Time for
Al and Society

PROCEEDINGS OF THE
AISB’00 SYMPOSIUM ON
Al PLANNING AND
INTELLIGENT AGENTS

17th-20th April, 2000
University of Birmingham

AISB’00 Convention
17th-20th April 2000

University of Birmingham
England

Proceedings of the
AISB’00 Symposium on

AI Planning and Intelligent Agents

Published by

The Society for the Study of
Artificial Intelligence
and the
Simulation of Behaviour

United Kingdom

http://www.cogs.susx.ac.uk/aisb/

ISBN 1902956 14 6

Printed at the University of Birmingham, Edgbaston, Birmingham B15 2TT, England.

Contents
The AISB ‘00 CONVENTIONoovireecereieirersseeesseeessenesseressesssssressseesssessssnsesssesssssessssessssstessseseessnesosssnsessssrenns i
John Barnden & Mark Lee

SYMPOSIUIN PIEEACE ...ttt et iii
Diane Kitchin

Planning as Abductive UPdatingccooeviiiiviiinciiniiiiecini ettt 1
Alferes, J.J., Leite, J.A., Pereira, L.M., and Quaresma, P.

HTN Knowledge and Action Planning with Incomplete Informationcecoecvirirvenerveninneeinerereeninns 9
Becket, R.

Merging Planning and Path Planning: On Agent’s Behaviours in Situated Virtual Worldscccoccoeeeeene 17

Cavazza, M., Jacopin, E. and Abd Latiff, M.S.

Scheduling for an Uncertain Future with Branching Constraint Satisfaction Problemsccocceeennneen, 25
Fowler, D.W., and Brown, K.

Evaluation of Algorithms to Satisfy Disjunctive Temporal Constraints in Planning and
SchedUlINng PrODISINSoociviiiiiirreeerircinneee ettt ese st sbe e e sesen e sreesae e enesaetesreaeaesanensrnesases s 33
Salido, M.A., Garrido, A. and Barber, F.

Scheduling Activity in an Agent ATCHItECTUIEccevveerrerrteriiiriirreritie sttt sre st e e eae s e sane e 41
Soto, 1.
Collaborative Personal Agents for Team WOTKINEcccooveriniiinciiniinitci e 49

Thompson, S. and Odgers, B.

Using Planning Formalisms to Reason about Agent Capabilitiesccccovvieiciecienninicrcinniciecciicnne 61
Wickler, G.

The AISB’00 Convention

The millennial nature of current year, and the fact that it is also the University of Birmingham’s centennial year, made
it timely to have the focus of this year’s Convention be the question of interactions between Al and society. These
interactions include not just the benefits or drawbacks of Al for society at large, but also the less obvious but increas-
ingly examined ways in which consideration of society can contribute to Al The latter type of contribution is most
obviously on the topic of societies of intelligent artificial (and human) agents. But another aspect is the increasing
feeling in many quarters that what has traditionally been regarded as cognition of a single agent is in reality partly a
social phenomenon or product.

The seven symposia that largely constitute the Convention represent various ways in which society and Al can con-
tribute to or otherwise affect each other. The topics of the symposia are as follows: Starting from Society: The Appli-
cation of Social Analogies to Computational Systems; Al Planning and Intelligent Agents; Artificial Intelligence in
Bioinformatics; How to Design a Functioning Mind; Creative and Cultural Aspects of Al and Cognitive Science;
Artificial Intelligence and Legal Reasoning; and Artificial Intelligence, Ethics and (Quasi-)Human Rights, The Pro-
ceedings of each symposium is a separate document, published by AISB. Lists of presenters, together with abstracts,
can be found at the convention website, at http://www.cs.bham.ac.uk/~mgl/aisb/.

The symposia are complemented by four plenary invited talks from internationally eminent Al researchers: Alan
Bundy ("what is a proof?"- on the sociological aspects of the notion of proof); Geoffrey Hinton ("how to train a com-
munity of stochastic generative models"); Marvin Minsky ("an architecture for a society of mind"); and Aaron Slo-
man ("from intelligent organisms to intelligent social systems: how evolution of meta-management supports social/
cultural advances"). The abstracts for these talks can be found at the convention website.

We would like to thank all who have helped us in the organization, development and conduct of the convention, and
especially: various officials at the University of Birmingham, for their efficient help with general conference organi-
zation; the Birmingham Convention and Visitor Bureau for their ready help with accommodation arrangements,
including their provision of special hotel rates for all University of Birmingham events in the current year; Sammy
Snow in the School of Computer Science at the university for her secretarial and event-arranging skills; technical staff
in the School for help with various arrangements; several research students for their volunteered assistance; the Cen-
tre for Educational Technology and Distance Learning at the university for hosting visits by convention delegates; the
symposium authors for contributing papers; the Committee of the AISB for their suggestions and guidance; Geraint
Wiggins for advice based on and material relating to AISB’99; the invited speakers for the donation of their time and
effort; the symposium chairs and programme committees for their hard work and inspirational ideas; the Institue for
Electrical Engineers for their sponsorship; and the Engineering and Physical Sciences Research Council for a valu-
able grant.

John Barnden & Mark Lee

ii

AI PLANNING AND INTELLIGENT AGENTS

Introduction

AIMS AND THEMES OF THE SYMPOSIUM

Automated Planning has been a central research area in Artificial Intelligence for over thirty years. Al Planning is
increasingly being exploited in high-profile projects involving space and military applications, and the growing interest in
this area has led to the setting up in 1998 of the EU-funded network of excellence in AI Planning, PLANET. Intelligent
Agents have more recently become a topic of great interest to various branches of both Al and computer science. Intelligent
agents can be characterised by their capability for autonomous action, which they can modify as appropriate in order to
meet their goals. They can perceive and respond to their environments when problem-solving, interacting with other agents
if necessary. Intelligent Agents need to reason and plan, often in real time, whilst a plan produced by an Al planning engine
must eventually be executed by some agent. A good illustration of this is the recent RAX (Remote Agent Experiment)
project on NASA’s Deep Space 1 spacecraft which allowed the primary command of a spacecraft to be given to a Remote
Agent which incorporated a planning component.

We feel an exchange of ideas and views between these 2 areas is timely and will be both stimulating and useful. We
hope this Symposium will provide a forum for the discussion of both current issues in AI Planning and Scheduling and of
the connections between them and agent-based reasoning. During the Symposium we would also like to address some of
the more fundamental questions regarding the interplay between these two areas. For example, although there are various
definitions of Intelligent Agents, it is not clear what the significance of the planning function within an Intelligent Agent is.
Do all Intelligent Agents have to plan? What sort of planning must an Intelligent Agent do? Is reactive planning sufficient
or does generative planning also have a role to play? We need to clarify the relationship between generative and reactive
planning, and the function of Intelligent Agents. In particular, the contributors to our Symposium will be looking at such
issues as:

how agents deal with dynamic environments, including uncertainty and resources
e how we can plan with incomplete information
e how we can apply the agent paradigm to scheduling problems

e how agents can communicate with each other

We hope that in the process of considering these issues, we can come to some conclusions regarding the fundamental
questions posed above. Additionally, we would like the Symposium to work towards the identification of a set of common
research problems in Agent Technology and Al Planning and Scheduling as well as areas ripe for cross-fertilisation.

SYMPOSIUM PROGRAMME COMMITTEE

Diane Kitchin, University of Huddersfield (SYMPOSIUM CHAIR)

Ruth Aylett, University of Salford

Lee McCluskey, University of Huddersfield

Julie Porteous, University of Durham

Sam Steel, University of Essex

11

Planning as Abductive Updating

José Julio Alferes*'; Jodo Alexandre Leite!

Luis Moniz Pereira’; Paulo Quaresma**
*Universidade de Evora, R. Romao Ramalho, 59, 7000 Evora, Portugal
fCentro de Inteligéncia Artificial (CENTRIA), Departamento de Informdtica
Universidade Nova de Lisboa, 2825-114 Caparica, Portugal
jja@dmat.uevora.pt; jleite@di.fct.unl.pt
Imp@di.fct.unl.pt; pq@dmat.uevora.pt

Abstract

In this paper we show how planning can be achieved by means of abduction, a form of non-monotonic reasoning, in the
LUPS language. LUPS employs the recently introduced notion of Dynamic Logic Programming, whereby the knowledge
representation rules, namely those representing actions, can dynamically change, crucial when agents are to be situated
in evolving environments. By integrating into a single framework several recent developments in the logic programming
and non-monotonic reasoning field of research, this work contributes to a better modeling and understanding of rational
agents. At the same time, it enjoys the advantages of a declarative and implementable specification, shortening the usual
gap between theory and practice often found in logical based approaches to agents. The system integrating Dynamic
Logic Programming, LUPS and Abduction, in order to achieve this form of planning, has been implemented.

1 Introduction and Motivation

In the last few years agent-based computing has been one
of the most debated concepts. Being a paradigm that
virtually invaded every sub-field of computer science, it
found in imperative languages the most common adopted
vehicle to its implementation, mainly for reasons of ef-
ficiency. However, since efficiency is not always a real
issue, but clear specification and correctness is, Logic
Programming and Non-monotonic Reasoning have been
brought (back) to the spot-light. Add to this significant
recent improvements in the efficiency of Logic Program-
ming implementations (Niemeld and Simons, 1997; XSB
System, 1999). Besides allowing for a unified declara-
tive and procedural semantics, eliminating the traditional
high gap between theory and practice, the use of several
and quite powerful results in the field of non-monotonic
extensions to Logic Programming (LP) can represent an
important added value to the design of rational agents.
For a better understanding a thorough exposition of how
Logic Programming can contribute to agent-based com-
puting, the reader is referred to Sadri and Toni (1999) and
Bozzano et al. (1999). Embedding agent rationality in
the LP paradigm affords us with a number of tools and
formalisms captured in that paradigm, such as belief revi-
sion, inductive learning, argumentation, preferences, etc.
(Kowalski and Sadri, 1996; Rochefort et al., 1999)
Traditionally, the work on logic programming was
mainly focused on representing static knowledge, i.c.
knowledge that does not evolve with time. Some work

had been done on updating knowledge bases but limited
to factual updates. The problem of updating the knowl-
edge rules, as opposed to updating the models generated
by them remained an open issue. Recently, in Leite and
Pereira (1997), the authors argued that the principle of in-
ertia could be successfully applied to the rules of a knowl-
edge base, instead of to the literals in its models, thereby
yielding the desired result. This lead to the introduction
of the paradigm of Dynamic Logic Programming (Alferes
et al., 1998, 2000).

Dynamic Logic Programming, supported by the no-
tion of Logic Program Updates, is simple and quite fun-
damental. Suppose that we are given a set of theories
(encoded as generalized logic programs) representing dif-
ferent states of the world. Different states may represent
different time periods or different sets of priorities. Con-
sequently, the individual theories contain mutually con-
tradictory as well as overlapping information. The rble
of Dynamic Logic Programming is to use the mutual rela-
tionships existing between different states to precisely de-
termine the declarative as well as the procedural seman-
tics of the combined theory composed of all individual
theories.

Although solving the problem of dynamically evolv-
ing logic programs, Dynamic Logic Programming does
not by itself provide a proper language for its specifi-
cation. To achieve this goal, and in particular to allow
logic programs to describe transitions of knowledge states
in addition to the knowledge states themselves, Alferes
et al. (1999) introduced the language LUPS. LUPS al-

lows the association, with each state, of a set of transi-
tion rules, providing an interleaving sequence of states
and transition rules in an integrated declarative frame-
work. It is worth pointing out that, the most notable dif-
ference between LUPS and Action Languages (Gelfond
and Lifschitz, 1998) is that the latter deal only with up-
dates of propositional knowledge states while LUPS up-
dates knowledge states that consist of knowledge rules
i.e. the outcome of a LUPS update is not a simple set
of propositional literals but rather a set of rules. LUPS
also makes it easier to specify so-called “static laws”, to
deal with indirect effects of actions and to represent, and
reason about, simultaneous actions.

It is perhaps useful to remark at this point that in
imperative programming the programmer specifies only
transitions between different knowledge states while leav-
ing the actual (resulting) knowledge states implicit and
thus highly imprecise and difficult to reason about. On
the other hand, dynamic knowledge updates, as described
above, enabled us to give a precise and fully declarative
description of actual knowledge states but did not offer
any mechanism for specifying state transitions. With the
high-level language of dynamic updates, we are able to
make both the knowledge states and their transitions fully
declarative and precise.

Rational agents must be able to reason about the
knowledge they possess and, among other things, plan to
achieve their goals. In general, planning consists of the
deliberative process by which a set of (partially or totally)
ordered actions is generated to achieve one or more goals.
Most approaches to agents based on computational logic
achieve planning but none of them allowing for dynami-
cally changing rules since they are limited to static inten-
sional knowledge. For a survey and roadmap of compu-
tational logic based agents the reader is referred to Sadri
and Toni (1999) and Bozzano et al. (1999).

Examples where this dynamic behaviour of rules is es-
sential, where new rules come into play while, at the same
time, some rules cease to be valid, can be found in Le-
gal Reasoning, namely in what concerns the application
of law over time. In countries with legal systems where
laws are often changed, jurisprudence makes heavy use of
the articles governing the application of law in time. The
representation of and reasoning about such articles is not
trivial, being most important the part dealing with tran-
sient situations, for example when an event occurs after
some new law has been approved but hasn’t taken effect
yet. Different outcomes can be obtained depending on
the date of the trial. In such situations an agent acting as
a lawyer for example, would have to plan its course of ac-
tion in quite complex situations due to the changing rules.
In Sect. 5 we present an example of such a situation.

Other examples can be found in computer games (of-
ten not taken very seriously by the computer science com-
munity but extremely challenging and lucrative (Jennings
et al., 1998)) where an agent has to deal with partially
different rules from level to level, and cross level plan-

ning is needed. In general, this framework is quite useful,
in all its power, in situations where agents with learning
capabilities are moved into slightly different domains (or
the domain descriptions change) and it is useful to use the
knowledge from the previous domain.

In this paper we show how planning can be achieved
by means of abduction, a form of non-monotonic reason-
ing, in the LUPS language, where actions to be performed
can be envisaged as abduced update rules. By integrat-
ing into a single framework several present developments
in the logic programming and non-monotonic reasoning
field of research, this work contributes to a better mod-
eling and understanding of rational agents while, at the
same time, it enjoys the advantages of a declarative and
implementable specification, shortening the usual gap be-
tween theory and practice often found in logical based
approaches to agents (Sadri and Toni, 1999).

The system integrating Dynamic Logic Programming,
LUPS and Abduction, to achieve this form of planning,
has been implemented and tested on top of the XSB Sys-
tem (1999). This overall system allows for several forms
of reasoning having many applications currently being ex-
plored.

The paper is structured thus: After an introductory
section to briefly recap Dynamic Logic Programming and
LUPS, the planning problem in LUPS is formalized and
its solutions characterized. This is followed by the pre-
sentation of an implemented solution based on abduction,
proven correct according to the formal characterization.
Finally we illustrate with an example and conclude.

2 Dynamic Logic Programming and
LUPS

In the LUPS framework (Alferes et al., 1999), knowledge
evolves from one state to another as a result of sets of
(simultaneous) update commands. In order to represent
negative information in logic programs and in their up-
dates, the framework resorts to more general logic pro-
grams, those allowing default negation not A not just in
the premises of their rules but in their heads as well. In
Alferes et al. (1998), such programs are dubbed general-
ized logic programs:

Definition 1 (Generalized Logic Program) A general-
ized logic program P in the language L is a (possibly
infinite) set of propositional rules of the form:

L«L...,L, 1)

where L and L; are literals. A literal is either an atom A
or its default negation not A. Literals of the form not A
are called default literals. If none of the literals appearing
in heads of rules of P are default literals, then the logic
program P is normal o

The semantics of generalized logic programs is de-
fined as a generalization of the stable models semantics
(Gelfond and Lifschitz, 1988).

Definition 2 (Default assumptions) Let M be a model
of P. Then:

Default(P,M) = {notA|Ar € P: head(r) = A,
M | body(r)} o

Definition 3 (Stable Models of Generalized Programs)
A model M is a stable model of the generalized program

P iff:
M = least(P U Default(P, M)) o

As proven in Alferes et al. (1998), the class of stable
models of generalized logic programs extends the class of
stable models of normal programs Gelfond and Lifschitz
(1988) in the sense that, for the special case of normal
programs both semantics coincide.

In LUPS, knowledge states, each represented by a
generalized logic program, evolve due to sets of update
commands. By definition, and without loss of generality
Alferes et al. (1999), the initial knowledge state K Sy is
empty and, in it, all predicates are assumed false by de-
fault. Given a current knowledge state K S;, its successor
state is produced as a result of the occurrence of a non-
empty set U of simultaneous update commands. Thus,
any knowledge state is solely determined by the sequence
of sets of updates commands performed from the initial
state onwards. Accordingly, each non-initial state can be
denoted by:

KS,=U1®---@U, n>0

where each Uj is a set of update commands.

Update commands specify assertions or retractions to
the current knowledge state (i.e. the one resulting from
the last update performed). In LUPS a simple assertion is
represented as the command:

assert (L < Ly,...,Ly) when (Lgy1,...,Lm) (2)

Its meaning is that if Ly, ..., Ly, is true in the current
state, thentherule L < L,, ..., Ly is added to its succes-
sor state, and persists by inertia, until possibly retracted or
overridden by some future update command.

In order to represent rules and facts that do not persist
by inertia, i.e. that are one-state events, LUPS includes
the modified form of assertion:

assert event (L « Ly,...,Lyg)
when (Lk+1’ ey Lm) (3)

The retraction of rules is performed with the update
command:

retract [event] (L < Li,...,Lg)
when (Lk+1a LR Lm) 4)

Its meaning is that, subject to precondition L4 1,..., Ly,
(verified at the current state) rule L + Ly, ..., Ly is ei-
ther retracted from its successor state onwards, or just
temporarily retracted in the successor state (if governed
by event).

Normally assertions represent newly incoming infor-
mation. Although its effects remain by inertia (until coun-
tervened or retracted), the assert command itself does not
persist. However, some update commands may desirably
persist in the successive consecutive updates. This is es-
pecially the case of laws which, subject to some precon-
ditions, are always valid, or of rules describing the effects
of an action. In the former case, the update command
must be added to all sets of updates, to guarantee that the
rule remains indeed valid. In the latter case, the specifica-
tion of the effects must be added to all sets of updates, to
guarantee that, when the action takes place, its effects are
enforced.

To specify such persistent update commands, LUPS
introduces:

always [event] (L + Lq,...,Lg)
when (Lk-l—l’ s 7Lm) (5)

cancel (L + Li,...,Lg) when (Lgt1,...,Lm) (6)

The first states that, from the current state onwards, in
addition to any newly arriving set of commands, when-
ever the preconditions are verified, the persistent rule is
added too. The second command cancels this persistent
update.

Definition 4 (LUPS language) Arn update program in
LUPS is a finite sequence of updates Uy ® - - - @ Uy, where
each U; is a non-empty set of (simultaneous) commands
of the forms (2)-(6). ©

Any knowledge state KS; (0 < ¢ < n) resulting
from an update program U; ® - -+ ® U, can be queried
via “holds(Ly,...,Lm) at ¢?”. The query is true iff the
conjunction of its literals holds at K'S,,.

The semantics of LUPS (Alferes et al., 1999) is de-
fined by incrementally translating update programs into
sequences of generalized logic programs. The meaning of
such sequences of programs is determined by the seman-
tics defined in Alferes et al. (1998). Given a sequence of
generalized programs P, @ - - - @ P, the semantics has to
ensure that the newly added rules (in the later programs of
the sequence) are in force, and that previous rules are still
valid (by inertia) as far as possible, i.e. they are kept for as
long as they do not conflict with newly added ones. Ac-
cordingly, given a model M of the last program P, start
by removing all the rules from previous programs whose
head is the complement of some later rule with true body
in M (i.e. by removing all rules which conflict with more
recent ones). All other persist through by inertia. Then,

as for the stable models of a single generalized program,
add facts not A for all atoms A which have no rule at all
with true body in M, and compute the least model. If M
is a fixpoint of this construction, M is a stable model of
the sequence up to F,.

Definition 5 (Dynamic Logic Program) Let S be an or-
dered set with a smallest element sy and with the property
that every s € S other than s¢ has an immediate prede-
cessor s — 1 and that so = s — n for some finite n. Then
@{P; : i € S} is a Dynamic Logic Program, where each
of the P;s is a generalized logic program. °

Definition 6 (Rejected rules) Let {P, : 1 € S} bea
Dynamic Logic Program, let s € S, and let M be a model
of Ps. Then

Reject(s,M) = {re P;|3r' € P;, M |= body(r'),
head(r) = not head(r'),
1<j<s} o

To allow for querying a dynamic program at any state
s, the definition of stable model is parameterized by the
state:

Definition 7 (Stable Models of a DLP at state s) Let
@{P; : i € S} be a Dynamic Logic Program, let s € S,
andlet P = J,., Pi. A model M of P, is a stable model
of @{P; : i € S} at state s iff:

M = least([P — Reject(s, M) U Default(P, M))

If some literal or conjunction of literals ¢ holds in all
stable models at state s of the Dynamic Program, we write

B AP i€ SEsm o o

The translation of a LUPS program into a dynamic
program is made by induction, starting from the empty
program Fy, and for each update U;, given the already
built dynamic program Py @ - - - & P;_;, determining the
resulting program Py @ - - - & P;—1 @ P;. To cope with per-
sistent update commands we will further consider, asso-
ciated with every dynamic program in the inductive con-
struction, a set containing all currently active persistent
commands, i.e. all those that were not cancelled until that
point in the construction, from the time they were intro-
duced. To be able to retract rules, we need to uniquely
identify each such rule. This is achieved by augmenting
the language of the resulting dynamic program with a new
propositional variable “rule(L < Li,...,Ly)" for ev-
eryrule L + L,,..., L, appearing in the original LUPS
program.

Definition 8 (Translation into dynamic programs) Let
U=U, ®: - ®Uy, be an update program. The corre-
sponding dynamic program T (U) =P =Py @ --- & P,
is obtained by the following inductive construction, using
at each step 1 an auxiliary set of persistent commands
P C,' s

Base step: Py = {} with PCy = {}.

Inductive step: Let P; = Py @ - -+ & P; with set of
persistent commands PC; be the translation of U; = U1 ®
-+ @ Uj. The translation of Uip1 = U1 @ - Q Uiy is
Piy1 = Po @ - - & Piy1 with set of persistent commands
PCit1, where PCyyq is:

PC; U {assert [event] (R) when (C) :
always [event] (R) when (C) € Uit}
— {assert [event] (R) when (C) :

cancel (R) when (D) € Ui, @i Pi Fem D}

— {assert [event] (R) when (C) :

retract (R) when (D) € Uiy, @i Pi Esm D}
NUit1 = Uiy1 U PCiyq, and Piyq is:

R, rule(R) : assert [event] (R) when (C) €
NUH—I: ®i Pi t:sm C

y{ ot rule(R) : retract [event] (R) when (C) €
NUi11, B, PiEsm C

U not rule(R) : assert event (R) when (C) €
NUia @i_l Pi—l t:sm C

U rule(R) : retract event (R) when (C) €
NU;, @, _, Pi—1 Fsm C,rule(R)

where R denotes a generalized logic program rule, and
C and D a conjunction of literals. In the inductive step,
if i = 0 the last two lines are omitted. In that case NU;
does not exist. o

Definition 9 (LUPS semantics) Let U be an update pro-
gram. A query

holds(Lq,...,L,) at q
istrue inU iff @, TU) Fsm L1,..., Ln. o

3 LUPS and Plans

LUPS, by allowing to declaratively specify both knowl-
edge states and their transitions, can be used as a powerful
representation language in planning scenarios. Its variety
of update commands can serve to model from the sim-
plest condition-effect action to parallel actions and their
indirect effects.

In this section we formalize the planning problem in
LUPS, and characterize its solutions. Throughout we con-
siderd =U; ® -+ ® U, to be an update program in the
language £. We begin by considering a set of actions from
L, whose specification is defined by update commands.

Definition 10 (Action) Let L, = {a1,..., 0} be a set
of atoms from L where each o. € L, represents an action.
We call the elements of L, actions. Typically for every
action there will be one (or more) update commands of the
forms (2)-(6), where the action o appears in the ‘when’
clause. o

Fo example, in

always [event] (L - Lq,...,Lg)
when (Lgyi,. -y Lim, @)

we have, intuitively, that « is an action whose precon-
ditions are Lg41, ..., Ly, and whose effect is an update
that, according to its type, can model different kinds of
actions, all in one unified framework. Examples of kinds
of actions are:

e actions of the form “a causes F' if Fy,...,F}”,
where F,Fi,...,F; are fluents (such as in
the language A of Gelfond and Lifschitz
(1998)) translates into the update command
“always F when (F1,..., F,a)”.

e actions whose epistemic effect is a rule
update of the form “a wupdates with
L « Li,...,Lg if Lgyr,...,Ly" trans-
lates into the update command “always (L «
Ly,...,Ly) when (Lgy1, ..., Ly,).

e actions that, when performed in parallel, have dif-
ferent outcomes, of the form “a, or oy cause Ly i f

Liyi,..-, Ly and “a, and o in parallel cause
Ly if Lgya, ..., Ly" translates into the three up-
date commands:
always Ly when (Lg41, - - -y Lim, o, not ap)
always L, when (Lgy1, .-y L, not ag, ap)
always Ly when (Lgt1,. .., L, Qa,)

e actions with non-deterministic effects of the form
“q causes (Ly or Lg) if Lgy1,. .., Ly” translates
into the update commands (where 3,, 3 are new
auxiliary predicates and I is a unique identifier of
an occurrence of a):

always (Ly + B.(I))

when (Lgg1, - -, L, a(I))
always (Lg < Bp(I))

when (Lgt1,- - Lm, a(I))

always (B.(I) « not Bp(I))
when (Lg41, ...y Ly a(I))
always (B (I) + not B,(I))
when (Lg+1, - .-, Lim,a(I))
In this representation of the non-deterministic ef-
fects of an action «, we create two auxiliary actions
(Ba, Bp) with deterministic effects, and make the ef-

fect of a be the non-deterministic choice between
actions 3, or G.

Next, we formalise action updates and plans:

Definition 11 (Action Update) An action update, U<, is
a set of update commands of the form:

U* = {asserteventa: a € L4} o

Intuitively, each command of the form
“gssert event «” will represent the performing of
action a. Note that performing an action is something
that does not persist by inertia. Thus, according to the
description of LUPS in Sect. 2 the assertion must be of
an event. By asserting event a, the effect of the action
will be enforced if the preconditions are met. Each
action update represents a set of simultaneous actions.
For simplicity, we represent the update commands in an
action update just by their corresponding o's. Instead
of U® = {assert event a;assert event ag} we write
Ue = {al; ag}.

Definition 12 (Plan) A plan is a finite sequence of action
updates. o

In order to relate the goals to be achieved with the
plans, we need to know the effect of executing the plan.
This is given by the following function:

Definition 13 (Result) The result of applying a plan
U* = Uy, ..., U5 to an update program U = U; ®
-+ ® U, is given by the update program:

ResultU*U)=U1®--- U, @Uf®---QUS <

Finally, the planning problem is about finding a plan
such that a goal, given in the form of a LUPS query, is
achieved as the result of applying the plan to the initial
state update program.

Definition 14 (Planning Solution) Given an update pro-
gram U = U1 ® --- @ U, and a query (goal)
“holds(L1, ..., L) at q7”, theplanU* = U3, ..., Uy
is a planning solution if the query is true in the result of

applying U® to U , i.e. such that
@D, YT(Result(U*,U)) Fom L1,...,Ln. o

This definition suggests that planning solutions can be
seen as abductive update solutions in the LUPS frame-
work. This will be explored in the next section.

4 On the implementation of LUPS
and planning

In Alferes et al. (1999), a translation is presented of up-
date programs and queries into single normal logic pro-
grams which are written in a meta-language. The transla-
tion is purely syntactic, and has been proven correct there:
a query holds in an update program iff its translation be-
longs to all stable models of the update program transla-
tion. The latter directly supports a mechanism for imple-
menting update programs: after a pre-processor performs
the translations, query answering is reduced to that over
normal logic programs by means of a meta-interpreter.

The pre-processor and a meta-interpreter for answering
queries have been implemented!

The translation uses a meta-language generated by
the language of the update programs. For each ob-
jective atom A in the language of the update program,
and each special propositional symbol ruler. Bogy Of
cancelp Body (Where these symbols are added to the
language for each rule L < Body in the update pro-
gram), the meta-language includes the following sym-
bols: A(s,t), A%(s,t), A(s,t), and A%(s,t), where s
and ¢ range over the indexes of the update program. Intu-
itively, these new symbols mean, respectively: A is true
at state s considering available all states up to ¢; A is true
due to the update program at state s, considering all states
up to t; A is false at state s considering all states up to ¢;
not A is true due to the update program at state s, consid-
ering all states up to £.

Intuitively, the first indexical argument added to atoms
stands from the update state at which the atom was been
introduced via a rule. So, according to the transformation
in Alferes et al. (1999), in non-persistent asserts, the first
argument of atoms in the head of rules is instantiated with
the index of the update state where the rule was asserted.
In persistent asserts, the argument ranges over the indexes
where the rule should be asserted (i.e. all those greater
than the state where the corresponding always command
is). The second indexical argument stands for the query
state. Accordingly, when translating (non-event) asserts,
the second argument of atoms in the head of rules ranges
over all states greater than the one where the rule was as-
serted. For event asserts, the second argument is instanti-
ated with the index of the update state where the event was
asserted. This is so in order to guarantee that the event is
only true when queried about in that state.

Inertia rules are added to allow for access to rules as-
serted in states before the state the query is posed. Such
rules say that one way to prove L at state s with query
state ¢, is by proving L at state s — 1 with the same
query state (unless its complement is proven at state s,
thus blocking the inertia of L).

Literals in the body of asserted rules are translated
such that both arguments are instantiated with the query
state. This guarantees that body literals are always
evaluated with respect to the query’s state. Literals in
the when clause have both arguments instantiated with
the state immediately prior to that in which the rule was
asserted. This guarantees that those literals are always
evaluated considering that prior state as their query state.
The complete formalization of the translation T'r(U{) can
be found in Alferes et al. (1999).

Planning solutions, as defined in the previous section,

'The system, running under XSB-Prolog, a system with tabling, is
available from:
http://centria.di.fct.unl.pt/"jja/updates/

Rather than stable models semantics, the well-founded semantics is used
instead.

are clearly similar to abductive solutions in the LUPS
framework: when finding a plan, one is looking for sets of
“assert event”“‘commands, standing for actions performed,
that when added to the sequence derive the top query and
are consistent (in the sense that a stable model exists).
In this abductive setting, the abducibles are commands
of the form assert event (o) where a € L,. Given
the above described translation of a sequence of update
commands into a single normal logic program with in-
ertia rules, this abduction problem in the LUPS setting,
can easily be transformed into an abduction problem in
normal logic programs. Simply translate the sequence of
update commands into a single program, and define as ab-
ducibles those translation predicates arising from translat-
ing commands assert event () for every o, where o is
an action. It is easily seen that finding abductive solutions
for queries over the translated abductive logic program is
tantamount to finding planning solutions in the original
update program.

Theorem 1 (Planning as abduction) Let T'r(U) be the
logic program obtained from the translation of an update
programU = Uy ® ... Uy, and let Ab = {a(i,i) : n <
i <m+n,a € Lo} be the set of abducibles. Given a
subset A of Ab, let U*(A) = UX ® ...UZ be such that
assert event (a) € U iff a(,1) € A

Then A is an abductive solution for
Tr(holds Ly, ... Ly at q) in the logic program Tr(U) iff
U*(A) is a planning solution for “holds Ly, ... Ly at q”
inl. o

-~

According to this theorem, to implement a plan gen-
erator in LUPS, all that needs doing is to implement the
translation from LUPS programs to logic programs, and
then to use an interpreter for abduction on top of the trans-
lated program. This is the basis of our implementation
which, aside from the aforementioned preprocessor for
the translation, employs an interpreter for the abduction
procedure ABDUAL (Alferes et al., 1999). Note that mul-
tiple abductions at one state, ie parallel actions, can be
generated.

S Illustrative Example

In this section we present an example illustrating the abil-
ity of this framework to deal with dynamically chang-
ing rules. One domain where such dynamic behaviour of
rules is essential is Legal Reasoning. In this domain new
rules come into play while, at the same time, other rules
cease to be valid. In countries with legal systems where
laws are often changed, jurisprudence makes heavy use
of the articles governing the application of law over time.
The representation of, and reasoning about, such articles
is non trivial, the one most important being the part deal-
ing with transient situations. For example, when an event
occurs after some new law has been approved, but hagn’t
yet taken effect. Different outcomes could be obtained

depending on the date of the trial. In such situations an
agent, acting as a lawyer, would have to plan its course of
action in complex situations due to the changing rules.
Consider a fictional situation where someone is con-
scripted if he is draftable and healthy. Moreover a per-
son is draftable when he reaches a specific age. In this
situation, if someone is conscripted and not incorporated
(for example because he hides), he is cited for a crime
and, if tried, goes to jail. Of course one cannot be tried
while in hiding. Consider that a person is electable for
office if electable previously and not in hiding. Moreover,
the person ceases to be electable if ever been to jail. Af-
ter some time, a new law is approved that renders one
not conscripted if a conscientious objector. However, this
law will only take effect after 20 days. How could John,
electable, healthy, conscientious objector, that became of
age 10 days after this new law has been enacted, avoid
being incorporated, and remain electable for office in the
future? This is an illustrative scenario easily expressible
in LUPS. It translates into the update commands?:
U1 :
always draftable(X) when of -.age(X)
assert (conscripted(X) + draftable(X),
healthy(X))
always hiding(X) when hide(X)
always not hiding(X) when unhide(X)
assert (jail(X) « trialed(X), cited(X))
always incorporated(X)
when (conscripted(X), not hiding(X))
always cited(X) when (conscripted(X),
not incorporated(X))
assert (trialed(X) « cited(X),not hiding(X))
always electable(X)
when (electable(X), not hiding(X))
always not electable(X) when jail(X)
assert objector(John)
assert healthy(John)
Uy : :
always (not conscripted(X) + objector(X))
when current(30)
U20 .
assert of .age(John)
where Lo = {hide(X),unhide(X)} is the set of possi-
ble actions. If we have the goal of never being incorpo-
rated and being electable after 30 , the desirable solution
would be to perform the action hide(John) at 20, and
perform the action unhide(John) after 30. Note that if
John does not hide at 20, he will be cited for a crime, be
trialed, sent to jail and thus would never be electable for
office again. The goal is:

holds electable(John) at 31

would return an abductive solution that would correspond

2Where current(S) is a built in predicate such that it is true iff the
current time is .S, which could be implemented in LUPS itself.

to the plan U = Ugy, Uy, where:

Usy, = {assert event(hide(John))}
Usy, = {assert event(unhide(John))}

representing the desired solution.

6 Conclusions and Future Work

The ability to deal with dynamic situations is one of the
major features of our proposal, as it allows one to handle
a new class of planning problems. In fact, extant plan-
ning frameworks do not easily encompass the description
of worlds with dynamically changing rules. For instance,
neither PDDL (McDermott et al., 1998) nor OCL (Liu and
McCluskey, 2000) are capable of describing dynamic sit-
uations. Dynamic Logic Programming permits as well the
representing of actions in the STRIPS- or ADL-style, uti-
lized in these planners, with pre-conditions, effects, and
conditional and logical operators. Additionally, it caters
for simultaneous actions and, due to its expressiveness, it
can model complex effects of actions. By using an ex-
plicit representation of the world, and of the actions avail-
able at each state, its history and attending change can
itself be queried and reconstructed.

Above all, embedding planning into a logic program-
ming framework with a precise declarative semantics,
makes it amenable to integration with other, already de-
veloped, monotonic and non-monotonic knowledge rep-
resentation and reasoning functionalities. Among these:

o Extensive declarative knowledge representation,
comprising default and explicit negation

¢ Semantics (and implementation) for non-stratified
knowledge

¢ Observance and updating of integrity constraints

e Knowledge rules updating, besides that of action
rules updating

o Abductive reasoning, over and above the abduction
of actions

o Inductive learning of knowledge and action rules
¢ Belief revision and contradiction removal

e Argumentation for collaboration and competition
o Preference semantics, combinable with updates

e Meta- and object-language combination through
meta-interpreters, facilitating language extensions
and execution control

e Model-based diagnosis of artifacts, via observa-
tions and actions on them

o Declarative debugging of logic programs represent-
ing knowledge bases

Explanation generation

e Distribution with communication

Agent architectures

Test and tried implemented logic programming sys-
tems, tabled execution

Our ongoing research has promoted and achieved
some of these integrative desiderata, and currently pur-
sues a number of them. Such integrateable facilities pave
the way for the building of complex rational agents em-
ploying sophisticated planning amongst themselves.

Acknowledgements

All authors were partially supported by PRAXIS XXI
project MENTAL. J. A. Leite was partially supported by
PRAXIS XXI scholarship no. BD/13514/97.

References

J. I. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinski
and T. C. Przymusinski. Dynamic Logic Programming.
In A. Cohn, L. Schubert and S. Shapiro (eds.), Procs.
of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98),
Trento, Italy, pages 98-109. Morgan Kaufmann, June
1998.

J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusin-
ski and T. C. Przymusinski. Dynamic Updates of Non-
Monotonic Knowledge Bases. To appear in The Journal
of Logic Programming, 2000.

J. J. Alferes, L. M. Pereira, H. Przymusinska and T.
C. Przymusinski, LUPS - a language for updating
logic programs. In M. Gelfond, N. Leone and G.
Pfeifer (eds.), Procs. of the 5th International Confer-
ence on Logic Programming and Nonmonotonic Rea-
soning (LPNMR’99), El Paso, Texas USA, pages 162-
176, Springer-Verlag, LNAI 1730, 1999.

J. 1. Alferes, L. M. Pereira, H. Przymusinska, T. C. Przy-
musinski and P. Quaresma, Preliminary exploration on
actions as updates.In M. C. Meo and M. Vialres-Ferro
(eds.), Procs. of the 1999 Joint Conference on Declar-
ative Programming (AGP’98), L’ Aquila, Italy, pages
259-271, September 1999.

J. J. Alferes, L. M. Pereira and T. Swift, Well-founded
Abduction via Tabled Dual Programs. In Procs. of the
16th International Conference on Logic Programming,
Las Cruces, New Mexico, Nov. 29 - Dec. 4, 1999.

M. Bozzano, G. Delzanno, M. Martelli, V. Mascardi and
F. Zini, Logic Programming and Multi-Agent System:

A Synergic Combination for Applications and Seman-
tics. In K. Apt, V. Marek, M. Truszczynski and D. S.
Warren (eds.), The Logic Programming Paradigm - A
25-Year Perspective, pages 5-32, Springer 1999.

M. Gelfond and V. Lifschitz. The stable model seman-
tics for logic programming. In R. Kowalski and K. A.
Bowen. editors. 5th International Logic Programming
Conference, pages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Classsical negation in logic
programs and disjunctive databases. New Generation
Computing, 9:365-385, 1991.

M. Gelfond and V. Lifschitz. Action languages. Linkop-
ing Electronic Articles in Computer and information
Science, 3(16), 1998.

N. Jennings, K. Sycara and M. Wooldridge. A Roadmap
of Agent Research and Development. In Autonomous
Agents and Multi-Agent Systems, 1, 275-306, Kluwer,
1998.

R. Kowalski and F. Sadri. Towards a unified agent archi-
tecture that combines rationality with reactivity. In D.
Pedreschi and C. Zaniolo (eds), Logic in Databases,
Intl. Workshop LID’96, pages 137-149, Springer-
Verlag, LNAI 1154, 1996.

J. A. Leite and L. M. Pereira. Generalizing updates:
from models to programs. In 1.Dix, L.M. Pereira and
T.C.Przymusinski (eds), Selected extended papers from
the LPKR’97: 1LLPS’97 workshop on Logic Program-
ming and Knowledge Representation, pages 224-246,
Springer-Verlag, LNAI 1471, 1998.

D. Liu and L. McCluskey. The Object Centered Language
Manual-OCL;. University of Huddersfield. 2000.

D. McDermott et al. PDDL - The Planning Domain Defi-
nition Language. Yale University, 1998.

I. Niemeld and P. Simons. Smodels - an implementation
of the stable model and well-founded semantics for
normal logic programs. In Procs. of the 4th Interna-
tional Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’97), pages 420-429,
Springer, July 1997.

S. Rochefort, E Sadri and F. Toni, editors, Pro-
ceedings of the International Workshop on
Multi-Agent Systems in Logic Programming, Las
Cruces, New Mexico, USA,1999. Available from
http://www.cs.sfu.ca/conf/MAS99.

F Sadri and E. Toni. Computational Logic and Mul-
tiagent Systems: a Roadmap, 1999. Available from
http://www.compulog.org.

The XSB Group. The XSB logic programming
system, version 2.0, 1999. Available from
http://www.cs.sunysb.edu/ "sbprolog.

HTN Knowledge and Action Planning
with Incomplete Information

Ralph Becket
Microsoft Research Ltd, UK
rbeck @microsoft.com

Abstract

Classical planners typically construct linearisable plans where the execution of any step is independent of the re-
sults of any preceding step. This is only possible if the initial conditions as expressed to the planner are sufficient
to support the construction of such a plan. Knowledge and action planning tackles the problem that arises when
this assumption doesn’t hold true. For example, if I want to call someone on the telephone, but I don’t know their
number, I first have to look it up in the telephone directory. What number I actually dial depends upon the out-
come of the information gathering step. In the past, KAAP has been tackled in two ways. The first is to combine
highly expressive modal epistemic logics with logics of action and the second is to interleave classical planning
with execution of information gathering plans. The former, it seems, is simply too expressive a formalism for
tractable automatic reasoning methods. The latter is philosophically unsatisfying and has major efficiency prob-
lems. This paper introduces the simple notion of explicitly reasoning about the connection between agent state at
run-time and the state of the world. This idea is philosophically straightforward and fits nicely in classical HTN
planning frameworks without compromising efficiency. Moreover, it supports the construction of plans featuring
non-trivial control constructs such as conditional execution and various forms of iteration. The technique de-

scribed here is powerful enough to solve a broad, interesting class of KAAP problems.

1 Introduction

Conventional planners solve problems by deriving
plans composed of (partially) ordered sequences of
primitive actions. When any linearisation of a plan is
applied in a world consistent with the initial conditions
described to the planner, then the world should end up
in a state in which the goal obtains. Two characteris-
tics of such plans are that (a) plans contain no control
constructs other than ordering constraints on steps —
they do not contain loops or branches — and (b) the
primitive action steps have constant arguments — the
outcome of an earlier step cannot affect the execution
of a later step. Such plans are derivable only if the
planner has access to sufficient information at plan-
time. Knowledge and action planning, or KAAP, is the
less well known branch of planning research concerned
with plan generation when this assumption is not true.
In particular, KAAP problems are typified by the re-
quirement to perform some ‘finding out’ steps in the
course of obtaining a solution.

To set the stage consider the two following problems:

1. I want to call Fred on the phone, but I don’t
know his number. The obvious solution is to
consult the telephone directory, find Fred’s
phone number, and then dial that.

2. I want to decide whether a solution is an acid
or an alkali. This time I get a piece of litmus
paper, dip it in the solution, observe the colour

change, deduce the nature of the solution, and
then act appropriately.

In the first problem, the number I end up dialling de-
pends upon the number I find listed for Fred in the
telephone directory — the dialling action is necessarily
dependent upon the outcome of the ‘finding out’ step.
In the second problem, merely observing the colour
change in the litmus paper doesn’t answer my question;
I also have to perform a deduction action. Moreover,
deciding the truth of some proposition like this is fairly
useless unless it affects how I proceed in future, so this
solution forms the basis of a branching plan structure.

2 Previous Approaches

Previous work has tackled KAAP in three quite differ-
ent ways, each of which has its problems. This section
gives a brief overview of each.

2.1 Modal Epistemic Logic

Arguable the most common approach has been to com-
bine a modal logic of knowledge (e.g. KD45) with a
modal logic of action to provide a KAAP framework
(Moore, 1980; Moore 1984). The resulting theory is
then typically compiled down to some first order repre-
sentation. (Approaches along similar lines include the
linear planning work on decidability by Rayner and
Janson (1989) and the quotational theory advanced by
Haas (1986)). Figure 1 gives the axioms of KD45 for

single agent knowledge, which forms the basis of most
epistemic logics (K(P) is used to denote the agent in
question knowing that P).

The resulting logic is highly expressive and can be
used to solve quite complex KAAP problems. How-
ever, there are a number of problems with it, including
the assumption of logical omniscience (agents are
aware of all the logical consequences of any explicitly
represented knowledge they have), restrictions on
quantification and, indeed, the whole basis for accept-
ing KD45 as a logic of knowledge is open to question
(Slaney, 1996).

Basis: A - A is a non-modal axiom
K(A) - A is an axiom of KD45
K(A = B) = (K(A) = K(B))
K(-A) = —K(A)

K(A) = K(K(A))

—-K(A) = K(=K(A))

wR YRz

Figure 1: The axioms of KD45.

However, by far the biggest problem with this line of
attack is that nobody has yet found a way to build trac-
table automatic reasoners for modal epistemic logics in
planning domains.

2.2 Interleaving Action with Planning

An alternative approach, implemented in planners such
as XII (Etzioni et al. 1996), is to interleave planning
with action. In this scheme, the planner is intimately
tied in with the executive agent. The planner keeps
track of the completeness of its knowledge of the initial
conditions.

The planner records K(P) if P is listed in the initial
conditions. The planner records the decidability of P
as KW(P) where KW(P) = K(P) v K(-P). The planner
also keeps track of completeness, as V x. KW(P(x)),
indicating that an entire class of propositions P(x) can
be decided from the initial conditions. Existence in-
formation may also be recorded as 3 x. K(P(x)).

When an XII type planner considers a subgoal that can
be neither supported by the existing partial plan nor
decided from the initial conditions, it performs the fol-
lowing steps:
1. it suspends planning for the current problem;
2. it looks for a plan that will provide the planner
with the required information;
3. it executes the new subplan;
4. it resumes planning for the original goal in
possession of the required information.

10

There are a number of unfortunate drawbacks with this
scheme. In the first place, information gathering plans
are generated and executed without knowing whether
this will lead to a successful plan for the top-level goal.
Of course, in some situations one cannot avoid this
tactic; however in many others this can lead to unnec-
essary expenditure of resources and, in the worst case,
can prevent the planner from finding a solution for the
top-level goal if the interleaved execution changes the
world in such a way as to prevent success. Another
criticism is that information gathering tasks have to be
treated specially and are emphatically not like ordinary,
physical actions. Philosophically, it’s not clear that
this distinction is necessary or desirable.

3.3 Sensory Graph Plan

SGP, or Sensory Graphplan (Weld et al., 1998), is a
variant of Blum & Furst’s (1995) Graphplan algorithm
that deals with the KAAP problem by identifying the
sets of possible worlds (i.e. sets of initial conditions)
the agent might be in and running Graphplan separately
on all of them. SGP has to find a plan that will succeed
in all possible worlds, which it does by introducing the
notion of sensory actions that allow the executing agent
to prune some possible worlds from the set it has to
consider at runtime. Sensory actions in SGP merely
decide the truth of some propositional formula at the
time they are executed. Plan extraction is more com-
plex since execution of parts of the final plan may de-
pend upon the outcome of sensory actions (some ac-
tions may only be necessary or even executable in cer-
tain possible worlds).

As Weld et al. admit, SGP is only capable of solving
very small problems, albeit doing so fairly quickly — a
significant improvement over previous contingency
planners — but it has a number of severe limitations. In
the first place, sensory actions are assumed to have no
preconditions and so can always be executed. How-
ever, this simply isn’t the case in most KAAP situa-
tions (e.g. I can’t find out how many elephants there
are in the office next door without committing to some
active course of investigation). Secondly, in order for
SGP to work it has to be possible to enumerate all the
possible worlds that the agent might start off in, which
means that SGP is restricted to finite propositional do-
mains (this is a general criticism of Graphplanners).
Finally, unless the degree of uncertainty in the initial
state is tiny, SGP has to consider an enormous number
of possible worlds. The upshot of all this is that SGP is
not yet able to tackle real KAAP problems.

3 A New Approach

Attempts to solve the whole problem (or, at least, a
very broad part of it) using highly expressive logics
founder because it is currently not known how to make
effective automated reasoners for them. The simpler,

more pragmatic approach of interleaving planning with
execution is philosophically unsatisfying and also has
serious efficiency issues in that unnecessary, and even
harmful, activity can take place before a complete plan
has been derived.

This section outlines an alternative method that treads a
path between the extremes of earlier methods that sits
nicely within the framework of classical planning,
solves a large and interesting class of KAAP problems,
and does not suffer from crippling efficiency issues or
engage in premature physical activity.

The core of the idea is to assume that the executive
agent has some internal state (e.g. a bank of hardware
registers) that changes as a consequence of performing
information gathering actions. For this state, and ‘find-
ing out’ actions, to be of any use, the agent should also
be able to make control decisions based upon its cur-
rent state.

The connection between the contents of a ‘register’ (or
some state component) in an agent and the truth of
some proposition depends upon how those contents
came to be there. For example, if register R contains
some number x as a consequence of performing the
look-up-Fred’s-phone-number action then x must be
some representation of Fred’s phone number. If, on the
other hand, x arrived there as a consequence of the ob-
serve-the-colour-of-the-litmus-paper action then x must
be some representation of the colour of the litmus pa-
per.

It should be noted that this approach was inspired by
the work of Rosenschein (1985) who demonstrated
that by identifying “the agent knows that P” with “the
agent is in a state S and the agent being in state S im-
plies that P”’, one can construct a framework that sup-
ports all the standard axioms of propositional epistemic
logic'. The great advantage of this interpretation is that
it has an obvious and natural connection to computing
systems in general and planning systems in particular.

Adopting the scheme just described provides several
new opportunities for planners and presents us with a
number of new problems to overcome. The new op-
portunities include the ability to construct plans which
exploit the information provided by ‘finding out’ ac-
tions, either by using that information directly (e.g. by
dialling the phone number) or to make a decision
(“shall I declare the solution to be acidic or alkaline?”).
Most interestingly, it is possible to both construct plans
that solve universally quantified goals using iteration,
rather than expanding the quantified formula to its uni-
versal base (Weld, 1994) and planning for each in-
stance separately, and construct plans that involve

! Note that this paper is only concerned with agent knowledge in the
sense that if an agent knows that P then P is indeed true — issues of
belief and incorrect belief are not considered.

11

searching for something (“have I found the box with
the bomb in it yet?”).

The framework described in this paper has been im-
plemented in a planner called Baldric, about which
more detail can be found in (Becket, 1998).

4 Formalism

Since the underlying idea is so simple, this section will
be short.

Let S be some component of the executive agent’s state
and let us write S(t) to denote the value of S at time t.
We will take it as axiomatic that S is always defined
and unique:

Vv t.3! x. S(t) = x

Now let A be some observation action that changes the
value of S, and let do(A, t, t') denote A being carried out
over the interval between t and t’ (that is, the precondi-
tions of A are required to hold at t and the effects of A
are deemed to hold at time t’).

4.1 Deciding Observations

We now have to consider two types of observation
action. The first is that an action A decides the truth of
some proposition P by setting the value of S to be
some value k iff P is true:

do(A,t, 1) = (S(t)=k & P)
4.2 Value Observations

The second type of observation action observes the
value of some aspect of the world, such as the colour of
some litmus paper. If P(x) denotes “the value of the
aspect of the world in question has a value represented
by x” then we have

do(A, t,t) = (¥ x. S(t) =x = P(x)

Note that value observations may impute ‘bulk knowl-
edge’. For instance, P(x) could denote “x is a represen-
tation of the set of conference attendees” and be a pre-
condition for projecting out (representations of) mem-
bers of that set via some other action.

And that’s about it for the ‘knowledge’ part. The re-
mainder of this paper is concerned with how such basic
tools can be used to tackle more interesting problems
and the obstacles that have to be overcome in order to
do so.

5 Knowledge and Action Planning

This section presents a variation on hierarchical task
network (HTN) planning (Erol et al. 1993) adapted for
KAAP. Two novel characteristics of this framework
are that (a) plans may include disjunction and (limited
forms of) quantification and that (b) actions can have
different ‘determinisms’ in the Mercury (Somogyi et
al. 1995) sense that actions can legitimately ‘fail’ —
failure, in this case, being detected by the executive
agent’s program interpreter and used to make control
flow decisions.

5.1 Events, Actions, Tasks, Propositions
and Fluents

Events (i.e. the start and end points of tasks) are la-
belled with the times at which they occur’. If event t
occurs before event t’ then we write t < t'.

If A is an action, then do(A, t, t') is the task of carrying
out A starting at time t and finishing at time t'. Itis a
requirement that the start event precede the finish
event:

do(A t, 1) = t<t

Actions may be concrete or abstract. A concrete task
can be directly translated into a program step that can
be carried out by the executive agent. An abstract task
must first be decomposed, by the planner, into an im-
plementation consisting only of concrete tasks before it
can be executed by the agent.

A plan is a logical formula positing the execution of
some number of tasks, the achievement of some num-
ber of subgoals, and various constraints on, amongst
other things, the order of execution of the tasks in the
plan.

Propositions whose truth can vary over time are called
fluents; fluents take an extra, final, argument indicating
the time at which they hold true: if P(x) is a fluent then
P(x, t) says that P(x) is true at time t whereas —P(x, t)
asserts that P(x) does not hold at time t.

If a fluent P(x, t) appears in a plan then it is a subgoal
of that plan. The subgoal is said to be supported if the
plan includes some task do(A, t, t') s.t.

do(A, t,t) = P(x,t)

and a causal link constraint link(P(x), t’,) where

link(P(x), t, t’) =
et/ AVELESESE = P(x, 1)

2 Events in this paper are named t0, t1, 12, ... but the numerical
suffixes imply no temporal ordering.

In other words, a subgoal is supported if it is estab-
lished by some preceding task and that that effect is
required to persist up to the point where the subgoal is
required.

A plan is said to be complete if it contains no unsup-
ported subgoals. A plan is said to be concrete if it con-
tains no abstract tasks. The objective of the planner is
to find a complete, concrete, consistent plan formula.

5.2 Goals, Abstract Tasks and Methods

Goals and abstract tasks are replaced in the planning
process by methods that achieve or implement them
respectively. Methods are described simply as implica-
tions:

P & Method

where P is a goal or an abstract task. The correctness
of generated plans, of course, depends upon the cor-
rectness of the method axioms in the domain defini-
tion: for instance, causal links should not emanate from
tasks that do not achieve the stated effect and tasks
should not be included in methods without their pre-
conditions being either supported or listed as subgoals.

Example: Looking up a Phone Number

Methods

talking_to(‘Fred’, t) &«
do(dial_no_in_reg, t1, 12) A
know_phone_no_for(‘Fred’, t1) A
link(talking_to(‘Fred’), t2, t)

know_phone_no_for(‘Fred’, t1) «
do(lookup_phone_no_for(‘Fred’), 13, t4) A
link(know_phone_no_for(‘Fred’), t4, t1)
Starting Plan (Top-Level Goal)
talking_to(‘Fred’, t)
Final, Expanded Plan
do(lookup_phone_no_for(‘Fred’), t3, t4) A
link(know_phone_no_for(‘Fred’), t4, t1) A

do(dial_no_in_reg, t1, 12) A
link(talking_to(‘Fred’), t2, t)

Figure 2: Looking up a phone number.

Say we are constructing a plan for an agent with a sin-
gle register R, the value in R at time t being R(t). Let
know_phone_no_for(x, t) denote “R(t) is a representa-
tion of x’s phone number”.

Our goal is for the agent to set up a telephone connec-
tion with Fred, so the initial plan is just

talking_to(‘Fred’, t)

(unless otherwise stated, all variables in plans are
deemed to be existentially quantified.) Figure 2 de-
scribes the methods for the lookup task, which de-
posit’s a representation of a phone number in R, and
the dial task which uses it to decide what number to
dial.

5.3 Conditional Execution

By allowing plans to include disjunction and semide-
terministic actions — actions that may fail, usually if
some run-time condition is not met — then we can con-
struct plans that feature conditional execution.

The idea here is that the final plan will be turned into a
program with two or more branches; which branch is
actually executed by the agent is decided by semide-
terministic test actions at the start of each branch. In
Prolog fashion, when a semideterministic task fails the
executive agent’s interpreter will backtrack to the
choicepoint and try an alternative branch. If-then-else
control flow, for instance, can be obtained using a two-
armed disjunction, one arm of which is guarded by a
test for the truth of the condition and the other of which
is guarded by a test for its negation.

Example: Performing a Litmus Test

This time we want our agent to tell us whether a par-
ticular solution is acidic or alkaline; figure 3 shows the
basic methods and final plan structure. The starting
plan contains the disjunctive structure in this example,
although there is no reason why disjunction should not
be introduced through method expansion. Note that
this example uses a deciding observation task, as op-
posed to a value observation task in the phone number
problem.

Simple plan expansion treats each branch of the dis-
junction separately, so the same ‘setting up’ operations
will appear in each branch in the first instance. After
the expansion phase, the planner attempts to simplify
the plan structure by ‘factoring out’ components com-
mon to all arms of a disjunction. Indeed, this is a nec-
essary precursor to being able to extract a workable
program for the agent to run — this aspect of the KAAP
scheme presented here is discussed in more detail later
in the section on pragmatics.

5.4 Searching Problems

Often, one has to search for something before being
able to proceed. This can be done in two ways. If the
set of candidates is known to the planner in advance
then the planner can simply describe the searching

13

problem as a large disjunction in which each candidate
is tested before the appropriate action is taken. If, on
the other hand, the planner does not know the candi-
date set at plan-time then it can attempt to find a solu-
tion to the problem by constructing an iterative plan in
which each candidate is tested in turn until the required
member is identified.

Methods

solution_is_acidic «<
do(test(R(t3) = red), t3, t4) A
know_colour_of_dipped_litmus(t3)

solution_jis_alkaline <
do(test(R(t3) = red), 13, t4) A
know_colour_of_dipped_litmus(t3)

know_colour_of_dipped_litmus(t3) <
do(observe_colour_of_litmus, t5, t6) A
litmus_dipped_in_solution(t5) A
link(know_colour_of_dipped_litmus, t6, t3)

litmus_dipped_in_solution(t5) <
do(dip_litmus_in_solution, t7, t8) A
link(litmus_dipped_in_solution, t8, t5)

Solution

(solution_is_acidic A
do(say(“it's an acid!"), t1, t2))

(solution_is_alkaline A
do(say(“it's an alkalil”), t1, t2))

Fully Expanded and Factorised Plan

do(dip_litmus_in_solution, 17, t8) A

link(litmus_dipped_in_solution, t8, t5) A

do(observe_colour_of_litmus, t5, t6) A

link(know_colour_of_dipped_litmus, t6, t3) A

((do(test(R(t3) = red), t3, t4) A
do(say(“it's an acid!”), t1, t2))

v (do(test(R(t3) = red), t3, t4) A
do(say(“it's an alkali!”), t1, t2))

Figure 3: Performing a litmus test.

Iterative plans of the repeat-until variety can be de-
scribed using a combination of existentially quantified
plan fragments, semideterministic tasks (for the termi-
nation test) and nondeterministic tasks to enumerate the
candidate set. A nondeterministic task is much like a
nondeterministic predicate in Mercury or Prolog: it
may ‘succeed’ an arbitrary number of times, each time
assigning to a register, or some other part of the execu-
tive agent’s state, a value representing a new member

of the candidate set. The outline structure of such

plans is, therefore

I x. generate(R, t1,12) A
link(R(t) = x, t2, t3) A
test(R, 13, t4)

where generate(...) is the nondeterministic component
and test(...) the semideterministic termination condi-
tion.

Consider McDermott’s bomb-in-the-toilet problem
(McDermott, 1987): the agent is locked in a room with
a single toilet and a number of packages, one of which
contains a ticking bomb. The agent has to defuse the
bomb by flushing it down the toilet. Unfortunately, the
agent only gets one chance to solve the problem since
flushing a package down the toilet blocks it up. Figure
4 gives the solution in the framework presented here.

link(toilet_is_unblocked, t0, t7) A

3 x. do(choose_package, t1, 12) A
link(holding_package(x), t2, t3) A
do(listen_for_ticking_sound(x), 13, t4) A
link(know_whether_ticking(x), t4, t5) A
do(test(R = is_ticking), t5, t6) A
link(is_bomb(x), 6, 17) A

do(flush_down_toilet(x), t7, t8)

Figure 4: Iterative solution to the bomb-in-the-toilet.

In the solution, choose_package is a nondeterministic
action that causes the agent to pick up the packages,
one at a time on each iteration. The lis-
ten_for_ticking_sound action sets the agent’s R register
depending upon whether it hears a ticking sound from
the box currently being held. The test(...) action is
semideterministic as before and a successful result,
along with the final action, supports the top-level goal
of flushing the bomb down the toilet (the initial condi-
tions, labelled with time 10, are used to support the
flushing action precondition that the toilet be free of
blockages.)

The combination of the nondeterministic choosing task
and the semideterministic test task is spotted by the
planner’s program extraction stage and encoded as
some kind of repeat-until loop in the agent’s execution
language. Again, the planner has to take care over the
pragmatics of the plan (see later) in order to derive a
correct program from it.

5.5 Iteration over an Unknown Set

In a similar fashion, we can construct plans describing
iteration over a set of objects, this time using universal
quantification, nondeterministic actions and implica-
tion:

14

¥V x. 31,12, 13, t4.
generate(R, t1, {2) A
link(R(t) = x, t2, t3)

perform_task_on(R, t3, t4)

Tasks in the consequent of the implication may take
support from tasks in the antecedent, but tasks outside
the implication may not.

The applications to KAAP arise when the set to be iter-
ated over cannot be decided at plan-time — for example,
when the information has to be obtained from some
external database or other agent. Indeed, this structure
is quite flexible: there is no reason why the generation
step cannot also include nondeterministic tasks. This
could be used, for example, to ask each attendee at a
forthcoming conference whether they need accommo-
dation arranged or not and to go ahead and arrange it
for those answering in the affirmative.

6 Program Extraction

This section addresses a number of important points
that were glossed over in the preceding sections.

The key point is that, in the context of the more expres-
sive plan specification language presented here, pro-
gram extraction is no longer a trivial issue. Classical
plans are essentially simple conjunctive formulae
specifying what tasks are to be carried out and a partial
order on execution — program extraction merely in-
volves producing a sequence of instruction correspond-
ing to the tasks in the plan in some linearisation of the
partial order.

In the presence of local quantification, disjunction, and
semi- and nondeterministic actions, this approach sim-
ply will not work. The problem is that now a plan is a
formula presenting sufficient, but not necessary, condi-
tions for achieving the goal. The crux of the matter is
that normal (i.e. deterministic, or classical) actions
cannot be backtracked over since they change the state
of the world, making the program step ordering prob-
lem much more complicated.

For example, consider the following plan:

(do(test(is_spy(‘Fred’), t1, 12) A
do(shoot(‘Fred’), t3, t4))

(do(test(—is_spy(‘Fred), t1, t2) A
do(ask_questions(‘Fred'), t3, t4))

We want our agent to shoot Fred if he is the spy and to
ask him some questions if he is not. However, there is
no causal dependency between the tasks in either of the

branches, so logically the goal would be satisfied if the
agent shoots Fred and then determines that he is, in-
deed, the spy. Unfortunately, if the agent gets it wrong
and finds out that it should have picked the other
branch then it’s too late to ask Fred questions. (It
might be argued that, in this case, the goal is under-
specified; however, since more subtle versions of this
situation arise in iterative plans as well it seems that
some robust way of dealing with it is necessary.)

The program extraction problem, then, is to find some
ordering of the various tasks such that backtracking (or
whatever control mechanism is used in the target lan-
guage) will not lead to a situation where an alternative
course of action has been clobbered by the attempted
execution of another.

6.1 Disjunctive Plans

First, some terminology. A plan is sound if it is com-
plete, consistent and concrete. A plan is simple if the
tasks specified therein are all deterministic. A plan is
directly implementable if the corresponding program is
‘easily’ derived. Simple, linear plans are directly im-
plementable using the obvious strategy.

Now, consider a disjunctive plan I v A where I' de-
composes into the sequence3 A, Test, I s.t. A is sound,
linear and simple, Test is semideterministic and I" is
sound and directly implementable. If A is directly im-
plementable, then so is the whole plan — for example,
as

A, if Testthen I else A

provided that A, A is also sound. Note that it may be
necessary to factor out tasks common to I and A if they
are not idempotent — see figure 3 for an example.

6.2 Repeat-Until Plans

A plan describing a repeat-until structure must be or-
dered so that it decomposes into the following form:

A, A x. (Generate, B, Test, C)

where the components A, B and C are directly imple-
mentable, Generate is nondeterministic and Test is
semideterministic. The plan as a whole is directly ex-
ecutable, then, if A, (Generate, B)+, Test, C is sound,
taking A+ to mean an arbitrary sequence of one or more
instances of A (recall that Test only affects the state of
the world if it succeeds). This can be verified by
checking that the propositions protected by causal links

? The notation T", A denotes the plan composed of the conjunction of
T and A where the tasks in I" are constrained to occur before the
tasks in A.

15

supporting the loop body also hold after execution of
the loop body. In other words, it must be the case that

A, 3 x. (Generate, B,
3y. (Generate, B, Test, C)[y/x])

is a sound plan. One possible implemcntation4 of I
is

A, while(Generate) {B, if Test then {C, break}}

if we posit that nondeterministic tasks such as Gener-
ate are implemented by operations that either change
the state (of the agent and/or its environment) and re-
turn true or change nothing and simply return false.

6.3 Universally Quantified Plans

Universally quantified plans are very similar to existen-
tially quantified (repeat-until) plans, the only difference
being that the loop body is executed for all members of
the set enumerated by the Generate step. Hence a plan
that decomposes as

A, V x. (Generate = B)
might be implemented as
A, while(Generate) {B}

assuming A and B to be directly implementable.

6.4 Pragmatics: the Real World

In many real-world situations, knowledge sources such
as people and databases are typically incomplete, im-
perfect and can be expensive to consult. It is important
for a practical planning application to take these issues
into account: it may well be the case that consulting a
complete knowledge source may have such a high ex-
pected cost that it is better to go to a cheaper, less reli-
able source. For example, say I want to get hold of an
individual on the telephone, but I don’t have sufficient
information about them to find their number in the
telephone directory. One method is to call every num-
ber in the directory in turn until I reach the person I'm
after. However, this procedure, while guaranteed to
succeed (under various simplifying assumptions) is
likely to be prohibitively expensive. A far better plan
is to first ask someone we expect to be able to furnish
us with sufficient information to carry out a direct
lookup in the phone book.

4 This pseudo-code glosses over the complications of failure, since if
no solution is found in the loop body then the whole plan should fail
because the follow on part of the plan almost certainly assumes a
successful search. If the Generate operation runs out of options,
program execution should be aborted.

A proper examination of pragmatics in this framework
is beyond the scope of this paper and, indeed, is still an
open research topic. A more detailed discussion of the
problem (and the rest of the material covered in this
paper) can be found in Becket (1998).

7 Conclusion

A new style of KAAP has been described which suffers
from few of the difficulties that previous methods have
fallen victim to. In particular, only relatively minor
extensions to standard HTN planning are required to
support the construction of concrete plan specifica-
tions. Program extraction is the phase which incurs the
bulk of the penalty paid for greater expressive power,
in that there is now no longer a trivial relationship be-
tween plans and programs that implement them. Ex-
traction involves factorisation where necessary in dis-
junctive subplans, pragmatic reordering of conjuncts to
ensure that ‘branch mispredictions’ at runtime don’t
clobber recovery, and compilation to a more complex
programming model involving explicit representation
of the agent’s state and non-linear control flow.

The great advantage of the method outlined in this pa-
per is that it can be implemented efficiently, mainly
using well understood technology, and that it is capable
of solving a broad class of interesting and practical
KAAP problems. An appealing aspect is that imple-
mentations do not need to consider possible worlds,
quotational theories or manipulate modal formulae.

This work has been implemented in a planner called
Baldric which is currently being rewritten with the in-
tention of conducting KAAP experiments to improve
the strategic and interactive intelligence of agents in
computer games; it is hoped that this will give a better
feel for whether the approach really is applicable to
real-world problems and, if so, what holes are left to be

plugged.
Acknowledgements

Thanks have to go to Manny Rayner at NASA and Sam
Steel at Essex University for their valuable insight and
advice; both have been a great help in developing this
work.

References

Becket, R. Efficient Knowledge and Action Planning
in First Order Logic. SRI Technical Note
CRCO075, available at

http://www.cam.sri.com/tr/crcQ75/paper.ps.Z

Blum, A. & Furst, M. Fast Planning Through Plan-
ning Graph Analysis. In Procedings of the Four-
teenth International Joint Conference on Artificial

16

Intelligence, 1636-1642. Pub. Morgan Kaufmann.
1995.

Erol, K., Nau, D. & Hendler, J. Toward a General
Framework for Hierarchical Task Network Plan-
ning. In Papers from the 1993 AAAI Spring Sym-
posium, pages 20-23, AAAT Press. 1993.

Etzioni, O., Golden, K. & Weld, D. Sound and Effi-
cient Closed World Reasoning for Planning. Uni-
versity of Washington Dept. of C.S. and Eng.
technical report UW-CSE-95-02-02. 1996.

Haas, A.R. A Syntactic Theory of Belief and Action,
Artificial Intelligence, 28:245-292. 1986.

McDermott, D. A Critique of Pure Reason, in Compu-
tational Intelligence, 3:151-160. 1987.

Moore, R. Reasoning about Knowledge and Action,
SRI Al Centre Technical Note 191. 1980.

Moore, R. A Formal Theory of Knowledge and Action,
SRI Al Centre technical note 320. 1984.

Rayner M. & Janson S. Finding out = Achieving De-
cidability, in IJCAI Workshop on Knowledge, Per-
ception and Planning, Davis, Morgenstern &
Sanders (eds.) 1989.

Rosenschein, S.J. Formal Theories of Knowledge in Al
and Robotics, New Generation Computing, 3:345-
357. 1985.

Slaney, J. KD45 is not a Doxastic Logic, CISR techni-
cal report TR-SRS-3-96, Australian National Uni-
versity. 1996.

Somogyi, Z., Henderson, F., Conway, T. Mercury: an
Efficient, Purely Declarative Logic Programming
Language. In Proceedings of the Australian Com-
puter Science Conference, pages 499-512. 1995.

Weld, D.S. An Introduction to Least Commitment
Planning. Al Magazine, 15(4):27-61. 1994.

Weld, D.S., Anderson C.R., Smith, D.E. Extending
Graphplan to Handle Uncertainty & Sensing Ac-
tions. AAAI, 1998.

Merging Planning and Path Planning:
On Agent’s Behaviours in Situated Virtual Worlds

Marc CAVAZZA

School of Computing and Mathematics

University of Teesside
TS1 3BA
United Kingdom

M.0Q.Cavazza@tees.ac.uk

Eric JACOPIN
CREC-Saint-Cyr
Ecoles de Coétquidan
56380 Guer Cedex
France
ejacopin@acm.org

M. Shafie ABD LATIFF
EIMC Department
University of Bradford
BD7 1DP
United Kingdom
M.S.Abdlatif@bradford.ac.uk

1 Introduction

Intelligent agents that populate virtual environments
should be able to perform autonomous tasks. This
performance assumes some capabilities to carry out
plans whose elementary operators affect the state of
affairs in the virtual world. We here discuss the impli-
cation that the spatial nature of the tasks has on the
kind of planning technologies that can be used to im-
plement agents’ behaviour. Following previous work
in situated AI, we first introduce the notion of spa-
tialised planning environments; we then investigate
the conditions under which the spatialised planning
problem can actually be reduced to a geometrical
path planning problem coupled with simple action se-
lection, for agents possessing complete knowledge of
their environment but not controlled by intentional
representations. Finally, we outline a resolution pro-
cedure for spatialised planning environments.

2 Related works

Many different planning techniques have been pro-
posed for controlling agents in virtual environments.
The common ground for this work is however that
agents have to carry tasks of world object manipula-
tion that depend on some spatial properties and con-
figuration. The interaction of the agent takes place
with its environment as a whole and with the spe-
cific objects that this environment includes. [5] de-

17

scribes a planning system for the humanoid agent
Jack . Some of the features in ItPlanS make explicit
reference to the theory of situated actions, while its
incremental planning capabilities are compared with
those of PRS [6]. [7] identify some specific problems
in the control of an agent’s behaviour, drawing a dis-
tinction between low-level actions (where the agent
reacts to its environment) and high-level plans that
the agent should carry. This has served as a basis for
the development of the ”Microsoft Agent” system.
However, no theoretical framework is developed to
bridge the gap between high-level and low-level ac-
tions. In [3] have described path planning for agent
behaviour, but do not address high-level plans that
would make use of such paths. Following previous
work in situated Al [1], we have investigated the im-
plications for plan formalization and resolution of the
spatial nature of planning tasks [4].

3 Spatialised planning environ-
ments

Let us first introduce the notion of Spatialized Plan-
ning Environment (SPE). A SPE is made of a phys-
ical layout which is more than the reference world
upon which the agent performs its plans. It can
rather be said that the spatial relations between var-
ious objects acting as resources for the solution of a
plan carry a direct meaning for the resolution of the
plan itself, or actually encode part of the solution.

Furthermore, as described in the framework of situ-
ated Al, spatial environments have the unique prop-
erty to act both as targets for operation and as a
mean to store knowledge. The combination of these
two properties can be illustrated by an analogy with
blackboard techniques for problem-solving. Like in
a blackboard, the knowledge source (resource) trig-
gered by relevant data forms a Knowledge Source Ac-
tivation Record awaiting its application by the con-
trol mechanism, the spatial proximity of a object to
a specialized tool creates the local conditions for re-
active object manipulation. As transformations per-
formed on the object also have a spatial translation,
they can affect both the search space and the further
application of operators.

For instance, the domestic appliances in the
kitchen [4], can all be associated different meanings
according to their spatial arrangements relative to
the object upon which they are supposed to oper-
ate as the plan unfolds. SPEs are more than the-
oretical constructions or artifacts resulting from an
ethnomethodological perspective. Actually, most of
modern computer games can be described as SPEs, in
which there is a direct mapping between actions to be
carried and the spatial disposition of tools or weapons
that are required to perform the elementary actions
of which the plan solving the game level is to be made.
There is significant evidence of this through the no-
tion of ”ideal path” to solve a game level, although
this is specific to adventure/Role Playing Games. In
recent computer games, the notion of objective (or
sub-goal) becomes explicit. The collection of tools as
preconditions for specific actions is also made appar-
ent. The fact that a game level has a specific solu-
tion that consists in performing the correct actions
at given stages in time and space is of course a di-
rect evocation of planning technologies. The solution
plans appear for instance as part of the textual solu-
tions {also called ”spoilers”), which detail the set of
actions to be taken together with their proper justifi-
cations. They are just a textual description of a plan
from which the plan can be formalised more tradi-
tionally, e.g. through and AND/OR graph. However,
the same solution is often presented under the form of
an “ideal path” joining various landmarks that cor-
respond to objects to be collected or problems to be
solved. This is only possible because of the spatial
nature of part of the application semantics.

We can now introduce a basic framework for agents
in SPEs. The solution of a plan can be seen as
the combination of path planning and local reactive
actions that are fully determined by the local pre-
conditions of operators. The specific locations at
which operators are to be actions behave as land-
marks in the traversal of the environment. These
can be set as part of the design of the SPE. For ex-
ample, the design of video- games involves a purpose-

18

ful spatial arrangement of objects bearing a specific
meaning for the player; many games, especially in
the adventure genre, can actually be reduced to the
arrangement of tools and reactive objects on which
to operate. The hypothesis behind our work is that
landmarks serve the programming of agents in virtual
worlds: they thus are part of the resources of plans in
the tradition of situated action [1, 10]. When basing
plan resolution on path planning, the essential step is
to determine which landmark should be visited next.

This also suggests the important conclusion that
SPEs require an initial searching step, or ”priming”
step, which is crucial to finding an appropriate so-
lution. In the context of spatialised tasks, this is
a consequence of the fact that path planning is a
monotonous process, hardly accommodating back-
tracking: the search space for the first action should
be small enough to allow for an exhaustive search.
However, this approach should be consistent with the
general set of incremental planning techniques(6, 5].

We have seen that in SPEs the solution could be
amenable to geometrical path planning, which con-
sists in finding an optimal path from a source posi-
tion to a goal position along which the agent will
move in the virtual environment. This is a well-
described problem in robotics, with the important
difference that the virtual agent can be conferred an
absolute knowledge of its environment and does not
have to rely on sensor data to establish the correct
path in real time. Stated in these terms, path plan-
ning can be implemented through traditional search
techniques. Several of these can be used, but A*
provides acceptable solutions for static environments,
i.e. environments in which the goal does not change
during the search process itself. Also, because the
operators are applied one at a time and the results of
the local reactive actions taken might impact on sub-
sequent events, the path planning process only plans
from one landmark to the next one.

Identification of the next landmark thus is a cru-
cial step which can be achieved through various tech-
niques: (i) proximity heuristics and (ii) domain de-
pendent heuristics prioritizing landmark transitions.

The solution to a SPE can thus be represented by
the following algorithm:

LandMark «— GetFirst();

‘While LandMark # Goal Do
LandMark « FindNext();
Plan_path_to(LandMark);
Action « GetReactiveAction(LandMark);
Area «— GetBoundaries(LandMark);
Perform(Action, Within(Area));

End while

In some cases the environment can provide a hint
(proximity to the starting point). However, in the

general case a specific search procedure is need. This
might be similar to the notion of depth-bounded
search experts introduced by [5].

We wish to illustrate the notion of SPEs a little
further with discussion of the DigitVille problem [9,
page 160-161}:

(Opportunistic search). The figure 1 shows
a map of the hypothetical city of DigitVille,
used in this exercise to illustrate aspects of
the task of errand planning. Suppose that
Barbara works at General Heuristics and
lives in the Ocean View Apartments. On
the way home from work Barbara intends to
carry out several errands: getting groceries,
picking up the kids at the day-care center,
picking up some clothes that are ready at
the dry cleaner’s, and perhaps picking up
some treats for company that evening. For
simplicity, assume that each task takes 10
minutes to perform, that parking can only
take place at designated parking lots and
takes 2 minutes, that driving from point to
point takes 2 minutes per block, that walk-
ing takes 3 minutes per block, and that Bar-
bara needs to be home 75 minutes afters she
leaves work. Also assume that walking a
partial block or crossing a street takes no
time at all and that the time to "unpark” is
included in the 2 minutes for parking. Other
constraints are that groceries are too heavy
to carry farther than the grocery-store park-
ing lot and that the young kids will fuss too
much if they are taken on more than one
errand.

(This exercise was inspired by one used by
Barbara and Frederick Hayes-Roth in test-
ing cognitive models of planning by human
subjects. It is a variation of the travelling
salesman problem. This exercise is intended
to promote discussion on human strategies
of search for a familiar task.)

(a) Find a route home for Barbara that en-
ables her to accomplish all of her primary
tasks and as many of her secondary tasks as
possible. The primary tasks are picking up
the kids at day care, getting groceries, and
picking up a prescription for the kids at the
drugstore. The secondary tasks are pick-
ing up some forms at vehicle registration,
getting cash at the bank, getting a wid-
get at the hardware store, picking up some
pastries at the Elaborate Pastry Shop, and
picking up the clothing at the dry cleaner’s.
Present your solution showing the elapsed
trip time after each leg of the trip.

The important point here is the relation between

19

the primary and secondary tasks: none. Except that
“kids [should not be] taken on more than one er-
rand”, whatever this errand is. Everything is com-
patible with everything: an AND/OR graph of the
tasks would just consider everything possible (see fig-
ure 2). If we look at the map of DigitVille, we under-
stand that only the distances between the locations
where the tasks are to be performed and their dura-
tion are crucial to this problem. This is not the case
in SPEs where the agent can move and perform tasks
freely. In fact, Barbara may as well pick a better map
of DigitVille and find the shopping center 3 where she
could do everything she needs to, in the way she de-
cides to: the map of figure 3 still is coherent with the
graph of the tasks 2 but is much better for the perfor-
mance of the tasks than the map of DigitVillel. How-
ever, we can push the freedom a little further again
by distributing spatially the possible performance of
the tasks: we place Barbara into the new DigitVille
Hypermarket where you can find cash machines in
several stores and where the grocery store possess an
Elaborate Pastries section. Now, Barbara might as
well get cash while choosing groceries or buying a
widget at the hardware store. Getting cash clearly
is a routine task and Barbara would prefer spending
time thinking of the pastries than of the performance
of the “Get money from the cash machine” task. Not
only SPEs provide freedom in movements and in the
order in which the tasks are performed, but they also
allow routine performance of some tasks. Finally,
in the hypermarket of DigitVille, Barbara shall ap-
ply her A* algorithm on the and-or graph to design
a path according to this evening’s mood, which can
also be very dynamic (i.e. changing from one loca-
tions to another). This also illustrates the shopper’s
progress through a supermarket where the sight and
then pick-up of a necessary item only locally alter the
wandering of the shopper (8, pages 152-155].

4 Conclusions

We have introduced Spatialised Planning Environ-
ments which constitute a framework for virtual
agents in which the spatial layout encodes part of
the solution, where the resolution process can be
based on path planning from one landmark position
to another. While this framework is supported by
practical evidence and previous studies in planning
theory, we do not claim however, that this approach
should be suitable for any kind of planning applica-
tion. However we do claim it opens interesting di-
rections for the simulation of autonomous behaviour,
where part of the design of an experiment lies in
the spatial distribution of world objects with their
specific semantics. It would help exploring the be-
havioural consequences of spatial layouts by avoid-
ing biases due to specific encoding of high-level be-

haviours in the agents themselves.

References

(1]

2]

(8]

(9

(10]

AGRE, P. Computation and Human Experience,
Cambridge University Press (1997), 371 pages.

ALEXANDER, R. Construction of Optimal-Path
Maps for Homogeneous-Cost- Region Path-
Planning Problems, Ph.D. Thesis, Dept. of CS,
US Naval Postgraduate School, Monterey, CA,
U.S.A. (1989).

BaNnDI, S. and THALMANN, D.. Space Dis-
cretization for Efficient Human Navigation,
Computer Graphics Forum, 17(3): 195-2086,
(1998).

CONEIN, B. and JACOPIN, E. Proceedings of the
AAAI Fall’96 Symposium on Embodied Action,
AAAT Press Report FS-96-02, (1996).

GEIB, C. 1994. The intentional planning sys-
tem: ItPlanS. In Proceedings of AIPS’94, AAAI
Press, pages 55-60.

INGRAND, F.-F., GEORGEFF, M. and RaO,
A. An Architecture for Real-Time Reasoning
and System Control, IEEE Expert 7(6): 33-44
(1992).

KURLANDER, D. andLiNGg, D., Planning-Based

Control of Interface Animation, Proceedings of
CHI'95.

LAVE, J. Cognition in Practice, Cambridge Uni-
versity Press. 214 pages.

STEFIK, M. Introduction to Knowledge Systems.
Morgan Kaufmann. 870 pages.

SUCHMAN, L. Plans and Situated Action: The
problem of human/machine communication,
Cambridge University Press (1987), 204 pages.

20

Heuristic
Way

Ocean View
Apatments

Parking

"A" Street

Parking

Drugstore

First Avenue

"B" Street

Real
estate
office

Hardware
store
Groceries
Parkingl
Parkin
Day-care 9
] center
I [
parking 2)
s 8
“ &
Vehicle & o Danny's
Registration 8 clegﬁy , hei Pun
@ er's s Shop
] B
Drive-thru
Elaborate i
Goodie Pastries ¢
Two-Shoes Bank
Wine shopIrParking
4]7De1i
General Tofu Chelsea Hotel
Heurisitics| parking to
go

e I e I I e

Figure 1: Map of DigitVille.

21

Evening run in DigitVille

y

Picking up prescription for Getting Picking up the
the kids at the drugstore groceries kids at day care

etting a widget at

Picking up forms at
the hardware store

vehicle registration

Getting cas

at the bank Picking up the clothing

at the dry's cleaner
Picking up some pastries
at the Elaborate Pastries

Figure 2: The and/or graph of Barbara’s primary and secondary tasks this evening in DigitVille.

22

Day-care .
Drugstore center Groceries
Parking
Vehicle Hardware Dry Elaborate Bank
Registration store cleaner's Pastries
Figure 3: DigitVille as a Shopping center.
D £ Day-~care
rugstore center
Parking
Elaborate cash cash
Vehicle Dry Pastries |lmachine machine
Registration |[cleaner's
Groceries Hardware store

Figure 4: DigitVille as a Hypermarket.

23

24

Scheduling for an Uncertain Future with
Branching Constraint Satisfaction Problems

David W. Fowler; Ken Brown

Department of Computing Science, University of Aberdeen
dfowler@csd.abdn.ac.uk; kbrown @csd.abdn.ac.uk

Abstract

Agents which schedule tasks must deal with problems that change as time progresses, often while the problem is being
solved. In this paper, we assume that the agent does not blindly react to events, but uses knowledge of likely changes
to make decisions in the present that will facilitate future actions. To solve this problem, we introduce the branching
CSP, a new variant of the constraint satisfaction problem, along with two algorithms for solving it. Some experiments
are presented, showing that constraint propagation improves search efficiency.

1 Introduction

In this paper, we consider the problem of an agent that
periodically receives requests for action, and must make
a decision for each action as it is received. The agent also
has a simple model of what requests are likely to occur.
We believe that this knowledge can enable the agent to
make decisions that will better facilitate its future actions.

The approach used here involves extending the frame-
work of constraint satisfaction to include the model of fu-
ture events to give a new form of constraint satisfaction
problem, (or CSP) (Kumar, 1992; Tsang, 1993), called a
branching CSP (BCSP).

A related area is that of dynamic constraint satisfac-
tion (Dechter and Dechter, 1988; Miguel and Shen, 1999).
This approach models a dynamic environment as a series
of constraint satisfaction problems, but does not include
the model of future events that we use here.

Wallace and Freuder (1997) do consider future events
in problems which can change over time, which they call
recurrent CSPs. However, the changes are frequently re-
curring and temporary deviations from a normal state of
affairs, and the aim is to find solutions that require as little
adjustment as possible.

Fargier et al. (1995) examine constraint satisfaction
problems where knowledge of the world is uncertain. The
main difference with the work described here is that we
examine problems where a sequence of decisions must be
planned in advance, instead of just a single decision.

We have concentrated here on problems that involve
hard constraints that can not be violated, and with vari-
ables that can be left uninstantiated (at a cost). Leaving a
variable uninstantiated corresponds to denying a request.
Other approaches, such as fuzzy scheduling (Kerr and
Slany, 1994), and partial constraint satisfaction (Freuder
and Wallace, 1992) deal with constraints that can be vio-
lated (at a cost), but where all variables are instantiated.

25

We intend to look at ways to combine these approaches in
the future.

2 An Example Problem

To illustrate the type of problem we are considering, we
will use a simple example. Consider a scheduling prob-
lem in which new tasks arrive during the process. The aim
is to schedule as many tasks before their due date as pos-
sible. There are two identical resources that the tasks may
use. The tasks for this problem are described in Table 1.

Task | Duration | #Resources | Due | Utility
A 2 1 4 1
B 2 1 4 1
C 3 1 4 3
D 1 2 4 8

Table 1: Tasks for Example Problem

We start with tasks A and B. We know that one of the
other tasks will arrive at time 1. It will be C with probabil-
ity 0.6, and D with probability 0.4. A final restriction (fu-
ture work will look at how to overcome this) is that tasks
A and B must be scheduled before it is known which of
tasks C or D arrives next. How should we schedule tasks
A and B?

It can be seen that there are three reasonable possibil-
ities, shown in Figure 1. Solution (a) allows task C to be
scheduled, but not task D, whereas the solution (b) allows
task D but not task C. Solution (c) allows both of tasks
C and D to be scheduled, at the price of omitting task B.
Which solution is best depends on the probabilities of the
tasks, as well as their utilities.

For this example, the three solutions have expected
utilities of:

Time
(a) (h (c)

Figure 1: Two Possible Solutions

@) 1+1+ (0.6 x3)+(0.4x0)=38
(b) 1+ 1+ (0.6 x 0) + (0.4 x 8) = 5.2
(c) 1+0+ (0.6 x 3)+(0.4x8) =6.0

It is therefore best to schedule task A only, as this
gives the highest expected utility.

We will now present a method to represent and solve
this type of problem.

3 Branching CSPs

The initial definition of a Branching CSP involves the
following components: variables, constraints, and a state
tree.

The set of variables can be represented as:

X ={X1,...,Xn}

Each variable X; has an associated finite domain of values
D;, and a non-negative utility value u;. It is possible in
this formulation for a variable to be left unassigned. In
which case the utility gained from that variable will be 0.
We have used the standard notion of utility from decision
theory (see, for example, French (1986) or Lewis (1997)),
with the difference that the utilities are non-negative.

A constraint is a restriction on the values that a subset
of the variables can simultaneously take. For the purposes
of definition, the set of constraints can be represented as:

C ={Ci,...,Cnm}

where each constraint C; is a pair (J;, P;); J; being an
ordered subset of X: (X;1, Xj2,...,X;), and P; being
asubset of Dj; x Dja X ... %X Djs.

The state tree represents the possible development paths
of the dynamic problem. Each edge in the tree is directed,
and is labelled with a transition probability. Each node
contains a variable from the set X, with the restriction
that a variable can appear at most once in any path from
the root node to a terminal node.

For our definition we have a set of states

S ={5,...,5}

with each state S; having an associated variable X g,. There
are transition probabilities p;; labelling the edge (if it ex-
ists) between .S; and S;.

For any path through the state tree from root to ter-
minal node, a series of constraint satisfaction problems is

produced, involving all variables that have been encoun-
tered at each node in the path so far. At each node, a value
must be found for the corresponding variable, or the vari-
able may be left unassigned. If a constraint involves vari-
ables that are all assigned values, then those values must
satisfy the constraint.

A solution to the overall problem is an assignment of
a value to each variable (alternatively leaving the variable
unassigned) at each node in the state tree, so that at each
state all relevant constraints (those that involve only vari-
ables that have been assigned values in the path from the
root to the node in question) are satisfied.

A solution represents a plan for each possible sequence
of variable additions, and we have assumed that the total
utility of the solution can be found by summing the utili-
ties of the assigned variables in the path that actually oc-
curs. However, we must try to find a solution before we
know which path will actually occur, and so we define the
optimal solution to be the one with the highest expected
total utility. Note that there are other notions of optimal-
ity, such as minimal regret, but we have concentrated on
maximising the expected utility.

The expected utility from a node can be defined re-
cursively as follows. The E.U. from a terminal node S;
is:

u; if Xg, is assigned
{ 0 if Xg, is unassigned

For a nonterminal node S;, the E.U. is:

u; if X, is assigned
Zp“ EU; + { 0 if Xg, is unassigned
j

where the sum is over all the child nodes of S;.

For our example problem, the variables will be the
four tasks A, B, C and D. Their domains will be the possi-
ble locations on the time/resource diagram. There will be
six pairwise constraints between the tasks to ensure that
they do not overlap. The state tree is shown graphically
in Figure 2.

State 4

Figure 2: The State Tree

It would be possible to represent our model as a ’game
against Nature’, where the player’s moves are the possible
assignments to the variables, and Nature’s moves are the
different branches of the tree in Figure 2. However, we
assume here that the choices of variable assignments do
not affect which paths will be taken through the tree, and
therefore our simpler model is sufficient.

4 Solution Algorithms

In this section two complete algorithms, depth first search
and forward checking search, are described briefly. These
have been implemented in C++, and the results of some
preliminary experiments are given in the next section.

4.1 Depth first search

The depth first algorithm finds the maximum expected
utility for the problem by trying all possible values for
the variable in the initial state, and for each value recur-
sively finding the maximum expected utility for each of
the children states of the initial state. At each state, only
those values consistent with the assignments previously
made are considered.

A branch and bound approach can be used here: as
there may well be more than one optimum solution, it is
best to stop as soon as the first is found. This is achieved
by calculating at each state an upper bound on the ex-
pected utility from that state. This can be done by relax-
ing all the constraints and assuming that each variable can
be assigned a value. During search, if any assignment to
a variable attains this upper bound, no more values for the
variable need be tried.

The algorithm is given in Figure 3. It returns the max-
imum utility achievable from a given node, and also re-
turns the set of assignments to achieve this utility.

4.2 Forward checking search

The forward checking algorithm (Figure 4) uses constraint
propagation to reduce the domains of variables lower down
in the tree, by eliminating values that conflict with the cur-
rent variable assignment, in an analogous way to that of
forward checking in standard constraint satisfaction (Har-
alick and Elliott, 1980).

It also uses the idea of branch and bound, in a more
advanced form, as the algorithm that performs the prop-
agation of constraints also returns a new upper bound on
the expected utility that can now be achieved from the cur-
rent state. If this bound is lower than a previously found
value, then the branch of the tree can be pruned immedi-
ately.

The forward checking algorithm uses constraint prop-
agation to reduce the domains of variables lower down in
the tree. The function propagate performs this reduc-
tion, and returns an upper bound on the expected utility
that can now be achieved. If this bound is lower than an
existing solution then the propagation can be undone (us-
ing retract), and the next value tried for the current
variable immediately.

5 Experiments

To test and compare the performances of the algorithms,
they were both used to solve the same range of randomly

27

DF _Search(input S;.:node,

output bestTEU:float,

output bestPlan:set of (S;, x:))
Local vars:
x:domain type of X variables
TEU:float // total expected utility for S;
plan, result: set of (Si, x;)
stop:boolean

bestTEU := 0;
for x in domain(Xs,) do
begin
plan := §;
TEU := utility_oft X s,);
if (Xs,, x) and current assignments satisfy C then
begin
for S; in children_of(S;) do // recursively calculate TEU
begin
result := DF _Search(S;);
TEU := TEU + (result.utility x prob(S; — S;));
plan := plan U result.bestPlan;
end;
if TEU > bestTEU then
begin
bestTEU := TEU;
bestPlan := plan U{(Xs,, z)};
end;
if TEU = maxUtility(S;) then
begin // stop if no better solution can exist

stop .= true;
break;
end;
end;
end;

if not(stop) then
begin // try leaving X s, unassigned
plan := 0;
TEU :=0;
for S; in children_of(S;) do
begin
result := DF Search(S;);
TEU := TEU + (result.utility X prob(S; — S;));
plan := plan U result.bestPlan;
end;
if TEU > bestTEU then
begin
bestTEU := TEU;
bestPlan := plan U{(Xs,, L)},
end;
end;
return bestTEU, bestPlan;

Figure 3: Depth First Algorithm

produced problems, and the number of constraint checks
examined. There are a large number of parameters that
can be altered; for these initial experiments most parame-
ters were fixed. These parameters and their values are:

FC_Search(input S;:node,
input futureVars:set of X;,
output bestTEU :float,
output bestPlan:set of {S:, z:))
Local vars:
x:domain type of X variables
TEU:float
plan, result: set of {Si, zi)
stop:boolean

bestTEU := 0;
SfutureVars := futureVars \Xs,
for x in X, do
begin
plan := 0;
TEU := utility_ ofi Xs;);
if propagate({Xs, , x),futureVars,S;) < bestTEU then
begin
retract({Xs; , x),futureVars);
continue; // Continue with next value for x
end;
for S; in children_of{ S;) do
begin
result := FC_Search(S; futureVars);
TEU := TEU + (result.utility X prob(S; — S;));
plan := plan U result.bestPlan;
end;
if TEU > bestTEU then
begin
bestTEU := TEU;
bestPlan := plan U{{Xs,,x)};
end,
retract({Xs,, z),futureVars);
if TEU = maxUtility(S;) then
begin
stop := true;
break;
end;
end;
if not(stop) then
begin
plan ;= ;
TEU := 0;
for S; in children_of(S;) do
begin
result ;= FC_Search(S;,futureVars);
TEU := TEU + (result.utility X prob(S; — S;));
end;
if TEU > bestTEU then
begin
bestTEU := TEU;
bestPlan := plan U{{Xs,, 1)},
end;
end;
SfutureVars := futureVars UXs;;
return bestTEU, bestPlan;

Figure 4: Forward Checking Algorithm

28

e The number n of variables (10);
e The size m of the domains (10);

e The maximum utility value for any variable (50).
Each utility value is an integer selected uniformly
from the range [1,50];

o The maximum depth of the state tree (8). Each path
from the initial state to a terminal state can have a
maximum of 8 states. The tree is generated accord-
ing to a branching process (described below) which
is terminated if it reaches the maximum depth.

The parameters which were varied are:

e The proportion p; of constraints that exist (out of
the total possible, n(n — 1)/2) between a pairs of
variables (only binary constraints were used for these
tests). p; is also called the density of the constraint
graph, and for low values of p; there is a high prob-
ability that the constraint graph will be disconnected.
p1 was varied from O to 1 in steps of 0.2;

e The proportion p; of tuples that are disallowed in
any constraint (this is known as the tightness of the
constraint). There will be pam? such tuples in each
constraint. This parameter was also varied from O
to 1 in steps of 0.2;

e The branching process that produces the state tree.
A distribution gives the probability that a state will
have 0,1,2 etc. children states. Two distributions
were used, as shown in Table 2.

Number of children 0 1 2 3
Distl | 0.05 | 0.55 | 0.80 | 1.00
Dist2 | 0.05 | 0.85 | 1.00

Table 2: Probability Distributions

The transition probabilities from each state were se-
lected as follows: a total value of 1 was shared out be-
tween each child state, with each child receiving a ran-
dom probability selected uniformly from 0 to whatever
value was left to be shared; the last child receiving the
remainder.

Note that the parameters n,m,p; and py are standard
in constraint satisfaction, and our choice for these param-
eters corresponds to model B in Maclntyre et al. (1998).

For each experiment, 20 problems were generated for
each combination of p; and ps, and the median number
of constraint checks required to solve the problems was
recorded.

The results of these experiments are shown in Fig-
ures 5-8. The first thing to note is that forward check-
ing involves many fewer constraint checks than depth first
search (by a factor of around 10). Depth first search is
better on the highly unconstrained problems (on the left

hand side of the graphs), as in these problems there is a
very high density of optimum solutions, and the propaga-
tion and retraction of forward checking is a waste of time.

1e+08

. — - :
p1x 100
20 ——
1e+07
1e+06
» 100000
x
g
£ 10000
g
B
5
© 1000
1 — J. . .
0 20 40 60 80 100
p2 x 100
Figure 5: Depth First Search Using Distl
1e+08
1e+07
1e+06
100000

10000

Constraint checks

1000 +

p2 x 100

Figure 6: Forward Checking Search Using Dist1

As forward checking is more efficient for most prob-
lems (and especially for the hardest problems), we have
concentrated on using it instead of depth first search. The
previous experiments were repeated using forward check-
ing, but varying p; in steps of 0.1, and p, in steps of 0.02.
100 problems were generated for each combination of py
and p;. The results are shown in Figures 9 and 10, each
curve having a peak further to the left as p; increases.

There has been much work in recent years on the ’phase
transition’ phenomenon in CSPs and related problems,
where there is a region in the space of problems which are
much harder to solve than elsewhere (Cheeseman et al.,

29

1e+08

1 x 100") . !
20
16407
1e+06
g 100000
[
5
% 10000
B
5
S 1000
100}
10 b -
1 —t o — A 1
[20 40 60 80 100
P2 x 100
Figure 7: Depth First Search Using Dist2
1e+08
1e+07
1e+06
100000
2
£
=
]
E 10000
[
%
5
© 1000
100
10 | 4
‘ B — . — . 1
0 20 40 60 80 100
p2 x 100

Figure 8: Forward Checking Search Using Dist2

1991; Prosser, 1994). Our results also show a hardness
peak, but there are some important differences. It is inter-
esting to compare the hardness of branching CSPs with
that of static CSPs, where all variables must be assigned
values (if this is possible). This is done in Figure 11 for
p1 = 60 (other values of p; show similar behaviour). The
static CSP has the same number of variables (10) and do-
main size (10).

For values of p; below the hard region, the two prob-
lems are equally hard. These problems are simple to solve,
as the constraints are very loose, and most or all of the
variables can be assigned values easily. The steep climb
in difficulty occurs at around the same value of p», but
for higher values of ps the BCSP problems are harder to
solve than the corresponding static CSP problems, as we

1e+08

— — T 100000

- sy
static -------
1e+07
1e+06
§ 100000 §
“E‘E 10000 E
o [&]
1000
100
10 100 . —L . L :
0 20 40 60 80 100
p2 x 100 p2 x 100
Figure 9: Forward Checking Search Using Dist1 Figure 11: Comparison of BCSP v CSP hardness
1e+08
which have an expected utility less than a certain
reso7 threshold. In this way, solutions can be quickly
found for the most likely and most profitable branches,
routt at the cost of sacrificing the chance to find solutions
° for the least likely and least profitable branches.
2
£ 100000 e An algorithm to find solutions to problems where
E the postponement of assignments is allowed. For
2 10000 example, in the original example problem, it would
° be better to schedule task A, and postpone schedul-
1000 ing B until it was known whether either task C or D
would be next. It can be checked that the expected
100 utility would then rise to 7.0. At the moment, the
algorithm can only postpone assignments for one
1 step (so it must assign a value to a variable when
02100 the identity of the next variable becomes known).
Future work may consider how to extend this limit
Figure 10: Forward Checking Search Using Dist2 further.
Other future work will concentrate on:
would expect. A static CSP is either solvable or unsolv- * Investigating new methods for tackling the prob-
able, and for high ps it is easy to determine that a problem lems. For examplg, it seems possible that the MAC
is unsolvable. On the other hand, a BCSP solver must find algorithm (Maintaining Arc Consistency) (Sabin and
a *best’ solution, so there is more work to be done in this Freuder, 1994) could be adapted in a similar man-
case, and the hardness declines more slowly. ner to forward checking.
e Extending the model to cope with more realistic
scenarios. For example, the current model can only
6 Future Work represent events as happening in a sequence. It
In addition to the search algorithms described in this pa- would be useful to be able to specify the times of
per, two other algorithms have been implemented, but for events, as this would allow for better planning of
which experimental results have still to be produced: the solution process. (If the next event is known to
be far in the future, more time can be used in find-
¢ A thresholding method, which can be used in con- ing a good assignment for the current variable).

junction with either of the two existing search algo-

rithms. This simply prunes the tree of any branches ¢ Finding an "anytime” algorithm to solve the prob-

lems. This is an algorithm that finds progressively

30

better solutions to a problem, and can be interrupted
to find a reasonably good solution to the entire prob-
lem. The algorithms presented here work in a depth
first manner, which economises on storage, but may
well ignore important branches if they are inter-
rupted.

e Combining our approach of allowing variables to
be unassigned with that of standard partial constraint
satisfaction.

e Comparing our algorithms with existing methods
for scheduling under uncertainty, for example Just-
In-Case Scheduling (Drummond et al., 1994).

Acknowledgements

The first author has been funded by a joint studentship
from the Faculty of Science and the Department of Com-
puting Science, University of Aberdeen.

We would like to thank Patrick Prosser of Glasgow
University for reviewing an earlier version of this work;
and also the members of the Computing Science Depart-
ment of the University of Aberdeen for their comments
and discussion; and last, but not least, the two anonymous
reviewers for their comments.

References

Peter Cheeseman, Bob Kanefsky, and William M. Taylor.
Where the really hard problems are. In Proceedings of
IJCAI-91, pages 331-337, San Mateo, CA, USA, 1991.
Morgan Kaufmann.

Rina Dechter and Avi Dechter. Belief maintenance in dy-
namic constraint networks. In AAAI-88, pages 37-43,
Saint Paul, Minnesota, USA, August 1988. American
Association for Artificial Intelligence.

Mark Drummond, John Bresina, and Keith Swanson.
Just-in-case scheduling. In AAAI-94:The Twelfth Na-
tional Conference on Artificial Intelligence, Seattle,
Washington, USA, 1994,

Hélene Fargier, Jérome Lang, Roger Martin-Clouaire, and
Thomas Schiex. A constraint satisfaction framework
for decision under uncertainty. In Proceedings 11th In-
ternational Conference on Uncertainty in AI, Montreal,
Canada, 1995.

Simon French. Decision Theory: an introduction to the
mathematics of rationality. Ellis Horwood Ltd, 1986.

Eugene C. Freuder and Richard J. Wallace. Partial con-
straint satisfaction. Artificial Intelligence, 58:21-70,
1992.

31

M. Haralick and G. L. Elliott. Increasing tree-search ef-
ficiency for constraint satisfaction problems. Artificial
Intelligence, 14:263-313, 1980.

Roger M. Kerr and Wolfgang Slany. Research issues
and challenges in fuzzy scheduling. Technical Re-
port CD94/68, Technische Universitit Wien, December
1994.

Vipin Kumar. Algorithms for constraint-satisfaction prob-
lems: A survey. Al Magazine, pages 3240, Spring
1992.

H. W. Lewis. Why Flip a Coin? : the art and science of
good decisions. John Wiley and Sons, Inc., 1997.

Ewan Maclntyre, Patrick Prosser, Barbara Smith, and
Toby Walsh. Random constraint satisfaction: Theory
meets practice. In Michael Maher and Jean-Francois
Puget, editors, Principles and Practice of Constraint
Programming - CP98, pages 325-339, Pisa, Italy, Oc-
tober 1998. Springer.

Ian Miguel and Qiang Shen. Hard, flexible and dynamic
constraint satisfaction. The Knowledge Engineering
Review, 14(3):199-220, 1999.

Patrick Prosser. Binary constraint satisfaction problems:
Some are harder than others. In /th European Confer-
ence on Artificial Intelligence, pages 95-99, 1994.

Daniel Sabin and Eugene C. Freuder. Contradicting con-
ventional wisdom in constraint satisfaction. In 1 1th Eu-
ropean Conference on Artificial Intelligence, 1994.

Edward Tsang. Foundations of Constraint Satisfaction.
Academic Press, London, 1993.

Richard J. Wallace and Eugene C. Freuder. Stable so-
lutions for dynamic constraint satisfaction problems.
In Workshop on The Theory and Practice of Dynamic
Constraint Satisfaction, Salzburg, Austria, November
1997.

32

Evaluation of Algorithms to Satisfy Disjunctive Temporal

Constraints in Planning and Scheduling Problems

M. A. Salido, A. Garrido, F. Barber

Dpto. Sistemas Informéticos y Computacién
Universidad Politécnica de Valencia, Camino de Vera s/n 46071
Valencia, Spain
msalido@dsic.upv.es, agarridot@dsic.upv.es, fbarberedsic.upv.es

Abstract

The management of constraints either implicit or explicit in planning and scheduling environments is commonly a very hard task.
The way to manage them in the proper way is becoming an important area of study. Moreover, the common approach in planning and
scheduling problems is that the constraints to satisfy are disjunctions on intervals (i.e., they imply several possible alternatives).
Hence, the complexity of their management is vastly increased (NP-complete complexity). If we use a closure process, there exist
two possible solutions to manage these constraints: algorithms that maintain the input and derived constraints and algorithms that
only maintain the input constraints. The former require large amounts of memory to store all the generated constraints, whereas the
latter do not require large amounts of memory. Here, we present an analysis and evaluation of algorithms to satisfy temporal
constraints on metric-disjunctive intervals in scheduling environments using this last kind of algorithms.

1 INTRODUCTION

Planning and Scheduling are two active and relevant
areas in Artificial Intelligence which have become of
great interest to researchers because of their applications
in real problems. There exist many problems
(manufacturing, transport problems, planning of
production processes, etc.) which should be treated as
planning problems with temporal constraints and
resource usage constraints. Classical methods for
solving them are based on resource allocation.

In Operational Research techniques, the partial sequence
of actions is already known, and the actions are
principally based on resource allocation. In contrast,
Artificial Intelligence methods are used to determine the
correct plans. The planner builds a plan as a partially-
ordered sequence of actions to reach a goal and the
scheduler must ensure that this plan is executable
(resource allocation and temporal constraint
satisfiability). Nevertheless, the increasing complexity
of current problems obligates us to use new, more
flexible and more powerful approaches.

1.1 Integrated Planning and Scheduling
System

In this section, we present a high-level general view of
our integrated system (Figure 1). Our work is developed
from an integrated architecture of planning and
scheduling (Garrido et al. 1999). The main goal of this
integration is to guarantee plan executability and satisfy

33

the problem constraints through the planner and the
scheduler in a simultaneous and interactive way. The
planning system searches through several alternative
partial plans, dispatching the constraints and resource
requirements that the scheduler must check. Hence, the
scheduler guarantees data constraints and resource
assignments are satisfied. Due to this interactive
behaviour, the need for improving both planning and
scheduling process efficiency becomes more important.
In this integrated system, the planning improvements are
focused on techniques to reduce the search space, solve
conflicts (threats among actions), grouping primitive
actions in macro-actions, etc. On the other hand, the
main improvements in the scheduler deal with a more
efficient management of constraints: resource usage
constraints and metric-disjunctive temporal constraints
(Barber, 2000). We will focus specifically on the
scheduling process and on the temporal constraint
management.

Integrated Process of
Planning & Scheduling
Control Module

Figure 1. Integrated Planning and Scheduling environment

Since scheduling processes imply temporal constraints
about actions and resources, one of the main
improvements in the schedulers deals with a more
efficient management of constraints. These constraints
represent temporal intervals, which can indicate an order
of execution, allowing us to represent a wide set of
possible solutions. Moreover, these constraints can be
disjunctive or non-disjunctive. If the constraints are non-
disjunctive, only one order of execution will be possible.
However, if the constraints are disjunctive, different
(and alternative) orders of execution will be feasible
(Baptiste & Le Pape, 1995; Dechter et al., 1991).

Following, we are going to define a simple, typical
example in which there exist metric-disjunctive temporal
constraints (Dechter et al., 1991). In Figure 2, the input
constraints (the explicit ones) of the example are shown
in a temporal graph. This example will help us to
explain the nature of the problem which is described in
this paper:

Michael goes to work either by bus (at least 60°)
(R;), or by car [30°, 40°] (R;). Anthony goes to
work either by train [40°, 50°] (R3), or by car [20’,
30’] (Ry). Today Michael left home (t;) between
7:10 and 7:20 (Ry), and Anthony arrived (t5) at
work between 8:00 and 8:10 (R,). We also know
Michael arrived (t;) at work about [10°, 20°] (Ry)
after Anthony left home (t;3).

[60 =]y,
[30 40);,

{60 70]g,

Figure 2. Input constraints of the example

Some queries can be made about the information in
the example:

¢ Who arrives at work earlier? Michael or Anthony?

¢ Could all these disjunctions be satisfied at the same
time?

e Which kinds of vehicles are going to be used in the
final solution?

o Is this example’s information consistent, i.e., is
there a solution?

We might use several techniques in order to answer
this last question. One of these techniques is based on
traditional methods of Constraint Satisfaction Problems
(CSPs) that work on a previously known set of
constraints obtaining a final solution which answers the

34

previous questions. Nevertheless, the behaviour of this
technique is not adequate enough due to its lack of
flexibility. For each new set of constraints (which are the
result of including or excluding constraints), a CSP
process must resolve the entire problem in order to
obtain a new solution. However, when the set of
constraints is modified, the previous solution may
become invalid.

On the other hand, other techniques that can be used
to solve problems with metric-disjunctive temporal
constraint are based on closure processes. The main goal
of closure techniques is to guarantee the consistency of
the existing constraints, which may be included and/or
excluded by means of an interactive behaviour. There
exist several levels of consistency depending on the
solution exigency, from the lowest exigent levels (for
instance, path consistency) to the most exigent ones
(global consistency) and two alternative to guarantee
this consistency:

Algorithms that maintain derived constraints

In this case, derived constraints which are obtained from
the set of input constraints are explicitly represented in
the temporal network. Consequently, these algorithms
require large amounts of memory to store all the derived
constraints in the closure process. For instance, in the
previous example (Figure 2), the derived constraints
would be t0—12, t0-t3, t1—t3, t1—t4 and t2—t4 (see
Figure 3). When a constraint between two temporal
points is asserted into the system, these algorithms check
its consistency with the existing constraint. If the new
constraint is consistent, the resulting constraint to
maintain will be the most restrictive combination
between them, and the input constraint will not be
maintained. Due to the fact that the graph is always
propagated, retracting a constraint is a very complex
task (it is difficult to determine the input constraint) and
it obligates us to repeat the closure process for every
input constraint.

[70 =]

[60 701,

Figure 3. Derived constraints of the example

Algorithms that only maintain input constraints

These algorithms only maintain input constraints (the
explicitly asserted ones which appear in Figure 2). The
main advantage of these algorithms is that they do not
require large amounts of memory to store the derived
constraints because they do not carry out any
propagation process between the new constraint and the
existing ones. For this reason, these algorithms may be
used in an attempt to reduce the complexity of asserting
new constraints and they ease the process of retracting
some asserted constraints into the system. When a new
constraint between two temporal points (nodes) is
inserted into the system, the algorithm retrieves the most
restrictive constraint (the minimal one) between these
two points. Next, the algorithm checks whether the new
constraint is consistent with the retrieved one. If it is
consistent, the new constraint is accepted, and if not, it
is rejected. The main difficulty is to calculate the
minimal constraint in a nonpropagated disjunctive graph
in the most efficient way. It is a complex task because
there exists an exponential number of paths that
represent the constraints to be calculated. Since the
graph may contain both negative arcs in parallel
(disjunctions) and circuits, we must find all paths in the
associated graph in order to obtain the shortest path
which represents the minimal temporal constraint
(Goldfarb, 1991).

{10 20,
[30 40,

\\ /’

-

[-20-10},
[-40 30},

Figure 4. Equivalence between disjunctions and arcs in parallel

As can be observed, problems with metric-disjunctive
temporal constraints may be represented by means of a
directed graph with negative weights and arcs in parallel
(Figure 4). Nodes represent time points, and arcs
between nodes represent metric-disjunctive temporal
constraints among time points. The negative weights are
temporal intervals, and arcs in parallel are denoted by
means of disjunctive weights. For instance, let x; and x;
be two nodes. The metric-disjunctive constraint might
be

X; {[dk’Dk]’[dI’Dl]""} x]' :dk,Dk,dl,DIESK .

Hence, these problems may be treated as problems
over temporal graphs. One of the most studied problems
in graph theory is the shortest path problem or the k-
shortest paths problem in a network (Ford & Fulkerson,
1974; Shier, 1979; Goldfarb, 1991). Over the last four
decades, several algorithms have been proposed for

35

solving the shortest path problem or the k-shortest paths
problems (Ravi et al., 1992). Many of these methods are
variants of the well-known Bellman-Ford algorithm
(Aho & Ullman, 1992; Ford & Fulkerson, 1974). Our
problem attempts to generate algorithms for finding all
paths (without circuits) from a node source x; to a node
sink x,, which represent time points. Therefore, we have
proposed a unidirectional search algorithm and a
bidirectional search algorithm. The unidirectional
search algorithm generates a spanning tree to find all
paths between two nodes. This algorithm obtains all
paths by means of a strategy which is similar to the
inorder strategy. The number of generated nodes is
exponential according to the number of nodes of the
graph, although its spatial cost is linear. In contrast, the
bidirectional algorithm does not generate the entire
spanning tree to find all paths between two nodes. The
search process starts forward from a node (the source
node) and backward from the other node (the sink
node). When the partial paths meet, a new complete path
is found. Thus, the number of generated nodes is
decreased with regard to the unidirectional algorithm (it
is theoretically the square root), but the spatial cost is
increased because both forward and backward trees
must be simultaneously stored in memory.

In section 2, we present the specification of the
unidirectional and bidirectional search algorithm. The
analysis of the algorithms and their evaluation are
presented in section 3 and section 4, respectively.
Conclusions and future lines of work are discussed in
section 5.

2 SPECIFICATION OF THE
ALGORITHMS

In this section, both the unidirectional and bidirectional
search algorithm are presented. We begin introducing
the necessary notation used in the algorithms,

2.1 Preliminaries. Notation

Definition 1

Let G=(V,E) be a connected graph. V is a finite non-
empty set of nodes. E is a set of pairs of nodes called
arcs. V(G) and E(G) represent the set of nodes and arcs
of graph G respectively. We assume V ={x;,x;,....x, }»
[V|=n and |E|=l. Node x; of the arcs (x;,x;), or
(xj, %), is said to be adjacent to node x;. We denote
Adj(x;) as the set of x; adjacent nodes, and we say
deg(x;) is the x; degree.

Definition 2

A path from node x; to the node x,in a connected

graph is an ordered sequence

[(x1,%3), (x3,%3), <oy (X3. %07 hoons (XX)] of nodes such

that there is an arc from each node to the next one, i.e.,
(x;,x;41) is an arc for i=12...,n—1. Without loss of

generality, we denote this sequence by (x,x3,...,x,) . A
valid path is a path without repeated nodes. The
maximal length of a valid path (x,x,,...,x,) in a graph
of n nodes is n—1, i.e., the number of arcs along the
path.

Definition 3
Let G=(V,E) be a connected graph and let (x;,x j) be
an arc. We can say x; is a predecessor of x; and x; is

a successor of x;.

Definition 4

We denote the ordered list of the x;
predecessors as
Ps(x;) = (x0, %, %) 1 Xj #xp, Vj# p,0S jpSi=1.
Analogously, we denote the ordered list of the x;

forward

backward predecessors as
Pr(%) = (Kip1, Xig20 s %) 1 X £ X, Vi p it IS jp<n.

Definition 5
I_’f(x,-) is ‘the x; direct predecessor’ in forward

exploration, B(x;) is ‘the x;

; direct
predecessor’ in backward exploration.

whereas

Definition 6

The set of x; valid predecessors in forward exploration

(nodes which do not form circuits) is
Sucy (%)= Adj(x;)\Pf (x;), and the set of x; backward

true predecessors is Suc (x;)= Adj(x;)\ B, (x;).

Definition 7

We denote (ay,a5,...,a,)7 by (ag,....a2.a) -

2.2 The unidirectional search algorithm

The Unidirectional Search Algorithm is a well-known
algorithm which finds all paths between nodes x; and x,
by generating the spanning trec by means of a
unidirectional strategy. It starts from the node source x;
in level 0. Level 1 is formed by the adjacent nodes of the
node x;. Thus, level i is formed by the adjacent nodes of
level i-1 which have not been processed in that branch
(i.e. Suc(x;)). Hence, the algorithm terminates when all
paths have been found.

36

2.3 The bidirectional search algorithm

The Bidirectional Search Algorithm is an algorithm
which finds all paths between nodes x; and x, and,
therefore, it finds the minimum constraint between x;
and x,. This algorithm works on a bidirectional strategy
in which it finds paths starting from the node source x; in
a forward direction and from the node sink x, in a
backward direction and varying the direction of the
expansion alternatively. Hence, the complete path will
be found when both semi-paths meet.

Notation

F; = Set of frontier nodes generated in the forward
spanning.

F, = Set of frontier nodes generated in the backward
spanning.

H; = Set of Ileaf-nodes generated in forward
exploration.

H,= Set of leaf-nodes generated in backward
exploration.

C; = Set of reached nodes in forward exploration.
C, = Set of reached nodes in backward exploration.
C = Set of found paths.

@ = List concatenation operator.

Algorithm
Bidirectional Search Algorithm (Graph, x,, x,)

; Initialisation stage
Cy :={x1}, H :={x1}, Fr=9¢;
Cp={t} Hy={.}, F=0:C=9;
fori=1Itondo
Pe(x;):=nil, By (x;)=nil
endfor
if nMOD2=0 then z=nDIV2
else z=(n—-1)DIV 2
endif

; Search stage
for k=1to z do

Search (f.b,F,,H,,.C,.Cy,,C;Cp,H,, Fp ,C) 5
forward

Search (b,f,F,.H,.C,,Cp,C;Cp,H,, Fpy, C) 5

backward
endfor

; Odd stage

if nMOD 2 =1then

Search (f,b,F,,H,.C,,C,,C;Cp,Hp, ., C) 5
return C

endAlgorithm

Algorithm 1. The Bidirectional Search Algorithm

Vix e Hy,do
if x;e C, then
Vxje Suc,,(x;) do
If x; € B,(x;) then

Ve Sucf(xi) do
P

end;

Algorithm Search (I1:m,\v,F,,H,,C,.C,,C;0:C,,H,,.F,.C)

1f ()0 {s @ B (s)F f ¢ then

CeCu {P,,, (x)o {x o {p,) }; new path has been found
F,, < F,, U Suc,,(x;); we update F,,
C,y < Cp, U Suc,,(x;); we update C,,

.\)= Balx;)@ {x}; we update the x; predecessors
H,, « F,; we assign to set of leaf-nodes H,, the set F,
F,, < ¢ ; we empty the set of frontier nodes

Algorithm 2. The Search Algorithm

Theorem 1

Let G=(V,E), |V|=n, |E|=1 be a connected graph. The

bidirectional search algorithm finds all paths from a
node source x; to node sinkx,, .

Proof

We assume a path (x,...,x%_y, X, Xg4q,-.., X,;) €Xists, and

the bidirectional search algorithm does not find it. We
will reason over this premise and we will demonstrate
that this path has been found by the algorithm (arriving
at a contradiction).

if {x1,x9,...,x,} @2 C = Iy € {x,x3,...,x,}:
a)x € Hy Axy € Hy foranyH ,H,
or
b) xc € Hy v x; € Hy,but Sucgs (x)= ¢

a) If X € Hf AXy € Hb = —Exi Xy € Suc(f‘b)(xi)
=> Deg(x;)=0 (contradiction) because the graph is
connected.

b) x, € Hyvx, e H, but Suc(f,b)(xk)=¢
We have assumed that {x,..., xy_1, X, Xgs1reeor X, § 05 @
path = Suc, (xx)= x4 and

Sucy(x)= x4 = Suc s p) (x;}# ¢ (contradiction).

All paths are going to be found because the algorithm
expands both the forward and the backward tree until
the n/2 level. Consequently, no path will be lost due to
the fact that the algorithm finds all the paths of length n-
1, the maximal length of a valid path without circuits in
a graph with n nodes.

37

3 ANALYSIS OF THE
ALGORITHMS

In this section, we present both a temporal and spatial
analysis of the proposed algorithms in section 2. Their
respective complexities are based on the number of
nodes in the initial graph.

3.1 The unidirectional search algorithm

Let n be the number of nodes in the graph. The
branching factor is determined by the number of
descendent nodes from each node. Thus, the effective
branching factor By is the maximum of these numbers.
The maximum depth of the generated tree is bounded by
the maximum length of all the valid paths. Since the
valid paths do not contain circuits, the maximum length
is lower than the number of nodes (specifically, the
maximum length will be n-1). Therefore, the maximum
number of generated nodes is given by the following
formula:

n=1 i-1

1+ZH(Bf - j)e O(B,"") e O(B;")

i=1 j=0

However, the real number of nodes is lower because a
new node can not be generated due to a cycle in the
current path. Moreover, as By is always lower than n, the
temporal complexity in terms of n is O(n").

The unidirectional search algorithm obtains all paths
by means of a strategy which is similar to the inorder
strategy. Therefore, it only maintains one complete path
each time as maximum. Hence, the spatial complexity is
O(n).

3.2 The bidirectional search algorithm

In order to calculate the temporal complexity, the
bidirectional algorithm behaves as two unidirectional
algorithms. On the one hand, it starts from the source
node towards the sink node. On the other hand, it starts
from the sink node towards the source node. Thus, the
two generated trees have exactly half the depth (instead
of generating a n-depth tree, two n/2-depth trees are
generated). Consequently, the number of nodes is given
by the next formula:

(n-1)/2 i-1
2{1+ i H(Bf - €08, le 0(B,")
i =0

As can be deduced of this formula, the asymptotic
spatial complexity is O(n"). Its complexity is the same as
that of the unidirectional search algorithm, but its
practical behaviour is much better (because it
approximately generates the square root of nodes).

On the other hand, the spatial complexity is greater
than the unidirectional complexity. In order to be able to
join the partial paths found, it is necessary to maintain
the two whole trees. Hence, the required memory is
proportional to the number of generated nodes, and the
spatial complexity is

(n-1) n
O(2n A)e O(né)e of(n")

4 EVALUATION OF THE
ALGORITHMS

In order to evaluate the performance of the two
proposed algorithms, we implemented them in Common
Lisp. The computer used in our tests was a Sun Ultra 10
Sparc with 256 Mb. of memory and with the SunOS 5.7
operating system.

We evaluated the algorithms by their execution time
and the number of nodes generated. Once the graph is
defined, the algorithms carry out a search process
between two nodes which are randomly chosen. The
selected graphs were random graphs which consisted of
a set of nodes (from 20 to 100) and a set of arcs, which
represented 2-disjunctive and non-disjunctive
constraints. We limited the number of disjunctive
constraints to 10. This implies having an equivalent
number of 2'°=1024 different non-disjunctive graphs for
each generated graph. In addition, we varied the
branching factor, from 1.1 up to 1.5 which implies
varying this factor from 2.2 up to 3.

The mean and variance of the execution time (in
hundredths of a second) and the number of nodes
generated in a 20-node graph for the unidirectional
algorithm are shown in Table 1. We modified the
effective branching factor By from 1.1 up to 1.5. Table 2
shows the same values for the bidirectional search

38

algorithm as are shown in Table 1 for the unidirectional
search algorithm.

Unidirec-

. Time (hs) Nodes Generated
tional
(20 nodes) Mean Variance Mean Variance

By= 1.1 0 0 111.6 72.4
B;=1.2 0 0 148.4 46.4
B;=1.3 40 54.8 636 229.4
B;=14 40 54.8 3225.2 1959.3
B;= 1.5 60 54.8 3927.4 24243

Table 1. Execution time and nodes generated in the
Unidirectional Search Algorithm (20-node graph).

Bi'direc— Time (hs) Nodes Generated
tional
(20 nodes) Mean Variance Mean Variance
By=1.1 0 0 86.8 14.3
By= 1.2 20 44.7 125.8 26.8
By= 1.3 20 447 471 77.8
By= 1.4 480 164.3 1378.4 297.7
By=1.5 940 634.8 2167.8 1179.2

Table 2. Execution time and nodes generated in the
Bidirectional Search Algorithm (20-node graph).

As can be observed in the previous tables, the mean
of the execution time is higher in the bidirectional
algorithm although the number of nodes generated is
lower. This average time is higher due to the fact that, in
the computation time in each node is much higher in the
bidirectional search algorithm: it is necessary to check
whether a path has been found by joining two semi-
paths (one from the forward tree and the other semi-path
from the backward tree). As analysed in section 3, the
number of nodes generated is lower in the bidirectional
search algorithm. Theoretically, the bidirectional
algorithm asymptotically generates the square root of the
nodes generated by the unidirectional search algorithm.
However, the number of nodes generated in practice is
approximately only half. The variance values are quite
high due to the fact that the results obtained are greatly
dependent on the topology of the graph.

In Figure 5 and Figure 6, we present the graphics of
the nodes generated in the two search algorithms for
each graph of our tests.

Nodes Generated in the Unidirectional Search
10406 - - —
) / B, factor 1,1 ——
! ! B, factor 1,2 -emv
H H B, factor 1,3 oo
800000 h i B, factor 1.4
: { B, factor 1,5 -
i
: /
! ;
600000 ! i
i
| /
h
! /
400000 ! g
. H
l’l
200000 ¢ ,/
/
...... 4 e
1Y SR e —
2] 60 80 100
Nodes of the graph

Figure 5. Nodes generated in the unidirectional search

As can be observed in Figure 5, the higher the
branching factor, the greater the number of nodes
generated. For instance, since a higher branching factor
implies a greater number of arcs, , the unidirectional
algorithm is not able to manage 40-node graphs with a
branching factor higher than 1.3.

Nodes Generated in the Bidirsctionsl Search

10000} ¢

Nodes of the graph

Figure 6. Nodes generated in the bidirectional search

In Figure 6, the number of nodes generated is lower
than in Figure 5 because the bidirectional search
algorithm generates less nodes for the same graph. In
this case, the bidirectional search algorithm has
generated less than 3500 nodes for a 40-node graph with
branching factor 1.2, whereas the unidirectional search
algorithm has generated more than 7000-nodes for the
same graph.

The graphics of the execution time are presented in
Figure 7 and Figure 8. In these figures, the execution
time demonstrates that the bidirectional search algorithm
takes much longer than the unidirectional search
algorithm for the same graphs and the same branching
factors. For instance, the bidirectional search algorithm
takes 13420 hundredths of second in the 40-node graph

39

with branching factor 1.3 and, on the contrary, the
unidirectional search algorithm takes only 460.

Time in the Unidirectional Search
60000 — - —_— —
! /B factor 10 ——
N /‘ B. factor 1,2 -----
50000 ; ; B, foctor 1,3 e
! B. factor 1.4
' / B, factor 1,6+ -
40000 v /
I’ .
,-‘
Km] ” W
l“
20000 ' /'
l/
it /’,
10000 . i /
. /, /
PN J
_____ ; /
o kazzol R {
2 o 8 [100
Nodes of the graph
Figure 7. Execution time for the unidirectional search
Time in the Bidirectional Search
100000 -
: B. factor 1,1 ——
) J 3. factor 1.2 -----
B. factor 1.3
90000 ',/ B, factor 1.4
£ B, factor 15 W
1 '/"
|
50000 !
'1' ,/'
P ;
[3
40000 :f '
I
ol o
20000 ¢ ¢ ;
i
e ‘:"
0 y,
2 o 6 -}
Hodes of the graph

Figure 8. Execution time for the bidirectional search

Finally, it is important to note that these algorithms
are not applicable to complete graphs with many nodes
(in which there exists an arc between each pair of
nodes). Due to the huge number of existing paths, it is
impossible to obtain all the paths. For instance, in a
graph with only 20 nodes, the number of existing paths
is approximately 10",

5 CONCLUSIONS

In this paper, we have presented two algorithms to find
the most restrictive constraint between two temporal
points in a temporal graph. Since each arc represents a
constraint on temporal disjunctive intervals, the arc’s
weight can either be positive or negative. Therefore,
there does not exist an admissible heuristic that avoids
having to find all the paths in order to obtain this
minimal constraint.

These proposed algorithms can also be used in other
problems based on graph exploration. However, even
though the number of generated nodes is decreased by

using the bidirectional search algorithm, the needed
storage space is increased.
As can be deduced from the results presented, these
kinds of algorithms are not applicable to graphs with
many nodes. Graphs with more than 100 nodes become
unmanageable, specially if the branching factor is higher
than 1.5 or 2. As can be seen in the results of the
comparative study, the bidirectional algorithm generates
fewer nodes than the unidirectional one. However, the
spatial cost of the unidirectional algorithm is lower than
the bidirectional search algorithm cost. The results
demonstrate the suitability of each algorithm for use in
the management of temporal constraints. These methods
are not adequate enough in many real problems due to
the difficulty of finding the optimal solution. Thus, our
work is focused on reducing this complexity by means
of the following techniques:

e Heuristic techniques in order to solve real problems
in polynomial time. We can reduce the complexity
of the search processes by using a heuristic that
helps us to decide which path must be generated,
and which must be discarded, according to some
criteria. These criteria might lead to a path which
does not represent the most restrictive constraint
and we would have to choose between a
nonminimal constraint obtained in a faster way or a
minimal constraint obtained in a slower way.

o Combined CSP and closure techniques to improve
the behaviour of planning and scheduling processes
(Alfonso & Barber, 1999).

e Other techniques that do not guarantee the total
consistency, for example path consistency.

e The use of new data structures which might
improve the behaviour of these processes allowing
us to have more powerful tools for solving real
problems of planning and scheduling.

We can also use other methods that diminish the
consistency of the generated graph (Freuder, 1982) and,
therefore, decrease the complexity of the process.

Another interesting idea for the application of these
algorithms to scheduling processes is to work on
nondisjunctive graphs, which can be solved in
polynomial time. When a disjunctive constraint appears,
the method will select one of the disjunctions (according
to criteria such as slack, due time, etc.) and it will ignore
the other ones (Alfonso & Barber, 1999). If the selection
has been appropriate the other disjunctions will be
discarded. However, if the selection has been
inappropriate, a backtracking process will be necessary
in order to continue through another disjunction. In this
case, the criteria are focused on minimising the number
of backtracking stages.

ACKNOWLEDGEMENTS

This work has been proposed in the Intelligent
Planning & Scheduling Group of the Polytechnic
University of Valencia

(http://www.dsic.upv.es/users/ia/gps) and partially

40

supported by the grant CICYT/TAP98-0345 from the
Spanish government.

REFERENCES

AV. Aho and 1.D. Ullman, ‘Foundations of Computer
Science’, Computer Science Press, (1992).

M.I Alfonso and F. Barber, ‘Combinacién de Procesos
de Clausura y CSP para la Resolucién de Problemas de
Scheduling’, Proceedings of the VIII Conferencia de la
Asociacion Espafiola para la Inteligencia Artificial,
1(3), 35-42 (1999).

P. Baptiste and C. Le Pape, ‘A Theoretical and
Experimental Comparison of Constraint Propagation
Techniques for Disjunctive Scheduling’, Proceedings of
the Fourteenth International Joint Conference on
Artificial Intelligence, 600-606, Morgan Kaufmann,
(1995).

F. Barber, ‘Reasoning on complex disjunctive temporal
constraints’, Journal of Artificial Intelligence Research,
(2000).

R. Dechter, 1. Meiri, and J. Pearl, ‘Temporal constraint
networks’, Artificial Intelligence 49, 61-95 (1991).

L.R. Ford, D.R. Fulkerson, ‘Flow
Princeton University Press, (1974).

in Network’,

E.C. Freuder, ‘A sufficient condition for backtrack-free
search’, Journal of ACM 29(1), 24-32, (1982).

A. Garrido, E. Marzal, L. Sebasti4 and F.Barber, 'Un
Modelo de Integracién de Planificacién y Scheduling',
Proceeding of CAEPIA'99 1(3):1-9, (1999).

D. Goldfarb, ‘Shortest Path Algorithm Using Dynamic
Breadth-First Search’, Network, 21, 29-50 (1991).

R. Ravi, V. Madhav, and C. Pandu, ‘An Optimal
Algorithm to Solve the All-Pair Shortest Path Problem
on Interval Graphs’, Network, 22, 21-35 (1992).

D.R. Shier, ‘On Algorithm for Finding the K-Shortest
Paths in a Network’, Network, 9, 195-214 (1979).

Scheduling Activity in an Agent Architecture

Ignacio Soto
Dpt. Tecnologias de las Comunicaciones
Universidad Carlos III de Madrid
c/Butarque 15
28911 Leganés (Madrid)

Spain

isoto@it.uc3m.es

Abstract

Agents for applications in dynamic environments require artificial intelligence techniques to solve problems to achieve
their objectives. For example, they must develop plans of actions to carry out missions in their environment, in other
words, to achieve some state in the world. But also, the agents must fulfill real-time requirements that arise because the
characteristics of the applications and the dynamism of the environment. In this paper we analyze the use of a schedule
of activity in an agent architecture to control the resources (time) needed by agents to accomplish their objectives.

1 Introduction

An agent must achieve objectives in dynamic and com-
plex environments. To achieve these objectives it must
carry out a series of tasks. We call task to a schedulable
and executable procedure. A task can be computational,
i.e., one that tries to find out other tasks which once exe-
cuted will eventually let the agent achieve its objectives.
Or a task can embody actions in the real world and/or per-
ceptions of the environment.

On the other hand the activity of the agent is condi-
tioned by real-time requirements:

1. The application can have real-time constraints: the
agent must fulfill each objective before its deadline.

2. The agent must be reactive in front of events in
the environment. Some will need an immediate re-
sponse by the agent to guarantee its own security,
others will allow for deliberation to deal with them
(to find out which tasks to execute associated with
them).

3. The behavior of the agent must be robust in the
sense of always doing useful work. If it has not
resources to fulfill all its objectives, it must try to
fulfill its most important ones, while not being dis-
tracted by objectives it cannot achieve.

Requirement 2 has been the main aim for agent archi-
tectures that have been used to build agents that need to
interact with a real world environment (for example, con-
trolling robots). Less effort seems to have been made to
deal with requirements 1 and 3 (but see section 5 in which
we compare our work with other approaches).

41

In section 2 we describe an agent architecture to ful-
fill the requirements mentioned above. This agent archi-
tecture is based on the blackboard model. We identify
the characteristics that this model offers that, we believe,
are useful for building intelligent agents that combine the
use of different artificial intelligence techniques with real-
time requirements. And then, we propose modifications
to the basic model that are needed to fulfill these require-
ments. In particular, we propose that, to be able to deal
with resource constraints of high level objectives (mis-
sions) of the agent, the agent architecture can benefit from
having an schedule of the predicted activity to achieve
those objectives. In section 3 we describe the role of the
schedule of tasks that defines the activity of the agent and
how can be built under real-time constraints. In section 4
we present experimental results about the behavior of the
architecture using the schedule. In section 5 we compare
the role of the schedule in our agent architecture with the
role that plans play in other agent architectures, and com-
ment on other related work. And finally, in section 6 we
summarize our results and give directions for future re-
search.

2 Agent Architecture

Our research group has been working in developing an
agent architecture to fulfill the requirements mentioned in
the introduction. This architecture is called AMSIA.
AMSIA is based on the blackboard model (Corkill,
1991; Carver and Lesser, 1992; Hayes-Roth, 1988; Pfleger
and Hayes-Roth, 1997). Using this model, we can divide
the knowledge of our agents in a series of Knowledge
Sources (KSs). This division has several advantages:

1. Distribution: first, of course, we are dividing the
activity needed to solve a problem. The parts should
be easier to build than the complete solution. More-
over, incremental and/or hierarchical reasoning is
natural in this model.

2. Software reuse: each part solves a problem and
5o, it can be reused in different situations where
the problem appears and/or in different applications
(Hayes-Roth et al., 1995). Application program-
mers can take the basic architecture and bring or
build knowledge sources to deal with their domain
problems.

3. Flexibility: it allows the agent to use different rea-
soning methods. Each knowledge source is inde-
pendent from the others and can be built in any
form needed by the application. The knowledge
sources doesn’t communicate directly. The only re-
striction is that a knowledge source must be capable
of understanding the representation of the knowl-
edge in which it is interested and that will have been
left in the blackboard by other knowledge sources.

4. Estimation of resource requirements: the divi-
sion of the activity needed to solve a problem in
parts makes easier to estimate resource requirements.
The agent can do this estimation separately for each
part, and it can compensate the resource use of dif-
ferent parts. Also, real-time artificial intelligence
techniques, such as anytime algorithms or approxi-

mate processing, can be integrated smoothly in knowl-

edge sources.

In AMSIA, we have refined the traditional blackboard
model with two new properties:

1. All the activity in the system is explicitly sched-
uled. With the term activity we refer both to actions
in the real world and to actions internal to the agent
(i.e. reasoning activities including planning). This
is the base to control the use of resources.

2. We make independent in the agent the following of
a line of activity which, at the same time, gener-
ates possibilities of activity for the future, from the
decision of what line of activity must be followed.

We believe that the second property defines an im-
portant division needed to achieve real-time performance.
The line of activity of an agent represents its committed
resources. It defines a behavior with some profit for the
agent. Choosing future lines of action is the act of com-
mitting resources to achieve some profit. The separation
of these two activities allows the agent to control its op-
portunism.

In the past we have explored achieving this division
using a multiprocessor architecture for our agent (Soto
et al., 1997, 1998). We used a processor to follow a line

42

of activity and offer new ones; and another to analyze the
possibilities that were created by the agent by following
its line of activity, and to choose the future line of ac-
tivity of the system. We continue working in this archi-
tecture but, in this paper, we explore another approach to
the problem, namely we study how AMSIA achieves the
mentioned division in time, and not with the use of two
processors. In this architecture the own schedule of fu-
ture activity of the agent must include time to consider
and choose among possibilities of future activity. This
is not easy because there are situations in which the agent
doesn’t know when possibilities for future activity are go-
ing to be opened. We study how to deal with this situation
in next section.

To predict future activity the agent must use plan-
ning techniques. In AMSIA, reasoning tasks can create
plans of objectives; and control tasks can translate those
to plans of tasks (to achieve the objectives), assign them
resources, and introduce them in the schedule. Decisions
can be delayed simply by using a reasoning task to de-
cide what to do about an objective in the right moment,
perhaps extend it in a series of sub-objectives. Changes
in the plan of objectives are easy because they are in the
blackboard and can be accessed by any task. Changes in
the method (task) to achieve an objective are also easy
because the alternative tasks are kept associated with the
corresponding objective.

Figure 1 shows the conceptual model of AMSIA. No-
tice:

1. Control and execution are independent activities ac-
cording with property two above, but both of them
get its time of execution from the schedule that de-
fines the activity of the system.

2. Both control and domain actions have preconditions.
This is a check to ensure that the conditions ex-
pected by the task to be executed are really so when
it is going to be executed. If they are not, the task
is not executed and an external (see bellow) event
is generated. Soto et al. (1998) presents a more de-
tailed discussion of this issue.

3 Scheduling Tasks in AMSIA

3.1 Construction of the Schedule

To have a schedule of activity allows AMSIA to control
the use of resources. The problem is how to build this
schedule.

In AMSIA, activity is triggered by events. These events
signal that something interesting has happened. They rep-
resent changes in the blackboard that can be consequence
of a reasoning activity or of perceptions in a broad sense:
we consider perceptions readings from sensors but also
messages from other agents or a timer that expires.

Sub-plans to
achieve an objective

Control: it chooses
future activity

Schedule of activity

[l s ecc[ac] [rd

A]

5 time

PC: domain preconditions
A: domain actions

PCC: control preconditions
AC: control actions

Figure 1: The Conceptual Model of the Agent Architec-
ture

For each event there will be a number of KSs whose
knowledge can be useful in that situation. The agent iden-
tifies those KSs, creates tasks based on them, builds pos-
sible sequences of those tasks to do the work needed in
front of the event, and then it must add one of the se-
quences to the global schedule that defines its (of the agent)
future activity. Different sequences will make different
trade-offs in resource usage and quality of expected re-
sults. The schedule registers the resources allocated to the
tasks. In our implementation the only resource considered
is time and so, it is kept in the schedule the instants before
which the execution of each task must begin and end.

The activity needed to deal with an event (identify
KSs, create tasks, build sequences of tasks, and introduce
one in the schedule) is too complex to be done in a fixed
or negligible time. Instead, this activity must be sched-
uled itself, i.e., a task to deal with the event, to do that
activity, must be included in the schedule. To do so, we
divide the events in two different kinds:

e internal: events internal to the reasoning flow of the
agent;

e external: events external to that flow.

Internal events are created by the reasoning activity
of the agent. They show the need/possibility of using new
tasks to develop the reasoning work in which the agent
is involved. For example, the execution of a task in cer-
tain level of abstraction can discover that it is needed the
execution of several tasks in a lower level of abstraction.
So, internal events can be anticipated by the agent and it
must include in the schedule of activity a task to deal with
them.

But there are also events that aren’t produced by the
reasoning activity of the agent. We call them external
events. Examples are certain situations perceived in the
environment, or a message from other agent. The situa-
tion is the same as before in the sense that the agent needs

43

to execute a task to deal with the events. The difference
is that the agent cannot anticipate these events and so, it
cannot have in the schedule tasks to deal with them. The
solution is that, when an external event is received by the
agent, asynchronously, it must include a task in its sched-
ule to deal with it.

The agent can control its openness and reactivity in
front of events because it decides when and how it is go-
ing to deal with them.

The scheduler works with the algorithm that is shown
in figure 2.

Is there any
unpredicted event
nding?

Is (priority of the
event) > (priority
of first task in

schedule)?

No

Include in the schedule
a task to deal with the event

Is there enoy,
time to inclu
the event?

1 .

Figure 2: Algorithm of the scheduler

Execute first task in
schedule (if there is one)

The scheduler is non-preemptive (it works between
tasks, not when an event is received, which is reasonable
in deliberative tasks but see section 6 conclusions and fu-
ture work) and dynamic (of course it doesn’t know the
future time of arrival of new events to the agent).

3.2 Example of Schedule Construction

In figure 3 it is shown an example of the algorithm work-
ing. We begin with an empty schedule. An external event
is received and, hence, the scheduler adds a task to the
schedule to deal with it. To assign time to this task the
scheduler has the information of the kind of event and
(possibly) the time that has spent in tasks to deal with
the same kind of events in the past (more on this later).
This task is then executed resulting (in this example) in
the scheduling of two new tasks. The scheduler algorithm
is run, as there is no new external events, the next task in
the schedule (task number two in the figure) is run. This is
a deliberative task and as a result of its reasoning activity
internal events are generated.

There are not external events and so next task (task
three) is executed. This task is in the schedule to deal with
the internal events generated by task two. As a result, new
tasks are added to the schedule.

Task four is again a deliberative task that generates
internal events. A point to notice is that the agent can
predict the time that is going to need to execute not only
task four but also the tasks that task four identifies for

external event
1

intermal events intemal events
internal events internal events

el
T

NN 4 [5T1 ¢

time

time

[7]

time

41 [42]43] 6 | 7

I i

Task that
generates
evenls

Task that
deals with
events

Ny Task excouted

D Task

Figure 3: An example of a schedule

execution. This is useful because is a reserve of resources
that allows to know early if the agent is going to have
resources enough to execute the plan, and it simplifies the
work of scheduling the tasks identified by the execution
of task four.

3.3 Estimations of Execution Time of Tasks

An important problem is how to assign time to the tasks in
the schedule, mainly because most of them are delibera-
tive or represent complex actions in the environment (not
a primitive action but a reactive module to achieve some
state in the environment). We are not trying to answer this
question here. Our architecture offers the means to apply
the solutions proposed elsewhere. For example:

¢ Anytime algorithms: they can be interrupted at any
moment and they guarantee to offer a result, al-
though more time of execution will mean results
with more quality. They have associated perfor-
mance profiles that indicate the expected quality of
results in function of the time of execution. Tasks
can be constructed as anytime algorithms giving the
tasks that add them to the schedule the flexibility
of assigning them time to get certain quality. And
tasks to deal with external events can be anytime al-
gorithms so they can be executed the available time.

e Approximate processing: our architecture integrates
very easily the possibility of having several meth-
ods to do the same thing. The task that deals with
the event will choose according to resource con-
straints and quality requirements. We can also have
several methods to deal with external events and
use an heuristic in the scheduler to choose among
them.

The control mechanism of AMSIA schedules sequences

of tasks (and not individual tasks) and so, real-time artifi-

44

cial intelligence (Musliner et al., 1995; Garvey and Lesser,
1994) techniques can be applied.

Usually we will use estimations for the execution time
of tasks. These estimations will be based in the history of
the agent and can be changed dynamically. This is neces-
sary both because the dynamism of the environment that
can condition the time needed to do some task, and be-
cause, using learning techniques, the agent can learn to
do certain tasks faster.

Of course estimations can be wrong. There are two
protections to errors in the estimations of time of execu-
tion of tasks in our architecture:

1. Little deviations can be compensated with available
time in the schedule or with execution time of other
tasks of the same plan.

2. Greater deviations can be dealt by using monitor-
ing. A great deviation will be detected and an ex-
ternal event will be generated to repair the schedule.
Currently we do monitoring between tasks because
we do not consider preemption. The tasks them-
selves must be build so that they have a maximum
execution time (but see future work in section 6).

Moreover, AMSIA supports an hierarchical applica-
tion of knowledge using internal events to identify tasks
to work in other level of abstraction. This is interesting
also because when the agent has a plan at a certain level of
abstraction, it has resources (time) assigned to it. The ex-
ecution of the tasks at that level generates tasks in a lower
level that define more exactly the resource needs (possi-
bly inside the resources previously reserved, see tasks 4,
4.1,4.2,4.3 in figure 2, although perhaps with some kind
of adjustment). Then, as the agent spends more time in a
plan, it has more exact idea of the resource requirements
of that plan and, so, it is less probable that the agent had
to abort the plan due to underestimation of resource re-
quirements.

Also it is important that the reasoning model of the
agent is incremental, the agent has a plan (schedule) and
it works adding and removing pieces to that schedule. Re-
source estimations are not global, hence, they are easier to
do and to compensate in case of error.

3.4 Conflicts in Resources Assignment

It is possible that, when the control mechanism of AM-
SIA tries to introduce a sequence of tasks in the schedule,
there are not resources (time) enough to do it. To solve
these conflicts, the control mechanism of AMSIA scores
all the sequences of tasks. The score depends on the plan
the sequence of tasks is trying to achieve, and the par-
ticular tasks that are part of the sequence. When there
is a conflict, the control mechanism tries to free time in
the schedule by removing the sequences of tasks with the
smallest score and that are in conflict with the one that it is
being introduced. External events are generated to signal

the removing of these sequences of tasks, and so, later it
can be considered their re-introduction. This is an heuris-
tic process, but it only happens when there are resource
conflicts and it favors the most important plans.

4 Experimental Work

In this section we are going to show the results of an ex-
periment developed to study the robustness of our agent
in front of errors in the estimations of the duration of the
tasks of the schedule.

We have implemented the proposed agent architecture
modifying BBK (Brownston, 1995), a C++ implemen-
tation of the blackboard architecture for control (Hayes-
Roth, 1988), and adding the mechanisms described in this
paper. We have applied it to control a simulated robot
(a modified version of the Khepera simulator (Michel,
1996)) that receives requests to carry out missions in the
environment. The missions have the following character-
istics:

¢ A deadline: each mission must be accomplished by
the agent before its deadline.

e An importance: each mission has an associate im-
portance. Not all the missions are of the same im-
portance to the agent, in case of resource shortage it
is better for the agent to abandon missions with low
importance to favor the accomplishment in time of
missions of higher importance.

e A destination: the environment presented by the
simulator is a collection of rooms. Missions consist
of going to a room (destination) and make a fault
diagnosis and repair there. Information needed by
the robot to do the diagnosis can be obtained only
if it is in the destination room.

To operate in this environment and to successfully ac-
complish its missions the agent needs to implement sev-
eral functionalities. It must be able to act: to move (us-
ing its two motors), and to repair faults. It must be able
to sense: obstacles in its path, the state of a fault, and
messages telling the agent the missions that it must ac-
complish. It must be able to reason: planning how to ac-
complish its missions, path planning for discovering how
to go to its destinations, and diagnosis of faults (using an
expert system). All this functionality is implemented as
knowledge sources in our architecture. For example, the
agent has a knowledge source for going from one point to
another, this knowledge source controls the speed of the
motors of the robot and attends to its sensors. Robot sen-
sors offer raw data that must be processed by the knowl-
edge source to deliver symbolic information.

First, we identify the factors that can influence in the
performance of the agent:

1. Dynamism: the dynamism is configured in the sim-
ulator by two parameters:

45

(a) missions dynamism: the ratio of appearance
of new missions. Modeled by an exponential
distribution with mean tas.

(b) obstacle dynamism: the ratio of appearance
of obstacles that can make more difficult or
make impossible the accomplishment of some
missions, modeled by an exponential distri-
bution with mean 5. And the life of those
obstacles, modeled by an exponential distri-

bution with mean top.

2. Deadline: how is the deadline associated with mis-
sions. The deadline is modeled by an exponential
distribution shifted to the right £ 5y p and with mean

tmp.

3. Range of importance: the importance of missions
is distributed uniformly between 0 and I, 44 -

The variables that we use to measure the performance
of our agent in a certain interval of time are:

: __ _Score obtained by the agent
L. Eﬁ ectiveness = Total score offered to the agent x 100.
where,
score = E (importancemisgion + 1)

missions accomplished

Missions accomplished refers to those accomplished
before their deadlines.

Mg

T X 100

where, M, is the number of missions accomplished
by the agent, and T,, is the total number of mis-
sions offered to the agent.

2. Mission effectiveness =

3. Importance effectiveness = AT'Iff:‘- x 100

where, M,,p; is the number of missions accom-
plished by the agent of the highest importance, and
Toani is the total number of missions offered to the
agent of the highest importance.

We wanted to measure the performance of the agent
in stationary state, so we did preliminary experiments and
use them to decide the time of the simulation (15000 sec-
onds), the number of samples in each condition (5), and
the suppressed samples to avoid the transitory state. Also
we used the preliminary experiments to determinate inter-
esting values of the factors that influence the performance
of the agent in the experiment. The values chosen for the
experiment are shown in table 1.

The categories in table 1 correspond to the following
values (in tenths of second) of the parameters in the sim-
ulator:

[Factor | values]
Mission dynamism high, low
Importance range medium
Deadline big
Obstacle dynamism low
Time estimation high, medium, low, very_low

Table 1: Independent variables in the experiment

Missions dynamism = high = &y = 275

Missions dynamism = low = tp7 = 600

Importance range = medium = Imae =5

Deadline = big = tarp = 3000 and tp7p = 10000
Obstacle dynamism = low = £o = 1000 and {op = 100

Time estimation medium means that the average exe-
cution time of each task (measured in the preliminary ex-
periments) is used as estimation of the expected execution
time of that task. Time estimation kigh means that esti-
mations 15% over the average values are used, low means
15% under the average values, and very_low 25% under
the average values.

The results of the experiment are shown graphically in
figure 4, where we have separated the situation with dy-
namism high and low. An analysis of variance shows that
the factor time estimation has significant influence in the
three dependent variables: effectiveness (for missions dy-
namism=low F=4.5673, P=0.0171; and for missions dy-
namism=high F=4.4002, P=0.0194), missions effective-
ness (for missions dynamism=low F=5.2067, P=0.0031;
and for missions dynamism=high F=4.0605, P= 0.0253),
and importance effectiveness (for missions dynamism=low
F=7.0520, P=0.0031; and for missions dynamism=high
F=7.9768, P=0.0018).

The shape of the curves in figure 4 is what we ex-
pected. The architecture achieves a profit of its time es-
timations, hence, the effectiveness measurements have a
maximum at one point, and go down at both sides of that
point. If time estimations are too high, this results in that
missions which could have been tried are not, because
the agent thinks that it has not enough resources. If es-
timations are too low, the agent tries missions that finally
are not achieved because of lack of resources (or they are
achieved after their deadlines).

However, when the missions dynamism is low, the
maximum of effectiveness and mission effectiveness is
not achieved using as time estimations the average time of
execution of tasks, but a lower value. The reason for this
is the flexibility that the agent architecture has to deal with
etrors in time estimations. If missions dynamism is high
the agent architecture has more problems to deal with er-
ror in time estimations, there are few time available in the
schedule and the missions in it are of high importance.

46

Missions
effectiveness

92678
88,567 £9.028+ 9012

87916 | £5.036-1
82684 g1.3383

s

Effectiveness

A

56.7424 E/E/E\E 41240
174 L 38854 T
#u 33360 by 3&3331

A 30 A

medivm high Time
estimation

E'—a//a\ﬂ

very_low low very_low low mediom high Time

Importance
effectiveness

Gifiorst
90.. -

336.
90.048

768 1
200457 765 B/E/B\E
19.403

® Missions dynamism low

O Missions dynamism high

50 L

A

medinm m;hTmc
estimation

very_Jow low

Figure 4: Resuits of the experiment

The only solution left is to use tasks with less quality (but
that need less time) to achieve the missions. The problem
is that these tasks sometimes are going to fail preventing
the achievement of the mission.

We can conclude the following from this experiment:

1. The estimation of execution time of the tasks has
influence in the performance of the agent architec-
ture. Hence, a better estimation improves the per-
formance. However, errors in estimations doesn’t
provoke an abrupt fall in performance because the
mechanisms that the architecture has to deal with
these situations.

2. Asthe missions dynamism (the number of missions
that the agent is facing) is decreased, it is better to
be optimistic in time estimations. These allows the
agent to try more missions, and it has enough flexi-
bility to deal with situations of error in the time es-
timations. If mission dynamism is increased, time
estimations must be more exact to get higher per-
formance. Notice that the agent architecture can
calculate dynamically the estimations of the time of
execution of its tasks; for example, it can be more
or less conservative according to the perceived mis-
sions dynamism.

5 Related Work

Plans or schedules have different roles in different agent
architectures.

Reactive architectures, as the subsumption architec-
ture (Brooks, 1985), don’t use plans, and so, it doesn’t

estimation

seem easy, using this kind of architecture, to build an
agent to fulfill certain real-time requirements of high level
objectives.

Hybrid architectures as InteRRaP (Fischer et al., 1995;
Miiller, 1996), TouringMachines (Ferguson, 1992), or Re-
moteAgent (Gamble Jr. and Simmons, 1998), use a reac-
tive module to ensure the security of the agent in front
of events in the environment that can mean a risk to the
agent. The reactive layer offers actions quickly to en-
sure the survival of the agent while the deliberative layer/s
makes plans to achieve the high level objectives of the
agents, negotiate with other agents, etc. These plans are
built off-line and, afterwards, executed. But deliberative
actions are not scheduled themselves and so it is diffi-
cult to offer guarantees of global real-time requirements
(specifically, it is difficult to adapt the reasoning to real-
time constraints). Nonetheless, the idea of a reactive layer
to manage the direct interaction with the environment seems
a good one (see future work in section 6).

IRMA (Bratman et al., 1988; Poliack et al., 1994) is
a deliberative architecture thought to deal with resource-
boundedness in the reasoning of the agent. The main
procedure to do this is to use the plan of intentions that
defines what the agent intends to do as a guide for the
reasoning of the agent, limiting in that way its possibili-
ties of reasoning. Options for deliberation are filtered to
avoid loosing much time in deliberation. The idea is that
the less promising options are discarded faster with the
filtering process than if the agent deliberate about them.
Options incompatible with the current plan of intentions
are filtered this way. But, to keep openness in front of ex-
ternal events, an override process allows options incom-
patible with the current plan but highly promising to pass
the filtering process to let the agent deliberate about then
(about changing the current plan). Much of the work with
IRMA is to show the advantages of the filtering mech-
anism for a resource-bounded agent. Notice that in our
agent architecture the global schedule effectively directs
where the agent is going to spend its reasoning resources.
The role of the filtering-override processes is played by
the scheduler and how it deals with external events. But
reasoning activity is scheduled and so the agent has the
flexibility of choosing among different reasoning meth-
ods according with the circumstances, of deciding when
to deliberate and how about a particular event, and of inte-
grating several objectives and divide the resources among
them.

Our work differs from recent advances in planning
and scheduling (as for example in Chien et al. (1998))
in that our main aim is in the integration of planning and
execution. In fact, in our system, planning is an activity
as any other and must compete for the resources of the
agent, the result of this activity are plans that guide the
future behavior of the system. Plans keep its causal struc-
ture and can be analyzed or modified at any time, but the
schedule is highly committed to simplify control opera-
tions and because replanning is based on the plans, not on

47

the schedule. AMSIA can adapt its planning activity to
the circumstances (for example it can choose a predefined
plan because there is not time to generate a better one).

As it was mentioned before, techniques such as any-
time algorithms (Garvey and Lesser, 1994) and how to
build a solution to a problem using a number of anytime
algorithms (Zilberstein, 1996), and approximate process-
ing (Lesser et al., 1988) and how to build a solution to
a problem based on different methods of different tasks
(Garvey and Lesser, 1993), are easily integrated in AM-
SIA.

6 Conclusions and Future Work

In this paper we have analyzed the role of a schedule of
activity to guide the behavior of an agent. This agent must
use different reasoning methods under real-time require-
ments associated with its high level objectives.

All the activity in AMSIA is explicitly scheduled as a
way of controlling the use of resources. Also, the activity
to choose a line of action is separated from the activity of
following that line of action and offering new possibilities
for future action. We believe this is an important property
for agents that must fulfill real-time requirements. The
line of action focuses the attention of the agent that, in-
dependently, considers changing that line of action, i.e., it
keeps its opportunism. In other work (Soto et al., 1997,
1998) we have explored the idea of separating these ac-
tivities in hardware. In this paper we explore the division
of these activities in time. To do so, the activity needed
to choose a line of action must be included as a series of
tasks in the schedule of the agent. A mechanism (exter-
nal events) is added to deal with unexpected events, i.e.,
to include tasks in the schedule to consider what to do in
front of those events.

Also, there are options for AMSIA that we want to
explore:

e The use of a preemptive scheduler. This means
that we need to be able to interrupt the execution
of tasks. The problem is that it is not easy to keep
the consistence of the knowledge in the blackboard
when a reasoning task is interrupted. There are so-
lutions as using sections of code where an interrupt
is impossible to make changes in the knowledge
state of the system.

e We have used our agent architecture to control a
simulated robot. In a real environment we will need
a reactive layer to augment the reactivity in face of
contingencies.

¢ We want to extend the information that is kept in the
schedule. For example, it will be interesting to reg-
ister other temporal constraints for the execution of
tasks. Although this will complicate the heuristics
used in schedule construction, this is not a critical
problem because this activity is also scheduled.

Acknowledgements

The author is grateful to Mercedes Garijo and Carlos Angel
Iglesias for useful comments on this work. The author
also wishes to thank the anonymous reviewers for useful
comments on the abstract of this paper.

References

Michael E. Bratman, David J. Israel, and Martha E. Pol-
lack. Plans and resource-bounded practical reason-
ing. Computacional Intelligence, 4:349-355, 1988.
http://bert.cs.pitt.edu/pollack/distrib/guide.html.

Rodney A. Brooks. A robust layered control sys-
tem for a mobile robot. Technical Report A. I
Memo 864, Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, September 1985.
http://www.ai.mit.edu/people/brooks/papers.html.

Lee Brownston. BBK Manual. Knowledge Systems Lab-
oratory, Stanford University, September 1995. Report
No. KSL 95-70.

Norman Carver and Victor Lesser. The evolution
of blackboard control architectures. Technical Re-
port UM-CS-92-071, University of Massachusetts,
Amberst, 1992.

Steve Chien, Benjamin Smith, Gregg Rabideau, Nicola
Muscettola, and Kanna Rajan. Automated planning
and scheduling for goal-based autonomous spacecraft.
IEEE Intelligent Systems, September/October 1998.

Daniel D. Corkill. Blackboard systems. Al Expert, 6(9),
September 1991. Also as Technical Report, Blackboard
Technology Group Inc.

Innes A. Ferguson. TouringMachines: An Architecture for
Dynamic, Rational, Mobile Agents. PhD thesis, Uni-
versity of Cambridge, October 1992.

Klaus Fischer, Jorg P. Miiller, and Markus Pischel.
Unifying control in a layered agent architecture.
In Proceedings of the IJCAI 1995 Workshop on
Agent Theories, Architectures, and Languages, 1995.
Also as DFKI GmbH Technical Memo RR-94-05,
http://www.dfki.uni-sb.de/mas/papers.

Edward B. Gamble Jr. and Reid Simmons. The impact of
autonomy technology on spacecraft software architec-
ture: A case study. IEEE Intelligent Systems, Septem-
ber/October 1998.

Alan Garvey and Victor Lesser. A survey of research in
deliberative real-time artificial intelligence. Real-Time
Systems, 6(3):317-347, May 1994.

AlanJ. Garvey and Victor R. Lesser. Design-to-time real-
time scheduling. IEEE Transactions on Systems, Man,
and Cybernetics, 23(6), November/December 1993,

48

Barbara Hayes-Roth. A blackboard architecture for con-
trol. In Alan H. Bond and Les Gasser, editors, Read-
ings in Distributed Artificial Intelligence, pages 505—
540. Morgan Kaufmann Publishers, 1988.

Barbara Hayes-Roth, Karl Pfleger, Philippe Lalanda,
Philippe Morignot, and Marko Balabanovic. A
domain-specific software architecture for adaptative in-
telligent systems. IEEE Transactions on Software En-
gineering, 21(4):288-301, April 1995.

Victor R. Lesser, Jasmina Pavlin, and Edmund Durfee.
Approximate processing in real-time problem solving.
Al Magazine, 9(1):49-61, Spring 1988.

Olivier Michel. Khepera Simulator Package version
2.0. University of Nice Sophie-Antipolis, March 1996.
Freeware mobile robot simulator downloadable from
http://wwwi3s.unice.fr/~ om/khep-sim.html.

Jorg P. Miiller. The Design of Intelligent Agents, A Lay-
ered Approach, volume 1177 of Lecture Notes in Arti-
ficial Intelligence. Springer-Verlag, Berlin, 1996.

David J. Musliner, James A. Hendler, Ashok K.
Agrawala, Edmund H. Durfee, Jay K. Strosnider, and
C. J. Paul. The challenges of real-time Al. IEEE Com-
puter, January 1995.

Karl Pfleger and Barbara Hayes-Roth. An introduc-
tion to blackboard-style systems organization. Tech-
nical Report KSL-98-03, Knowledge Systems Lab-
oratory, Stanford University, 1997. http://www-
ksl.stanford.edu/publications/index.html.

Martha E. Pollack, David Joslin, Nunes Arthur,
Sigalit Ur, and Eithan Ephrati. Experimen-
tal investigation of an agent commitment strat-
egy. Technical Report 94-31, Department of Com-
puter Science, University of Pittsburgh, June 1994.
http://bert.cs.pitt.eduw/~ pollack/distrib/tileworld.html.

Ignacio Soto, Manuel Ramos, F. Javier Gonzdlez, and
Angel Vifia. Arquitectura multiprocesador para sis-
temas inteligentes adaptativos. In Martin Llamas,
José J. Pazos, and Manuel J. Ferndndez, editors, Actas
de las V Jornadas de Concurrencia, pages 161-175,
Vigo, Junio 1997. Servicio de publicaciones de la Uni-
versidad de Vigo. (In Spanish).

Ignacio Soto, Manuel Ramos, and Angel Vifia. A control
mechanism to offer real-time performance in an intel-
ligent system. In Ethem Alpaydin, editor, Proceedings
of the International ICSC Symposium on Engineering
of Intelligent Systems (EIS’98). ICSC, February 1998.

Shlomo Zilberstein. Using anytime algorithms in in-
telligent systems. Al Magazine, 17(3):73-83, 1996.
http://anytime.cs.umass.edu/.

Collaborative Personal Agents for Team Working

Simon Thompson; Brian Odgers'

Intelligent Business Systems Group

Advanced Communications Research Department

BT. Advanced Communications Technology Centre
PP12, MLB1
Ipswich, UK, IP5 3RE
44 1473 605531

simon.2.thompson @bt.com;brian.odgers @bt.com
Abstract

This paper describes a workforce management system, implemented with intelligent agents, that we call SAMBA (Software
Agents for Mediating Business Activities). Workforce management is cast as a collaborative information system,
implemented using software agents. We will distinguish this approach from the traditional “management by scheduling” view
of controlling the operational activities of large workforces. The commercial and practical motivations for this change of
perspective are discussed. A detailed example of the use of SAMBA is presented. The technical details of our system are
reported: an extended request and constrained contract net protocol are motivated and described as is the use of the Zeus

Toolkit,

1. Introduction and Overview

SAMBA is an agent-based system that enables
distributed teams to collaborate for business applications
such as team information, overtime and work rosters.
An intermediary agent is used to facilitate the
collaboration of human team members using personal
agents, with their human manager.

In recent research, employee performance has not only
been linked to skill levels but also to motivation [14]. If
enterprises could improve their employees’ teamwork
and motivate their workforce, the result would be a
better ~ working environment with increased
performance, and therefore better customer satisfaction.

Within SAMBA employees, managers and the
enterprise are represented by autonomous collaborative
agents. An intermediary agent is introduced to act as a
go-between for the employees, managers and the
enterprise’s information infrastructure. The managers
are able to add localised business rules to the
intermediaries, covering for example geographic or
weather conditions, as well as team issues. When an
agreement is reached it may be necessary to pass this
information, or other results of the agreement, back to
the enterprise to be used in its next evaluation cycle,

a mediated architecture, and deliberative collaborative agents supporting mixed initiative reasoning.

The intermediary can also act as a "virtual coach"
passing information to appropriate employees when
required.

In the process of developing these ideas we have
developed some novel technology, specifically a
mediated agent level architecture and some innovative
interaction protocols; this paper reports these
innovations.

We also report a detailed example of this technology in
a system that allows field engineers to book and revise
their leave and overtime schedules. In the next section
we will discuss the motivations for our approach to
managing workforces.

1.1 Commercial Motivations

In a customer service environment engineers are
required to install and maintain the enterprise’s services
at consumers’ homes or businesses. This leads to a
distributed workforce working both individually and as
a team. As technology has increasingly been used to
obtain efficiency gains the engineers have become
more isolated, receiving job information through hand
held devices or laptops, with little contact with their
fellow workers.

' We would like to acknowledge the efforts of (in alphabetical order) Paul O’Brien, Mark Buckland, Dean Jones and John Shepherdson who
committed much time and effort to the review and development of this paper.

49

SAMBA has been developed to consider how engineers
in the “field” can work more as a team, increasing
morale and, as a by-product, increasing customer
satistfaction [11], without sacrificing the efficiency
gains derived from the highly successful dynamic
scheduling systems already deployed.

In any human-human interaction trust is a key issue and
with new stricter legislation for companies concerning
their employees [2], companies can no longer impose
working conditions and practices on thier employees.
Because of this corporations are now realising that high
quality management systems enabling closely formed
teams with strong team identities and structures of trust
and obligation between the members can increase
motivation.

By engineering social commitments and obligation
between the enterprise and the employee we hope to
increase the loyalty of the workforce and improve our
response to our customers, while building on the
functionality of previous innovations.

1.2 Related Work

Three particular areas of work are relevant to the
research described here.

e Systems developed to support workforce
management, concentrating on the scheduling or
enactment of a particular business process.

e Agent technology for managing business processes.

e Work investigating methods of co-ordinating teams
of agents in order that they can achieve a goal.

1.2.1 Workforce Management Systems

For many years businesses have considered the issues of

supporting employees as they do their work. Process
centric workflow systems such as Oracle workflow [18]
or Plexus workflow [17] frame the workforce
management problems in terms of managing the
movement of items of work through a business process.
Alternatively products such as Freeflow [1] address this
requirement by providing flexible support for workers'
activities rather than enforcing the process model.
Freeflow lacks, however, facilities for work negotiation
and team-building required for effective support of
distributed team-work. It also lacks means for
managerial influence and oversight. Indeed, this is a
weakness in most workflow systems; using a single
"correct” process model controlled by a single person.
Collaboration while planning a business process is only
supported by the research system Regatta VPL [22], and
its commercial offshoot TeamWARE Flow. VPL and
TeamWARE allow business professionals to define and
change "their" section of the process (their perspective)
by manipulating a visual representation.

Workforce management systems have often employed
scheduling technology as the basis of their approach to

50

managing employees. Dynamic scheduling [12] is used
within the BT operational support systems (OSS’s) In
order to manage the operational workforce, and is
estimated to save the company $150,000,000 annually.
Dynamic scheduling is currently the subject of one of
the technical co-ordination units (TCU’s) in the
PLANET [16] network of excellence funded by the EU.
However despite their extraordinary success dynamic
scheduling systems fail to capture the social and “soft”
aspects of an ideal work management system; this is the
focus of the SAMBA project.

1.2.2 Process Management Agents

As we have stated SAMBA is an agent based project. In
the field of agent technology work continues to develop
agent based collaborative systems. Relevant work
includes the ADEPT business process management
system [10] and the agent based workflow system
developed by Harker and Ungar in [8], considered
business to business collaboration through agents
constantly negotiating to achieve their business goals.
The personal assistant paradigm has become a much
used flagship application for agent co-ordination [4].

While some of these projects consider the co-ordination
of information [25][9] others consider the co-ordination
of peer groups [26][27]. Neither systems co-ordinating
information nor those co-ordinating peer groups
consider the issues of complex teams with both peer to
peer and command and control management structures.
And although learning packages such as Tapped In by
SRI [23] have interactions between both teacher and
student, and student to student they are based around
white boards as a medium for information exchange.

1.2.3 Agent Teams

Recently work on the construction of teams of agents
that work together to achieve goals has become a topic
of research in the agent community [24]. The work on
agent teams, for example the Robo-cup competitors that
have been so popular at agent and Al conferences in
recent years, addresses only the communication and
interaction of the agents within an artificial society,
however.

In contrast, the work reported here investigates software
agents that must interact with each other, and human
users, within a society with rules and parameters
imposed by a human system. The objective of SAMBA
is not to construct a team of software agents, rather it is
to construct, develop and support, a team of humans, by
using software agents.

2. Example Scenario

Ten workshops involving engineering teams and their
managers were held to elicit the requirements for the
system. One of these was the automatic resourcing of
overtime, and we have chosen this as an appropriate

demonstrator scenario and as the example agent service
that we will discuss in this paper.

Due to the new European Union Working Directive [2]
employers cannot force employees to work more than
forty-eight hours a week. Therefore a manager is
required to request that the employee do overtime. Even
if an engineer has asked to be considered for overtime
the manager still has to confirm with the engineer that
they are still available for overtime. At anytime in this
process the engineer can refuse to work overtime if they
have worked more than the specified forty-eight hours.
This presents a considerable problem for the managers,
and a significant element in their workload appears to
involve the resourcing of overtime rosters.

In the SAMBA system, the intermediary takes the
resourcing request from the manager agent and sends a
set of requests for overtime to the agents who have
shown an interest in doing overtime that day. If an
employee is not able to comply with the request they
may try to solicit one of their “friends” to do the
overtime for them by sending a call for proposal to their
associates. The engineers can form an agreement which
can be returned to the intermediary. The agreement
between two engineers (engA and engB) cannot just be
simple off-loading of work as it involves personal
information. The engineer being solicited (engB) must
first ask the intermediary if he is permitted to take the
overtime from the initiating engineer (engA) before
giving a response. By separating the negotiation into
two phases, it possible for the engB to conceal from
engA that the intermediary deemed him unfit to do the
work.

Note, that engA who contracted to do overtime with the
system is deemed to have responsibility for arranging a
replacement resource if unable to meet their obligation.
This is a significant point in this example because the
explicit adoption of obligations toward the enterprise
and toward each other is one of the key ideas that we
have to foster a team spirit and increased co-operation.

The intermediary evaluates the replies using a set of
global business rules along with local rules defined by
the manager. The manager may define the order in
which the employees are awarded overtime from a set
of functions defined by the intermediary, such as, first
person to respond gets the overtime or overtime is given
to the employee with the highest ratings.

If the intermediary finds a conflict of interest it cannot
resolve, the unresolved issues are passed to the manager
for final evaluation. Once this stage is completed the
intermediary sends appropriate overtime accepts and
rejects to the field engineers and an overtime overview
to the manager and any other systems that require this
information.

51

3. Technical Details
In this section we describe the technical elements of the
SAMBA system. We chose to implement SAMBA

using the abstraction of intelligent agents for a number
of reasons:

e SAMBA is inherently decentralised, and agents are
closely associated with decentralised problems

e Several of the examples of systems that we would
like to construct using SAMBA were physically
distributed: again pointing to an agent based
approach

e It was apparent by inspection that a number of
autonomous and discreet computational entities
existed within the architecture

Figure 1. The intermediated architecture used by
SAMBA.

In Figure 1 we show a schematic of the mediated agent
based architecture that we have developed for SAMBA.
There are three types of agents in SAMBA. It might
appear on first inspection that systems like SAMBA
should be decomposed at the agent level into “manager
agents” and “worker agents” (or “team agents” as we
like to call them). However, further analysis shows that
in reality it is necessary to implement “mediator agents”
as part of the architecture if it is to be practical for real
world use.

3.1 Mediated Architecture

The system uses an intermediary as a go-between for the
engineers, their managers and the corporation as a
whole. The agents act either automously or semi-
autonomously, according to the engineer’s wishes. An
agent can gather information, react to requests and even
attempt to collaborate with “friends” to share work. The
intermediary acts as an autonomous neutral observer,
reasoning over the team’s goals and wishes and, if
possible, providing a fair judgement. The intermediary
also holds a representation of the legal obligations of the
enterprise.

action

l request

_1

I request proiocol

Figure 2.The extended request protocol. The protocol is read from top to bottom, with each branch representing a

separate messaging possibility.

In effect intermediary acts as a facilitator between the
goals of the manager and the personal requirements of
the engineers and the goals and objectives of the larger
enterprise. This enables the engineer’s working
environment to be more agile and flexible by enabling
the engineers to respond to requests from the
intermediary via their automous agents. The engineers
can use their agents to formulate agreements which can
then be validated by the intermediary, enabling the
engineers to work more closely as a team within legal
requirements. The intermediary can act as an auditor
considering engineer-engineer and engineer-manager
interactions to make sure they are within the constraints
of corporate culture.

In [19] it is argued that intermediaries in an electronic
medium were obsolete. The SAMBA system was
implemented using an intermediated architecture
because we were constrained by the characteristics of
the service applications that were required. In the
example we discuss in section 2 the global behaviour of
the system is determined by goals that are set on the
team derived from the model of the business used by
managers higher in the organisation, and therefore
operating at a higher level of abstraction. This requires
a knowledge based decomposition of the goals into sub-
goals that can be executed by team members, and the
re-composition of the achievements of the delegated
processing into the requested goal, which we have
implemented within the intermediary.

Also, for our purposes the intermediary can be
considered to instantiate a knowledge base of
constraints on the interactions of the agents in the team.
As individual agreements are made by team agents, and
sent to the intermediary, the scope of the agreements
that can be made in the future is gradually constrained.
It is important for the intermediary to prevent the

52

schedule that is derived in this way from becoming
over optimised because over optimised structures tend
to be very brittle [7]. If the knowledge of agreements
made in the system so far were to be decentralised, and
held on the individual agents in the system, it is likely
that the communication overhead required to obtain
sufficient information to analyse the risk associated
with the state of the system, would be prohibitive.

The use of a mediated architecture was one of the
drivers for the development of some novel interaction
protocols that are described in the following section.

3.2 Novel Protocols

The hierarchical commercial environment that systems
using the SAMBA architecture must operate within is
very different from the peer-peer environments that
agents engaged in distributed problem solving [21] or
agent applications such as meeting scheduling or e-
commerce tend to operate in.

The hierarchical nature of the operating environment
required that we construct some novel interaction
protocols. We call these protocols “Two tiered”
because they require both the permissions’ of the agents
engaged in the agreement and the authority of a third
party (in this case the intermediary) to be granted.
These protocols can also be seen as mechanisms for
agents to obtain a relaxation of constraints imposed on
their problem solving behaviours by other agents.

Two protocols were implemented. In section 3.2.1 we
describe the Extended Request Protocol (see Figure 2)
which we implemented for requests between peer
agents that share a superior which has ordered some
action. In section 3.2.2 we describe the Constrained
Contract Net Protocol (see Figure 3) which we
implemented in order to provide an intermediated
contract net.

cfp
action

preconditions1

Deadline for proposals
A _ |
reject-proposal accept-proposal
reason proposal

cancel
reason

the manager cancels the
contract due to a change
of situation

Figure 3. The Constrained Contract Net Protocol

3.2.1 Extended Request Protocol

In the environment of collaborative interface agents
using an intermediary, the intermediary may not be able
to resolve all the issues raised within a request. In this
case, the intermediary will reply with a set of relaxation
constraints or set of alternative actions. The requesting
agent can then choose the most appropriate

action and initiate a new request within the same
context. This extension to the classic request protocol
[3] is shown in Figure 2. This may seem similar to the
contract-net protocol [20] but contract-net is a
delegation protocol between a “consumer” agent and a
community of “suppliers”. This is not the relationship
that exists between the agents in SAMBA.

Extended Request captures the “worker” to “manager”
relationship of the agents, and retains the context of the
iterated request that is needed for the intermediary to
decide the degree to which it is prepared to relax the
constraints on the agreements already made.

In the overtime arranging scenario described in section
2, the interaction between the manager and the
intermediary is based around the extended request
protocol. This protocol enables the manager's agent to
request the intermediary to perform some action, and
the receiving agent to respond that the action has been
performed with some additional information or that the
action cannot be performed and a reason. In the case of

53

the request being refused the intermediary will pass the
manager's agent a set of constraints as part of the
reason. These constraints can be used to relax the rules
imposed by the system. The manager's agent considers
these constraints and sends another, amended, request
to the intermediary within the same message context of
the original request.

3.2.2 Constrained Contract Net Protocol

The Constrained Contract Net Protocol is based on a
contract-net tied in with a query-if protocol, see Figure
3. Whereas the contract-net is performed between
“suppliers” and “consumers” here a third party, the
intermediary, must be involved. Essentially this is
because the constraints that must be reasoned over in
order for the contract to be made, must in this scenario,
be distributed across several different agents in order to
protect the privacy of team-members and retain the
control privileges of management. If the proposed
“supplier” agents do not have the privileges to provide
an instant response to the proposal they must request
the appropriate privileges from the intermediary.

The constraints that dictate the finalisation of the
contract are held on separate agents to protect privacy.
In the example discussed in section 2 an engineer,
engA, who has contracted to do overtime, but due to
circumstances cannot, can try to acquire overtime from
a peer. This is initiated via the contract-net protocol.

The engineer’s agent’s two options are to reply directly
to the proposal, or seek confirmation on the feasibility
of the proposal from the intermediary. If the former
route is taken the proposing agent may be able to
deduce information about its peers, by taking the latter
option the proposed agent can find out the feasibility of
the proposal before making a decision thus greatly
reducing the initiating agents likelihood of deducing its
personal details. In this way two-tier negotiation can
reduce the likelihood of the initiating agent deducing
information about its peers, by enabling the peers to
only return information that has been validated by the
third party.

3.3 Agent implementation

Originally SAMBA was implemented using Java and
CORBA [12]. Our experiences showed us that the
Team Agents, Manger Agents and SAMBA
Intermediary Agents would all be required to exhibit
both reactive and goal based reasoning over a common
knowledge base. Because of this we chose to use the
Zeus toolkit [28] for the current implementation.
Although originally developed as a proprietary research
tool by BT, Zeus is now an open source, publicly
available toolkit for the development of multi-agent
systems.

In the rest of this section we describe the agent level
architecture of Zeus so that the reader can see what
tools a SAMBA agent has at its disposal for action and
reasoning in its world. In section 3.4 we describe which
of the mechanisms in Zeus we used to implement the
reasoning in SAMBA. In section 3.5 we describe other
functionality that is specific to SAMBA.

Zeus Agents have the following components:

¢ A Resource Database (ResourceDb) which is used
to store a set of “facts” that the agent “knows”.

A mailbox that they use to send and receive
messages.

e A co-ordination engine that defines the problem
solving behaviour that the agents use in order to
construct and execute their plans

e A planner & scheduler which is used to define the
set of tasks that the agent must complete in order to
achieve a goal and to schedule and control the
execution of those steps. The planner operates
under the control of the co-ordination engine.

e A rule engine that executes chains of CLIPS [6]
style rules.

e An “agent external” which is a piece of procedural
(Java) code which interacts with the above
components in order to achieve behaviours that are
beyond their scope as implemented.

54

We discuss each of these components in detail in
sections 3.3.1 to 3.3.5 below. We have drawn on the
material in the Zeus distribution documentation [28]
and [15] as the source for this discussion, as well as our
first hand experiences with the toolkit.

In addition it is worth noting that each Zeus agent has
the address of (and therefore can communicate with)
several local utility agents that provide infrastructure
for the agent system. In the language of FIPA these
agents define the Zeus “agent platform”. These utiltity
agents are

e The Agent Name Server (ANS), which provides a
“white pages” service. The ANS provides
mechanisms for agent registration and de-
registration. If requested this agent can provide the
address to any agent that is registered with it.

e The Facilitator agent, which provides a “yellow
pages” service location mechanism. The facilitator
polls all Zeus agents registered with the ANS
requesting lists of the services that they are
prepared to offer. It will then provide a list of
agents offering particular services on demand.

¢ The Visualiser agent, which provides visualisation,
agent platform interaction and application
debugging services to the platform user.

3.3.1 The ResourceDb

The ResourceDb in a Zeus agent stores the agents set of
current beliefs about both its internal state and the state
of the world it is operating in.

3.3.2 The Mailbox

Zeus agents implement communication via a FIPA-like
agent communication language. This language uses a
number of performatives, that one agent sends to
another in an attempt to change the state of the
receiving agent. For example; agent A may have some
data that agent B has requested. Agent A will send
agent B a message using an inform performative. The
semantic of this transaction is that A wants B to
become “informed of” the data. Specifically A wants B
to put the data into its ResourceDb, which is the default
behaviour for Zeus agents on receipt of an inform.

The arrival of a message in the Mailbox of an agent
triggers a number of actions within the agent. As we
noted above, default behaviours encoded in the agent in
the form of protocols can be triggered. Examples of this
are the ResourceDb update behaviour triggered by the
arrival of a message and the contract net protocol
behaviour triggered by the arrival of a message
containing a Call For Proposals (CFP) performative.
Another important side effect of the arrival of a
message is the dispatch of events in the Zeus External.

These events can be used to trigger other behaviours as
discussed in 3.3.5.

The content of messages in Zeus can be strings,
serialized Java objects or Zeus Facts. Much of the
content that is exchanged in SAMBA is coded as a
string containing an XML document. This is because
complex data structures can be encoded in XML and
powerful, easy to use and flexible parsers are available
on open source terms from a number of sources. (we
use XERCES from www.apache.org). We have found
that the non XML encoded content messages that we
have actually implemented in SAMBA were
exclusively part of primitive call and response type
exchanges.’

3.3.3 Co-ordination and Agent Level Planning
Zeus utilizes two components to achieve goal-based
behaviour.

1. The co-ordination engine is used to devise and
execute the sequence of actions that the agent
needs to execute in order to construct a plan,

2. The planner & scheduler is used to construct that
plan and execute it.

This is a rather different approach to that which a
centralised planner requires, and stems from the fact
that in order to satisfy goals Zeus agents must interact
with one another.

Problem solving behaviours are represented in Zeus as
recursive transition network graphs that are traversed
from their start node until a terminal node is reached.
The nodes in the graph are code fragments that are
interpreted and executed by the agent in order to
generate behaviour actions. The execution of the nodes
yields one of three results:

¢ The node can return OK in which case the node
processing has succeeded and traversal can
continue to the next node.

e The node can return WAIT, which is associated
with either a timeout value or a message-reply-key
(essentially a conversation context indicator). In
this case the processing of the node will be
suspended until the timeout expires, or a message
with the associated key is received. This allows the
co-ordination engine to query some other agent, or
resource, for the possibility of the execution of
some behaviour and to prevent further action until
a reply has been received.

* We think that this is interesting because it implies that
messages that are part of more complex interactions
tend to have higher information levels.

55

e The node can return FAIL, in which case the agent
backtracks from the node by calling a reset()
method that undoes the actions taken while
execution was attempted. Any untried arcs on the
preceding node are then traversed. This process
continues recursively until there are no more arcs
to traverse on the start node, and the graph
traversal fails.

A detailed account of this behaviour and the default
goal-processing graph in the Zeus distribution can be
found in [15].

3.3.4 Rule Chaining

CLIPS rules can be implemented in Zeus so that the
presence of facts in the ResourceDb triggers either
chains of deduction or side-effects. For example a
rulebase might contain rules :

{ruleOne{condition
?factid <-
factTypeName
(attributeOne
(attributeTwo val2)}

vall)

{action
assert (otherFactTypeName
(attributeOne vall)
assert (thirdFactTypeName
(attributeTwo val2))
1}

and

{ruleTwo
{condition
?factid <- otherFactTypeName
(attributeOne vall)}
{action
sendMessage
(content
(factTypeName
(attributeOne vall)),
type (Inform),
receiver (otherAgent))

}

These rules have two meanings within the context of
the Zeus interpreter . Firstly they have the straight
forward condition-> action meaning which implies that
the presence of factTypeName (vall,val2) will lead to

otherFactTypeName(vall) and
thirdFactTypeName(val2) being added to the
ResourceDb; and that the presence of

otherFactTypeName(vall) will lead to a message being
sent. Secondly, the other semantic is that if ruleOne is
fired then on the next evaluation cycle of the agent
ruleTwo could be fired. Only one rule will be fired in
any reasoning phase, and numeric priorities can be
associated with rules to decide which should be fired if
more than one pre-condition is matched.

3.3.5 The “agent external”
The “agent external” in a Zeus agent is a set of Java
classes that are able to access an AgentContext object.

This object provides references to proxy objects for
each of the major components of the Zeus agent. These
proxy objects provide methods that allow client code to
listen for events occurring within the agent and then to
take procedural actions. Examples of this are the
FactAdded events, which are fired when new facts are
added to the ResourceDb, and Message events which
are fired when Mail arrives or is sent. It is possible to
set goals for the agent; create and add facts to the agent
and explicitly send messages via these interfaces.

3.4 Decision Making In SAMBA Agents

As we described in sections 3.3.3 to 3.3.5, there are
three basic mechanisms that can be implemented in a
Zeus agent that enable it to make decisions within its
environment.

e The agent can utilise a knowledge base, reasoning
over it using the RETE [5] engine in Zeus to
decide on some action based on the state of the
world according to its ResourceDb.

¢ The co-ordination engine can use the planner &
scheduler to decide on, and execute a behaviour
sequence defined as the execution of a set of tasks.

e The “agent external” element, written in Java in
the current implementation of Zeus, can be used to
trigger sequences of procedural behaviour. These
behaviour sequences are typically triggered by the
arrival of some new element in the agent’s world
(a new message or fact for instance) and execute
without reference to the sensors of the agent.

In this section we will describe how we used these
mechanisms to achieve the behaviours that we required
from the system.

3.4.1 Controlling the Agent’s Activities

In order to describe how SAMBA controls the activities
of all of its constituent agents in order to achieve the
behaviour that is required, we will describe one
particular use-case of the system and the interactions
and exchange of messages that result from the
implementation that we have chosen.

Table 1. Tasks in SAMBA Overtime Example

Agent type Tasks

Intermediary supplyRosterForRatification
produceRoster

Manager ratifyRoster

TeamAgent reqOvertime

0SS supplyWorkRequests

For the overtime scenario described in section 2 the
reasoning of the agents in the case that the OSS (or
enterprise) requires a resourced overtime schedule was
developed as follows.

56

Table 1 shows the distribution of primitive tasks among
four types of agents in the system. The interactions of
the agents as they reason about the task is shown in
Figure 4.

In order to decide on how overtime should be allocated
to the team member the first action required is that all
team members should enter their preferences for
overtime dates and times into the system. This is
achieved using the GUI shown in Figure 6 and
discussed in section 3.5. This data is dispatched to the
intermediary where it is stored. The OSS (the agent
wrapping the operational support system shown as
“Enterprise” in Figure 1) may then initiate a scheduling
episode by attempting a goal (set from Java and
initiated by pressing a button on a simple GUI). The
goal set is “achieve Schedule”, but this cannot be
satisfied by any of the tasks that OSS holds, so its co-
ordination engine issues calls to other agents to see if
any of them can provide a schedule. The task
produceRoster held by the Intermediary can satisfy
Schedule, but has a precondition WorkltemList(). The
task supplyWorkRequests in the OSS can provide a
WorkItemList().

i
T e 7| |

U overtme schedule . 1> 7\7[

request

| I—

v

confirmation: I
stipplied |

|
L
|

Figure 4. Simplified (contracting not shown)
sequence of interactions for overtime scheduling

The OSS’s co-ordination engine has now traversed its
graph, and has been able to deduce a workable plan for
achieving the goal Schedule. It will subcontract the goal

to the intermediary and will supply some data so that
the intermediary can produce the schedule. The plan is
then executed by the schedulers of the Intermediary and
the OSS. The task supplyWorkRequests is called in the
OSS which results in the workItem requests being sent
to the intermediary. The task produceRoster is then
called by the intermediary’s scheduler, this task has a
sub-goal, which is implemented in its execution script.
The sub-goal states that for the task to execute correctly
it must achieve Schedule (ratified true) . The task
ratifyRoster in the Manager agent is able to satisfy this
goal. The pre-condition of ratifyRoster is Schedule(),
which can be satisfied by supplyRosterForRatification’.
The co-ordination engine of the Manager agent issues
calls and makes a contract with the manager to this
effect, and the subgoal is executed before the main task
is completed. In Figure 5 we show the plan generated
by this process in the context of the agents that execute
it.

Intermediary
produceRoster
supplyRosterForRat

WorkitemList()
Schedule(ratified
true):!

(ratified false)

Figure 5. The plan for obtaining an overtime
schedule derived by the agents. White circles
indicate goals that are being satisfied, black circles
indicate task outputs. The arcs are numbered to
indicate the order of plan step execution.

Further complications arise if the constraints imposed
by the TeamAgents’ requests for overtime (not shown
in Figure 5) and the Intermediary’s requests for
workers to complete jobs cannot be resolved, or if the
manager fails to approve the schedule. In this case the

* supplyRosterForRatification (SRFR) has a precondition Schedule

with a constraint specifing that the Schedule fact must be present in
the local database . This prevents the intermediary from attempting
to satisfy the main goal of the OSS with the SRFR, and also insures
that it doesn’t attempt to subcontract the provision of the Schedule

to another agent.

57

system must seek a relaxation of some of the
constraints. This is done via the Constrained Contract
Net protocol described in section 3.2.2.

Similarly, complications arise if one of the agents that
has contracted into the schedule is unable to fulfil that
commitment. Then, the Extended Request protocol
from section 3.2.1 is used to find a suitable
replacement.

3.5 Engineer-Agent Interaction

requested day o
's raquest for day off1s refused
¥¥ould you like me to ask for help from your mates?
I'm asking your matas nowYour mate chariie has asked for help!
p him by asking for some overtima (then he will get a day off

ding a new overtime requast o help
am's requastfor day offis refused
= V¥ouid you like me 10 ask for halp from your mates?
Jsam's raquest for overtime is granted

Figure 6. Field engineer to agent interaction screen
(letters A to D are labels)

The screen that the field engineers use to interact with
their personal agent is shown in Figure 6. It is
important that the information needed for the field
engineer to interact with their agent is presented
graphically. The label A is on the left hand side of the
calendar interaction window; the user can use a pointer
to select whether they wish to do overtime on a
particular date and to view their selections and
commitments. Label B is on the left of a “user
messages” window, in which the agent displays
questions, or statements about the current state of the
system. Above label C a set of buttons indicates the
actions that the user can take at this time, and above
label D two interaction buttons are shown with labels
that the agent can change depending on the response
that it requires for the interaction at that time.

The interaction of the human operators interfaced with
the software agents presented us with an agent level
design choice. Either we could capture the interaction

event and assert a fact in the agent’s rule base, and
allow the agent’s rules to fire as appropriate. Or we
could capture the event and instruct the agent to
achieve some goal: specifically invoking some
reasoning activity by the agent. We chose to use the
former approach of asserting a fact like:
KeyPressed (“requestOverButton”)
Which would activate a rule:
{condition
KeyPressed (*requestOverButton”)

FreeDays (Sunday true)}
{action send_message

(type inform)

(receiver IntermediaryAgent)

(content sundayOvertimeRequest)}
Our motivation for this design decision was to de-
couple the mechanism that invoked an action on the
agent from the action being performed, increasing the
autonomy of the agent and its flexibility in practice.

3.5.1 Resolving the Schedule

The intermediary is one of the central components of
the SAMBA system. Currently we have implemented a
static intermediary which uses a rule base fixed at run
time to reason over the data that is transmitted to it by
the team member’s personal agents, as we have
described in detail in section 3.4.1.

The intermediary is required to hold a model of the
workers that have expressed an interest in overtime and
these are combined with the requirements of the
enterprise as transmitted from the OSS agent.

Currently we construct the schedule by performing a
simple backtracking search in the intermediary. The
work items are taken incrementally from the list
provided by the OSS, and if there is a worker with the
correct qualifications available for overtime in the slot
allocated to the work item, they are granted overtime
and the work item is regarded as resourced. We track
the workers to ensure that they are not allocated work
items that have to be performed at the same time.

As we noted in section 3.4.1 if no worker willing to
perform overtime can be found, then the scheduling
episode has failed and a relaxation of the constraints
(normally by negotiating a change in the overtime
preference of a worker) must be found.

4. Future Work

One of the extensions to SAMBA that we are
considering is the provision of a hints and tips service
for sharing knowledge. Engineers are encouraged to
add local information to a pre-existing help facility.
Due to Quality Management constraints the local tips
have to be validated by other engineers before being
added to the system. In the framework presented here
the intermediary would be in charge of keeping the

58

hints and tips up-to-date and aiding in the interaction
between workers in the validation process.

The Hints and Tips service is one possible knowledge
management facility we can implement using SAMBA.
However, in the overtime allocation and work
allocation services that we have been developing the
intermediary agent implements the business rules as a
static knowledge base. Work in [12] describes our
efforts to implement visual interfaces that would allow
managers to delete, add and modify rules at run time.
Providing the facility for local management practice to
be captured in the agent system is another way that we
can enhance the corporate learning and memory
mechanisms that SAMBA potentially offers.

However, the main drive for this work has been in the
production of a set of agent-based services that enable
distributed employees to act as a team. So far the focus
of the project has been on the provision of services by
the agents. But while services have been under
development a number of technical issues have become
apparent.

One of these issues is the nomadic nature that we
would like SAMBA agents to have. By nomadic we
mean the agents remain on one device but the device
can be moved, switched off etc. This imposes a number
of new constraints such as low processor power,
vulnerability to interruption and variability in
communication cost and bandwidth availability.

These constraints require the classic agent platform
design for the use of continuously running agents [3] to
be enhanced. For example it now requires a store and
forward facility whereby when an agent’s
communication links are down, the platform stores
messages until the agent comes "on-line" and the
messages are then forwarded to it.

Nomadic agents are just one of the technical issues that
we feel will arise when we make the next step in this
project and develop a system suitable for use in a
technology field trial, which we plan for later this year.
We also plan to conduct further workshops with
SAMBA’s users, the customer service teams in BT.

5. Conclusions

Traditionally workforce management has been seen as
the problem of optimally scheduling the actions of
members of the workforce in a dynamic environment.
In this paper we have demonstrated that this view of
workforce management as a dynamic scheduling
problem does not support some elements of the
workforce management problem. Specifically SAMBA
addresses issues of social interaction, working
preference and flexibility that are not handled by
previous methods.

We have presented an alternative formulation that
views workforce management as a problem of
managing the interactions between team members and
the interactions of team members and management.
The SAMBA architecture of interface agents and
intermediaries is one method of implementing this sort
of information system.

In order to implement SAMBA we needed to utilise
some novel interaction protocols that captured the need
of the agents to interact without revealing details of
personal preferences, the disclosure of which could
damage team dynamics. Our objective was to develop
information systems that fit the business processes and
practices that we encounter in commercial
organisations.

SAMBA represents an application of intelligent agents
that enriches the working practices of the workforce
while solving an actual business problem. We
developed it with reference to its ultimate users (the
field workforce at BT) with 10 workshops discussing
the shape and use of the technology conducted at sites
from Galashields to Bath. Over 88 members of the
operational division participated in the workshops with
responsibilities ranging from customer service team
manager to field engineer.

We believe that SAMBA may prove to be a true “over
the shoulder” application that combines, in some way,
the properties of collaborative agents, information
agents and personal agents. We further believe that the
emergence, and ongoing development of agent toolkits
like Zeus is the enabler that will release the potential of
intelligent agent research into the real world.

6. References

[1] Dourish, P., J. Holmes, A. MacLean, P.
Margvardsen, and A. Zbyslaw (1996, November).
Freeflow: Mediating between representation and
action in workflow systems. In ACM Computer
Supported Cooperative Work. ACM.

[2]1 DTI 1998 DTI Direct Access to Legislation:

Chapter 2 Working Time Limits
http://www .dti.gov.uk/IR/work_time_regs/wtr2.ht
m

[3] FIPA 1997. FIPA ’97 Specification Part 1, Agent
Management The Foundation for Physical
Agents, Geneva, Switzerland.
http://www.fipa.org/spec/FIPA97 hunl

(4] FIPA 1997. FIPA °97 Specification Part 5,
Personal Assistant . The Foundation for Physical
Agents, Geneva, Switzerland.
http://www fipa.org/spec/FIPA97 html

[5] Forgy, C.L. (1982) “RETE: A Fast Algorithm for
the Many Pattern/Many Object Pattern Matching

59

Problem.” Artificial Intelligence 19, pages 17--37,
1982

[6] Giarratano, J. & Riley, G., (1994) "Expert
Systems: Principles and Programming", PWS Publ
1994, ISBN 0-534-93744-6

[71 Ginsberg, M.L., Parks, A.J. & Roy, A.
“Supermodels and Robustness”, In Proceedings
The Fifteenth National Conference on Artificial
Intelligence AAAI’'98, AAAI Press.

[8] Harker, P. T., and Ungar, L. H. 1996. A market-
based approach to workflow automation. In
Proceedings of NSF Workshop on Workflow and
Process Automation in Information Systems: State
of the Art and Future Directions. Athens GA.

[9] Intelligent Personal Assistant,
http://innovate.bt.com/showcase/ipa/index.htm
[10]Jennings, N. R., Faratin, P., Johnson, M. I,
O'Brien, P., and Wiegand, M. E. 1996. Using
intelligent agents to manage business processes. In
Proceedings of the First International Conference
on the Practical Application of Intelligent Agents
and Multi-Agent Technology (PAAM96), 345-360.
London, UK: The Practical Application Company

Ltd.

[11]Kohn A., 1993, Punished by Rewards: The trouble
with gold stars, incentive plans, A's, praise and
other bribes, NY: Houghton Mifflin.

[12]Lesaint, D., Azarmi, N., Laithwaite, B., Walker,
P., 1998 "Engineering Dynamic Scheduler for
Work Manager", BT Technology Journal, Vol 16,
No. 3, 1998.

[13]Mehandjiev, N. and Odgers, B, 1999. SAMBA:
Agent-supported visual interactive control for
distributed team building and empowerment BT
Technical Journal, Vol. 17 No. 4, October 1999

[14]Millard, N, 2000. “The Future of Customer
Contact”, BT Technical Journal, Vol 18, No.l,
January 2000

[15]Nwana, H.S., Ndumu, D.T., Lee, L.C. & Collis,
J.C. (1999) “Zeus: A toolkit for Building
Distributed Multi-Agent Systems”, In : Applied
Artificial Intelligence Journal, Vol 13 (1), p187-
203

[16]PLANET; http://planet.dfki/de

[17] Plexus Floware;
http://www.plx.com/html/floware_scaleable_workf
low.html

[18] Oracle Workflow;

http://www.oracle.ft/services/support/pdf/workflo
w_setup.pdf

[19] Sarker B.M., Butler B. and Steinfield C. (1995)
Intermediaries and Cybermediaries: A Continuing
Role for Mediating Players in the Electronic
Marketplace. Journal of Computer-Mediated

Communication Vol. 1 No. 3.
http://jcmc.huji.ac.il/voll/issue3/sarkar.html

[20] Smith, R. G., 1980. The Contract Net Protocol:
High-Level Communication and Control in a
Distributed Problem-Solver, IEEE Transactions on
Computers, vol 12, 1980

[21]Smith, R. G. and Davis, R., 1981. Frameworks for
Cooperation in Distributed Problem Solving, IEEE
Transactions on System Man and Cybernetics,
11(1), 1981.

[22] Swenson, K et al. A business process environment
supporting collaborative planning. Journal of
Collaborative Computing, 1(1): 15-34, March
1994.

[23] Tapped In, http://www.tappedin.sri.com/

[24] Tambe, M. 1997. “Toward Flexible Teamwork”
Journal of Artificial Intelligence Research, T , 83-
124

[25]1The Personal Information Assistant,
http://walrus.stanford.edu/diglib/pub/proposal/partl
I/node30.html

[26] The Virtual Secretary,
http://www.vise.cs.uit.no/vise/

[27]WinWin,
http://sunset.usc.edu/WinWin/winwin.html

[28]1The Zeus Toolkit,
http://www.labs.bt.com/projects/agents/zeus/index.
htm

60

Using Planning Formalisms to Reason about Agent Capabilities

Gerhard Wickler
ITC-IRST, via Sommarive 18, 38050 Povo (TN), Italy
gw @itc.it

Abstract

The aim of this paper is to address the problem of capability brokering. For this purpose we will define a new capability
description language, CDL, that has two desirable properties: it is expressive, i.e. it has the potential to represent certain
circumstances that cannot be represented in a less expressive formalism, and it is highly flexible, i.e. it allows the
knowledge engineer to choose a compromise regarding certain trade-offs at the time of knowledge representation.

1 Introduction

One approach to achieving artificial intelligence is the ra-
tional agent approach (Russell and Norvig, 1995, p. 7).
In this approach, the field of Al is viewed as the study
and construction of rational agents. Unfortunately there
is no agreed definition of what constitutes an agent as yet.
One characterisation of what an agent is can be found in
Wooldridge and Jennings (1995). They identify four nec-
essary properties of an agent which most definitions of
agency seem to agree on: autonomy, social ability, reac-
tivity, and pro-activeness.

Social ability, the property we will be most concerned
with, means that an agent interacts with other agents (pos-
sibly humans) via some kind of agent communication lan-
guage. Pro-activeness means that an agent should be able
to exhibit goal-directed behaviour by taking the initiative.
Taken together, pro-activeness and social ability imply
that an agent should communicate not with just any other
agent, but specifically with those agents that can help it
achieve its goals. For an agent to achieve this behaviour,
it will be necessary to first find these other agents. Find-
ing such agents is part of the problem we are addressing
in this paper.

We will assume here that an agent exists in a dy-
namic environment with other agents. As the environ-
ment changes new agents might come into existence or
existing agents might disappear. Agent autonomy means
that an agent has to operate without the direct interven-
tion of humans, i.e. that it has to find out by itself about
other agents that exist, specifically, agents that can help it
achieve its goals.

Genesereth and Ketchpel (1994) distinguish two basic
approaches to this connection problem: direct commu-
nication, in which agents handle their own coordination
and assisted coordination, in which agents rely on special
system programs to achieve coordination. Only the latter
approach promises the adaptability required to cope with
the dynamic environment we envisage.

61

Decker et al. (1997) have recently described a solu-
tion space to the connection problem based on assisted
coordination. The special system programs for coordina-
tion are called middle-agents in their analysis. They iden-
tify nine different types of middle-agents depending on
which agents initially know about capabilities and prefer-
ences of agents. In a solution to the connection problem in
which capabilities are initially known to the provider and
the middle-agent only, and in which preferences are ini-
tially known to the requester and the middle-agent only,
the middle-agent is what they call a broker.

1.1 Defining the Problem

Capability brokering involves communication between
different agents. For a specific instance of this problem
we shall distinguish three different types of agents accord-
ing to the roles they play for this problem instance:

1. The Problem-Solving Agents (PSAs) provide the
capabilities that may be called upon by other agents
in order to solve their problems.

2. The Problem-Holding Agents (PHAs) have a prob-
lem that they wish to have solved by utilising the
capabilities of the PSAs.

3. The Broker matches the problems of the PHA to
the advertised capabilities of the PSAs such that the
problems can be solved.

The basic protocol for the exchange of messages be-
tween the different agents that has to take place for ca-
pability brokering is illustrated in figure 1. Since capa-
bilities are meant to be known by the PSA and the broker
initially, it is necessary that the PSAs advertise their capa-
bilities to the broker. At the time of brokering, problems
are meant to be known by the PHA and the broker and
thus, the PHA has to inform the broker about its problem
as it arises. If a capability has been advertised to the bro-
ker that can be used to address the given problem then the

broker should retrieve it and inform the PHA about this
capability and the agent that has it. Finally, the PHA can
use the information from the broker to ask the PSA with
the necessary capability to tackle its problem. Notice that
not all of the messages outlined above necessarily have to
occur in this order.

Now, the problem of capability brokering is to achieve
the behaviour of the broker outlined in the protocol in fig-
ure 1.

2 Representations for Capabilities

To achieve the behaviour outlined in the protocol in fig-
ure 1 it is necessary to explicitely represent and commu-
nicate the capabilities of the different PSAs. For this pur-
pose we have defined a new capability description lan-
guage, CDL, that has a number of desirable characteristics
outlined below (cf. Wickler (1999)).

2.1 Desiderata for CDL

The two most important properties we want our capability
description language to have are expressiveness and flex-
ibility. By expressiveness we mean the potential to rep-
resent certain circumstances that cannot be represented in
a less expressive formalism. By flexibility we mean the
possibility for the knowledge engineer to choose a com-
promise regarding certain trade-offs at the time of knowl-
edge representation rather than having to adopt a fixed
compromise prescribed and designed into the chosen for-
malism.

Another characteristic we would like CDL to have is
that it is similar to languages which have been used for ca-
pability brokering successfully, as this would indicate that
CDL, too, can be used for brokering. Likewise, since ca-
pabilities can be seen as actions one can perform (cf. sec-
tion 2.2), we would also expect CDL to be similar to rep-
resentations that have been used to represent and reason
about actions. In both cases the similarity should only
cover properties that contributed to the success of these
languages.

As we expect the broker to perform its services au-
tonomously, it is important that the capability represen-
tations are in some formal language; CDL must have this
attribute. Finally, every representation must have a se-
mantics to qualify as a representation in the first place
(cf. Hayes (1974)), so we shall pay attention to this prop-
erty as well.

2.2 Capabilities and Actions

Most action representations in Al are representations that
describe how the state of the world changes when an ac-
tion is performed and what needs to be true before that
action can be executed. Capability descriptions need to
convey very much the same knowledge, i.e. what changes
a capability can bring about and what needs to be true

62

for that capability to be applicable. There are two major
differences between actions and capabilities though:

o Level of description: An action is less abstract
than a capability in the sense that we would expect
all its parameters to be instantiated for its execu-
tion. However, Al planning systems use operator
schemata rather than instantiated actions as input,
i.e. they effectively use capability descriptions.

e Modality: A capability is an action that can be per-
formed (at least in theory), i.e. it has a different
modality. But this is implicitly what an Al planner
usually assumes when it generates a plan; that the
operator schemata it instantiates and inserts into the
plan represent capabilities of some agent (cf. (Mc-
Carthy and Hayes, 1969, pages 470-477)).

2.3 The Knowledge in Capability Repre-

sentations

We are now in a position to describe the knowledge con-
tained in a CDL capability representation. The core CDL
representation for achievable objectives is based on a clas-
sical, non-hierarchical operator description and consists
of the following parts:

¢ Inputs: This part of the capability representation
specifies the objects an agent possessing this ca-
pability receives as inputs to this capability. How
these inputs will be used is unspecified here.

e Outputs: This part of the representation specifies
the objects that will be the outputs this capability
generates.

¢ Input Constraints: This part defines the con-
straints that are expected to hold in the situation be-
fore this capability can be performed, i.e. the con-
straints for the capability to be applicable.

e Output Constraints: This part defines the con-
straints that are expected to hold in the situation
after this capability has been performed.

¢ Input-Output Constraints: This final part defines
the constraints across input and output situations
that must hold.

One difference between capability descriptions in
CDL and STRIPS-like operator descriptions is that CDL
distinguishes two types of parameters: inputs and out-
puts. Parameters are essentially the objects involved in
the performance of a capability and must all be instanti-
ated for the execution of a specific action instance. CDL
distinguishes input objects, i.e. objects that exist in the sit-
uation before the capability is applied, and output objects,
i.e. objects that exist only in the situation that results from
the application of this capability in the input situation.

PSA PSA

1. capability
descriptions

broker

..........................

2. problem

PSA

PSA

4. use capbilities

PHA

description ’

3. agent names (PSAs)

Figure 1: Basic message flow in brokering

Input constraints in CDL directly correspond to the
precondition formula in classical non-hierarchical action
representations. In accordance with modern planning for-
malisms (cf. Tate et al. (1994)) we prefer to view the pre-
condition formula as a constraint on the situation in which
the capability can be applied. Notice that input constraints
may only mention objects from the inputs as these are the
only objects that exist in this situation. Qutput constraints
in CDL correspond to a combined add and delete list,
i.e. to the effects of an action, and represent constraints
on the situation that results from the application of this
capability. Finally, output constraints may mention ob-
jects that exist in the output situation, i.e. objects from
inputs or outputs.

The final set of constraints mentioned above are the
input-output constraints which correspond roughly to sec-
ondary preconditions and effects in ADL (cf. Pednault
(1989)). These constraints do not refer to only one sit-
uation like the input and output constraints but are con-
straints across both of these situations. This type of con-
straint allows one to refer to objects that have different
properties in different situations and to expresses a condi-
tion on the properties in these different situations.

2.4 Decoupling the Representation

At this point we know what the knowledge is we need to
represent in CDL. The next obvious question is what lan-
guage to use to express the different constraints in. Our
aim is to inherit the expressiveness and well-defined se-
mantics of logics in CDL, but we also want to retain the
flexibility of KQML (cf. Finin et al. (1997)).

Many knowledge representation languages are state
representation languages at heart, i.e. they implicitly as-
sume the world to be in exactly one state or situation at
any given time. That is, unless otherwise stated, a set of
sentences in such a language is assumed to refer to the
same implicit situation. Knowledge representation lan-
guages usually also assume that there exist a number of
objects in this implicit situation and that certain relations

63

hold between these objects in this situation.

In most conventional action representation languages
such as STRIPS, the state representation language is an
integral part of the overall representation language. We
shall call such languages integral action representations.
For example, STRIPS (as described in (Nilsson, 1980,
ch.7)) only allowed conjunctions of positive literals in the
input and output constraints of its representation. How-
ever, it is relatively trivial to extend the state language
to allow for more complex formalisms, e.g. horn clauses,
full first-order logic, modal logics, etc. With an integral
action representation we have to commit to one of these
languages and every new state representation language
defines a new action representation. It is this inflexibil-
ity that we seek to avoid in CDL as it is not clear which
would be the right state language for describing arbitrary
agent capabilities.

To allow the arbitrary combination of action and state
representation we will define the action representation
language independent from the state representation lan-
guage. We shall call this a decoupled action represen-
tation, i.e. a full action representation consists of a de-
coupled action representation combined with a state rep-
resentation language. Syntactically, decoupling will be
achieved using an approach similar to the way KQML al-
lows content expressions to be in some independent con-
tent language, i.e. by having a field that names the content
language and one that holds exactly one expression in this
language as a sub-expression of the wrapper. CDL will
also allow the nomination of a state language in which the
different types of constraints are to be expressed, except
that there will be several sub-expressions in the named
content language. By decoupling the action from the state
representation, CDL will achieve the same, high flexibility
that KQML provides.

Finally, the following capability advertisement for a
hospital agent (cf. Wickler (1999)) illustrates the flexibil-
ity and expressiveness that can be used in CDL:

(capability
:state-language fopl

:input ((InjuredPerson ?person))
:input-constraints (

(elt ?person Person)

(Is ?person Injured)

(or (Has Location ?person Abyss)
(Has Location ?person Barnacle)
(Has Location ?person Exodus))

(implies (or(on Road Ice) (on Road Snow))
{(have Ambulance SnowChains)))

:output-constraints (
(not (Is ?person Injured))))

In this capability description the sole input parameter
is the injured person. Constraints on the situation before
the capability can be applied include a typing constraint,
the fact that the given person must actually be injured, that
s/he must be in one of the three given places, and finally
that if there is ice or snow on the road the ambulance will
need to have snow chains. Finally, the output constraint
states that the given person will no longer be injured af-
ter this capability has been applied. Flexibility through
decoupledness is illustrated here by the named state lan-
guage: fopl. Expressiveness is illustrated in the input
constraints by formulae that go beyond simple conjunc-
tions of literals.

2.5 Performable Actions

Every capability can be described as achieving an objec-
tive or as performing an action. The former description
can be regarded as an objective-centred description and
the latter is an action-centred description. Natural lan-
guage allows us to describe every capability in both ways,
although some descriptions might sound awkward to us.
Performing an action can be described as achieving a state
in which the action has been performed. Achieving an ob-
jective can be described as performing an action of type
achieving for the given objective. Thus, both descriptions
are effectively equivalent.

To think of capabilities in terms of performable ac-
tions as opposed to achievable objectives has one major
advantage: one can define a new capability in terms of
other, more primitive capabilities. For example, suppose
the broker knew the description of a general sorting ac-
tion. If a new agent now wants to advertise the capabil-
ity that it can sort lists of integers, and this new agent is
aware of the broker already knowing about the description
of a sorting action, then the new agent could advertise its
integer sorting capability based on the description of the
sorting action already known to the broker. All the new
agent needs to do in this case is refer to the broker’s exist-
ing description of a sorting action and modify it by stating
the additional constraint that the elements of the given list
must all be integers.

The knowledge the broker would need to achieve this
kind of behaviour is effectively an ontology of actions. It
is conceivable that a broker knowing about a number of
primitive actions in an ontology would be much easier to

64

communicate with, as it would not be necessary to repre-
sent every new capability completely from scratch.

Thus, we shall briefly describe an extension of CDL
to allow for the representation of performable actions. If
the broker has an ontology of actions and another agent
wants to define a new capability in terms of an action in
this ontology, it needs to be able to refer this action in the
ontology in some way. For this purpose we need to add
the following to CDL:

¢ a capability identifier: this field allows the spec-
ification of a unique action name for a capability;
and

o a capability inheritance link: this field allows the
naming of an action from which this capability will
inherit the description.

When a new capability description inherits from an
action description in the broker’s action ontology, the de-
scription of the new capability is effectively a description
of how to modify the inherited action description inher-
ited from to obtain the new capability description. We
shall call a CDL expression that describes a capability by
inheriting from some action a modification description.
Three principal types of modification possible are:

e New parameters: The modification description
can specify additional parameters for input and out-
put in the inheriting capability description.

o Instantiated parameters: The modification de-
scription can give values for parameters defined in
the description inherited from, i.e. these parameters
are instantiated in the inheriting description.

e New constraints: The modification description can
specify additional input, output, or input-output
constraints involving all the new parameters as well
as inherited parameters.

This extension allows the representation of capabil-
ities as performable actions. The syntax of the core of
CDL is given in figure 2. For a detailed description of the
complete syntax of CDL including this extension we again
have to refer to Wickler (1999), which also contains sev-
eral examples that illustrate the various aspects of CDL.

To illustrate modification descriptions and the inheri-
tance mechanism outlined above we shall now look at a
simple example. The first thing we need is an ontology of
actions known to the broker. For simplicity, we shall de-
scribe only one action in this ontology: a moving action.
This action will be described as follows:

(capability
raction move
:state-language fopl
:input ((Thing ?thing) (From ?pl) (To ?p2))
:input-constraints (
(Has Location ?thing ?pl))

<cdl-descr> ::= (<ctype>

<ctype> ::=

<param-spec>

<term> 1=
<variable> ::= ?<name>
<constant> ;1= <name>
<constraint> ::=

:state-language <name>
:raction <name>

:isa <name>
:properties
:input (<param-spec>+)
:output (<param-gpec>+)
:input-constraints
:output-constraints (<constraint>+)
:io-constraints (<constraint>+)

capability | task
(<name> <term>)

<constant> | <variable> |
(<constant> <term>+) |

<< expression in state-language >>

{ <name>+)

(<constraint>+)

Figure 2: Syntax of core CDL in BNF

:output-constraints (
(not (Has Location ?thing ?pl))
(Has Location ?thing 7?p2)))

The three parameters are the object that is to be moved
(?thing), the place from where it is to be moved (?p1),
and the place to which it is to be moved (?pl). The
sole constraint on the input situation is that the thing to
be moved is at the place from where it is to be moved:
(Has Location ?thing ?pl). The output con-
straints state that ?thing will not be at the initial loca-
tion anymore after the action has been performed: (not
(Has Location ?thing ?pl));and thatit will be
at the location it was to be moved to: (Has Location
?thing ?p2). The name of this action is given as
move. We shall now assume that this action description
is known to the broker before it receives any capability
advertisements.

Now, suppose a hospital also wants to advertise the
capability that it can move patients to the hospital. Of
course, this could be done by simply defining a new ca-
pability, but it can also be described as a modification of
the moving action already known to the broker. Thus, the
hospital-agent could send a capability advertisement mes-
sage to the broker with the following content:

(capability
:isa move
:state-language fopl
:input ((To Hospital2) (Ambulance 7a))
:input-constraints (
(elt ?thing Person)
(Is ?thing Injured)))

This CDL description first states that it inherits from

65

the move action in the broker’s action ontology. This ac-
tion is modified by instantiating the input parameter (To
?p2) to Hospital2, i.e. the capability can only move
objects to this hospital. The description also adds one
more input parameter, the Ambulance that is to be used
in the application of this capability. Thus, the three input
parameters of the new capability described here are the
object to be moved (i.e. the patient) and the place it is to
be moved from, both inherited from the move action, and
the ambulance with which the patient is to be moved. The
capability description also extends the input constraints,
specifying that the object to be moved must be a per-
son: (elt ?thing Person); and that this person
must be injured: (Is ?thing Injured). It also in-
herits the input constraint, (Has Location ?thing
?pl), and the first output constraint, (not (Has Lo-
cation ?thing ?pl)), from the move action. The
second output constraint, however, is modified to (Has
Location ?thing Hospital2) because the input
parameter To, which is represented by the variable ?p2
in the description of move, has been instantiated to Hos -
pital2 in the input of the modification description.

3 Related Work

KQML (cf. Finin et al. (1997)), the de-facto standard for
agent communication languages, effectively defines an in-
terface to a broker by providing a set of performatives
that can be used for capability brokering. In fact, the bro-
ker we have implemented uses these KQML performatives
with CDL as the inner language. KQML does not define
an inner language to be used for brokering and thus can-

not not be compared with CDL. Similar comments apply
to the Fipa! standard, although this is still under develop-
ment.

The ABSI facilitator (cf. Singh (1993)) was one of the
earliest brokers and is based on some of the KQML broker-
ing performatives. The only content language supported
is KIF (cf. Genesereth et al. (1992)). While this appears
to be a powerful formalism, the limitation comes with the
matching performed by the broker which is essentially a
simple unification procedure. In addition, a few simple
constraints on the variables bound during the unification
can be specified. This behavior can easily be emulated in
CDL by our broker and thus, CDL is effectively a more ex-
pressive language. Furthermore, the ABSI facilitator pro-
vides no flexibility at all.

Similar limitations apply to the SHADE/COINS match-
makers (cf. Kuokka and Harada (1995)) and the brokers
in the InfoSleuth architecture (cf. Nodine et al. (1998)).
Again, capabilities are to be described in KQML. The pri-
mary envisaged content language is KIF, although one al-
ternative exists for each broker. Thus, the formalism is
expressive, but the matching is again a simple unification
procedure limiting the usable expressiveness. By provid-
ing two content languages these brokers provide at least a
very small amount of flexibility though.

A more interesting langnage is LARKS (cf. Sycara
et al. (1999)). Like CDL it consists of parameter descrip-
tions and constraints on input and output situation. While
it does not provide cross-situational constraints, it does al-
low for concept definitions within the capability descrip-
tion. In CDL all used concepts must be defined in the on-
tology which is referenced in the wrapping KQML layer.
LARKS also provides some interesting types of match-
making between capabilities and tasks. What it does not
provide, however, is flexibility: constraints must be Horn
clauses.

In fact the only other languages we are aware of that
do provide flexibility are complex planning formalisms
such as O-Plan TF (cf. Tate et al. (1998)) or SPAR (cf. Tate
(1998)), and KQML. However, the latter cannot be con-
sidered a full capability description language as its con-
tent language is undefined. The problem with O-Plan TF
and SPAR is that they do not provide reasoning mecha-
nisms that can adequately treat constraints in unknown
languages. CDL deals with this problem by using reflec-
tive reasoning and loading unknown languages from the
Internet, both only made possible by its implementation
in Java, which supports these features.

4 Conclusions

In this paper we presented a new capability description
language, CDL. Such a language is essential for the ex-
plicit representation of capabilities as required for the bro-
kering performed by middie-agents. This is the approach

Isee http://www.fipa.org/

66

generally considered most promising for agent coordina-
tion in an open environment.

By adopting the structure of action representations
used in Al planning CDL inherits the experience gained
with such formalisms in three decades of planning re-
search. Thus, it can be considered a well-founded lan-
guage. Building on such formalisms, CDL has two further
important properties: it is highly flexible which has been
achieved by implementing it in a KQML-like fashion as a
decoupled language, and it is expressive which has been
achieved by allowing for first-order logic as one possible
state description language within CDL.

The core of CDL as described in this paper as well as
several important extensions to this core have been im-
plemented in the programming language Java. As con-
tent languages, first-order logic and a restricted version
that just permits conjunctions of literals have been im-
plemented to illustrate flexibility. Furthermore, there is a
broker based on CDL that uses a reflective matching al-
gorithm to pair tasks and capabilities. Finally, a number
of agents and scenarios including the very simple one de-
scribed in this paper have been implemented to evaluate
the the whole framework.

The code and the thesis that describes this project
(Wickler (1999)) in detail will be distributed on the O-
Plan 3.3 CD in the near future.?

References

James Allen, James Hendler, and Austin Tate, editors.
Readings in Planning. Morgan Kaufmann, San Mateo,
CA, 1990.

Ronald J. Brachman and Hector J. Levesque, editors.
Readings in Knowledge Representation. Morgan Kauf-
mann, Los Altos, CA, 1985.

Keith Decker, Katia Sycara, and Mike Williamson.
Middle-agents for the internet. In Proc. 15th IJCAI,
pages 578-583, Nagoya, Japan, August 1997. Morgan
Kaufmann.

Tim Finin, Yannis Labrou, and James Mayfield. KQML
as an agent communication language. In Jef-
frey M. Bredshaw, editor, Software Agents, chapter 14,
pages 291-316. AAAI Press/MIT Press, Menlo Park,
CA/Cambridge, MA, 1997.

Michael R. Genesereth, Richard E. Fikes, Daniel Bobrow,
Ronald Brachman, Thomas Gruber, Patrick Hayes,
Reed Letsinger, Vladimir Lifschitz, Robert MacGre-
gor, John McCarthy, Peter Norvig, Ramesh Patil, and
Len Schubert. Knowledge interchange format version
3.0 reference manual. Report Logic-92-1, Stanford
University, Stanford, CA, June 1992.

2see hitp://www.aiai.ed.ac.uk/oplan/cdl/

Michael R. Genesereth and Steven P. Ketchpel. Soft-
ware agents. Communications of the ACM, 37(7):48-
53, 147, July 1994.

Patrick J. Hayes. Some problems and non-problems in
representation theory. In Proc. AISB Summer Confer-
ence, pages 63-79, University of Sussex, 1974. Also
in: (Brachman and Levesque, 1985, pages 4-22).

Daniel Kuokka and Larry Harada. Matchmaking for in-
formation agents. In Proc. 14th IJCAI pages 672-678,
Montréal, Canada, August 1995. Morgan Kaufmann.

John McCarthy and Patrick J. Hayes. Some philosophical
problems from the standpoint of artificial intelligence.
In Bernhard Meltzer and Donald Michie, editors, Ma-
chine Intelligence 4, pages 463-502. Edinburgh Uni-
versity Press, Edinburgh, Scotland, 1969. Also in:
(Allen et al., 1990, pages 393-435).

Nils J. Nilsson. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA, 1980.

Marian Nodine, Brad Perry, and Amy Unruh. Experience
with the InfoSleuth agent architecture. In Brian Logan
and Jeremy Baxter, editors, Proc. AAAI Workshop on
Software Tools for Developing Agents, Madison, WI,
January 1998. AAAI Press.

Edwin P. D. Pednault. ADL: Exploring the middle
ground between STRIPS and the situation calculus. In
Ronald J. Brachman, Hector J. Levesque, and Ray-
mond Reiter, editors, Proc. Ist KR, pages 324-332,
Toronto, Canada, 1989. Morgan Kaufmann.

Stuart J. Russell and Peter Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall, Upper Saddle
River, NJ, 1995.

Narinder Singh. A Common Lisp API and facilitator for
ABSI. Report Logic-93-4, Stanford University, Stan-
ford, CA, January 1993.

Katia Sycara, Jianguo Lu, Matthias Klusch, and Seth
Widoff. Matchmaking among heterogenious agents on
the internet. In Proc. AAAI Spring Symposium on Intel-
ligent Agents in Cyberspace, Standford, CA, 1999.

Austin Tate. Roots of SPAR—shared planning and ac-
tivity representation. The Knowledge Engineering Re-
view, 13(1):121-128, March 1998.

Austin Tate, Brian Drabble, and Richard Kirby. O-Plan2:
An open architecture for command, planning and con-
trol. In Monte Zweben and Mark S. Fox, editors, Intel-
ligent Scheduling, chapter 7, pages 213-239. Morgan
Kaufmann, San Francisco, 1994.

Austin Tate, Stephen T. Polyak, and Peter Jarvis. TF
method: An initial framework for modelling and

67

analysing planning domains. In Proc. Knowledge En-
gineering and Acquisition for Planning: Bridging The-
ory and Practice, Pittsburgh, PA, June 1998. Carnegie-
Mellon University, AAAI Press.

Gerhard Wickler. Using Expressive and Flexible Action
Representations to Reason about Capabilities for In-
telligent Agent Cooperation. PhD thesis, University of
Edinburgh, Edinburgh, Scotland, April 1999.

Michael Wooldridge and Nicholas R. Jennings. Intelli-
gent agents: Theories and practice. The Knowledge
Engineering Review, 10(2):115-152, June 1995.

