometimes beyond recovery.
One of the major hopes to deal with this problem is to
develop a technique in which advisors can measure the
quality of their own advice, and advisees can develop
trust relationships, which would provide a way to filter
bad advice. This may be especially interesting if trust
can be associated with agent-situation pairs. This will
allow the advisee to differentiate who is the expert on
the particular situation it is facing. Work on “trust” has
been reported recently in several publications, one of the
most interesting for the related subject being (Sen,
Biswas and Debnath, 2000).

38

Another interesting issue rises from the fact that humans
usually offer unrequested advice for limit situations.
Either great new discoveries or actions that may be
harmful for the advisee seem to be of paramount impor-
tance in the use of advice. Rendering unrequested advice
at critical points, by showing episodes of limit situa-
tions, also seems like a promising approach to improve
the skills of a group of learning agents. The same ap-
plies to the combination of advice from several sources.
These techniques may require an extra level of skills:
more elaborate communication and planning capabili-
ties, long-term memory, etc. These capabilities fall more
into the realm of symbolic systems. The connection
between symbolic and sub-symbolic layers, which has
been also an interesting and rich topic of research in
recent years, may play an important role in taking full
advantage of some of the concepts outlined in this work.
Our major aim is to, through a set of experiments, derive
some principles and laws under which learning in the
multi-agent system framework proves to be more effec-
tive, and inherently different from just having agents
learning as individuals (even if they are together in the
same environment).

Acknowledgements

The authors would like to thank, Manuel Sequeira, Thi-
bault Langlois, Jorge Lougd , Pedro Figueiredo, Ana
Violante, Rui Lopes, Ricardo Ribeiro, Francisco Pires,
Isabel Machado, Sofia Regojo and two anonymous re-
viewers. Also, our thanks to the ResearchIndex crew.

References

C. Baroglio. Teaching by shaping. Proceedings
ICML-95, Workshop on Learning by Induction vs.
Learning by Demonstration, Tahoe City, CA, USA,
1995

A. G. Barto, R. S. Sutton and P. S. Brouwer. Associa-
tive search network: a reinforcement learning asso-

ciative memory. Biological Cybernetics,
40(3):201-211, 1981

A. G. Barto, R. S. Sutton, C. J. C. H. Watkins. Learn-
ing and sequencial decision making. Garb & J. W.
Moore (Eds.), Learning and computational neuro-
science. MIT Press, 1990

H. R. Berenji and D. Vengerov. Advantages of Coop-
eration Between Reinforcement Learning Agents in
Difficult Stochastic Problems. 9th IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE
'00), 2000

R. L. Brafman and M. Tennenholtz. On partially con-
trolled multi-agent systems. Journal of Artificial
Intelligence Research, 4:477-507, 1996

E. Brockfeld et al. Optimizing Traffic Lights in a Cel-
lular Automaton Model for City Traffic. Physical
Review E 64 , 2001

P. A. Castillo et al. SA-Prop: Optimization of Multi-
layer Perceptron Parameters using Simulated An-
nealing. IWANN99, 1998

J. A. Clouse. Learning from an automated training
agent. Gerhard Wei} and Sandip Sen, editors, Ad-
aptation and Learning in Multiagent Systems,
Springer Verlag, Berlin, 1996

W. Ehardh et al. The Improvement and Comparison of
different Algorithms for Optimizing Neural Net-
works on the MasPar {MP}-2. Neural Computa-
tion {NC}'98, ICSC Academic Press, Ed.M. Heiss,
617-623, 1998

Glickman and K. Sycara. Evolution of Goal-
Directed Behavior Using Limited Information in a
Complex Environment GECCO-99: Proceedings
of the Genetic and Evolutionary Computation Con-
ference, July 1999

C. Goldman and J. Rosenschein. Mutually supervised
learning in multi-agent systems. Proceedings of the
1JCAI-95 Workshop on Adaptation and Learning in
Multi-Agent Systems, Montreal, CA., August 1995

J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975

O. C. Jenkins, M. J. Matarié¢ and S. Weber. Primitive-
based movement classification for humanoid imita-
tion. Proceedings, first JEEE-RAS international
conference on humanoid robotics, Cambridge, MA,
MIT, 2000

D. Kazakov and D. Kudenko. Machine Learning and
Inductive Logic Programmimng for Multi-Agent
Systems. Multi Agents Systems and Applications:
9th EACCAI advanced course, Selected Tutorial
Papers, 246-271, Prague, Czech Republic, July
2001

S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi.
zation by simulated Annealing.
220:671-680, May 1983

Optimi-
Science, Vol

J. R. Koza. Genetic programming: On the Program-
ming of Computers by Means of Natural Selection.
MIT Press, Cambridge MA, 1992

39

K. W. C. Kuand M. W. Mak. Exploring the effects of
Lamarckian and Baldwinian learning in evolving
recurrent neural networks. Proceedings of the
IEEE International Conference on Evolutionary
Computation, 617-621, 1997.

L.-J. Lin. "Programming Robots Using Reinforcement
Learning and Teaching. Proceedings of the Ameri-
can Association for Artificial Intelligence (AAAI-
91), 781-786, 1991

L.-J.Lin. Self-improving reactive agents based on rein-
forcement learning, planning and teaching. Ma-
chine Learning 8:293-321, 1992

R. Maclin and J. Shavlik. Creating advicetaking rein-
forcement learners. Machine Learning 22:251-
281, 1997

M. J. Matari¢. Using Communication to Reduce Lo-
cality in Distributed Multi-agent learning. Bran-
deis University Computer Science Technical Report
CS-96-190, 1996

M. J. Matari¢. Learning in behaviour-based multi-robot
sysytems: policies, models and other agents. Jour-
nal of Cognitive Systems Research 2:81-93,
Elsvier, 2001

M. J. Matari¢. Sensory-motor primitives as a basis for
imitation: linking perception to action and biology
to robotics. C. Nehaniv & K. Dautenhahn (Eds.),
Imitation in animals and artifacts, MIT Press, 2001b

K. Nagel, M Shreckenberg. A Cellular Automaton
Model for Freeway Traffic. J. Phisique I,
2(12):2221-2229, 1992

M. Nicoluescu and M. J. Matari¢. Learning and inter-
acting in human-robot domains. K. Dautenhahn
(Ed.), IEEE Transactions on systems, Man Cyber-
netics, special issue on Socially Intelligent Agents —
The Human In The Loop, 2001

E. Oliveira, JM.Fonseca, N. Jennings. Learning to be
competitive in the Market. AAAI'99 - American
Association of Artificial Intelligence Workshop on
Negotiation, Orlando, USA, 1999

D. E. Rumelhart, G. E. Hinton and R. J. Wlliams.
Learning internal representations by error propaga-
tion. Parallel Distributed Processing: Exploration
in the Microstructure of Cognition, vol. 1: Founda-
tions, 318-362, Cambridge MA: MIT Press, 1986

R. Salustowicz. A Genetic Algorithm for the Topologi-
cal Optimization of Neural Networks. PhD Thesis,
Tech. Univ. Berlin, 1995

S. Sen. Reciprocity: a foundational principle for pro-
moting cooperative behavior among self-interested
agents. Proc. of the Second International Confer-
ence on Multiagent Systems, 322-329, AAAI Press,
Menlo Park, CA, 1996

S. Sen, A. Biswas, S. Debnath. Believing others: Pros
and Cons. Proceedings of the Fourth International
Conference on Multiagent Systems, 279-286, 2000

F. M. Silva and L. B. Almeida. Speeding up back-
propagation. Advanced Neural Computers, 151-
158, A'dam North-Holland, 1990

R. S. Sutton and A. G. Barto A Temporal-Difference
Model of Classical Conditioning. Tech Report
GTE Labs. TR87-509.2, 1987

R. S. Sutton. Reinforcement learning architectures.
Proceedings ISKIT'92 International Symposium on
Neural Information Processing, Fukuoka, Japan,
1992.

M. Tan. Multi-Agent Reinforcement Learning: Inde-
pendent vs. Cooperative Agents. Proceedings of
the Tenth International Conference on Machine
Learning, Amherst, MA, 330-337, 1993

T. Thorpe. Vehicle Traffic Light Control Using SARSA,
Masters Thesis, Department of Computer Science,
Colorado State University, 1997

AP. Topchy, O.A. Lebedko and V.V, Miagkikh. Fast
learning in multilayered neural networks by means
of hybrid evolutionary and gradient algorithms
Proc. of IC on Evolutionary Computation and Its
Applications, Moscow, 1996

C. J. C H. Watkins and P. D. Dayan. Technical note:
Q-learning. Machine Learning 8, 3:279-292, Klu-
wer Academic publishers, 1992

G. Weif}, P. Dillenbourg. What is 'multi’ in multiagent
learning. P. Dillenbourg (Ed.), Collaborative
learning. Cognitive and computational approaches
(Chapter 4, 64-80, Pergamon Press, 1999

S. D. Whitehead. A complexity Analisys of Coopera-
tive Mechanisms in Reinforcement Learning. Proc.
of the 9th National Conference on Artificial Inteli-
gence (AAAI-91), 607-613, 1991

S. D. Whitehead and D. H. Ballard. A study of coop-
erative mechanisms for faster reinforcement learn-
ing. TR 365, Computer Science Department, Uni-
versity of Rochester, 1991

40

X. Yao. Evolving artificial neural networks.
ceedings of the IEEE, 87(9),1423-1447, 1999

Pro-

AN AGENT ARCHITECTURE TO DESIGN SELF-ORGANIZING
COLLECTIVES: PRINCIPLES AND APPLICATION

Gauthier Picard ; Marie-Pierre Gleizes
IRIT, Université Paul Sabatier
118, Route de Narbonne, 31062 TOULOUSE Cedex, France
0033 -5.61.55.82.95
picard@irit.fr ; gleizes@irit.fr

Abstract

Designing collectives, which have a task to execute in a very dynamic environment, is a complex problem. Determining the
right organization of these collectives in using group or role notions might be very difficult and even impossible for human analysts.
Even if the organization can be found, it becomes not very easy to design entities, or agents in our case, which are able to take into
account at the conception and design phases all possible situations an agent could face up to. Emergent and self-organizing ap-
proaches to model adaptive multi-agent systems avoid these difficulties. In this paper, we propose a new approach to design Adaptive
Multi-Agent Systems with emergent functionality. This approach enables us to focus only on the design of the agents that compose
the system. In fact, the self-organization of the system is led by the environmental feedback that each agent perceives. The interac-
tions and the organization evolve, providing an adequate function to the system, which becomes adapted to its environment as well.
Such functions have enough properties to be considered as emergent phenomena. First, we briefly present the Adaptive Multi-Agent
Systems theory (AMAS) and its link with self-organization. In a second part, a multi-level architecture is proposed to model agents
and to consider groups of agents as self-organizing collectives. In a third part, we describe a sample robot group behavior, the setting
up of traffic in a constrained environment. Our architecture allows the emergence of a coherent collective behaviour: the dedication
of corridors to specific directions. Finally, we show what is emergent by the analysis of results arising from measurements on collec-
tive phenomena.

1 Introduction (1998), and is linked to the Complexity Theory that

tends to demystify this concept. Goldstein (1999) pro-
Nowadays Multi-Agent Systems (MAS) tackle com- poses a set of properties for the emergent sysjcems such
plex and non-linear problem solving that classic sys- as radlf:al novelty, cc?herence, macro and mlcro-leve},
tems are not able to resolve efficiently. These prob- dynamical and ostensive phenomena. These characteri-
lems, such as flood prediction (Sontheimer et al., zations lead to new methodglogles to design systems
2001), on-line brokerage (Athanassiou et al., 1999) or where the macro-level algorithm (the task of the sys-

tem or the global function) does not appear at the mi-
cro-level (the agents' level). In Collective Robotics
domain, Labbani-Igbida et al. (1998) propose such a
methodology, named CIRTA. Our work takes place at
this crossroads between MAS, Robotics and Emer-
gence.

The MAS we are working on are self-organizing
adaptive systems consisting in several autonomous
agents situated in a common environment. Moreover,

equation system solving, have been the SMAC (Coop-
erative Multi-Agent Systems) team's leitmotiv to elabo-
rate new models based on self-organization. Robotics
meets similar problems. The difficulty of understand-
ing or of designing spatial settling, dangerous area
minesweeping or resource transportation, becomes too
high to elaborate single robots, which are able to re-
solve such tasks. That is how Collective Robotics is
born, inspired by social insects communities like bees

or ants like Kube and Zhang (1992) have highlighted. ?hese agents participate to a coherent collective. act.iv-

High-level problem resolution by low-leve! entities ity, to a common task. Because agent self-organization
interactions and the appearance of new functionality ability, they realize the global function of the system.
within groups are also two of the motivations of the The .pamcularlty is in the fact.that we do not code
Adaptive Multi-Agent Systems theory (AMAS). It within an agent the ’global func.tlon. of thc? system. Be-
takes part in a movement, named Emergence, which cause of the agents’ self-organization ability, the sys-

tem can adapt itself and the global function can

motivated many researchers around the world. Man ; .
Y Y emerge. The function realized by the system evolves

groups have been formed to study this ill-known con-

cept, which appears in the early Antiquity as Ali and when the organization of the agents in the system
Zimmer (1998) emphasize. Emergence was early changes. We w'ould like to show the pertinence of the
quoted in computer science, notably by Holland Adaptive Multi-Agent Systems applied to Collective

Robotics. Firstly, we present the AMAS theory on

A1

which all developments are based. Then we describe
our architecture. It is a generic model for our agents
guided by the wish to apply cooperative interactions
and self-organization. But a theory is nothing without
its own application. So, secondly, a sample application
is presented. It is about the study of the traffic of nu-
merous robots in a constrained environment, composed
of halls and narrow corridors like Vaughan et al.
(20004, b). The task is resource transportation between
two halls. The question of learning and memorization
will be raised. We distinguish several modules for
different means to learn.

Our system has been simulated and results have
been obtained and analysed. Finally, we conclude on
the scope of our study and the perspectives of our
work.

2 A Brief Overview of the AMAS
Theory

In the AMAS theory, we propose to consider the
equivalence between the organization of the collective
and the global function obtained by the set of interac-
tions between the low-level entities. To guaranty the
emergent property of the global functionality, the col-
lective has to be self-organizing.

2.1 Motivations

Several applications require the development of soft-
ware that is characterized by an incomplete specifica-
tion phase, because of the following reasons:

o the system has to evolve in a dynamical environ-
ment and it is impossible to totally specify all the
situations the system may encounter;

¢ the system is open;

o the system is complex;
there is no known algorithmic solution to resolve
the problem,;

¢ the internal organization of the system is a priori
unknown;

The unexpected is inherent to this systems' life. Self-
organization, which corresponds to an autonomously
decided change, becomes a mean to overcome possible
perturbations of the environment (MARCIA Group,
1996). This is a mean to realize adaptive systems too.
In our systems the organization is treated as a result
and not as a characteristic of the system to specify.

2.2 Definition and Characteristics

The AMAS theory is based on the self-organization by
cooperation. In this theory:

Definition 1. We call adaptive multi-agent system a
multi-agent system which is able to change its behavior

42

to adjust itself in its dynamical environment, either to
realize the task it is intended to complete or to improve
its functionality or performance. An adaptive multi-agent
system is characterized by the following points:
* the system is plunged in a dynamical environment;
* the system realizes a function;
 the system is composed of interacting autonomous
agents;
* each agent of the system realize a partial function;
o the organization of the system determines the result
of the system,

Learning, in the system point of view, consists on
transforming its current function to adapt itself to its
environment, i.e. changing its internal organization. So,
this learning enables the system to have a right activity'
in the environment where it is plunged into: this is the
definition of the functional adequacy. So, the question
is "when and how the system can transform itself to
tend to the functional adequacy”. The AMAS theory
(Gleizes et al., 1999) says:

Theorem 1. For all functionally adequate system, there
is at least one cooperative system which realizes an
equivalent function in the same environment.

This result is important because it enables the guidance
of the adaptive multi-agent system design. A first step
lies in the identification of the agents and then to guar-
antee that each agent is or tends to be in cooperative
interaction with the other agents. This method ensures
the functional adequacy according to the theory.

In the AMAS theory, an agent is generally supplied
with skills, communication and interaction (with other
agents and/or the environment) capacities, beliefs and
knowledge on other agents of the environment, apti-
tudes which enable the agent to reason, and a coopera-
tion-based social attitude. The behaviour of each agent
is specified in order to try to reach its objective(s) and
to keep cooperative interactions with the other agents.
Before any action, an agent locally examines if it is in
cooperative interaction or not. In fact, it detects if it is
in non cooperative situation. If the agent is in such a
non cooperative situation, it tries to escape from this
situation to return to a cooperative one. The coopera-
tion is the social attitude that leads the behaviour of
each agent by taking into account local criteria. This is
what we call cooperation-based social attitude.

Therefore, an agent has two essential roles: the first
is to realize its partial function. The second one is to
act on the internal organization of the system. If an
agent detects a non cooperative situation to return to a
cooperative situation so as the system returns to a func-
tionally adequate organization.

' The right activity is decidable only by an external
observer who appreciates the interactions and who
knows the function the system has to realize in its envi-
ronment.

2.3 Non Cooperative Situations (NCS)

Agents, who are designed using the AMAS theory
(Gleizes et al.,, 1999) and the associated methodology
ADELFE (Bernon et al.,, 2001), have to respond to
unexpected events. After identifying the agents, ac-
cording to the AMAS theory, designers have to give to
an autonomous agent the means to decide to change its
interactions with the other agents. As we previously
say, the change of the organization between the agents
changes the function realized by the whole system. The
means to self-organize is local to the agent. It consists
in the ability to detect and to remove (if the agent can)
all non cooperative interactions and to perform coop-
erative action when it is possible. There are three cate-
gories of non cooperative interactions:

o Misunderstanding: when a signal that is re-
ceived from its environment can not be under-
stood without ambiguity;

e Incompetence: when an information (an inter-
preted signal) cannot lead to new logical con-
sequence. In other words, an information must
bring novelty: a difference with previous in-
formation.

e Uselessness: when concluding results are use-
less for the environment (and the other
agents).

We can observe the agent in using the knowledge it has
about itself can locally judge the two first situations.
The agent can analyse the third situation after a percep-
tion of the environment. This is the generic manner to
define the engine of self-organization. For each level of
the system, a set of NCS must be determined. This set
must be as complete as possible. We instantiate it for
the robot and the states agents in section 4.2 - Instan-
tiation of the Model —

3 A Multi-Level Architecture

In this section, we present our architecture to model a
group of robots as Adaptive Multi-Agent Systems.
First, we define the three levels that will be an adaptive
multi-agent system: the robots, their inner states and
their activity level. Later, we identify and describe the
agents at each level and the non cooperative situations.

3.1 The Different Levels of the MAS

As a primordial motivation to easily model systems,
the decomposition of a system in different levels of
abstraction is a prevalent characteristic of our works.
This decomposition enables to develop levels sepa-
rately and to observe the phenomena that correspond to
each level. At the robot level, the global modelled
system is composed of several agents, the robots,
which can be physically homogeneous or not. Each

43

Robot Level State Level

Decision function

Activity Level

Decision funclionj

Robo! Robo
perception

i)

dosision I decision :‘[(> [State I L Activity]
L State; J L Activity,

Robo Robot e

ooen] | | S Ly ™|

=

action action State I L Activiey J

Figure 1. The three decomposition levels of the
architecture.

robot is driven by its decision module that is composed
of an adaptive multi-agent system too, where agents are
states. At this level, named state level, the states must
self-organize to give to the robot a coherent global
behaviour,

This approach requires the definition and the identi-
fication of each agent in each level of the system. It is
important to identify these levels because of the intrin-
sic multi-level characteristic of emergent phenomena.
This appearance is a bottom-up phenomenon that can
be propagated through the entire system and its level.
Actually, an emergent behaviour can appear from the
organization of the state agent, at the state level, to the
robot level. Each robot is led by such behaviour so that
an emergent global behaviour appears at the global
level (or robot level). In our system we find three levels
as in figure 1.

At the highest level, the Robot Level, the adaptive
multi-agent system is composed of autonomous robots,
which have to accomplish a collective task in a dy-
namical environment. For example, the collective's task
of a collective may be resource transportation
(Vaughan et al., 2000a) or a box-pushing task (Kube et
al.,, 1996) (Matari¢ et al., 1995). The agents should be
equipped as the robots that they represent. They have
sensors, sonar for example, and actuators, as wheels, to
be able to interact with their environment and to com-
municate indirectly with the other robots. They can
also have communication equipment, as an IR-com
port, to communicate directly.

At the mid-level there is the State Level. Each robot
contains a multi-agent system in its Decision Module.
This component that links the robot level and the state
level is developed in section 2.2.4 and section 5.2. This
module has to determine the behaviour the robot has to
follow. The behaviour of a robot is directed by a se-
quence of inner states that are simple activities allow-
ing the robot to accomplish its task. To obtain adaptive
robots, a solution is to mode! robots with adaptive
multi-agent components. Actually, the Decision Mod-
ule has a representation of each state as agent. These
agents must determine the right time to activate them-
selves to give to the robot a coherent behaviour. It is
this self-organization that leads to the emergence of a
robot's behaviour.

We can define the states as high-level primitives
because they don't manipulate directly the actuators of
the robot. For example, in the case of an ant having to
bring resources to its nest, the states might be explora-
tion, exploitation, back to the nest and rest. They might
not be turn left, turn right, move forward, move back-
ward or pick that manipulate directly the actuators
(arms for example).

Other decompositions and level definitions are eas-
ily imaginable. As we said in the previous paragraph,
states are high-level activities that don't manipulate
directly the robot's actuators. So, what directly controls
these actuators? The definition of another level is
needed to complete this top-down definition of our
architecture. This level is named Activity Level. Like
robots, states are led in their local behaviour by a deci-
sion module that has to activate the right activity at the
right time. A state needs different activities to be co-
herent. For example, an exploring robot has to know
how to reach a resource when it detects one. More
examples are given in section 3 - Example: a traffic
Survey -. In fact, activities may manipulate directly
actuators.

In this paper, we focus on the Robot Level and the
State Level even if the Activity Level raised several
questions which will be shortly developed.

3.2 High-Level Agents: the Robots

Robot agents have effect at the Robot Level. These
agents are designed to control physical robots or to
simulate them in an artificial life platform. They are
composed of four distinct parts: sensors, a decision
module, actuators and a non cooperative situation
detection module (or NCS detection module). The three
first components correspond to a classical principle of
several works in Collective Robotics and Artificial
Life. The last one, the NCS detection module is our
contribution in the agent architecture. Agents are led by
a classical three-phase life cycle:

1. The perception phase during which the robot
updates its registers corresponding to its sensors
and so updates their input vector composed of
boolean values corresponding to the robot's point
of view of its environment;

2. The decision phase during which the robot
chooses an appropriate inner state in function of
its input vector;

3. The action phase during which the robot updates
its registers corresponding to its actuators (wheel
speed, rotation angle...) in function of the taken
decision of the previous phase.

The NCS module participates in the decision phase. If
the robot locally assumes it is in a cooperative situation
then it normally acts. Else, i.e. the robot locally infers it
is in a non cooperative situation, it acts to come back to
a cooperative situation.

44

As developed in the section 3.1 — The Multi-Agent
System's Levels -, the robot can be composed of adap-
tive multi-agent systems as in others applications like
where brokerage agents model their ontologies as
multi-agent systems composed of words (Athanassiou
etal.,, 1999).

Sensors represent the link between the robot and its
environment. They allow the robot to construct a par-
tial representation of the world where it is plunged. For
the most part of them, their ranges are narrow. This is
why such robots are suitable for autonomous agents
that obey to the locality principle: an agent has a local
perception of its environment. This principle is a "sine
qua non" condition for an agent to be, as says Ferber
(1995). Sensors update the robot's input vector.

NCS detection module is coupled with the sensors
and taking place during the perception phase, this
module analyses the input vector. In function of its
inputs, including what a robot knows about itself - its
current state for example -, the module determines if
the robot is in a non cooperative situation. In such a
situation, the NCS detection module has to send a mes-
sage to the decision module to treat this particular
situation.

Actuators assume the link between the robot and its
environment. Thanks to actuators, the robot can move
(legs or wheels) or can pick some objects, for example,
that modifies the environment. Registers containing
values representing their position, orientation or what-
ever lead actuators. The only representation the robot
has of its actuators is this set of values.

The decision module selects an inner state in func-
tion of the input vector. In our architecture, the deci-
sion module uses another multi-agent systems com-
posed of state agents, taking place at the State Level.
The problem of the choice of the right state at the ap-
pointed time appears in several works in Robotics
(Matari¢, 1994). For our part, we explore a new way
for the decision, the decision by adaptive multi-agent
system and a simple reactive decision.

¢ Reactive decision: at each possible input vector,
the module associates a state. This kind of deci-
sion is very efficient but is not flexible. It needs a
complete exploration of the input vector space at
the conception of the robot even if factorisations
may be possible.

e Agent-based decision: during the decision phase,
each state agent evaluates its wish to act at this
time. A state agent has beliefs on input-vector and
affects weight to each of them. The most pertinent
state will be activated, i.e. each state agent sends a
value corresponding to its wish to be activated
and a decision function chooses the best (the
agent with the highest value for example). With
such a decision module, robots are able to learn
from state-agents' self-organization as explained
in section 5.1 - Learning from Self-
Organization -.

The question of the decision can be raised at the state
level too. Therefore, a state agent must activate the
right activity at the proper time to be coherent. It is the
motivation of the decomposition of the agents in multi-
agent systems.

3.3 Mid-Level Agents: the States

The state agents appear in the decision module. A state
represents a behaviour a robot can have. The role of the
state agents is to activate themselves at the proper time
to control coherently the robot.

A state agent has two tasks to accomplish. Firstly, it
has to select the right activity at the proper time. Sec-
ondly, it must send a value to the decision module.

In fact, the global behaviour of a robot, i.e. a se-
quence of activities, can be represented by a transition
graph as in the methodology CIRTA of Labbani-Igbida
et al. (1998). In this graph, two levels may appear: the
state level and the activity level. The goal is to find the
graph robots have to follow. Keeping in mind we work
with the emergent concept, this graph does not have to
appear at the robot level. The robot should have to
construct it by learning,.

3.4 Related Works

Our architecture is similar to the behaviour-based ar-
chitecture of Brooks (1986) or Matari¢ (1994). In fact,
our states and activities correspond to their behaviours.
In these architectures, each agent has a set of simple
behaviours, which enable the agent to accomplish its
task.

The choice between the different behaviours at a
given time can be done by different procedures: arbi-
tration, subsumption, etc. In our works states are agents
having to choose by themselves the right state at the
proper time. The choice is not a centralized procedure
but it is distributed between the state agents.

4 TRAFFIC SURVEY

To explain the presented architecture, we develop an
application. This study shows a common problem in
Collective Robotics: spatial interference. The result of
this application is the observation of a global emergent
behaviour. We show that a stream of a collective
through corridors is a global emergent behaviour.

4.1 Presentation of the Problem

The resource transportation problem is a classical task
in Collective Robotics due to its inspiration from insect
communities (Kube et al, 1992) (Vaughan et al,
2000a). The task of the robots is to transport resources
from a claim area to a laying area. These areas are

45

Figure 2. An example of environment for the stream
emergent behavior.

situated in different rooms separated by narrow corri-
dors. A spatial interference problem appears as in the
survey of Vaughan et al. (2000b). Once a robot is en-
gaged in a corridor, what has it to do if another robot
comes in the opposite direction? In this survey, they
use an aggressive competition to resolve the probiem.
For our part, we use the NCS concept.

The configuration of the environment has of course
a great importance on the appearance of emergent
phenomena. As figure two shows, each room (1 or 2)
contains an area (3 or 4 respectively) at the opposite of
the other room to force robots to enter in a room to
realize their activities. Corridors (5, 6 and 7) are nar-
row (more than the size of a robot but less than the size
of two robots) and their length can be parameterised. In
fact, the length has an importance on the appearance of
a stream direction. Either the corridor is shorter than
perception range of the robot, or the corridor is longer.
In the first case, a robot can see another robot engaged
in a corridor before coming in. In the second case, a
robot cannot know if another is engaged and has to
come in without certitude. The number of corridors
may have an importance too. In this article, we only
present the case with two long corridors.

4.2 Instantiation of the Model

Now, we present how to use our architecture for the
resource transportation task.

4.2.1 The Robots

To complete the task, a robot must have some sensors
and actuators: short-ranged sensors to avoid obstacles,
an object sensor to distinguish robots from resources
and an area sensor to detect areas and corridors (each
area or corridor can have a proper colour); two wheels
to move in any direction and a pick-up unit (such a
clamp) to pick resources. The sensors enable a robot to
construct its input vector.

We have determined a set of inputs such as
seeResource, inClaim or inCorridorNum-
ber. These inputs are booleans or list of Booleans
according to table 1. This set of inputs is called the
input vector.

4.2.2 States and Activities
We have determined the following states and activities:

¢ The Claim State: the state a robot must have when
he have to take a resource. This state uses the fol-
lowing activities:

o Seek Resource: the robot is exploring the
rooms to find a resource;

o Reach Resource: the robot is moving to a re-
source (it's able to avoid obstacles too);

o Pick Resource: the robot is picking a re-
source which is close ranged;

e The Laying State: the state a robot must have
when he have to drop a resource. This state uses the
following activities:

o Seek Area: the robot is exploring the rooms
to find the Laying Area;

o Reach Area: the robot is moving to the Lay-
ing Area resource (it's able to avoid obstacles
100);

o Drop Resource: the robot is dropping a re-
source;

e The Travel State X: the state a robot must have
when he have to cross the corridor X. This state
uses the following activities:

o Seek Corridor X: the robot is exploring the
rooms to find the corridor X;

o Reach Resource X: the robot is moving to
the corridor X (it's able to avoid obstacles
too);

o Pick Resource X: the robot is crossing the
corridor X;

Each state uses a set of activities that can be summed
up as seek, reach and act. The robots should have to:
seek a resource, find it, reach it, pick it, then seek a
corridor, find it, reach it, cross it and then seek the
laying area, find it, reach and drop the carried resource.
This behaviour corresponds to a transition graph where
conditions may be very complex because of the num-
ber of parameters in the input vector. A solution is to
group activities in states, as in figure 3. Conditions are
factorised and easier to define.

4.2.3 NCS rules

We shall define the NCS corresponding to the robot
level. The NCS corresponding to the state level will not
be explain because will only focus on the appearance
of emergent behaviour at the robot level.

46

} TravelSateY Claim State
s jmm,? '\——
condl1 i : condl
condl0 . cond2
: : 3
condd cond3
i P
cond® : : condd
P y
cond? H cond$
CrossCorridorX
i Layingate TravelStateX

Figure 3. The State Level and the Activity Level ap-
pear in the transition graph.

1. A first robot A, which is not carrying a re-
source, is reaching a corridor and sees another
robot B, which is carrying a resource. The ro-
bot A is reaching a corridor which is fre-
quented by robots carrying resources and it
may disturb them;

2. A first robot A, which is not carrying a re-
source, is reaching a corridor and sees another
robot B which is immobile and which is not
carrying a resource. The first robot A is reach-
ing a corridor which is blocked for carrying
robots;

3. A first robot A, which is carrying a resource,
is reaching a corridor and sees another robot
B, which is not carrying a resource. The robot
A is reaching a corridor which is frequented
by carrying robots and may disturb them;

4. A first robot A, which is carrying a resource,
is reaching a corridor and sees another robot B
which is immobile and which is carrying a re-
source. The robot A is reaching a corridor
which is blocked for robots which are not car-
rying resources;

5. A first robot A, which is not carrying a re-
source is reaching a corridor and sees another
robot B carrying a resource. A and B are
crossing a corridor which is frequented by ro-
bots which do antinomic jobs;

6. A first robot A, which is carrying a resource is
crossing a corridor and sees another robot B,
which is not carrying a resource. Same as (5);

7. A first robot A is crossing a corridor and sees
an immobile robot. The corridor is blocked. It
may be due to robots in NCS (5) or (6);

4.3 Preliminary Experiments

At this stage, the system is tempting but limited. We
shall expose in this section first results, which have
motivated our wish to extend our system, notably by
learning capacities. Experiments have been realized on
the oRis platform developed at the ENIB (Harrouet,
2000). In this section, we will show different results
from measurements on the collective for different con-
figuration of agents and we will conclude on the need
to equip our agents of learning capabilities.

4.3.1 Robots without NCS Detection Module

Results of figure 5 show the corridor frequenting. The
configuration of experimentation is two corridors and
twenty robots that are unable to detect NCS. Two
curves represent the number of robot crossing a corri-
dor. Each curve corresponds to a direction: from the
claim room to the laying room, or from the laying
room to the claim room. As an observation, the corri-
dors are not dedicated to a direction. There is no emer-
gent behaviour.

4.3.2 Robots with NCS Detection Module
Results of figure 6 have been obtained with the same

configuration except that the robots can detect and treat
NCS. However, there is no emergent global behaviour.

387050

2447.00

1223.50]

0.00] 2%

' '
0.00 36758.75 7351750 110276.25 147035.00

Figure 6. Number of incoming robots in the corridors
(first corridor at top and second corridor at bottom)
in function of simulation’s step time, for robots with
NCS detection module.

47

5105.00)
3828.75 : :
2552501 - v ncnnnmmenn ",P/ ---------------------
1276.25] :
.00~ : : L
0.6 7578575 3553150 §6787.25 115063.00
4592.00) " : :
344401 ------------- T fommnmemeanene :
2206.000 - =< - - =enennn- TR
148,00} - wv oo -
A i
0.00] =" : : 7
0.66 2976575 55531 5928725 119063.00

Figure 5. Number of incoming robots in the corridors
(first corridor at top and second corridor at bottom)
in function of simulation’s step time, for robots with-
out NCS detection module.

4.3.3 NCS are not Totally Exploited

To be able to detect and resolve immediately NCS
seems not to be sufficient to observe emergent behav-
iour. The previous results underline the need to add
learning capacities to robots. In fact, conflicts are not
due to the current state of a robot but to a previous one,
cause to the length of the corridors.

S Learning and Decision

In the previous section, we have shown the need to
endow our robots of learning abilities. We develop now
the concept of learning by self-organization, which is
the way for our system to adapt itself to its environ-
ment.

5.1 Learning from Self-Organization

Learning for a system S consists in modifying autono-
mously its function f; to adapt itself to its environment.
In this case, the environment is a given constraint. Each
agent 4; of a system S achieves a partial function f;; of
the global function f;. f5 is the result of the combination
of the partial functions fy,, noted by the operator "o".
The combination being determined by the current or-
ganization of the parts, we can deduce:

Js=far 0 420 ... © fun

As generally fu; © fi2 # f42 © fuy, by transforming the
organization, you change the combination of the partial
functions and therefore you modify the global function
Js. Therefore, this is a way to adapt the system to the
environment.

The theorem we carried can be expressed like this:

Theorem 2. Any system having a cooperative internal
medium is functionally adequate.

Each agent has to be in cooperative interaction with the
others so as the totality be in cooperative interaction. It
means that each agent who locally detects non coopera-
tive situations must try to change the organization in
order to get in a new cooperative state. It might be
restrictive to use the principle of self-organization, that
is to say the research of an optimum organization, as
only learning mechanism. However, structuring a sys-
tem in levels of different granularity allows a learning
not only at the level of the organization but, also, at the
level of skills. Indeed, the skill of an agent changes if
its internal organization (the agents it is made of) is
changed. So, the level's organization is chained to the
one of the upper level. In fact, each agent could be also
a multi-agent composed of cooperative sub-agents at a
lower level.

5.2 Learning at the Robot Level

Learning at the Robot Level can be effectuated by an
agent-based decision module. A change in the organi-
zation of the state agents corresponds to a change of
the robot agent skill. When a robot detects a NCS, it
has to learn in order to come back to a cooperative
situation.

The environmental feedback is implicif®, i.e. this is
the robot who detects this feedback. A robot agent
learns on its skill: it changes its graph of states in order
to change its global behaviour. To change its graph, it
must change the organization of its state agent by send-
ing a message to its decision module when it detects a
non cooperative situation.

5.3 Learning at the State Level

At the State Level, in the decision module, each state
agent evaluates its wish to be activated. For the collec-
tive of state it corresponds to an organization. States
must learn when a wrong state is activated at an im-
proper time. States detects such a situation when the
robot agent sends a NCS message to its decision mod-
ule.

To evaluate its will to be activated, a state agent
must calculate a wish value. To calculate this one, the
state agent multiplies a modified input vector (e;)} with
weight vector (¢;) corresponding to the state agent's
belief on a component of the vector.

% In opposition to explicit feedback, where an external
omniscient entity decide for each agent if its action is
good or not.

48

e e et enls

= value to return

The modified inputs ¢; are equal to / for an input vec-
tor value of /, and equal to -1 for an input vector value
of 0. The e, values correspond to "is the input important
for the decision?" and the ¢; values correspond to "how
much important the input value is”. Learning will be
done by modifying the weights ¢, when the decision
module receives a NCS message from the robot (the
weight decreases) or when the state corresponding to
the state agent is chosen (the weight increases). After
the calculus of their values, the agents compare them
and decide which state will be activated.

This learning model is close to the Reinforcement
Learning model or the model proposed by Matarié
(1994).

6 Results

In the previous sections, we have seen the necessity to
supply our robot with learning abilities to reach our
goal: emergence of the stream global behaviour. There-
fore, we have developed an agent-based decision mod-
ule. In this section, we present results showing how a
collective of robots, which are supplied with such a
module, evolve by self-organization. As in section 4.3
— Preliminary Experiments —, the collective is com-
posed of 20 robots plunged in a two-corridor environ-
ment. Finally, we conclude on the appearance of co-
herent group behaviour.

6.1 Robots with Agent-Based Decision
Module

In the figure 7, the lighter curve corresponds to robots
which not carrying resources and the darker one corre-
sponds to the robots carrying resources. Results show
that the two “classes” of robots that cross the corridors
(carrying robots and not carrying robots) are well
dissociated. Carrying robots appropriate the second
corridor. This phenomenon is due to learning ability: it
does not appear with a collective of robots without
decision module. In fact, at the beginning of the simu-
lation, robots experiment numerous NCS because they
disturb themselves at the entries of the corridors. Bit by
bit, they change their transition graph.

The dissociation between corridors does not corre-
spond to a cast formation as referred by Balch (1997),
because this is a dynamic phenomenon where robots
constantly move from class to class. Therefore, all the
robots follow the same circle: claim room, second
corridor, laying room, first corridor, and then claim
room ... As the environment includes only two corri-

9140.00| : . H T

6855.00f - ------eco--- oo ERREREE 7,/_ [AREEEREEEE SRS

4570 .00[------------- E ----- 7 STsemsmoemsoe- qommmeeeiieee-

zzas.oo‘

0.00] *
0.00

7927.004

Figure 7. Number of incoming robots in the corridors
(first corridor at top and second corridor at bottom)
in function of simulation’s step time, for robots with
agent-based decision module,

dors, it seems to be evident. However, what if it in-
cludes more then two corridors? In this case it seems to
be interesting to observe cast formation.

The results show that the two corridors are fre-
quented by the two “classes” of robots. This is a con-
sequence of the used method to count the robots. To
obtain these results, these are the incoming robots that
are counted, not the robots that completely cross the
corridors. Therefore, robots that unfortunately come in
the corridor to avoid an obstacle are counted.

We can see that this dissociation is done in a reduce
time, at the beginning of the simulation (20,000 steps).
It shows the efficiency of the learning by self-
organization for a wide solution space.

6.2 Emergence of a Global Behaviour

Robots self-organize to transport resources by crossing
specific corridors. Nevertheless, we have not coded in
the robots an algorithm to. The micro-level specifica-
tion leads to the appearance of a coherent emergent
phenomenon: the stream, i.e. the dedication of corri-
dors to specific direction.

7 Conclusion and Perspectives

In this paper, we develop an example of a Collective
Robotics problem: the resource transportation through
corridors. This problem is tackled in the idea to ob-
serve emergent phenomenon from the collective. After
the presentation of our architecture and the study of the
task, we present some results obtained by simulation
on the agent-oriented platform oRis. Robots have to be
equipped with learning abilities to observe the emer-
gent stream. This conclusion is a motivation to develop

49

an agent-based decision module. The expected result
appears: the stream behaviour emerges from the collec-
tive.

The developed system is incomplete, but offers
several perspectives for the future:

- Optimisation of the NCS resolution: because they
lead to short-time blockages at the entries of the cor-
ridors;

- Experimentation of a “Logical Adaptive Net-
work”: where the decision is done by an adaptive
multi-agent system composed of “nand” agents
which emulate the transition graph;

- Other behaviours and cast dynamic study: such as
“box-pushing” with team or hierarchy;

- Learning by cooperation: the robots are able to
communicate and to share their experiences.

The results obtain with our present system are encour-
aging for two reasons. First, the method that is used to
specify and design the system is confirmed to be effi-
cient for the study of complex system with emergent
functionality. Finally, the AMAS theory seems to be
pertinent in Collective Robotics domains, even if our
application is only a laboratory case.

In a more general way, our works focus now on a
methodology, which is based on the AMAS theory and
the UML notations, to design adaptive multi-agent
systems with emergent functionalities. This methodol-
ogy, named ADELFE, regroups several partners® to
develop a toolkit for engineers and will be imple-
mented in the OpenTool application, which is provided
by TNI firm.

References

S. M. Ali and R. M. Zimmer. The question concerning
emergence. In Computing Anticipatory Systems:
CASYS - First International Conference, D.M. AIP
Conference Proceedings 437, pp 138-156, 1998.

Athanassiou, Chirichescu, Camps, Gleizes, Glize,
Lakoumentas, Léger, Moreno, Schlenker. Abrose:
A Co-operative Multi-Agent Based Framework for
Marketplace - IATA, Stockholm, Sweden August
1999

T. Balch. Social Entropy : a New Metric for Learning
Multi-Robot Teams. In Proceedings, 10" Interna-
tional FLAIRS Conference (FLAIRS-97). 1997

C. Bernon, V. Camps, M.P. Gleizes, P. Glize. La con-
ception de systémes multi-agents adaptatifs : con-
traintes et spécificités. In Atelier de Méthodologie
et Environnements pour les Systémes Multi-Agents

3 RNTL Project Partners: ARTAL Technologies, IRIT,
L3I and TNI.

(SMA 2001), Plate-forme AFIA, Grenoble, June
2001.

R. Brooks. A robust layered control system for a mo-
bile robot. In IEEE Journal of Robotics and Auto-
mation, volume 2, pages 14-23, 1986.

J. Ferber. Les systémes multi-agents : Vers une intelli-
gence collective. InterEditions, Paris, 1995.

M.-P. Gleizes, V. Camps, and P. Glize. A theory of
emergent computation based on cooperative self-
organization for adaptive artificial systems. In
Fourth European Congress of System Science, Va-
lencia, Spain. 1999.

J. Goldstein. Emergence as a construct: History and
issues. In Emergence : a Journal of Complexity Is-
sues in Organizations and Manadgement. The New
England Complex Systems Institute, 1(1):49-72,
1999.

F. Harrouet. oRis : s'immerger par le langage pour le
prototypage d'univers virtuels base d'entités
autonomes. PhD thesis, Université de Bretagne
Occidentale, 2000.

J. Holland. Emergence: From Order to Chaos. Oxford
University Press, Oxford, 1998.

C. R. Kube and H. Zhang. Collective robotics: from
social insects to robots. Adaptive Behaviour, 1994,
2(2):189-218.

C. R. Kube and H. Zhang. The use of perceptual cues
in multi-robot boxpushing. In 1996 IEEE Interna-

tional Conference on Robotics and Automation,
pages 2085-2090, 1996.

50

O. Labbani-Igbida, J.-P. Miiller, and A. Bourjault.
Cirta: An emergentist methodology to design and
evaluate collective behaviours in robots' colonies.In
Proceedings of the Ist International Workshop on
Collective Robotics (CWR-98), volume 1456 of
LNAI pp 72-84, Berlin, 1998.

MARCIA Group. Auto-organizsation = ‘évolution de
structures? In Journées du PRC GDR Intelligence
Artificielle: les systémes multi-agents, Toulouse.
1996.

M. J. Matari¢. Interaction and Intelligent Behavior.
PhD thesis, MIT, May 1994.

M. J. Matari¢, C. Nilsson, and K. Simsarian. Coopera-
tive multi-robot box-pushing. In IEEE International
Conference on Intelligent Robots and Systems, vol-
ume 3, pages 556-561, 1995.

T. Sontheimer, P. Cornuau, J.J. Vidal, P. Glize. Appli-
cation d’un systéme adaptatif pour la prévision de
crues dans le bassin de la Garonne — Un Modéle
Emergent. In Conférence SIRNAT'01, 2001.

R. Vaughan, K. Stey, G. Sukhatme, and M. Matarié.
Blazing a trail: Insect-inspired resource transporta-
tion by a robotic team. In Proceedings, 5th Interna-
tional Symposium on Distributed Robotic Systems,
October 2000.

R. Vaughan, K. Stey, G. Sukhatme, and M. Matarié.
Go ahead make my day: Robot conflict resolution
by aggressive competition. In Proceedings, 6th In-
ternational Conference on Simulation of Adaptive
Behaviour, pp 491-500, 2000.

Environmental Risk, Cooperation and Communication Complexity

Peter Andras, Gilbert Roberts, John Lazarus
Department of Psychology
University of Newcastle
Newcastle upon Tyne, NE1 7RU, UK
{ peter.andras;gilbert.roberts;j.lazarus } @ncl.ac.uk

Abstract

The evolution of cooperation and communication in communities of individuals is a puzzling problem for a
wide range of scientific disciplines, ranging from evolutionary theory to the theory and application of multi-
agent systems. A key issue is to understand the factors that affect collaboration and communication evolution.
To address this problem, here we choose the environmental risk as a compact descriptor of the environment in
a model world of simple agents. We analyse the evolution of cooperation and communication as a function of
the environmental risk. Our findings show that collaboration is more likely to rise to high levels within the
agent society in a world characterised by high risk than in one characterised by low risk. With respect to the
evolution of communication, we found that communities of agents with high levels of collaboration are more
likely to use less complex communication than those which show lower levels of collaboration. Our results
have important implications for understanding the evolution of both cooperation and communication, and the

interrelationships between them.

1 Introduction

Understanding how cooperation between unrelated
individuals can arise in animal and human societies has
puzzled evolutionary theorists. Early solutions to the
problem were found in terms of reciprocal altruism; the
mutual exchange of benefits between pairs of
individuals (Trivers 1971, Axelrod & Hamilton 1981,
Axelrod 1984, Roberts & Sherratt 1998). More
recently, 'indirect reciprocity’, in which individuals
who are seen to be more generous receive more help
from others, has been proposed as an additional route
to cooperation (Alexander 1987, Nowak & Sigmund
1998, Leimar & Hammerstein 2001).

In these models individuals have information about the
past behaviour of others on which to base decisions but
there is no communication of intentions: individuals
simply act; cooperating, defecting or declining to
interact. (This is in contrast to the evolutionary
modelling of competitive behaviour in which signalling
has played a central role: e.g. Maynard Smith 1974,
Enquist 1985.) Although there seems to be little
theoretical work on intentional signalling in the context
of cooperation, arbitrary signals correlating with
altruism (the ‘green beard effect’, Dawkins 1976), tags
indicating individual identity (Riolo et al. 2001) and
signalling of partner quality (Leimar 1997) have been
considered. While existing evolutionary models of
cooperation are important in examining the minimal
conditions for the evolution of cooperation they are
also impoverished - at least for the human case - in
excluding the possibility that, intentionally or
unintentionally, individuals may communicate their

51

intention to cooperate before interacting. In the
development and maintenance of human relationships
cooperation is accompanied by signals of short-term
intentions and longer term commitment. Honest
communication, and consequent trust, are of the
greatest importance for the development of a stable
collaborative relationship; deceit and mistrust are
inimical to it (Boon & Holmes 1991).

In this paper we develop an agent world model to
examine the evolution of cooperation when individuals
communicate their intentions. This communication
helps individuals to decide whether to enter into
cooperation with another: it allows partner choice.
Many of the earlier models provide no such choice, so
that cheats can be avoided only if individuals have
information on their past behaviour. When the
behaviour of others is to some extent predictable,
however, individuals can derive the intentions of others
and cooperators can choose to interact with other
cooperators while cheats can be ostracized (Roberts
1998).

We ask how cooperation and communication respond
to variation in the risk or complexity of the
environment. Risk and complexity are important
general properties of the environment that impact on an
individual's success in ways that can be influenced by
cooperating with others. For example, resources may
be predictable (low risk) or unpredictable (high risk),
and threats from predators or competitors may vary in
a similar way. Resource acquisition, the avoidance of
predators and success in competition can all be
enhanced by collaboration with others.

The second focus of the paper is how the complexity of
communication itself evolves in this context and
whether it differs between cooperators, cheaters and
those who decline to interact at all. This interest in the
communication of intentions follows other work in
artificial societies (e.g. Schillo et al. 2000), which
investigate how collecting information about the
intentions of other agents can enhance the development
of collaboration.

Our agents communicate by sequences of signals, each
of which informs the potential partner about the
cooperative intentions of the agent. The reliability of
the signals differs between agents, who use the
information from communication in present and past
interactions to make decisions about whether to share
resources with a potential partner. The interaction
between agenls occurs within a risky environment
where risk refers to the variability of the gains that
result from cooperative behavior. Our results will be
applicable to agent societies, animal societies, and
human social systems.

The rest of the paper is structured as follows. First, we
describe the agent world model. Next, we present the
simulation results. Finally, we discuss the implications
of our results.

2 The agent world

In this section we describe the world of our agents. We
start with the description of the environment, followed
by the description of the agents, communication
processes, resource management, the offspring
generation rules, and we close with the description of
the evolution of the agent society. We also present
some argumentation to support our choices with
respect to the implemented principles, rules and
methods.

2.1 The environment

The environment of our agent world is characterized by
a given risk. The environmental risk represents in a
compact way the complexity of the surrounding
environment. The environmental risk is implemented
as the variance of the agent’s resource regeneration
process.

2.2 The agents

Our agents dispose over some generic resources that
they use to maintain themselves and to reproduce.

Each agent speaks the same communication language
consisting of the symbols: ‘0’,’s’,’i’,’y’,’n’,’h’ and ‘t’.
The meaning of the communication symbols are as

follows: ‘0’ — no intention of communication, ‘s’

start of communication, ‘i’ — maintaining the
communication, ‘y’ — indication of the willingness to

52

]

engage into resource sharing, ‘n’ — indication of no
further interest in communication, ‘h’ - effective
sharing of the resources, ‘t’ — not sharing the resources
after an indication of willingness to engage into
sharing. The last two symbols, ‘h’ and ‘t’ actually
mean the resource-sharing or no-resource-sharing
actions. The first four symbols are ranked according to
their positive contribution towards engagement in
sharing (the least positive is the ‘0’ and the most
positive is ‘y’).

The agents generate communication units (i.e., one of
the above symbols) when they engage in
communication with another agent. Each agent has its
own realization of the language. This language is
represented in the form of a two-input probabilistic
automaton (i.e., it is equivalent of a probabilistic push-
down automaton). The language units are production
rules of the form

. »
L' Ucnmnl’ U curvent _)pl Um.l
’
current? current 2 new.2
’
Unm-.m’ U cumrent 9|'|k Unew.k

where U__, is the last communication unit produced
by the agent, U_./' is last communication unit
produced by the partner of the agent, U_,, U,
U,... are the new communication units that can be
produced by the agent, and pl,p2,...,pk are the
probabilities of production of these communication
units, pl+p2+...4+pk=1 (an example of a such rule is:
L:i,i" g, ¥, Li’ D451, 1,i" D, n that means that after
producing the symbol ‘i’, and receiving a symbol i’
from the communication partner, the agent will
produce the symbol ‘y’ with probability 0.4, the
symbol ‘i’ with probability 0.5, and the symbol ‘n’
with probability 0.1).

The language units obey intention consistency rules,
i.e., if U0,U1,U2, and U3 are communication units, and
U2 is equally or more positive than Ul, and U3 is
equally or more positive than U2, and L1 is a language
unit that produces U3 after U1 and receiving U0, and
L2 is a language unit that produces U3 after U2 and
receiving UO, then the probability of producing U3
using 1.2 is equal or higher than the probability of
producing U3 using L1. Similarly, if L1 is a language
unit that produces U3 after UQ and receiving U1, and
L2 is a language unit that produces U3 after U0 and
receiving U2, then the probability of producing U3
using L2 is equal or higher than the probability of
producing U3 using L1. In other words the intention
consistency rules mean that more positive inputs are
more likely to lead to positive outputs than are less
positive inputs. This choice of the intention consistency
rules is in agreement with human and animal behavior,
where the expression of friendly signals is more likely
to be followed by further friendly signals by the same
individual than non-friendly signals.

Each agent has a characteristic intention, which
indicatcs the extent to which it is willing to share
resources with other agents. This sharing intention
determines the probability of the y,y’ = h production
rule.

The agents are equipped with a memory. The memory
of the agents can store the experiences of collaboration
with the last M different partners (M=10 in our
implementation). The memory of the agents also fades
with time, and if they don’t meet an old partner for
long time they forget their memories about this partner.
For each memorized partner the agent keeps the score
of the successful and unsuccessful meeting (i.e.,
successful means a meeting that led to getting shared
resources from the partner).

The agents are located on a two dimensional plane, and
they may change their location. The location of an
agent determines the neighbourhood of the agent that
consists of the N (N=10) closest agents.

The agents live for T (T=60) time units. In each time
unit they try to find a collaboration partner in their
neighbourhood. At the end of their life time the agents
produce their offspring.

2.3 Communication processes

After selecting a collaborating partner the agents may
engage in a communication process. The
communication process starts properly after both
agents communicated the ‘s’ symbol. We set a limit
(L, for the preliminary communication. If the two
agents do not reach the proper start of the
communication in a communication of length L, we
consider that they stop their communication at this
moment.

During the communication process the agents use their
own realization of the common language to produce
communication units. The communication process ends
gither with the communication of an ‘n’ symbol (i.e.,
signalling no further interest), or with the
communication of the ‘y’ symbol by both partners.
After this each agent decides whether to share or not to
share their resources with the other agent by producing
the action symbol ‘h’ or ‘t’. We impose a
communication length limit (L,) on the proper
collaboration oriented communication. If the agents do
not reach the stage of communicating the ‘y’ symbols
in L, communication steps, we consider that they stop
their communication.

At the start of each communication process, the agents
update their language unit probabilities according to
their memories of the agent they are currently
interacting with (note that if there had been no previous
interaction with this agent there is no update). The
updated version of their language applies only to the
present communication process. In the case of more

53

positive experiences (those that led to sharing) the
probabilities leading to more positive symbols are
increased, while in the case of negative experiences
these are decreased. The probabilities for each
fanguage unit are normalized after effecting the above
changes (i.e., the probability of producing all the
allowed new symbols is always one for each language
unit).

During each communication process, as an agent
produces equally or more positive symbols their
willingness to share increases. We note that although
this increase happens in all agents, those who have
very low intention to collaborate will increase an
originally low probability, which means that they will
not necessarily share at the end of the communication
process. We adopted this collaboration willingness
increase principle in conformity with human and
animal behavior, where a sequence of expression of
friendly signals increases the likelihood of the friendly
ending of the interaction, even if the original intentions
were less friendly.

2.4 Resource management

The agent dispose over their own resources that they
use to maintain themselves and reproduce. In each turn
the agents use their available resources to produce new
resources. If they manage to find a partner who is
willing to share its resources they can use the
combined resources to generate the new resources for
the next turn.

The mean resource generating function is a squashing
function of the form:

- 1
R, =a: 1+ e F*ho

where R is the amount of available resources, and R,
and a are parameters. Operating at the convex half of
the squashing function (i.e., R < R)) means that using
more added resources is more advantageous than using
the resources separately.

Resource generation happens in a probabilistic manner.
The environmental risk specifies the variance of the
resource regeneration process. The amount of new
resources is found by taking a sample from a uniform
distribution that has the calculated mean and the
variance specified by the environmental risk. We use
the notation N(R) for the amount of new resources
generated by using R amount of available resources.

The variance of the resource regeneration increases
with the time spent in negotiation about resource
sharing. This risk increase principle is in agreement
with how environmental risk changes in the real world.
To exemplify it we consider an example from business.
If two companies start negotiations about a joint
business, lengthy negotiations may proceed while a

competitor enters in the market, and the final gain of
the two collaborating companies will be reduced. At
the same time lengthy negotiations may lead to a well-
designed contract that makes possible to avoid future
impasses, making the collaboration more profitable. If
the negotiations are short, the deal is made quickly, and
the companies may start gaining some new market
share. At the same time they may run into some
unregulated disputes that may slow down their
cooperation and the increase of their market share. As
we can see from this example, if the communication
process is short the variance of the expected benefits is
likely to be smaller than in the case when the
communication process becomes lengthy.

When two agents meet, having resources R1 and R2,
and they both decide to share their resources they may
receive extra new resources. The extra resources for
both partners are calculated as the half of the difference

N(R1+R2) - (N(R1) + N(R2))
Such agents are called collaborators.

If an agent is engaged in a communication process,
convinces its partner to share, but then withholds its
own resources from sharing, it is called a cheater. The
gain of a cheater is the whole amount of the difference

N(R1+R2) ~ (N(R1) + N(R2))

In such case the one that is cheated generates only
N(R2) new resources for itself, i.e., it does not benefit
from the sharing.

If two agents select each other as communicating
partners, but they do not manage to decide about the
sharing of their resources (i.e., their communication
end with an ‘n’ symbol) we call them non-

collaborators.

If an agent does not reproduce enough resources to
maintain itself (i.e., the maintenance costs are higher
than the amount of own resources) the agent reaches
the zero resource level and dies.

2.5 Offspring generation

When the agents reach the end of their lifetime they
generate their offspring. The number of the offspring
depends on the available resources of the agent.

If the agent has R resources, and the mean amount of
the resources in the agent society at that moment is R,
and the standard deviation of the resources is R, then
the number of offspring of the agent is calculated as

R-(R,-B-R
a..___(-mR_ﬁ__:)d,.no

5

where &, B, n, are parameters.

%4

If n is negative or R=0 we consider that the agent
produces no offspring. If n > n_, where n_, is the
allowed upper limit of offspring, we cut back nton_, .

In order to avoid strong generational effects the newly
generated offspring have random ages between 1 and
A,

The offspring of an agent inherit from their parent its
language and collaboration intention with small
random modifications. They also inherit the resources
of their parent equally divided between the offspring.

2.6 The evolution of the agent society

At the beginning we start with randomly initialised
agents, i.e., the transition probabilities of their
language units, their collaboration intentions, initial
resources and initial positions are set randomly.

The agent society evolves through the interaction and
reproduction of the agents. The agents search for
collaborating partners. They try to share their
resources, or to cheat the collaborating partner, or they
may not manage to make the decision about sharing. In
each turn each agent may choose one partner from its
neighbours. After each turn the agents make a random
move, changing their position, and possibly finding a
new neighbourhood.

The agents regenerate their resources alone or in
collaboration with another agent in each turn, and they
pay a part of their resources to maintain themselves. At
the end of their lifetime the agents generate their
offspring if they have enough resources.

3 Simulation results

This section presents our simulation results. The
objective of these simulations were twofold. First, to
determine how environmental risk affects both the
level of collaboration, and the complexity of
communication. Second, to examine how the various
strategists (collaborators, cheaters, non-collaborators)
differ in complexity of their communications in an
evolving society. The results are presented in this
order, after examining some general effects of risk
level on the agent society.

We selected five levels of risk in the range of 0.1 -0.9
(the risk levels were 0.1, 0.2, 0.5, 0.7, and 0.9). We
measured communication complexity by measuring the
average length of the communication processes.

For each risk level we run 20 simulations to obtain
valid estimates of average values and variances of the
measured variables. The number of agents in each
simulation was the same at the beginning (1500). We
run each simulation for 400 time units, or until the

agent population died out or reached the maximum
allowed level of number of individuals (5000).

3.1 General effects of the environmental risk

To see the general effects of environmental risk on the
agent society we looked at how the number of agents
and the resource level varied with time. We considered
the average amount of resources separately for
collaborators, cheaters and non-collaborators.

Figure 1 shows the average number of agents in the
agent societies for the five risk levels. Figures 2 ~ 4
show the change over time of the average amount of
resources of collaborators, cheaters and non-
collaborators.

The first segment of dropping in the graphs represents
the period when the randomly initialised population
selects those who are able to survive. This segment
corresponds to one generation (i.e., around 60 time
units).

Following the initial drop the societies start to grow in
number and in average amount of resources in all
cases. The graphs show that this growth happens much
faster in agent societies living in low risk environment
than in those which live in high risk environments.

These results confirm the standard expectation that the
average level of populations and their available
resources is lower in high risk environments than in
low risk environments.

3500

3000 bs

[\
[¢]]
Q
(=]

- - n
[=] [5)] [=]
o [=] [=]
o (=] (=]
-

Population Count

500 1

[e o o e o e B B
N N O N N N
IR S A)

Time

Figure 1: The evolution of the number of agents in
agent societies living in environments with different
risk levels.

55

900

g0 e
& 700
= ——
2 600 Xé 0.1
@ ——0.2
T s00 £ ——05
€ 400 ’
S o0 —a—07
8 —8—0.9
3 200
© 100

e —

N N N N N N N
I R e

Time

Figure 2: The evolution of the average amount of
resources of collaborators in agent societies living in
environments with different risk levels.

3.2 Environmental risk and the level of
collaboration

To analyse the effect of the environmental risk on the
level of collaboration we looked at the percentage of
collaborators, cheaters and non-collaborators within the
society (note that the percentage of those who were
cheated is the same as the percentage of cheaters). The
change of these percentages over time is shown in
Figures 5-7.

0
13
e —0.1
=
8 ——(.2
& ——0.5
™
2 ——0.7
;:; —8—0.9

LA 2 B s e A s e s e

N8 q,“‘\ ‘bQN S

Time

Figure 3: The evolution of the average amount of
resources of cheaters in agent societies living in
environments with different risk levels.

600

500

Non-Collaborator Resources

LI S B e S S B S S s S S S S

NoeN N N NN A
RIS A

Time

Figure 4: The evolution of the average amount of
resources of non-collaborators in agent societies living
in environments with different risk levels.

0.9
0.8
0.7 1
2 R
@ 06 - g';
el N
£ 05
5 —e—0.5
8 04
s —a—0.7
8 0.3 —a—(0.9
0.2
0.1
0 e r————————
N N N N N N N
QO O o o o
Time

Figure 5: The evolution of the average percentage ot
collaborators within the agent societies living in
environments with different risk levels.

0.1
R
@ ——0.2
% —e—0.5
2 —0.7
3}

—8—0.9

[o B R S N

N N N N N N
e & S P

Time

|

Figure 6: The evolution of the average percentage of
cheaters within the agent societies living in
environments with different risk levels.

56

0.6

3

(%] ————

5 0.1
® —%—0.2
§ ——05
3 —a—0.7
Q

c —&—0.9
5 (—#=0.9]
=

Figure 7: The evolution of the average percentage of
non-collaborators within the agent societies living in
environments with different risk levels.

The figures show that the level of collaboration
increases in all conditions. After the first generation
(i.e., around 60 time units) the level of collaborators
increases steadily until it stabilizes (above 50%). In the
case of cheaters and non-collaborators there is a
corresponding decline to stabilization at below 18% for
cheaters and below 12% for non-collaborators.

The figures show that the stable level of collaborators
is lower in low risk conditions than in high risk
conditions, and that levels of cheaters and non-
collaborators are higher in low risk conditions than in
high risk conditions. This indicates that the agent
societies living in a high risk environment are more
likely to achieve high level of collaboration than those
which live in low risk environments. We note also than
in the high risk environments it is more likely that the
population dies out than in low risk environments.

3.3 The complexity of communications

We analysed the complexity of communications by
measuring the average length of communication
processes within the whole society.

Figures 8 shows the evolution over time of the
communication complexity in the whole society.

The figure shows that there is no clear ordering of the
stable levels of communication complexity as a
function of the level of environmental risk. The same
is true when each of the three agent strategies is
examined independently.

6
)
Ed
K ——0.1
=)
E ——(),2
‘z ——0.5
o —a—0.7
E
o —a—0.9
©
i

\%\’3:\

NN AN
A S)

Time

Figure 8: The evolution of the average communication
complexity within the whole agent societies living in
environments with different risk levels.

3.4 Collaboration and communication complexity

First we analysed the correlation between the levels of
collaborators, cheaters and non-collaborators and the
average complexity of communications within the
society. These correlations are shown in Tables 1 - 3.

Risk 0.1 0.2 0.5 0.7 0.9

Correlation | -0.94 |-098 |-0.99 |-0.99 | -0.99

Table 1: The correlation between the average
percentage of collaborators and the average complexity
of communications within societies living in
environments with various risk levels.

Risk 0.1 0.2 0.5 0.7 0.9

Correlation [0.15 (074 {093 1095 |0.97

Table 2: The correlation between the average
percentage of cheaters and the average complexity of
communications within societies living in
environments with various risk levels.

Risk 0.1 0.2 0.5 0.7 0.9

Correlation | 097 1098 1099 1099 |0.99

Table 3: The correlation between the average
percentage of non-collaborators and the average
complexity of communications within societies living
in environments with various risk levels.

These results indicate that the proportion of
collaborators is strongly negatively correlated with the
complexity of communications at all risk levels. In the
case of cheaters we see that their proportion is
moderately positively correlated with the average
complexity of communications at low risk levels, and
that the correlation gets much stronger for high risk
levels. In the case of non-collaborators their percentage
is strongly positively correlated with the average
communication complexity at all risk levels. These
results together suggest that those who collaborate tend

57

to communicate in shorter sequences, while those who
cheat or do not collaborate are likely to use longer
communication sequences.

To analyse this suggestion directly, we examined how
communication complexity evolves in the three
different groups at given risk levels. Figures 9 and 10
show two examples for risk levels 0.2 and 0.9.

6.5
> A
£ ¥
2
£ 55 ——Collab
8 —e— Cheat
[-}]
o 5 —e— Non-Collab
)
5 45 -
-

4 ———

N QJ\ \Q:\ ‘Lb‘\ (bq:\

Time

Figure 9: The evolution of the average communication

complexity in the groups of collaborators, cheaters and

non-collaborators living an environment characterized
by risk level r = 0.2.

These figures confirm the suggestion that those who
collaborate are likely to wuse less complex
communication between themselves, and those who do
not collaborate use more lengthy communication
processes.

6.5
£ 6
»
8 \f\ —
£ 55 LAy Collab
8 —»— Cheat
Q
2 51 —e— Non-Collab
&
£ 45
-l

P ——

NS g

Time

Figure 10: The evolution of the average
communication complexity in the groups of
collaborators, cheaters and non-collaborators living an
environment characterized by risk level r = 0.9,

4 Discussion

First, we interpret our results from the more general
point of view of evolution of collaboration and
communication in societies of individuals. Second, we
discuss the implications of the presented results for
agent worlds and multi-agent systems.

4.1 Evolution of collaboration and communication
in societies of individuals

Under the assumptions of our model society,
cooperation can thrive and its frequency increases with
environmental risk, while both cheating and non-
cooperation decline. The increase in cooperation with
environmental risk probably comes about because
cooperation can be crucial for survival when resources
are very low and/or provides particularly large rewards
(compared to cheating) when resources are very high.
This is because while cheating is profitable in the short
term (for a few interactions), in the longer term
cheaters fail to find other agents who will interact with
them. The fact that population size and average
resource level decline as risk increases supports the
conclusion that cooperation becomes increasingly
advantageous in difficult or harsh environments, as
measured by risk.

The prediction that cooperation is more likely in risky
environments can be tested in animal societies, in
human experimental groups and in the real world of
human social and economic behaviour, at the level of
both individuals and of groups such as firms and
nations. For example, this prediction might help to
explain the phenomenon of increased feelings of
community during wartime. It also suggests that
cooperation might be enhanced by increasing the risk
or complexity of the problem at hand. Although there
may also be costs associated with increasing risk, if
perceived risk increased while objective risk remained
unchanged then cooperation might be enhanced
without cost. However, as perceived risk increases the
population of those willing to participate is likely to
decline. A possible application area here is
communication on the Internet, although there would
be ethical issues involved in deceiving users about the
risk or complexity of the Internet environment.

In contrast to its effect on cooperation, environmental
risk in the model had no clear effect on the length of
communication. This may have been because the
model language was too simple, varying between only
4 and 6 elements at the outset. For a richer language we
predict that communications will be shorter as risk
increases since: (1) there is a positive correlation
between collaboration level and risk, and negative
correlations between cheating and non-collaboration
levels and risk (Figures 5-7), and (2) there is a negative
correlation between collaboration level and language
complexity, and positive correlations between

58

cheating and non-collaboration levels and language
complexity (Tables 1-3).

Those who collaborated had shorter communication
strings than those who cheated or failed to collaborate.
This is because if a collaborator meets an agent for
whom it has a memory biased towards collaboration
then it has higher probabilities of production for
positive communication symbols and therefore moves
more quickly (i.e., with fewer communication steps)
into an interaction that is likely to be collaborative.
Thus collaborating agents, by positive feedback, build
an increasingly cooperative relationship with each
other, in a manner analogous to that described by
Roberts & Sherratt (1998). The direct complement of
this process is that meeting a past cheater for which an
agent has a memory increases that agent’s likelihood of
cheating in the present interaction after a longer series
of communication symbols (see sub-section 2.3 on the
communication process).

Collaboration thus brings with it the bonus of a saving
on communication effort. Such effort may be trivial,
but it may also be considerable, as in some forms of
human negotiation. The prediction that collaboration
simplifies the communication process (compared to
both cheating and avoiding interaction) can be tested in
the scenarios already described for examining the
relationship between cooperation and risk.

4.2 Collaboration and communication in agent
worlds

We see two directions of implications of our work in
the context of agent worlds and multi-agent systems.

First, our results indicate that appropriate setting of the
environmental risk factors of an agent world can
determine to a significant extent the level of
collaboration within the agent world. This may have
applications in the design of multi-agent systems where
the developers wish to achieve some desired mix of
collaborative/non-collaborative behavioural patterns
that fits to the objective of the system. It is important to
note that pure collaborative behavior in an open agent
world may pose significant risks to the proper working
of that world, as malignant agents may appear, and
may abuse the default benevolent behavior of other
agents. This means that some level of non-cooperative
behavior should be allowed in an open agent system
(Sherratt and Roberts 2001).

Second, our results suggest that it is possible to predict
the expectable level of collaboration and
communication complexity in an agent world, if
enough information is available about the
environmental risk factors characterizing this world.
Such predictions can form the basis for checks of the
validity of risk factor assumptions, and for corrective
actions aimed to keep the agent world within the
desired range of macro parameters.

References

R.D. Alexander. The Biology of Moral Systems. Aldine
de Gruyter , New York, 1987.

R. Axelrod. The Evolution of Cooperation. Basic
Books, New York, 1984.

R Axelrod, & W.D. Hamilton. The evolution of
cooperation. Science, 211:1390-1396, 1981.

S.D. Boon and J.G. Holmes. The dynamics of
interpersonal trust: resolving uncertainty in the
face of risk. In: R.A. Hinde and J. Groebel (eds.)
Cooperation and Prosocial Behaviour, pp. 190-
211. Cambridge University Press, Cambridge,
1991.

R. Dawkins. The Selfish Gene. Oxford University
Press, Oxford, 1976.

M. Enquist. Communication during aggressive
interactions with particular reference to variation
in choice of behaviour. Animal Behaviour,
33:1152-1161, 1985.

O. Leimar. Reciprocity and communication of partner
quality. Proceedings of the Royal Society of
London Series B: Biological Sciences,264:1209-
1215, 1997.

O. Leimar and P. Hammerstein. Evolution of
cooperation through indirect reciprocity.
Proceedings of the Royal Society of London Series
B: Biological Sciences, 268:745-753, 2001.

J. Maynard Smith 1974 The theory of games and the
evolution of animal conflicts. Journal of
Theoretical Biology, 47:209-221.

M.A. Nowak, and K. Sigmund. Evolution of indirect
reciprocity by image scoring. Nature, 393:573-
571, 1998.

R.L. Riolo, M.D. Cohen, and R. Axelrod. Evolution of
cooperation without reciprocity. Nature, 414:441-
443, 2001.

G. Roberts. Competitive altruism: From reciprocity to
the handicap principle. Proceedings of the Royal
Society Series B: Biological Sciences, 265:427-
431, 1998.

G. Roberts and T.N. Sherratt. Development of
cooperative relationships through increasing
investment. Nature, 394:175-179, 1998.

M. Schillo, P. Funk and M. Rovatsos.Using trust for
detecting deceitful agents in artificial societies.
Applied Artificial Intelligence, 14:825-848, 2000.

T.N. Sherratt and G. Roberts. The role of phenotypic
defectors in stabilizing reciprocal altruism.
Behavioural Ecology, 12:313-317, 2001.

R.L. Trivers. The evolution of reciprocal altruism.
Quarterly Review of Biology, 46:35-57, 1971.

59

Stochastic Simulation of Inherited Kinship-Driven Altruism

Heather Turner; Dimitar Kazakov
Computer Science Department
University of York
{brt103,kazakov } @cs.york.ac.uk

1 Introduction

The aim of this research is to assess the réle of a hypothet-
ical inherited feature (gene) promoting altruism between
relatives as a factor for survival. The two main goals are,
firstly, to replicate the phenomenon of altruism, which
has been observed in nature, and show that the proposed
mechanism leads to altruistic individuals being selected
by evolution. Secondly, the research aims to provide an
implementation of a Multi-Agent System (MAS) employ-
ing a model of natural selection, which is different from
the one commonly used in Computer Science (Goldberg,
1989), and, hopefully, closer to the one existing in nature.

Altruism can be defined as selfless behaviour, action
that will provide benefit to another at no gain to the actor
himself, and possibly even to his detriment. In kinship-
driven altruism, this behaviour is directed between indi-
viduals who are related. Hamilton (1964a) introduces
an analytical model, in which altruistic behaviour towards
relatives is favoured by evolution, provided that the amount
of help that an individual bestows on relatives of a given
distance is appropriately measured.

Both MASs (Wooldridge and Jennings, 1995) and Ge-
netic Algorithms (GAs) (Goldberg, 1989) can be used ef-
fectively to simulate the interaction of a population that
evolves over a period of time. A MAS allows study of the
interactions at the level of the individual, while a GA is
a better tool for generalisation over an entire population.
In a GA, no distinction is made between individuals with
the same genotype (i.e., inherited features), whereas in a
MAS these are represented by different phenotypes, or set
of observable characteristics resulting from the interac-
tion of each genotype with the environment (Thompson,
1996). The use of MAS with large populations is limited
by the requirement for extra resources to represent indi-
vidual phenotypes. In a GA, the individual is anonymous,
so there is no capacity to “zoom-in” on its behaviour, but
in contrast, there is the possibility of scaling up to con-
sider a much larger population, which may be statistically
more relevant.

The GA uses a fitness function to estimate how well

60

each individual will fare in the future and uses this to
influence the likelihood that they survive to subsequent
generations. A MAS uses information about the current
position of an individual in the environment, and taking
into account its internal state, considered to be the cumu-
lative result of its actions and experiences in the past, de-
termines its actions. In a GA, the population size is fixed,
and during each system cycle, individuals may be selected
to mate (and be replaced by their descendants) or they
pass to the next generation. The anonymity of each indi-
vidual is suited to the probabilistic selection afforded to
this algorithm, and the resulting possibility that clones of
an individual be produced in future generations. Without
this anonymity, in a system that ‘tracks’ the behaviour of
individuals through the generations, complications could
arise on cloning. Attachment of energy values becomes
difficult if the probabilistic freedom is to be maintained
without producing a system that can produce and destroy
energy at will. In a MAS, the population size is not ex-
plicitly constrained, and the internal state of an individual
determines its lifespan. A system cycle will not generally
represent an entire generation, as individuals may survive
for many cycles. Table 1 summarises the main differences
between the GA and MAS models of natural selection.

We combine features of each approach to produce a
more scalable, personality-driven system without a mod-
elled spatial dimension. The probabilistic nature of all
events and the high level of abstraction typical for the GA
are preserved. However, the description of each individ-
ual consists of a set of inherited features (genome) along
with a—very abstract—description of the actual organ-
ism (phenotype). The internal state of each individual is
changed by the interaction with a very simple, abstract,
environment, in which both the selection of an individ-
ual’s action and its outcome are modelled as probabilistic
functions. This permits to avoid the use of an explicit
fitness function, and describe the survival of an individ-
ual directly as a probabilistic function of its internal state
(e.g., current energy levels).

Our system is designed to simulate a population in
which some of the individuals are carriers of a gene forc-

Table 1: MAS vs GA simulation of natural selection

Feature MAS GA
Representation genotype + phenotype genotype only
of individuals

Survival of deterministic, based on probabilistic,
individuals the lifetime interaction based on geno-

with environment type’s fitness

Population size unlimited fixed
Environment limited capacity use bounded
Tesources by max. pop.

size
Preservation enforced not considered
of energy

ing them to share their energy with the individuals they
meet in proportion to the degree of kinship (i.e., number
of shared genes). The exact sharing policy is subjected to
selection and studied. The altruistic gene is passed with a
certain probability from parent to child. Food consump-
tion results in increased individual energy level. Falling
below a certain energy level means death. An encounter
of two individuals of the same species could result in the
creation of an offspring if their energy levels are suffi-
cient. The initial energy level of the offspring is sub-
tracted from that of the parents.

This research uses the hybrid platform described above
to study from a different angle an extended version of
some of the experiments with kinship-driven altruism per-
formed by Barton (2001). As in Barton’s study, natural
selection works to produce an optimum sharing function
when it is left to vary.

2 Altruism and Darwinian Theory

The possible evolution of a selfiess gene is an interest-
ing area of study as it does not necessarily seem intuitive
that an individual should value the survival of another to
the extent of causing detriment to itself (perhaps by de-
creasing his own chance of mating or survival) in order
to help the other. It would be in contrast to the classic
Darwinian theory of natural selection, according to which
selfish individuals would always take the upper hand, and
eliminate altruists, as the behaviour of the latter would
by definition hinder their reproductive success. There is
evidence however, as Hamilton (1964b) illustrates, that
many species in nature exhibit this altruistic trait. Neo-
Darwinian theory (Watson, 1995) attempts to provide an
explanation with the idea of ‘inclusive fitness’, and the
hypothesis that natural selection works not at the level of
an individual, but on each individual gene. Many indi-
viduals can carry copies of the same gene, and if these
individuals could identify one another, it would be pos-

61

sible for them to aid in the process of natural selection
over that gene by attempting to secure reproductive suc-
cess and the passing of this gene to the next generation.
The evidence provided by Hamilton suggests that nature
has evolved to recognise that it is likely for close relatives
to have similar genetic makeup. In Hamilton’s model, the
degree of kinship is quantified, and it can then be used
to determine how much help an individual can bestow on
a relative, at detriment to itself and yet still be likely to
benefit the inclusive fitness, the ‘fitness’ of the gene.

Barton (2001) used a MAS to model a population
of individuals who behaved altruistically competing in an
environment with a population of the same size that was
not altruistic. His MAS used GA principles by associating
genes with each individual in an attempt to find optimum
solutions for variables used in his simulations. In some
of his experiments, it was the sharing population that pre-
vailed, in others, the non-sharing population over-ran the
environment. He quotes ‘Gause’s Competitive Exclusion
Principle’, stating ‘no two species can coexist if they oc-
cupy the same niche’, and hypothesises that given the
limitations of his simulated system, his competing pop-
ulations are likely to ‘end up having the same, or very
similar, niches’.

In the MAS he uses, there are agents to represent food
and the individuals of each population. The environment
is represented on a grid with varying terrain that could re-
strict movement, or provide water as sustenance to fulfil
‘thirst,’” one of the ‘drives’ that describe the internal state
of an agent in a given cycle. Each agent uses the values
of its drives, its immediate surroundings and some deter-
ministic rules to make life choices in each cycle.

3 Design

The system we have implemented to investigate altruis-
tic behaviour combines features used in a MAS and those
used in a GA. Rather than providing co-ordinates for the
position of each individual in the system, we model en-
counters with food (energy) and other individuals proba-
bilistically, reflecting the likelihood that these would oc-
cur in a given cycle. We do not constrain the popula-
tion size, thus permitting easier comparisons with Bar-
ton’s work (Barton, 2001). We stem the growth of our
population by increasing the probability of random death
as the individual ages. The individuals in our implemen-
tation retain a portion of genetic material, encoding their
behaviour, and sharing policy, and thus allowing evolu-
tion of optimum policies. The diagram provides the pro-
posed environmental interaction module for our system.
Each individual stores as its phenotype the value of its sex
drive, its hunger (or energy level), age and the probabil-
ity of survival. These values are updated in each system
cycle. Figure 1 contains an outline of the proposed sim-
ulation, where individual boxes have the following func-
tions:

|

Adjust energy

9 15
Reset sex drive

Calculate gambles

1 7
P: 1 .
Payment for life fo‘:,y rf:g:,ze
l No
6 1

0
Pay gamble for
hunting/foraging

1

Increase sex drive

12
Increase energy

Meet
someone?

13

]

Figure 1: Simulation outline

. Make a payment of energy to the environment (en-

ergy expended to survive generation).

. If all energy is used up, one dies.

3. Individual has ‘died’ and is therefore removed from

10.

11.

the population.

Random death occurs with some probability for each
individual (probability increases with age).

. Increase sex drive, an thus priority of reproduction.

. Genetic material encodes a function to determine

behaviour based on the values of the drives. This
function produces “gambles” dictating how much
of the available energy to expend in search for a
mate or food, if any.

. The gamble for mating is ‘paid’ to the system.

. A probability distribution over the gambles is used

to choose individuals for the mating pool(s). Pairs
selected at random from the mating pool are deemed
to have ‘met’ with some probability. Each must sat-
isfy certain energy requirements. The probability
that they mate is calculated from their sex drives
and determines whether or not they actually ‘mate’.
On mating, new individuals are created from clones
of the genetic material, and by resetting non-genetic
parameters. Each parent contributes energy for shar-
ing equally amongst the offspring. The clones un-
dergo crossover producing two children to be in-
cluded in the population for the next cycle.

. The sex drive of the individuals who mated success-

fully is reset.

The gamble for hunting/foraging is ‘paid’ to the
system.

A probability distribution based on the gamble de-
termines how much energy an individual receives.
For a gamble of zero, the probability that an indi-
vidual receive any energy should be very low.

62

12. Energy level is increased by the amount of food
found.

13, Pairs are further selected from the population, and

with some probability are deemed to meet.

14. If the better fed of the pair is an altruist, they de-
cide to share as per his genetically encoded sharing

policy.

15. The energy of each individual is then adjusted as

appropriate.

4 Experiments and Evaluation

The gambling policies of the tool described in the previ-
ous section were implemented as stochastic functions of
the current needs of the individual. A sigmoid function
was used to provide a nonlinear mapping from gamble to
average win u. The actual win of each gamble was gener-
ated according to a Gaussian distribution G(u, o) where
the ratio o /u was kept constant for all 4, to ensure that
only a very small, fixed proportion of the wins were neg-
ative; these, when generated, were reset to zero.

In the simulation, spatial phenomena (food discovery,
encounter with another individual) are represented as ran-
dom processes with a certain probability. In this case,
physical distance between individuals is ignored, and the
encounter of each pair is equally probable.

The so specified tool was implemented in C++, and
used to study the influence of several factors on the evolu-
tion of altruistic behaviour. In all cases, the evaluation as-
sesses whether the hypothetical altruistic gene is selected
by evolution, and study the circumstances in which this
happens.

Degree of kinship Individuals may (1) have a complete
knowledge of their genealogy (Royalty model), (2) esti-
mate the degree of kinship according to the presence of
some inherited visible indicators (Prediction), or (3) not
have this information available (Unknown).

Type of sharing function Three social models are con-
sidered. Communism equalises the energy levels of two
individuals with the same genome. Progressive taxation
with a non-taxable allowance is a simple linear function
with a threshold: y = a(z — 8) for z > 6; y = 0 other-
wise. Poll tax defines an altruistic act between two indi-
viduals as an exchange of a fixed amount of energy pt set
in the genes of the donor, which does not depend on the
energy level of either individual. The above descriptions
corresponds to the case of sharing between two individ-
uals with the same set of genes. In all other cases, the
actual amount given is reduced in proportion to the dif-
ference between the two individuals’ genomes, as derived
from the perceived degree of kinship.

All combinations of the above two factors have been
studied by running three times each of the nine possible
experiments (see Figure 2). For technical reasons, the
Royalty model of kinship stored only relatives up to first
cousins (inclusive). In the predictive mode, all genes but
(the altruistic) one were made visible to other individuals,
and the difference between two sets of genes was defined
according to a simple linear metric.

All parameters of the sharing functions (e, 8), resp.
pt were initially set at random, and let to evolve. When
employing the Unknown model of kinship, the most op-
timistic assumption was made, i.e., the donor treated the
aid receiver as an identical twin brother.

In the experiments, all individuals carry a gene defin-
ing them as either selfish or altruistic. Simply counting
the individuals carrying either gene is a good measure of
the altruism in the population only in 2 communist soci-
ety. In the other two cases, individuals, which are nomi-
nally altruistic, can have their sharing parameters set in a
way, which reduces the effects of altruism to an arbitrary
low level, e.g., aor pt = 0, 8 — oo. In these cases,
the ratio of what is given to what is actually owned by
the individual, integrated over the whole energy (food)
range, is considered a more appropriate measure. The
idea in the case of progressive taxation is shown in Fig-
ure 2 where a nominally altruistic individual is assigned a
degree of altruism given by the ratio of the filled triangle
and the square made of the ranges of energy owned and
exchanged.

The graphs in Figure 2 are self-explanatory. In brief,
the use of either perfect knowledge of the degree of kin-
ship or a sharing function based on progressive taxation
ensures that a substantial level of altruism is selected and
maintained in the population. In the remaining cases, al-
truists perish faster when less kinship knowledge is avail-
able. The population size remains the same in all cases,
and is given by the amount of food supplied. A repre-
sentative example of the way in which the population size
evolved is shown in Figure 4 on the case of Royalty with
Progressive Taxation.

Initial ratio between altruistic and selfish individuals
To study the influence that the initial proportion of altru-

63

=
>
7

7

Energy given

< 77

o) Max

Energy available

Figure 2: Measure of altruism

istic to selfish individuals has on the levels of altruism
selected by evolution, the Royalty with Progressive Taxa-
tion experiment was run with several initial values for this
ratio. The results in Figure 3 show that the system reaches
a dynamic equilibrium which, in the cases shown, does
not depend on the initial point.

Fercencage of Aiccuiecs Ln Papulstion

L i =]
o o w o

[y T2 T]

e = W e

oo ow ok

o Ly

117]

Gapmration

Figure 3: Percentage of altruists in the population with
respect to initial levels (1=100%)

5 Discussion

Both goals of this research, as stated in Section 1, are
successfully met. The proposed algorithm has been im-
plemented, and altruism has, indeed, been shown to be se-
lected and maintained by evolution in a number of cases.
No direct comparison with the Barton’s work could be
made as his detailed results were not available in a suit-
able form. However, a few main points can be made.
Firstly, it has been confirmed that the policy of progres-
sive taxation produces more altruists than communism.
An additional policy (poll tax) was studied in this research,
which also introduced the new dimension of ‘knowledge
of the degree of kinship’ in the experimental setup. Un-
like Barton’s, these experiments produced populations of

Table 2: Percentage of altruistic individuals in the population (1=100%). (Columns, from left to right: Royalty, Prediction
and Unknown models of kinship recognition. Rows, top to bottom: Communism, Progressive Taxation and Poll Tax
sharing functions.)

++1Parcorkaq ¢ of Alrdrtr in Papuldian +2 Porcorkoqe of Akriire nPapudaion 1-3 AP er sonrteqe of Altrui & inPop darian
11 14 11
0.9 " 0.9 o [%)
0.8 4 (%] 0s
LIRS £ oor 1Y B ol ¥ —
& v LAY 3} [Py |
w 0.6+ = 0.6 = 05
b 2 2 Ai]
% 0.54 % 05 L z 0.5 Y
-i' 0.4 ; o4 —4% H 04 —H—
« 03 e 03 Y Sz
02 02 02 %
o1 01 D R
0 +———— * v - [—— - ~ 0 v v v - - \
[00 000 1500 0 500 1000 500 0 500 1000 1560
Gonerdkinn Geroralinn Gorwration
2-+1Porcortags o f Alruists in Pupuliian 22 1Purantaqe uf A Rrui tr in Pu puation 23*1Parcontoq o of Altnir b in Pop datinn
1 14 11
0.9 094 00 1S\
0.8 0.8 05— Srwsen
$ ot B o 5 oor
5 0.6 g 041 g 041
% oS Z 05 am Z 054
g 04 g 04 B 04
& 03 s 03 c 03
0.z 0.2 02
3] [X] 0.1
0 v v N n [v ———————— 0 ———r —— y
0 %00 000 1560 [500 1000 500 0 500 1000 1500
Gonorakinn Gemmration Gonsratian
3e+iPorcorkage of Alwdres in Pupulation 32 AP aranraqe uf ARMr ir inPupdsion 3<3*1Percentaq ¢ of Altnis v in Pop dation
1 14 1
0.9 h 0.9 “ﬁ 08]
[X] 0.8 - o3 1
S ooz # oz 8 o1
0.6 1 2 0s N = as W\
§ o5 2 sl 2 o5 4\
z - z 13 3y 1N
= 0.4 s 04 s 04
Fos g “\l‘ 845 — ,}\
0.2 0.z v 02 N
0.1 oa] — 0.1
° s e 0 e R ——————
[50 000 1500 [500 1000 %00 [500 1000 1800
Gensraton Gorwration Gorerdtion

64

Tyuienl Pogularion geuch (TRinetratad oy I-i-3y

20
200

200 s &2

LR

Lo

Fepulaiian Ssis

1000 1500

Gerarwt ion

Figure 4: Evolution of population size

virtually the same size. Barton treats altruists and non-
altruists as two different species, which in turn results in
one species taking completely over the other one. In our
results, there are several cases in which a balance between
altruists and selfish individuals is maintained.

Altruism is a demonstration of the mechanisms on
which natural selection is based. Note that this work does
not aim to imply the existence of such gene in reality, and
indeed nothing of the said above would change if one as-
sumed altruistic behaviour being inherited not as a gene,
but through upbringing.

There is interest in the use of natural selection in artifi-
cial societies. This research should bring the implementa-
tion of natural selection in artificial societies a step closer
to the original mechanism that is copied. The authors’ ex-
pectations are that the natural selection incorporating al-
truism would be suitable in cases, when the task is to pro-
duce an optimal population of agents rather than a single
best individual, in situations when the knowledge about
the performance of the population is incomplete and lo-
cal.

The software described here may also represent a use-
ful tool for the simulation of natural societies and give
an interesting insight in their inner making, although this
would be to experts in the relevant fields to judge.

The main characteristics of the model of altruism dis-
cussed here, namely, ‘inherited’ and ‘kinship-driven’, also
mark the limits of its reach.

Firstly, the model does not allow changes in the altru-
istic behaviour of an individual within its lifespan. In fact,
natural selection and individual learning are not perceived
here as mutually exclusive. It is expected that, in many
cases, combination of the two could be a successful strat-
egy, where natural selection provides the starting point for
the individual behaviour, which is modified according to
the agent’s personal experience. The actual technique em-
ployed at this second stage could be, for instance, based
on game theory, where natural selection provides a suit-
able initial strategy. If individual behaviour is to be mod-
ified by a machine learning technique, natural selection
could also provide it with a suitable bias. Research in
this direction should be helped by the York MAS, cur-
rently under development, which supports natural selec-
tion among agents, as well as logic-based programming

65

of behaviour and individual learning (Kazakov and Ku-
denko, 2001).

The second limitation of the model of altruism dis-
cussed here is that it does not discuss the case when agents
can at will opt in and out of a society promoting altruism
among its members. Since the names of many such so-
cieties draw analogies with kinship, e.g. ‘fraternities’ or
‘sororities’, in order to evoke the corresponding spirit of
altruism (or ‘brotherhood’) in its members, the authors
believe that also in this case the findings described in the
paper would not be without relevance.

In comparison with logic-based approaches, this re-
search makes one simple initial assumption, and attempts
to see if altruism can be worked out from first princi-
ples. The actual behaviour of agents can be determinis-
tic (and described in logic) or stochastic, that should not
be of principle importance. On the other hand, no fur-
ther background knowledge is assumed here—the agent’s
rules of behaviour are let to evolve, and not set in ad-
vance. In the future, comparisons with Hamilton’s ana-
lytical model, and the evolutionary game theory point of
view would also be worth exploring.

6 Future Work

It would also be interesting to extend the platform devel-
oped to implement different mating policies, so that pairs
of individuals could be selected from a single mating pool
or from separate mating pools into which individuals have
previously been grouped according to their internal state:
grich meet (mostly) rich, poor meet poor, individuals with
high sexual drive are grouped together, etc.

In addition, two environmental parameters, resource
availability and the probability of meeting another indi-
vidual, should be taken into account, and used to test the
effectiveness of altruistic vs. selfish policy in various, and
changing, environments.

An important and, potentially, non-trivial issue is the
analysis of the content of the individuals’ sets of genes
and their evolution in time. In the case when the propaga-
tion of all genes is subject to simultaneous selection, one
would have to study data sets, which are multidimensional—
one dimension per locus plus an extra dimension repre-
senting time-hence difficult to visualise. One could ex-
pect that there would be a correlation between the genes
selected in each locus, and that certain combinations might
show a trend of dominating the population, which would
form clusters around those points. Methods and tools for
multivariate data visualisation with a minimal loss of in-
formation, such as those described by Schrioder and Noy
(2001), will be considered for the above task.

Acknowledgements
The second author wishes to expess his gratitude to his

wife Marfa Elena and daughter Maia for being such a
wonderful source of inspiration.

References

John Barton. Kinship-driven altruism in multi-agent sys-
tems. Project report for a degree in Computer Science,
University of York. Project supervisor: Dimitar Kaza-
kov, 2001.

David E. Goldberg. Genetic Algorithins in Search, Op-
timization, and Machine Learning. Addison-Wesley,
1989.

W. D. Hamilton. The genetical evolution of social be-
haviour 1. Journal of Theoretical Biology, 7:1-16,
1964a.

W. D. Hamilton. The genetical evolution of social be-
haviour 1I. Journal of Theoretical Biology, 7:17-52,
1964b.

D. Kazakov and D. Kudenko. Milti-Agent Systems and
Applications, chapter Machine learning and induc-
tive logic programming for multi-agent systems, pages
246-270. LNAI 2086. Springer, 2001.

Michael Schrider and Penny Noy. Multi-agent visualisa-
tion based on multivariate data. In Working Notes of the
Fourth UK Workshop on Multi-Agent Systems UKMAS
2001.2001.

Della Thompson, editor. The Oxford Compact English
Dictionary. Oxford University Press, 1996.

Tim Watson. Kin selection and cooperating agents. Tech-
nical report, Dept. of Computer Science, De Montfort
University, Leicester, 1995.

M. Wooldridge and Nick Jennings. Intelligent agents:
theory and practice. Knowledge Engineering Review,
2(10), 1995.

66

EVOLVING PREFERENCES AMONG EMERGENT
GROUPS OF AGENTS

Paul Marrow, Cefn Hoile, Fang Wang, Erwin Bonsma
BTexact Technologies; Intelligent Systems Laboratory,
Adastral Park, Ipswich IP5 3RE, UK
{ paul.marrow,cefn.hoile.fang.wang.erwin.bonsmal @bt.com

Abstract

Software agents can prove useful in representing the interests of human users of agent systems.
When users have diverse interests, the question arises as to how agents representing their interests
can be grouped so as to facilitate interaction between users with compatible interests. This paper
describes experiments in the DIET (Decentralised Information Ecosystem Technologies) agent
platform, using evolutionary computation to evolve preferences of agents in choosing
environments so as to interact with other agents representing users with similar interests. These
experiments suggest a useful way for agents to acquire preferences for formation of groups for
information interaction between users, and may also indicate means for supporting load balancing

in distributed systems.

1 Introduction

Software agents have proved useful for representing
the interests of individual human users (e.g., Klusch
2000). With multi-agent systems there arises the
possibility of managing processes on behalf of large
populations of human users. Associated with this is the
problem of ensuring that users with common interests
get to interact appropriately. This is the issue of group
formation, part of the more general problems of
cooperation and collaboration in multi-agent systems.

Group formation and the associated issues of
cooperation and collaboration have proved relevant to
much research in multi-agent systems (e.g., Jonker et
al. 2000; Klusch & Sycara 2001; Wang 2002). Similar
problems exist in robotics (e.g., Matari¢ 1997). One
particular focus of research has considered how
evolutionary algorithms can be used to adapt agent
behaviour, and achieve collaborative or cooperative
solutions (Haynes et al. 1995; Gordin et al. 1997,
Moukas & Zacharia 1997). The use of evolutionary
algorithms seems particularly appropriate in this
context since they depend upon the interaction of many
individuals for their success (Bick et al. 2000).

In this paper we describe how an evolutionary
algorithm can be used to adapt agent behaviour in the
DIET (Decentralised Information Ecosystem
Technologies) system (Marrow et al. 2001; Hoile et al.
2002), resulting in the emergence of groups of agents
that share common interests. The DIET system
implements large numbers of lightweight agents that
can interact in a decentralised and extensible manner.
The DIET system has been inspired by the interaction
of organisms in natural ecosystems, and, inspired by

67

the role of evolution in such interactions, the mechanism
we use for group formation is the evolution of
preferences for different environments. In the software
agent context, an environment refers to the software
environment an agent inhabits. In this context we assume
that each environment exists on a single machine. For
mobile agents, multiple environments may be on
different machines. In a DIET network different
environments maintain connections with each other in a
“peer to peer” fashion.

It is well known that a degree of centralisation in peer to
peer networks can improve the efficiency of functions
such as indexing and retrieval (Oram 2001). However,
existing strategies for centralisation often depend upon
the existence of reliable, well known, central servers.
Here we demonstrate the emergence of centralisation
within a network of peers with no central servers. The
dynamic approach described offers a compromise
between the robustness and self-sufficiency of fully
decentralised networks of transient peers with the
efficiency of a centralised system.

The dynamic formation of communities of agents could
be very important for the proper exploitation of
computational and informational resources in future
networks. The most rapid and effective interactions
between agents typically are those that take place locally,
between agents occupying a single environment.
Accordingly we use an evolutionary algorithm to evolve
preferences that lead to agents with common interests
sharing the same environment.

Use of an evolutionary algorithm allows local
interactions between agents to be taken advantage of in
shaping the strategies used for despatch of agents to
different environments over a sequence of iterative steps

(evolutionary generations). Working with two
populations of agents, User agents, representing user
interests, and Scout agents, searching out preferred
environments, we use the evolutionary algorithm to
evolve the preferences of Scout agents for
environments in a network of multiple environments in
which agents can exist. We show that the evolutionary
algorithm can increase the effectiveness of Scout
agents in locating environments that are suitable for
information transfer with other agents representing
common interests. This can provide a basis for the
automatic formation of groups of users sharing
interests.

We also consider how the results from the process of
group formation indicate the robustness and flexibility
of the DIET system. As well as explicit selection of
agents through an evolutionary algorithm, we consider
how characteristics of the DIET agent environment can
stimulate a process of implicit evolution, that is
evolution with respect to computational resource
constraints, where computational efficiency s
associated with survival. This could also be used to
evolve agents that adopt computationally efficient
behaviour.

2 The DIET Platform

The experiments presented here use the DIET
(Decentralised Information Ecosystem Technologies)
system (Marrow et al. 2001; Hoile et al. 2002), a
software platform that has been developed to enable
the implementation of multi-agent systems consisting
of very large numbers of lightweight agents, under
decentralised control, interacting in a manner inspired
by natural ecosystems. The development effort within
the DIET project (DIET 2001) is focused on providing
an extensible framework for the exploration of
ecologically inspired software solutions in an open
agent platform.

2.1 Aims and Inspiration

Inspiration for the DIET system has come from natural
ecosystems, where many living organisms and abiotic
elements interact to produce a variety of emergent
phenomena (Waring 1989). These biological systems
have inspired the Universal Information Ecosystems
initiative of the European Union (FET 1999), which
addresses the issue of managing and understanding the
complexity of the emerging global information
infrastructure by looking at local and bottom-up
interactions between elements of this infrastructure, in
the manner of interactions between living organisms.
Such local and bottom-up approaches may be expected
to provide more flexibility, adaptability and scalability
in response to changing circumstances than more top-
down or centralised approaches. The DIET project

68

forms part of the Universal Information Ecosystems
initiative and hence the system design attempts to take
these ideas into account.

2.2 Architecture

The DIET system is designed around a three-layer

architecture (Marrow et al. 2001):

e Core layer: The functionality supported by the
lowest layer is deliberately minimal, but designed to
provide a robust and reliable service (Marrow et al.
2001; Hoile et al. 2002). 1t is here that the services
and functions common to all agents are provided.

e ARC layer: Additional utilities are distributed along
with the core layer, known as “Application Reusable
Components” (ARC). These provide primitives that
exploit the minimal functions of the core to support
higher level activities common to many, but not all,
applications. These include remote communication,
multicasting and directory services.

o Application layer: This layer comprises additional
data structures and agent behaviours for application-
specific objectives.

The three-layer structure provides flexibility for
implementing a variety of applications using the same
core features of the agents and the software environment
that they inhabit. It has been implemented in Java,

2.3 Core Layer

The core layer provides for Environments that are the
basic units which DIET agents can inhabit. One or more
Environment may be located with a DIET World, there
being a single Java Virtual Machine for each World. The
possibility exists for multiple Worlds in conjunction with
multiple Java Virtual Machines, allowing for indefinite
scaling up of the DIET system.

Each Environment provides minimal functionality to alt
agents, allowing for agent creation, agent destruction,
local communication between agents, and initiation of
migration between Environments. These basic functions
have been designed so as to minimise the computational
overhead required for their execution. The CPU time
required for each function is not dependent upon the
number of agents occupying the Environment, allowing
efficient and rapid operation even in Environments
inhabited by large numbers of agents. Operation of the
DIET system is based upon these basic functions and the
resulting local interactions between agents.

Local communication is central to local interaction
between DIET agents. Local communication in this
context involves the passing of messages and objects
between two agents in the same Environment. The agent
that initiates the communication must identify the agent
that it wishes to contact — this can be done using a binary
“name tag” associated with the target agent that is

randomly generated in its original Environment. In
addition an agent has a “family tag” that indicates the
group of agents to which it belongs. These are in
consequence not necessarily unique, but may also be
used for identification. Identification of agents by
either of these methods is decentralised, being
associated only with particular Environments, and thus
scales well with larger systems.

Once a target agent has been identified, a Connection is
formed between the two agents, allowing messages
and/or objects to be passed between the two agents.
Each agent has a message buffer that provides a space
into which messages can be received. More
information about local communication is given by
Hoile et al. (2002). Remote communication, that is,
communication between Environments, is also
possible. The core layer provides only agent migration
at the Environment level. Key functions associated
with remote communication are provided in the ARC
layer.

2.4 ARC Layer

The ARC layer provides for various extensions that can
support remote communication between Environments,
as well as other functions. These include “Carrier
Pigeon” agents that can migrate to another
Environment and then deliver a message by local
communication to the intended target agent.
Alternatively Mirror agents can be created in an
Environment to support a communication channel to an
agent in another Environment, via Carrier Pigeons that
only the Mirror agent, and not the agent initiating the
remote communication, interacts with. Remote
communication via a Mirror agent looks like local
communication to other agents in the Environment.
Such means of remote communication allow for
increased flexibility in interaction between agents
distributed across multiple environments (Hoile et al.
2002).

2.5 Applications

Based on the functionality provided by the core layer
and the ARC layer, applications can be developed
based on the DIET platform, with application-specific
code situated in the third, application, layer.
Applications can also take advantage of visualisation
and interactive control software that is being developed
(van Lengen & Bihr 2001). The basing of application
development on this architecture centred on local
interactions between agents makes the DIET system
particularly appropriate for the study of phenomena
emerging from local interactions. We now go on to do
this in the context of emerging preferences for
environments supporting co-location for information
sharing.

3 Experiments

We seek to generate emergent phenomena among agents
in getting them to evolve preferences for particular
environments (that are DIET Environments). As such
agents can represent the interests of human users, this
may be a useful mechanism for automatically ensuring
that wusers’ interests in terms of environmental
preferences are best served.

We consider a situation where human users of an
information management system connect transiently to a
peer-to-peer network in order to identify information
resources that satisfy their requirements for information.
We assume that each user has a “category of interest”
that represents some topic that they are particularly
interested in. Users that are interested in the same
category of interest are assumed to be interested in the
same set of information, but to only have access to a
subset of that initially. We also assume that users are
interested in finding other users with the same category
of interest and sharing information with them. Each user
creates a DIET Environment from which agents can be
created to facilitate the user’s requirements.

3.1 World, Environments and Links

The experiments take place in the context of a DIET
World composed of multiple Environments as described
above (section 2.3). Each Environment is distinct from
others in terms of its distinctive signature provided by a
hashcode. The Environment’s hashcode is generated
based on the Environment’s address in the DIET World.
A 32 bit hashcode is used, because a hashcode of this
form can easily be acquired from all Java objects. But
this form of hashcode can be replaced by one of many
other hashing schemes if required (see e.g. NIST 2001).

In our experiments Environments are connected in a peer
network. This network is formed by choosing pairs of
Environments at random, and then creating
neighbourhood links between them. Such links are uni-
directional, but link formation can be repeated to give the
effect of a bi-directional link. This process is repeated
until each Environment has on average four links. This
level of connectivity is intended to approximate the
connectivity of a fully decentralised peer network. The
existence of such links between Environments allows
agents to migrate between those Environments. Figure 1
illustrates what such an agent network might look like.

/

Network

Figure 1: A possible DIET peer network

3.2 Agents

The experiments depend upon two populations of
agents: User agents and Scout agents. These agents are
lightweight and use the minimal functions supplied by
the DIET platform. User agents represent human users
and deploy and evolve Scout agents, as well as
collecting information from Scout agents. Scout agents
explore multiple Environments and carry out the
activities needed to form groups.

Only one User agent is associated with a particular
Environment. The User agent remains in that
Environment throughout each experiment. Each
experiment starts with a number of User agents
distributed, one at each of the Environments.

Each User agent creates a population of Scout agents,
and evolves them independently of other populations
of Scout agents. Having created these Scout agents, the
User agent dispatches them into the peer network of
Environments, where they may interact with other
Scout agents and other User agents, before returning to
interact with the User agent that created them.

3.3 Evolutionary Algorithm

Scout agents are bred by User agents. User agents seek
to maximise Scout agents’ success in locating other
Scout agents with common interests. A Scout agent’s
preference for Environments is determined by a
bitstring genome provided at birth. A Steady State
genetic algorithm is used (Sarma & De Jong 2000),
implemented using the Eos evolutionary and ecosystem
platform (Bonsma et al. 2000). Tournament selection,
two-point crossover, uniform mutation and random
replacement operators are used in the algorithm.
Random replacement allows Scout agents to adapt their
expectation of success under changing conditions of
informational and environmental availability.

When dispatching new Scout agents, the User agent
uses tournament selection to choose parent genomes
from its population, favouring genomes according to
the success of the respective Scout agent in locating
other satisfactory Scout agents.

70

The behaviour of each Scout agent depends upon a
satisfaction or preference function that indicates the
degree of satisfaction that the Scout agent has with an
Environment. This satisfaction function employs two
bitstrings of length 32, drawn from a binary genome
containing 64 bits. These two bitstrings are known as the
XOR_mask and the AND_mask. To determine the
degree of satisfaction for a given Environment, the
Environment’s hashcode is XORed with the XOR_mask,
and then ANDed with the AND_mask. The number of
set bits (i.e. bits with the value “true”) then indicates the
degree of satisfaction with the Environment. This
preference function can then be evolved, in order to
generate different orderings of preferences for
Environments.

Scout agents are initialised with a success of zero. New
generations of Scout agents are generated by the
recombination of the genomes of two “parent” Scout
agents, resulting in two new Scout agent genomes. Two
new Scout agents result, that are released into the User
agent’s local Environment. From this point they carry out
a three-phase life cycle (described below). If they
complete this life cycle, and return successfully to the
originating Environment, an existing member of the
population of Scout agents based in that Environment is
replaced at random by the genome of the returning Scout
agent. In this way Scout agent preferences evolve over
many generations in response to the conditions they
encounter in different Environments.

3.4 Scout Agent Life Cycle

Having been created by User agents in their home
Environment, Scout agents go through a life cycle that is
divided into three phases: the Exploratory phase, the
Sharing phase and the Reporting phase.

In the Exploratory phase, a Scout agent visits eight
Environments in a random walk starting from the
Environment in which it originated. At each
Environment it requests four addresses of neighbouring
Environments, selecting one of these at random for the
next hop. These numbers are fixed across all experiments
in order to allow comparison across peer networks of
different sizes. After collecting the thirty-two
Environment addresses in this way, the Scout agent
applies its evolved preference function in order to
calculate a satisfaction value for each of the thirty-two
potential host Environments encountered. It then selects
as a host the Environment with the address that gives it
the highest satisfaction. Where several Environment
addresses give the same satisfaction, the most recently
visited is preferred. The Scout agent then enters the
Sharing phase.

During the Sharing phase the Scout agent migrates to its
preferred host Environment, and spends a pre-determined
period interacting with other Scout agents in that

Environment — notifying them of its User agent’s ID
and category of interest, as well as noting the IDs and
categories of interest represented by other Scout agents
in that Environment. Then it moves to the Reporting
phase.

In the Reporting phase the Scout agent migrates back
to its originating Environment, notifies the originating
User agent of its genome, and the number of successful
encounters achieved. Scout agent success is measured
according to the number of Scout agents encountered
that were derived from different User agents (hence
different Environments), but represented the same
information category. So, a successful encounter in this
context means an encounter with a Scout agent
originating from other User agents that represent the
same information category.

The Scout agent then destroys itself, but its genome
may live on in that it may be selected to contribute to
the next generation of Scout agents, according to its
success in locating Environments that contain other
Scout agents representing User agents with common
interests. The use of tournament selection means that
some Scout agents with success lower than the current
Scout agent population average may contribute to the
next generation, but they are less likely to, and Scout
agents with higher success are more likely to be
represented in the next generation. Tournament
selection also ensures responsiveness to changing
conditions.

3.5 Consequences of Agent Behaviour

The repetition of this three-phase life cycle over
multiple generations will lead to changes in the
numbers of Scout agents found in each Environment at
each iteration (corresponding to a generation of the
evolutionary algorithm.) The long-term solution should
be a network of Scout agents clustered to different
densities in different Environments, with average Scout
agent preference for Environments evolved to a level
that most effectively supports choice of Environments
in which agents representing the same category of
interest can interact. Accordingly, Scout agent success
in achieving such interactions should be maximised.
Such a network of information sharing agents may
support several distinct groups of agents, as
represented by the shaded and unshaded agents shown
in Figure 2.

n"

Figure 2: An example information network.

3.6 Experimental Conditions

The algorithm described above provided the basis for a
series of experiments. In each experimental run we were
interested in the effectiveness of the evolutionary
learning among agents in stimulating co-location of
Scout agents in appropriate Environments. For the sake
of logging results, all Environments were hosted in
parallel on a single machine. (However, there is no
reason why they should not be hosted on multiple
machines in parallel in the future.) To compensate for
this lack of true parallelism, User agent search intervals,
Scout agent waiting time, and overall run length were
made proportionate to the number of User agents. A
minute of CPU time was provided for the activity of each
User agent. Each User agent began the simulation with a
fixed category of interest, and a population of 100 Scout
agents with random genomes (defining random
preference functions). Initial experiments used the same
category of interest for all User agents, but more than
one category of interest can be used if required.

4 Results

Figure 3 shows the progress of a single experiment,
involving thirty-two User agents. The number of Scout
agents in each Environment changes over time due to the
migration of Scout agents between Environments, as well
as being due to the evolution of Scout agent genomes.
The evolutionary algorithms are executed in real time by
the parallel operations of all the User agents. For this
reason results are shown against CPU time.

It is clear that one Environment in particular becomes the
most popular, attracting the vast majority of Scout agents
in the system. This distribution of Scout agents, with few
agents in many Environments, and many in few, is the
result of selection of Scout preferences for Environments
based on interactions between Scout agents during the
Sharing phase of their life cycle. This grouping of Scout
agents could then be used to support more effective
information exchange among the User agents in the
system than was possible at the start of the experiment. It

indicates how this evolutionary approach could be
useful in facilitating information interactions between
the human users who have established such User
agents.

3

g

2w

£

£ n} ,

>

|

= wr 1

E

o

= %

2

5 0

&

]

5w

I

-§ w0 o

] I g

3 -

3 -
© 200000 400000

600000 400000 12408 120400 148408 180408 188408 2000

Time (milliseconds)

Figure 3: Environment population over time — 32 User
agents.

Figure 4 shows how the phenomenon shown in Figure
3 occurs. Over time average Scout agent success
increases, because the independent evolutionary
algorithms converge to common Environmental
preferences. This increases the Scout agent population
density in certain Environments and hence increases
Scout success.

Scout agent success for each User agent

. " L " s " “ " L
0 200000 400000 KO0OOC 500000 18«06 1.20008 1.48408 180406 1.50408 20408

Time (milliseconds)

Figure 4: Average Scout agent success over time — 32
User agents.

If more User agents (and hence more Environments
and more Scout agents) are involved, the system takes
longer to evaluate where the appropriate Scout agents
are, but still identifies them in the end. In Figure 5 we
show the results of multiple runs of the algorithm
designed to calculate the average (mean) value of
Scout agent success. This is calculated after each 1
minute of CPU time has been used per User agent. We
are interested to see whether use of the evolutionary
algorithm has an effect on the average success of Scout
agents.

Figure 5 shows that this occurs, in that average Scout
agent success after one minute of CPU time is greater

72

than the initial value (of zero). If the evolutionary
algorithm is not used, so Scout agents have uniform
preferences, average Scout agent success after one
minute of CPU time, although non-zero, is constant
irrespective of the number of User agents involved. If the
evolutionary algorithm is used (represented by evolved
preferences in the Figure), it is interesting that the
average Scout agent success actually increases with the
number of User agents, before declining at higher
numbers of User agents. This suggests the benefit that
the use of evolutionary techniques can offer among
populations of agents in multi-agent systems, but also
implies that very high numbers of User agents may make
it more difficult for successful interactions between
Scout agents to arise.

‘evolvad preferanca ——
unilorn pratarence -------

Average Scout agent success

Number of User agents

Figure 5: Average Scout agent success after one minute
CPU time per User agent.

The results in Figure 3 shows that the evolution of Scout
agent preferences for Environments can support
convergence of many Scout agents to a single preferred
Environment. When larger numbers of User agents are
spread across more Environments, evolution of Scout
agent preferences may result in several Environments
supporting significant numbers of Scout agents in the
long term (Figure 6). This does not indicate a failure to
evolve to a sufficiently preferred solution, as comparison
of the changes in average Scout success over time with
this higher number of User agents with Figure 4 shows a
similar change in success results although the final
average is different (see Figure 7). In fact one
Environment in Figure 6 ends up with significantly more
Scout agents than all the others after the algorithm is run
for some time. But this does not eliminate the several
Environments that maintain persistent populations of
Scout agents at somewhat lower levels. This is an
inevitable source of the use of a random walk by Scout
agents in locating Environments.

b
JN&F‘:&&@“A y

Number of Scout agents in each Environment

3e408 08

Time (milliseconds)

Figure 6: Environment population over time — 128
User agents.

Scout agent success for each User agent

o “
[10408 20408

38408 40008 Se+08

Time (milliseconds)

Figure 7: Average Scout agent success over time — 128
User agents.

5 Discussion

The experiments in evolving group formation that we
have implemented using the DIET platform suggest
that evolving agent preferences may be a useful means
to tackle information management problems. Starting
from a random initial assembly of users, agents quickly
colocate according to the interests of their respective
User agents. This facilitates more rapid and effective
communications between User agents representing
human users with common interests, and so shows the
potential for application to more general peer-to-peer
collaborative networks (Oram 2001). The experiments
presented here are designed such that many User
agents represent similar interests, but it would be
possible to develop alternative scenarios where very
many different interests were represented, and Scout
agents spread out over many Environments.

While the results given above show convergence of the
majority of Scout agents in the system to a single
preferred Environment, it is likely that Scout agents
will encounter a variety of Environments during
exploration. The coexistence of agents in multiple
Environments may provide additional robustness, since
the loss of specific machines hosting some

73

Environments is unlikely to eliminate all members of a
specific agent community in a sufficiently large network.
In addition agents persisting in such a diminished system
will have the capability to evolve their preferences so as
to adapt to the remaining Environments.

The experiments described above implement agents in
multiple Environments in parallel on a single machine. It
would be worthwhile to investigate larger networks of
Environments and User agents with diverse categories of
interest. Accordingly, further experimentation is planned,
using multiple computers connected in a Beowulf cluster
(Sterling et al. 1995). This should help reduce artefacts
arising from thread sharing, and also permit the
construction of larger peer networks.

The implementation of preference evolution on multiple
machines may provide a means of using this algorithm
for load balancing. This is because the use of multiple
machines and hence system resources in parallel will
provide the agents involved with the potential to evolve
preferences and vary success at different rates in
different machines. As a consequence, Scout agents will
have the opportunity to switch between machines in
order to improve their success rate in interacting with
other Scout agents. While initial convergence of most
Scout agents to a single Environment may result in a
similar way to that in the experiments shown here, a
consequence of this will be increased demands on one of
the machines in the peer network. This will place
constraints on the Environments hosted on that machine,
restricting agent interactions. This may stimulate
migration of Scout agents to other machines where
system resources are less heavily in demand. The
consequence of this will be a contrasting pressure on
Scout agents to disperse over multiple machines, a kind
of implicit evolution driven by available system
resources.

This implicit evolution could be further used to develop
groups of information sharing agents. The DIET platform
provides the means to monitor the use of system
resources by agents. Accordingly computational resource
cost could be used to constrain the evolutionary
algorithm so as to develop preferences appropriate to the
machines (and/or resources) available at the time. In this
way agents adopting computationally efficient behaviour
can be evolved without explicit population management.

Acknowledgements

This work was carried out as part of the DIET
(Decentralised Information Ecosystems Technologies)
project (IST-1999-10088), within the Universal
Information Ecosystems initiative of the Information
Society Technology Programme of the European Union.
We thank the other participants in the DIET project, from
the Departmento de Teoria de Sefial vy

Communicaciones, Universidad Carlos III de Madrid,
the Department of Electronic and Computer
Engineering, Technical University of Crete, and the
Intelligent and Simulation Systems Department, DFKI,
for their comments and contributions. We also
acknowledge the support of the Enterprise Venturing
Programme of BTexact Technologies.

References

T. Bick, D. Fogel, and Z. Michaelewicz (eds.).
Handbook of Evolutionary Computation. Institute
of Physics, Bristol, 2000.

E. Bonsma, M. Shackleton and R. Shipman. Eos — an
evolutionary and ecosystem research platform. BT
Technology Journal 18(4):24-31, 2000.

DIET project web site. http://pc-200.dfki.uni-kl.de:
8080/DIET/public/index.html, 2001.

FET (European Commission IST Programme) Future
and Emerging Technologies. Universal
Information Ecosystems proactive initiative.
http://www.cordis.lu/fetuie.htm, 1999.

M. Gordin, S. Sen & N. Puppala. Evolving cooperative
groups: preliminary results. In: AAAI-97
Workshop on Multi-Agent Learning, 1997.

T. Haynes, S. Sen, D. Schoenefeld & R. Wainwright.
Evolving a team. In: AAAI Fall Symposium on
Genetic Programming, Cambridge MA, 1995.

C. Hoile, F. Wang, E. Bonsma, and P. Marrow. Core
specification and experiments in DIET: a
decentralised ecosystem-inspired mobile agent
system. I" International Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS2002), Bologna (to appear), 2002.

C. Jonker, M. Klusch & J. Treur. Design of
collaborative information agents. Proceedings of
4™ International Workshop on Cooperative
Information Agents, LNAI 1860. Springer, Berlin,
2000.

M. Klusch. Information agent technology for the

Internet: a survey. Jowrnal of Data and
Knowledge Engineering, Special Issue on
Intelligent Information Integration, D. Fensel
(ed.), 2000.

M. Klusch & K. Sycara. Brokering and matchmaking
for coordination of agent societies: a survey. In:
Coordination of Internet Agents: Models,
Technologies and Applications, A. Omicini, F.

74

Zambonelli, M. Klusch & R. Tolksdorf (eds.).
Springer, Berlin, 2001.

R.H. van Lengen & J.-T. Bihr. Visualisation and
debugging of decentralised information ecosystems.
Proceedings of Dagstuhl Seminar on Software
Visualisation, Springer, Berlin, 2001.

P. Marrow, M. Koubarakis, R.H. van Lengen, F.
Valverde-Albacete, et al. Agents in decentralised
information ecosystems: the DIET approach.
Proceedings of the AISB'01 Symposium on
Information Agents for Electronic Commerce, pp.
109-117, York, 2001.

M.J. Matari¢. Designing and understanding adaptive

group behavior. Adaptive Behavior 4(1):51-80,

1995.

A. Moukas & G. Zacharia. Evolving a multi-agent
information filtering solution in Amalthea.

Proceedings of Agents’97, 1997.

NIST (National Institute of Standards and Technology)

FIPS PUB 180-1. Secure hash standard.
http://www.itl.nist.gov/fipspubs/fip180-1.htm,
2001.

A. Oram (ed.). Peer-to-peer: harnessing the power of
disruptive technologies. O’Reilly Associates,
Cambridge MA, 2001.

J. Sarma and K. De Jong. Generation gap methods.
Handbook of Evolutionary Computation, C2.7, T.
Bick, D. Fogel, and Z. Michaelewicz (eds.).
Institute of Physics, Bristol, 2000.

T. Sterling, D.J. Becker, D. Savarese, J.E. Durband, U.A.
Ranawake & C.V. Packer. Beowulf: a parallel
workstation for scientific computation. Proceedings
of 24™ International Conference on Parallel
Processing 1:11-14, 1995.

F. Wang. Self-organising communities formed by middle
agents. 1" International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS2002),
Bologna (to appear), 2002.

R.H. Waring. Ecosystems: fluxes of matter and energy.
In: Ecological Concepts, JM. Cherrett (ed.).
Blackwell Scientific, Oxford, 1989.

CONTROLLING THE ADAPTATION OF A POPULATION OF
AGENTS

Philippe De Wilde
Intelligent and Interactive Systems Group
Department of Electrical and Electronic Engineering
Imperial College of Science Technology, and Medicine
London SW7 2BT, United Kingdom
p.dewilde @ic.ac.uk

Abstract

We control a population of interacting software agents. The agents have a strategy, and receive a payoff for executing
that strategy. Unsuccessful agents become extinct. We investigate the repercussions of maintaining a diversity of agents.
There is often no economic rationale for this. If maintaining diversity is to be successful, i.e. without lowering too much
the payoff for the non-endangered strategies, it has to go on forever, because the non-endangered strategies still get a
good payoff, so that they continue to thrive, and continue to endanger the endangered strategies. This is not sustainable
if the number of endangered ones is of the same order as the number of non-endangered ones. We also discuss niches,
islands. Finally, we combine learning as adaptation of individual agents with learning via selection in a population.

1 Populations of software agents

The growth of software has been found to be due to the
increase in functionality of systems. This growth has be-
come known as Software Evolution and has given rise to
issues such as the Laws of Software Evolution.

Software that is subjected to evolution, E-Type, Ka-
hen et al. (2001), resides in the real world and is sub-
jected to unpredictable changes in the environment. The
changes in the software environment are directly linked
to the real world. Views, extracted from the real world
are used as a model for the underlying structure of speci-
fications and requirements, from which a program is con-
structed. Due to the real world being characterized with
infinite assumptions and diverse features, there is no real
benchmark that determines the *correctness’ of such a pro-
gram. In order for the program come close to being cor-
rect, there must be conformity between the users’ percep-
tion of the program functions and the real functions that
the program offers.

Acceptability of a program or system is therefore de-
pendent on the satisfaction of the user. So, a program or
system can only be said to be *correct’ if the user is satis-
fied with it. As the environment continues to change, cer-
tain assumptions are no longer valid or acceptable. Hence,
the program is forced to accommodate for this change,
should it be required to maintain itself within the competi-
tion between software. The fact that technology advances
also affects the users perceptions and expectations of the
program, hence influencing the program’s acceptability’
level. When a program has finally gained acceptance, this

75

is seen as a break through and this will provide the struc-
ture and foundation from which further improvements can
be made and new technology developed. With competi-
tion of software in the market, all programs will strive to
achieve higher payoff in order to satisfy users and remain
in the market. Overall, all the software has to undergo
continuous maintenance to the system so that the system
payoff does not dip below the minimum level of payoff
for survival.

Languages and information systems are vulnerable to
a change in environment. However, they have the ability
to mutate much faster than biological species. Although
many languages and information systems may become
extinct, the existing ones may be able to change so fast
that they survive a change in environment. Germanic lan-
guages, for example, that for new words easily, are still
very effective in describing computer systems. And a
computer language such a C has shown a great capability
for change when the environment changed to object ori-
ented. It is essentially still around, under the name Java,
in a new, network-based computing environment. If lan-
guages such as Forth, Algol, Ada, had been artificially
kept alive, this would have slowed down the adaptation of
the successful languages. This is the case for many infor-
mation systems and types of software agents. Note that
the evolution of single, large software projects has been
studied in an evolutionary context similar to ours Kahen
et al. (2001). Our approach, using populations, is more
suitable for multi-agent systems than for programs oper-
ating in isolation.

Let us now study a population of software agents Jen-

nings (2000) that interact with each other. Each agent is
uniquely determined by its code, just as a living organism
is determined by its genetic code. Consider n different
types of agents. At time ¢, there are p;(t) agents with code
1 in the population. Just as an agent is determined by 7, a

population is determined at time t by p;(¢),i = 1,...,n.
The frequency of agent 5 in the population is
pit)
zi{t) = =s————. n
: (E?:l Di (t)

Abbreviate 7, pi(t) = p, where p is the total popu-
lation. Denote the state of the population of agents by
x(t) = (z1(), .- ., za(t)).

Now make the following basic assumptions Weibull
(1995).

Assumption 1 (Game)
If agents of type i interact with a population in state X, all
agents of type i together receive a payoff u{e*, x).

Assumption 2 (Replicator Dynamics)

The rate of change of the number of agents of type ¢ is
proportional to the number of agents of type i and the
total payoff they receive:

Bi(t) = pi(t)ule’, x(t).

The proportionality constant in (2) can be absorbed in u.
These assumptions are discussed in the rest of this section.

In assumption 1, the code ¢ of an agent is identified
with a pure strategy e in a game. The notation should
not distract the reader, ¢ could have been used instead of
et. Identification of a code with a strategy is familiar from
evolutionary genetics Smith (1998). During replication of
individuals in a population, information is transmitted via
DNA. It is straightforward to identify the code of an agent
with DNA.

Assumption 1, introducing a payoff to software agents,
is part of the modelling of software agents as economic
agents. Economic principles have been used before in
distributed problem solving Huberman (1988), but in De
Wilde et al. (1999) the author has made a start with the
analysis of general software agents as economic agents.
This paper is part of that project.

The replicator dynamics (2) describe asexual repro-
duction. Agents do sometimes result out of the combi-
nation of code from “parent” agents, but such innovative
combinations do not occur very often. On a timescale of
one year, the replication of agents will be far more im-
portant than the reproduction via combination of parent
programs.

In addition to DNA exchange, our species also passes
information between individuals via cultural inheritance.
This tends to result in behaviour that is a close copy to the
behaviour of the “cultural” parent. If agents are to repre-
sent humans in an evolving society, they will also exhibit
cultural inheritance or social learning, which follows as-
sumption 2 Fudenberg and Levine (1998).

@

76

In biological systems, one can distinguish long term
macroevolution Stanley (1979), and shorter term micro-
evolution Smith (1998). Assumption 2 can be situated in
the field of microevolution. On an even shorter timescale,
psychologists observe reinforcement learning. Although
the results of reinforcement learning are not passed on to
offspring (central dogma of neo-Darwinism), it is possi-
ble to cast this learning as replicator dynamics Borgers
and Sarin (1997). This adds to the credibility of assump-
tion 2, because software agents will often use reinforce-
ment learning together with replication of code De Wilde
(1999).

Biological organisms as well as software agents live
in an environment. This is actually the same environment,
because software agents act for humans, who live in the
biological environment. In the model (2), the change of
the environment will be reflected in the change of the pay-
off function u(ef, x), which has to be written u(e?, x(t), t)
to make the time dependence explicit. It is very important
to be able to model this change in environment, because
a successful strategy or agent type should be as robust as
possible against changes in environment.

Another type of evolution that software agents have
in common with biological agents is mutation. The notion
of evolutionary stable strategy Smith (1998) expresses ro-
bustness against mutations. However, mutations can pos-
itively contribute to the evolution of a system. Current
models tend to concentrate on stochastically perturbing
the choice of strategies used Fudenberg and Levine (1998);
Cavagna et al. (1999), rather than the random creation of
new strategies. Much work still needs to be done in this
area.

2 The burden of maintaining diver-
sity

Software has a lifetime, so have agents, and so have living
organisms. Unsuccessful strategies will die out. This is an
essential part of the model (2). Recently there has been
much interest in biodiversity Purvis and Hector (20) and
sustainable development Pezzey (1989). As in all popu-
lation dynamics, one can ask the question whether it is
worth artificially maintaining strategies (or agent types)
with a low payoff. The research on biodiversity suggests
that this is worthwhile indeed.

An agent type is a number i € K = {1,...,n}. As-
sume there is a set K, of endangered agent types, K. =
{i € Klu(e!,x) < a}, who have a payoff lower than
a. The set K, will change in time, but the threshold a is
fixed.

Assume that a is the minimum payoff required to sus-
tain a viable population. It is now possible to redistribute
the payoff between the non-endangered strategies outside
K., and the endangered ones in K, in the following way

U,(ei’x) = a, i€ Ke)
. — 7
u(et,x) = wu(ef,x)— ZJEK;[i IKZ(ie ,x)],
P8 K. 3

This transformation conserves the total payoff
Z u(e, x).
i€k

Abbreviate

jex.la— u(el,x)]

b=
q— |Ke|

“4)

To indicate that the payoffs have been changed, we
will use ¢ instead of p for the population, and y instead of
z for the frequencies.

To derive the differential equations in the state vari-
ables y;, start from (1),

a(t)yi(t) = a:(t), &)
take the time derivative of left and right hand side to ob-
tain
qYi = ¢i — qy;- (6)
Using (3), we obtain, for ¢ € K,
@i = qia-— Y g
JEK
gia— Y gjay;
JEK.

=Y glued,y) = by, (D

JEK.

i

or

gi=yiqa= Y wa= Y yilu(ed,y)=bl¢. (8

jeK. JjEK.

Similarly, for i ¢ K., we find
vi = vi{u(e,y)=b- > ya
JEK.
=Y yilu(ed,y) - b)) ©)
JEK.

We can now simplify this using
=Y yia+ > yd

JEK. JEKe
_|Ke|a + q—|Ke| ZzeK,[a - U(el,x)]

q q q— |Ke| ’

= ~—Z e,y). (10)

lEK

—_X
09r x|l

0.8

0.6
0.5

\
0.4n
0.3r

0.2

(2 1 e R

time

Figure 1: The evolution of the proportion of two popu-
lation types, z1 and z9, for payoffs u(e!,x) = 5z, and
u(e?,x) = 0.5. This is a situation where the first type de-
pends on the second type to survive. Both types survive,
but x5 is low and can become accidentally extinct.

This quantity will be much smaller than both a and
u(e',y),i € K., the payoff of the non-endangered strate-
gies, if u(el,y) <« a,i € K., orif |K,| < ¢. These
plausible assumptions mean, in words, that the conserva-
tion value, a, of the payoff is much larger than the payoff
of the endangered strategies, or that there are only a small
number of endangered strategies. We will give practical
examples in the next section.

Hence we can write the population dynamics with con-
servation of endangered strategies as

Vi = wla- Y yule,y), i€k,
jgK.
y"i = 'i[7Y)_b—' Zyj ,Y
Jj¢K.
i ¢ K, an

Compare this to the population dynamics without conser-
vation Weibull (1995),

% = z;[u(el, x) — iju(e’ , ieK. (12

jeK

The term subtracted from the payoff for strategy 1 is the
population average payoff

X) = Z zju(el, x). (13)
JjEK
These effects of artificially increasing the utility for en-
dangered species are illustrated in figures 1 and 2.

3 Niches and Islands

Comparing equations (11) and (12) can teach us a lot
about the cost and implications of conservation. In the

0.9

0.8 -

0.7F 1

0.5} 1
0.4f 1
03f 1

0.2

smallest sustainable population
0.1}]

0 5 10 15 20
time

Figure 2: The evolution of the proportion of two popula-
tion types, y1 and y9, as in figure 1, but the payoffs have
now been adjusted according to (3), with K, = {2},
and @ = 0.8. This implies u(e!,y) = 5y — 0.3 and
u(e?,y) = 0.8. The proportion of type 2 is now higher,
and not in danger of extinction. The price to pay is that
the proportion of type 1 is now lower.

natural world, endangered strategies tend to be come ex-
tinct, unless a niche can be found for them. The niche
means that the equations (13) are uncoupled. In that case,
the payoff does not depend on the whole state x anymore,
but on a projection of x on a subspace of the state space.

The niche prevents strategies from going extinct be-
cause it imposes a particular structure on the payoff func-
tion u. For a fixed u, there is no particular advantage
or disadvantage in the existence of a niche, the replicator
dynamics go their way, and that is all. However, the en-
vironment can change, and this will induce a change in u,
the function modeling the payoff or success of strategies.
Certain feedback loops in the dynamics can now become
active.

Assume a system with two strategies that each operate
in their niche

I, = ml[u(el,zl,z) —zu(e, 21, 2)
-‘(L'QU(62,:C2,Z)],
Ty = xo[u(e?, z2,2) — z1ulel, 11,2)

—zou(e?, 22, 2)]. (14)
Strategy 1 does not have to compete with strategy 2 be-
cause u(e!,z1,2) is independent of z,. Similarly, Strat-
egy 2 does not have to compete with strategy 1 because
u(e?, z9,z) is independent of 1. The frequencies z1, z2
of the strategies remain non-zero. The frequencies of the
other strategies z3, . . . , £, are grouped in the partial state
vector z. If the function u changes, the dynamics of the
frequencies of strategies 1 and 2 will now in general be

78

I.l = (L‘l[u(el,xl,ZQ,Z)—$1U(€1,$1,I2,Z)
—:rgu(ez, Ty, T2, Z)],
-'152 = xg[u(ez,zl,:zg,z) —:L'lu(el,fl,'l,:L'Q,Z)

—zau(e?, 71, T2,2)). (15)

It is now possible that there is a positive feedback that
causes z; and z2 to increase over time. This positive feed-
back is not guaranteed, but if one of the strategies had be-
come extinct, then the positive feedback could never have
occurred at all when u changed.

Remark that such a positive feedback was already pos-
sible in (14), because both equations are coupled via the
partial state vector z. We are not concerned with this pro-
cess here. More complex mechanisms of the benefits of
altruism have been studied in Becker (1976).

So far the pedestrian justification of conservation: once
a strategy is extinct, you cannot benefit from it anymore
in the future, if the environment changes. In mathematical
terms, once the state space is reduced, many trajectories
are excluded, and some could benefit your strategy if the
environment changes.

Since Darwin’s time, it is known that local optima in
a population distribution x can exist on islands. And re-
cently, we have seen how ending the isolation of islands
can destroy the local optimum by the invasion of more
successful species. Should we isolate information sys-
tems and software agents, so that new types can develop?
In that case the replicator dynamics (12) will be altered
again. For the evolution on an island, it appears that all
species not present on the island are extinct. Call K the
set of strategies represented on the island. Then the pop-
ulation dynamics is

g = zifu(é,r) —u(r,r)], i€k, (16)

where r is the state vector with zeroes for the strategies
not in K,.. When the isolation is ended, these zeroes be-
come non-zero, and we obtain the dynamics

Z; = zi[u(e’, x) — u(x,x)], i€K, an

for the strategies on the island. This is illustrated in fig-
ure 3. The dynamics (16) and (17) are just the general for-
mulations for the two-strategy niche dynamics described
by (14) and (15).

4 Learning by individual agents

The dynamics of software agents differs in another aspect
from that of biological systems. Learned behaviour can
be passed on to offspring. Agents can be duplicated, re-
taining all that was learned, e.g. via a neural network De
Wilde (1999). The replicator dynamic has to take learn-
ing into account. If learning is successful, the payoff for
states encountered earlier will increase. If the learning
also has a generalization capacity, as happens for neural
networks De Wilde (1997), then the payoff for states sim-
ilar to those encountered earlier will also increase. The

s} 5 10 15 20
time

Figure 3: The evolution of the proportion of two popu-
lation types, z; and z,, with payoffs u(e!,x) = z1z2
and u(e?,x) = 0.1. Att = 5, the populations become
separated, and the positive feedback maintaining type 1
disappears.

payoff now changes explicitly with time, and (12) be-
comes

Z; = zifu(el, x,t) —u(x,x,t)], i€K. (18)
If all the payoffs u were simply multiplied by the same
number during learning, the dynamics (18) would be e-
quivalent to (12) in that the orbits remain the same, but
they are traversed at a different speed (faster for a constant
larger than one). When the payoffs are multiplied by a
time-varying factor,

#; = r;a(t)ulel, x,t) — u(x,x,t)], €K, (19
the factor a(t) can be absorbed in the time derivative,
and the orbits are traversed with a speed varying in time.
When the learning factor o;(t) becomes dependent on the
strategy 1 however, the orbits are changed, and we can-
not compare the population evolution with and without
learning any more. A non-trivial learning algorithm for a
population of 2 different types is illustrated in figure 4

5 Conclusions

All living things contain a code. So do computer pro-
grams, languages, designs and artwork. The code consists
of all the information that makes replication possible. In
a competitive environment, programs are pitched against
each other, in a way similar to individuals in an ecosys-
tem. The interaction brings a payoff u to the program, or
language, or design.

The population dynamics with conservation (11) is
crucially dependent on the conservation subsidy a per stra-
tegy, and on b, which depends on g, the total population,

79

0 5 10 15 20
time

Figure 4: The evolution of the proportion of two popu-
lation types, z; and z2. Initially type 1 looses out, z;
goes down. However, type 1 adapts its utility in time as
u(el,x) = t?z, /3, and this allows it to win over type 2,
that uses no learning, u(e?, x) = z,.

and | K|, the number of endangered strategies. Conserva-
tion maintains a greater poo! of strategies than the ecosys-
tem without conservation (12). This makes it possible that
the fitness of any single non-endangered strategy could in-
crease when the environment changes adversely for that
strategy, via the mutual-benefit feedback loop with an en-
dangered strategy. The price to pay for this is an over-
all decrease of the payoff values of the non-endangered
strategies.

In the animal and plant kingdoms, the number of en-
dangered species seems much smaller that the number of
non-endangered ones Purvis and Hector (20), although
there is great uncertainty on the numerical data. In this
situation, (11)-(13) seem to indicate that it is possible to
conserve the endangered species, if the effort is spread
over all other species. However, replicator dynamics are
not such good models of sexual reproduction and muta-
tion, so that it is difficult to reach conclusions.

In the case of languages, artificial and computer, and
information systems, the number of endangered types is
of the same order as the number of non-endangered ones.
In this case, (11)-(15) show that a conservation effort will
decrease the payoff of the non-endangered types so much,
and their dynamics affected to such an extent, that they
also could become extinct if the environment changes.

If conservation is successful, i.e. without lowering too
much the payoff for the non-endangered types, it has to go
on forever, because the non-endangered types still get a
good payoff, so that they continue to thrive, and continue
to endanger the endangered types. This is not sustainable
if the number of endangered ones is of the same order as
the number of non-endangered ones. In other words, one
should not try to control the pure Darwinian evolution in
a population of competing agents by artificially maintain-

ing a diversity of agents.

In short, we have proposed replicator dynamics as a
model for the evolution of populations of software agents.
We have shown what happens if the utility of some types
in increased (conservation), if some types of agents do
not interact with each other (niches and islands), and if
some types of agents change their utility in time (indi-
vidual learning). In each of these three cases the adapta-
tion of the population is artificially modified. It is up to
the systems analyst to decide which situation applies is a
practical case. Our replicator dynamics then allow us to
predict what will happen to the different types of agents.

6 Acknowledgements

Thanks to Rachel Yeo for research on software evolution.
Partly funded by European Community, under the Future
and Emerging Technologies arm of the IST Programme,
FET-UIE scheme. This research is linked to, but not part
of, the Evolution and Ecology of Interacting Infohabitants
project.

References

Gary S. Becker. Altruism, egoism, and genetic fitness:
Economics and sociobiology. In The Economic Ap-
proach to Human Behavior, pages 282-294. University
of Chicago Press, Chicago, 1976.

T. Borgers and R. Sarin. Learning through reinforcement
and replicator dynamics. Journal of Economic Theory,
77:1-14, 1997.

Andrea Cavagna, Juan P. Garrahan, Irene Giardina, and
David Sherrington. Thermal model for adaptive com-
petition in a market. Physical Review Letters, 83:4429—
4432, 1999.

Philippe De Wilde. Neural Network Models, second ex-
panded edition. Springer Verlag, London, 1997.

Philippe De Wilde. How soft games can be played. In
H.-J. Zimmermann, editor, EUFIT ’99, 7th European
Congress on Intelligent Techniques & Soft Computing,
pages FSD-6-12698, Aachen, September 1999. Verlag
Mainz.

Philippe De Wilde, Hyacinth S. Nwana, and Lyndon C.
Lee. Stability, fairness and scalability of multi-agent
systems. International Journal of Knowledge-Based
Intelligent Engineering Systems, 3(2):84-91, 1999.

Drew Fudenberg and David K. Levine. The Theory of
Learning in Games. MIT Press, Cambridge, Massas-
husetts, 1998.

B. A. Huberman, editor. The Ecology of Computation.
North-Holland, Amsterdam, 1988.

80

Nicholas J. Jennings. On agent-based software engineer-
ing. Artificial Intelligence, 117:277-296, 2000.

G. Kahen, M. M. Lehman, J. F. Ramil, and P. Wernick.
System dynamics modelling of software evolution pro-
cesses for policy investigation: Approach and example.
Journal of Systems and Software, 59:271-281,2001.

John Pezzey. Economic analysis of sustainable growth
and sustainable development. World Bank, Washing-
ton DC, 1989.

Andy Purvis and Andy Hector. Getting the measure of
biodiversity. Nature, 405:212-219, 20.

John Maynard Smith. Evolutionary Genetics. Oxford
University Press, Oxford, 1998.

S. M. Stanley. Macroevolution. W. H. Freeman, San Fran-
sisco, 1979.

Jorgen W. Weibull. Evolutionary Game Theory. MIT
Press, Cambridge, Massachusetts, 1995.

Hostile Agents

Robert Ghanea-Hercock
BTexact Future Technologies Group
Adastral Park, Admin 2, pp5, Martlesham Heath,
Ipswich, IP5 3RE, Suffolk, UK.
robert.ghanea-hercock @bt.com

Abstract

"Real stupidity beats artificial intelligence every time."- Bursar 1 - Hex O (Terry Pratchett, Hogfather)
There is a co-evolutionary process emerging between hacker techniques and the defence responses of commercial and public
networks. Unfortunately the advantage invariably rests with the attackers, as a network is only as strong as the weakest link. In
addition recent denial of service attacks make use of large numbers of co-operative soft-bots to launch devastating co-ordinated
attacks on target servers, (Dittrich 1999). Increasingly complex and adaptive attack strategies can therefore be expected in the
near future. The premise of this paper is that a collective formation of software agents can act as an adaptive and automated
defence mechanism for a computer network. Results are presented from a simulation-based model of a co-operative agent
security architecture (termed Cosmos), that utilises mechanisms of social-cohesion, trust control and dynamic group formation.
The simulation demonstrates how a collaborative defence strategy can successfully eliminate an infectious agent {rom a host
network. In particular the agent community provides a metabolic sensing array, which can monitor the macro-scale health of the

host network.

1 Introduction

There is an urgent demand within the computing domain for
secure systems and networks. Unfortunately the number of
successful attacks is increasing via an increasing number of
channels, e.g. email, worms, instant messaging, mobile
devices, and wireless links. The almost religious belief in
rigid corporate firewalls as a perfect defence is finally
succumbing to the realisation that no static defence
mechanism will ever suffice (Cohen 1997). An example of
the issues involved are those associated with current
network intrusion detection systems (Balasubramaniyan et

al. 1998), i.e.:

= Centrally based data collection and a central analyser
system, which is a potential point of failure.

s Limited scalability, due to centralised processing of the
monitored systems.

* Slow manual configuration of the analysis process with
significant expert intervention required for maintenance
and analysis of collected data.

* High operational cost due to the frequent expert
intervention required.

1.1 Viral Agents

The difficulty in sustaining a perfect anti-viral defence is
equally fraught with difficulty. With the recent advent of
powerful macro viruses, (e.g. Melissa and the Love Bug) the
limitations of current static or manually controlled security
processes is apparent. Unfortunately, current methods of

81

securing computing networks will prove increasingly
deficient as the number of individuals engaged in
sophisticated attacks increases. Recent reports in the
security field have also indicated the key role of internal
staff in undermining system security through errors or
intentional activity, which are difficult to defend against
using firewalls and password measures (Briney 2000).
These processes have triggered major research efforts into
the use of immune system based models of security
(Hofmyer & Forrest 1999 and Kephart 1994). However,
such models are difficult to translate into commercially
viable systems due to the inadequate metrics available for
robustness in complex networks and an insufficient
understanding of the key processes in natural immune
systems.

1.2 Agent Defence Networks

The agent system presented in this paper is designed to
enable the secure transmission of useful pre-processed
intrusion data through a large-scale computing network. The
system is designed to operate as part of an intrusion
detection mechanism, and it may also act as a system for
disseminating viral signatures, which have been caught by
individual servers. The central proposal is that while the
space of all possible attacks is effectively infinite, the space
of system responses to those attacks is effectively very
small. Within some proposed IDS (Cohen et al 1998), this
approach is defined as using "behavioural change detectors”.
The problem is how to distinguish normal from abnormal
behaviour.

A useful summary of the advantages of an autonomous
agent based IDS is given by Balasubramaniyan et al. 1998.
Additional agent IDS methods can be found in Crosbie &
Spafford 1995, who provide a useful definition of the
approach:

“. a group of free-running processes which can act
independently of each other and the system. These are
termed Autonomous Agents. They are trained to observe
system behaviour, and cooperate with each other, so as to
flag any behaviour that they consider to be anomalous.”

In order to develop some understanding of the dynamics of
agent interactions and group cohesion on the integrity of
complex networks we selected a multi-agent model as an
experimental platform. Using this tool we investigated a
range of behaviours which might influence the robustness
and integrity of such a society of interacting agents. Within
the agent group an attack on any one agent or host machine
should be visible to other agents within the local domain of
the agent. Hence warnings and defence solutions can be
rapidly propagated throughout the network. The system
therefore requires an underlying distributed IDS platform to
supply data on intrusions or viral attacks, (currently in
development).

1.3 Metabolic Rate Sensors

The key concept is to create an independent measure of the
normal operational state of the network to be defended. By
comparison with biological agents we need to create a
measure of the metabolic rate of the services and data flow
on the host network. This is achieved through each defence
agent monitoring the flow of inter-agent traffic, in addition
to monitoring any local host-specific intrusion sensors, such
as port scanning alerts. By analogy with natural agents the
first stage of most medical tests is to measure a few macro-
scale variables, which are strong predicative indicators of
the health of the organism, i.e. temperature and blood
pressure.

Section 2 presents an overview of co-operative agent
systems. Section 3 considers the issues influencing robust
and secure behaviour in societies of artificial agents, while
section 4 presents results from the agent simulation. Section
5 covers an initial analysis of these results and a summary is
offered in section 6.

2 Security Agents

Co-operative software agents have been frequently proposed
as a tool for a variety of information processing tasks, i.e. e-
commerce transactions (Maes et al. 1999), work-flow
modelling or as personal assistants (Etzioni 1996). However,
relatively little research has considered their role as an
element of network security, exceptions being (Crosbie &
Spafford 1995, Helmer et al 1998). Indeed some classes of

82

agents, i.e. Mobile Agents, have been perceived as a serious
security threat to any host network, (Chess 1998).

2.1 Social Agent Models

The first question we need to address is what properties of a
software agent make them suitable for inclusion in a security
system. The following definitions highlight some of the
relevant agent attributes:

“a self-contained program capable of controlling its own
decision-making and acting, based on its perception of its
environment, in pursuit of one or more objectives."
(Jennings & Wooldridge 1996.

Software agents therefore possess a number of useful
properties that would be beneficial in the construction of a
distributed adaptive security system. In particular the ability
to sense their environment and take proactive decisions
against potential threats. Indeed we may consider current
viruses and worms as forms of hostile software agents, as
they generally fulfil most of the defining criteria for such
agents.

2.2 Group Formation

The particular aspect of multi-agent systems that we have
focused on is their ability to form dynamic social groups.
The interest in this behaviour stems from the concept that by
linking together the sensory and intelligence capabilities of a
large number of agents distributed across a network we can
amplify the ability of the network to resist attacks or
intrusion. Specifically through social co-operation, agents
can benefit from the combined defensive capabilities of their
particular group. In a similar manner natural systems have
widely employed distributed sensing and defensive agents,
for example within the social insects (Wilson 1971), and
within muiti-cellular organisms in the form of an immune-
system (e.g. Segel 1998). In traditional human military
systems the power of a cohesive sub-unit has been well
established, for example Roman turtles were a formidable
force for several centuries. Modern forces now rely heavily
on a cohesive and distributed command and control system;
with multiple sensing and intelligence sources.

3 System Design

This project utilises a model of co-operative software agents
to investigate how they may contribute to an adaptive
computing security architecture. Specifically, a number of
software agents are located on host servers within a network
and use co-operative behaviours in order to build a
distributed intrusion knowledge base. The agents utilise the
following methods in order to monitor for network
intrusions:
a) Local observation of known system weaknesses, e.g.
port attacks, firewall attacks, denial of service attacks
and fake user access. (These are prior art methods

required to perform higher level functions by the
agents).

b) Each agent maintains a set of internal macro scale
variables, which correlate with the state of the network.
This is defined as the metabolic rate of each agent. This
may be defined as an indirect measurement of intrusion
processes.

Group monitoring. Each agent periodically communicates
with a number (N) of other agents within the defined
network and exchanges a data set for recently gathered local
observations of the network. Hence useful warnings of
hostile events are rapidly disseminated throughout the
network.

If an agent detects an anomalous event it selects a response
based on a previously defined management policy, i.e.
attempt to apply corrective measures to halt the event (e.g.
close a port on a server) or notify an administrator, via a
message channel (email or direct message).

3.1 Prior Art

Using a collective formation of smart software agents to
form an adaptive immune-response structure within a
network has been discussed in existing literature. Some
preliminary work in this field has already demonstrated the
effectiveness of such methods (Filman & Linden 1996, and
Yialelis, Lupo & Sloman 1996). In particular work by
Helmer et al (1998) demonstrates a multi-agent network
defence system in which software agents monitor low-level
network activity and report it to higher-level software agents
for analysis. In the system proposed by Crosbie and
Spafford (1995) a similar distributed set of agents monitors
network traffic and machine activity, including CPU
utilisation. Their system also has agents exchanging
anomaly reports between each other and decisions to raise
an intrusion alert are based on the combined evidence from
a number of agents. This system also utilises a form of
machine learning based on evolving Genetic Programs in
order to recognise new patterns of attack.

The work by Carver et al (2000) demonstrates the use of a
distributed heterogeneous group of agents as an IDS
solution. The focus is on dynamic and adaptive response to
varying levels of security threats. Work by
Balasubramaniyan et al (1998) discusses a detailed design
and methodology with common features to the proposed
COSMOS systemn and model.

The work by Qi He and Sycara (1998) demonstrates the use
of encrypted KQML message exchange among a networked
group of agents which is used for secure PKI certificate
management. Although, the application is only partly
related, the underlying techniques share some features with
the proposed Tag-exchange scheme.

83

3.2 Comparison

The COSMOS project shares the concept of using a
distributed set of co-operative software agents and adds the
following novel feature:

Metabolic monitoring. In a similar manner to a human
doctor measuring a patients pulse and temperature,
COSMOS uses macro-scale changes in the behaviour and
processes in a network in order to detect anomalous states,
corresponding to attacks. The system can then respond to
any type of attack whether intrusions or viral attacks, unlike
existing IDS systems.

Current IDS systems rely on specific network or machine
checkpoints to indicate the existence of an attack. This
requires a separate specific sensing capability for every
possible point of attack. While the COSMOS agents may
monitor a number of known entry points to the network,
they also monitor a set of internal (to the agent) and network
state variables. Examples being CPU load, traffic rates and
service levels in order to calculate the current metabolic rate
of the system and each agent. The COSMOS system can
therefore generate warnings due to novel and previously
unknown intrusions.

3.3 Group Formation

A vparticular aspect of multi-agent systems that we have
focused on is their ability to form dynamic social groups.
The interest in this behaviour stems from the concept that by
linking together the sensory and intelligence capabilities of a
large number of agents distributed across a network we can
amplify the ability of the network to resist attacks or
intrusion. Specifically through social co-operation, agents
can benefit from the combined defensive capabilities of their
particular group. In a similar manner natural systems have
widely employed distributed sensing and defensive agents in
the social insects (Wilson 1971) and within multi-cellular
organisms in the form of an immune-system (e.g. Segel
1998).

4 Results — The Cosmos Model

4.1 Experiments

The agent simulation was developed using the REPAST
agent toolkit from the University of Chicago
(http://repast.sourceforge.net/). This package was selected in
preference to alternative social agent platforms e.g. Swarm
(Burkhart & Burkhart 1994), as it offers a fast pure Java
implementation with extensive support for visualisation,
offline batch running and object management.

We first constructed a two-dimensional discrete spatial
world model, shown in figure 2, in which a population of

artificial agents could interact and move, based on the
Sugarscape model (Epstein and Axtell 1996). This model
was selected as it represents a suitable test case environment
for investigating complex multi-agent simulations. In
addition we wished to enable easy reproduction of the
presented results.

4.2 Model Description

The model is based on a population of agents, which are

initialised randomly with the following set of variables:

i) Vision — an agent can sense other agents and food
objects within a specified radius from its own co-
ordinates. Assigned randomly within a specified
range e.g. 1-5 steps.

i) Metabolism - agents have an integer counter
which represents their rate of energy consumption.
Assigned randomly in a specified range. Increased
whenever an agent is infected with a pathogen.

iit) Lifespan — agents are initialised with a fixed
lifespan, randomly assigned, typically between 20
- 200 time steps.

iv) Sugar - agents require sugar to survive, which is

an environmental resource. Sugar re-grows once
consumed by an agent at some specified rate.
Agents consume sugar by decrementing the value
proportional to their metabolic rate. This would
translate into an agents consumption of local CPU
and machine resources.

) Spice — as described in the Epstein & Axtell model,
a second commodity was introduced into the world
which is only available from other agents, and is
required for agent survival. Agents can only
acquire spice when they engage in a ftrade
interaction with another agent. The rules of trade
are described in the following section.

vi) Immune system — agents have an array of N
characters, which represents a simplified immune
system.

vii) Pathogens — agents may be initialised with a

dynamic array of viral infections, composed of
short random character strings. Section 4.2.c
describes the infection process.

The simulation uses a tagging scheme on each agent in order
to distinguish separate social groups of agents. The purpose
of this design is to enable multiple groups of agents to
coexist within the same physical Intranet environment and
maintain independent operations and behaviours. In a
physical realisation of the model we envisage the tags
representing IP sub-domains.

Agent Classes — there are ten separate social classes defined
in the model, based on an array of identifying cultural tags,
(the classic model typically only uses two agent classes,
Epstein and Axtell 1996). The cultural tags are represented

84

by an array of integer values between 0-9. The specific tags
used by the agents were:

Tag 1 is a group identifier, i.e. this tag defined the class to
which an agent belongs.

Tag 2 defines how much spice an agent will share during
trade.

Tag 3 has no direct role but is used to help measure cultural
variance, during agent trade interactions. A visual interface
colour codes agents according to the value of tag 1.

Cultural Variance - this model measures variance between
the agents by the summed difference between the tag values,
in contrast the SugarSpace model uses binary tags and a
Hamming distance measurement of cultural or social
variance. An integer representation was selected as this
maps into the large number of agent classes being operated
on.

4.3 Experimental Objectives

4.3.1 Dynamic Group Formation

The first experiments were designed to study under what
conditions socially co-operative groups of agents would
spontaneously develop, using the defined model. Related
work on the dynamic formation of social groups has been
shown in work by Hales (Hales 1998); using a similar
memetic tag exchange mechanism.

Figure 1. Screen capture of the agent spatial environment,
showing 400 agents in a 20x20 grid space environment, in
which two dominant social groups have formed. Highlighted
cells represent agents, which are currently infected with at
least one disease vector.

4.3.2 Rules for Trading Interactions
An agent receives an amount of spice equal to the second
tag value T of the agent it is trading with. Each agent

applied the following algorithm during its allocated time
slot.

Look in all neighbouring (von Neuman) cells to radius =
vision parameter.
If cell occupied then
If agent is of similar class type then
trade with agent in the cell
randomly flip one tag of agent to match own tag
infect agent with N viral strings
receive N antibody strings from the agent
Else if cell unoccupied record sugar present.

4.3.3 Immune System Development

The second stage of the work involved adding an artificial
immune model to the agents. During each trade interaction
between two agents, the initiating agent is passed a vector of
N disease strings. Each string is a short sequence of
characters, which the receiving agent then attempts to find a
match for from its internal immune system, (a large array of
character strings). Each string which the agents fails to
match results in an increment to its metabolic rate. This
results in a gradual degradation of an agent’s ability to
survive and a reduction in its lifespan. The agents can also
undergo random mutation of elements in their immune
system, in order to generate potentially novel “anti-body”
solutions to current diseases in the population.

400

. 300

)

£

2 v6ah

]

€ vénah

E -

=

g A

. " i ; L

10 i % ‘..»"f.\‘ RIFLY “"‘v.,.‘.vll'
00 100 200 300 400 500 600

i
No. of simnulation time steps

Figure 2. Graph of average number of connections per agent
with 6 disease strings per agent. Upper trace shows the
effect on the average health of the agents of allowing a co-
operative exchange of anti-body vectors between agents
during trading interactions.

A second process was available in the simulation to allow
agents to exchange a copy of the anti-bodies they have
acquired, to each agent they trade with. Figure 4 illustrates
the impact of allowing this co-operative inter-agent
exchange to occur. The average number of social

85

connections in the population more than doubles, indicating
a significant increase in the agents state of health. This is
also reflected in greater stability and lifespan of their social
groups.

200 |“ ‘{l; |
;é; 1sold] 11’ n -
g % tl
é:— 100 "(‘ ;‘.5',’ ’ 1 =
i_"‘_ b i
S 'ii ‘* %“‘]
|,,,. w %
J
Yy
. \ %,u , \Wv\m

0 200 400 1000
i
No. of iterations i.

Figure 3. Graph showing decrease in average infection level
with shared antibody process enabled between agents,
(curve x; trust level = 1 (low), y; trust level = 4 (medium), z;
trust level = 9 (high)).

By sharing useful solutions to infections the agent
population is able to eliminate the majority of infections in
the case of a high degree of trust between the agents. The
residual level is due to new agents joining the network and
introducing new infections.

5 Analysis

From the above results we extracted the following

conclusions.

1) Through a virtual commercial trade process we
created stable self-organising groups of agents, via
inter-agent meme transfer.

it) The groups demonstrated resilience to invasion and
competition by competing groups.
iii) The groups displayed a collective immunity

mechanism, allowing them to withstand frequent
infection from external or internal agents.

The metabolic conversions of such a cluster/group therefore
contribute to defining its sense of self, (i.e. ability to
recognise self-elements). Hence abnormal perturbations of
the metabolic rate may be one method for agents to detect
when attacks or intrusions are in progress.

5.1 Collective Security
We are currently implementing a multi-agent IDS system
across our local Intranet environment with the aim of

detecting hostile behaviour and attacks in the network. This
prototype is based on the FIPA JADE agent platform, which
provides core messaging and agent visualisation services. In
order to transport the artificial antibody signatures between
the agents we have designed an encrypted XML formated
ACL message structure. The agents will use an encrypted
tag exchange scheme to establish group identity and
exchange the encrypted objects containing local data
representing antibodies to any anomalous behaviour. The
agents currently use a number of autonomous http servers to
communicate the antibody messages in a secure and
asynchronous manner, (all messages are stored in a file
database and processed by a separate router service). The
proposed method is to install a software agent in every
node/server within a network, which can communicate over
secure channels with other agents in the local group. Each
node or server agent then broadcasts hashed encoded objects
(crudely equivalent to T-cells) into the local cluster or group
(cellular sub-domain), transmitting its current state and
identity. All members of the related cluster listen to this
exchange and perform pattern recognition of the messages.
Hence, an attack on any individual node or group triggers a
collective response. The result is an embedded adaptive and
tactical defensive capability within a computer network.

GUI and
Agent
management

Host

Network
Exchange of
TAGS
.;‘.'v G
Agent Agent }
Host [— Host

Figure 4. Overview architecture of the proposed agent IDS
implementation.

In figure 4 a simplified view of the proposed co-operative
agent IDS is illustrated. The system will include a facility to
allow administrators to interact with the agents via a GUI
and agent management tool. These tools will generally be
centrally operated within the network, but may be initiated
via a web browser interface from any authorised server,

86

hence preserving the fully distributed advantages of the
agent IDS.

The agent group once formed uses the exchange of software
antibodies, i.e. Tags (data-sets corresponding to hostile
events), in order to develop a group immunity to hostile
attacks. The following is a list of the main advantages
provided by the antibody model.

a) The tag exchange scheme is independent of any specific
learning mechanism the agents are using, hence different
adaptive strategies and processes can be implemented
within this framework.

b) The messaging overhead is very low, as each antibody
tag is a short sequence of bytes (typically less than 500
bytes)

¢) The mechanism is very robust, i.e. if individual agents
are damaged the rest of the group continues functioning.

d) The system is self-organising, the full implementation of
the system will incorporate a distributed directory
service, such that agents can locate other active agents
and connect to them.

e) By specifying new tag identifying elements an
administrator can select for a number of sub-groups or
cells to form within a network. This increases the
robustness and security of the system as each group will
be self-maintaining.

A specific application domain for the project is in defending
peer to peer (P2P) networks. In particular P2P class
networks are currently difficult to secure using existing
network security methods as they bypass traditional firewall
mechanisms, and may span multiple corporate networks.
The proposed antibody exchange and agent processes would
easily operate over such P2P networks and enable a higher
degree of security for any data or services.

6 TFUTURE WORK

Clearly the immune system model used in this agent
simulation is an extreme simplification of biological
immune mechanisms. Further work will extend the agent
immunity model to incorporate more specific processes
from the biological domain, such as the use of T cell type
agents to recognise when a normal agent has been infected
by a malicious process.There are several channels for further
development of this work, which need consideration. Firstly,
it may be beneficial to allow specialisation by role of the
agents, such that agents can become expert at particular
aspects of system security, e.g. virus detection. In order to
do so an evolution mechanism may be incorporated such
that agents are able to generate new agents via genetic
recombination, which would be selected for against specific
security requirements.

A second level of protection can be incorporated by dividing
the network into virtual sub-domains or cells, (i.e. local

virtual private networks with a peer to peer messaging
structure). Each cell will contain a separate population of
agents with its own unique inter-agent tag sequence. Hence
even if an attack succeeds in penetrating one of the agent
communities and subverts the agents in that group, it will
still have to penetrate the remaining cells individually. In
addition if one cell is infected the neighbouring cells would
become alerted by changes in the behaviour of that cell.

Open issues include what learning mechanisms the agents
should employ to integrate this method with existing anti-
viral solutions and what percentage of system resources the
agent mechanism will consume.

An interesting theoretical point, which also requires further
investigation, is what impact the underlying network
topology may have on the infection rates of computer
viruses. Future work will incorporate alternative connection
topologies between the agents i.e. scale-free and small world
designs. Recent work has demonstrated that such topologies
can have significant effects on the spreading rate of viral
infections, (Pastor-Satorras & Vespiganni 2001). In
particular if an anti-viral system can target the most infected
nodes in a network and isolate these then the rate of
infection can be greatly reduced. Related studies on the
robustness of complex networks during malicious attacks
has generated predictive equations for network attack
tolerance, (Saffre & Ghanea-Hercock 2001).

7 Conclusions

The global computing and communications network is a
rapidly growing adaptive and dynamic structure on an
immense scale. Future attempts to defend Intranet or
telecommunication networks will require equally adaptive
and increasingly automated processes. This work indicates
that a cohesive network of socially interacting agents can
create a highly robust and adaptive defence system for
information networks. The agent simulation we have
developed demonstrates that it is possible to create a
population of autonomous agents, which form self-healing
social groups with greater resistance to attacks and
perturbation than isolated agents. A key parameter of such
co-operation is the degree of trust which is established
between agents within the same domain, as increased levels
of trust can assist in the rapid diffusion of anti-body
solutions. (Although at the risk of corrupted agents
exploiting such trust).

The process of continuous inter-agent meme transfer enables
the agents to maintain a measure of group identity, which is
essential to the process of distinguishing self from non-self.
In addition the cooperative exchange of recognised patterns
for hostile pathogens/viruses greatly improves the immune
response of such an agent community.

87

References

1.

10.

11

12.

13.

14.

AlbertR., Jeong K., and Barabdsi A., "Attack and error
tolerance of complex networks”, Nature 406 378
(2000).

Anderson R., Feldman P., Gerwehr S., Houghton B,
Mesic R., Pinder J, Rothenberg J., and Chiesa J. (1999).
"Securing the U.S. Defense Information Infrastructure:
A Proposed Approach." MR-993-OSD/NSA/DARPA.
www.rand.org/publications/electronic/info.html
Balasubramaniyan J., Jose Omar Garcia-Fernandez,
Spafford E., and Zamboni D. "An Architecture for
Intrusion Detection using Autonomous Agents”.
Department of Computer Sciences, Purdue University;
Coast TR 98-05; 1998.

Briney A., "Security Focused”, Online report on
Information system security, from
http://www.infosecuritymag.com 2000.

Burkhart B., Burkhart R., "The Swarm Multi-Agent
Simulation System"(OOPSLA) '94 Workshop on "The
Object Engine” 7 September 1994.

Carver C.A., Hill I.M, Surdu J.R., and Pooch U.W., “A
Methodology for using Intelligent Agents to provide
Automated Intrusion Response,” IEEE Systems, Man,
and Cybernetics Information Assurance and Security
Workshop, West Point, NY, June 6-7 2000, pp. 110-
116.

Chess D.M. (1998). "Security Issues in Mobile Code
Systems", pp.1-14. In: Mobile Agents and Security, ed.
G. Vigna. Springer-Verlag.

Cohen F., " 50 Ways to Defeat your Intrusion Detection
System", onlien paper at
http://all.net/journal/netsec/1997-12.html.

Crosbie M. and Spafford E. "Defending a Computer
System using Autonomous Agents”, In 18th National
Information Systems Security Conference, oct 1995.
http://www.cs.purdue.edu/homes/mcrosbie/research/NI
SSC9S.ps.

Dittrich D., " The "Tribe Flood Network" distributed
denial of service attack tool ", online report at
http://staff. washington.edu/dittrich/misc/tfn.analysis.txt.
Epstein J., Axtell R., "Growing Artificial Societies:
Social Science from the Bottom Up", MIT Press, 1996.
Etzioni O., "Moving up the information food chain:
Deploying softbots on the world-wide web". In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI96) , Portland, OR, 1996.
Filman R., and Linden T., "Communicating Security
Agents", Proc. WET ICE 1996.

Forrest S., Perelson S., Allen L., and Cherukuri R.,
"Self-Nonself Discrimination in a Computer”. In
Proceedings of IEEE Symposium on Research in
Security and Privacy, pages 202-- 212, Oakland, CA,
16-18 May 1994.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Helmer G.G., Wong J.S., Honavar V., and Miller L.
“Intelligent agents for intrusion detection”. In
Proceedings, IEEE Information Technology
Conference, pages 121--124, Syracuse, NY, September
1998.

Hofmeyr S., & Forrest S. "Immunity by Design: An
Artificial Immune System"”_Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO),
Morgan-Kaufmann, San Francisco, CA, pp. 1289-1296
(1999).

Kephart J.O., " A Biologically Inspired Immune System
for Computers”, Artificial Life IV, Proceedings of the
Fourth International Workshop on Synthesis and
Simulatoin of Living Systems, Rodney A. Brooks and
Pattie Maes, eds., MIT Press, Cambridge,
Massachusetts, 1994, pp. 130-139

Maes P., Guttman R. and Moukas A., "Agents that Buy
and Sell: Transforming Commerce as we Know It.”
Communications of the ACM, Mar 1999 Issue,
available online from http://ecommerce.media.mit.edu
/Kasbabh/.

MAFTIA "Malicious and Accidental Fault Tolerance
for Internet Applications”, IST Programme RTD
Research project, 2001,

http://www.newcastle research.ec.org/maftia/summary.
html

Moody J.& White R.D.,"Social Cohesion and
Embeddedness: A Hierarchical Conception of Social
Groups", Submitted to American Journal of Sociology
2000.

Pastor-Satorras, R. & Vespignani, A. "Epidemic
spreading in scale-free networks". Physical Review
Letters, 86, 3200 - 3203 (2001).

Saffre F. and Ghanea-Hercock R., "Simple Laws for
Complex Networks", International Conference on
Dynamical Networks in Complex Systems, Kiel, July
2001.

Segel, A., and R. Lev Bar-Or. "Immunology Viewed as
the Study of an Autonomous Decentralized System." In
Articial Immune Systems and Their Applications,
edited by D. Dasgupta, 65-88. Berlin: SpringerVerlag,
1998.

Watts, D. & Strogatz S. "Collective Dynamics of 'small-
world' networks"”, Nature 393, 440-442 (1998).
Wilikens M., Jackson T. "Survivability of Networked
Information Systems and Infrastructures”, EU DG III/F,
Deliverable report on Survivability, Joint research
Centre Italy, 1997.

Wilson, E.O. (1971) The insect societies. Harvard
University Press.

88

Improving on the reinforcement learning of coordination in
cooperative multi-agent systems

Spiros Kapetanakis and Daniel Kudenko
Department of Computer Science
University of York, Heslington
York, YO10 SDD, UK.

{spiros,

kudenko}@cs.york.ac.uk

Abstract

We report on an investigation of reinforcement learning techniques for the learning of coordination in cooperative multi-
agent systems. These techniques are variants of Q-learning (Watkins, 1989) that are applicable to scenarios where
mutual observation of actions is not possible. To date, reinforcement learning approaches for such independent agents
did not guarantee convergence to the optimal joint action in scenarios with high miscoordination costs. We improve on
previous results (Claus and Boutilier, 1998) by demonstrating that our extension causes the agents to converge almost

always to the optimal joint action even in these difficult cases.

1 Introduction

Learning to coordinate in cooperative multi-agent systems
is a central and widely studied problem, see, for exam-
ple Lauer and Riedmiller (2000); Boutilier (1999); Claus
and Boutilier (1998); Sen and Sekaran (1998); Sen et al.
(1994); Weiss (1993). In this context, coordination is de-
fined as the ability of two or more agents to jointly reach
a consensus over which actions to perform in an envi-
ronment. We investigate the case of independent agents
that cannot observe one another’s actions, which often is
a more realistic assumption.

In this investigation, we focus on reinforcement learn-
ing, where the agents must learn to coordinate their ac-
tions through environmental feedback. To date, reinforce-
ment learning methods for independent agents (Tan, 1993;
Claus and Boutilier, 1998; Sen et al., 1994) did not guar-
antee convergence to the optimal joint action in scenarios
where miscoordination is associated with high penalties.
We investigate variants of Q-learning (Watkins, 1989) in
search of improved convergence to the optimal joint ac-
tion. More specifically, we investigate the effect of the
temperature function on Q-learning with the Boltzmann
action-selection strategy. We validate our results exper-
imentally and show that the convergence probability is
greatly improved over other approaches.

Our paper is structured as follows: we first introduce
a common testbed for the study of learning coordination
in cooperative multi-agent systems and describe an es-
pecially difficult variant with high miscoordination costs.
We then introduce variants of Q-learning and discuss the
experimental results. We finish with an outlook on future
work.

89

2 Single-stage coordination games

A common testbed for studying the problem of multi-
agent coordination is that of repeated cooperative single-
stage games (Fudenberg and Levine, 1998). In these ga-
mes, the agents have common interests i.e. they are re-
warded based on their joint action and all agents receive
the same reward. In each round of the game, each agent
chooses an action. These actions are executed simultane-
ously and the reward that corresponds to the joint action
is broadcast to all agents.

A more formal account of this type of problem was
given by Claus and Boutilier (1998). In brief, we assume
a group of n agents a;, as, ..., o, each of which have a
finite set of individual actions A; which is known as the
agent’s action space. In this game, each agent a; chooses
an individual action action € A; from its action space to
perform. The action choices make up a joint action which
is associated with a unique reward. Upon execution of
their actions all agents receive the reward that corresponds
to the joint action. For example, Table 1 describes the re-
ward function for a simple cooperative single-stage game.
If agent 1 executes action b and agent 2 executes action a,
the reward they receive is 5. Obviously, the optimal joint-
action in this simple game is (b, b) as it is associated with
the highest reward of 10.

Agent 1

afb

Agent2 a3 1] 5
b0 10

Table 1: A simple cooperative game reward function,

Our goal is to enable the agents to learn optimal co-
ordination from repeated trials. To achieve this goal, one
can use either independent or joint-action learners. The
difference between the two types lies in the amount of in-
formation they can perceive in the game. Although both
types of learners can perceive the reward that is associ-
ated with each joint action, the former are unaware of the
existence of other agents whereas the latter can also per-
ceive the actions of others. In this way, joint-action learn-
ers can maintain a model of the strategy of other agents
and choose their actions based on the other participants’
perceived strategy. In contrast, independent learners must
estimate the value of their individual actions based solely
on the rewards that they receive for their actions.

A popular technique for learning coordination in co-
operative single-stage games is one-step Q-learning which
is due to Watkins (1989), a reinforcement learning tech-
nique. Since the agents in a single-stage game are state-
less, we need a simple reformulation of the general Q-
learning algorithm such as the one used by Claus and
Boutilier (1998). Each agent maintains a Q value for each
of its actions. These values are updated after each step of
the game according to the reward received for the action.
The value Q(action) provides an estimate of the useful-
ness of performing action action. We apply Q-learning
with the following update function:

Q(action) + Q(action) + A(r — Q(action))

where) is the learning rate (0 < A < 1) and r is the
reward that corresponds to choosing action action.

In asingle-agent learning scenario, Q-learning is guar-
anteed to converge to the optimal action independent of
the action-selection strategy. In other words, given the as-
sumption of a stationary reward function, Q-learning will
converge to the optimal policy for the problem. How-
ever, in a multi-agent setting, the action-selection strategy
becomes crucial for convergence to any joint action. A
major challenge in defining a suitable strategy for the se-
lection of actions is to strike a balance between exploring
the usefulness of moves that have been attempted only a
few times and exploiting those in which the agent’s con-
fidence in getting a high reward is relatively strong. This
is known as the exploration/exploitation problem.

The action selection strategy that we have chosen for
our research is the Boltzmann strategy (Kaelbling et al.,
1996) which states that agent a; chooses action action
with a probability based on its current estimate of the use-
fulness of that action. In the case of Q-learning, the Q
values act as the agent’s estimates of the usefulness of an
action so the probability for action selection is based on
the function:

Qaction)
T

P(action) =

Qlaction’)

Zaction’EA.- e T

Specifically, we have concentrated on a proper choice for
the temperature function T'. This function provides an

90

element of randomness in the way that actions are cho-
sen: high values in temperature encourage exploration
since small variations in Q values become less important
whereas low temperature values encourage exploitation.
The value of the temperature can be decreased over time
as exploitation takes over from exploration. It has been
shown (Singh et al., 2000) that convergence to a joint ac-
tion can be ensured if the temperature function adheres
to certain properties. However, we have found that there
is more that can be done to ensure not just convergence
to some joint action but convergence to the optimal joint
action, even in the case of independent learners.

In our study, we focus on the climbing game which
is due to Claus and Boutilier (1998). This focus is with-
out loss of generality since the climbing game is repre-
sentative of coordination problems with high miscoordi-
nation penalty in multi-agent systems and is, therefore,
especially difficult to solve. This game is played between
two agents. The reward function for this game is included
in Table 2:

Agent 1

a b | ¢

af 11]-30]0

Agent2 b -30} 7 |6
cfi O 0 {5

Table 2: The climbing game table.

For each agent, it is difficult to converge to the op-
timal joint action (a,a) because of the negative reward
in the case of miscoordination. For example, if agent 1
plays a and agent 2 plays b, then both will receive a neg-
ative reward of -30. Incorporating this reward into the
learning process can be so detrimental that both agents
tend to avoid playing the same action again. In contrast,
when choosing action ¢, miscoordination is not punished
so severely. Therefore, in most cases, both agents are eas-
ily tempted by action ¢. The reason is as follows: if agent
1 plays c, then agent 2 can play either b or ¢ to get a pos-
itive reward (6 and 5 respectively). Even if agent 2 plays
a, the result is not catastrophic since the reward is 0. Sim-
ilarly, if agent 2 plays c, whatever agent 1 plays, the re-
sulting reward will be at least zero. From this analysis,
we can see that the climbing game is a sufficiently com-
plex problem for the study of coordination. It includes
heavy miscoordination penalties and “safe” actions that
are likely to tempt the agents away from the optimal joint
action.

3 Experimental results

This section contains our experimental results. Each sub-
section describes a variant of Q-learning for coordination
games where the agents have no social awareness.

3.1 Exponential temperature

Typically, reinforcement learning experiments that use a
temperature function to control how much exploration and
exploitation an agent performs during the learning are set
up so that the value of the temperature starts from an
initial value and decreases over time. Exponential de-
cay in the value of the temperature is a popular choice.
This way, the agent learns until the temperature reaches
some lower limit. The experiment then finishes and re-
sults are collected. The temperature limit is normally set
to zero which may cause complications when calculat-
ing the action-selection probabilities with the Boltzmann
function. To avoid such problems, we have set the tem-
perature limit to 1 in our experiments.

Although reinforcement learning experiments that use
an exponentially decaying temperature function are quite
common, the effect that the parameters of the tempera-
ture function have on the learning have not been explored
sufficiently.

In our analysis of exponential temperature functions,
we use the following family of functions:

T(z) = e™°" * max_temp + 1

where 7z is the number of iterations of the game so far, s is
the parameter that controls the rate of exponential decay
and max_temp is the value of the temperature at the be-
ginning of the experiment. Varying the parameters allows
a detailed specification of the temperature function. A
sample of 5 of these choices have been plotted in figure 1.

320,002 max_temps 149 ——
30,003 max_lemp=404

number of itsrations

Figure 1: Exponential temperature functions for different
s and max_temp values.

For a given number of iterations, we experimented
with a variety of s, max_temp combinations. To motivate
this point we use the climbing game and set the length
of the experiment to 1000 iterations. We repeat each ex-
periment 1000 times to ensure adequate confidence in the
results. We compare the following parameter combina-
tions:

» s=0.01 max_temp =499
» s =0.006 max_temp = 499

g1

» s=0.01 max_temp = 999
» s =0.006 max_temp = 999

The results from these experiments are included in Ta-
bles 3 to 6. Note that greater values of s mean that the
temperature is decaying more rapidly.

| a b c
a 193 0 0
b 0 113 275
ci O 0 419

Table 3: Results with s = 0.01 max_temp = 499.

| a b ¢
a| 192 O 0
b 0 114 279
c| O 0 414
Table 4: Results with s = 0.006
max_temp = 499.
| a b ¢
a|202 O 0
b 0 121 274
cl O 0 403
Table 5: Results with s =
0.01 max_temp = 999.
| a b c
al 154 O 1
b| 0 98 331
cl| 9 0 405
Table 6: Results with s = 0.006

max-temp = 999.

Tables 3 to 6 contain the number of times out of the
1000 repetitions of the experiment that a joint action was
reached after 1000 moves. For example, in table 3, joint
action (c, b) was reached 275 times. The success ratio of
these experiments is defined as the number of times the
agents converged to the optimal joint action (a,a) over
the total number of repetitions. These experiments are
only a small sample, nevertheless, they show that, for
a given length of the experiment, variation in the s and
max-temp parameters of the exponential function do not
have a significant impact on convergence to the optimal
joint action.

3.2 FMQ heuristic

The climbing game is a particularly difficult coordina-
tion game. This is not only due to the high miscoordi-
nation penalty that is associated with joint actions (a, b)
and (b,a). Itis also due to the relative safety provided

Prob. of agent] choosing action {8) ———
Prob. of agantt €hoosing action (b} ~=-~---
T Prob, of agentt choosing action {c) .-

probability of action solection
¢ < s

umber of flerations

Figure 2: Probabilities for action-selection.

by action ¢ for both agents. Figure 2 depicts the action-
selection probabilities for agentl during a successful run
of the experiment for 1000 moves with s = 0.006 and
maxiemp = 499.

It is clear from Figure 2 that action c is consistently
the most probable action until a dominates it. This hap-
pens after approximately 600 moves. In fact, in most un-
successful runs of the same experiment, action c is the
most probable action throughout. What is needed, in this
case, is a way to influence the learning towards the opti-
mal joint action. Since independent agents are devoid of
social awareness, from the agent perspective, the learn-
ing scenario consists only of actions and rewards: each
agent knows what actions it plays and what the corre-
sponding rewards are. There are two ways to influence the
learning towards the optimal joint action: by changing the
Q-update function and by changing the action-selection
strategy.

Lauer and Riedmiller (2000) describe an algorithm for
multi-agent reinforcement learning which is based on the
optimistic assumption. In the context of reinforcement
learning, this assumption implies that an agent makes any
action it finds suitable expecting the other agent to choose
accordingly. More specifically, the optimistic assumption
affescts the way Q values are updated. Under this as-
sumption, the update rule for playing action o defines that
Q(a) is only updated if the new value is greater than the
current one. Incorporating the optimistic assumption into
Q-learning solves the climbing game every time. This
fact is not surprising since the penalties for miscoordi-
nation, which make learning optimal actions difficult, are
neglected as their incorporation into the learning tends to
lower the Q values of the corresponding actions. Such
lowering of Q values is not allowed under the optimistic
assumption so that all the Q values eventually converge
to the maximum reward corresponding to that action for
each agent. In this way, using the optimistic assumption
solves the climbing game.

The optimistic assumption is a heuristic that applies to
the Q update function. Similarly, one can define heuris-
tics that apply to the action-selection strategy. For exam-

82

ple, we define the Frequency Maximum Q value (FMQ)
heuristic. First, we augment the agent’s internal status by
maintaining 3 values for each of its actions o« € A;:

@ action-count(a) holds the number of times
the agent has chosen « in the game

@ maxR(a) holds the maximum reward en-
countered so far for choosing action o

® count-maxR(a) holds the number of times
that the maximum reward has been received
as a result of playing action o

The expected value function in the Boltzmann strat-
egy is now:

EV{(a) = Q(a) + k * freq(maxR(a)) * maxR(a)

where % is a weight which controls the importance of the
FMQ heuristic in the action-selection and freq(maxR(a))
is the frequency of receiving the maximum reward corre-
sponding to an action. freq(maxR(a)) is defined as:

count_maxR{a)

freq(maxR(a)) = action_count(a)

Informally, the FMQ heuristic carries the information
of how frequently an action produces its maximum cor-
responding reward. Table 7 contains the results that were
obtained using the FMQ heuristic with the climbing game.
These results were achieved with an exponentially de-
caying temperature (s = 0.006, max_temp = 499) and

= 10 over 1000 iterations of the experiment for 1000
moves. Note that the success ratio with the FMQ heuristic
is 99.8% whereas the same settings gave a success ratio of
only 19.2% with the normal exponentially decaying tem-
perature function (see Table 4).

l a b ¢
al998 0 O
b 0 2 0
c 0 0 0
Table 7: Results with the FMQ heuristic in the

climbing game.

4 Validation

To experimentally validate the FMQ heuristic and com-
pare it to the optimistic assumption Lauer and Riedmiller
(2000), we introduce a variant of the climbing game which
we term the partially stochastic climbing game. This ver-
sion of the climbing game differs from the original in that
one of the joint actions is now associated with a stochastic
reward. The reward function for the partially stochastic
climbing game is included in Table 8.

Joint action (b, b) yields a reward of 14 or 0 with prob-
ability 50%. The partially stochastic climbing game is

Agent 1

a b c

ai 11} -30 {0

Agent2 b -30 | 14/0 | 6
c 0 0 5

Table 8: The partially stochastic climbing game table.

functionally equivalent to the original version. This is be-
cause, if the two agents consistently choose their b action,
they receive the same overall value of 7 over time as in
the original game.

Using the optimistic assumptionLauer and Riedmiller
(2000) on the partially stochastic climbing game consis-
tently converges to the suboptimal joint action (b, b). This
because the frequency of occurrence of a high reward is
not taken into consideration at all. In contrast, the FMQ
heuristic shows much more promise in convergence to the
optimal joint action. It also compares favourably with
normal Q-learning with an exponential temperature func-
tion. Tables 9, 10 and 11 contain the results from 1000
experiments with the exponential function, the optimistic
assumption and the FMQ heuristic respectively. In all
cases, the parameters are: s = 0.006, max_temp = 499
and, in the case of FMQ, k& = 10.

| a b c

a|212 0 3
by 0 12 289
cl| O 0 381

Table 9: Results with exponential temperature.

la b ¢
ai 0 0 0
bi0 1000 O
c| O 0 0

Table 10: Results with optimistic assumption.

988

a c
8 0
0 0
0 1

~N h~ Ojo

a
b
c

Table 11: Results with the FMQ heuristic.

5 Discussion

The FMQ heuristic performs equally well in the partially
stochastic climbing game and the original deterministic
climbing game. In contrast, the optimistic assumption
only succeeds in solving the deterministic climbing game.
However, we have found a variant of the climbing game

93

in which both heuristics perform poorly: the fully stochas-
tic climbing game. This game has the characteristic that
all joint actions is probabilistically linked with two re-
wards. The average of the two rewards for each action
is the same as the original reward from the deterministic
version of the climbing game so the two games are func-
tionally equivalent. For the rest of this discussion, we
assume a 50% probability. The reward function for the
stochastic climbing game is included in Table 12.

Agent 1
a b c
a || 10/12 } 5/-65 | 8/-8
Agent2 b |l 5/-65 | 14/0 | 12/0
c il 5/-5 5/-5 | 10/0

Table 12: The stochastic climbing game table (50%).

It is obvious why the optimistic assumption fails to
solve the fully stochastic climbing game. It is for the same
reason that it fails with the partially stochastic climbing
game. The maximum reward is associated with joint ac-
tion (b, b) which is a suboptimal action. The FMQ heuris-
tic, although it performs marginally better than normal Q-
learning still doesn’t provide any substantial success ra-
tios.

6 Summary and Outlook

We have presented an investigation of techniques that can
allow two agents that are unable to sense each other’s
actions to learn coordination in cooperative single-stage
games. These technique are applicable to independent
learners. However, there is still much to be done towards
understanding exactly how the temperature function can
influence the learning of optimal joint actions in this type
of repeated games. In the future, we plan to specifically
investigate the impact of the temperature function param-
eters on the learning.

Furthermore, since agents typically have a state com-
ponent associated with them, we plan to investigate how
to incorporate such coordination learning mechanisms in
multi-stage games. We intend to further analyse the ap-
plicability of various reinforcement learning techniques
to agents with a substantially greater action space. Fi-
nally, we intend to perform a similar systematic exami-
nation of the applicability of such techniques to partially
observable environments where the rewards are perceived
stochastically.

References

C. Boutilier. Sequential optimality and coordination in
multiagent systems. In Proceedings of the Sixteenth
International Joint Conference on Articial Intelligence
(1JCAI-99), pages 478-485, 1999.

Caroline Claus and Craig Boutilier. The dynamics of rein-
forcement learning in cooperative multiagent systems.
In Proceedings of the Fifteenth National Conference on
Articial Intelligence, pages 746-752, 1998.

Drew Fudenberg and David K. Levine. The Theory of
Learning in Games. MIT Press, Cambridge, MA, 1998.

Leslie Pack Kaelbling, Michael Littman, and Andrew W.
Moore. Reinforcement learning: A survey. Journal of
Artificial Intelligence Research, 4, 1996.

Martin Lauer and Martin Riedmiller. An algorithm
for distributed reinforcement learning in cooperative
multi-agent systems. In Proceedings of the Seventeenth
International Conference in Machine Learning, 2000.

Sandip Sen and Mahendra Sekaran. Individual learning of
coordination knowledge. JETAI, 10(3):333-356, 1998.

Sandip Sen, Mahendra Sekaran, and John Hale. Learning
to coordinate without sharing information. In Proceed-
ings of the Twelfth National Conference on Artificial
Intelligence, pages 426431, Seattle, WA, 1994.

S. Singh, T. Jaakkola, M. L. Littman, and C Szpes-
vari. Convergence results for single-step on-policy
reinforcement-learning algorithms. Machine Learning
Journal, 38(3):287-308, 2000.

Ming Tan. Multi-agent reinforcement learning: Indepen-
dent vs. cooperative agents. In Proceedings of the Tenth

International Conference on Machine Learning, pages
330-337, 1993.

C. J. C. H. Watkins. Learning from Delayed Rewards.
PhD thesis, Cambridge University, Cambridge, Eng-
land, 1989.

Gerhard Weiss. Learning to coordinate actions in multi-
agent systems. In Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelligence,
volume 1, pages 311-316. Morgan Kaufmann Publ.,
1993.

94

A Framework for Coherence-Based Multi-Agent Adaptivity

Nick Lacey;Henry Hexmoor
Computer Science and Computer Engineering
University of Arkansas
{nlacey, hexmoor}@uark.edu

Abstract

In this paper we present research which extends previous work concerning the application of philosophical theories to
agent knowledge base (AKB) design. We show how the theories and techniques presented in this paper aliow multipie
agents to adapt to a dynamic environment, and pursue long-term goals and intentions. A system is implemented and
described which tests the ability of agents based on the framework to act responsively, pro-actively, and cooperatively

in a multi-agent environment.

1 Introduction

A situated agent is one which exists within an environ-
ment. Such agents receive information about their envi-
ronment through their sensory equipment, and are able to
perform actions in their environment through their effec-
tors. In the case of both human and artificial agents, the
world which the agent must interact with will often con-
tain more complexity than can be represented within the
internal model of the agent. This means that both human
and artificial agents will face problems conceming the ac-
curacy of their model in relation to their environment.

It is possible to form parallels between the problems
faced by a situated agent and the questions posed by var-
ious areas of philosophy, especially Epistemology, Meta-
physics, and the Philosophy of Language. The partic-
ular path taken through the philosophical maze in each
of these areas has implications for the design and imple-
mentation of an artificial agent. As Van Inwagen points
out, everyone has philosophical beliefs, whether or not
they are explicitly aware of them (van Inwagen, 1993).
As the designers of most artificial agents are not philoso-
phers, they are implicitly basing their agents on the philo-
sophical assumptions which come bundled with common
sense, which Van Inwagen calls the “Common Western
Metaphysic”.

In (Lacey, 2000), and (Lacey and Lee, 2001), it was
shown that it was possible to construct two radically dif-
ferent philosophical positions and then construct artificial
agents based on these positions. The performance of the
agents was then compared, and it was concluded that the
philosophical foundations on which an artificial agent was
based do indeed affect its design, implementation, and be-
haviour.

In this paper we concentrate less on the philosophical
motivations for this research, and more on extending the
earlier work so as to produce agents which are capable of

95

addressing more complex tasks.

This paper is structured as follows. In Section 2 we
briefly describe the design, implementation, and behaviour
of the original agent. In Section 3, we describe how the
addition of intentions and the ability to represent social
concepts to the agent’s ontology renders the revised agent,
agent CX, pro-active and able to operate in a multi-agent
environment. Section 4 then describes experiments that
have been carried out in order to test the new abilities of
agent CX, the results of which are discussed in Section 5.
Finally, Section 7 offers some concluding remarks con-
cerning this work.

2 The Design and Implementation of
Agent SH

Agent SH was designed to be strongly holistic. This means
that the meaning of every belief within its ontology is, as
much as possible, determined in relation to every other be-
lief. This was implemented using a belief revision mecha-
nism based on explanations, coherence and constraint sat-
isfaction.

Agent SH’s low-level perceptions were organised and
given meaning using high-level explanations of the agent’s
environment. The most coherent explanation at any given
time was taken to be the correct explanation of the agent’s
current sensor data.

2.1 Explanations

The primary method of inference used by agent SH that
of Explanation-Based Backward Chaining. The ultimate
goal of the backward chaining process is to find the over-
all explanation which bests explains the current input data.
The value of the explanation may be derived from sev-
eral alternative explanations, each one representing an al-

ternative high-level conception of the current state of the
agent’s environment.

The first explanation that the agent will attempt to
backward chain is the Default Explanation. This repre-
sents the most coherent explanation of all information re-
ceived by the agent prior to the present moment. If the
agent is able to find the value of the Default Explana-
tion without violating any constraints, then it has no need
to investigate any of the alternative explanations, and can
adopt the default explanation.

Alternatively, the agent may find that no value for
default explanation can be found without violating con-
straints. This indicates the agent’s internal model is out
of step with its environment, so some adjustment is re-
quired. If this occurs, as many alternative explanations
as necessary are explored. The alternative explanations
are derived and then holistically evaluated by comparing
their integrity scores. This approach mirrors Thagard and
Millgram’s concept of the holistic assessment of compet-
ing hypotheses, and is based on philosophical approaches
to truth and justification based on coherence.! (Thagard
and Millgram, 1997)

Explanations are Meta-Level beliefs, meaning that they
concern the relationships between other beliefs, rather than
directly representing states of affairs in the agent’s envi-
ronment. Every explanation may incorporate other, lower-
level explanations, as well as domain-dependent beliefs
concerning facts and relations about the agent’s environ-
ment. Alternative explanations will usually provide dif-
fering mechanisms to derive the same pieces of data. This
means that if a piece of sensory data that is necessary for
the default explanation is unavailable, the agent may be
able to use its knowledge of its environment to derive the
missing data from another source.

The precise nature of the explanations used by a given
agent will depend upon the environment within which the
agent is to operate. Coherence can be used to provide a
measure of the “best” explanation. The concepts of in-
tegrity and centrality are used to measure the utility of a
possible explanation. Integrity and centrality are used to
measure the value of an entire knowledge base, and an
individual belief, respectively.

If the ontology of the agent were to be visualised as
a sphere, the central beliefs would be the meta-beliefs
while the outermost beliefs would be state dependent as-
sertions.? By associating each belief with the ontological
level to which it belongs, the agent has access to a com-
putationally inexpensive method of deriving the centrality
of each belief.

This technique also addresses a common criticism of
coherence based justificational structures, namely that they
are unable to account for the differing epistemological
importance attached to difference classes of belief. The
spherical model provides a clear basis for holding that

1For more information on coherence as an approach to truth and jus-
tification, see (Audi, 1993) and (Kirkham, 1995).
2This structure was inspired by Quine (Quine, 1980).

high-level core beliefs are more important to the agent's
ontology that perceptual beliefs on the periphery, and hence
are less likely to be revised.

2.2 Constraints

Constraints are used to alert the agent to the presence of
an inconsistency. Their role can be seen as three-fold:

1. Constraints can be viewed as a shortcut, as they al-
low the agent to detect an inconsistency as early as
possible in the knowledge base derivation process.

2. Constraints allow the high-level representation of
states of affairs that cannot obtain in the agent’s
environment. If a particular constraint is violated
under the current explanation, the agent can imme-
diately infer that the explanation is flawed, and thus
can invest its energies elsewhere.

3. Due to the high-level nature of constraints, it is pos-
sible to associate a particular recovery plan with ev-
ery constraint. By following the recovery plan, the
agent may be able to produce a new explanation
which successfully resolves the current problem.

Constraints relevant to the agent’s domain are pro-
vided by the agent designer. As such, constraints repre-
sent pre-processed knowledge provided to the agent. Pol-
lock (Pollock, 1998) notes that this technique obviates the
agent from having to concern itself with all the intricacies
of the domain, and risk encountering the frame problem.
While we accept this point, it should be noted that the
agent’s design is flexible enough that it may be possible
to allow it to modify its constraints or add new ones as a
result of experience, and indeed this is an interesting area
for future developments.

3 Adding Intentions and Social No-
tions to the Architecture

Agent SH was responsive, rather than pro-active. The
agent was able to perceive and react to changes in its en-
vironment, but was not able to represent or act on long-
term plans or goals. Jennings, Sycara and Wooldridge
(Jennings et al., 1998) define a responsive system as one
which is able to perceive its environment and respond to
changes which occur in it.

As such, responsiveness can be contrasted with pro-
activity. A pro-active agent does not merely respond to
its environment, but is able to exhibit goal-directed be-
haviour. The approach we used to create a pro-active
agent based on agent SH was to add intentions to the
agent’s ontology. The BDI approach to agent design recog-
nises the primary importance of beliefs, desires, and in-
tentions (Wooldridge, 2000).

Internal
Responsive

., Pro-Active

Higher ontologicel
Level

Lower Ontological
Level

Figure 1: Adding Intentions and Norms to Agent SH

Intentions occupy a middle ground between desires
and actions which allow the agent to focus on a manage-
able number of achievable short or long-term goals which
will maximise, to the best of the agent’s knowledge and
abilities, its long-term utility. In other words, intentions
allow an agent to be goal-driven, rather than event-driven
(Schut and Wooldridge, 2001).

Thus, adding intentions to the architecture in which
agent SH is based renders the agent pro-active, as well as
responsive. The agent created as a result of the extensions
to agent SH has been called agent CX, as it is based on an
extended form of coherence.

As shown in Figure 1, the addition of intentions to the
architecture of agent SH creates a framework based on a
two-stage cognitive process. This figure also shows that
norms have been added to the agent’s ontology. The so-
cial aspects of agent CX are discussed in Section 3.5. The
first stage is responsive, in that the agent uses explanation-
based backward chaining to form the most coherent ex-
planation of its current sensor data.

The second stage, however, is pro-active. During this
stage, agent CX uses the high-level explanations gener-
ated during the first stage as a guide when forming an
intention tree. Intentions relevant to the current domain
are combined using backward chaining, in much the same
way as explanations were combined during the responsive
stage of the agent’s cognitive cycle.

3.1 Intentions, Plans, and Actions

An interesting feature of this architecture is that the agent
does not represent plans explicitly. This is not to suggest
that the agent does no planning. Clearly, some form of
planning is essential if the agent is to achieve long-term
goals. However, in the architecture we suggest intentions
and actions take on the role of plans, such that there is
no longer a requirement for any explicit plans above and
beyond intentions and actions.

Figure 1 shows the proposed relationship between ex-

97

planations, intentions, and actions. Perceptions arrive from
the external world, and are processed to arrive at an expla-
nation. As shown in the diagram, this process is respon-
sive, rather than pro-active. This is because, during this
stage, the agent is making sense of what has occurred in
its environment, rather than making any plans concemning
what action to take in the future. However, while the ex-
planation derivation stage is responsive, it is not passive.
This is because the perceptions are not accepted at face
value and used as the basis for the explanation. Rather, the
perceptions are taken as one possible source of data con-
cerning the agent’s environment. The version of events
concerning the environment which will eventually be ac-
cepted depends on results of the explanation derivation
process whiich, far from being passive, requires varying
amounts of processing, depending on the ease with which
new data can be integrated into the agent’s existing ontol-
ogy.

Extending the design of the agent to allow the repre-
sentation and manipulation of intentions renders the agent
pro-active, as well as responsive. This is because the
agent can use its intentions to represent long-term goals
which it must use some degree of planning to bring about.

As shown in Figure 1, we have placed intentions at
a higher level within the ontology than beliefs concern-
ing particular actions. This refiects the fact that intentions
are more centrally held than beliefs about actions. Small
day-to-day occurrences cause us to constantly revise our
planned actions without affecting our longer-term inten-
tions.

For example, my intention this moming, like most
mornings, was to get to work. This intention is normally
executed by constructing a plan which involves me walk-
ing to work. However, this morning I looked out of the
window and noticed that it was raining heavily. I therefore
revised my plan, in that I decided to drive to work instead
of walking, but my intention was unchanged. The rea-
son my intention was unchanged was that this was a reg-
ular event that I knew from experience how to deal with.
However, if I had experienced a highly unusual event this
morning, such as an absence of gravity, it is possible that
this would have caused me to revise not only my current
plan but also my intention.

Our suggestion, then, is that the agent should be able
to distinguish situations which do warrant the revision of
intentions from those that do not. Furthermore, the agent
should, on the whole, exhibit a reluctance to alter its in-
tentions. This is because the act of intention reconsider-
ing consumes resources which could be used elsewhere,
so the agent should be discouraged from intention recon-
sideration except when this becomes necessary.

3.2 The Advantages of High-Level Intentions

At the sensory perception level there is a great deal of
low-level information available to the agent. The depen-
dencies, implications, and meaning of this information

Final Intentions|

Meta Level

Domain Level

Figure 2: Intentions Provide Guidance Through the Ac-
tion Search Space

are not contained in the low-level perceptual data. This
makes it difficult for the agent to build a complex model
solely on the basis of this information. However, high-
level explanations do contain the connections between var-
ious pieces of sensor data which the agent must refer to
when constructing its model.

Thus, high-level explanations provide methods of com-
bining this low-level data in different ways, depending on
which explanation is chosen. If the agent is able to, it
will use the default explanation. If this is not possible,
alternate explanations are generated and holistically com-
pared.

The central idea that will be put forward in this section
is that, within the coherence framework described in Sec-
tion 2, intentions can be viewed as the pro-active equiva-
lent of explanations. Competing alternative explanations
are used to guide the backward chaining process which
eventually yields a maximally coherent interpretation of
the agent’s environment. Similarly, competing alternative
intentions are used to guide the planning process, and will
yield a set of intentions which are maximally coherent
with the agent’s existing beliefs.

Just as dealing with low-level sensor data alone makes
perception difficult, so dealing with low-level actions alone
makes planning difficult. By considering its actions at the
intention level, the agent is better equipped to deal with
dependencies and inconsistencies that may exist between
its planned actions.

This is not to suggest that the agent will have to gen-
erate a competing set of intentions on the basis of every
interpretation of the environment. Indeed, the ability of
this model to provide a well-defined yardstick by which
to determine when intention reconsideration is necessary
is part of its appeal.

Rather, the default interpretation will always be car-
ried forward from the previous interpretation. If nothing
has changed, the agent can go ahead and use its default
set of intentions. Even if the interpretation has changed,

98

an agent may still be able to use the default intentions.
Whether or not this is possible will depend on whether or
not any of the constraints which link the interpretations
and intentions have been violated. If they have not, then
the default set of intentions is still valid. If constraints
have been violated, then the intention reconsideration pro-
cess must begin.

3.3 Representing Intentions

An intention encapsulates the actions required to bring it
about. It is assumed that the actions encapsulated within
an intention are internally coherent. This assumption al-
lows us to verify the coherence of the pro-active side of
the agent only at the level of the agent’s intentions.
Intentions are combined to form a rooted intention
tree, similar to the explanation tree described in Section
2. The paths from the root intention to any of the leaves
represent alternative paths through the intention space.
Intentions incorporate the following concepts:

Action Templates A data structure containing templates
which describe how actions can be formed which
will bring about the intention.

Preconditions States that must obtain in the world be-
fore the actions can be implemented.

Postconditions States that will obtain in the world once
the actions have been implemented.

Constraints A list of constraints which are associated
with the intention.

While the concepts of constraints and preconditions
may seem similar, they serve different functions within
the intention reconsideration process. The purpose of the
preconditions and post-conditions is to guide the back-
ward chaining process. They do this by allowing the back-
ward chaining engine to match the preconditions of a re-
quired intention with the post-conditions of an intention
which must precede it. In this manner executable inten-
tion paths can be formed.

While preconditions are used during the intention form-
ing process, constraints are used to verify the consistency
of an intention set with respect to the given explanation.
Preconditions are used to allow the agent to combine in-
tentions in an effective manner, and as such will usu-
ally concern lower level aspects of the agent’s environ-
ment than will be represented in constraints. However,
this does not mean that constraints and preconditions will
necessarily be independent. Indeed, as they both concern
representations of a state of affairs that must obtain before
another state of affairs can obtain, there may be some sim-
ilarities between preconditions and constraints which the
agent will be able to exploit.

3.4 Intentions Give Meaning to Actions

Intentions combine to form coherent methods of achiev-
ing the desired goal. They are then translated into actions
which are put into effect to achieve the desired intention.
Note that while individual intentions are meaningful, indi-
vidual actions have little meaning when taken in isolation
from their related intentions. This reflects the distinction
between human intentions and actions.

For example, consider my intention to type the word
“for”. At the intention level, I formulate the intention to
type the word. At the action level, however, the actions re-
quired to carry out this intention are all of the form“Move
hand horizontally to a certain position, then move fingers
vertically.”

The point is that very little meaning can be attached to
actions in themselves. In order to determine the meanings
of actions, we must refer to the intentions which the ac-
tions represent an attempt to bring about. This means that
when reasoning about actions, we should be reasoning at
the intention level, rather than the action level.

Grosz, Hunsberger, and Kraus argue that agents op-
erating in a multi-agent environment can hold intentions
without knowing rhemselves how to bring the intention
about (Grosz et al., 1999). While this definition of in-
tention may not be completely compatible with ours, we
do agree that actions and intentions are distinct, mutually
supporting entities. Thus, we are not arguing that inten-
tions should be seen as replacing actions, as actions will
always be necessary in order to bring about the agent’s in-
tentions. Rather, we suggest that agents should construct
and manipulate plans at the intention level, rather than the
action level.

Intention constraints are used by the system to deter-
mine whether variations between intended and actual ex-
ecution have rendered the current set of intentions obso-
lete. If they have not, then intention reconsideration is not
necessary. If they have, then the agent must reconsider its
intentions.

‘Whether or not the intention constraints succeed, ac-
tion constraints are applied prior to executing each action.
Action constraints are designed to detect cases where the
overall intention is still valid, but the original action which
was originally associated with that constraint must be var-
ied. This variation is entirely local to the current intention,
and does not affect the rest of the system. In effect, this
mechanism adds a degree of responsiveness to the system.

3.5

In (Hexmoor and Beavers, 2002), Hexmoor and Beavers
discuss extending the traditional BDI approach to agent
design by also considering the concepts of values, obliga-
tions, and norms. They conclude that adding these new
modalities increases the robustness and flexibility of the
agents that are produced.

We take values to be abstract beliefs that guide the
behaviour of an agent, while norms are specific instances

Representing Norms of Behaviour

99

of behaviour. In this paper we incorporate norms directly
into the agent architecture, but we consider obligations
and values to be implicitly represented.

The relationships between norms and intentions are
represented using relations and constraints. Relations are
used to represent the fact that an agent should behave in
a certain way in a particular situation, and in a different
way in a different situation.

1t is also worth noting that norms are directly related
to intentions, as opposed to actions. This is because, as
described earlier, very little meaning can be attached to
low-level actions, so relationships concerning the social
make-up of agents must be defined at the intention level.

For example, consider an agent who takes goods from
a store without paying for them. Whether or not this agent
is violating any norms or values depends entirely on what
its intention was. If the agent was intending to steal the
goods, then it has clearly violated a norm of behaviour
that would be associated with the value that stealing is
wrong. If, on the other hand, the agent was intending to
take the goods home on approval, and was acting with the
consent of the store owner, then no norms or values have
been violated.

When combined with the explanation-based backward
chaining mechanism described above, this framework al-
lows the agent to construct intention trees which are based
on the adoption of a set of default norms. The constraint
violation detection mechanism will ensure that any events
in the environment which are inconsistent with the default
model will be flagged as such, and will cause the model
to be updated accordingly.

4 Implementation and Experiments

In order to test the architecture described in this paper, a
system capable of constructing, executing, and manipu-
lating intention trees was implemented in Prolog.

4.1 Experimental Domain

The experimental domain that was used was chosen to be
as simple as possible while nonetheless requiring that in-
tention trees be constructed and modified as appropriate.
The domain that was chosen to be the basis of these exper-
iments was that of a crude discgolf simulation. Discgolf
is similar to golf, but players throw plastic discs instead
of hitting golf balls. The environment consists of a rect-
angular area. At the beginning of the simulation, the disc
is placed on a tee. The agent must formulate an intention
tree which will permit it to throw the disc into the basket
using as few throws as possible.

An advantage of this domain is that while the distinc-
tion between intentions and actions is clear at the concep-
tual level, at the implementational level translation from
the intention level to the action level is very simple. In-
tentions concern an attempt to throw a disc to particular

Goal
Intended Location
Approach
' Putt
Possible Locations
Tee

Figure 3: The Different Intentions Available to the Agent

location, specified by (z,y) coordinates. The action re-
quired to bring about the intention concerns throwing the
disc in a particular direction and aiming to cover a partic-
ular distance. Deriving the distance and direction values,
given the target (z,y) values and the disc’s current posi-
tion, is a matter of simple geometry.

The agent has three types of intention available to it,
as summarised in Table 1. The intentions represent dif-
ferent types of throw. Throws which will move the disc
further are less accurate, while the more accurate throws
do not cover as much distance. This effect was achieved
by adding a certain amount of error to the agent’s intended
throw. This is illustrated in Figure 3. The representation
of the possible actual locations of the disc after a throw
are based on Shanahan’s concept of the circle of uncer-
tainty (Shanahan, 1996).

The amount of error added to each throw is controlled
by two values.

o dr represents the number of degrees by which the
actual direction of the throw may vary from the in-
tended direction.

e dd represents the number of units by which the dis-
tance of an actual throw may vary from its intended
distance. This figure represents a percentage of the
actual intended distance. For example, if the in-
tended distance of a throw is 300 units, and dd =
5%, then the actual distance of the throw will be
accurate to within £60 units.

The dr and dd values used for the experiments de-
scribed here are given in Table 1. As these experiments
represent a proof of concept rather than an attempt at a
realistic simulation, dr and dd were set to the same value
in each experiment.

As described above, agent CX forms intention-level
plans by constructing intention trees. Once the agent has
constructed the intention tree, the agent begins to formu-
late actions which will bring about the intention. It does

100

this using the action template associated with each inten-
tion. In this domain, all intentions were associated with
the throw action. This implements the requirement that
intentions should constitute meaningful segments of the
agent’s plan in their own right, while individual actions
need not be meaningful when considered in isolation from
their associated intentions.
Thus, intentions take the form:

[drive, [x,¥]]

where z and y are the coordinates of the disc’s intended
location after the intention has been executed. For leaf
intentions, this value will be the coordinates of the target,
while for intermediary intentions, the intended disc posi-
tion will be a function of the maximum distance of the
intended throw and the disc’s position prior to the inten-
tion.

Intention | Max dr and dd for Experiment
Distance |1 | 2 3

Putt 20 005 1

Approach | 200 o1 2

Drive 300 0} 1 5

Table 1: The Intentions Available to the Agent in the Dis-
cgolf Simulation

Actions, on the other hand, have the following format:
{throw, D, B]

where D is the distance of throw required and B is the
bearing at which the throw should be aimed in order to
reach the position specified by the intention. Thus, the
distinction in semantic level between intentions and ac-
tions is clear: intentions concern z, y coordinates in the
environment, while actions concern the strength and di-
rection of a throw.

The constraints associated with the intentions sum-
marised in Table 1 are used to ensure that inaccuracies
in throws do not necessarily lead to a change in intention.
However, if the error placed on a throw is large enough,
intention reconsideration may become necessary. This is
achieved by calculating the distance from the disc’s cur-
rent position to the sub-goal specified by the intention. If
this distance is greater than the maximum range of the
current intention, then the current intention, and all the
intentions which follow it, must be reconsidered.

The constraints associated with actions are used to al-
low the agent to cope with minor variations between the
intended and actual course of events which do not require
intention reconsideration. If the actual position of the disc
prior to the current intention is different from the intended
position, but still within the range of the intended throw,
then a new action is created. This action will re-use the
throw type specified by the intention, but will calculate
distance and direction values based on the disc’s actual
position.

l Disc at Tee {.’00,107'

(orive 136,251)

Putt (189.27)

(roproncn m,@

(Pu:z 4:0,:7@ Eppnuch (30,2701 | [orive no,zw]
4
h

Selected Intentton Path

Figure 4: The Intention Tree Constructed In Experiments
land2

5 Results

The description of the experiments is divided into two
sections. Section 5.1 describes three single-agent experi-
ments, while Section 5.2 describes a multi-agent exper-
iment. The results presented in this section have been
rounded to O decimal places in the case of (z,y) coor-
dinates, and 1 decimal place in the case of directions.

5.1 Single Agent Experiments

Experiment 1 did not involve any errors. As such the
throws associated with each intention landed with 100%
accuracy, meaning there was no need for intention or ac-
tion reconsideration. The intention tree constructed dur-
ing Experiment 1 is shown in Figure 4.

With dr and dd set to 0, throws at the action level
represented these intentions with 100% accuracy. The in-
tentions and actions used in the experiments are shown in
Table 2. Note that both throws used in Experiment 1 share
the same direction, as the disc is moving along a perfectly
straight line from the tee to the goal.

Exp. Intention Action - Throw
Type lz |y Distance | Direction

1 Drive 36 | 261 300 56.8
Putt 20 | 270 11 56.8

2 Drive 36 | 261 300 56.8
Putt 20 | 270 10 43.7

3 Drive 36 | 261 300 56.8
Approach | 20 | 270 23 28.8

Table 2: Intentions and Corresponding Actions from Ex-
periments 1,2, and 3

The purpose behind Experiment 2 was to investigate
the ability of the architecture to formulate new actions
without intention reconsideration. In order to do this a
small amount of error was added to each throw, as sum-
marised in Table 1.

101

Constraints associated with each action are used to en-
sure that the action originally represented by the inten-
tion is still valid. In this case, this was done by checking
whether the disc was actually at the location it should be
at when the action is undertaken.

The experiment was successful, in that the agent was
able to move the disc from the tee to the goal without
reconsidering its intentions, despite the fact that the disc
never landed exactly where it was intended to. As would
be expected, as the error added to the throws was pro-
duced randomly, results varied between different runs. The
execution of the final throw, which will usually be a putt,
was unsuccessful in some cases. In these cases, a new in-
tention had to be created in order to accomplish the goal.
In cases where the second throw was successful, the in-
tention tree resulting from Experiment 2 was exactly the
same as that resulting from Experiment 1, shown in Fig-
ure 4.

Results from a representative run of Experiment 2 are
given in Table 2. The first intention and action are carried
out as normal. After the first throw, the agent realises that
the disc is not at the intended location, namely (36, 261).
However, the distance between the disc’s actual location
and the intended location of intention 2 is such that a putt
is still an applicable intention. However, as the disc is not
where it should be, the original intention must be brought
about using a different action.

In the example shown, the putt required by intention 2
was successful. In cases where this putt was not success-
ful, an additional putt intention was generated, as follows:

[putt, [20,270]]

The intention is unchanged, as the goal is still that
of placing the disc in the target. This intention will be
translated into an action, such as:

[throw,2,3.4]

This process is repeated until the throw is successful.
The actual parameters of the throw will clearly vary de-
pending on where the disc lands after each atternpt. The
agent usually required between 2 and 4 throws to reach
the target.

This corresponds to the approach humans take when
attempting to bring about a difficult intention. For exam-
ple, when trying to unlock a door at night, my intention is
to place the key in the lock. My first action is to move the
key toward the lock, and to attempt to insert it. If my first
attempt fails, my intention remains that of placing the key
in the lock, while at the action level I am moving the key
in various directions until I feel that the key has entered
the lock.

The purpose of Experiment 3 was to add sufficient er-
ror to the throws to cause the agent to reconsider its in-
tentions. Whether or not intention reconsideration was
necessary was represented using the following constraint;
If the distance between the disc’s actual position and its

I Disc at Tae l?ﬂﬂ,lﬂ!l

pucr {189,27) Approach (81,177) Drive (36,281)

Putt (10,270) ‘APPIGIC'I {30,270" (Drivl 130,270’

Failed Intention Constraint
Actual Disc position = (50,259)
Distance to goul =23

Mux putt distance = 20

Putec (32,263) Approach 130,270!' pbrive (30,270
K4

Selected Intention

Figure 5: The Intention Tree Constructed In Experiment
3

intended position was greater than the maximum distance
of the intended throw, then intention reconsideration was
necessary.

An intention tree representing a sample run of Exper-
iment 3 is shown in Figure 5. For the sake of simplicity,
a run has been selected here in which the agent success-
fully completed the task in 2 throws. Most of the runs in
Experiment 3 required between 3 and 5 throws.

After the first throw, the disc ends up at (50, 259).
This is too far for the intended putt, so intentions must
be reconsidered. Using the disc’s actual position as the
starting point, the agent produces a new set of intentions.
A putt is indeed too short to reach the target, but an ap-
proach throw may be successful. The approach intention
is selected, and translated into a distance and direction
value, as shown in Table 2.

Despite the relative simplicity of the domain, these ex-
periments show that it is possible for an agent to construct
an intention tree in order to bring about a long-term goal.
A small amount of variation when executing an intention
will not necessarily require intention reconsideration, but
the agent will be willing and able to reconsider its inten-
tions on the fly if this becomes unavoidable.

5.2 Extending the Experiments to the Multi-
Agent Scenario

Agent CX is able to model and represent the intentions
of other agents. The explanation-based component of the
agent uses observations of the actions of other agents to
form the most coherent explanation of what the other agents
in the environment are attempting to do. Once the inten-
tions of the other agents have been decided, agent CX can
adapt its intentions accordingly. The precise nature of this
adaptation will depend on the application domain, and on
the relationship between the agents.

102

In cooperative discgolf, two players play on the same
team. Both players make a throw, and then decide which
was the best throw. Both players then play from the over-
all best throw on the previous shot, and so on. If the first
player plays a good safe shot, then the second player is
free to attempt the risky shot, as the team has nothing to
loose. On the other hand, if the first player’s shot is unsuc-
cessful, the second player must also attempt a safe shot.

In our simulation, agents playing cooperatively may
play in accordance with two norms of behaviour, namely
safe and risky. In the multi-agent scenario, each of
the three intentions described in Section 5.1 is associated
with either a safe or a risky norm of behaviour. Safe in-
tentions have lower dr and dd values and a shorter range,
while risky intentions have higher dr and dd values and a
higher maximum range. The dr, dd, and maximum range
values associated with the two norms in Experiment 4 are
shown in Table 3.

Intention | Max Distance dr and dd

Safe | Risky || Safe | Risky
Putt 20 40 1 5
Approach | 200 300 2 10
Drive 300 400 5 20

Table 3: The Intentions Available to the Agents in Exper-
iment 4

As in the single agent case, both agents construct in-
tention trees. As shown in Table 3, the likely range and er-
ror values for each intention depend on whether the agent
has adopted a safe or risky norm of behaviour for that
shot. Both agents construct their intention trees assuming
that they will be using the sa £e norm. If conditions arise
which allow an agent to play under the risky norm, this
condition will be detected by a constraint violation, and
the agent will revise its intention tree appropriately.

A feature of this framework is that as long as all agents
in an environment share the same ontology, they will all
construct exactly the same intention trees.

This is due to the fact that this framework is not based
on probabilities. The operation of the intention tree con-
struction and revision mechanism may be complex, but it
is completely deterministic and repeatable. This means
that agents sharing the same starting ontology, and re-
ceiving the same perceptions from the environment, will
construct the same intention trees. This allows multi-
agent cooperation in complex domains without the need
for inter-agent communication.

The cycle used by the two agents is as follows:

1. Determine which of the two players, A or B, made
the best throw on their last turn. This is determined
by measuring the distance form both discs to the
target. Store the best disc location in (bz, by)

2. Both A and B now play from (bz, by). The agent

that made the best throw on the previous turn plays
first.

3. The agent to play first makes their throw. The first
agent to throw will always be using the safe in-
tentions.

4. The second agent to throw observes where the first
agent’s disc landed. Based on this information, it
has two choices:

o If the first throw was good, the team of agents
now has nothing to lose. This means that the
second agent to throw is free to adopt a risky
style of play, and so alters its intention tree so
as to select the appropriate risky intention.

e If the first throw was not good, the second
agent must play a safe shot, rather than a risky

one.
Turn { Agent Intention

Type [Nom [z | y

1 A Drive Safe 36 | 261

B Drive Risky || 30 | 270

2 A Approach Sa.lfe 30 | 270

B Approach | Risky || 30 | 270

3 A Putt Safe 30 | 270

B N N - -

Table 4: Intentions and Norms From Experiment 4

Results from a representative run of Experiment 4 are
given in Table 4. The explanation for these results is as
follows: At the start of play, agent A threw first, using a
safe norm of behaviour. The disc ended up at position
(63,254). This qualifies as a good throw, meaning that
agent B is now free to adopt a risky norm for the same
throw. This is reflected by the fact that agent B is intend-
ing to throw the disc all the way into the basket on the first
throw.

Agent B’s first throw is less successful, ending up at
(157, 50). The distance from agent B’s throw to the tar-
get is 254, compared with a distance of 36 for agent A’s
throw, so both agents move to (63, 254).

Agent A throws first on turn 2, as it threw the best
shot on the previous turn. The distance to the target is 36,
which is within the range of a safe approach or a risky
putt. However, as this is the first shot for this turn, agent
A has no choice but to play the safe approach. Agent A’s
shot ends up at (27, 273), which is only 4 away from the
target. This also qualifies as a good shot, so agent B is
once again free to play a risky shot. Agent B’s shot ends
up at (43, 317), which is considerably worse than agent
A’s shot, so both agents move to (27,273). Agent A now
faces an easy putt, and hits the target on the first attempt.

103

These results show that agent B was able to change
its style of play, depending on the results obtained by its
team-mate. In this instance, the performance of the team
was not helped by agent B’s risky shots, but it is nonethe-
less clear to see why agent B’s choice of actions was cor-
rect, as the potential gains for the team outweighed the
potential losses for the individual.

5.3 Experimental Results - Summary

Our interest in this domain stems from the fact that while
it is relatively simple to implement, it nonetheless yields
the following interesting features:

e Agents can operate either individually or as part of
a team. The best course of action for an individual
agent is not necessarily the best course of action
when the agent is operating as part of a team. Agent
CX is able to modify its behaviour when operating
as part of a team, as an agent playing individually
would never be wise to adopt a risky style of play.

o The agents are homogeneous. Each agent can in-
tend to play in one of two different way. Which
norm the agent chooses to adopt depends on the ac-
tions of its team-mate. As shown above, agent CX
is able to dynamically adapt to new norms of be-
haviour at run-time.

e The agents can plan pro-actively at the intention
level, can react to small variations in disc position
at the action level, and are able to adapt to differ-
ent styles of play depending on the actions of their
team-mate.

6 Acknowledgements

This work is supported by AFOSR grant F49620-00-1-
0302.

7 Conclusions

In this paper we have shown how an agent architecture
which was based on philosophical approaches to truth and
justification can be extended to produce a framework for
intelligent agent design. We have shown that agents based
on this framework are capable of responding to events
in the environment and of exhibiting goal-directed pro-
active behaviour.

In addition, this framework facilitates the design of
agents which are capable of forming robust intention-level
plans which can cope with small variations in the environ-
ment without necessitating plan regeneration. When the
environment changes to such an extent that a new plan
is necessary, the agent is capable of detecting this situa-
tion and constructing a plan which addresses the problem

it was facing. A feature of this architecture is that mul-
tiple agents can cooperate on the same problem without
communicating, as they will each form identical intention
trees as long as they share the same starting ontology.

Thus, we conclude that the proposed framework can
be used to design and implement situated adaptive agents
which can exhibit responsive, pro-active, and co-operative
behaviour in a multi-agent environment.

References

Robert Audi. The Structure of Justification. Cambridge
University Press, Cambridge, UK, 1993.

Barbara Grosz, Luke Hunsberger, and Sarit Kraus. Plan-
ning and acting together. Al Magazine, 20(4):23-34,
1999.

Henry Hexmoor and Gordon Beavers. In search of simple
and responsible agents. In Proceedings of the GSFC
Workshop on Radical Agents, MD, 2002.

Nicholas R. Jennings, Katia Sycara, and Michael
Wooldridge. A roadmap of agent research and devel-
opment. International Journal of Autonomous Agents
and Multi-Agent Systems, 1(1):7-38, 1998.

Richard L. Kirkham. Theories of Truth: A Critical Intro-
duction. The MIT Press, Cambridge, Mass, 1995.

Nicholas Lacey. Investigating the Relevance and Appli-
cation of Epistemological and Metaphysical Theories
to Agent Knowledge Bases. PhD thesis, University of
Wales, Aberystwyth, 2000.

Nicholas Lacey and Mark Lee. The implications of philo-
sophical foundations for knowledge representation and
learning in agents. In Daniel Kudenko and Eduardo
Alonso, editors, Proceedings of the AISB 01 Sympo-
sium on Adaptive Agents and Multi-Agent Systems,
pages 13-24, York, UK, 2001. The Society for the
Study of Artificial Intelligence and the Simulation of
Behaviour.

John Pollock. Planning Agents. In Rao and Wooldridge,
editors, Foundations of Rational Agency. Kluwer,
1998.

Willard Van Orman Quine. Two dogmas of empiri-
cism. In From a Logical Point of View : 9 logico-
philosophical essays, chapter 2, pages 20-46. Harvard
University Press, Cambridge, Mass, 1980.

Martijn Schut and Michael Wooldridge. Principles of
intention reconsideration. In AGENTS'0], Montreal,
Canada, 2001. ACM.

Murray Shanahan. Noise and the common sense infor-
matic situation for a mobile robot. In AAAI/IAAL Vol.
2, pages 1098-1103, 1996.

104

Paul Thagard and Elijah Millgram. Inference to the best
plan: A coherence theory of decision. In A. Rom and
D.B. Leake, editors, Goal-driven learning, pages 439—
454. MIT Press, Cambridge, MA, 1997.

Peter van Inwagen. Metaphysics. Dimensions of Philos-
ophy Series. Oxford University Press, Oxford, 1993.

Michael Wooldridge. Reasoning About Rational Agents.
MIT Press, Cambridge, MA, 2000.

Regular behaviour of learning agents in Minority Games

Alexei Lisitsa; Igor Potapov
Department of Computer Science,
University of Liverpool
Liverpool L69 7ZF, U.K.
e-mail: {A Lisitsa, I.Potapov}@csc.liv.ac.uk

Abstract

We consider deterministic and non-deterministic variants of the well-known minority game (D.Challet and Zhang
(1997); Challet et al. (1999)), in which &k (where & is odd) agents repeatedly choose between 0 and 1, attempting to
make a less popular choice at every step. Agents make their decisions based on finite depth history of the game and
equipped with a simple leaming mechanism which chooses the “most successful so far” strategy from the fixed pool of
strategies. In this paper we restrict ourselves to the case of a non-virtual evaluation principle, that is, after each tun
only the strategy which actually has been applied is evaluated by an agent. We show that in both variants the game as a
whole generates rather restricted classes of behaviours: ultimately periodic in the deterministic case and regular in the

non-deterministic one.

1 Introduction

The minority game was introduced by D.Challet and Zhang
(1997) as a variant of the earlier El-Farol problem (Arthur
(1994)). It is a multi-agent competitive decision game
model which despite its simplicity demonstrates non-trivial
behaviour and has been used for modelling the dynamics
of financial markets!, see (D.Challet and Zhang (1997);
Challet et al. (1999)) and references therein.

The standard variant of the minority game can be for-
mulated as follows.

At every time step 0,1, ..., (of a linear discrete flow
of time) k agents (with k being odd) choose between two
possibilities, say, 0 and 1. An agent wins a round if his/her
choice is among less popular at this time step. The stan-
dard variant of the game assumes that the only informa-
tion on the result of any particular round made public is
the most popular choice. Standard variant assumes also
that agents make decisions based on the recent record of
results in the following way. Every agent has [possible fi-
nite m-depth strategies, each of which gives a definite de-
cision once provided with last m results and, at any given
time the agent plays the strategy that has been most suc-
cessful up until that point of time. The ability to use the
best strategy provides a simple learning mechanism.

The above description of the learning mechanism left
several points unspecified.

Firstly, different strategy evaluation principles are pos-
sible. The classical one, which we refer to as virtual eval-

!ntuitively, the relevance of minority games to market’s dynamics
can be understood from simple observation: both to sellers and buyers
usually it is good to be in minority — if there are a few sellers the prices
are high, which is good for sellers, while being one of the few buyers is
good as well for keeping prices low.

105

uation, is "after each turn, the agents assign one (virtual)
point to each of his strategies, which would have predi-
cated the correct outcome” (D.Challet and Zhang (1997)).
So in this case all the strategies are evaluated on every
turn. Alternatively, one can have a non-virtual evaluation
principle, that is, after each turn only the strategy which
actually has been applied is evaluated by an agent. In this
case the strategy can be not only rewarded one point, but
also be penalized one point.

Secondly, there are different approaches on how to
choose a strategy if there are several equally successful
strategies at some moment ? A standard proposal was
(D.Challet and Zhang (1997); Challet et al. (1999)) to use
random choice. Since a majority of research papers on
minority games dealt with statistical properties of games,
this proposal was quite natural. From a computational
point of view a deterministic and non-deterministic poli-
cies are reasonable alternatives.

In the present paper we study behavioural properties
of minority games from a computational viewpoint and
consider the games with

¢ non-virtual strategy evaluation principle, and

¢ deterministic and non-deterministic policies of
choice between equally successful strategies.

Surprisingly, it turns out that minority games under
these assumptions demonstrate structurally simple behav-
iour. When we started this work we were expecting com-
putationally more complex behaviour, since the learning
mechanism is implemented by a set of counters, and it is
well-known that even two counters with simple control is
enough to obtain Turing complete devices (Minsky (1967)).
But restrictions on control imposed by minority games

and its specific learning mechanism in fact lead to regular
behaviour.

2 Preliminaries

The minority game can be seen as a particular kind of
collective competitive game between learning agents in-
teracting via an environment. At any round of a game
every agent receives a binary word as input from an envi-
ronment and responds with binary decision (0 or 1).

The environment, having collected the responses of
all agents, produces for every agent: 1) the information
on what was the winning decision (0 or 1), and 2) a word
as the new input.

Every agent, in turn, having received its result, up-
dates (if necessary) its strategy or chooses new strategy
and applies it for new input, producing new output, ...
and so on.

More specifically we have the following

Definition 1 A learning agent a with l-strategies of depth
m or simply, an (l,m)-agent is defined by the set of |
strategies 81,...,8; of depth m, which are finite func-
tions: s; : {0,1}™ = {0,1}, i =1...1L

With every strategy s; an agent has an associated inte-
ger-valued counter, storing c;(t), the value, or rating, of
this strategy at the round t.

Statedies

m
———a

Agents

1 ,.rmfixxm:n :g
HOU00000 (0 | X3

VODINXIOOKH | 1 Nd
LO000000001060 | XS

2 oooaaonial [Xe
Q0000000001 (0 | X7

I 0000000000111 | X -
anoonooooixi | N9 | | 2

Figure 1: System of (I, m)-agents

We assume that every (I, m)-agent has a strategy selection
function f : Z! = {1,...,1}, flei,...,a) = {jle; =
maz(cy,...c¢)}, which given the current rating of the
strategies yields the subset of (indices of) the most suc-
cessful strategies so far.

A non-deterministic agent chooses a strategy from the
set of the most successful strategies non-deterministically.

In the deterministic case we assume an agent has a
preference relation (linear order) on its strategies, and it
is convenient to assume that all its strategies are listed
according to this order, i.e. s; is more preferable than
s; iff ¢ < j. Having that, a deterministic agent always
chooses a strategy with minimal index among the most
successful ones.
At any round an agent applies its selected strategy to the
input received from the environment and outputs the re-
sult.

106

The learning mechanism of every agent is implemented
by a rating update rule:

o If an agent has applied the strategy s; at the round ¢
and won then¢;(t + 1) = ¢;(t) + 1

o If an agent has applied the strategy s; at the round ¢
and lost then ¢; (¢t + 1) = ¢;(t) — 1
Before we define the notion of minority game we need
to introduce the notion of an initial history (pre-history) 2
I of the length m > 0 as a sequence I(1),...,I(m) of
0's and 1’s of length m. It is convenient to have an al-
ternative notation of H{_,, 11,00 = H-m41,.-.,Hp fora
pre-history.

Definition 2 A standard (non-)deterministic minority
(k,l,m)-game v is given by an initial history I of the game
of alengthm, k (non-)deterministic learning (1, m)-agents,
where k is odd, and an environment E, which executes
four consecutive actions in each time step t:

1. send awordw that is a history Hjy_p 4] to all (I, m)-
agents;

2. receive an output 1, ...,y from all agents;

3. compute a minority function of odd arity k minory, :
{0,1}* — {0, 1} defined as follows:

o minorg(c1,...,2k) = 1
if {zjlz; = 1} < {=z;]z; = O}
e minorg(zy,...,2x) =0

if {{zjlz; = 0} < {zj]z; = 1}

and communicate the result as the winning choice to all
agents.
4. update the history,

H[0,t] = H[0,t — 1] - minory(z1,...,Tk)

A (k,l,m)-game v generates an evolution of the game,
which consists of two parts: history H., of the game and
personal attendance histories Af, of each agent a; (1 <
t < k).

H,, is an infinite sequence of 0 and 1, H (i) = 0(orl)
means that O (or 1) is a winning decision at the moment
i. Denote by H,[i, j] an interval of history between mo-
ments 7 and j:

An attendance history A? of the agent o' is an infinite
sequence of 0 and 1. A%(3) = 0 (or 1) means that the ¢-th
agent plays O (or 1) at the moment 1.

2Since the actions of agents depend on m-depth history of the game
we need some convention of how to start game; it seems the simplest
decision is to make the initial m-history just a part of the definition of
the game.

3This terminology came from the early El-Farol problem setting,
where decision 1 is interpreted as “to go to the bar”, and 0 — “not to
go”.

3 Periodicity of deterministic minor-
ity (k,1, m)-game

Consider a local state of an agent in a deterministic minor-
ity (k,!,m)-game at some round ¢. Let ¢y (¢), ..., ¢ (t) be
the values of its counters, describing the current strategies
ratings. Short analysis of the principles of non-virtual
evaluation and deterministic choice shows that we have
the following property of the counter values: there exists
j»1 < j < lsuchthat

Vp (p < j = cp(t) < ¢(?))
Vp (D> j = cp(t) < c;(t))

Vo, g (P <FAG<j=cp(t) =cylt)) (%)

Vp,g (P> JAq> G = cp(t) =cylt))

Vp, g (p> jAq<j)=cp(t) =co(t) + 1)

see the figure 2 a).

Moreover, the future agent behaviour depends actu-
ally only on the current strategy at the given round and on
its relative value. The relative value of a current strategy
s; at the round ¢ is the difference between c;(t) and c;(t'),
where t' < t is the round, from which the agent started to
apply s; continuously. This suggests to describe the be-
haviour of the agent by an one-counter automaton, where
the counter contains a relative value of a current strategy
and the states correspond to the different strategies, see
the figure 2 b).

Thus we will use the pair (7, ¢(t)) to represent a local
state of an agent. Here j is the number of the current
strategy and c(t) is the relative value of the strategy.

The global state of the (k,l, m)-game at the round ¢
is a k-tuple of the local states of the agents

(j1, (1)), - .. (jk, c¥(t)) together with a current m-
depth history H{y_m 11

Given a (k, [, m)-minority game, one of the partici-
pating agents is said to be unbounded iff for at least one
of its strategy s; the rating of this strategy is unbounded
during the play, i.e. VM 3t|c;(t)] > M

Any infinite sequence a1, az, . . . is said to be ultimate-
ly periodic if it is periodic starting from some point, i.e.
Ji > 035 > OVt(t > 7,) = Q4 =0y

The main theorem of this section is as follows

Theorem 1 Any standard deterministic minority (k, 1, m)-
game has ultimately periodic behaviour, that is each agent
generates ultimately periodic attendance history, and the
game has ultimately periodic history.

107

a)
Cc
O o— O
&8 e -
123 Jjj+l 2 -1
Strategies
u(-l
L O cd-1
e=-1/¢:=0 a
b)

ex-1/c:=0 cd-1

Figure 2: a) possible values of counters in a deterministic
agent b) the transition graph of a deterministic agent

Proof.

Case 1. There are no unbounded agents. Then there
are only finitely many global states in the game. It follows
that some global state repeats and the game has ultimately
periodic behaviour.

Case 2. There is precisely one unbounded agent A.
Then there exists an infinite sequence I, = [ay,bs), Iz =
[a2,b2],... I, = [ar,bs],... of the intervals on the time
flow with the following properties:

Vi (e(b;) — c{a;) > 1)

Vi,j (j >i=cla;) > clai))

Vi, z (z € (as,b;) = clai) < e(z) < e(bs)

We call such a sequence the sequence of fair intervals
for A, see figure 3.

As the all other agents are bounded there are only
finitely many local states they can went through. Fur-
thermore, the number of m-depth histories is also finite
and bounded by 2™. Taking M big enough, we will have
on the interval Ips that the entire game repeats its global
state, except, possibly, the relative value of the unbounded
strategy s; of the agent A. By further increasing the M
one can guarantee that the value of unbounded strategy
increases between the repeating points on 5. It follows

Value of counter

Round

Figure 3: Fair interval for one agent

that A will always apply the same (unbounded) strategy
s; and the entire game is ultimately periodic.

Case 3.There are two unbounded agents A and B.
Construct the sequence of fair intervals I1,I5,..., I, ...
for A. The behaviour of the agent B on this sequence falls
into one of the following subcases:

a) The agent B is uniformly bounded on the se-
quence, that is the rates of all its strategies are bounded
by some constant K

b.) The agent B is unbounded on the sequence, and
there is a such subsequence I;,, [;,,...,I;_,... and the
sequence Ji, Js, ... J;, ... of fair intervals for B such that
Vj) J. J g I i+

c.) The agent B is unbounded on the sequence, but
the condition of the case b.) is not satisfied.

Subcase a.} is treated similarly to the Case 2, as on the
sequence of fair intervals for A we have one unbounded
agent, that is A.

Subcase b.) is straightforward generalization of the
Case 2. The sequence Ji, Ja, . .. Jr, . .. is fair for both A
and B. Taking M big enough one can enforce to repeat
the global state on I, except, possibly, the values of two
unbounded strategies of A and B . Futher, by choosing
appropriate M one can guarantee that between the repeat-
ing points the values of the strategies increase. It follows
that A and B will keep applying the same strategies for-
ever and the entire game is ultimately periodic.

Subcase c. In that subcase one can choose a subse-
quence g = aj,,Qj,, - . ., 4;,, ... of the starting points of
the intervals I1,...I.,... such that for the values of un-
bounded strategies ¢4 and ¢® of the agents A and B, re-
spectively, we have i’ > i = (cA(i') > cA(i) AB (i) >
cB(7)). Consider the global states of the game on this
subsequence only. Take a long enough segment of g, the
global state of the game repeats, except, possibly, the val-
ues of ¢4 and ¢B, but these values are monotonically in-
creasing on g. It follows that A and B will keep applying
the same strategies forever and the entire game is ulti-

108

mately periodic.

Case 4. There are three, or more unbounded agents.
This is done by straightforward, but tedious extension of
above arguments and use of induction on the number of
unbounded agents. We show that

e either, at least one of the agents is bounded on the
sequence of fair intervals for A, then the argument
similar to that in the Case 3 a) reduces the problem
to that with less number of unbounded agents; or

¢ all unbounded agents have a common system of fair
intervals and the arguments similar to those in the
Case 3 b) are applied; or

¢ one can choose a long enough sequence on which
the values of all unbounded strategies monotoni-
cally increase and then the argument similar to that
of the Case 3 c) is applied.

Detailed description will appear in the full paper.
O

4 Non-deterministic minority
games.

A history tree H., of non-deterministic (k, !, m)-game
is an infinite labelled tree H., = (V, A,r,C), where the
set of vertices V' is the set of all global states of v, Aisa
set of arcs :

{{z,)|,y € Vand transition from z to y is possible},

7 is an initial global state of 4, C : V — {0,1} is a
colouring of vertices: C(v) = 1if 1’s won at the state v
and C(v) = 0 otherwise.

A history tree H., is finitely branching. The vertices
with branching degree > 1 could appear due to non-deter-
ministic choice of (possibly several) agents. It is easy to
see that a branching degree of H., of any (k,I, m)-game
7 is bounded by 1*.

A vertex v of H, is said to be a branching point iff its
branching degree > 1. Two branching points v; and vs
of H., are said to be neighboring iff all intermediate ver-
tices on the (unique) path from v, to v, are not branching
points (i.e. have a branching degree = 1).

A branching type T(v) of any vertex v is a tuple

(S1,..., 54,

where k is a number of agents and S; C {1,...,l} isa
subset (of indices) of applicable strategies for i-th agent
in the state v, i.e. those strategies with maximal rates.
Notice that if v is not branching point, then all S; in 7(v)
are singleton sets.

The tree H., induces a partial order < on its vertices:
v < g iff there is a path from v; to vy in a tree.

We define a binary relation > on subsats of
L={1,...,1}:

Sp S &
Jre Lz g S'AS=SU{z}AS #0)V

JyeL(S={y}Ans =1)

The relation > can be seen as a kind of reduction, work-
ing on subsets of L : one can reduce the set S to S’ by
removing one element if there is more than one element
in S; and if there is only one element in S one can “jump”
to the entire set S’

We use > in the following key lemma which reveals
the dynamic properties of non-determinism in the the pres-
ence of the minority principle.

Lemma 1 For history tree H., of any non-deterministic
(k,l,m)-game ~ and any two neighbouring branching
points v < v' in H, with branching types

() ={S1,...,Sk)yand T(v') = (S1,...,S})
the following holds:

Vi (Si > S))

Proof.(hint) The main idea is to use the properties of the
counters values, analogous to those () of the determinis-
tic agents.

0

< Ftktm)

A

d, <1t
./
o%/cgko
S —
dy<d,
o !
/ . - Branching point

A

d < I*
w

Figure 4: History tree for a non-deterministic Minority
Game

The next lemma shows another crucial property of history
trees

Lemma 2 In a history tree H., of any (k,l,m)-game ~
the distances between any two neighbouring branching
points are bounded by a finite constant, depending only
onk, l, and m.

108

The figure 4 illustrates the statements of Lemma 1 and
2

The main theorem of this section is as follows

Theorem 2 The history tree H., of any non-deterministic
minority (k,l, m)-game is regular, i.e. there exists only
finitely many non-isomorphic subtrees in H.,

The proof of the theorem is based on Lemmas 1 and 2
and on the property of m-depth dependency of labelling.

5 Conclusion and future directions.

We have shown that the combination of a simple learn-
ing mechanism, which evaluates strategies and applies the
best strategy (deterministically or not), with the strategies
of finite depth produces rather restricted class of regular
behaviours in minority games.

We conjecture, however, that even in the presence of
random choice some kind of regularity # of possible his-
tories holds.

A regularity of the behaviour means that many natu-
ral problems on minority games are decidable. For exam-
ple, periodicity of history for deterministic games implies
existence of a limit of the ratio number of wins/number
of rounds with number of rounds going to +oo for any
agent, and the problem “who is a winner, in the limit, if
any ?” becomes decidable. The questions of decidability
will be considered elsewhere.

We intend to extend our investigation of the behaviour
of variations and generalizations of minority game with:

e virtual evaluation principle;

» more powerful strategies;

¢ more general learning policies; and

o different winning conditions.

As to the more powerful strategies, our initial computa-
tional experiments suggest that modest extension by adding
some counting abilities 3 to the agents probably does not
lead to non-periodic behaviour.

And finally, a look at learning agents within the frame-
work of minority games from the viewpoint of Formal
Learning Theory (Jain et al. (1999)), especially along the
lines of (Montagna and Osherson (1999)), seems very
promising for understanding their learning abilities.

Acknowledgements

We would like to thank Michael Fisher, Grant Malcolm
and anonymous referees for valuable comments that helped
us improve the presentation. A. Lisitsa was supported by
EPSRC grant GR/M46631.

4Perhaps, formulated in terms of probabilistic finite automata.
3For example, checking "what choice was most successfull so far” —
this can not be implemented by bounded depth strategies.

References

W.B. Arthur. Inductive reasoning and bounded rationality.
Economic Assoc Papers and Proc., 84:406—411, 1994.

D. Challet, M. Marsill, and R. Zecchina. Theory of mi-
nority games. 1999. Preprint, http://xxx.lanl.gov/cond-
mat/99014392.

D.Challet and Y.-C. Zhang. Emergence of cooperation
and organization in an evolutionary game. Physica A,
246:407, 1997.

Sanjay Jain, Daniel Osherso, James Royer, and Arun
Sharma. Systems that Learn, Second Edition. M.LT.
Press, Cambridge MA, 1999.

M.L. Minsky. Computation: Finite and Infinite Machines.
Prentice-Hall International, 1967.

Franco Montagna and Daniel Osherson. Learning to co-
ordinate: A recursion theoretic perspective. Synthese,
118(3):363-382, 1999.

110

‘““To do or not to do”’: The Individual’s Model for Emergent Task
Allocation

Kurt Schelfthout; Tom Holvoet
K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium;
Kurt.Schelfthout @cs.kuleuven.ac.be; Tom.Holvoet@cs.kuleuven.ac.be

Abstract

Task allocation is one of the most important aspects in multi-agent systems. Dynamic task allocation makes multi-agent
systems more adaptable and hence robust to change in the environment. Several approaches for dynamic task allocation
have been proposed. Most are based on models of social insect behaviour. In this paper, we propose a new model for
dynamic task allocation. This model integrates and generalizes concepts of existing approaches, and aims to offer more
flexible and adaptable agents. Experiments with a proof of concept application yield promising results.

1 Introduction

Multi-agent systems face above all the challenge of task
allocation. An adequate assignment of tasks to agents is
essential for achieving the overall behavior of the system.
Research in multi-agent design and negotiation recognize
the importance of this fact and as such, they aim to solve
the problem statically. An ideal allocation is either left up
to the programmer or user by defining roles for agents
(Brazier et al., 1997; Zambonelli et al., 2001), or it is
based on ideal or heuristic solutions to an optimization
problem which results in predefined interaction protocols
(Zlotkin and Rosenschein, 1989; Kraus, 2001).

These static approaches lack flexibility and adaptabil-
ity that are essential to cope with dynamic aspects of the
environment. A dramatic change in the environment or in
the constitution of the multi-agent system (in some sys-
tems, agents may disappear or new agents can join) leads
to unpredictable or erroneous results, or leads to extra
complexity in the negotiation protocols.

Dynamic task allocation approaches allow agents to
change the tasks they are performing during execution.
Based upon their perception of the state of the multi-agent
system (global goal vs. global solution so far), their ob-
servation of the environment and other agents, agents may
decide to adopt another task. In these approaches, the task
allocation problem is an individual agent’s problem (to
choose which of the tasks it should perform on the one
hand, and to determine how and when a task switch may
occur on the other hand).

Our research focuses on reactive multi-agent systems
with emergent overall behavior (Bonabeau et al., 1999,
White and Pagurek, 1999; Bonabeau et al., 1998a; Parunak,
1997). Reactive agents typically have a particular set of
tasks (often called “behaviors™) that they can perform.
These tasks are triggered by stimuli from the environ-
ment (either through stigmergy or through direct inter-

111

action with other agents), or from within the agent (in-
ternal stimuli). Stimuli are also the triggers for agents to
adapt their behavior, and as such allow for adaptivity in
the multi-agent system.

In this paper, we present a new model for the emer-
gent task allocation of an agent. Existing models are e.g.
the threshold model and the social inhibition model. The
model we propose allows more adaptability in that it al-
lows a fine-grained selection, although still based on stim-
uli only. It generalizes from previous models, allows the
integration of different existing models and thus allows
more feedback from the environment and better use of
available information. As such, it overcomes the prob-
lems known in existing models for task allocation.

The task allocation model is inspired by the biolog-
ical world of insects, and is the result of a detailed lit-
erature study of social insect behavior (Bonabeau et al.,
1999, 1998b; Dornhaus et al., 1998; Detrain et al., 1999;
Tofts, 1991; Parunak, 1997; Beshers and Fewell, 2001;
Deneubourg and Goss, 1989). We evaluated the model on
a concrete MAS application, a distributed mail retrieval
problem, where agents have to decide when and where
to retrieve mail from customers located in different zones
(Bonabeau et al., 1998b). The new model proved to be
more controllable and adaptable to user needs than the
original threshold model.

The rest of this paper is organized as follows. In sec-
tion 2 we review some existing models. In section 3 we
explain why a new model is needed, and propose one.
Section 4 presents some results we obtained using the new
model. Finally, we draw some conclusions, and indicate
some directions for future work.

2 Emergent task allocation

To achieve emergent task allocation, the basic idea is to
associate a stimulus with each task (Bonabeau et al. (1999,
1998b)). This stimulus is an indication of how important
it is for the agent to execute the task. Agents can add
stimuli of their own, to recruit other agents for the task.
Stimulus level is thus an indication of the urgency of a
task. For example, hunger can be a stimulus to go search-
ing for food (a task). We will use some more examples
from biology, and more specifically, from ants, through-
out the text.

A number of concrete architectures that use these ideas,
have been proposed. Most ideas emerged in the field of
biology, where researchers increasingly try to explain so-
cial behaviors of animals based on simple, local rules in
an individual. We briefly review three important contri-
butions.

A first important model is the threshold model (Bonabeau

et al., 1999, 1998b; Dornhaus et al., 1998). Here every
agent has a number of response thresholds, that indicate
its sensitivity to a number of stimuli, that are in turn con-
nected to a task. The lower an agent’s response threshold,
the more likely it is to respond to a given stimulus. These
response thresholds are fixed, but can be different for in-
dividual agents. It is then possible to define a number of
agents that respond preferentially to one kind of stimulus.
E.g. an ant with a low response threshold for hunger’
becomes a forager, another tends to the brood.

A variant of the threshold model incorporates learn-
ing, and accounts for task specialization. In this model,
whenever an agent executes a task, the response threshold
for that task is decreased. Whenever it is not executing
the task, the threshold is increased. Therefore, agents that
often execute a certain task are more sensitive to the stim-
uli associated with that task. This model is more robust
to perturbations of the system than the fixed threshold
model, because generaily agents respond to tasks faster,
and so stimulus level decreases faster.

A second model is the social inhibition model (Huang

and Robinson, 1999). Here an activator increases the chance

that an agent will execute a certain task (associated with
the activator), while likewise an inhibitor decreases this
chance. As an example, define an internal activator for
foraging that increases with age. Define an inhibitor that
is passed from forager to another ant whenever they inter-
act. Now, when an ant does not interact with any foragers,
it starts to forage at a certain age. However, when it in-
teracts a lot with other foragers, it is inhibited (possibly
because there are enough agents already on the job) and
will do something else for a longer period of time.

A third model is the foraging for work (FFW) model
(Tofts, 1991). This model incorporates a spatial arrange-
ment of tasks. Each task is put along a production line,
where the input for one task is the output from another.
Agents continue to do any task for which there is a need.
When there is no longer a need to execute the task in a

112

given zone, agents seek a new task in nearby zones. This
fairly simple model has been controversial among biolo-
gists, but generates interesting results: some agents ap-
pear to be specialists, continually working in the same
zone, while others appear to be more generalist, filling up
the empty spots in various zones. When mortality is intro-
duced, and agents are “born” at one end of the production
line, it can be shown that they drive the older workers to
more outward zones, so that a form of temporal special-
ization emerges: older agents tend to do tasks in outward
zones, while younger agents stay closer to the “nest”.

We have reviewed these three models because they
each emphasize one particular aspect of MAS that we find
important. Firstly, there is the aspect of what the agents’
internals look like. These affect how the agent decides,
how it incorporates experience etcetera. The threshold
model is a powerful and elegant way to model this. A
second aspect is the social behavior aspect: how agents
interact with other agents. This is modeled partly by the
social inhibition model. Finally, there is the agents’ en-
vironment, emphasized by the FFW model in the spatial
distribution of tasks. More models have been developed,
that together provide a more complete picture. We refer
to Beshers and Fewell (2001) for a complete overview as
well as critiques of these models.

3 A task selection model

All these models were conceived to explain animal be-
havior, and as such attain the goal of simulating a behav-
ior that is close to an aspect of the observed real animal
behavior. However, we argue that most of the ideas in
these models can be generalized and combined to provide
more adaptive forms of task allocation that are useful in
MAS. Furthermore, generalizing some of these ideas al-
lows a better understanding of the actual concepts undes-
lying these models, and allows a better understanding of
the interplay between different parameters. Last, a more
general model that can implement all of the aforemen-
tioned models makes it easier for us to compare and rate
alternatives. We now describe our proposal for a first step
in this direction (see Figure 1).

We choose thresholds as the central concept, because
this is a powerful, simple yet elegant representation of an
agent’s willingness to execute a certain task. We choose
the concept of stimuli as the means to influence the agents’
immediate (short-term) decisions, as well as a means of
communication between agents and their environment. The
concept of activators and inhibitors is used to allow agents
or environment to influence agents’ decisions in the long
term.

Looking at figure 1, stimuli are the means by which
an agent views the world. Of course, it doesn’t see all
stimuli in its environment all the time - this is limited by
its view on the world. It then processes these perceptions
internally using thresholds, activators, etc. The outcome

—

Stimulus Threshold \\ Task
task Task
Stimulus Threshold as
selecw
Stimulus Threshold (/ Task
Internal state
Activators
Inhibitors

Figure 1: A conceptual task selection model. Important concepts are in boxes, arrows indicate influences.

of this internal process is a certain task, which can be seen
as the agent’s actuators, it’s means of changing the world.
The most obvious effect of executing a task should be a
decrease in the appropriate stimulus. We will now discuss
these various concepts in more detail.

Stimuli are the only way for an agent to get signals
from the world. There are three kinds of external stim-
uli: (1) environmental stimuli the agent nor any other
agent has put there (e.g. a food source), (2) direct stimu-
lus by interaction with another agent, (3) stigmergic stim-
uli, communication from other agents through the envi-
ronment (e.g. a scent trail). The difference between these
three is not visible for the agent itself. Internal stimuli are
internal drives that make the agent do a certain task (e.g.
hunger makes it search for a food source).

Thresholds are the central part of the task selection
mechanism. Each threshold has at least one stimulus.
Muttiple stimuli must be combined into one, using some
function of the stimuli values (e.g. maximum, sum,...).
Each threshold also has one task associated with it. A low
threshold indicates that the agent is likely to execute the
task associated with that threshold. A threshold activates
its corresponding task whenever its stimulus, or a combi-
nation of stimuli, has exceeded the threshold’s value.

The task selector chooses one of the activated tasks
(each task has a threshold associated with it), and executes
it. Tt chooses based on the relative values of the stimuli
that lead to activation of a task, and based on the internal
state of the agent.

Internal state is necessary to check which tasks are
useful to execute in the current situation. For example, it
is possible that the execution of a certain task has left the
agent in a state so that it cannot execute some other task
(e.g. if it is already holding some food, it cannot pick up
any more).

Activators and inhibitors modify the threshold values.
The idea is to generalize and combine the varying thresh-
old model and the social inhibition model. An activa-

113

tor/inhibitor can be triggered in two ways: by stimuli, and
by the execution of a certain task. For example, special-
ization can be achieved by lowering the response thresh-
old (using an activator) for the task that is currently being
executed.

As can be seen from the model, there are two pos-
sible feedback mechanisms: one to influence the thresh-
olds (through the activators and inhibitors), and another
through the execution of the tasks themselves. This com-
bination allows a faster response to stimuli, as well as
better control, and more mechanisms to influence other
agent’s behavior. The MAS thus proves to be more adap-
tive, both to short term and long term changes.

4 Experiments and Results

This model was implemented as a Java framework. The
generic framework can be instantiated to a task selection
component in an agent. As a proof of concept, we ex-
perimented with agents in a simple environment, that of
distributed mail retrieval (Bonabeau et al., 1998b). In this
problem, agents are allocated to pick up mail in differ-
ent zones of a city, while overall demand for mail pickup
should be kept as low as possible (see figure 2).
Translating this problem to our model, stimuli for agents
are the demands from the various zones. The agents’ tasks
are: go to a particular zone, and pick up the mail in that
zone. Doing so reduces the demand in the zone to zero.
Our test bed consist of a grid of 5x5 zones, with five mail
agents randomly located on the grid. Every step, the de-
mand in five randomly chosen zones is increased. Every
agent can then decide what its next move will be. The
order in which the agents decide on every step is random.
During experiments, we studied two aspects of the
problem. First, the average demand over all steps. Ob-
viously, this should be as low as possible. Second, we
looked at how the agents divide work: which zones does

78

disttancqg (i, j)

A
il <TOP
\

Figure 2: A grid of 5x5 zones. Agents cannot move diag-
onally. Distance is Manhattan distance.

Parameter description Value
a demand coefficient 500
0 initial threshold 500
Omin minimal threshold 1000
Omaz maximal threshold 0
€0 learning coefficient -150
€1 learning coeff neighbors | -70
1) forgetting coefficient 50

Table 1: Parameters for the experiment

each individual agent visit, and how many conflicts occur
- a conflict occurs when one agent is decreasing demand
or traveling to a zone another agent is also traveling to
or decreasing demand in. Over a certain number of ex-
periments, the percentage of conflicts was calculated as
follows. For each run, all the agent’s moves were logged.
On each step, we count one conflict if two agents move to

the same destination. The percentage of conflicts is then
calculated as ——contlicts

Nagents-Msteps)

4.1 Experiments with a Self-Reinforcement
Model

As reference experiments, we ran some tests with a “stan-
dard” reinforcing threshold model (Bonabeau et al., 1998b).
That is, each agent has 25 tasks (one for each zone). The
stimulus s(i, §) it receives from a certain zone (i,7) is
calculated as follows:

s(i,) = a * demand(, §)
"7} = demand(i, 7) + distance(i, 7)

where demand(i,) is the demand in the zone with coor-
dinates (3, j), and distance(i,) is the distance from the
agent’s current position to that zone. Whenever an agent
picks up mail in a zone, an activator decreases the thresh-
old for that zone with value ¢, and its neighboring zones
with value €;. Agents will thus become specialists for a
certain area of the map. Thresholds for zones not tended
to increase slowly with value ¢ (agents will “forget” they
have been there). For a description of these and other pa-
rameters, see table 1.

114

We did various experiments in this setting, and checked
both conflicts and average demand in runs of 1000 experi-
ments, consisting of 10000 steps each. For the parameters
detailed above, we found a mean demand of 1986 with a
95% confidence interval [1924, 2048]. For the percentage
of conflicts we found a mean of 0.0606, with a 95% con-
fidence interval [0.059611,0.061658]. This means that
about 6% of the time agents are going to a zone that is
already looked after. We would obviously like to reduce
these numbers significantly.

4.2 The Influence of the Agents’ Stubborn-
ness

In the above experiments, agents could not change their
mind about going to a particular zone while actually trav-
eling to it. So basically, when there is a demand in one
zone only, most agents will decide to move to it. When
the first agent reaches the zone and resets the demand to
zero, all others still traveling will not even observe the
fact that there is no longer a demand in that zone. They
will only reassess the situation when their task is done. To
attempt to alleviate this problem, we introduced a param-
eter p - the probability at each step that an agent changes
his mind, and reassesses the situation. So, the lower p, the
more stubborn the agent becomes. For p = 0, the agents
would be the same as in section 4.1.

We ran tests with p = 0.25. So on average every four
steps an agent will look at the world and reassess the sit-
uation. We hoped this would allow the agents to respond
to fluctuating demand faster. However, resuits prove the
contrary: for p = 0.25 we found a mean demand of 1914,
95% confidence interval {1847.09, 1981.89], which is not
a significant difference. Tests with p = 1, meaning that an
agent can reassess where to go on every step, also had no
significant influence on the average demand. Both these
results were found over 1000 runs consisting of 10000
steps each.

This observation can be explained as follows. Al-
though the less stubborn agents observe the world more
often, and base their decision on more recent information,
this also means that they make more detours to reach a tar-
get zone. This is because they can change their minds un-
derway to a certain zone, and thus sometimes have to go
back. This offsets their ability to react to changes faster:
they become somewhat indecisive.

4.3 Marking Territory

In a further attempt to improve performance, we added
extra stimuli for the agents to respond to. Every time an
agent decides to move to a certain zone, it will drop a
stimulus indicating that it is going to that zone. These
stimuli have a certain strength that decreases with time.
When an agent encounters such a stimulus in a zone where
it happens to pass, the threshold for the task that stimu-
lus was dropped for will increase. In other words, when

an agent encounters a trail to a certain zone, it will be
less likely to go to that zone in the future. The idea is
that agents will mark their territory, and by doing so drive
other agents away from it. This will result in less con-
flicts, and consequently less average demand.

Again, we ran 1000 experiments of 10000 steps each.
We found a mean conflict percentage of 0.0411, where
the real mean is in [0.0405, 0.0417] with 95% confidence.
Comparing this to the results from section 4.1, it is obvi-
ous that this is a statistically significant decrease. More
information is transferred between the agents, and an ex-
tra negative feedback loop is entered into the system, what
leads to better decisions. The performance of the system
as a whole also increased: mean demand is 1589, with a
95% confidence interval [1548,1629)].

5 Conclusion and Future Work

The contributions of this paper are as follows. First, we
defined task allocation problems as a task selection prob-
lem for each individual agent. We advocated that using
a form of emergent task allocation is more adaptive than
other forms. We then identified a few classes of possible
concrete solutions to emergent task allocation, and sug-
gested an architecture for an agent that combines and gen-
eralizes from these models. Finally, we presented some
promising results with a proof of concept application.
We believe that this research will contribute to a thor-
ough understanding of forms of emergent task allocation,
which is still lacking in current state of the art. This will
bring the application of emergent task allocation a step
closer. Obviously, more tests are needed on more chal-
lenging problems, to evaluate and push to the limits of the
model’s possibilities. Furthermore, a more formal anal-
ysis of its properties needs to be done, to increase our
understanding of the interplay of various parameters.

References

Samuel N. Beshers and Jennifer H. Fewell. Models of
division of labor in social insects. Annual Review En-
tomology, 46:413-440, 2001.

E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz,
and G. Theraulaz. Routing in telecommunications
networks with “smart” ant-like agents. In Intelli-

gent Agents for Telecommunications Applications *98
(IATA’98), 1998a.

E. Bonabeau, A. Sobkowski, G. Theraulaz, and
J. Deneubourg. Adaptive task allocation inspired by
a model of division of labour in social insects, 1998b.

Eric Bonabeau, Marco Dorigo, and Guy Theraulaz.
Swarm Intelligence: From Natural to Artificial Sys-
tems. SFI Studies in the Sciences of Complexity. Ox-
ford University Press, 1999.

115

E M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings,
and J. Treur. DESIRE: Modelling multi-agent systems
in a compositional formal framework. Int Journal of
Cooperative Information Systems, 6(1):67-94, 1997,

J.-L. Deneubourg and S. Goss. Collective patterns and
decision-making. Ecology, Ethology and Evolution, 1:
295-311, 1989,

C. Detrain, J.L. Deneubourg, and J.M.Pasteels, editors.

Information Processing in Social Insects. Birkhauser,
1999.

A. Dornhaus, F Kliigl, F Puppe, and J. Tautz. Task se-
lection in honey bees - experiments using multi-agent
simulation. In Proc of GWAL’98. Verlag Harry Deutsch
AG, 1998.

J. Ferber and A. Drougoul. Using reactive multi-
agent systems in simuation and problem-solving. In
L. Gasser and N. Avouris, editors, Distributed Artificial
Intelligence: Theory and Practice. Kluwer Academic
Publishers, 1992.

Zhi-Yong Huang and Gene E. Robinson. Social control
of division of labor in honey bee colonies. In Detrain
et al. (1999), pages 165-182.

Sarit Kraus. Automated negotiation and decision mak-
ing in multiagent environments. In Multi-agent systems
and applications, pages 150-172, 2001.

H. Van Dyke Parunak. “Go to the Ant”: Engineering prin-
ciples from natural multi-agent systems. Annals of Op-
erations Research, 75:69-101, 1997. Special Issue on
Artificial Intelligence and Managment Science.

Chiris Tofts. Task allocation in monomorphic ant species.
Technical Report ECS-LFCS-91-144, Department of
Computer Science, University of Edinburgh, 1991.

T. White and B. Pagurek. Emergent behaviour and mo-
bile agents. In Proceedings of the workshop on Mobile
Agents in the Context of Competition and Cooperation
at Autonomous Agents '99, 1999,

F. Zambonelli, N. R. Jennings, and M. Wooldridge.
Organizational abstractions for the analysis and de-
sign of multi-agent systems. In P. Ciancarini and
M. Wooldridge, editors, Agent-Oriented Software En-
gineering, volume 1957 of Lecture Notes in Al
Springer-Verlag, January 2001.

Gilad Zlotkin and Jeffrey S. Rosenschein. Negotiation
and task sharing among autonomous agents in cooper-
ative domains. In N. S. Sridharan, editor, Proceedings
of the Eleventh International Joint Conference on Ar-
tificial Intelligence, pages 912-917, San Mateo, CA,
1989. Morgan Kaufmann.

Generative Migration of Agents

FM.T. Brazier; B.J. Overeinder; M. van Steen; N.J.E. Wijngaards

Department of Computer Science, Faculty of Sciences, Vrije Universiteit Amsterdam;
de Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
{frances,bjo,steen,niek } @cs.vu.nl

Abstract

Agents, and in particular mobile agents, offer a means for application developers to build distributed applications. In
current agent systems, mobility of agents is constrained by the environment of the agents: the agent platform (which
supports agents) and the agent’s code base (e.g., DESIRE, Java). Generative migration is needed to adapt an agent to
conform to its destination agent platform and code base. In this paper generative migration is described as a process of
“transparently adapting” an agent. An agent can continue to function at its new location on a completely different agent

platform.

1 Introduction

Agents, and in particular mobile agents, offer a means
for application developers to build distributed applica-
tions. In current agent systems, mobility of agents is con-
strained by the environment of the agents: the agent plat-
form (which supports agents) and the agent’s code base
(e.g., DESIRE, Java). Within the same agent platform and
code base, agent migration has been shown to be possible.
However, many agent platforms exist, differing substan-
tially in the support for agents. Write once - run every-
where is not yet true for agents...

This heterogeneity of agent platforms, combined with
heterogeneity in code-bases of agents, leads to an inter-
esting question concerning agent mobility: can an agent
migrate across heterogeneous platforms? The answer is
relatively simple, as an agent needs to be adapted to fit its
destination agent platform and code-base.

In this paper generative migration (see Brazier et al.
(2002)) is described as a process of “transparently adapt-
ing” an agent. Section 2 presents an overview of the prin-
ciples behind agent factories: the entities responsible for
processing blueprints. Section 3 describes the use of the
agent factory for generative migration. Section 4 investi-
gates implications of generative migration for agents and
agent factories. Section 5 discusses transparent adaption
by generative migration.

2 Agent Factory

An agent factory is a facility that creates, and modifies,
software agents, see Brazier and Wijngaards (2001). It
can be used to adapt agents so that they can use specific
programming languages and run on different agent plat-
forms. The design of an agent within an agent factory is

116

based a blueprint. The blueprint of an agent contains a
configuration of conceptual building blocks which speci-
fies the agent’s functionality and behaviour. The blueprint
also contains one or more configurations of detaited build-
ing blocks, which specify an operationalisation of the
conceptual functionality and behaviour.

A mapping is defined between building blocks at con-
ceptual level and building blocks at detailed level. (Note
that this mapping may be structure preserving, but that
this is not necessarily ideal.) A detailed description of a
building block includes the operational code. For each
conceptual description, a number of detailed descriptions
may be devised and vice versa. These detailed descrip-
tions may differ in the operational language (e.g., C++,
Java), but also in, for example, the efficiency of the op-
erational code. The conceptual descriptions may differ in
the modelling paradigm (e.g., UML, DESIRE), but also in,
e.g., the detail in which an agent’s functionality is mod-
elled.

Building blocks themselves are configurable, but can-
not be combined indiscriminately. The open slot concept
is used to regulate the ways in which components are
combined. An open slot in a component has associated
properties at both levels of abstraction that prescribe the
properties of the building block to be “inserted”.

A prototype of the agent factory automatically (re-
)designs an information retrieval agent: its blueprint and
executable code. The blueprint of an existing simple in-
formation retrieval agent is briefly described by Brazier
et al. (2002). This prototype agent factory itself is writ-
ten in Java, and contains enough knowledge to (re-)design
simple information retrieval agents.

3 Generative Migration

One of the strengths of the agent factory concept is that
it provides a means to support migration of agents in
heterogeneous environments. Section 3.1 discusses pre-
conditions for successful migration of agents. Section 3.2
describes the approach in agent-factory-enhanced migra-
tion. Section 3.3 describes migration scenarios.

3.1 Migration pre-conditions

A mobile agent is simple an agent having the ability to
move between different machines, e.g. see Tanenbaum
and van Steen (2002). Agent migration entails transfer
of both the agent’s executable code and state. The con-
cept of generative migration is geared to weak mobility:
parts of the state of the agent are migrated to another host.
Strong mobility, i.e. migrating running processes (includ-
ing their memory usage, stack, heap, etc.), is not possible
with generative migration, as in most cases agent executa-
bles change.

Generative migration requires (1) agent factories,
(2) implementation independent representations of agent
functionality, and (3) implementation independent for-
mats of agent’s state (¢.g., XML, RDF or OIL may be used,
see Horrocks et al. (2001)).

Assuming that both the source and the destination
host both have access to an agent factory (for simplic-
ity’s sake), these agent factories need to have building
blocks with comparable functionality. One solution is
that the agent factories share the same libraries of con-
ceptual building blocks, but each have different libraries
of detailed building blocks. Another solution is to have
conceptual building blocks in ZEUS (see Nwana et al.
(1999)) and DESIRE (see Brazier et al. (1997)) with com-
parable functionality.

3.2 Migration using the agent factory

Migration using an agent factory diverges from standard
mobility of agents in that it is not executable code with
state that is migrated, but instead the agent’s blueprint
together with (parts of) the agent’s state. Consider the
following scenario for heterogeneous mobility (also de-
scribed by Brazier et al. (2002)), depicted in figure 1.

An information retrieval agent A currenily resides on
host machine H1. This host runs the Ajanta agent plat-
form, developed by Tripathi et al. (1999), and supports
Java agents. The agent wants to move to another host:
host H2. Host H2 runs the DESIRE platform, and its
agents run code generated by the DESIRE execution en-
vironment, see Brazier et al. (1997).

In the process of migrating the agent A from host H1
to host H2, the agent first needs to store information on its
(mental) state. Then the agent factory on host H1 sends
the blueprint of the agent, together with the state informa-
tion of the agent to the agent factory at host H2.

117

Java

[]

network_

Figure 1: Example migration scenario in which agent A
on Host 1 (written in Java, running on Ajanta) migrates to
Host 2 (where it will be specified in DESIRE and running
on DESIRE).

Host H2’s local agent factory receives the blueprint of
the agent and state information. This agent factory con-
structs a DESIRE agent A on the basis of the blueprint of
agent A. This DESIRE agent A (i.e., a functionally equiv-
alent incarnation of the Java agent A) runs on DESIRE’s
virtual machine (the DESIRE-interpreter), and is able to
incorporate information on its state.

3.3 Migration scenarios

Migration including re-generation of agents is a more
complex process, requiring more resources, than migra-
tion without agent re-generation. Four migration scenar-
ios are distinguished in Brazier et al. (2002):

e Homogeneneous migration. An agent migrates to
another host without any changes in either the vir-
tual machine or the agent platform. This situation
is most common in practice, and does not warrant
generative migration.

o Cross-platform migration. An agent migrates to an-
other host with the same virtual machine, but a dif-
ferent agent platform. Generative migration may be
used to adapt the agent to the target agent platform,
e.g. by using wrapper interfaces. If both agent
platforms have the same standard interface (e.g.,
advocated by OMG, see OMG (2000), and FIPA,
see FIPA (2001)), the agent need not be adapted.

e Agent-regeneration migration. An agent migrates
to a host with a different virtual machine, but
the same agent platform. Generative migration
is needed to regenerate the agent’s executable code
for the target virtual machine and the agent plat-
form.

e Heterogeneous migration. An agent migrates to a
host with a different virtual machine and a differ-
ent agent platform (see the scenario described in
Figure 1. In this situation, generative migration is
needed to regenerate an agent for the target virtual
machine and the target agent platform.

The authors are unaware of agent platforms support-
ing agent-regeneration migration and/or heterogeneous
migration.

4 (Re)Generation versus Adaptation

Generative migration has implications for both agents and
agent factories. Not only do agents need to understand the
concept of localiry, but also the concept of incarnation.
Section 4.1 discusses implications for the role of agent
factories. Section 4.2 briefly describes aspects of agent
incarnations.

4.1 Role of Agent Factories

Agent factories are responsible for (re)generating an
agent, while adhering to preferences of the agent and
the (destination) agent platform. An incarnation of an
agent needs to be designed which may be executed by
a virtual machine at the target host, and which can in-
terface with the agent platform at the target host. The
agent (re)generative process is responsible for minizing
the quantity and quality of the changes to the agent. The
process of regenerating an agent mainly depends on avail-
able libraries of building blocks.

The agent regeneration process is facilitated by the
two levels of abstractions distinguished within the agent
factory: conceptual and detailed. In general, agent facto-
ries need to have building blocks with comparable func-
tionality. In the general situation, a configuration of con-
ceptual building blocks needs to be constructed. Agent
factories sharing common libraries of conceptual building
blocks (with equal functionality) is a specific case, pro-
viding common ground to the agent factories involved. In
this case, the configuration of conceptual building blocks
need not be changed. If an applicable configuration of
detailed building blocks is present for the target host, the
agent factory only needs to assemble this configuration
into operational code. In this case the adaptation is trans-
parent to the agent: the agent need not be aware of the
fact that it has another incarnation than before.

When no suitable configuration of detailed building
blocks is available, a configuration of detailed building
blocks may need to be (re-)designed. The agent factory
needs strategic knowledge to decide on a configuration
of detailed building blocks which minimizes the loss of
functionality and services for the agent. In addition, the
agent factory may provide an agent with functionality to
cope with the loss of specific functionality.

An agent may be fitted with functionality for intro-
spection, awareness of its abilities, and understanding
functionality and services needed to achieve (its) goals.
Such an agent can adapt its behaviour, and pursual of
goals, with respect to its current incarnation.

4.2 Agent incarnations

The incarnation of an agent is entails activation of both
the “code and data” of the agent in another environment
(the virtual machine possibly with another interface to an
agent platform.). Figure 2 depicts the concepts related to

118

Virtual Machine

Agent
code + data

Interface

Agent Platform

Host

Network

Figure 2: An agent’s incarnation involves not only its
code and data, but also its immediate physical environ-
ment.

the incarnation of an agent. An agent’s code and data is
executed in the context of a virtual machine; examples
are the Java Virtual Machine and Prolog interpreters. The
agent has access to an interface to its agent platform via its
virtual machine. Through this interface the agent can ac-
cess services provided by the agent piatform, e.g. (group)
communication, generative migration, etc.

The agent needs to conform to both its target virtual
machine and its target agent platform interfaces. For rea-
sons of privacy and security, it is assumed that the state of
an agent does not need to be adapted: an agent can easily
employ a programming language independent representa-
tion format for its state (e.g., on the basis of XML, RDF or
OIL, see Horrocks et al. (2001)). The (re)generation pro-
cess has the goal to generate an operationalisation of the
(conceptual) functionality of the agent.

In the ideal adaptation process, the agent does not
“notice” any changes to its incarnation. It still has ac-
cess to all of its functionality, can resume execution from
its state, and can access services provided by its current
agent platform. When agent platforms, and virtual ma-
chines, differ extensively, it is up to the agent factory to
mask these differences.

In less ideal situations, an agent may be aware of
classes of services and functionality which may be un-
available during/for specific incarnations. The agent
needs to adapt to this situation, e.g. by employing strate-
gies for circumventing missing functionality and services
(e.g., enlisting support by other agents).

An agent may specify preferences concerning its in-
camation. With these preferences, an agent can specify,
e.g., which functionality and/or services are of more im-
portance to its (correct) functioning than other function-
ality and/or services. An agent may, in addition, specify
that specific functionality and/or access to specific ser-
vices may be (temporarily) unnecessary at a specific host.

The preferences specified by an agent may also state
how the agent is to be informed of success or failure of
generative migration. Does the agent expect a message

in a specific format? Does the agent expect information
concerning its current (dis)abilities as a facts-base?

Security and trust are of importance in generative mi-
gration. The agent trusts an agent factory to generate the
“right” incarnation. An agent cannot be easily protected
against a malicious agent factory, which e.g. may in-
troduce code to spy on the agent. The administrator of
an agent platform trusts its agent factory and libraries to
generate agents which cannot damage other agents, the
agent platform or the hosts running the agent platform and
agents.

5 Discussion

Mobile agents are currently restrained in their mobility
by their environment. Current agent platforms expect a
homogeneous environment, i.e. hosts running the same
agent platform and the same virtual machine. This pa-
per proposes an approach which transcends homogeneity
of agent platforms and virtual machines: generative mo-
bility. In generative mobility, a blueprint of an agent’s
functionality is transported, together with information on
the agent’s state. At its destination, an agent factory re-
generates the executable code of the agent on the basis of
its blueprint: a new incarnation of the agent. Upon activa-
tion, the agent may restore its state and resume execution.

Ideally, an agent factory is able to (re)generate an
agent such that it retains all of its functionality and access
to services: transparent adaption. However, this may not
be possible in situations requiring heterogeneous migra-
tion. An agent needs to be aware of characteristics of its
current incarnation, including limitations in functionality
provided by its current incarnation and services offered
by the current agent platform.

Generative migration is one of the services researched
within the AgentScape project on worldwide scalable dis-
tributed agent operating systems. Currently a prototype of
the agent factory (namely the libraries of components) is
being built that supports generative mobility.

Acknowledgements

This research is supported by NLnet Foundation, http://
www.nlnet.nl. The authors wish to acknowledge the con-
tributions made by Hidde Boonstra, David Mobach, Os-
car Scholten and Sander van Splunter.

References

F. M. T. Brazier, B. D. Dunin-Keplicz, N. R. Jennings,
and J. Treur. Desire: Modelling multi-agent systems
in a compositional formal framework. International

Journal of Cooperative Information Systems, 6:67-94,
1997.

118

F. M. T. Brazier, B. J. Overeinder, M. van Steen, and
N. J. E. Wijngaards. Agent factory: Generative migra-
tion of mobile agents in heterogeneous environments.
In Proceedings of the AIMS Workshop at SAC 2002,
2002. to appear.

F. M. T. Brazier and N. J. E. Wijngaards. Automated ser-
vicing of agents. AISB journal, 1(1):5-20, 2001.

FIPA. FIPA agent platform, 2001. http://www.fipa.org.

I. Horrocks, F. van Harmelen, P. Patel-Schneider,
T. Berners-Lee, D. Brickley, D. Connoly, M. Dean,
S. Decker, D. Fensel, P. Hayes, J. Heflin, J. Hendler,
O. Lassila, D. McGuinness, and L.A. Stein.
DAMLAOIL. http://www.daml.org/2001/03/daml+oil-
index.html, March 2001.

H. Nwana, D. Ndumu, L. Lyndon, and J. Collis. ZEUS:
A toolkit and approach for building distributed multi-
agent systems. In Proceedings of the Third Interna-
tional Conference on Autonomous Agents (Autonomous
Agents’99), pages 360-361, 1999.

OMG. Mobile agent facility specification. OMG Doc-
ument formal/00-01-02, Object Management Group,
Framingham, MA, January 2000.

A. S. Tanenbaum and M. van Steen. Distributed Systems:
Principles and Paradigms. Prentice Hall, Upper Saddle
River, New Jersey 07458, 2002.

A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh.
Mobile agent programming in Ajanta. In Proceed-
ings of the 19th International Conference on Dis-
tributed Computing Systems (ICDCS’99), pages 190-
197, Austin, TX, May 1999.

Architectural Principles for Social Influence among Benevolent
Agents

Henry Hexmoor
Computer Science & Computer Engineering Department
University of Arkansas, Fayetteville, AR 72701
hexmoor @ uark.edu

Abstract

Benevolent agents with a high level of autonomy can be designed to be aware of their social influences in order to make
sure the overall missions are successful. Additionally, the system of social influences can be engineered to meet the de-
signer’s objectives of predictable agent behavior. In this paper we outline a few agent architecture principles for such agents.

1 Introduction

Often the objective in designing multiagent systems of
benevolent agents' is a system where interaction among
agents is most congruent and beneficial to the overall
mission. This leaves us with a choice in design between
(a) detailed protocols and policies for interaction that
leaves agents with little autonomy, and (b) agents with
high autonomy that are driven by their social relations to
determine their own rates and types of interaction relative
to their shared mission. We choose the latter, which re-
quires agents to continually monitor and to adjust their
relationships for the overall mission success. An impor-
tant paradigm in agent-based systems is to consider in-
tentional notions of Belief, Desire, and Intention (BDI
agents) (Wooldridge 2000). BDI agents possess update
and revision functions for each intentional component.
Beliefs are adapted to the agent’s current state of mind
and changes in the environment. Desires or specific goals
are adapted to the agent’s beliefs and attuned with the
changing environment. Intentions over specific actions
are adapted to agent’s beliefs and desires. These adapta-
tions create adaptivity for the agent at a behavior level
called action selection. Coordination with other agents
provides yet another form of adaptivity. Consider a sce-
nario where two agents Al and A2 are building a struc-
ture of blocks as shown in Figure 1. Both Al and A2
have access to piles of blocks and know about the struc-
tural stability of blocks. An agent can only move one
block at a time. In order to preserve stability, both agents
must simultaneously place blocks 3 and 4. We can spec-
ify this problem with temporal constructs of parallel
actions and ordering of agent actions or by allowing one
agent to dynamically use its social relationship to take a
lead role and cue the other. Specifically when it comes to

! Agents who are not benevolent have a more complex relation-
ship to social influence and responsibility and this is beyond
our current scope. Benevolent agents are characterized by
their propensity to offer help.

120

block positions 3 and 4, whoever is the lead agent will set
the rate of placement and the follower agent will monitor
the lead agent for coordination. Al and A2 opportunisti-
cally become lead depending on which one gets the block
first and they are both equally willing and likely to play
lead or follower.

131
[2
11

Figure 1 Blocks world

|
[4 [
-

In this paper, we describe architectural principles that
account for these dynamic adjustments due to social
influences in the context of collaborative work. We dis-
cuss intuitively plausible types of responsibility and how
agents can maintain it. In the remainder of this paper we
will discuss social influences, agent relationships, and
how agents can maintain the notion of the mission suc-
cess. The paper ends with concluding remarks.

2 Social Influence and Relationships

As shown in Figure 2, social actions promote social in-
fluences. Since social factors are inter-related, initial
social influences due to social actions might produce
secondary and indirect influences. Actions of agents are
guided by social values and norms, which affect the rela-
tionships among social influences. Therefore, social ac-
tions of one agent will influence the other agent in the
context of prevailing norms and values as well as by the
strength of the social action.

Whereas physical actions predominantly produce physi-
cal change, and speech actions predominantly produce
epistemic change, social actions predominantly produce
influence. Social action might be an action by one agent
toward another, a mutual action of multiple agents, a

bilateral action by multiple agents, or a group action. For
brevity and illustration we limit our attention to the ac-
tions that commonly cause influences over the following
notions: Help, Permission, Delegation, Service, and Re-
sources. Actions about Help are performed to aid others
in their task and specific actions might be to provide, to
withhold, to request, or to reject help. Common actions
over Permission are to request, to grant, to deny, and to
withdraw. Actions over delegation might be to issue, to
accept, or to reject. Service is an act but unlike help that
is pro-active, it is passive. Common actions over service
are to request, to give, or to deny. Common action over
resources might be to request, to offer, to reject, to take
away, or to prevent.

ocial Actions Social Influences via
Resources _r.,\ Interger(s:cimal(;li“actlcs
Delegation | |/ gcgrrco't ty
Permissions Politenl—zﬁs
Help
Service I g I

¢ Propensities for action

g

Obligations

4 R

Dependence ———Jp» Autonomy

Power <@————p» Control

Social Influences involving Attitudes

Figure 2 Social actions and influences; values and norms
are not shown in the figure

The kind of influence we have in mind is close to norma-
tive (utilitarian) influence in social psychology in that
agents reason about gains and losses from interpersonal
interactions (Kassin 2001, Brehm, et al, 2002). Influences
might involve overt interpersonal tactics such as reci-
procity, scarcity, and politeness. Overt influences are
immediate and deliberate as in interactions described in
FaintPop (Ohguro, et al 2001). Reciprocity is when one
agent returns an act by another or in effect pays for an
act. An agent might reason about the reciprocity norm
and perform a social act (e.g., help) based on an expected
propensity in repayment. Scarcity is the norm that short
supply produces a demand. An agent might use that norm
and deny or hide services or resources. This is commonly
used in theories of persuasion (Larson, 1998). Politeness
as an interpersonal tactic is to get another agent to yield
to another agent.

121

Influences might also be indirect and of indefinite dura-
tion. One type of indirect influence is via changes of
attitudes. This is shown as the box in the lower part of
Figure 2. These are perceived changes in social relation-
ships that affect an agent’s ties. The Figure shows our
focus on Autonomy, Dependence, Obligations, Control,
and Power and salient relationships we see among them.
Later in this section we will discuss interdependencies
among attitudes. Let’s refer to the set of influences as 1.
Let’s refer to the set of social actions as A. We define
function f that maps the agent’s current beliefs B, a set of
currently active values V, a set N of currently active
norms, and a set of social actions A to a set of influences
I

fBxVxNxA>L

An example is delegation of homework by a teacher to a
student. Following shared norms governing relationships
among teachers and students, assigning homework pro-
duce the influence for the student to adopt the obligation
to carry out the homework.

Agents use influences that result from social actions they
experience in their action selection. In addition to social
influences, action selection accounts for means end
analysis and rationality principles that are governed by
the agent’s endogenous sources. How action selection is
affected by social influences is a complex issue that is
beyond our current scope and is denoted as function g in
Figure 2. Agents can project such a propensity for action
in deciding to perform a social action. The reasoning
might also include a chain effect where one agent pro-
duces an influence in another, which in turn produce an
effect in another and so on. An agent can intend such a
proliferation of influences and intentionally start such a
chain reaction. This in fact is commonplace in a team
setting.

We appeal to the reader’s commonsensical beliefs,
norms, and values to highlight a few relations between
social actions and resulting social influences.?

1. When there is social action of request for help, the
requesting agent is willing to lower its autonomy
over a goal it cannot accomplish alone and would
like to share or delegate the goal to someone else. An
agent who finds itself in a position to respond to help
is reciprocally willing to share or be delegated the
goal that the requester cannot accomplish.

2. When someone has desirable resources that is some-
what scarce and announces availability of resource as
a social action, there is a potential for dependence if

2 With more time and space we will state these more formally
and concisely. We are seeking conditions under which these
relationships hold and our enumeration here is only to point
out the salient relationships. Also, not all relationships in the
Figure 2 are explained.

other agents wish to access the resource. If some ar-
rangement is made for provision of resources in ex-
change for something, the agents who want the re-
source and are willing to exchange, in addition to
dependence, may experience a lowered autonomy
over their goals that requires the resource.

3. An agent, who has a service that is commonly de-
sired and is in short supply, has a high autonomy
with respect to how it will make its services avail-
able. Reciprocally, an agent who need s scarce serv-
ice will experience a low level of autonomy and high
level of dependence toward agent who can provide
that service.

4, An agent who delegates a task to another agent and
when both agents are consenting to this delegation,
the delegating agent will experience a dependence
about the task and the delegee will experience an
obligation to carry out the task toward the delegator.

5. When an agent increases or decreases permissions it
gives to another agent, it is proportionately increas-
ing or decreasing autonomy in other agents.

Next we highlight a few interdependencies among social
influences that involve attitudes. Once an initial social
action produces an influence on an attitude, indirect in-
fluences are propagated via relationships among attitudes.
We feel engineering agents with specific connection
among social attitudes is a powerful method for tuning
agents indirectly.

1. When an agent has power over another agent it has
indirect control over the agent. Similarly, when an
agent has control over another agent, it has indirect
power over the agent.

2. Autonomy and control are complimentary. L.e., Con-
trol and autonomy add up to a total amount and one
lacks in some it has excess in another.

3. Obligations induce dependence.

4. Dependence diminishes autonomy.

5. Dependence induces power.

Next, we suggest that quantities of influence are in part
based on utilities of norms and values. Additionally,
magnitudes of social influences experienced depend on
utilities derived from intensity of the social action. M(I)
will denote magnitude of an influence I. In general, there
might be differences between intended influence by the
agent performing the social action and the receiving agent
but for simplicity we assume these are the same amounts.

3 Behavior Guarantees

The values and norms can be designed to encode the
mission of the collaborative effort in the agents as we
stated in the introduction of this paper. For instance, in
our blocks world example, a value can be stated as ‘“pre-
serve structural stability”. Agents Al and A2 might en-

122

gage in a dialogue when they are seeking the next block
to put on, when one finds a block and tells the other “I
found one”, the second agent who does not see a suitable
block might say “‘go ahead”. The permission by the sec-
ond agent bolsters the agent’s autonomy in attempting to
place the block. When they have to place blocks simulta-
neously, once both agents have found suitable blocks for
placement, one of them might take lead and say “let’s
go”. Taking lead is a function of experiencing a relatively
higher autonomy. Elsewhere, we have discussed relative
autonomy (Brainov and Hexmoor 2001, Hexmoor 2002a,
2002b, and 2001). In this example, this relative autonomy
might be due to relative skills in block placement or a
norm such as “whoever finds a block and waits for the
second agent takes lead.” At any rate, taking lead implies
control. As we explained earlier, the follower observes
the actions of the lead and matches its actions for coordi-
nated effort. If the follower can’t keep up, it might say
“wait” indicating a request for help and setting up an
indirect adjustment in autonomy and control.

So far we have discussed how social relationships are
interdependent and can be used to coordinate and pro-
duce a coherent set of actions. Social actions of one agent
might affect another who might repeat by a social action
that produces an influence on another and so on. There
might also be shared or joint social influences. For exam-
ple if the structure of blocks become unstable, both
agents might independently experience an obligation to
protect the structure. But when they become aware of one
another’s obligation, they arrive at a joint responsibility
to protect the structure. This joint influence will produce
a joint autonomy, which might lead to a joint action such
as steadying the table under the structure. This is the
basis of group influence and group action.?

We said that social influences rely on prevailing norms
and values. An agent might have several levels of such
values and norms at any one time. Obligations to uphold
the ultimate group intent are derived from corresponding
values and norms at the global level. These obligations
may compete against an agent’s social influences at lower
levels. Let’s differentiate values and norms for an agent
into n levels with level 1 being the highest (i.e., ultimate)
and levels n being the lowest. Values and norms will be
labeled with their level as values V; and norms N;. Let’s
redefine function f with f that maps an agent’s set of
beliefs B, a set of values V;, a set of norms N;, and a set
of social actions A to a set of influences I':

f: Bxv,xN x A It
As designers of agent systems we can design mechanisms

for encoding the desired ontological level to match the
agent’s responsibility level. This design-time responsibil-

3 See http://csce.uark.edw/~hexmoor/AAAL-02/AAAL-Q2-
cfp.htm for a workshop on this topic.

ity encoding is a method that can be used to assure pre-
dictable agent behavior. If we design obligation catego-
ries (i.e., responsibilities within ontological levels for the
agent), an agent might be directed to adopt specific obli-
gations about certain tasks to perform on behalf of a
chosen agent or the human user in case the agent interacts
with a human. This will affect the agent’s autonomy and
control with respect to the agent (or the user). For exam-
ple if the project is safety-critical, overall project goals
(and corresponding values and norms) are given a higher
ontological status in the agent’s makeup.

Agents might experience simultaneous social actions that
have influences at different value and norm levels. These
influences will also have different magnitudes. At times
there might be conflicts among these influences. The
conflict might be within an agent or between agents. A
simplistic conflict resolution for an agent is the rule “if an
influence at a high level is conflicted with an influence at
a low level and as long as the magnitude of the influence
at the low level is not much larger than the one at the high
level, choose the influence at the high level.” Le., higher
influences suppress the lower influences unless the
strength of influence at the low level is significantly
larger than the influence at the high level. In the excep-
tion case, we can introduce case-by-case domain rules to
make sure hierarchies are largely maintained but specific
over-riders are possible.

When agents share ontological levels of values and
norms, it is easy to see that they have a greater chance of
harmony. Conflicts among such agents can also be re-
solved using our resolution rule. In this case, one agent
might sacrifice its highest social influence for another’s
even higher social influence.

Overall missions can be guaranteed among agents who
share the values pertaining to that mission if we specify
certain social influence tolerances in agents. First, we can
specify how much tolerance we allow for adverse social
influences before reacting to them. Next, we can specify
the threshold of deviation from other social influences for
suppression of lower level social influences.* We can use
this method to other levels of norms and values and pro-
duce similar guarantees at those levels. The notion of
guarantee we introduce here differs from validation and
verification. In validation and verification, programs are
tested to obey certain properties (Engelfriet, et al 2002).
This is not easily possible with multiagent programs that
have many more paths of execution due to the level of
autonomy we provide agents. For instance, in nontrivial
systems, chain effects of social influences are too com-
plex to account for agent actions. We envision methods
for setting up combinations of norms and values such that

4 Agents who share mission level values and norms might not
share norms and values at lower levels.

123

they contain unfolding chains and suppress undesirable
results of influence chains.

Consider our blocks world example with three agents
instead of two. As a delegation social action, all three
agents might have found blocks that can fit in block posi-
tions 3 and 4 and out of politeness (and the correspond-
ing social influence) one agent might say to another “go
ahead” (this is a social action) and second agents might
experience the same influence and say “‘go ahead” to the
third agent and back to the first agent. A norm that can
break this influence chain is “if politeness leads to inac-
tion, the earliest agent to be polite will proceed”.

4 Conclusions

We outlined how social actions generate social influences
and showed a few salient interdependencies among social
influences. We then discussed agents that can be de-
signed to favor social influences that pertain to their
highest level of norms and values and some exceptions. If
agents shared norms and values, we can design agents
that guarantee guarding against adverse social influences,
suppression of social influences due to lower level norms
and values, and undesirable chains of influence. This
gives us a practical methodology for using social influ-
ence in implementing social responsibility among be-
nevolent agents.

Acknowledgements

This work is supported by AFOSR grant F49620-00-1-
0302.

References

S. Brainov and H. Hexmoor, 2001. Quantifying Relative
Autonomy, In Multiagent Interaction, In IJCAI-01
Workshop, Autonomy, Delegation, and Control.

S.S. Brehm S.M. Kassin, S. Fein 2002. Social Psychol-
ogy, Houghton Mifflin pub.

J. Engelfriet, C.M. Jonker, and J. Treur, (In press 2002).
Compositional Verification of Multi-Agent Systems,
In Temporal Multi-Epistemic Logic, Journal of
Logic, Language and Information.

H. Hexmoor, (In Press, 2002a). In Search of Simple and
Responsible Agents, In the Proceedings of NASA
GSFC/JPL Workshop on Radical Agents, MD.

124

H. Hexmoor, (In Press, 2002b). From Inter-Agents to
Groups, In International Symposium in Artificial
Intelligence, ISAI-01, India.

H. Hexmoor, 2001. A Cognitive Model of Situated
Autonomy, In Advances in Artificial Intelligence,
Springer LNAI2112 -pages 325-334, Kowalczk, Wai
Loke, Reed, and William (eds).

T. Ohguro. K. Kuwabara, T. Owada, and Y. Shirai, 2001.
FaintPop: In touch with the social relationships, In
International Workshop on Social Intelligence De-
sign, The 15th Annual Conference of JSAI, Japan.

S. Kassin, 2001. Psychology, Third Edition, , Prentice-
Hall.

C. U. Larson, 1998. Persuasion: Reception and Re-
sponsibility, 9th edition. Boston: Wadsworth.

M. Wooldridge, 2000. Reasoning about Rational Agents,
MIT Press.

An Agent-Based Network Management System

D.N.Legge; P.R.Baxendale
Centre for Telecommunication Networks,
School of Engineering,
University of Durham
d.n.legge@dur.ac.uk; peter.baxendale@dur.ac.uk

Abstract

This paper describes ongoing research work to build a network management system from autonomous software
agents, wing the BT Zeus Agent Building Toolkit. The network specific to this work is a 6-Node ATM Testbed,
which is fully reconfigurable; however, it is intended that the management system is generic enough to be implk-
mented on different networks. Each node of the network hosts its own agent society; within which the role of each
agent has an useful analogy to the controlling of the layers of the ISO OSI reference model. Although the lower-layer
agent's actions must be tightly prescribed, it is intended that higher-layer agents will take on more strategic, longer-
term outlooks, and be more adaptive and autonomous. Agent societies are able to communicate, to allow their col-
laboration; it is intended that this will only be at the peer-to-peer level. The long-term aim of this project is to im-
plement fully distributed control within a network, while maintaining the ability to take more holistically informed

decisions for network-wide and longer-term strategies.

1 Introduction

A classical paradox in the operation of telecommunica-
tions networks is the centralisation or distribution of
control. A network is said to have centralised control
when one node takes all the decisions. Here there is a
clear leader, and the assumption is that it can make im-
partial and co-ordinated decisions. Problems arise when
the network is geographically distributed, and the cen-
tral node has to make decisions with an incomplete and
possibly out-dated knowledge. Also, a link failure could
cause the isolation of part of the network, or if the cen-
tral node itself fails then the whole network could be-
come inoperable.

In the other extreme, each node makes all of its own
decisions. As a whole, the Internet runs on this basis;
and it can't be denied that it is highly resilient, and for
non-critical data is perfectly adequate. However, the
Internet provides little if anything in the way of Quality
of Service (QoS) guarantees. The whole of the Internet
provides a "best-effort” in terms of QoS, and this is
inherent in the protocols developed, certainly until the
new Internet Protocol (IP), version 6. ATM (Asynchro-
nous Transfer Mode) however, is a protocol designed
from first principles to enable guarantees on the QoS to
be provided. It achieves this by tightly controlling its
resources, agreeing contracts with users before admis-
sion to the network. It can then police those contracts
continuously.

125

Jennings [1999] defines agents succinctly as "situated
problem solvers" and as such are ideal for application
to the complex situations that arise in telecommunica-
tions network management; allowing network manage-
ment software to be autonomous and adaptive reduces
the need for human intervention and, given the high
network speeds, can reduce downtime, loss of service
and consequently revenue. The agents can then learn
from situations and provide better solutions as it n-
creases its knowledge base. This paper describes the
first steps to build such a system.,

A perceived problem with ATM is the comp lexity of its
configuration. Therefore any automation of the process
of configuration would be of benefit. At the same time,
care must be taken to minimise the additional network
traffic generated by the management system itself (re-
ferred to as Control Traffic).

2 Current Work

There is a number of areas in which agents could be
utilised within telecommunications, and indeed there
have been implementations; some of them real systems,
while some are simulated.

Hayzelden [1999], and indeed the whole ACTS-
IMPACTS' project, utilises agents to implement Con-
nection Admission Control (CAC). This procedure is
part of the ATM protocol standard - put simply, the
agents decide whether the network will allow a user
application to send a particular set of traffic onto the
network.

Gaiti [1996a] and [1996b] describe agents being used to
detect congestion in the network, and dynamically
change the thresholds so that the congestion control
mechanisms can be triggered by higher or lower net-
work load levels.

Another area of agents being used in telecommunica-
tions control at the simulation stage, is the application
of ant-based techniques to routing problems, such as
Vittori [2001].

3 Aim

It is proposed that by employing a society of autono-
mous software agents on each node, an effective Net-
work Management system can be developed. To pro-
vide a structure to this society, it is proposed that indi-
vidual agents could be mapped to a hierarchy analo-
gous to the a standard protocol model in the telecomr
munications world — the 1SO OSI2 model; discussion of
this model is beyond the scope of this paper, but de-
tails can be found in any standard telecommunications
text, e.g. [Walrand 1999]. This model provides defined
interfaces and levels of abstraction to enable communi-
cation protocols to be developed which are interoper-
able with a generic higher and lower layer; effectively
introducing platform independence.

Each layer descending the stack considers increasingly
local issues — and it is this property that should allow
fully distributed control, while maintaining the ability to
communicate and produce network-wide, strategies —
which are impossible where no such communications
exist. The layering of the agents also mean that each
agent need only be aware of the agent layer directly
above and below, simplifying the interactions (although
there will be a need for “utility agents” to provide ser-
vices which ‘glue’ the whole society together).

An alternative analogy is that of speed; an agent con-
trolling a switch will need to be almost dedicated to the
task. A layered structure will help to gradate between
these fast, reactive agents nearest to the hardware, up
to more proactive, slower agents at the higher layers.

! hitp://www.acts-impact.org/
2 1SO OSI - International Standards Organisation, Open Systems
Integration

126

These higher layers will enable more adaptive behav-
iour, axcording to long-term trends, while monitoring
the actions of the lower layer agents; this is similar to
the Subsumption Architecture discussed by [Hayzel-
den 1999].

A further aim is to show the feasibility of producing
such a management system using standard-compliant,
readily available tools,

4 Tools

4,1 ATM Testbed

The School of Engineering owns a six-node ATM net-
work, dedicated to research work. This is shown in Fig-
ure 1 with all possible connections made. This means
that any topology can be configured and any test sce-
nario used. All six switches, two UNIX machines and
six PCs are connected by ethernet connections on a
firewall protected network. Video codecs and network
analysers can be used to generate and capture traffic.

2x10 Mbps
sthemet

[Censtack video
video codsc

Network
management
station

[Cetstack vidso
video codec

e 10 Mbps ethemnet
155 Mbps sm fibre
155 Mbps electrical

ATM switch
ECI Telematics
NCXIES

Cell Stack Video |
vidso codec]

PC +PCl
ATM card 1

L
2x10Mbps
sthernet

O

Figure 1: Diagram of Testbed

4.2 BT's Zeus Agent Building Toolkit

In searching for a toolkit to aid the building of the agent
society, a great many were discovered. Most of these
were developed for a specific research project and as
such were not adequately documented or supported.
However the BT Zeus agent toolkit seems not to suffer
from these difficulties. It is also written in Java, which is
useful given the mix of operating systems and machines
available, and the platform independence it provides.

4.3 Java Virtual Machines

Because of the difficulty of installing a Java Virtual Ma-
chine on the ATM switches within the testbed network,
the PCs are used as platforms to run the agents. A low
level agent then controls the switches remotely. This
does not affect the functionality, as the agents can con-
trol all aspects of the switches from the PCs, but it does
allow the use of a friendlier front end and Graphical
User Interface.

S Design
e oo o PR P R y
iNetwork Agent| durhamli 'durham2 [Network Agent;
; Agent: iAgent !
] Society; ;Society :
1 [I
'l Neighbour i : Neighbour
i| Discovery i Discovery
i Agent P Agent
! N ' i
' [1
5 b . E
; Switch Agent Leof 150 : : ISCA e} Switch Agent :
1 1 . :
3 ST B SR

ATM link

durhaml durham?2

Figure 2: Diagram of Agent Societies, showing commu-
nication paths.

As discussed above, the OSI model provides a useful
parallel for determining the scope of each agent in the
society. This model is layered to provide increasing
levels of abstraction from the physical interface. The
bottom three layers - the Physical layer, the Link layer
and the Network layer - are currently represented in our
structure by one agent each. The first stage in this re-
search project has been to implement these. In design-
ing the agents, it was found useful to use the "Sphere
of Responsibility"” (SoR) test, described by [Collis
2000]. The current agent society is shown in Figure 2,
while the roles of these agents are discussed in the next
section.

5.1 Outline of Agents

5.1.1 Switch Control Agent (Physical Layer)

The Switch Control Agent provides (remotely in this
case) access to the hardware resources in the switch.
This enables both the discovery and configuration of
switch resources, including, for example, recognising
the presence of links. The agent keeps a record of what

127

physical interfaces are present, if they have been initial-
ised, and a reference to the controi channel used for
communication on that interface —~ which will be used
for communication with the node at the other end of
that link. When the agent has established communica-
tion with the switch, a message is sent to the Inter-
Society-Communication Agent (ISCA, see below) to
start listening for incoming messages to the agent soci-
ety.

5.1.2 Neighbour Discovery Agent (Link Layer)

The first task that the agent society must do is to dis-
cover the immediate connections to the host node. It
was decided that a single agent on each node should
handle this, and store the results. The information
stored about the link by this agent is the destination
node and the local port numbers at either end.

The agent has a refresh function, in case other nodes
come online at a later point, this is manually triggered
currently, but should be an automatic function depend-
ing on a timeout; however, it is this timeout that will
greatly affect the amount of Control Traffic generated.

5.1.3 Network Agent (Network Layer)

When the immediate neighbours are known, the next
stage is to attempt to discover any other nodes on the
network. This is done by exchanging knowledge with
the nodes directly connected. In this way, knowledge
of the network ripples across the network; if the agents
are all refreshing at the same rate, each refresh will
spread knowledge of a node by one hop. This raises
the question of scalability, however without a hierar-
chical network structure this is inevitable.

This process effectively compiles a routing table. The
agent can then make decisions on the best route to get
to a particular node. The information stored in the rout-
ing table is the name of the destination node, the local
port number to use and some representation of the dis-
tance to it; known as a "metric".

What is used as the metric is the source for much de-
bate, and beyond the scope of this paper. At its sim-
plest - as in this case - it can be merely the number of
"hops" (The number of nodes traversed). However, it
could be any quantifiable and comparable parameter to
discriminate between a number routes. Other parame-
ters used include: present load across the link, reserved
bandwidth, available bandwidth, areas of congestion
on the network, historical popularity of links and mone-
tary factors. As could be imagined, the weighting of all
these factors will be a real challenge. Eventually the
agent could dynamically change them depending on
circumstances. It is an area where one could lose sight
of the real goal of usability in calculating accurate val-
ues for the metric.

The agent is designed to store a primary route and a
back-up route in case of failure; the primary route hav-
ing the lowest metric. Having a back-up route offers a
balance between resilience in the event of failure,
against the flooding of the network with control traffic
in finding every possible route between two points.
The timeout period for refreshing is another finely bal-
anced decision, and is discussed in Shaikh [2001] but
currently is user prompted. When the agent is given
control of this timing a much greater level of autonomy
will have been achieved, according to the definitions of
agentism in [Wooldridge 1997] and [Gaiti 1996b} and
this is certainly intended.

Presently only peer-to-peer communication is allowed
between societies; and there seems no reason to break
this convention, as this simplifies the communication.
This means that communication can only occur verti-
cally - up and down the "stack” within the same society
- or horizontally - to the same layer in another society.
The ability to communicate with other agent societies
(on adjoining nodes) requires a further agent, described
next.

durham/ : idurham2
Agent' iAgent
Sacietyi ;Society

Network Agentlen cem }...J - o
[}

Neighbour
Discovery
Agent

Neighbour
Discovery
Agent

Switch Agent ISC' A | Switch Agent

ATM link
durhaml

durham?2

Figure 3: Diagram of inter-society communication.

5.1.4 Inter-Society Communication Agent, ISCA

This agent does not represent a layer of the ISO model,
as it is really a utility agent. Similarly to the Switch
Agent, it maintains a connection to the ATM switch,
across which messages to other societies are directed,
and then forwarded by the switch on the appropriate
link.

Although an ethernet connection is available it was felt
that using this for inter-society communication was not
in the spirit of the research, so the ATM links are used.
Each agent across the network is uniquely identifiable
by its name and the society it belongs to; thus giving it

128

an address such as network@durham!. This is analo-
gous to a normal email address. Figure 3 shows the
path of a message from network@durhaml to net-
work@durham2.

The use of the ATM links for inter-society communica-
tions also allows us to measure the aggregate Control
Traffic using an ATM traffic analyser. It is also impor-
tant to keep the communications to within existing pro-
tocols; by employing a standard-compliant Agent
Communication Language (ACL) and not relying on a
proprietary implementation - this is aided by the use of
an off-the-shelf toolkit.

6 Results

durham4

durham3

durham2

Figure 4(a): Topology of the network tested. The node-
names and local port numbers are shown.

node port | metric altport altmetric
durham2 11 1 13 2
Gurham3 13 1 11 2
durham4 13 2 11 3

Figure 4(b): Output of Network Agent on durhaml

node port metric altport altmetric
durhaml 12 1 11 2
durham3 11 1 12 2
durhaméd 11 2 12 3

Figure 4(c): Output of Network Agent on durham2

node port metric altport altmetric
durhaml 14 1 12 1
durham2 12 1 14 2
durhamd 11 1 0 100

Figure 4(d): Output of Network Agent on durham3

node port metric altport altmetric
Gurhaml 12 2 0 100
durham? 12 2 0 100
durham3 12 1 0 100

Figure 4(e): Output of Network Agent on durham4

Currently, the four agents described above have been
implemented, and successfully tested. As a useful anal-
ogy, these map to the first three layers of the OSI
model. The lowest layer (the Switch Agent) establishes
what ports are available, and at the request of the sec-
ond layer (the Neighbour Discovery Agent) establishes
the identity of nodes at the other end of each link. The
Link Agent can then be questioned by the Network
Agent at the third layer which then establishes the exis-
tence of other nodes/societies both on direct links and
by questioning these, further afield.

In doing this, the Network Agent at each node discov-
ers the network topology, is tasked to produce a rout-
ing table, so performing some of the configuration auto-
matically. Figure 4 shows this being achieved over four
sparsely-connected nodes (i.e. not fully-connected).
Figure 4(a) shows the network topology, while 4(b), (c),
(d) and (e) show the routing table produced at each
node. As can be seen each node learns of all the nodes
on the network, not just those that it is directly con-
nected to. It also discovers a backup route (prefixed
with “alt”); although this can share links with the
primary route, they do diverge somewhere. Where the
metric is “100”, no back-up route has been discovered.

7 Further Work

Although the work described above is a working sys-
tem, the intended functionality extends considerably
further than currently implemented. The aim of the pro-
ject is to harness the advantages of agent-based soft-
ware to control a telecommunication network. These
advantages include the ability to work autonomously,
adapt to their environment and learn from situations
that arise.

7.1 Further Agents

There are currently plans for a number of other agents;
these include one to manage the situation of a failure in
the network, and one to handle the mapping of IP over
ATM. These are described next.

7.1.1 Failure Recovery Agent

An interesting situation is presented when a node or

link fails. In this case rather than allowing knowledge of
the failure to ripple through the network, it will be nec-
essary to notify nodes explicitly. There are two possible
situations here:

Node Failure: If a node fails then the routing tables
need to be amended, removing the node. Any traffic
with that node as its destination will require the source

129

to be notified. Note that the failure of a node could be
seen as being equivalent to multiple link failure.

Link Failure: In the event of link failure, the traffic must
be routed round the problem. Depending on the topol-
ogy of the network, a link failure could isolate part of
the network, making it equivalent to a node failure.

Whichever situation it is, traffic will have to be re-
routed. Initially, the furthest downstream node (i.e. next
to the failure) must consult its routing table, and a-
tempt to set up connections for the traffic around the
problem. If the node can't find an alternative route, the
responsibility passes back to the previous node - which
will try itself. Cases where traffic ends up doubling back
on itself need to be detected, and corrected.

This re-routing is a similar function to a normal routing
algorithm, but there is the additional problem of dealing
with traffic flows already using the network, and so
having an existing traffic contract. Although a failure
could be seen as a force majeure, the network should
try to re-route if at all possible.

To achieve all of this, the Failure Recovery agent will
have to propagate failure messages to update routing
tables. It must then handle the attempts at re-routing.
The failure of a major link could have large knock-on
affects across the network. The agents across the net-
work will have to adapt to the new conditions, which
will possibly affect many routes.

7.1.2 DiffServ Agent
Originally, it was intended that ATM would be the
ubiquitous protocol, going straight to the desktop PC.
However, with the explosion of the Internet’, ATM has
found its niche at the backbone level of networks (i.e.
high speed trunk routes).

As stated above, the Internet has very little in the way
of QoS provision. There are attempts to patch some in
however. One of them, the most likely to succeed, is
known as Differentiated Services, or DiffServ* [Blake
1998].

DiffServ associates IP packets with a number of traffic
classes using “code points”. The code point is identi-
fied in the [P header and the mapping of this to a traffic
class and therefore QoS requirements is domain de-
pendant. The code point aggregates traffic with similar
QoS equirements. At the boundary of an ATM core
network designed to carry IP traffic, decisions must be
made on how to map DiffServ traffic to ATM resource
requirements and hence routes.

3 Which is one very large TCP/IP network.
4 Also referred to as DS.

The use of agents would allow this process to adapt to
changing traffic patterns and resource availability
within the core network.

8 Conclusions

So far, a system has been developed that automatically
establishes all the connections available at a node, and
then compiles a routing table of all nodes it can learn
about. This can only be achieved this by co-operating
with the surrounding nodes. This is a first basic step
towards network configuration and provides the
framework for a more adaptive and dynamic network
control system. As this is ongoing research a number
of other agents are planned, including more proactive,
strategic-planning agents.

As already stated, the aim of this project is to build a
fully operational network control system capable of
running autonomously, and able to adapt to changing
circumstances. An emphasis is placed on achieving this
through using off-the-shelf components, to ensure
compliance to general agent standards; but most spe-
cifically in the area of agent communication, which is
the greatest empowering property of an agent.

Acknowledgements

This work is being carried out under an EPSRC grant.
The system built was produced using the BT ZEUS
Agent Building Toolkit, which is available from
http://www btexact.com/projects/agents.htm.

References

Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.
and Weiss W., "An Architecture for Differentiated
Services", RFC 2475, IETF December 1998

Collis J. & Ndumu D. "The Zeus Agent Building Tool-
kit: The Role Modelling Guide" Release 1.02, BT
plc. 2000

Gaiti D. & Boukhatem N. "Cooperative Congestion
Control Schemes in ATM Networks", IEEE Com-
munications Magazine, p102, November 1996a

Gaiti D. & Pujolle G. "Performance Management Issues
in ATM Networks and Congestion Control",
IEEE/ACM Transactions on Networking, 4(2):249-
257, April 1996b

Hayzelden A.L.G.,, "A Multiple-Agent Approach for
Resource Configuration in Communication Net-

130

works", PhD Thesis, Queen Mary and Westfield
College, London, 1999

Jennings N.R., "Agent-based Computing: Promises and
Perils" Proc. 16th Int. Joint Conf. on Artificial In-
telligence (IJCAI-99), Stockholm, Sweden. 1429-
1436, 1999.

Shaikh A., Rexford J., & Shin K.G., "Evaluating the Im-
pact of Stale Link State on Quality-of-Service
Routing", IEEE/ACM Transactions on Network-
ing, 9(2):162-175, April 2001

Vittori K., & Araujo F.R., “Agent-Oriented Routing in
Telecommunications Networks”, IEICE Transac-
tions on Communications, E84-B(11):3006-3013,
November 2001

Walrand J. & Varaiya P., "High-Performance Communi-
cation Networks", 2™ Ed, Morgan Kaufmann, 1999

Wooldridge M. "Agent-Based Software Engineering"
IEE Proceedings in Software Engineering 1997

