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The AISB’05 Convention 
Social Intelligence and Interaction in Animals, Robots and Agents 
 

Above all, the human animal is social. For an artificially intelligent system, how could it be otherwise? 

We stated in our Call for Participation “The AISB’05 convention with the theme Social Intelligence 
and Interaction in Animals, Robots and Agents aims to facilitate the synthesis of new ideas, encourage 
new insights as well as novel applications, mediate new collaborations, and provide a context for lively 
and stimulating discussions in this exciting, truly interdisciplinary, and quickly growing research area 
that touches upon many deep issues regarding the nature of intelligence in human and other animals, 
and its potential application to robots and other artefacts”. 

Why is the theme of Social Intelligence and Interaction interesting to an Artificial Intelligence and Ro-
botics community? We know that intelligence in humans and other animals has many facets and is ex-
pressed in a variety of ways in how the individual in its lifetime - or a population on an evolutionary 
timescale - deals with, adapts to, and co-evolves with the environment. Traditionally, social or emo-
tional intelligence have been considered different from a more problem-solving, often called "rational", 
oriented view of human intelligence. However, more and more evidence from a variety of different 
research fields highlights the important role of social, emotional intelligence and interaction across all 
facets of intelligence in humans. 

The Convention theme Social Intelligence and Interaction in Animals, Robots and Agents reflects a 
current trend towards increasingly interdisciplinary approaches that are pushing the boundaries of tradi-
tional science and are necessary in order to answer deep questions regarding the social nature of intelli-
gence in humans and other animals, as well as to address the challenge of synthesizing computational 
agents or robotic artifacts that show aspects of biological social intelligence. Exciting new develop-
ments are emerging from collaborations among computer scientists, roboticists, psychologists, sociolo-
gists, cognitive scientists, primatologists, ethologists and researchers from other disciplines, e.g. lead-
ing to increasingly sophisticated simulation models of socially intelligent agents, or to a new generation 
of robots that are able to learn from and socially interact with each other or with people. Such interdis-
ciplinary work advances our understanding of social intelligence in nature, and leads to new theories, 
models, architectures and designs in the domain of Artificial Intelligence and other sciences of the arti-
ficial. 

New advancements in computer and robotic technology facilitate the emergence of multi-modal "natu-
ral" interfaces between computers or robots and people, including embodied conversational agents or 
robotic pets/assistants/companions that we are increasingly sharing our home and work space with. 
People tend to create certain relationships with such socially intelligent artifacts, and are even willing 
to accept them as helpers in healthcare, therapy or rehabilitation. Thus, socially intelligent artifacts are 
becoming part of our lives, including many desirable as well as possibly undesirable effects, and Artifi-
cial Intelligence and Cognitive Science research can play an important role in addressing many of the 
huge scientific challenges involved. Keeping an open mind towards other disciplines, embracing work 
from a variety of disciplines studying humans as well as non-human animals, might help us to create 
artifacts that might not only do their job, but that do their job right. 

Thus, the convention hopes to provide a home for state-of-the-art research as well as a discussion fo-
rum for innovative ideas and approaches, pushing the frontiers of what is possible and/or desirable in 
this exciting, growing area.  

The feedback to the initial Call for Symposia Proposals was overwhelming. Ten symposia were ac-
cepted (ranging from one-day to three-day events), organized by UK, European as well as international 
experts in the field of Social Intelligence and Interaction.  
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• Second International Symposium on the Emergence and Evolution of Linguistic Commu-
nication (EELC'05)  

• Agents that Want and Like: Motivational and Emotional Roots of Cognition and Action  
• Third International Symposium on Imitation in Animals and Artifacts  
• Robotics, Mechatronics and Animatronics in the Creative and Entertainment Industries 

and Arts  
• Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction  
• Conversational Informatics for Supporting Social Intelligence and Interaction - Situ-

ational and Environmental Information Enforcing Involvement in Conversation  
• Next Generation Approaches to Machine Consciousness: Imagination, Development, In-

tersubjectivity, and Embodiment  
• Normative Multi-Agent Systems  
• Socially Inspired Computing Joint Symposium (consisting of three themes: Memetic 

Theory in Artificial Systems & Societies, Emerging Artificial Societies, and Engineering 
with Social Metaphors) 

• Virtual Social Agents Joint Symposium (consisting of three themes:  Social Presence 
Cues for Virtual Humanoids, Empathic Interaction with Synthetic Characters, Mind-
minding Agents) 

I would like to thank the symposium organizers for their efforts in helping to put together an excellent 
scientific programme. 

In order to complement the programme, five speakers known for pioneering work relevant to the con-
vention theme accepted invitations to present plenary lectures at the convention: Prof. Nigel Gilbert 
(University of Surrey, UK), Prof. Hiroshi Ishiguro (Osaka University, Japan), Dr. Alison Jolly (Univer-
sity of Sussex, UK), Prof. Luc Steels (VUB, Belgium and Sony, France), and Prof. Jacqueline Nadel 
(National Centre of Scientific Research, France).  

A number of people and groups helped to make this convention possible. First, I would like to thank 
SSAISB for the opportunity to host the convention under the special theme of Social Intelligence and 
Interaction in Animals, Robots and Agents. The AISB'05 convention is supported in part by a UK 
EPSRC grant to Prof. Kerstin Dautenhahn and Prof. C. L. Nehaniv. Further support was provided by 
Prof. Jill Hewitt and the School of Computer Science, as well as the Adaptive Systems Research Group 
at University of Hertfordshire. I would like to thank the Convention's Vice Chair Prof. Chrystopher L. 
Nehaniv for his invaluable continuous support during the planning and organization of the convention. 
Many thanks to the local organizing committee including Dr. René te Boekhorst, Dr. Lola Cañamero 
and Dr. Daniel Polani. I would like to single out two people who took over major roles in the local or-
ganization: Firstly, Johanna Hunt, Research Assistant in the School of Computer Science, who effi-
ciently dealt primarily with the registration process, the AISB'05 website, and the coordination of ten 
proceedings. The number of convention registrants as well as different symposia by far exceeded our 
expectations and made this a major effort. Secondly, Bob Guscott, Research Administrator in the 
Adaptive Systems Research Group, competently and with great enthusiasm dealt with arrangements 
ranging from room bookings, catering, the organization of the banquet, and many other important ele-
ments in the convention. Thanks to Sue Attwood for the beautiful frontcover design. Also, a number of 
student helpers supported the convention. A great team made this convention possible! 

I wish all participants of the AISB’05 convention an enjoyable and very productive time. On returning 
home, I hope you will take with you some new ideas or inspirations regarding our common goal of 
understanding social intelligence, and synthesizing artificially intelligent robots and agents. Progress in 
the field depends on scientific exchange, dialogue and critical evaluations by our peers and the research 
community, including senior members as well as students who bring in fresh viewpoints. For social 
animals such as humans, the construction of scientific knowledge can't be otherwise. 
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Dedication: 

I am very confident that the future will bring us increasingly many 
instances of socially intelligent agents. I am similarly confident that 
we will see more and more socially intelligent robots sharing our 
lives. However, I would like to dedicate this convention to those people 
who fight for the survival of socially intelligent animals and their 
fellow creatures. What would 'life as it could be' be without 'life as we 
know it'? 

 

Beppu, Japan. 

 

Kerstin Dautenhahn 

Professor of Artificial Intelligence,  
General Chair, AISB’05 Convention Social Intelligence and Interaction in Animals, Robots and Agents 

University of Hertfordshire 
College Lane 
Hatfield, Herts, AL10 9AB 
United Kingdom 
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Symposium Preface 
Third International Symposium on Imitation in Animals and Artifacts  
 
 
 
SYMPOSIUM OVERVIEW  
 
We are pleased to introduce the proceedings of the Third International Symposium on Imitation in 
Animals and Artifacts held at the University of Hertfordshire, UK, during 12-14 April 2005.  
 
The first Imitation Symposium was held from 7-9 April 1999 as part of the AISB'99 Convention at the 
Edinburgh College of Arts & Division of Informatics, University of Edinburgh, Scotland. The second 
symposium in the series ran from 7 - 11 April 2003 at University of Wales, Aberystwyth, United King-
dom as part of the AISB 2003 convention. The aim of the imitation symposium series remains constant 
in trying to bring together researchers from robotics, computer science, psychology, animal ethology, 
neuroscience, brain imaging, pathology, and other areas to present and exchange ideas addressing the 
important issue of imitation. Species from rats to birds to humans have been observed to turn to their 
peers for efficient learning of useful knowledge, and imitation plays a prominent role in this learning 
process. However, explaining the mechanisms underlying the imitative abilities of humans and other 
animals has proved to be a complex and challenging subject. The mechanisms are not well-understood, 
and their connections to sociality, communication, development, and learning are deep, as research 
from various disciplines has started to reveal. 
 
The proceedings contain 17 papers, ranging from computational implementations of imitation mecha-
nisms and their robotic applications, to imitation experiments with parrots and humans. This variety of 
approaches, indicative of the interdisciplinary interest to imitation, promises to stimulate exciting dis-
cussions during the 3 days of the symposium.  
 
We would like to thank the authors for submitting high-quality research papers for consideration to this 
symposium, and we would like to thank the following members of the program committee, who 
worked hard to provide us with high quality reviews: 
 
Andrew Meltzoff, University of Washington, USA 
Aris Alissandrakis, University of Hertfordshire, UK 
Aude Billard, EPFL, Switzerland 
Auke Jan Ijspeert, EPFL, Switzerland 
Cecilia Heyes, UCL, UK 
Chrystopher Nehaniv, Adaptive Systems Research Group, Hertfordshire, UK 
Erhan Oztop, ATR, Japan 
Geoffrey Bird, UCL, UK 
Joanna Bryson, University of Bath, UK 
Gillian Hayes, IPAB, University of Edinburgh, UK 
Giorgio Metta, LIRA, University of Genoa, Italy 
Giulio Sandini, LIRA, University of Genoa, Italy 
Gordon Cheng, ATR, Japan 
Harold Bekkering, University of Nijmegen, Netherlands 
Hideki Kozima, CRL, Japan 
Jose Santos-Victor, ISR, Technical University of Lisbon, Portugal 
Kerstin Dautenhahn, Adaptive Systems Research Group, Hertfordshire, UK 
Martin Giese, University Clinic Tubingen, Germany 
Meredith Gattis, University of Cardiff, UK 
Minoru Asada, Osaka University, Japan 
Philippe Gaussier, ENSEA, France 
Robert Mitchell, Eastern Kentucky University, USA 
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Sethu Vijayakumar, IPAB, Edinburgh, UK. 
Stefan Wermter, University of Sunderland, UK 
Irene Pepperberg, Radcliffe Institute, Harvard, USA 
Jacqueline Nadel, CNRS, France 
Luc Berthouze, Neuroscience Institute, AIST Japan 
Luciano Fadiga, Faculty of Medicine, University of Ferrara, Italy 
Marco Iacoboni, UCLA, USA 
Rajesh Rao, University of Washington, USA 
Vittorio Gallese, Universita di Parma, Italy. 
Wolfgang Prinz, Max Planck Institute for Psychological Research, Germany 
Yiannis Demiris, BioART, EEE, Imperial College London, UK 
 
We hope you will enjoy the symposium; we hope its discussions will stimulate you with new ideas, and 
increase the level of interdisciplinary collaboration in tackling the fascinating issue of imitation. 
 
Yiannis Demiris, Kerstin Dautenhahn, Chrystopher Nehaniv 
January 2005 
 
 
SYMPOSIUM CHAIR 
 
Dr. Yiannis Demiris 
BioART, Intelligent Systems and Networks Group 
Department of Electrical and Electronic Engineering,  
Imperial College London, SW7 2BT, London, UK 
http://www.iis.ee.ic.ac.uk/yiannis 
 
PROGRAMME CO-CHAIRS  
 
Professor Kerstin Dautenhahn 
Adaptive Systems Research Group 
University of Hertfordshire, School of Computer Science 
College Lane, Hatfield, Hertfordshire AL10 9AB, United Kingdom 
URL: http://homepages.feis.herts.ac.uk/~comqkd 
 
Professor Chrystopher L. Nehaniv 
Adaptive Systems & Algorithms Research Groups 
University of Hertfordshire, School of Computer Science 
College Lane, Hatfield, Hertfordshire AL10 9AB, United Kingdom 
URL:    http://homepages.feis.herts.ac.uk/~nehaniv/welcome.html 
 
 

 v



 

 vi



Robot Imitation from Human Body Movements

Carlos A. Acosta Calderon⋆ and Huosheng Hu⋆
⋆Department of Computer Science, University of Essex
Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
caacos@essex.ac.uk, hhu@essex.ac.uk

Abstract

Imitation represents a useful and promising alternative toprogramming robots. The approach presented
here is based on two functional elements used by humans to understand and perform actions. These
elements are: the body schema and the body percept. The first one is a representation of the body
containing information of the body’s capabilities. The body percept is a snapshot of the body and
its relation with the environment at a given instant. These elements are believed to interact between
each other generating among other abilities, the ability toimitate. This paper presents our approach to
robot imitation and experimental results, where a robot is able to imitate the movements of a human
demonstrator via its visual observations.

1 Introduction

Today, many robotics applications are being investi-
gated, including space exploration, hazardous envi-
ronments, service robotics, cleaning, transportation,
emergency handling, house building, elderly assis-
tance, and so forth (Liu and Wu, 2001; Fong et al.,
2002). These novel applications involve interaction
between humans and robots where the robots must
coordinate their efforts with their human owners.
Therefore, robots must be able to recognize the ob-
servable actions of the other teammates in order to
understand the goals of the actions (Breazeal et al.,
submitted for publication). In addition, some robots
must also learn new observable actions in order to be
able to exchange roles with their teammates. Never-
theless, the introduction of robots in places where hu-
mans live or work requires safety, functionality, and
effective human-robot interaction (Zollo et al., 2003).

It is here where imitation arises as a very promis-
ing approach. Imitation, the ability to recognize,
learn and copy the actions of others, rises asa very
promising alternative solution to the programming of
robots. It remains a challenge for roboticists to de-
velop the abilities that a robot needs to perform a task
while interacting intelligently with the environment
(Bakker and Kuniyoshi, 1996; Acosta-Calderon and
Hu, 2003b). Traditional approaches to this issue, such
as programming and learning strategies, have been
demonstrated to be complex, slow and restricted in
knowledge.

Imitation could equip robots with abilities to per-

form efficient human-robot interaction,eventually
helping humans in personal tasks (Acosta-Calderon
and Hu, 2003b; Dautenhahn and Nehaniv, 2002;
Becker et al., 1999). It also seems that imitation
could be a tool to acquire new behaviors and to adapt
these within new contexts (Acosta-Calderon and Hu,
2003a).

Imitation has several advantages that can be trans-
mitted from humans to robots. In humans, this ability
permits one to treat the other as a conspecific (Melt-
zoff and Brooks, 2001) byperceiving similarities be-
tween oneself and other. This sort of perspective shift
may help us to predict actions; enabling us to infer
the goal enacted by one another’s behaviors (Breazeal
et al., submitted for publication).

Our approach to robot imitation is based on how
humans acquired the necessary information to under-
stand and execute action (Acosta-Calderon and Hu,
2004a). In humans, the information required to per-
form an action is obtained from two sources: the body
schema, which contains the relations of the body parts
and its physical constraints; and the body percept,
which refers to a particular body position perceived
in an instant (Acosta-Calderon and Hu, 2004b). The
body schema and the body percept give us the in-
sight into recognizing actions and thereby performing
these actions, therefore,The understanding of other
people’s actions would lead to imitation (Oztop and
Arbib, 2002). We use these fundamental parts and
describe their relation throughout four developmen-
tal stages used to describe the imitative abilities in
humans. This paper describes our approach to ad-
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dressing imitation of body movements. Results of ex-
periments with a robotic platform implementing men-
tioned approach are also described. Related works on
imitation using robotics arms focus on reproducing
the exact gesture, which means to minimize the dis-
crepancy for each joint (Ilg et al., 2003; Zollo et al.,
2003; Schaal et al., 2003). The work described here
uses a different approach: to focus only on the target
and to allow the imitator to obtain the rest of the body
configuration. This approach is valid when the imita-
tor and the demonstrator do not share the same body
structure.

The rest of the paper is organized as follows. Sec-
tion II presents the background theory that has in-
spired our work on imitation. Section III describes
briefly the body configuration. In Section IV we
present our mechanism for imitation of body move-
ments and implementation issues for the robotic plat-
form. Experiment results are presented in Section V.
Finally, Section VI concludes the paper.

2 Background

Humans can perform actions that are feasible with
their bodies. To achieve those actions humans use the
information derived from two sources (Reed, 2002):

• The body schemais the long-term representation
between the spatial relations among body parts
and the knowledge about the actions that they
can and cannot perform.

• The body perceptrefers to a particular body po-
sition perceived in an instant. It is built by in-
stantly merging information from sensory input
and proprioception; with the body schema. It is
the awareness of a body’s position at any given
moment.

The body schema presents two significant func-
tions, which use the knowledge of the feasible actions
that every part of the body can perform:

• Direct action. When an action is performed
from a current position, a new one is produced.

• Inverse action.When an action that satisfies a
goal position is selected.

The interaction of both functions allows one to
simulate another person’s actions(Goldman, 2001).
When a goal state is identified, then the inverse action
generates the motor commands that would achieve

the goal. Those motor commands are sent to the di-
rect action which will predict the next state. This pre-
dicted state is compared with the target goal to take
further decisions.

These two functions share the idea that has been
used in motor control but they are known as con-
trollers and predictors. Demiris and Johnson (2003)
used functions with the same principle but called
them inverse and forward models.

When we observe someone performing a particu-
lar action, one can easily determine how one would
accomplish the same task using one’s own body. This
means that it is possible torecognize the actionthat
someone else is performing. The body schema pro-
vides the basis tounderstand similar bodies and per-
form the same actions(Meltzoff and Moore, 1994).
This idea is essential in imitation. In order to imitate,
it is first necessary to identify the observed actions,
and then to be able to perform those actions. Thus, in
order to achieve a perceived action a mental simula-
tion is performed constrainting/restraining the move-
ments to those that are physically possible.

There are different approaches to describe the way
that humans develop the ability to imitate. One at-
tempt to explain the development of imitation is given
by Rao and Meltzoff (2003), who had introduced a
four-stage progression of the imitative abilities. De-
tails of those four stages are presented below:

• Body babbling.This is the process of learning
how specific muscle movements achieve vari-
ous elementary body configurations. Thus, such
movements are learned through an early ex-
perimental process, e.g. random trial-and-error
learning. Thus, Body babbling is related to the
task of building up the body schema (the physics
of the system and its constraints).

• Imitation of body movements.This demonstrates
that a specific body part can be identified i.e. or-
gan identification (Meltzoff and Moore, 1992).
Here, the body schema interacts with the body
percept to achieve the same movements, once
these are identified.

• Imitation of actions on objects. This stage
starts underlying mental stages about others’ be-
haviour and oneself. This also represents flexi-
bility to adapt actions to new contexts.

• Imitation based on inferring intentions of ac-
tions. This requires the ability to read beyond
the perceived behaviour to infer the underlying
goals and intentions.
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These four developmental stages serve as a guide-
line for our progress in research. This paper reports
mainly our experiences accomplishing imitation of
body movements with a robotic system. We also de-
scribe briefly our work on body babbling.

3 Body configuration

Body babbling endows us with the elementary config-
uration to control our body movements by generating
a map. This map contains the relation of all the body
parts and their physical limitations. In other words,
this map is the body schema.

As humans grow and their bodies change, the body
schema is constantly updated by means of input from
the body percept. The body percept, in turn, gathers
its information from sensory and proprioception in-
formation. If there is an inconsistency between the
body schema and the body percept, then the body
schema is updated.

In robotics, since the bodies of robots are change-
less in size and weight, body babbling is simplified by
endowing the robot with a control mechanism. Such
a mechanism must permit the robot to know its phys-
ical abilities and limitations. Therefore, for the ex-
periments with the robotic platform we use the kine-
matic analysis as the mechanism of position control.
The forward kinematic analysiscalculates the posi-
tion and orientation of thegripper of the robot. In
similar way, to determine the values of the robot’s
joints to produce a desired position and orientation,
we use theResolve Motion Rate Control (RMRC).
Further details of these methods and implementa-
tion issues can be found in (Acosta-Calderon and Hu,
2004a,b)

4 Imitation of Body Movements

4.1 Identification of a body part

The first step towards imitation is the recognition of
the action to imitate. Hence, the imitator must be able
to differ among the demonstrator’s body parts to iden-
tify those those to imitate. The approach described
here uses key ideas of the mirror neurons.

These particular neurons have been found in
macaque monkeys. These neurons fire when the
monkey observes movements executed by another
monkey or human demonstrator, as well as when
the monkey executes similar goal-oriented move-
ments(Oztop and Arbib, 2002). Neuropsychological
experiments in humans described in (Buccino et al.,

2001; Charminade et al., 2002) have revealed brain
regions that present similar activity to the one pre-
sented by mirror neurons, for both perception and ex-
ecution of action.

One interesting feature is that, mirror neurons only
fire when they perceive similar body parts to the
monkey’s (mechanical devices do not activate them).
Hence, the detection of the similar body parts tends
to release the mirror neurons’ activity.

Psychologists propose a innate observation-
execution pathway in humans (Meltzoff and Moore,
1992; Charminade et al., 2002), here, mirror neurons
give a good insight into understanding this idea.
Therefore, we can use the same idea of mirror neu-
rons to identify a body part. However, an interesting
question arises: do we need to implement a mirror
neuron model to every single part of the body? If so,
the model would be extremely complicated due to
the number of possible combinations of body parts.

The solution could be in an insight of how human
beings focus attention on body parts. When humans
observe a body movement they do not focus their at-
tention on every single body part. Instead, humans
focus their attention on the “end-effector”, discarding
the position of the other body parts (Mataric, 2002;
Mataric and Pomplun, 1998). The body schema finds
the necessary body configuration for the rest of our
body’s parts thereby satisfying the target position for
the end-effector.

The implementation of the identification model is
done within the body schema module. Here, the
end-effector of the demonstrator is marked in distinct
color, which can be easily extracted from the image.
For our purposes is sufficient to use this simple ap-
proach.

Therefore, it is important to remarkthe level of im-
itation Billard et al. (2004); Dautenhahn and Nehaniv
(2002); Nehaniv and Dautenhahn (2002) used in this
work. The level of imitation utilized here isthe repro-
duction of the path followed by the target, where the
imitator will only focus to follow the path described
by the end-effector of the demonstrator. The level
of reproduction of the exact gesturewas not chosen
due to our approach allows the body schema to find
the body configuration satisfying the target position.
The discrepancy among the bodies of the imitator and
the demonstrator supports the validation of the level
of imitation selected. Nevertheless, this discrepancy
of bodies arises a problem: the correspondence prob-
lem.
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4.2 The Correspondence Problem

A successful imitation requires that the imitator be
able to recognize structural congruence between one-
self and the demonstrator (Meltzoff and Brooks,
2001). When both the demonstrator and the imita-
tor have a common body representation, the body
schema of the imitator is then, by itself, capable
enough to understand the demonstrator’s body. Nev-
ertheless, in a situation where the demonstrator’s
body differs from the imitator’s body schema, there
must be a way that the imitator can overcome this so
calledcorrespondence problem(Nehaniv and Daut-
enhahn, 2001, 2002). For our implementation, this
correspondence problem is worked out by provid-
ing the representation of the body of the demonstra-
tor and a way to relate this representation (Acosta-
Calderon and Hu, 2004a).

Figure 1: The correspondence between the bodies of
the robot (left) and the demonstrator (right). Two
joints, the shoulder and the wrist, have correspon-
dence in both bodies.

Figure 1 presents the correspondence between the
body of the demonstrator and that of the imitator.
Here, a transformation is used to relate both represen-
tations. This transformation is based on the knowl-
edge that in the set of joints of the demonstrator there
are three points that represent an arm (shoulder, el-
bow, and wrist). The remaining two points (the head
and the neck) are used just as a reference. The ref-
erence points are used to keep a relation among the
distances in the demonstrator model. This informa-
tion about the representation of the demonstrator is
extracted by means of color segmentation.

The transformation relates the demonstrator’s body
to the robot’s body. The demonstrator’s shoulder
is used as the origin of the workspace of the robot.
Hence, the shoulder of the demonstrator is treated as
the reference point for the calculation of the remain-
ing two points of the demonstrator’s arm. Note that
only the position of the demonstrator’s end-effector

(wrist) is then converted and fitted into the workspace
of the robot.

Each new position of the end-effector identified in
the workspace of the robot triggers the body schema
to fulfill it. Since the robot only cares about the posi-
tion of the end-effector, it uses the body schema (the
control method) to obtain the rest of the body config-
uration (Acosta-Calderon and Hu, 2004a).

Figure 2: The architecture used to imitate the body
movements. The information about the demonstra-
tor is extracted and then converted to the robot’s
workspace. This information represents the new po-
sition to be imitated.

The mechanism implemented for the imitation of
body movements is depicted in Fig. 2. Hence, to
satisfy a new position of the end-effector the body
schema employs theinverse actionfunction (Resolve
Motion Rate Control - RMRC). This function obtains
the new values for the body parts to satisfy the desired
position. The body configuration obtained leads to a
controllable motion preventing the joints from mov-
ing too fast whilst the kinetic energy is minimized;
just like humans do when we imitatethe path de-
scribed by the targetand notthe exact gesture.Fur-
ther details of the RMRC implemented can be seen at
Acosta-Calderon and Hu (2004a).

Although, the body configuration obtained for the
robot, might not be similar to the one presented by
the demonstrator. Instead of copying the extract pos-
ture, the level of imitation that we are addressing is
to reproduce the same goal position. This is mainly
because the robot and the demonstrator do not share
the same body structure. This can avoid the situation
where one body configuration can not be achieved by
physical constraints. Here, the body schema plays
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a crucial role minimizing the motion between posi-
tions, while considering the physical constraints, and
selecting the more efficient body configuration.

Once a body configuration has been found this can
either be sent to the actuators and executed, or inhibit
the output to the actuators and send it to thedirect
actionfunction (Forward Kinematics). The direct ac-
tion will simulate the action of sending those values
to the actuators and return the achieved position for
that particular set of values. The new reached posi-
tion is used to generate the current body percept, as
the new position, in other words, a mental rehearsal
of the observed action.

4.3 Movements

The movements imitated are represented as paths
consisting of a set of points. Each point represents
the demonstrator’s end-effector both the position (de-
fined in Cartesian coordinates byx, y, andz) and the
orientation (defined by theroll, pitch, andyaw an-
gles) (Acosta-Calderon and Hu, 2004a,b).

Each new position in the movement of the demon-
strator is smoothened by usingcubic spline curves.
These kinds of curves have the feature that they can
be interrupted at any point and fit smoothly to another
different path. More points can be added to the curve
without increasing the complexity of the calculation.
Using spline curves reduces the noise in the data from
the color segmentation.

The identification of a movement is a complex pro-
cess. In the process of identification it is necessary to
find, if there is, a matching movement from the pre-
viously learnt movements in the library.

The matching process consists of comparing a
movement with those already stored in the library,
and selects the one with the minimal error defined by
(1)

ϕk = argi min
(

−→

f −

−→

fi

)2

(1)

whereϕk is the minimal error for the movement
in the library with the indexk.

−→

fi is the function
that represents the featuring vector of the movement
with index i, as shown in (2). The minimal error
obtained from the elements in the library does not
guarantee the new element corresponds to a similar
class of movements. Hence, the minimal errorϕk

is compared with a threshold. Whenϕk is less than
the threshold, it is assumed that the observed move-
ment is close enough to the one represented by the
best matchk. Thus, the movementk in the library is
updated using interpolation with the observed move-
ment. On the other hand, whenϕk is greater than the

threshold, the observed movement would be treated
as a new movement and finally added to the library.
This process can be seen from Fig. 3

−→

fi = (f1, f2, . . . , fN ) (2)

The extraction of the features for the movementi

is performed by using agrid-based extractionas de-
scribed by Shen and Hu (2004). This method divides
an image into a fixed number of cellsN defined by
the number ofcolumnsandrows. The next step is to
visit each cellj in the grid and the number of Rele-
vant FeaturesRF counted. Finally, this value is nor-
malized by the total number of Relevant Features of
the movementi via (3).

fj =
RFj

∑

RFj

(3)

After visiting all the cells, all the feature valuesfj

are collected into the featuring vector
−→

fi . The val-
ues contained in the featuring vector are relative val-
ues, which are robust to variations in the slope of the
movement. A variation in the slope of a sub-area of
the movement does not represent a significant varia-
tion in the featuring vector.

Figure 3: Interpolation of the library movement (a)
with a new movement (b) the result is movement (c).

Figure 4 presents two movements divided into sub-
areas by the grid. In order to compare both move-
ments they must have the same scale, the same num-
ber of columns and rows, and of course, the same
number of pixels in each sub-area of the grid.

5 Experimental results

To investigate the abilities of the approach presented,
we described our experience with experiments of im-
itation of actions on objects. In our set-up we used
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(a) (b)

Figure 4: Two movements are divided into cells and
to be compared.

the robot United4, as the imitator, which faced a hu-
man demonstrator. The robot observed the move-
ments performed by the demonstrator in order to im-
itate them later. The experiments were conducted in
two phases for all the cases:

• Learning phase,in which the robot was observ-
ing the demonstrator’s movements, while identi-
fying and recording them to be executed later.

• Execution phase,here the robot performs the
movements learnt in the previous phase.

The robotic platform used is a mobile robot Pio-
neer 2-DX with a Pioneer Arm and a camera, namely
United4. The robot is a small, differential-drive mo-
bile robot intended for indoors. The robot is endowed
with the basic components for sensing and navigation
in a real-world environment. It is also equipped with
a color tracking system. United4 has a Pioneer Arm,
which is a robotic arm with fivedegrees-of-freedom,
the end-effector is a gripper with fingers allowing for
the grasping and manipulation of objects.

The experiments have been conducted in our
Brooker laboratory. The relevant objects in the en-
vironment (demonstrator’s joints) were marked with
different colors to simplify the feature extraction. The
less cluttered background permits the robot to focus
only on the significant information. We also consider
only planar motions in order to validate our approach.

Our first set of experiments of movements of body
parts involved movements describing different paths.
In Figure 5, we present one path used in the experi-
ments.

In Fig. 5, (a), (c), and (e) show the demonstra-
tor performing a path from up to down with his right
hand. While (b), (d), and (f) present the robot imitat-
ing such movement. In addition, We can observe that
the robot presentedthe mirror effect. Hence, if the
demonstrator, located in front of the robot, moves its

(a) (b)

(c) (d)

(e) (f)

Figure 5: Movements performed by the demonstrator
and imitated by the robot.
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Figure 6: The movement of the demonstrator (solid
line) and the performance of the robot (dotted line),
extracted from the movements in Fig. 5.

left arm, then the imitator would move its arm toward
the right, acting as a mirror.

In Fig. 6, the solid line is the path extracted from
the movements performed by the demonstrator in Fig.
5. The dotted line represents the robot’s performance.
The path was extracted and adjusted in order to be
performed by the robot since the size and shape of
the workspace for the model and the robot were not
the same.

The second set of experiments on imitation of body
movements involved movements writing different let-
ters, e.g. e, s. The robot observed the demon-
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(a) (b)

(c) (d)

Figure 7: During the learning phase, shown in (a) and
(b) the demonstrator is writing the letters “e” and “s”.
During the execution phase, shown in (c) and (d) the
robot is writing those letters.

strator performing the handwriting while, by means
of the colored markers that the demonstrator wears,
the body representation of the demonstrator was ex-
tracted. This representation was related with the
robot’s representation by the body schema. There-
fore, the robot could understand the new position of
the demonstrator’s end-effector within its workspace.
The configuration needed to reach this desired posi-
tion was eventually calculated by means of the kine-
matics methods. Finally, the path described by the
end-effector was recorded and ready to be executed.
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Figure 8: Letter “e.” The solid line is the performance
of the robot (from Figure 7.c), and the dotted line is
the path that the robot generated after observing the
demonstrator’s performance (from Figure 7.a).

Figure 7 presents the letters “e” and “s.” The
learning phase is presented in (a) and (b), where the
demonstrator has written these letters. When the
demonstrator was describing the path of these let-

ters, the robot was observing and relating those move-
ments to its own. In the execution phase, (c) and (d),
the robot is performing the paths described by the let-
ters.
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Figure 9: Letter “s.” The Performance of the robot
in the solid line (from fig. 7.d), and the dotted line
is the path that the robot generated by observing the
demonstrator performance(from fig. 7.b).

Each path is extracted and adjusted in order to be
performed by the robot since the size and shape of
the workspace for the model and the robot are not the
same. To minimize the noise in the path, we smooth
the path by usingcubic spline curves.

6 Conclusions and future work

Roboticists have begun to focus their attention on im-
itation. Since the capability to obtain new abilities
by observation presents considerable advantages in
contrast with traditional learning approaches. Finally,
imitation might equip robots with the abilities for an
efficient human-robot interaction.

The presented approach is based onthe body
schemaandthe body percept,which are used by hu-
mans to understand how other people perform ac-
tions. Since the knowledge of feasible actions and
physical constraints is implicit in the body schema,
it is possible to do a mental rehearsal of other peo-
ples’ actions and gather the results of those actions at
particular body percepts for the body schema. It is
believed that these two key-parts play a crucial role
in achieving imitation.

We used an approach of four developmental stages
of imitation in humans, to prove the key-role of these
two components. The scope of this paper describes
our progress mainly on imitation of body movements.
In this stage, we used the idea to focus on the end-
effector as humans do and to allow the body schema
to obtain the rest of the configuration.

7



We have also described our experiments with a
robot as the imitator, imitating the movements of a
human demonstrator. Our experiments show the fea-
sibility of the proposed approach at this stage of im-
itation. Our future work involves extending the ex-
periments to the next stage, imitation of action on ob-
jects.
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Abstract

One of the fundamental problems in imitation is the correspondence problem, how to map between
the actions, states and effects of the model and imitator agents, when the embodiment of the agents
is dissimilar. In our approach, the matching is according to different metrics and granularity. This
paper presents JABBERWOCKY, a system that uses captured data from a human demonstrator to gen-
erate appropriate action commands, addressing the correspondence problem in imitation. Towards a
characterization of the space of effect metrics, we are exploring absolute/relative angle and displace-
ment aspects and focus on the overall arrangement and trajectory of manipulated objects. Using as
an example a captured demonstration from a human, the system produces a correspondence solution
given a selection of effect metrics and starting from dissimilar initial object positions, producing ac-
tion commands that are then executed by two imitator target platforms (in simulation) to successfully
imitate.

1 Introduction

Imitation is a powerful learning tool that can be used
by robotic agents to socially learn new skills and
tasks. One of the fundamental problems in imitation
is the correspondence problem, how to map between
the actions, states and effects of the model and imi-
tator agents, matching according to different metrics
and granularity, when the embodiment of the agents
is dissimilar (Nehaniv and Dautenhahn (1998)). The
following statement of the correspondence problem
(Nehaniv and Dautenhahn (2000, 2001, 2002)) draws
attention to the fact that the model and imitator agents
may not necessary share the same morphology or
may not have the same affordances:

Given an observed behaviour of the model,
which from a given starting state leads the
model through a sequence (or hierarchy
[or program]) of sub-goals in states, action
and/or effects, one must find and execute a
sequence of actions using one’s own (possi-
bly dissimilar) embodiment, which from a
corresponding starting state, leads through
corresponding sub-goals - in corresponding

states, actions, and/or effects, while possi-
bly responding to corresponding events.

In this approach, a solution to the correspondence
problem can be used to generate a recipe (a loose
plan) through which an imitator can map sequences
of observed actions of the model agent to its own
repertoire of actions as constrained by its own em-
bodiment and by context (Nehaniv and Dautenhahn
(2000, 2001, 2002)). Qualitatively different kinds of
social learning result from matching different com-
binations of matching actions, states and effects at
different levels of granularity (Nehaniv (2003)). The
sub-goals define the granularity to match and vice
versa.

Artificial agents that have the ability to imitate may
use (perhaps more than one) metric to compare the
imitator agent’s own actions, states and effects with
the model’s actions, states and effects, in order to
evaluate the imitation attempts and discover corre-
sponding actions that they can perform to achieve
a similar behaviour. The choice of metrics used is
therefore very important as it will have an impact on
the quality and character of the imitation. Many inter-
esting and important aspects of the model behaviour
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Figure 1: The JABBERWOCKY system architecture. Using data captured from a human and given appropriate
metrics and sub-goal granularity, the multi-target system can produce action command sequences that when exe-
cuted by a software or hardware agent can achieve corresponding actions, states and/or effects. The corresponding
actions, states and effects as demonstrated by the imitator can also be captured and used as a demonstration for
another imitating agent. Differently embodied and constrained target systems in various contexts need to be sup-
ported.

need to be considered, as the metrics capture the no-
tion of the salient differences between performed and
desired actions and also the difference between at-
tained and desired states and effects (Nehaniv and
Dautenhahn (2001, 2002)). The choice of metric de-
termines, in part, what will be imitated, whereas solv-
ing the correspondence problem concerns how to im-
itate (Dautenhahn and Nehaniv (2002)). In general,
aspects of action, state and effect as well as the level
of granularity (what to imitate) do all play roles in
the choice of metric for solving the problem of how
to imitate (Nehaniv and Dautenhahn (2001); Alissan-
drakis et al. (2002); Billard et al. (2004)). On-going
research is thus addressing the complementary prob-
lem of how to extract sub-goals and derive suitable
metrics automatically from observation (Nehaniv and
Dautenhahn (2001); Nehaniv (2003); Billard et al.
(2004); Calinon and Billard (2004)).

In our setting, it will be desirable to have differ-
ent kinds of agents in the learning process, i.e. hu-
mans and robots interacting socially. Focusing on
object manipulation and arrangement demonstrated
by a human, this paper presents a system that uses
different metrics and granularity to produce action
command sequences that when executed by an imi-
tating agent can achieve corresponding effects (ma-
nipulandum absolute/relative position, displacement,
rotation and orientation). Depending on the partic-
ular metrics and granularity used, the corresponding
effects will differ (shown in an example), making the
appropriate choice of metrics and granularity depend
on the task and context.

The work presented in this paper is motivated by
the EU Integrated project COGNIRON (“The Cogni-
tive Robot Companion”) and addresses the problem

of how to teach a robot new complex tasks through
human demonstration. The learning algorithms to be
developed should be general and address fundamen-
tal questions of imitation learning, applied to manip-
ulation tasks. For example a robotic companion at
home could acquire knowledge of e.g. laying out a
table or drawing on a canvas from observing its hu-
man owner. Acquiring such skills socially requires
matching different aspects of the effects that the hu-
man actions have on objects in the environment. Also
the context within which a skill is replicated might re-
quire its generalization to various settings and to other
types and shapes of objects.

2 The JABBERWOCKY System

This section presents the JABBERWOCKY system de-
veloped for the COGNIRON project, that uses cap-
tured data from a human demonstrator to generate ap-
propriate action commands (see Figure 1), addressing
the correspondence problem in imitation. The action
commands can be targeted for various software and
hardware platforms. These actions will allow the im-
itating agent to achieve corresponding actions, states
and effects, depending on the given (relevant to the
demonstrated task and context) metrics and granular-
ity (provided by a what to imitate and sub-goal ex-
traction module), embodiment restrictions and con-
straints (imposed by the targeted imitator platform),
and possibly different initial state of the objects in the
environment.

The design of the JABBERWOCKY system is in-
formed by the ALICE (Action Learning via Imitating
Corresponding Embodiments), a generic framework
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Figure 2: Captured demonstration (left), and the
extracted critical points (right). The colors (red,
green and blue) indicate the three different objects.
The dotted outlines indicate the initial position and
orientation of the objects, while the solid thick outline
the final position. For the demonstration data, the in-
termediate object’s position and orientation is shown
with solid thin outlines, linearly scaled (at intervals
equal to one tenth of the overall trajectory only, for
clarity) to indicate the direction of the movement. For
the critical points, each object’s position and orienta-
tion is shown at every critical point, again linearly
scaled.

for solving the correspondence problem (see Alissan-
drakis et al. (2002, 2004)). The ALICE framework
builds up a library of actions from the repertoire of
an imitator agent that can be executed to achieve cor-
responding actions, states and effects to those of a
model agent (according to given metrics and granu-
larity). The ALICE framework provides a functional
architecture that informs the design of robotic sys-
tems that can learn socially from a human demon-
strator.

The system bears some similarity to the one pre-
sented in (Kuniyoshi et al. (1994)), but with the main
differences that it can use any given metric and gran-
ularity and that it is designed to be able to generate
action commands targeted for a variety of platforms,
both in software and hardware to match different be-
haviour aspects and achieve various types of social
learning.

2.1 Demonstrator (Model Agent)

The system uses captured data from a human demon-
strator. The demonstrated behaviour is captured using
motion sensors (Polhemus LIBERTYTM motion cap-
ture system). By attaching the motion sensors on the
arms, hands and torso of the human, as well as on the
objects that the demonstrator is manipulating, we can
obtain the actions (e.g. hand movements, gestures),
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Figure 3: An example of dissimilar initial object
positions. The dotted outlines indicate the initial po-
sition and orientation of the objects in the demon-
strator’s workspace (from the demonstration shown
in Figure 2, left) and the solid outlines the (dissim-
ilar) initial configuration of the objects in the imita-
tor’s workspace. The blue object has the same initial
position.

states (e.g. arm and body postures) and effects (e.g.
positioning, displacement, rotation of objects in the
workspace) of the demonstrator.

In example shown in Figure 2, the demonstrated
task consists of three block objects (colored red,
green and blue) arranged in a 2D workspace sur-
face by a human who acts as the demonstrator. The
workspace is a square grid 50 cm by 50 cm, and the
sizes of the objects are: 10 cm by 8 cm (red) and 8
cm by 5 cm (green and blue). As the manipulations
occur only in a 2D plane, only the XZ dimensions are
given here (and shown in the figures) omitting the Y
dimension (height).

The current work focuses on the effects aspect of
the demonstrated behaviour, so only the position and
orientation of the objects as they are manipulated by
the demonstrator are captured, omitting the demon-
strator’s actions (arm movements) and states (body
posture). The choice of initially concentrating on ef-
fects for this work is guided by the assumption that
the manipulation of objects will be the most impor-
tant aspect of the demonstrated behaviours that users
would like a robotic companion to imitate in a home
environment (e.g. fetching objects or arranging them
in particular ways).

In ongoing work, three (or more) additional sen-
sors will be used, one attached to the human torso and
one at each hand/arm, providing additional informa-
tion about the demonstrator’s states and actions. Tak-
ing into account the states aspect would help the JAB-
BERWOCKY system solve possible ambiguities when
producing the corresponding actions for imitation.
For example, a humanoid robot imitator, consider-
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ing the states of the demonstrator would obtain pos-
sibly useful information e.g. which hand to use (left
or right) to reach an object from its current configura-
tion, based on the choice of hand used by the demon-
strator.

2.2 What to Imitate Module

The character of the imitation will depend on the
metrics and granularity (Alissandrakis et al. (2002,
2004); Alissandrakis (2003)). The what to imitate
module will use the captured demonstration data to
extract appropriate sub-goals (granularity) and also
discover what metrics must be used to capture the ap-
propriate aspects of the particular demonstration.

In the current implementation of the JABBER-
WOCKY system the metrics and the sub-goal granu-
larity are given, instead of being discovered by the
imitator agents based on the observed demonstrated
task. The what to imitate module provides a choice
of metrics and granularity based on the task and con-
text of the demonstration, although there might not
always be a unique, “correct”, choice. Here, the var-
ious possible metrics and granularity have been se-
lected in advance. It can be shown that the character
of the resulting matched effects can be very different,
depending on the choice of metrics and granularity
used.

The sub-goal granularity is given by finding the
critical points in the trajectories of the manipulated
objects. A critical point occurs when the direction
of the captured trajectory and/or the orientation of an
object changes by more than a certain threshold.

Several different effect metrics have been defined
(see section 2.3) that are used in the experiment pre-
sented in this paper. In the future the work will be
extended to consider also the state and action aspects
of a demonstration.

2.3 Metrics

Towards a characterization of the space of effect met-
rics, we are exploring absolute/relative angle and dis-
placement aspects and focus on the overall arrange-
ment and trajectory of manipulated objects. Look-
ing at how objects can be manipulated (in a non-
destructive and combining way), there are two differ-
ent perspectives: how the object was displaced and
how it was rotated. The displacement can be either
relative or absolute related to the final position in the
workspace, or relative to the other objects within the
workspace. The rotation can be also be relative or ab-
solute related to the final orientation of the object. To

fully describe the manipulation of an object, both dis-
placement and angular effect aspects must be consid-
ered. We consider these aspects in a two-dimensional
workspace, such as a table surface.

If the initial configuration of the (same or corre-
sponding) objects is the ‘same’ for both the model
and the imitator agents, then there is no observable
distinction between using either the absolute and rel-
ative displacement/rotation or the relative position (if
the objects are manipulated in the same order). But if
the agents are active in a different workspace starting
from a different initial configuration of objects, or the
timing and the order of the manipulations is not the
same, it will be impossible to satisfy simultaneously
all the aspects. Therefore choosing to satisfy one par-
ticular aspect will result in a qualitatively different
effect than if another one was chosen, but still satisfy
those similarity quantitative criteria.

2.3.1 Displacement Effect Metrics

The model is moving an object from position XM to
position X ′

M on the workspace, achieving an object
displacement ∆XM = X ′

M − XM , where XM =
[

xM

yM

]

, X ′

M =

[

x′

M

y′

M

]

, and ∆XM = X ′

M −

XM =

[

x′

M − xM

y′

M − yM

]

. The imitator should move

the same (or corresponding) object from position XI

to position X ′

I on the workspace, with a displacement
∆XI = X ′

I −XI , such that a displacement metric is
minimised (see Fig. 4, left).
Relative Displacement Effect Metric is minimized

if ∆XI = ∆XM and X ′

I = XI +∆XM =

[

xI

yI

]

+
[

x′

M − xM

y′

M − yM

]

=

[

xI + x′

M − xM

yI + y′

M − yM

]

.

Absolute Displacement Effect Metric is minimized
if X ′

I = X ′

M and ∆XI = X ′

M − XI =
[

x′

M − xI

y′

M − yI

]

.

Relative Position Effect Metric is minimized if the
object is moved to a similar position relative to other
objects in the workspace. The relative position ef-
fect metric is defined here for three objects in the
workspace.

The center of the manipulated object is defined as

A =

[

xA

yA

]

, and the centers of the other two ob-

jects as B =

[

xB

yB

]

and C =

[

xC

yC

]

. The imita-

tor must move the same (or corresponding) object to
form a triangle ABC so that it is the “same” as the
triangle formed by the model, i.e. the angles CÂB,
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Figure 4: A selection of displacement (left) and angular metrics (right). To evaluate the similarity between
object displacements, the relative displacement, absolute position and relative position effect metrics can be used.
To evaluate the similarity between object rotations, the rotation and orientation effect metrics can be used. The
second row shows the way the corresponding object (in a different workspace) needs to be moved or rotated by
an imitator to match the corresponding effects. The grey triangles are superimposed to show that for the relative
position effect metric, the relative final positions of the objects are the same.

AB̂C and BĈA are equal. The triangle sides ĀB,
B̄C and C̄A can be equal only if the objects start
from the same initial configuration for both agents
and are manipulated in the same order, so only the
equality of the angles can be used in general1.

The relative position effect metric is minimized if

X ′

I = A and ∆XI = A − XI =

[

xA − xI

yA − yI

]

.

2.3.2 Angular Effect Metrics

The model is rotating an object from orientation θM

to orientation θ′M on the workspace, with a rotation
∆θM = θ′M − θM . The imitator should rotate the
same (or corresponding) object from orientation θI

to orientation θ′I on the workspace, with a rotation
∆θI = θ′I − θI , such that a displacement metric is
minimised (see Fig. 4, right).
Rotation Effect Metric is minimized if ∆θI = ∆θM

and θ′I = θI + ∆θM .
Orientation Effect Metric is minimized if θ′I = θ′M
and ∆θI = θ′M − θI .

2.3.3 Other Effect Metrics

Depending on the initial configuration of the corre-
sponding objects in the imitator’s workspace, or the
particular task that the imitator would like to achieve,
it might be desirable to use also other metrics that take
into account mirror symmetry, both positional and an-
gular, to features of the environment or other agents.
For example:

Mirror Displacement Effect Metric is minimized if

∆XI = −∆XM and X ′

I = XI−∆XM =

[

xI

yI

]

−
[

x′

M − xM

y′

M − yM

]

=

[

xI − x′

M + xM

yI − y′

M + yM

]

.

Mirror Rotation Effect Metric is minimized if
∆θI = −∆θM and θ′I = θI − ∆θM .
Parallel Orientation Effect Metric is minimized if
θ′I = ϑ and ∆θI = ϑ − θI , where ϑ is the orienta-
tion of a feature in the environment (e.g. one edge
of the table). If the features in the workspace of the
imitator are the same as the model’s, then ϑ ≡ θ′M
and this metric becomes equivalent to the orientation
effect metric.

2.4 Combinations of Effect Metrics
To evaluate both the movement and the orientation
of an object, both metric types must be used. To
match the observed effect, the (corresponding) object
needs to be moved on the workspace according to the
displacement given by the displacement effect met-
ric and rotated according to the angular effect metric
used.

A weighted combination of more than one dis-
placement metric can also be used, by averaging the
displacement vectors that minimise each metric. For

example, if ∆Xi =

[

∆xi

∆yi

]

is the displacement

that minimises a displacement effect metric i, and
ω1, ... , ωn are the weights of the n displacement
effect metrics to be combined, the displacement that
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Figure 5: The three robots as objects imitator plat-
form.

minimizes this composite metric is then given by

∆X =

[

|∆X| × cos(φ)
|∆X| × sin(φ)

]

, where |∆X| = ω1 ×
√

∆x1
2 + ∆y1

2 + ... + ωn ×
√

∆xn
2 + ∆yn

2 and
φ = ω1 × tan−1

(

∆y1

∆x1

)

+ ... + ωn × tan−1

(

∆yn

∆xn

)

.

2.5 Imitator

The system is addressing the correspondence prob-
lem for dissimilarly embodied imitators, so the how
to imitate module must produce action commands
that can be used by multiple different target platforms
as imitator agents, both in simulation (software) and
hardware (robots).

Each particular target platform will pose different
embodiment restrictions and constraints to the ac-
tions, states and effects it can achieve, and eventually
to the quality and character of the imitation.

The demonstrator and the imitator might share the
same workspace or they might operate in different
ones. Even in the same workspace, unless the objects
and agents positions are arranged back into the same
initial configuration before the imitative behaviour,
the context will be different and the imitator therefore
has to take that into consideration when imitating.

Two targeted platforms are used in the current re-
alization of the system, both implemented using the
WebotsTM robot simulation software.

2.5.1 Three Robots As Objects

In the first imitator platform, the imitator’s workspace
contains no objects. Instead, the imitator is ‘embod-
ied’ as three mobile robots, each corresponding to
one of the objects manipulated by the demonstrator
(see Figure 5). Each robot is square 4cm by 4cm (so
in this case, besides dissimilar demonstrator-imitator

Figure 6: The manipulator and three objects imita-
tor platform.

embodiments, there is also dissimilar object corre-
spondence, mapping the objects to mobile robots).
The robots can follow the individual trajectories of
the objects as arranged by the demonstrator, but can-
not match the orientation (while moving) because
they are differential wheel robots. Therefore the an-
gular effect aspect will be ignored when they imitate,
matching only the displacement effect aspect.

In the simulation, as the robots move around the
workspace, they leave behind a colored trail (of same
color as themselves and their corresponding objects)
to help visualize the imitated trajectories.

2.5.2 Manipulator and Three Objects

In the second targeted imitator platform, the imita-
tor’s workspace contains three objects, of the same
size and color as the corresponding objects in the
demonstrator’s workspace (in this case). The imitator
is embodied as a single arm manipulator, positioned
above the workspace and able to pick-up, move and
rotate the three objects (see Figure 6). This embod-
iment, although dissimilar to the one of the human
demonstrator, is nevertheless able to match both dis-
placement and angular effect aspects of the demon-
stration.

As the objects are moved (and rotated) around the
workspace by the manipulator in the simulation, they
leave behind a colored trail (of same color as them-
selves) to help visualize the imitated trajectories. The
manipulator is shown as a vertical yellow cylinder
mounted at the end of a bar positioned above the
workspace.

2.6 How to Imitate Module

The how to imitate module uses the captured data
from the demonstration, the metrics and the sub-goal
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granularity discovered by the what to imitate mod-
ule to produce a sequence of action commands for an
agent to execute and imitate. These action commands
are made target specific by taking into account the
particular embodiment, affordances and restrictions
of the target imitator agent, and also contextual infor-
mation (including the initial state) for both the agent
and the environment. In the current system imple-
mentation both the metrics and the sub-goal granu-
larity (critical points) are given.

Concentrating on the effects aspect of the
demonstrated behaviour to be imitated only, an
embodiment-independent solution to the correspon-
dence problem can be found, taking into account the
effect metrics and the sub-goal granularity. For exam-
ple consider a human opening a cupboard, removing
an object, closing the cupboard and placing the object
on a table. This sequence of events can be achieved
by agents of varying embodiments, ignoring state as-
pects like e.g. which hand was used to open the cup-
board or how the object was held (or grasped) or even
action aspects e.g. the way the human walked (gait)
across the room. Any agent that can open the cup-
board, transport the object and place it on the table
can potentially imitate the effects of this particular
demonstration. But for this solution to be useful to
an imitating robotic companion, it must be converted
to action commands that take into account its embod-
iment and also the context (e.g. the cupboard is al-
ready open, the object is located on a different shelf
in the cupboard, the table is in another room), so that
the imitator uses its motors and actuators to achieve
the desired effects of the task.

The how to imitate module considers the given ef-
fect metrics and sub-goal granularity, together with
the (possible dissimilar) initial configuration of the
objects in the imitator’s workspace (also given) to
produce initially an embodiment-independent corre-
spondence solution (since only the effects behaviour
aspects are considered).

To discover this correspondence, the JABBER-
WOCKY system currently uses a simple simulation
of the 2D workspace that can handle various ‘block’
objects moving and rotating around, accounting for
object collisions and workspace confines. This sim-
ulation can replay the captured model data at a given
granularity, displaying the trajectory and orienta-
tion of the objects as they move and rotate on the
workspace, from the initial configuration to the final
captured frame. In parallel, starting from a different
initial configuration of the same (or different) cor-
responding objects on the imitator’s workspace, the
simulation produces a sequence of changes to dis-

placement and rotation for each object, that minimize
the given effect metrics.

For example if the effect metric used is the rela-
tive displacement effect metric, and the demonstrator
moved an object 10 cm to the right, then in order to
minimize the metric, the corresponding object in the
imitator’s workspace must be also moved 10 cm to the
right. But some displacements or rotations, although
minimizing the metric, might be invalid because the
path or final position is occupied by other objects or
agents, e.g. if the corresponding object is less than
10 cm away from the right edge of the workspace
(because the initial position was different), the entire
move cannot be performed. The how to imitate mod-
ule will then have to discover an alternative way in
the given context (including other agents, static or dy-
namic obstacles) to achieve the same effects accord-
ing to the metric. In this case it might be acceptable
to move the object up to the right edge and then con-
tinue the rest of the imitative behaviour. In another
context, it might be preferable not to move the ob-
ject at all. This contextual information should be ide-
ally provided by the what to imitate module, based
on observations of the currently demonstrated task
and not pre-defined. In the current JABBERWOCKY
implementation, the system attempts to move (or ro-
tate) the objects until they reach an obstacle (based on
simple 2D object collision detection), and then stop,
instead of considering another path to reach the po-
sition (and/or achieve the orientation) that minimizes
(if possible) the metric used.

To imitate and achieve similar effects as the model,
an imitator agent will have to adopt this (largely)
embodiment-independent correspondence solution to
move and rotate the objects, using a generated se-
quence of action command instructions. These ac-
tion commands will be targeted to multiple imitator
platforms, taking into account the embodiment con-
straints and restrictions of imitator embodiments.

Figure 7 (left) shows an example correspondence
converted to action commands for the three robots
as objects target platform. Each robot is given a se-
quence of way-points, depending on its correspond-
ing object. For each of these way-points, the robot
must use its differential wheel embodiment to move
in a straight line up to that position in the workspace,
and after reaching the target position, move on to the
next. Figure 7 (right) shows the resulting captured
imitative behaviour.

Figure 8 (left) shows an example correspondence
converted to action commands for the manipulator
and three objects target platform. The action se-
quence consists of a continuous (closed) path, with
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Figure 7: An example of corresponding action
commands for the three robots as objects imita-
tor platform (left) and the resulting imitative be-
haviour (right). Using the critical points shown in
Figure 2, starting from the initial positions shown in
Figure 3, and minimizing the absolute displacement
(red object), relative displacement (green) and rela-
tive position (blue) effect metrics, each of the robots
must move along the way-points shown (left). The
initial (dotted outline) and final (solid outline) posi-
tions are shown as circles, indicating that the orienta-
tion of the robots is not considered (the actual robots
are square, but of equivalent size). Each way-point is
indicated as a dot. The robots then perform an imi-
tative behaviour (in Webots) and the captured results
from the simulation are shown in the right plot.

way-points above the current (and future) positions
of the objects. When the manipulator is above an ob-
ject that must be moved, the manipulator will pick it
up, then move (together with the object) to the tar-
get position and place the object down (while also,
if required, rotating it), before continuing to the next
object. To match the effects at each critical point, the
order the manipulator approaches the objects is the
same (red object, green, blue). If no displacement or
rotation is required for an object during each of these
turns, that object is ignored, simplifying the manipu-
lator’s path. Figure 8 (right) shows the resulting cap-
tured imitative behaviour.

3 Conclusions and Discussion.
The experiments shown in Figures 7 and 8 illus-
trate the diverse character of different successful im-
itative behaviours optimized to match particular as-
pects of the effects of demonstrated human manip-
ulation of objects. Aspects captured by metrics for
absolute displacement, relative displacement, rela-
tive position, rotation and orientation could all suc-
cessfully be matched. The results illustrate the multi-
platform targetability of the JABBERWOCKY system
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Figure 8: An example of corresponding action
commands for the manipulator and three objects
imitator platform (left) and the resulting imitative
behaviour (right). Using the critical points shown in
Figure 2, starting from the initial positions shown in
Figure 3, and minimizing the absolute displacement
(red object), relative displacement (green) and rel-
ative position (blue) effect metrics, the manipulator
must follow the continuous closed path (starting and
ending at the left top corner of the workspace) shown
as a dotted line (left). Since the human demonstrator
did not rotate the objects, no angular effect metrics
were used. The line in drawn using a gray to black
color gradient to indicate the direction of the path.
When reaching an object, the orientation that the ob-
ject must be rotated to is shown by a small arrow. The
manipulator then performs an imitative behaviour (in
Webots) and the captured results from the simulation
are shown in the right plot.

to map human demonstrated manipulations to match-
ing robotics manipulations (in simulation), generaliz-
ing to different initial object configurations.

From the examples shown it becomes apparent that
the relative/absolute position and rotation of objects
are important aspects of a demonstrated task to match
(or not) according to effect metrics, depending on the
state of the objects in the environment and the con-
text. The exploratory characterization of the space
of effect metrics reveals that matching of “results”
is a more sophisticated issue that generally acknowl-
edged. This wide range of possible effect metrics il-
lustrates that even the effect aspect of the correspon-
dence problem for human-robot interaction by itself
is already quite complex. Goal extraction in terms
of effect metrics and granularity may have many dif-
ferent solutions that might not all be appropriate ac-
cording to the desired results or context. Depend-
ing on the constraints of the imitator embodiment, a
‘many-to-one’ or ‘one-to-many’ correspondence be-
tween imitator and model sub-goals may be required
for specific parts of the task. It is also possible that an
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imitating agent has to switch metrics and granularity
during the imitation attempt. This has not been em-
phasized at all in the literature so far (but see Alissan-
drakis et al. (2004)). This creates particular problems
and challenges for sub-goal and metric extraction
systems that can be used in programming robots by
demonstration. The use of repeated demonstrations
(Billard et al. (2004)), saliency detection (Scassellati
(1999)) and goal-marking via deixis and non-verbal
signaling by humans (Butterworth (2003); Call and
Carpenter (2002); Bekkering and Prinz (2002)) may
help contribute solutions to these problems. Other re-
search questions yet to be addressed include the im-
portance of order effects in manipulation and estab-
lishing object-object correspondence.
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Notes
1 Given CÂBM , AB̂CM , BĈAM and BCI , we can find the other two sides ACI =

√

(1−cos2(AB̂CM ))×BC
2

I

(1−cos2(CÂBM ))
and ABI =

√

(1−cos2(BĈAM ))×BC
2

I

(1−cos2(CÂBM ))
, to satisfy the equalities CÂBI = CÂBM , AB̂CI = AB̂CM and BĈAI = BĈAM .

Assuming that side BCI lies on the (0, +∞) x-axis with points B =

[

0
0

]

and C =

[

|BCI |
0

]

corresponding to BI and CI , we can

then find a point A =





BC
2

I
−AC

2

I
+AB

2

I

2×BCI
√

(−BCI+ACI−ABI )×(−BCI−ACI+ABI )×(−BCI+ACI+ABI )×(BCI+ACI+ABI )

2×BCI



 corresponding to

AI , such that the equalities AB = ABI , BC = BCI and CA = CAI are satisfied.

To find AI we need to rotate and translate A in respect to the actual co-ordinates of BI =

[

xB

yB

]

and CI =

[

xC

yC

]

in the imitator’s

workspace: A =

[

xA

yA

]

=

[

cosφ sinφ

−sinφ cosφ

]

×A +

[

xB

yB

]

, where φ = tan−1
(

yC−yB

xC−xB

)

.
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Abstract

Articulatory mimicry is a spontaneous feature in both deaf and hearing infants. We discuss the role of
this activity in the perception of visual speech, and speculate on how it shapes the underlying neural
circuitry. We argue that in the early stages, speechreading involves an active phase of selection and
sequencing of motor plans corresponding to representations of visible articulators acquired during
articulatory mimicry. This sequencing activity results in activation of lateral and medial premotor areas
(BA6) which we observed in our fMRI study of speechreading in naive subjects. As the repertoire of
visual-motor associations expands, the automatic recognition of the visual stimulus (and the retrieval
of the corresponding motor plan) becomes possible, consistent with the activation of the left inferior
frontal gyrus (putative locus of the human mirror system) reported in studies of speechreading of
trained stimuli. We conclude by outlining a computational model, and reporting on simple experiments
of deferred head imitation.

1 Introduction

speechreading is the ability to perceive speech by (a)
watching the movement of a speaker’s mouth, (b) ob-
serving all other visible cues including facial expres-
sions and gestures, (c) using the context of the mes-
sage and the situation, and (d) exploiting the knowl-
edge of the speaker’s particular ways to articulate. In
the deaf, speechreading is not formally taught but nat-
urally occurs as a result of exposure to hearing teach-
ers and/or parents. The deaf infant is not required to
articulate, as long as it properly comprehends speech.
In the oralist tradition, speechreading is the primary
means of communication. In the hearing-impaired, or
in Prillwitz’s holistic view of deaf education, it aug-
ments communication. In the hearing, speechread-
ing also occurs, as evidenced by the McGurk ef-
fect (McGurk and MacDonald, 1976) and recent neu-
roimaging studies on visible speech (e.g. Calvert and
Campbell, 2003).

Our particular interest in speechreading stems from
the fact that articulatory mimicry is a spontaneous
feature in both deaf and hearing infants, even though
the lack of auditory feedback in the deaf would sug-
gest that an alternative route would be used. The dis-
covery of mirror neurons (Gallese et al., 1996), which
are now commonly seen as providing a link between
language and gestures, seem to offer a reasonable ex-
planation, especially in light of the revised theory of

speech of Liberman and Mattingly (1985). Yet, it re-
mains to be seen whether articulatory mimicry can
be explained by mirror neurons as found in the mon-
key. In its early stages, i.e., before it becomes a lin-
guistic competence, articulatory mimicry shares a lot
with facial imitation. The infant can neither see nor
hear the consequences of its own facial movements,
not can it feel the muscle activities of the faces it im-
itates (Studdert-Kennedy, 2002). Yet, at least in the
monkey, mirror neurons only code actions that are al-
ready known to the animal, and those neurons do not
seem adapted to serve imitation of new, never seen,
never executed actions (Fadiga, personal communica-
tion). Thus, we are left with the question of whether
this early imitation involves a different circuitry (e.g.,
very low-level matching), or a specialized mirror sys-
tem – a reasonable assumption from an evolutionary
perspective.

Meltzoff and Moore (1997), who reported imita-
tion of facial gestures within hours of birth, pro-
posed an inter-modal matching mechanism (AIM).
This mechanism translates visual perceived stimuli
from an external coordinate frame of reference to
a viewer-centered representation that can be used
along with the viewer’s proprioceptive state to drive
the matching process. The fact that, for apical seg-
ments (when the utterance has the most character-
istic and distinctive phonological structure), visible
image properties can often be sufficient to identify
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speech sounds (Calvert and Campbell, 2003) would
support such extension. However, the number of
such visible articulators is, in reality, very limited.
Over two-thirds of English speech sounds, for ex-
ample, are either invisible or visually indistinguish-
able from one another, and skilled speech-readers
barely score 25% in separate phoneme visual recog-
nition. Finally, two critical differences between fa-
cial imitation and articulatory imitation make the idea
of a simple extension of the AIM mechanism less
likely. First, self-produced articulations play a pre-
ponderant role in what is being mimicked. Wihman
(2002), for example, reported that ”the experience
of frequently produced CV [consonant-vowel] sylla-
bles sensitizes infants to similar patterns in the input
speech stream”, and various studies pointed that chil-
dren choose words that match their available articu-
latory routines (Studdert-Kennedy, 2002). Secondly,
articulatory activity follows a developmental trajec-
tory, from pre-linguistic mouthing to purposive pho-
netic act. This, in turns, involves a transition from
recognizing discrete patterns (elementary gestures, or
movement of speech articulators) to recognizing con-
tinuous patterns (coordinative structure of gestures).
Indeed, the utterance of words requires an accurate
timing of each gesture itself and accurate phasing of
gestures with respect to one other (Studdert-Kennedy,
2002).

2 Working hypothesis and rela-
tion with existing studies

The above discussion leads us to formulate the fol-
lowing three design principles to model the role of
articulatory mimicry as a precursor to speechreading:

(a) Acquisition of a basic repertoire of face - ac-
tion pattern mappings from motor babbling and
contingent imitation by the caregiver. Such de-
velopmental mechanism has already been sug-
gested by Yoshikawa et al. (2003) for modeling
infants’ acquisition of vowels. Since infants are
observed to execute consonants with their pre-
cise, categorical loci of constriction more accu-
rately than the less precise, continuously vari-
able vowels (Studdert-Kennedy, 2002), those ar-
ticulations are more likely to elicit a response
by the caregiver and, as a result, specific articu-
latory patterns can be mapped to visible mouth
movements (or visemes).

(b) Words (coordinated structures of articulations)
are then defined as continuous trajectories in the

(discrete) viseme space. An obvious corollary of
this definition is that, since confusion occurs of-
ten between consonants belonging to a viseme,
there are multiple possible readings of a single
utterance. This is plausible. In skilled speech-
readers, word recognition is only made possi-
ble by context modulation (given a sufficient lin-
guistic competence).

(c) speechreading proceeds from a motor simulation
process. The idea of a motor simulation pro-
cess is not novel per se (e.g., Demiris, 2002; see
also Miall, 2003 for review). However, in exist-
ing models, the rehearsal of motor plans relies
on the ability of the forward controllers to pre-
dict the next state of the system given a motor
command. In our context, however, such for-
ward controllers are not necessarily available (at
least, not in the initial stages) and a generative
process is therefore necessary. Thus, we hy-
pothesize that perception of novel visual speech
involves an active phase of generation, selec-
tion and sequencing of actions, biased by al-
ready acquired visual-motor associations. As
such, our proposal has conceptual similarities
with the ASL (Associative Sequence Learning)
hypothesis of Heyes (2001), in particular, the
idea that the mechanism is highly experience-
dependent, and that it involves bidirectional ex-
citatory links between sensory and motor repre-
sentations of movement units rather than an in-
nate supramodal mechanism.

This last hypothesis leads to the prediction that, at
least in the early stages, speechreading should acti-
vate premotor areas typically involved in motor re-
sponse selection and sequencing, rather than Broca’s
area (the putative locus of mirror neurons in the hu-
man brain). Existing studies, however, do not show
such pattern. Campbell et al. (2001), for example,
reported ”extensive activation in posterior-inferior re-
gions, bilaterally. These included the middle occipital
and fusiform gyri and the posterior part of the inferior
temporal gyrus. Further activation was evident in the
superior temporal gyrus, with large clusters of activa-
tion showing peak foci in the STS bilaterally, and in
the inferior frontal gyrus, more extensively in the left
than right hemisphere.” Noting that in that study (and
others), subjects were shown examples of the stimuli
prior to scanning so that they were able to speechread
the stimuli with high accuracy, we carried out our
own study (Berthouze et al., 2004) in which we mea-
sured cortical activity during speechreading of novel
stimuli in subjects with no prior formal experience in
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speechreading.

3 Brief summary of fMRI study

Eighteen Japanese hearing right-handed university
students (10 males and 8 females, aged 20-29) partic-
ipated after providing informed consent according to
AIST safety and ethics guidelines. The subjects were
not exposed to the stimuli before scanning and were
not informed of the nature of the stimuli (i.e., lan-
guage used). The subjects were instructed to covertly
speechread (silent reading) 40 muted video-clips of
isolated low-frequency / low-visibility Japanese and
English words articulated by a Japanese face.

First-level analysis (fixed effects) showed activities
related to baseline to overlap largely with results ob-
tained in other speechreading studies. However, sig-
nificant (corrected for family-wise error,p < .05)
activation of the right-hemisphere BA6 area (mid-
dle frontal gyrus, ke=219, x=57, y=8, z=38) was
also observed, which was not previously reported.
This activity was also significant (corrected for false-
discovery rate,p < .05) in the random effects analy-
sis (i.e., inference at the population level).

With respect to our hypothesis, this result is signifi-
cant because covert speech has been widely shown to
elicit a rather exclusive left lateralization of the pre-
central gyrus activation (Wildgruber et al., 1996; see
also Dogil et al., 2002; Nixon et al., 2004). Thus, if
this right-hemisphere activation is not accounted for
by covert speech, it may then be related to our hy-
pothesized motor sequencing activity. In fact, stud-
ies on motor sequence learning actually support that
view. Rushworth et al. (1998), for example, provided
evidence that the lateral premotor cortex is concerned
with the learning of both sequences of sensory guided
movement responses and with the learning of single
responses instructed by arbitrary sensory cues.

4 Outline of model and results

To validate our hypothesis, and provide a platform
with which to make further predictions, we con-
structed an integrated experimental system that im-
plements the specifics of speechreading. The system
consists of three major modules modeling the critical
components of the hypothesized speechreading cir-
cuitry:

Motor apparatus A three-dimensional facial simu-
lator was implemented1 that can produce artic-

1The simulator is an extension of the facial simulator developed

ulatory sequences visually consistent with those
produced by a human speaker. The simulator’s
smooth skin surface is supported by a three-
dimensional wireframe structure (see Figure 1,
left) and 18 muscles organized according to the
FACS (Facial Action Coding System) of Ekman
and Friesen (1977). The contractions or relax-
ations of each muscle result in a motion field
in the skin structure, including the lips. A jaw
mechanism enables the mouthing actions needed
for articulation, with a specific mouth muscle
(sphincter) controlling the roundness of the lips.
Although the facial simulator currently lacks a
tongue, it was successfully used to implement
10 out of 13 visible articulators (visemes) com-
mon to both English and Japanese language (see
Figure 1, right for example).

Figure 1: (Left) Skin surface of the facial simulator
and the underlying musculoskeletal structure. (Right)
Appropriate control synergies between jaw articula-
tion, mouth sphincter, and facial muscles can imple-
ment visible articulators such as e/a (top) and w/r
(bottom).

Visual apparatus The visual apparatus consists of
a distributed network of feature detectors that
respond selectively to apical segments of artic-
ulations. Each detector is implemented in the
form of a cascade of boosted classifiers working
with haar-like features (see Figure 2) according
to Lienhart and Maydt (2002)’s method. These
detectors are trained with sample views of a par-
ticular object (e.g., the mouth) called positive
examples, that are scaled to the same size, and
negative examples, arbitrary images of the same
size. They are designed so that they can be eas-
ily ”resized” in order to find objects of interest
at different sizes. In the experiment described

at Imperial College under the supervision of Y. Demiris.
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in this paper, face orientation selective detectors
were constructed using the same principle.

Figure 2: Haar-like features for fast object recogni-
tion, from Lienhart and Maydt (2002)

Sequence learning moduleThis module consists of
sequence learning networks that seamlessly
combine the learning and the prediction of ar-
bitrary sequences of patterns into a single gen-
erative process (Berthouze and Tijsseling, in re-
view). The sequence learning neural network
(see Figure 3) was constructed according to de-
sign principles derived from neuroscience and
existing work on recurrent network models. It
utilizes sigmoid-pulse generating spiking neu-
rons to extract timing information from the input
stream and modifies its weights using an adap-
tive learning rule with synaptic noise. Combined
with coincidence detection and an internal feed-
back mechanism, it implements a learning pro-
cess that is driven by dynamic adjustments of the
learning rate. This gives the network the abil-
ity to not only adjust incorrectly recalled parts
of a sequence but also to reinforce and stabi-
lize the recall of previously acquired sequences.
Separate instances of these networks are used
to encode visual input stream (a time-series in
the viseme space), and articulatory motor se-
quences (the motor patterns required to imple-
ment a given viseme). Hebbian learning is used
to establish connections between visual and mo-
tor networks so that resonant coupling can be
achieved through correlated experience of obser-
vation and execution (Heyes et al., in press).

At this stage of the project, the integration of the three
components was only tested on a simplified task: the
deferred imitation of complex sequences of head pan-
ning movements. Although that particular task has

Figure 3: The input layer is a placeholder for each
pattern in a presented sequence, while the context
layer receives both external contextual information
as well as feedback information from the predicted
context module (i.e. the context that the network has
learned to associate with the current sequence). In-
put and context information as well as feedback from
the output module is propagated to the central module
that contains a variant of spiking neurons. This mod-
ule is responsible for extracting the variety in timing
information from the input. All learning occurs in the
connections from the central module to the output and
the predicted context modules. The output module is
also connected to the coincidence detector module,
which regulates the learning rate by calculating the
familiarity of the current output based on a history of
previous states.

already been investigated, in particular using a model
of inter-modal matching (Demiris et al., 1997), our
focus was not on the task itself, but on the appli-
cation, and validation, of the hypothesized mecha-
nism. Five detectors were trained off-line to detect
five discrete head orientations (the simplified equiv-
alent of the apical segments of a visible articulator).
The corresponding (discrete) visual-motor mappings
were obtained as a result of contingent imitation (by
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Figure 4: Learning curve for a novel stimulus as a
function of the number of presentations. The hor-
izontal line denotes the timing of the actual visual
stimulus (i.e., optimal performance). The curve was
obtained from 10 trials.

Figure 5: Relationship between perceived orientation
(vertical axis) and actual orientation (horizontal axis).
The blue line denotes the identity function. The red
line denotes a fit by logistic regression. The effect
of the discrete encoding of the head orientation (-90,-
45,0,45,90) is noticeable in the acquired representa-
tion.

the human agent) of the simulator’s motor babbling.
During subsequent interaction, the incoming visual
stimuli (head panning movements) were processed by
each detector in parallel, and a predictive filter was
used to filter out noise-induced errors in the set of de-
tectors. With the system initially without any estab-
lished visual-motor mapping, but the ones described
above, the feeding of the time-series of detector ac-
tivities to the sequence learning module resulted in
the system generating head movements, with a bias

on the repertoire of motor actions which had elicited
contingent imitation (such a bias has been observed in
young infants). As a result of learning, a continuous
visual-motor mapping was acquired (see Figure 5).
Successful acquisition required only a relatively low
number of presentations (see Figure 4), after which
the sequencing activity was reduced to a minimum.

5 Conclusions

Because the implementation of the model is still in
its early stages, it is difficult to draw any conclu-
sion as to how well the model can account for behav-
ioral data obtained with human subjects. Nonethe-
less, there is supporting evidence for the three design
principles used in the model. Studies showing that
cells in the superior temporal sulcus (STS) are sen-
sitive to discrete features of biological motion pro-
vide plausibility to our thesis that infants could con-
struct detectors for apical segments of articulations.
The fact that displaying such segments during percep-
tion of (time-varying) speech results in McGurk ef-
fects (Calvert and Campbell, 2003) justifies our idea
that articulations are trajectories in the viseme space.
This, in turn, could well explain why infants proceed
from prosodic to segmental imitation. Indeed, a lim-
ited articulatory behavior of the child may result in its
inability to detect continuous changes in the incoming
visual patterns, and thus puts the focus on the dura-
tion (rhythm) of each discrete (visible) pattern. As
the repertoire extends, segmental imitation becomes
possible, through resonant coupling between external
events and internally (motor-based) representations.
A future focus of this research will be to investigate
the origins of the differences observed in the neural
substrate of speechreading in the hearing and in the
deaf. Since we considered a single model to account
for both deaf and hearing articulation mimicry, it will
be interesting to see if the above differences can be
explained by feedback modality, rather than by func-
tional differences.
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Abstract

Synchronization and coordination are important mechanisms involved in imitation and social interac-
tion. In this paper, we study different methods to improve the reactivity of agents to changes in their
environment in different coordination tasks. In a robot synchronization task, we compare the differ-
ences between using only position detection or velocity detection. We first test an existing position
detection approach, and then we compare the results with those obtained using a novel method that
takes advantage of visual detection of velocity. We test anddiscuss the applicability of these two meth-
ods in several coordination scenarios, to conclude by seeing how to combine the advantages of both
methods.

1 Introduction

Synchronization and coordination are important
mechanisms involved in imitation and social inter-
action. As put forward by psychological studies,
e.g. (Hatfield et al., 1994), people often synchronize
with their interaction partners using different meth-
ods, for example they synchronize their movements
and rhythm. However, achieving good coordination is
a very challenging problem in robotics. In this study,
we take a first step to develop suitable mechanisms to
this end.

In imitation and synchronization problems, the
agent that is imitating (the “subject” agent) needs
some inputs to know what the agent that is imitated
(the “object” agent) is doing. A property often used
as input information for imitation is the position of
the object agent. Using position information, the sub-
ject agent can learn to reproduce or copy a trajec-
tory. Position information can also be used to achieve
synchronization—while dancing, for example.

In their studies of imitation tasks using robots,
Andry et al. (2002) use the quantity of movement
(temporal luminosity variation) to perceive the tar-
get position. This technique is efficient and simple
as it does not need complex visual tasks such as ob-
ject recognition. However, a problem with this mode
of imitation in robotics is that there is always a de-

lay between the object agent and the subject one. In
fact, the subject agent can start to move only after the
object agent is in a new position. Even if such delay
is not always a problem when following trajectory, it
usually poses a problem for synchronization tasks.

In this paper, we propose a velocity detection sys-
tem to synchronize the movements of two robots
avoiding the delay problem. This system is applicable
not only in the case of precise reproduction of move-
ments (e.g., when mirroring a movement) but also in
cases in which imitation does not need to be precise
but must be very well timed at the same rhythm, such
as when dancing. Our experimental results show how
this system outperforms other systems based on posi-
tion detection in different synchronization tasks.

Finally, to conclude the paper, we discuss the lim-
itations of using only velocity detection in other imi-
tation tasks and we see how we can combine position
and velocity detection to improve performance.

2 Problem Addressed

In the context of an autonomous mobile robot that has
to interact with other robots in its environment, the
problem that we have addressed in this study aims at
achieving natural and fast, adapted reactions of the
robot to changes detected in its environment. Mini-
mizing the reaction time to respond to environmen-
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tal changes is very important, in particular when the
limited (perceptual and computational) resources of
the agent impose severe constraints. This was made
possible by our biologically plausible, bottom-up ap-
proach, following which we have adopted a minimal
architecture that we have built using a neural network.

We have therefore designed an architecture to
make a robot follow a target or to be synchronized
with the target movement. We have developed four
methods for this, two of them based on position de-
tection and two based on velocity detection: 1) po-
sition detection with Winner-Take-All (WTA), 2) po-
sition detection without WTA, 3) velocity detection
with focalization, and 4) velocity detection without
focalization. We have implemented this architecture
in a Hemisson robot (our “subject” robot) fitted with
a video camera. The target is composed of two verti-
cal strips or a pattern of strips drawn on a white paper
attached to an object Koala robot, as shown in Fig. 1.

Figure 1: Experimental setup. On the left the Koala
robot (object) moves the target observed by a Hemis-
son robot (subject) on the right.

2.1 Position detection

The basic principle is the one we can see in (Gaussier
et al., 1998).

The area where the object is moving corresponds to
the area of maximum luminosity difference. We first
use a temporal smoothing in order to keep a small
signal when the target stops moving for a short time.
Then we use a WTA to set the position with the max-
imum quantity of movement among all the positions
of the visual field. Once this position has been set, the
subject agent only has to follow this position (method
1).

In fact with our bottom-up approach, we always
try to build the system as simple as possible to realize
the task and to take advantage of the side-effects that
can be useful (Steels, 1994). In the present architec-

ture, we can simplify and remove the WTA (method
2). The new resulting behavior of the robot is not the
same but is still interesting: now, the subject robot
reaction not only depends on the target position, but
also on its contrast and activity. The problem is that
the subject robot does not move if the target has a
small activity whatever its position.

2.2 Velocity detection

In order to increase the reactivity of the agent to
changes perceived in its environment, we put forward
the idea of using velocity of the target as input in-
formation to use for synchronization. This velocity
detection method, proposed by Johnston et al. (1999),
is based on the hypothesis that each object’s point has
constant luminosity. Therefore, the luminosity varia-
tion of an image is due only to the movement of its
objects. By consideringvx the velocity of one point
in x, k a constant coefficient that essentially depends
on the distance to the object, andi the light intensity,
we use (1).

vx = k × (∂i/∂t)/(∂i/∂x)(x) (1)

Dividing the variation of luminosity (∂i/∂t) by the
contrast(∂i/∂x) is a problem when the contrast is al-
most null. This is not surprising since without con-
trast we cannot estimate the movement of an object.
To solve this problem we use a threshold for the con-
trast: a low value of contrast (i.e., below the thresh-
old) will produce null velocity.

We can be interested either in focusing our atten-
tion on a small part of the visual field (method 3), or
in the global velocity of the entire visual field, often
due to the self movement of the robot (method 4). We
can use the system of position detection to focus on
the target (Fig. 2).

3 Experiments

3.1 Setup

In all the experiments, we have used the Hemisson
as subject robot and the Koala as object that carries
the target stimulus, and we measure the velocity or-
der that the Hemisson would send to its wheels. Since
it is impossible to know the exact position of a He-
misson robot (it has no odometer sensor), we had to
design our experiments taking account of this con-
straint: all the computations are carried out normally
to produce the motor command that the subject robot
should execute to follow the target but self-motion of
the robot is inhibited.
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Figure 2: Architecture to detect the velocity of a focussed object (method 3). The gray part could be replaced by a
large static gaussian and the architecture now only takes care of the global overview velocity (method 4). On this
scheme, the curves are the result of real data.

With the first three methods, we use the same setup
(see Fig. 1): the Koala robot moves right and left at
a sinusoidal velocity with two vertical strips drawn
on the target, while the subject Hemisson observes
(without moving) the target at a distance of a floppy
disk (3.5 inch). To test the last method (4) we use a
very similar setup but this time the target is a wide
pattern of vertical strips.

3.2 Results

We present one experimental result from a dozen with
similar results in Fig. 3. The first graph shows the re-
sults of the synchronization task using position detec-
tion with WTA (method 1) and the second one with-
out WTA (method 2). The two right graphs show the
results of the synchronization task using the veloc-
ity detection, with a target’s focus (method 3) on the
third graph, and without focalization, but with a wide
target covering all the visual field (method 4) on the
last graph.

On each graph, the singularities observed over the
first two iterations have no meaning. The dash line
corresponds to the velocity of the object agent and the
solid line corresponds to the velocity of the subject
agent. Each iteration carried on for around 100 ms.

3.3 Discussion

All the methods that we have presented here have
some interesting properties, depending on the task,
when we want agent interactions, notably in imitation
and synchronization.

The first method, which uses position detection, is
very useful to follow the target trajectory. Neverthe-
less, the delay that it produces is not very convenient
for synchronization tasks or when we have a situation
that changes often.

The second method, which uses a simpler version
of the same principle, is suited to follow a target po-
sition even with a small embedded system (little cal-
culus power is needed) but also for some specific be-
haviors.

The third method uses focalization on the object
agent defined using the detection position system.
The reaction is fast and proportional to the stimulus
velocity since only the area of the target is consid-
ered. This is the ideal method for synchronization in
dance.

The last method, which integrates each pixel’s ve-
locity without focalization, allows us to do pure syn-
chronization. The target position does not matter and
all the visual field is considered. Therefore, if the ob-
ject agent is moving in the visual field, the subject
agent moves in the same direction but not with a pro-
portional velocity since the background is considered.
This method is very useful when all the visual field is
moving—e.g. when the camera itself is moving. We
can use this to stabilize the agent’s own movements,
in the same way as a fly does (Holst and Mittelstaedt,
1950). We have been able to reproduce the fly phe-
nomenon with our robot. We put the robot in a drum
with black and white strips and, when we move the
drum, the robot turns with the same velocity in the
same direction. The robot thus stays relative to the
drum at the same place.

We can see that we have two kinds of methods (po-
sition detection or velocity detection) that have ad-
vantages and disadvantages. The first category does
not produce a drift but is not very reactive. The sec-
ond category is very reactive but has a drift that does
not permit a prolonged interaction since the target be-
comes lost. To drive a system it is possible to use ei-
ther the position (first order) with a stable but slow
system, or the velocity (second order) with a fast but
unstable system. The best results are obtained by
combining both methods and this leads us to think
that we should do the same.
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Figure 3: Results of the four methods tested: method 1 on the far left, method 4 on the far right.

4 Conclusion

We have presented different methods that allow us
to increase the level of interaction (synchronization-
imitation) thanks to biologically plausible processes.
These processes are simple and easy to implement.

If we want to synchronize a dance, velocity detec-
tion is very useful. However, the detection of posi-
tion is more useful to follow a moving target. We
see also that velocity detection can help to anticipate
the target tracking by anticipating. The robot could
learn to anticipate the position using velocity percep-
tion for best tracking. Studies such as Hofsten and
Rosander (1996) and Richards and Holley (1999) in-
vestigate how babies develop the capacity of smooth
tracking with the same kind of protocol. Since we
have access to the velocity and not only to the area
of movement, we should be able to make the robot
learn what is associated with its own movement. Hof-
sten and Rosander (1996) also show that babies pro-
gressively develop a better coordination between the
movement of the eyes and the head. We could use this
work as inspiration to reproduce this phenomenon
with robots.

Further work could try to make this architecture
more biologically realistic, allowing the robot to inte-
grate or to predict the consequences of its own move-
ment and apply this method to the synchronization
and coordination problem. Therefore, we will fo-
cus our work on the learning of the perception-action
mapping inspired by the psychology studies of Prinz
(1997), which seem to fit well our robotics approach.
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Abstract

This paper describes what is required to learn new tasks in general, then applies this knowledge to
understanding imitation learning in specific. We make some reference to the neurological literature,
including dual-speed hippocampal / neo-cortical learning systems. We suggest that this model solves
the problem of discrete replicants in memetics. We also describe some very preliminary work in
implementing and testing our ideas through social learning in a computer game context.

1 Introduction

Human-like intelligence requires an enormous
amount of knowledge — solutions to the hard
problems of survival and reproduction, which for
our species have come to involve complex social
and technological manipulations. Some of these
solutions are passed to us genetically, and some
are learned by an individual during their lifetime
through trial-and-error experience. For humans,
one key source of knowledge is culture. Byculture
here we mean any knowledge an agent has derived
from conspecifics by non-genetic means. In order
for such knowledge to be acquired efficiently, the
process of acquiring it must be significantly less
time consuming (at least for the individual) than
individual trial-and-error learning.

In this paper we discuss first how such learning
may be accumulated socially by a culture, and then
relate this to what we know about learning in individ-
uals. We propose a model for task learning in general,
which is clearly facilitated by social information. We
then briefly describe our preliminary attempts to build
and exploit such a model of learning.

2 Discretion in Memetics

Dawkins (1976b) proposes that knowledge and be-
haviour can be viewed as developing through a pro-
cess of evolution, just as biological life has. Ideas
or behaviours are propagated if they survive intact
long enough to be reproduced. Reproductive suc-

cess requires replication beyond a single host behav-
ing agent. While some behaviours are known ex-
plicitly and transmitted deliberately (by teaching),
there is evidence that our species may have evolved
the ability to take advantage of this powerful mech-
anism for increasing knowledge and fitness before
we were capable of such explicit mechanisms, and
that indeed we still implicitly learn complex multi-
modal behaviours from our conspecifics. This allows
us to build and transmit knowledge that our cultures
have not yet developed words or theories to describe
or deliberately represent. This theory of cumulative
knowledge generation is calledmemetics.

Dawkins (2000) describes a fundamental problem
with the theory of memetics. Memetics is based on
the concept of amemewhich is meant to be analo-
gous to a gene. Some theorists have claimed that this
analogy is invalid, on the grounds that genes are dis-
crete, but memes are not. This claim is itself suspect,
since to this day the termgenestill does not describe
a well-defined entity (Dennett, 2002), but is based on
the fact that the DNA molecule ultimately encodes
information in terms of discrete patterns of four pos-
sible chemical chains.

The underlying representation for a meme, though
still completely unknown, is suspected not to be dis-
crete, and therefore to be open to corruption. To
describe the problem, Dawkins (2000) proposes a
thought experiment where a child is shown a draw-
ing of an unfamiliar type of boat and asked to copy it;
then the process is repeated with another child who
sees only the new drawing. Dawkins believes the boat
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would rapidly become as unrecognisable as a phrase
whispered by children playing a game of ‘telephone’
[Chinese WhispersU.K.]. Dawkins proposes a so-
lution to this problem, which is that one learns not
gross behaviours, butinstructionsas to how to be-
have. He proposes an alternate thought experiment,
whereby children learn to build a boat by origami, an
art based on folding paper. Here small mistakes pro-
duced by one child will be corrected by the next, be-
cause the second child is able to deduce the intention
of the first (or of the designer) because they under-
stand the nature of the operations. In other words,
because a process of origami consists of a relatively
short list of well-defined operations, Dawkins claims
it can be replicated more robustly than a process of
drawing.

We believe that Dawkins’ requirement that memes
must be instructions is over-specific, though correct
in principle. We think individuals learn in terms of
skills, not instructions. There are two differences:

• skills are not necessarily known or communi-
cated explicitly1, and

• skills are developed by the individual, and thus
open to individual variation.

This hypothesis has several interesting ramifica-
tions, mostly having to do with the consequences of
having variations ofgranularity in memetic represen-
tation. For example, consider some teacher J who
starts with relatively few mathematical skills, but has
by a slow laborious process managed to learn a tech-
nique for writing back-propagation networks. Her
representation might be a long string of relatively
simple arithmetic and trigonometric operators. If she
has a student, M, with more mathematical skills (for
example, calculus), and he observed her coding a net-
work, he might be able to form a new representation
which would create exactly the same sort of system.
But M’s representation of the system would be quite
different from J’s, consisting of a smaller number of
larger-granularity operators. Note too that the situa-
tion could be reversed — if J only knows trigonom-
etry but observes M coding an algorithm, she might
well be able to imitate the algorithm herself, how-
ever again she would perceive and remember the al-
gorithm at a different level of granularity than that
with which M was generating the code.

This sort of model could explain the results of
Whiten (2000). Whiten presents various species of

1Though quite probably Dawkins didn’t mean to limit memet-
ics to explicit knowledge and was using the terminstruction in
some kind of loose computational metaphor.

primates (including children) with complicated puz-
zle boxes which require one of a number of sequences
of actions to get open. Subjects are generally able to
open these boxes if they have first observed a demon-
strator, but they will not necessarily go through all
the same steps in the same order as the demonstra-
tor. However, if the demonstrator demonstrates re-
peatedly, on the second or third try the subjects will
often perfectly replicate the demonstrator’s model, at
least in terms of the sequence of affordances used.
Subjects may still choose to pull out a pin using their
teeth rather than their fingers, for example.

Our explanation would be that initially the subjects
are imitating only the goal and perhaps some other
simple attributes of the solution (e.g. knowing which
knobs on the box need attending to.) However, as
they develop skills by opening the box themselves,
the difficulty of performing a perfect replication is re-
duced, because it becomes a relatively short sequence
of relatively large-grain actions rather than a long se-
quence of basic motor commands.

3 Learning in Brains

The hypothesis described above ties in neatly to an-
other hypothesis in learning — this one about how
brains can learn from experience.

There are two ways to learn from experience. First,
we can learn very slowly, taking a large number of ex-
amples to build up a model of how the world seems
to be working, or at least what the right thing is to
do in a particular context. The second way is to learn
very quickly. The problem with learning very quickly
is that we may be overly influenced by a very im-
probable event, taking it to mean more than it should.
Learning from a large number of experiences very
quickly / perfectly also runs the risk of over-fitting.
General-purpose knowledge is usually considered to
derive from compiling large amounts of knowledge
into a few general rules or policies (Mitchell, 1997,
for a summary), although in some relatively deter-
ministic domains it can be derived by extrapolating
over a set of exemplars (Poggio, 1990; Atkeson et al.,
1997).

Generally speaking, our skills seem to be built up
slowly through practise over time. But any such slow-
learning system that builds its knowledge from expe-
rience faces a problem. The problem is, experience
happens quickly. Consequently, what is needed is a
second, quick system for jotting down salient events
as they happen. McClelland et al. (1995) build a
model of such a system, and using the neuroscience
literature, tie down their model to particular regions

31



of the brain. Slow learning, they say, happens in the
neocortex — fast learning happens in the hippocam-
pus (see also Treves and Rolls, 1994)

Another problem with fast learning is that it re-
quires learning a large number of things — particu-
larly if the system needs to hold each learned thing
around long enough to allow a slow-learning system
to process it. If two different things are learned that
happen to be similarly indexed (by whatever cate-
gory mechanism has emerged in a largely unsuper-
vised system), they might overwrite each other. If
accommodation of new information is not done sys-
tematically (which is generally seen as the purpose
of a slow learning system (McClelland et al., 1995;
Mitchell, 1997)) there’s no reason to expect two such
similarly-indexed events to be neatly, compatibly cat-
alogued together. One way to reduce the probabil-
ity of such ‘collisions’ (information about multiple
events overwritten into the same locations) is to make
sure that the information is encoded in a very sparse
way. That is, to use relatively few changes in mem-
ory in order to represent the full event. And indeed,
this seems to be what the hippocampus does (Rolls,
1996).

In order for a few changes to represent a com-
plex event, each change must be highly salient —
it must represent a relatively broad chunk of seman-
tics, a complex concept. As McClelland et al. (1995)
point out, this strategy is very compatible with the
hippocampal memory indexing theory (Teyler and
Discenna, 1986). However, that theory was origi-
nally motivated as the use of the hippocampus for a
compact, almost symbolic type of representation that
would be useful for certain kinds of complex pro-
cessing. For example, animals without a hippocam-
pus can learn a new map, but they can’t learnhow
to learn a map if they’ve never learned one before
(Bannerman et al., 1995). Similarly, animals with-
out a hippocampus can learn to associate actions with
stimuli, but they can’t learn to prioritise these actions
(Alvarado and Bachevalier, 2000; Wood et al., 2004;
Buckmaster et al., 2004). Whichever purpose might
have originally driven the evolution of a hippocam-
pus, the sparse representation is clearly useful enough
to be necessary for at least some sorts of long-term
memory storage (Squire et al., 2001), though it’s pos-
sible that another similar region, perhaps the entorhi-
nal cortex, performs some of the quick-learning roles
that McClelland et al. propose for the hippocampus.

We believe that this indexical learning may be
based on dynamic categories. That is, the representa-
tion of a newly observed behaviour is determined by
the ‘granularity’ of the indexing in the fast-learning

system, which is in turn driven by a set of skills
learned or formed in the slower learning system. We
already know that representations in the hippocam-
pus are highly dynamic and vary by context (Wiener,
1996; Kobayashi et al., 1997). And clearly learned
experience is itself a form of context. Thus the hy-
pothesis that what (and how) we can learn with this
system changes over time and experience is not ex-
cessively radical, although it does have interesting
implications for the veracity of recall.

4 A Model of Task Learning

salient percept. classes

s
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e
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t
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weights for percept-action pairs

ordering of percept. classes / pairs

Figure 1: Task learning requires learning four types
of things: relevant categories of actions, relevant cat-
egories of perceptual contexts, associations between
these, and a prioritized ordering of the pairings. As-
suming there is no more than one action per percep-
tual class, ordering the perceptual classes is sufficient
to order the pairs. See text for details.

In short, we believe there are at leastfour separate
types of things that are learned in the process of learn-
ing a task (see Figure 1):

1. perceptual classes:What contexts are relevant
to selecting appropriate actions.

2. salient actions:What sort of actions are likely
to solve a problem.
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3. perception/action pairings:Which actions are
appropriate in which salient contexts.

4. ordering of pairings: It is possible that more
than one salient perceptual class is present at the
same time. In this case, an agent needs to know
which one is most important to attend to in order
to select the next appropriate action.

With respect to perception/action pairings, our cur-
rent work indicates that there should only be one ac-
tion possible per salient perceptual context, but there
may be many perceptual contexts in which a partic-
ular action may be relevant, particularly if the object
of the action is coded diectically (Wood et al., 2004;
Bryson and Leong, 2005). Also not that although
we mention perceptual contexts, we obviously do not
mean the full context of all sensory information from
a moment in time. Such a representation leads to
overfitting / failure to generalize, besides generally
being computationally intractable to process. Rather,
detailed perception at any particular moment tends to
be focussed on a few salient cues which will hope-
fully help disambiguate the current action-selection
problem (Rensink, 2000).

Researchers familiar with Behaviour-Based AI
may think of these four sub-problems in a differ-
ent way. The first three items contribute to form-
ing behaviour modules— tight couplings of percep-
tion and action, while the last contributes to form-
ing behaviour arbitration(Bryson, 2000a; Bryson
and Stein, 2001). Researchers familiar with Cog-
nitive Modelling may realise that what we describe
is quite similar to ACT-R (Anderson and Matessa,
1998) except with extra emphasis on the forming of
categories for sensing and action. However, ACT-
R has a relatively simplistic ordering system which
cannot account for all animal data on even rela-
tively constrained tasks (Wood et al., 2004). ACT-R
learns relatively simple ‘utility values’ for each per-
ception/action paring, but complex tasks may require
hierarchy and/or some other powerful sequence-
learning representation such as POMDPs (Kaelbling
et al., 1998; Bryson, 2000b).

Clearly solving four problems simultaneously
makes learning new skills a very hard problem, but
equally it motivates social learning. In a social con-
text, sensing and action categories can be recognised
by their co-occurrence (Roy, 1999). In all probabil-
ity, sequential and hierarchical ordering may also be
induced (Dawkins, 1976a).

5 Learning in Practice

In previous work we have shown successful models
of solitary primate (including human) task learning
where the salient actions and perceptions were al-
ready fixed, but the pairings between actions and per-
ceptions and the prioritizations between these varied
(Bryson, 2005; Bryson and Leong, 2005). We have
also shown that one can create a complete set of pos-
sible mappings between perceptual and action classes
and then simply prioritize all of these, since only the
highest priority item for any perceptual category will
be chosen (Wood et al., 2004).

In our current work, we are looking at the role of
social learning in perceptual category formation. We
are also hoping to explore more complex hierarchical
representations. A complete agent needs to be able to
move between many different tasks, and indeed de-
termining when one is in a new task context is clearly
a part of the problem for determining salient actions
and perceptions.

5.1 A Working Model

As in our previous work, we are again not attempting
to learn all four categories simultaneously. We have
made the following simplifications / assumptions in
our preliminary experiments:

• The imitator is initially able to recognise some
actions that are key to learning the task.

• Only oneperceptual class applies to the imitator
at any one time.

The second assumption means that, for the time
being, we are not worrying about learning priortiza-
tions, but merely perceptual classes and their pairings
to actions.

Our perceptual classes are defined by boundaries
in n-dimensional sensor space (n is the number of
sensors providing a reading at any given time). Thus
far we have keptn, and then operative sensors them-
selves, constant throughout, although having differ-
ent sets of sensors operating in parallel is one possible
way of introducing parallel perceptual classes. The
cardinality of each dimension of sensor space differs
depending upon the sensor type. For example, a sen-
sor which measures the presence of an object would
return a discrete reading∈ {true, false}, whereas a
sensor which measures distance would return a con-
tinuous reading∈ R+.

The actions we have made recognisable by the imi-
tator are simply discrete. In some sense, actionsmust
be discrete (e.g. in categories like turn, move and
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shout), but they could also be defined by parameters.
These in turn can be either absolute (turnTonorth)
or deictic (turnTonearest actor) discrete values,
but they can also be in terms of continuous values
(turn42.6◦).

Since exactly one perceptual class applies to any
given context, and only one action should be associ-
ated with any given perceptual class, the problem of
perception/action pairing is in this case equivalent to
partitioning sensor space and mapping each partition
to an action. Given that there is no need for the prior-
itization of these pairings, this completes our simpli-
fied version of the model.

5.2 Domain

For both this initial exploration of perception/action
map generation, and future more complex studies, we
are carrying out experiments in the domain of virtual-
reality computer games. VR games are an excellent
platform for experiments involving learning from hu-
man subjects because they are real-time, provide a
common sensing and action framework for both ar-
tificial and human agents, and require many elements
of human and animal intelligence, including navi-
gation, reacting to complex, dynamic environments,
planning and cooperation (Laird and van Lent, 2001).

We are currently working with two games:
Robocode(Nelson, 2002) andUnreal Tournament
(Digital Extremes, 1999).

Robocodeis designed to be both a game and a Java
teaching tool, provided for free download from IBM
alphaWorks. Users have no direct control over their
agents, but must provide Java code to drive them. The
agents themselves are robotic tanks armed with a sin-
gle cannon, a few basic sensors, and enough action
commands to navigate the map and ‘interact’ with the
other agents therein. The map is a simple 2-D rectan-
gle surrounded by walls, without any obstacles that
are not opponents.

Unreal Tournament(UT) is a commercially re-
leased, multi-player ‘First Person Shooter’. As the
term suggests, the user has an agent’s-eye view of
the game and direct, real-time control of an avatar’s
actions. UT also supports remote control of agents
by sending commands to the game server over a net-
work. This provides a framework for allowing ex-
ternal programs to direct an agents’ actions. Such
AI-controlled agents are commonly known as ‘bots’
in the literature and gaming community. The game
server, in turn, sends two categories of sensor data
back to the client. The first is synchronous: at regu-
lar intervals the client is informed of the agent’s status

(e.g. level of health, amount of ammunition, currently
wielded weapon, etc). The other is asynchronous:
for example whenever a wall is bumped, a footstep
is heard or damage is taken.

5.3 Preliminary Experiments

Our earliest social experiments were conducted in
Robocode, because we believed it would be simpler
since it was two dimensional (2D) and came with
pre-coded sample opponents. However, many aspects
of Robocode control and sensing proved inaccessi-
ble, presumably to keep competitors from ‘cheating’
by affecting the code of other robots. Subsequently
we have switched to a simple, effectively 2D Unreal
Tournament environment.

Our work in UT is still in early stages, but we have
had agents successfully learn simple plans from ob-
servation. In addition to providing a basic proof of
concept, these experiments also point to representa-
tional issues which lie ahead. These will be discussed
below.

M

I

Figure 2: The experimental arena

The experiment consisted of two actors (bots)
moving within a single cuboid room (see Figure 2).
World co-ordinates are given in three dimensions by
the game engine, but since the bots only moved on
the floor plane, the problem is well-defined in two
dimensions. Similarly, the bots have three rotational
degrees of freedom, but only one is used here (2D
heading).

Themodel bot (labelledM in the figure) executes
the following behaviour: move forward if not too

34



close to a wall; otherwise turn away from the nearest
wall and then move forward. The actual distance at
which the proximity sensor is triggered is determined
by a setting in the sensor module. The region that
this state applies to is represented by the shaded area
in the figure. The angle through which the bot turns is
calculated randomly, constrained by the fact that the
bot must then head away from the nearest wall.

The goal of theimitator bot (labelledI in the fig-
ure) is to locate a model, and then remain a fixed dis-
tance behind it and record observations (after Billard
and Dautenhahn (2000)). In this toy environment, it
probably would have been sufficient to have a station-
ary imitator, but for larger and more complex envi-
ronments and model behaviours, the imitator would
need to stay close to its model in order to observe as
closely as possible what the model observes. The im-
itator needs to be aware of when the model initiates a
new action, so that it can record the sensor state at that
instant and use it later to construct a perception/action
mapping (see Section 5.1). We have tried two types
of cue for this purpose:

1. The model acts explicitly as a teacher, informing
the imitator of its decisions as and when they are
made. The imitator only records an observation
when this cue is given.

2. The model is passive, forcing the imitator to
take snapshots of the sensor space at some pre-
determined regular interval.

The former simulates the training of a team-mate,
i.e. where the goal of the model is for the imitator
to learn as efficiently as possible. This method could
not, however, be used to learn behaviour from ‘un-
helpful’ agents (such as opponents). The latter could
be used in this way, but risks missing the decision in-
stant if the observation frequency is too low. There
is also a risk of storing redundant data if thresholds
between motions are not accurately detected. Never-
theless, either of these problems should be address-
able given sufficient learning opportunities and a ro-
bust probabilistic representation.

Whichever cue is used, we endow the imitator with
the ability to recognise the actionsmove forwardand
turn. The first set of sensors we gave to the imita-
tor detected thex- andy-position respectively of the
model in World co-ordinates, resulting in a 2D sen-
sor space. At first glance, the partition would seem
to be obvious; in fact directly analogous to the plan
shown in Figure 2. The problem is thatmove forward
decisions are taken both in the white zone, and in the
shaded zone immediately after the robot has finished

turning. If the shaded area cannot be mapped to a
unique action, then the partition it generates is un-
suitable. In fact, there is no suitable partition of this
sensor space. Even if we take a more powerful rep-
resentation and give the imitator a sensor that detects
the distance of the model from the nearest wall, the
problem remains.

There are (at least) two ways to solve this problem.
The first is to give the imitator a sensor which de-
tects the past (commonly known as memory) or, more
specifically, detects the previously recorded action. If
we use this in tandem with the distance sensor, we can
create the following map: if close to a wall and the
previously recorded action wasmove forwardthen
turn; otherwisemove forward. This makes sense, as
there is an implicit two-item sequence present in the
behaviour of the model. The second is to add to the
distance sensor another which can detect whether or
not the model is facing the nearest wall. The resulting
map is equivalent to the one above: if close to a wall
and facing it thenturn; otherwisemove forward. This
also makes sense, as the model’s behaviour contains a
piece of state indicating whether or not it is facing the
nearest wall. What is noteworthy is the two different
ways of solving the same problem; one temporal and
one atemporal.

5.4 Discussion and Future Work

Given this ambiguity, our next task is to investigate
whether harder tasks are better solved by a greater
number of ‘immediate’ sensors, or by the introduc-
tion of temporal dependencies. We expect POMDPs
(Kaelbling et al., 1998), which we also mentioned in
Section 4, will provide a way of more naturally mod-
elling temporal systems, as well as the latent variables
which are bound to be components of more complex
behaviour.

Also, as we alluded to in Section 5.1, we conjec-
ture that grouping sensors into modules that com-
pete probabilistically for saliency in a particular ac-
tion context will create naturally competing percep-
tual classes which will in turn need prioritization (see
part 4 of the task learning model in Section 4). Using
the scenario in Section 5.3, as an example suppose we
created several sensor modules each containing one
sensor as follows:

1. Distance of model from nearest wall.

2. Distance of model from second nearest wall.

3. Distance from the North wall.
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After repeated observations it would become clear
that module 1 influences the decision process of the
model with a far greater probability than modules 2
or 3; that perceptual class should be given a higher
priority at least in the context of generating turns.
On the other hand, if there is a door in the North
wall, for some other tasks the absolute location may
be more salient. In general, we expect an agent will
need to actively maintain modules which utilise dif-
ferent viewpoints (e.g. World (absolute / allocentric
) view, model / imitator (egocentric) view, teammate-
and opponent-oriented views, etc.) to see which pro-
vide the most easily interpretable behaviour data in
different contexts.

Currently however we are still working with rela-
tively simple representational issues, including that of
discreteness. Many actions are not easy to discretize:
a bot that is turning may make one decision to turn
in a long, continuous arc, or many consecutive deci-
sions to turn in a series of smaller arcs. As we said
in Section 2, it may not be important that the imitator
forms the same perceptual categories as the model is
using. In particular, since our models are using a rad-
ically different action-selection mechanism than our
imitators, it is actually quite likely that the optimal
behavioural categories may be different.

To reiterate our hypothesis, we assume that, some
of these discriminations will be informed by skills
the learning agent has already accumulated, whether
through individual learning, previous imitation learn-
ing, or by ‘innate’ predisposition.

6 Summary

If we can build a model of task learning in the games
domain, then it will be fairly simple to test how much
social learning of a task can accelerate task learning
by individual agents, as we can easily create experi-
mental subjects that do or don’t attend to other agents
in the room. Also, if we allow for both individual
and social learning at the same time, we believe we
will quite naturally demonstrate agents with similar
expressed behaviour, but with different internal rep-
resentations. Finally, assuming we acquire learners
with different perceptual categories (either through
learning as just described or by programming) we
will be able to test in what circumstances successful
behaviours can be propagated through multiple ‘gen-
erations’ across multiple learning agents.

In this paper, we have described one of the key
problems in memetics, the problem of discreteness
in the representation of behaviour observed in con-
specifics. We have suggested that the units of memet-

ics may in fact vary between individuals based on
their skills, knowledge and random factors in the
self-organization of the underlying neurological rep-
resentations of these. This may not be a bad thing,
in fact it may account for why some observers are
able to exceed the performance of their models. We
have proposed a framework for representing this sort
of learning and described preliminary experiments in
building and using such a framework for social learn-
ing in the context of real-time multi-player computer
games. In the future, we hope to radically expand our
experiments and in the process continue to refine our
model.
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Abstract 
 

Motor resonance is the automatic involvement of motor control systems during perception of actions. 
Behaviourally, it is evident in behaviours like motor priming, the facilitation of the execution of an action by 
seeing it done, and believed to be used imitation. Description of motor resonance properties based on computa-
tional models has recently been proposed, and is extended here using MOSAIC. Inverse models are described as 
goal-directed aspects of actions, and this function is ascribed to the mirror neurons of the ventral premotor cor-
tex. Forward models correspond to sensory-motor aspects of actions, found in the mirror neurons of the inferior 
parietal lobule. The parieto-premotor connectivity underlies the pairing between forward and inverse models in 
MOSAIC. Finally, this model argues in favour of the hypothesis that lower aspects of motor resonance, like 
motor priming, and higher-aspects, like emulation, have interlaced but separable underlying principles. 

 
1 Introduction 

Motor theories of social behaviours have 
flourished in the scientific literature (Blakemore and 
Decety, 2001; Gallese, 2003; Gallese et al., 2004; 
Rizzolatti et al., 2001). The foundation of these 
theories is that the same neural structures – neurons 
in monkey neurophysiology and functional brain 
areas in human brain imaging – show an increase of 
activity both when executing a given action and 
when observing another individual executing the 
same action, a process we will refer to as motor 
resonance1. For example, a “mirror neuron” is a 
neuron in the monkey’s premotor F5 region which 
discharges during goal-directed actions as well as 
when the monkey observes another individual per-
form the action encoded by this neuron (Rizzolatti 
and Craighero, 2004; Rizzolatti et al., 1996). This 
“mirror system” has been proposed to underlie a 
number of social behaviours such as imitation 
(Rizzolatti et al., 2001) but also mind reading and 
empathy (Gallese, 2003). This overstatement of the 
role of one phenomenon and, in its most extreme 
versions, of one functional brain area or type of neu-
                                                

1 To resonate has three meanings: matching (between percep-
tual and motor representations of actions); automatic (intrin-
sic property of the neuronal system); resounding (the effect 
lasts and increases by repetition). Other uses of this term can 
be found in relation to mirror neurons (Fadiga et al., 2000; 
Rizzolatti and Craighero, 2004). 

rons, to describe human social cognition, is arguable 
(Jacob and Jeannerod, 2005). On the other hand, 
current descriptions of the physiological processes 
underlying motor resonance mechanisms rely on the 
concepts such as “motor words” (Fadiga et al., 
2000), reminiscent of action representation in hu-
mans (Jeannerod, 1997). This phenomenology of 
motor resonance fells short of explaining the under-
lying processes. 

Descriptions of motor resonance properties 
based on computational models have recently been 
proposed (Miall, 2003). We will extend this proposi-
tion considering how forward and inverse models 
could provide insights into the different phenomena 
thought to result from motor resonance. This exten-
sion will be particularly interesting to separate sub-
strates for lower and higher aspects of motor reso-
nance. A first section will describe observations of 
human behaviours that favour the hypothesis that 
observation of action automatically interferes with 
the execution of action, with the attempt to separate 
lower aspects, such as motor priming, and higher 
aspects, such as emulation. Then a computational 
model for motor control, MOSAIC, will be intro-
duced and the possibility to describe lower and 
higher aspects of motor resonance based on this 
framework will be discussed. We will also propose a 
cortical implementation for the different aspects of 
this framework, focusing on two regions found in 
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humans and monkey, the ventral premotor and the 
inferior parietal cortex, and reinterpret their role in 
motor control, action observation and imitation at 
the light of the MOSAIC framework. A conclusion 
will discuss the scope and the limits of this frame-
work, emphasizing that it should be considered as an 
automatic and unconscious perceptual process, re-
sponsible for some primitive aspects of social cogni-
tion but that additional components, such as agency 
and a system to represent mental states, are needed 
to explain higher cognitive behaviours. 

 

2 Behavioural exploration of mo-
tor resonance 

2.1 Motor interference 
Motor interference relates to the influence 

the perception of another individual action has on 
the execution of action. When asked to raise their 
fingers in response either to a symbolic cue appear-
ing on a nail or to a movement of the finger of a 
hand presented visually (Brass et al., 2000), it was 
found that the finger movement influences the re-
sponse to the cue -measured as reaction time-, but 
the reverse effect is very small. In comparison to 
responding to the cross alone, lifting the index fin-
ger in response to a cross appearing on the index 
fingernail takes more time if the middle finger of the 
target is lifted at the same time, and less time if its 
index finger is moving. In other word, when re-
sponding to a symbolic cue, the response is hindered 
by the observation of an incompatible action and 
facilitated by a compatible one. The same effect is 
seen when the gesture is a hand posture and the cue 
the colour of the stimulus hand (Sturmer et al., 
2000). Similar experimental paradigms were used to 
show that this phenomenon was complementary to 
other stimulus-response compatibility effects such 
as spatial compatibility (Brass et al., 2001a), em-
phasizing the specificity of the effect of compatibil-
ity between the observed and the executed action. 
Thus producing an action similar to an observed 
action is a prepotent response that requires to be 
inhibited to execute the correct response2. 

The variance of horizontal and vertical arm 
movements is significantly increased when watching 
a human, but not an industrial robot, perform a spa-
tially incongruent movement (Kilner et al., 2003). 

                                                
2 Discussions on the frontal origin of this inhibition are out of 
the scope of the present report, but can be found in patient 
(De Renzi et al., 1996) and neuroimaging (Brass et al., 
2001b) studies. 

As in the previous experiments, it must be empha-
sized that the effect cannot only be explained as 
direct mapping of perceived action onto an execu-
tion system because the spatial congruency implies a 
mirror effect. My left to right arm movement is con-
gruent with your right to left arm movement if we 
are facing each other. Thus both spatial and action 
compatibility are in play. We performed a related 
experiment to determine which features of the agent 
you interact with are involved in motor interference 
(Oztop et al., 2004). We found that a humanoid ro-
bot which movements actually reproduce human 
movements causes an attenuated but reliable inter-
ference effect in comparison to a human. Since the 
robot is obviously not perceived as human, this re-
sult implies that some characteristics of any agent, 
in term of aspect and motion, define its ability to 
cause motor interference. 

Another result favouring a mapping be-
tween perceived and executed action is the motor 
priming effect observed in prehensile action. A hu-
man or a robotic hand performed a grasping action 
on a small or a large target prior to subjects per-
forming a grasping action themselves. Congruence 
of the presented movement kinematics with the re-
sponse movement kinematics, obtained when the 
model and subject grasp objects of the same size, 
had a significant priming effect when the model was 
a human but not when it was a robotic hand. This 
result implies that the primed movement kinematics 
influence the execution of a grasping movement 
(Gallese et al., 2002). A subsequent experiment 
showed that in addition to the effect of the action 
observation, object affordance also plays a role in 
the priming of the grasping action (Edwards et al., 
2003). 

 

2.2 The chameleon effect  
Does the motor priming described in a 

laboratory environment have any reality in everyday 
life? The chameleon effect was introduced to de-
scribe the unconscious reproduction of “postures, 
mannerisms, facial expressions and other behav-
iours of one’s interacting partner” (Chartrand and 
Bargh, 1999). This effect can easily be experienced 
in face-to-face interactions, when one crosses his 
arms or legs to see his partner swiftly adopt the 
same posture. Subjects unaware of the purpose of 
the experiment interacted with an experimenter per-
forming one of two target postures, rubbing the face 
or shaking the foot. Analysis of the behaviour 
showed a significant increase of the tendency to 
engage in the same action. In another study, experi-
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menters mimicking the subjects were rated as more 
likable. Subjects were unaware of the mimicking 
manipulation of the experiment. This emphasizes 
that the chameleon effect is an unconscious process 
improving sociability of an interaction by which 
parts of an individual behaviour is transmitted to 
another individual during interaction. This auto-
matic trigger of social behaviours by the mere ob-
servation of the same behaviours in others is re-
ferred to as the “perception-behaviour expressway”. 
It should be noted that mimicry has been described 
as a source of empathy (Decety and Chaminade, 
2003). In contrast, imitation is intentional. 

  

2.3 Imitation 
There have been numerous claims that the 

mirror neurons underlie imitation. This attractive 
hypothesis suffers from several drawbacks. The 
main problem is the definition of imitation, which 
depending on the stance of the author can extend to 
a very large set of behaviours having little in com-
mon (Byrne and Russon, 1998). Another debated 
issue is the existence and the forms of imitative be-
haviours in monkeys, the only species in which mir-
ror neurons were directly investigated. Since imita-
tion is scarce in monkey, there is no recording of 
“mirror neuron” during imitation, imposing caution 
when linking such a high-level behaviour to the neu-
rophysiology. 

 

2.3.1 Proto-imitation 
Infants between 12 and 21 days of age can 

imitate both facial and manual gestures (Meltzoff 
and Moore, 1977). After being presented visually 
with facial movement (tongue-protrusion, lip-
protrusion, mouth opening) or sequential finger 
movements, newborns responses were recorded and 
their gestures were categorized. Results showed a 
significant increase of the target stimulus in com-
parison to the other gestures. A similar result was 
obtained with younger newborns, ruling out an ef-
fect of early social experience and thus favouring an 
innate capacity, proto-imitation. In six-week-old 
newborns, a tongue protrusion to the side led the 
execution of a similar tongue protrusion after cor-
recting earlier approximations (Meltzoff and Moore, 
1994).  

These results imply that newborns can in-
nately equate their own unseen behaviours with ges-
tures they see others perform, as described in the 
“active intermodal mapping” model (Meltzoff and 
Moore, 1997). Using an initial organ identification 

system and trial-and-error movements, infants at-
tempt to match a relation between organs they see in 
the adult with the relation between organs they feel 
when performing the action themselves. This match-
ing mechanism relies heavily on a representational 
system that allows infants to interlace felt transfor-
mations of their body transformations –
somatosensory input- and seen transformations of 
someone else’s body –visual input. 

 

2.3.2 Goal-directed imitation 
In contrast to proto-imitation, it was re-

cently proposed that imitation is primarily directed 
to the goal of the observed action, and that goal-
directed models better explain imitation than direct 
matching models (Wohlschlager et al., 2003). Ar-
guments are derived from a set of experiments in 
children and adults, which demonstrated that when 
asked to imitate, subjects reproduce the most salient 
goal sometimes at the expense of the reproduction 
of the given action. For example, one key experi-
ment (Wohlschlager and Bekkering, 2002) was a 
modification of the finger movement paradigm pre-
sented in 2.1 (Brass et al., 2000). Subjects had to 
imitate a downward finger movement with one of 
the two hands, which was made ipsi- or contro-
laterally. A dot was present on the table in the goal-
directed conditions. Reaction time showed a clear 
facilitation for ipsilateral movements and a negative 
effect on the number of errors for controlateral 
movements when the dot was present. Thus the goal 
has a decisive influence on the imitation behaviour.  

In the goal-directed imitation model, the 
imitator decomposes the observed action into its 
separate aspects and reproduces the most salient 
one(s). In an extensive review of the literature on 
learning by imitation, Byrne and Russon (1998) 
made a number of useful distinction between behav-
iours that could be described as imitation, emphasiz-
ing their differences in a phenomenological perspec-
tive. Particularly relevant to the present discussion is 
the distinction between “action level” and “program 
level” imitation. Action level imitation requires that 
style and minor details should match between mimic 
and model. According to Byrne and Russon, it is 
likely to involve cognitively simple kinaesthetic-
visual and sensorimotor matching. Its involvement 
would concern social functioning rather than learn-
ing of behaviour, because of the role of contingen-
cies in interactions. Proto-imitation, motor priming, 
and the chameleon effect could be related to action 
level resonance. In program level imitation, animals 
and humans reproduce the hierarchical organization 
of behaviour; actions are understood as hierarchi-
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cally organized subgoals reproduced idiosyncrati-
cally. The goal-directed imitation model describes 
some form of program level imitation. One extreme 
form of program level imitation is emulation, in 
which knowledge about the relationships between 
objects and goals are acquired by observation of a 
conspecific using these objects.  

Analysis of behaviour, in particular the 
case of imitation, indicates two levels of resonance, 
sensory-motor and goal-directed. In the next part we 
will argue that describing perception and imitation 
of action using the MOSAIC model offers explana-
tions for these two types of resonance.  

 

3 Computational model of motor 
control 
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Figure 1: Simplified version of the MOSAIC (MOdular Selection 
And Identification for Control) model for motor control (Wolpert 

et al., 2003).  

3.1 Internal models in the control of 
action 
3.1.1 Forward models or predictors 

Very early in the history of psychology was 
it anticipated that the motor and sensory aspects of 
actions were tightly coupled. “An anticipatory im-
age […] of the sensorial consequences of a move-
ment […] is the only psychic state which introspec-
tion lets us discern as the forerunner of our volun-
tary acts” (James, 1890). William James’ “efferent 
discharge” seems a premonition of the “corollary 
discharge” or “efference copy” involved in optimal 
motor control. “Corollary discharges” are copies of 
the motor command (

! 

x
t
in Figure 1) used by inter-

nal models of the body, the forward models (FM), to 
predict the sensory consequences of the actions 
(Kawato, 1999). The prediction (

! 

ˆ x 
t
) can then be 

compared to the actual sensory consequences of the 
action, (yt) and used to optimize motor control. The 
forward model can also be used to filter reafferent 

sensory information: the sensory consequences of an 
action correctly predicted by the system are attenu-
ated making non predicted sensory inputs more sali-
ent (Frith et al., 2000). This could explain why we 
are not aware of our voice when speaking, of touch-
ing an object during a visually guided grasp, or of 
self-tickling.  

 

3.1.2 Inverse models or controllers 
Inverse models can calculate the feed-

forward motor commands xt from a desired trajec-
tory information x*

t (Kawato, 1999). When experi-
encing a new object or context, the motor system 
sends a feed-forward signal and gets feedback sig-
nals that allow him to correct its internal representa-
tion of the relation between the desired state and the 
motor commands. With training and generalization, 
the model can then act as a controller of action pro-
viding the motor command adapted to the new ob-
ject or context. Inverse models can thus be thought 
of as mappings between goals and contexts on the 
one side, and motor commands on the other side. 

 

3.2 MOSAIC 
3.2.1 Action control 

In MOSAIC (Figure 1), predicted states 
can be used to identify the current context within 
which control is being attempted. Its uses multiple 
parallel modules, each comprising paired forward 
and inverse models dedicated to action control. In 
each module a forward model uses a copy of the 
motor command xt to predict the next state of the 
system; this prediction is compared to the sensory 
feedback, the actual state of the system yt, to pro-
duce a prediction error. The error of all modules are 
combined to estimate the responsibility signal of 
each module λ i, and the model resulting in a mini-
mum error is given the higher responsibility in de-
scribing the current sensory-motor context. 

This weighting is also applied to calculate 
the contribution of the inverse model from the i-th 
module in the final motor command xt. Therefore 
the inverse model most adapted to the current sen-
sory-motor context, according to the forward model, 
is selected to control the motor system. 

 

3.2.2 Action perception 
The possibility of the MOSAIC model to 

be utilized in action perception and imitation has 
been described by Wolpert et al. (2003). During 
perception of someone else’s behaviour the motor 
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system produces no action. In this context, all mod-
ules are initially equiprobable and the output of each 
inverse model is used as the input of the paired for-
ward model. Each model provides a prediction of 
the next state of the observed action, which is com-
pared with the observed next state of the action. 
Results from this comparison are used to calculate a 
responsibility, which is this case describes the effi-
cacy a given module has in predicting the partner’s 
behaviour.  

The selection of the module yielding the 
highest responsibility score equates to making more 
salient a pair of a forward and an inverse model. The 
higher activity of one module increases its output, 
the motor command xt, and is a possible foundation 
for lower level aspects of motor resonance (chame-
leon effect, motor interference). On the other hand a 
read-out of the relative activations of the inverse 
models would provide an inference of the desired 
state underlying the observed action, the motor in-
tention of the partner, and could explain higher as-
pects of motor resonance (goal-directed imitation, 
emulation, action understanding). In conclusion, the 
selection of a given module resulting from the com-
parison of the predictions of each module with the 
observed action can explain both lower and higher 
aspects of motor resonance, though the second ne-
cessitates an extra ‘read-out’ process. 

 

4 From motor control to motor 
resonance 

4.1 Putative neural bases of MOSAIC 
Figure 2 highlights regions involved in ac-

tion perception and imitation, which functions can 
be described within the MOSAIC framework.  

 

Figure 2: Lateral render of macaque and human brains showing 
the putatively homologous brain regions involved in perception 

and imitation of action. STS: Superior temporal sulcus; IPL: 
Inferior Parietal Lobule; Crblm: Cerebellum. 

4.1.1 Inverse models 
Inverse models calculate the motor com-

mand given an intended state of the body, or goal. 
Premotor neurons in general, and mirror neurons in 

particular, are suited to implement this type of trans-
formation.  

Rostral to the motor cortex and caudal to 
the prefrontal cortex, to which they are connected, 
the role of premotor areas of the prefrontal cortex is 
the control of actions. Recent advances from mon-
key electrophysiology led to the description of a 
parcelled cortex, where different parcels are in-
volved in different aspects of action control 
(Rizzolatti et al., 1998). Premotor areas can be sub-
divided in dorsal and ventral areas. Interestingly, the 
ventral parts –areas F4 and F5- would mostly code 
the motor control for peripersonnal space (part of 
the body/part of the body, part of the body/object, 
and part of the body/object/part of the body interac-
tions), while dorsal parts –areas F2 and F7- would 
mostly code learnt artificial sensory-motor associa-
tion. In contrast, the primary motor cortex –
Brodmann area 4 in humans or area F1 in monkey’s- 
plays a major role in controlling more elementary 
features of movement control necessary to achieve a 
given action.  

All premotor subregions have sensory as 
well as motor properties, especially interesting in 
area F5, where two types of premotor neurons with 
different visual properties have been described. 
Premotor neurons in area F5 encode object-directed 
behaviour performed with the hand and the mouth, 
and their connection with primary motor area offers 
a way to control action directly. “Canonical neu-
rons” respond to the perception of objects, and “mir-
ror neurons” to the perception of another individual 
performing an action similar to that encoded by the 
neuron. Mirror neurons firing is also elicited by the 
observation of object-related actions, even when the 
final part of the action is hidden but can be inferred 
(Umilta et al., 2001), showing that they encode the 
relation between the desired end-point –or goal- and 
the effector kinematics. Though mainly based on 
inference, the human brain area homologous to the 
monkey F5 is believed to be Broca’s area, which is a 
large region of the inferior frontal cortex.  

In humans, Broca’s area activity has been 
associated with imitation. Neuroimaging experi-
ments in humans have investigated the cerebral net-
work underlying imitation. One set of results using 
fMRI (Iacoboni et al., 1999) and MEG (Nishitani 
and Hari, 2000) showed an area in the left inferior 
frontal gyrus, known as Broca’s area, to demonstrate 
activation patterns similar to those expected from 
the neuronal substrate of a human “mirror system”. 
It is activated in both execution and observation 
conditions, and more activated in the imitation con-
dition. This experiment was refined to test whether 
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the presence of a goal, characterized by dots tapped 
by the fingers on the support of the hand, reproduce 
the activity of Broca’s area (Koski et al., 2002). The 
presence of goal increased the response in Broca’s 
area, and caused additional bilateral dorsal premotor 
activities.  

Altogether properties of inferior premotor 
cortices are in line with the idea that this area par-
ticipates to internal models for the control of action, 
and the goal directedness favours an involvement at 
the level of inverse models. 

 

4.1.2 Forward models 
Forward models compute the expected next 

sensory feedback given an internal copy of the ac-
tion motor command and the current state of the 
body, and the comparison of this prediction with the 
actual feedback is used to update the actual state of 
the body and correct the movement. Both monkey 
(Rushworth et al., 1997) and human (Desmurget et 
al., 2001)  neurophysiology have demonstrated that 
the posterior parietal cortex is active during on-line 
movement control.  

The posterior parietal cortex has also been 
implied in other functions of forward models in ac-
tion control, for example in updating the internal 
model of the body based on sensory information 
(Blakemore et al., 1998; Wolpert et al., 1998). It is 
notable that it the posterior parietal cortex integrates 
sensory signals from many modalities (e.g. visual, 
proprioceptive, auditory and vestibular), as well as 
efference copy from motor structures (Andersen et 
al., 1997). With the exception of the neuropsy-
chological data, in which the patient showed a large 
lesion of the parietal cortex, the inferior parietal 
lobule (IPL) is found in all studies. Accordingly, the 
“ventral-dorsal” visual stream introduced by 
(Rizzolatti and Matelli, 2003), which covers the 
inferior parietal cortex area PF in the monkey, is 
crucial to action organization. Altogether, these ex-
amples illustrate that the IPL could be involved in 
forward models based on the integration of sensory 
and motor signals. 

In accordance with the proposed role of 
forward models in lower aspects of action imitation, 
activity in the left IPL can be found in neuromaging 
studies of human imitation. For example we found 
using PET that the IPL is activated when reproduc-
ing (Decety et al., 2002) but also when simply track-
ing (Chaminade and Decety, 2002) another individ-
ual action. An fMRI investigation of the neural sub-
strate of body-part and movement parameter coding 
during imitation of intransitive action (Chaminade et 

al., 2005) showed that the IPL encodes the body-
part, while the superior parietal lobule encodes the 
spatial aspect. Similarly, reproduction of hand and 
finger static postures activate the inferior parietal 
cortex in the absence of any perceived movement 
(Tanaka and Inui, 2002), which may be related to 
the motion implied by the presentation of static im-
ages of body postures. 

 

4.1.3 Responsibility estimates 
Together with the parietal cortex, the cere-

bellum is another candidate for the localisation for-
ward models (Blakemore and Sirigu, 2003; Kawato, 
1999). The cerebellum participates to motor control 
with premotor and parietal cortices (Haslinger et al., 
2002). It is crucially involved in many mechanisms 
underlying internal models for motor control - pre-
diction of the sensory consequences of action 
(Blakemore et al., 2001), learning of internal models 
(Imamizu et al., 2000). But until recently, there was 
no satisfactory description of its involvement in 
internal models for motor control (Miall, 2003). 

Imamizu, Kawato and colleagues (Imamizu 
et al., 2004) investigated the brain networks in-
volved in representing inverse and forward models 
as well as regions responsible for the switch in the 
MOSAIC framework. An interpretation of the re-
sults was that premotor, anterior parietal and cere-
bellar regions contained internal models, but that 
switching of internal models relied on the cerebellar 
cortices. One possible explanation is that the cere-
bellum computes and compares prediction errors 
and responsibility, being able to work in a default 
mode with familiar actions (e.g. walking), and that 
inverse and forward models are represented in the 
cortical premotor and parietal areas respectively. 

 

4.2 Explaining motor resonance 
4.2.1 Parieto-premotor loops and action con-
trol 

In monkeys, it is believed that parieto-
premotor networks form the core of the motor con-
trol system. Taking into account the connections 
between parietal and premotor areas, a series of seg-
regated parieto-premotor functional circuits can be 
distinguished, each being involved in a specific sen-
sory-motor transformation for action (Rizzolatti et 
al., 1998). The ventral premotor area F5 and the 
ventral parietal PF, two areas were mirror neurons 
were found and which correspond roughly to 
Broca’s area and the IPL in humans, are anatomi-
cally and functionally connected for the control of 
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object-directed actions.  

The present proposal is that direct or/and 
indirect (e.g. through the cerebellum) connectivity 
between areas F5 and PF in monkey sustains modu-
lar pairing of inverse and forward models, with an 
emphasis on its goal aspects in area F5 (as in inverse 
models) and on its sensory aspects in area PF (as in 
forward models). In this framework, motor reso-
nance corresponds to the pairing of computations 
performed by the inferior parietal cortex and the 
ventral premotor cortex in action representations, 
interlacing sensory and intentional aspects for con-
trol and for perception of action. 

In action control, the premotor region is in 
charge of programming the action, and the parietal 
cortex provides on-line action control. The present 
model proposes that the motor command is mainly 
based on the output of the inverse model from one 
module, and a copy of the resulting motor com-
mand, an efference copy, is sent to the parietal cor-
tex area in charge of the forward model of the same 
module. The comparison between the actual and 
predicted sensory consequences of action is respon-
sible for on-line control and correction of the action.  

 

4.2.2 The case of action perception 
The most important aspect is that the motor 

resonance system can be activated by the mere ob-
servation of action in the absence of any motor out-
put. Evidence abounds in favour of this aspect 
(Chaminade and Decety, 2001), which actually mo-
tivate current research to understand the motor reso-
nance process.  

In the present model, perception of some-
one else’s action, mediated by the superior temporal 
sulcus (STS3), is used to select the modules whose 
forward model is best suited to reproduce the sen-
sory aspect of the observed action. This leads to an 
increase of activity: in premotor areas in relation to 
the activity of the inverse models providing input to 
the forward models; in the parietal cortex in relation 
to the computation of the predicted sensory inputs 
and their comparison with the actual input; and fi-
nally in the cerebellum in relation to estimating re-
sponsibility and selecting the module(s) with the 
inverse model most likely to give rise the same sen-
sory consequences when performed by the self. Re-
sults are in line with these predictions. 

                                                
3 The STS is involved in transforming a visual input into a 
code that can be used by the resonance system. Its function is 
purely visual and out of the scope of the present discussion 
(see Allison et al., 2000). 

First mirror neurons, found in the mon-
key’s ventral premotor area F5 (Rizzolatti et al., 
1996) and parietal area PF (Gallese et al., 2002) are 
activated both when the monkey perform a given 
action and when it sees an individual performing a 
similar action. A related result in human show that 
observation of action activates the premotor and 
parietal cortex in a somatotopic manner (Buccino et 
al., 2001). A meta-analysis of neuroimaging studies 
on action execution, observation and simulation 
reveals that parietal and premotor regions are acti-
vated by the three tasks (Grezes and Decety, 2001). 
Finally, parietal and premotor activity when predict-
ing the outcome of dots kinematics representing 
simple movements, writing and pointing, is found in 
the cortical regions known to be involved in the 
execution of the same task (Chaminade et al., 2001). 
Parietal and premotor cortices controlling action are 
thus also activated, in an effector- and action-
specific way, by the observation of action. 

 

4.2.3 The case of imitation 
The ventral parieto-premotor network, to-

gether with the STS, is particularly important for 
imitation (Chaminade et al., 2002; Chaminade et al., 
2005; Decety et al., 2002; Miall, 2003; Rizzolatti et 
al., 2001). The parietal cortex has been involved in 
lower aspects of imitation like body-parts coding 
and cinematic aspects (see 4.1.2). Accordingly in 
monkey, the PF mirror neuron system is believed to 
code for the kinaesthetic and somatosensory com-
ponents of actions. In the present view, their activity 
reflects the process of selecting the forward model 
that can best reproduce the outcomes of the ob-
served action that has been encoded by the STS.  

Mirror neurons in F5 encode goal-directed 
actions, and accordingly the human homologous 
region, Broca’s area, is activated by goal directed 
aspects of imitation (see 4.1.1). Some results even 
suggest that it is not specific to imitation per se, but 
can be activated by goal-directed aspects of an ac-
tion when it is triggered by symbolic means instead 
of imitation, and when it is on-line or delayed 
(Makuuchi, 2004). Its involvement provides the 
system with a way to read out the intention of the 
observed action. 

 

No experimental data to date is able to dif-
ferentiate between the present and other models 
describing the involvement of motor cortices in ac-
tion understanding. The present model allows for 
testable predictions. For example, it predicts an in-
crease of activity of the cerebellum when under-
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standing an observed behaviour, related to the 
switching between the different paired in-
verse/forward models. It also predicts that contribu-
tions of parietal cortex and premotor cortex in motor 
resonance are different, being involved in forward 
and inverse internal models of action. 

 

5 Conclusions  

Motor resonance is the concomitance of the 
activation of sensory aspects and goal-directed as-
pects of motor control, believed to be located in the 
inferior parietal and ventral premotor cortices re-
spectively, during execution and perception of ac-
tion. Using MOSAIC, it is possible to describe the 
sensory aspects as forward models, and the goal-
directed aspects as inverse models. Parieto-premotor 
connectivity offers a way to pair inverse and for-
ward models within action modules. This frame-
work is coherent with the current knowledge on the 
brain bases of motor resonance, and offers testable 
predictions. 

Yet it leaves several key points unex-
plained. How does this system differentiate between 
observed actions and actions produced by the self if 
both use the same code? Investigations on the sense 
of agency provides answers that could be transposed 
in the present framework (see for example Decety 
and Chaminade, 2003). Another example is the rep-
resentation of higher-order intentions. When observ-
ing other behaviour, we have access not only to mo-
tor intention, but also to social intentions, taking 
contextual information into account.  

Motor resonance could be a foundation for 
social understanding, by transforming a sensory 
code into an action code which interferes with ac-
tion production (lower aspects of motor resonance), 
and by providing a mean to understand observed 
behaviour (higher aspects of motor resonance). The 
need to investigate the current proposal is reinforced 
by the possibility it offers to model social interac-
tions. 
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Abstract

In this paper, we introduce the concept of “interpersonal maps”. They realize a representation of one’s
own body to include the body of one’s peers. In cases of strong couplings between agents, a “we-
centric” space can emerge in which the agent’s body structure can be directly mapped onto the structure
of an observed body. Based on a set of robotic experiments, we argue that this unified representation
can help to elucidate both the formation of a body schema and the body correspondence problem.

1 Introduction

The establishment of the self-other identity is a cru-
cial milestone towards the development of more so-
phisticated forms of social interaction. It serves
as a basis for developing intentional understanding,
joint attention and imitative capabilities. Matching
and discriminating between oneself and others results
certainly from the interplay of several developmen-
tal dynamics. In this paper, we focus on a subset
of this complex issue by considering the links be-
tween the formation of the body schema and the body
correspondence problem (Nehaniv and Dautenhahn
(2002)). We introduce the concept of “interpersonal
maps”, realizing a representation of one’s own body
as well as the body of peers.

This idea is related to several existing concepts.
To account for early imitation, Meltzoff and Moore
argue for the existence of an intermodal mapping
establishing equivalence relations between different
modalities such as vision or motor actions (Meltzoff
and Gopnick (1993); Moore and Corkum (1994)).
Such a model suggests that both perceived and ob-
served behaviour could be represented in a shared
neural format. Similarly, Gallese has argued that
since the beginning of our life we inhabit a shared
multidimensional interpersonal space. When we ob-
serve other individuals, “a meaningful embodied in-
terpersonal link is established”. Gallese refers to
this form of intersubjectivity as the shared manifold
space. Furthermore, his theory predicts the existence
of “somatosensory mirror neurons” giving the capac-
ity to map different body locations during the obser-
vation of the bodies of others (Gallese (2004)).

However, few models try to give a precise ac-

count on how such interpersonal or intermodal map-
pings could be developed. We believe that research
in developmental robotics can play a relevant role to
progress in understanding the development of such
mappings. Designing algorithms addressing the body
correspondence problem and the constitution of the
body schema is one of the major challenges of this
domain (Kaplan and Hafner (2004)). These is-
sues have been investigated in separate manners (e.g.
Yoshikawa et al. (2002, 2004) for the body scheme
and Nehaniv and Dautenhahn (2002) for approaches
of the correspondence problem). Our model results in
a preliminary investigation in trying to address both
problems in a unified framework.

2 Maps Based on Information
Distances

2.1 Definition

Our approach takes inspiration from research car-
ried out by Olsson et al. (2004) concerning the use
of information distances between sensors. This re-
search shows that maps can be built as metric pro-
jections showing informational relationships between
sensors. It is based on the methods by Pierce and
Kuipers (1997) on map learning. In such maps, sen-
sors that are informationally related are close to each
other. A related approach was investigated by Ku-
niyoshi et al. (2004). They argued that such infor-
mation maps could appropriately be related to “so-
matosensory maps” such as the ones known to exist
in the cortex (Penfield and Rasmussen (1950)).

Such a map can be built in the following way:
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Computation of the information distance matrix
Let us assume that the robot RX is equipped with n

sensors (proprioceptive and distance sensors). At any
time t its sensory state can be captured by the vector
X(t)

X(t) = (X1(t), X2(t), . . . , Xn(t)) (1)

For any sensor Xi the entropy H(Xi) can be cal-
culated as

H(Xi) = −
∑

xi

p(xi) log
2
p(xi)

where p(xi) is the probability mass function over
all possible discretised values xi. To calculate it, the
histogram of Xi has to be calculated with a careful
choice of the number of bins (see Schreiber (2000)).

The conditional entropy for two sensors Xi and Xj

can be calculate as

H(Xj |Xi) = −
∑

xi

∑

xj

p(xi, xj) log
2
p(xj |xi)

where p(xj |xi) = p(xj , xi)/p(xi).

We chose to use

d(Xj , Xi) = H(Xi|Xj) + H(Xj |Xi)

as the distance used in the distance matrix since it has
several advantages compared to the mutual informa-
tion (Crutchfield (1990)). d is a metric for the space
of information sources. This means that it has the
three properties of symmetry, equivalence and trian-
gle inequality.

• d(X, Y ) = d(Y, X) follows directly from the
symmetry of the definition

• d(X, Y ) = 0 if and only if X and Y are
recoding-equivalent (in the sense defined by
Crutchfield Crutchfield (1990)).

• d(X, Z) ≤ d(X, Y ) + d(Y, Z)

Two-dimensional metric projection
A two-dimensional projection is ideal for vi-

sualisation of the data. In order to create a
two-dimensional body map from the sensor data, we
apply a relaxation algorithm. The algorithm is an
iterative procedure of positioning the sensors in a
two-dimensional space in such a way that the metric
distance between two sensors in this map is as close
as possible1 to the distance in the n-dimensional

1a perfect mapping given the n×n information distance matrix
is possible in an (n − 1)-dimensional space.

information space.

Different algorithms have been suggested (Hafner
(2000); Duckett et al. (2002); Pierce (1995))
which convert an n-dimensional input into an m-
dimensional map (m < n). Here, the algorithm
of Pierce (1995) is used since it does not require
any information about the relative orientation of
connections between sensor nodes.

The algorithm used in this paper consists of an
iteration of two simple steps:

First, each sensor Xi is randomly assigned to a
point pi on a two-dimensional plane.

1. The force fi on each point pi is computed as:

fi =
∑

fij

where

fij = (||pi−pj||−d(Xi, Xj))(pj−pi)/||pj−pi||

2. Each point pi is moved according to the force
fi:

pi = pi + ηfi

where η = 1/n.

The advantage of using the relaxation algorithm is
that it only requires the distances, and not the actual
positions, which are not available in our case. A Ko-
honen self-organising map would therefore not be ap-
plicable on this data (Kohonen (2001)).

2.2 Example

Sensory data have been collected from an AIBO
robot performing a slow walk while moving its head
continuously from side to side. The recorded sensors
are:

1-3 distance sensors
4-6 head (proprioceptive sensors)
7-9 right front leg

10-12 right hind leg
13-15 left front leg
16-18 left hind leg

During the walk, 1000 sensor values have been col-
lected for each of these 18 sensors. Figure 1 shows
an example of the development of the distance ma-
trices and the maps using the sensor measurements
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Figure 1: Development of distance matrices and corresponding body maps over time. Left: 10 measurements,
centre: 100 measurements, right: 1000 measurements. The values in the matrices range from zero (dark blue) to
high (red). In the body map on the right, the mapping from the sensors to the position of the sensors on the robot’s
body is already clearly visible.

of the AIBO robot after 10, 100 and 1000 steps. The
18×18 information distance matrix D is symmetrical
with zeros in the diagonal, since d(Xi, Xi) = 0 and
d(Xi, Xj) = d(Xj , Xi).

In the map of figure 1 right, the arrangement of the
sensors in the body map already corresponds roughly
to the sensor distribution on the body of the robot.
Distance and head sensors are arranged in the upper
right half of the map, the knee joints of all four legs on
the lower right of the map and all other leg sensors on
the left side. The exact map depends on the random
initial conditions which are different for each run of
the relaxation algorithm, but the maps have compara-
ble structures.

The particular emergent organisation of the map
results from the body structure of the robot as well
as from the behavioural patterns it conducts in a par-
ticular environment. In that sense, such maps can be
interpreted as a body image.

3 Interpersonal Maps

3.1 Definition

The concept of a map can be extended to include not
only internal proprioceptive sensors but also exter-
nal sensors such as visual information. This permits

to relate in the same format information about the
robot’s own body with information about other robots
perceived through sensors. Let us define the state of
the robot RY by a vector of size m:

Y (t) = (Y1(t), Y2(t), . . . , Ym(t)) (2)

A possible formalisation of this situation can be
obtained by supposing that the behaviour of the other
robot RY is perceived through k new sensors in addi-
tion to the ones dedicated to proprioception. The new
vector X(t) of size n + k can be expressed as below,
where g is a potentially complex function linking the
state of RY (dimension m) to the perceived state of
RX (dimension k).

X(t) = (X1(t), . . . , Xn(t), g1(Y (t)), . . . , gk(Y (t)))
(3)

In such conditions, a map can be built using the
same method as the one described in the previous
section. In general, the sensors corresponding to the
perceived state of RY will not be correlated with the
activity of RX , but they should show separated intra-
correlated patterns. In such a case, the body schemas
of RX and RY should appear as two distinct clus-
ters in the maps. However in some cases, some in-
tercorrelations could be found between the two sets
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of sensors. This could be in particular the case when
the two robots interact in a closely coupled manner,
for instance during a direct imitation task. Such maps
can be seen as conceptual signatures for the body cor-
respondence problem. We will now show examples
of these two situations.

For the sake of simplicity, we assume in the follow-
ing examples that g offers a linear mapping linking
the sensory states of the observed robot to the states
perceived by the observing robot. We will discuss this
assumption in the next section.

3.2 Example 1: No Intercorrelation

In this example, we used the sensors recorded from
the walking robot together with the sensors of another
robot it could have observed. The other robot was
sitting and stretching its legs and neck. Altogether,
this results in a recording of 36 sensors during 1000
time steps.

Since there is no interaction between the two
robots, the two sensor groups are not directly corre-
lated. This results in a higher information distance on
average between two sensors of the same robot than
between two sensors of different robots. The inter-
personal body map in figure 2 therefore shows two
clusters. The first cluster can be seen on the lower
part of the body map with sensor indices from 1 to 18
printed in black, the second cluster can be seen above
the first one with sensor indices from 19 to 36 printed
in red. The body schemas within the two clusters are
more distorted than the one in figure 1 right due to
the interplay of the sensors, but a concentration of the
head and distance sensors towards the centre of the
map is still visible.

3.3 Example 2: Intercorrelation

This example studies the sensory information of one
robot imitating the behaviour of the other. In this
case, the robots were walking. The experiment has
been performed with imitation with a time delay of
10 recordings which corresponds to about half a sec-
ond (figure 3). In this case, the interpersonal body
map does not show two clusters anymore but shows a
mapping between sensors of a similar type. Sensors
with indices i and i + 18 are very close to each other
on the body map and are plotted in the same colour
(e.g. X1 and X19 on the upper right side).

4 Discussion

Our model makes a series of assumptions that can be
discussed. The first one is to separate sensors related
to proprioception with sensors related to external per-
ception. In practice, such a clear distinction cannot
be obtained. Our embodied perception merges both
internal and external stimuli without a priori discrimi-
nation. However, presenting the model this way helps
clarifying the mechanism we describe.

More importantly, we assume that RX ’s percep-
tion of the behaviour of robot RY can be modelled
using a function g mapping the state of RY to RX ’s
perceptual state. This is a reasonable assumption in
the sense that in some way or another the observa-
tion of the behaviour of RY can be related to its in-
ternal state. The fact that relevant information about
RY ’s state can be reconstructed after this function has
been applied is potentially more questionable. In our
context, what counts is that some intercorrelation be-
tween Y and X can still be discovered. For instance
if g is a linear transformation, such kind of informa-
tion will be entirely conserved.

But it is likely that g is a much more complex
function. Even in that case intercorrelations could
potentially be discovered in several circumstances.
One possibility is that RY scaffolds the interaction to
make its perceived behaviour more tuned to its own
internal state. It has been well studied that adults
adapt to children in order to make their overt be-
haviour more easily analysed (Schaffer (1977); Kaye
(1982)).

Another possibility is that the biases of g are eval-
uated by a separated mechanism. More generally, the
progressive awareness of self and others is likely to
be linked with several other developmental processes.
Other embodied developmental models suggest for
instance that discrimination based on levels of pre-
dictability could play a key role in development of
the animate/inanimate distinction and the self/other
discrimination (Kaplan and Oudeyer (2005)).

5 Conclusion

Interpersonal maps may offer a possible unified
framework accounting for the structure of the agent’s
body schema as well as a representation of the ob-
served behaviour of another agent. In cases of strong
couplings between agents, a “we-centric” space can
emerge in which the agent’s body structure can be
directly mapped onto the structure of an observed
body. We strongly believe that the dynamics respon-
sible for self-other distinction are tightly related with
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Figure 2: Information distance matrix and interpersonal body map for a robot observing another robot behaving
independently.

the ones accounting for the construction of the body
schema and that both processes must be studied to-
gether. Our future research in developmental robotics
will investigate further the conditions for the emer-
gence of this interpersonal space and the possible us-
age of this information representation in the larger
context of robotic control architecture. We also wish
to address more precisely the relevance of this mech-
anism for the development of the self-other match-
ing and discrimination as observed during children’s
early development.
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Abstract

Techniques for learning reactive robot behaviors have been an active field of research in robotics for
many years. In this paper the method for representing behaviors is based on association rules. Learning
the association rules is accomplished by recording training data for a manually programmed controller.
The data is then used to generate a set of association rules that replaces the manually programmed
controller, and manages to reproduce the demonstrated behavior. Reactive behaviors have obvious
limitations, caused by the reactivity itself. Sequences of behaviors are hard to model, unless the switch
between behaviors is synchronous with changes in the sensor data. Two ways to get around this lim-
itation are discussed, and the method is demonstrated with examples: one road sign problem with a
mix of two wall-following behaviors, and a more complex sequenced light-avoiding cockroach behav-
ior. The results show that association rules are a powerful and practical way to implement rule-based
controllers for reactive and semi-reactive robots.

1 Introduction

The work reported in this paper addresses the well-
studied problem of making robots learn reactive be-
haviors from demonstrations. In general, the process
is divided into three steps: 1. The robot is controlled,
either by remote control by a human operator, or by a
manually coded software controller to perform a cer-
tain task. The sensor data S(t) at time t is recorded
along with the commanded response signal R(t). 2.
The recorded data is used in a modeling, where a con-
trol law B : S(t) → R(t) is created. 3. The controller
B is implemented in the robot, which hopefully man-
ages to perform the demonstrated task autonomously.
The various approaches to this general setup can be
distinguished by the machine-learning technique cho-
sen to arrive at the control law.

Reinforcement learning (RL) is a commonly used
methodology (Lin (1991); Carreras et al. (2002)),
which maps the state of the environment to an ac-
tion that in turn maximizes the accumulated future
rewards. The main advantage of RL is that it does not
require all data to be available at the same time, as do
most other machine-learning techniques. As a result,
RL is suitable for online robot learning. The main
disadvantages are long learning time, and problems
with continuous variables (Carreras et al. (2002)).
Artificial neural nets that have also been applied to

the problem of finding reactive behaviors from data.
Martin and Nehmzow (1995) use simple single layer
perceptrons to represent behaviors for obstacle avoid-
ance, wall following, cleaning, and route learning.
Fuzzy rule bases have also been widely chosen to rep-
resent learned reactive behaviors. Ward et al. (2000)
uses training data for a remote controlled robot to
generate a fuzzy rule base capable of reproducing
behaviors, such as wall following, corridor follow-
ing, and docking. Evolutionary techniques have been
combined with fuzzy rule bases to find optimal rules,
e.g. in Hoffmann and Pfister (1997). In our approach,
B is represented by a rule base with association rules.
Association rules (Agrawal et al. (1993)) have been
successfully used for data mining, where the goal is to
explore complex databases to find patterns that might
prove useful for various purposes. However, associ-
ation rules have so far not been extensively used in
robotics. One advantage with this machine-learning
technique is the handling of uneven distribution of
training examples. Most other techniques have a ten-
dency to focus on the most common examples, and
learn less from the scarce examples. For example,
this is a well known problem when using neural nets
for the learning process (Ward et al. (2000)).

The concept of association rules and how they are
used to represent reactive behaviors is introduced in
Section 2. The general method for building a con-
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troller is described in Section 3. Results of practi-
cal experiments are presented in Section 4, including
a road-sign-following behavior and a more complex
cockroach-hide behavior. Section 5 concludes the pa-
per with a summary and conclusions.

2 Behaviors as Association Rules

Association rules are a way of expressing dependen-
cies between items in databases. Association rules
have the general form X ⇒ Y , where both X and
Y are sets of items. Given transactions T ∈ D,
where D is a database and each transaction is a set of
items, the rule X ⇒ Y expresses a statistical correla-
tion between X and Y. The rules can be constructed
according to different quality measures for different
purposes. The coverage of the rule X ⇒ Y is de-
fined as

coverage(X ⇒ Y ) = cover(X),

where cover(X) is defined as the number of transac-
tions containing all items in X, divided by the size
of the database. I.e., the coverage is the fraction of
transactions in the database that contain all items in
the left-hand side X of the rule. The support mea-
sures the fraction of transactions that contain all items
in both X and Y :

support(X ⇒ Y ) = cover(X ∪ Y ).

For some applications, the statistical correctness of
the correlation is critical. The important measure for
this quality is called strength. The strength (some-
times also called confidence) of an association rule
X ⇒ Y is the proportion of the transactions that con-
tain X that also contain Y . It can be computed as

strength(X ⇒ Y ) =
support(X ⇒ Y )

coverage(X ⇒ Y )
.

Coverage and support are of interest when esti-
mating the significance of the strength, since they
quantify on how many observations of X and Y the
computation of strength is based. For more informa-
tion about these and related measures see Hellström
(2003a).

2.1 Behavior Representation

The robotics framework in this paper is basically re-
active, and each behavior is defined by a control law
B : S(t) → R(t), where S is the vector of stimuli
available at time t (a purely reactive scheme involves

only stimuli from the current time t,) and R(t) is the
response vector issued at time t. B is implemented
as a rule base of rules of the form S ⇒ R. S is a
conjunction of boolean expressions s i = vi, where si

is a discretized sensor variable or derived expressions
thereof and vi is an integer value. R has the form
y = a, where y is a discretized response variable and
a is an integer value. With this notation, a rule has the
general form

si = vi ∧ sj = vj ... ∧ sk = vk ⇒ y = a. (1)

In our experiment we have a Khepera robot with
8 infrared sensors IR0, IR1, .., IR7 to measure the
distance to the closest obstacle. Each sensor deliv-
ers an integer between 0 (corresponding to a distance
larger than the sensor range which is about 4 cm.)
and 1023 (corresponding to a distance less than about
1 cm.). For experiment 1, each sensor readout IR i is
split into 3 ranges 0, 1, 2. For experiment 2, 4 ranges
are used and represented by a discrete variable ir i ac-
cording to

iri =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 if 0 ≤ IRi < 100 (long distance)
1 if 100 ≤ IRi < 600 (medium dist.)
2 if 600 ≤ IRi < 900 (short dist.)
3 if 900 ≤ IRi ≤ 1023 (very short

distance)

.

(2)
The robot has two wheels with independent motor

control, so both robot speed and turning radius are
controlled by setting the left and right speed values v l

and vr. vl and vr can be set to integer values in the
range [-127,127]. The response y in our experiments
is a coded combination of vl and vr according to:

y vl vr Action
9 0 0 stop
3 −5 5 anti clockwise on the spot
2 0 5 anti clockwise around left wheel
1 2 5 soft anti clockwise
0 5 5 straight ahead
−1 5 2 soft clockwise
−2 5 0 clockwise around right wheel
−3 5 −5 clockwise on the spot

(3)
As an example, a rule for a left-wall-following be-

havior may look like this:

ir1 = 0 ∧ ir2 = 1 ⇒ y = 1.

The rule should be interpreted as follows:

if 0 ≤ IR1 < 100 ∧ 100 ≤ IR2 < 600 then

vl = 2 and vr = 5.
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In plain English this reads as:

if IR1 senses a long distance and IR2 senses a

medium distance, then turn soft anti clockwise.

3 Building a Controller

The rule base to control the robot is generated from
data recorded from a manually programmed con-
troller, demonstrating the required behavior. In this
way we obtain a set of stimuli/response pairs that
can be used to automatically generate a rule base.
This rule base then replaces the controller, and hope-
fully produces the same behavior as the manually pro-
grammed controller. Each sample has the form

ir0, ir1, ..., ir7, y (4)

where each iri is an infrared sensor readout and y
is the commanded velocity signals from the manu-
ally programmed controller. The rules we want to
find have the form defined in (1), where each term
is an attribute-value pair of the form s = v, where
s is a discretized sensor variable and v is an inte-
ger value. Algorithms that efficiently search large
databases for association rules have been previously
developed (e.g. Agrawal et al. (1993)).

The generated rules are implemented as a con-
troller in the robot. During execution, the sensed data
is matched with the left-hand side of the rules. A rule,
for which all terms si = vi in the left-hand side match
the sensed data, is said to fire. Three cases can oc-
cur: 1. Exactly one rule fires. The right-hand side
y = a of the rule is used to control the robot. 2.
More than one rule fires. The one with the highest
strength is chosen. 3. No rule fires. The task of find-
ing a rule for sensor data that lies outside all defined
rules can be viewed as a classification problem: to
which rule does the sample belong? We have suc-
cessfully designed and implemented a method called
k-nearest rules, based on the classification technique
k-nearest neighbors (kNN). For more information, re-
fer to Hellström (2003a).

4 Experiments

We present results from two experiments demonstrat-
ing the power of using association rules to model re-
active behaviors in the way described in the previous
section. The experiments also show how non-reactive
behaviors can be tweaked into the reactive framework
by pre-processing the sensor data.

4.1 Experiment 1

This experiment deals with the Road sign problem
(Linåker and Jacobsson (2001)), in which the robot
has to act on a road sign it had passed earlier. It is
impossible to achieve this in a purely reactive manner,
since the robot has to choose between a left and a
right turn, depending on past stimuli. The situation is
illustrated in Figure 1.

Our approach is to let the robot act on preprocessed
sensor data with a perceptual decay (Werger (1999)).
The perception of a road sign remains even after the
stimuli have disappeared and slowly fades out with
time. In this way the behavior can still be purely re-
active, since the memory is hidden in the robot’s per-
ception. This is indeed a simplification of the original
road sign problem, but it serves our purpose well. The
purpose of the experiment is to see how a complex
behavior can be modeled by the rule base of auto-
matically generated association rules. The idea with
perceptual decay is illustrated in Figure 2. The orig-
inal stimuli as a function of time are shown in the
lowermost pane. The perceptual decay in the middle
pane shows how the perception remains and gradu-
ally decays after the original stimuli has disappeared.
The uppermost pane shows another processing of the
stimuli used in experiment 2.

The demonstrated behavior is manually coded as
a switching between two controllers, a left-wall fol-
lower and a right-wall follower. The switching occurs
when the robot encounters a road sign, describing the
recommended way to go in the upcoming junction.
The road signs are constructed of small bulbs attached
to the walls of the robot’s maze. The bulbs on the wall
are sensed by the ambient light sensors on the Khep-
era robot. The sensors for left and right bulb detection
are denoted ALl and ALr respectively. To enable the
robot to act on a road sign that appears and disap-
pears before a junction, a virtual road sign sensor RS
is defined as:

RS =

{

2 if decay(ALl) > decay(ALr)
0 otherwise

. (5)

The decay function computes a perceptual decay
of the sensed road sign signal, and serves to make the
robot gradually forget about road signs as time passes
after the road sign has disappeared out of the robot’s
sight. The RS sensor is a binary signal with the value
2 if the last seen road sign was a left sign, and 0 other-
wise. The perceptual decay is a slight side step from
a pure reactive design, but is a neat way of stretching
the borders of the reactive paradigm when the robot’s
action has to depend on ”old” sensor data. In our ex-
ample, the RS signal is added to the 8 infrared sen-
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sors ir0, ir1, .., ir7 as an additional input, and serves
as a switch between the two wall-followers in the
learning mode. The manually programmed controller
performs a left/right wall-following task as described
by the pseudo code below:

if RS = 2
left-wall follower

else
right-wall follower

end

(6)

where left-wall follower and right-wall follower are
simple rule-based controllers described in Hellström
(2003b). In step 2 of the basic learning process (see
Section 1,) RS is made available as an extra input in
the search for association rules, and should then (au-
tomatically) be added as a high-level condition that
groups the generated rules in two categories: left-wall
following and right-wall following. Of course, rules
common to both behaviors may be unaffected by the
value of the RS input.

The controller is run with a cycle time of 0.1 sec-
onds for 100 seconds. This results in 1000 samples of
training data, each sample consisting of 8 discretized
sensor read-outs ir0−7, RS and one discretized ac-
tion y. The sensor data is discretized in 3 ranges, and
the actions in 8 categories as described in (3) (the stop
action is never used in this example.) The training
data is then used to automatically generate associa-
tion rules, which in turn are used to construct a robot
controller.

Table 1 shows performance for a number of differ-
ent controllers with different numbers of rules. The
number of rules is set by giving a lower limit to the
strength value. Each controller is evaluated on one
row in the table. The rules are applied to two data
sets, the 1000 samples big training data set, which
was used to generate the rules, and a test data set sep-
arately generated. The etr and ete are the fractions of
samples that give incorrect action when compared to
the manually programmed controller. By demanding
a strength value equal to 1.0, 31 rules are selected.
The column labeled 0rule% is the fraction of sam-
ples, for which no matching rule can be found in the
controller’s database. The 31 rule controller leaves
9.6 % of the samples not matched by any rule. The
1-nearest rule developed in Hellström (2003a) han-
dles this reasonably well with 5.0 % incorrect actions
on the test data set. The column labeled 1rule% is
the fraction of samples covered by exactly one rule.
The rightmost 3 columns are the fractions of samples
covered by 2, 3 and more than 3 rules respectively. In
23.9 % of the cases, two or more rules fire at the same

time. This is resolved by majority voting among the
rules that fire. It is clear from the table that the best
controller is achieved by a controller with the 43 rules
with strength� 0.95. These rules give minimum er-
ror on both training and test data sets. Furthermore,
the number of cases where no rule fires is reduced to
zero when these 43 rules are used.

A comparison between the training set error e tr

and test set error ete exhibits a difference that would
normally be diagnosed as overfitting. This concept
is largely ignored in the association rule commu-
nity (Freitas (2000)), while it is very common in
other areas of machine learning. However, acting on
rules with very low strength or support corresponds
to adding more nodes to a neural net, or adding
higher-degree terms to a polynomial model. Simple
techniques, such as computing performance for both
training data and previously unseen test data should
therefore be a standard procedure when using asso-
ciation rules for prediction or induction, in particular
with noisy data, such as robot applications.

Table 2 lists a few of the generated rules and shows
that not all rules responsible for turning contain the
RS variable as condition on the left-hand side of
the rule. However, this is not necessarily incorrect,
since turning may occur not only when performing a
turn in a junction, but also for wall-avoidance, which
could be handled uniformly, regardless of the road
sign condition. When the rules are installed as a con-
troller on a real Khepera robot, the robot success-
fully manages to switch between left and right-wall
following depending on road marks placed along the
route in the maze. For a more detailed analysis of
the road sign experiment, see Hellström (2003a) and
Hellström (2003b).

4.2 Experiment 2

This experiment aims at developing a rule base capa-
ble of mimicking the behavior of an imagined light-
avoiding cockroach. A program performing the fol-
lowing robot behaviors is first developed (refer to Fig-
ure 3):

• If the light is switched off, explore the surround-
ings while avoiding obstacles

• If the light is switched on, perform the following
sequence: 1. Turn around 180 degrees. 2. Move
in a straight line to a wall. 3. Follow the wall
until a hiding place is found. 4. Turn around and
stop until the light is switched off.

This is a fairly challenging task even for a human
robot programmer. In reality it took many days to
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construct a program able to successfully perform all
the described steps with the Khepera robot. It is
clear that a pure reactive approach is not enough to
achieve step 1 above. For this reason pre-processing
of the ambient light sensor is introduced. The lay-
out of this ”habituation” function is illustrated in the
topmost pane of Figure 2. The initial response fol-
lows the actual stimuli (the ambient light sensor) but
falls off after a fixed time. In this way it is possible
to model a time limited response in a semi-reactive
fashion. The actual behavior is purely reactive but
the pre-processing is not. It should be noted that the
time for the response to fall off is tailored to match
the time it takes for the robot to turn 180 degrees,
i.e. to complete sub-behavior 1 above. This is neces-
sary to make a reactive modelling possible, but may
at first look like cheating. However, both animals and
humans exhibit such tailored perception for various
behavioral support. And after all, already the choice
of sensors for a robot dictates which behaviors are
feasible for the robot. The rest of the behavior de-
scribed above can be programmed in a purely reactive
fashion, using the infrared sensors to identify a hiding
place and to turn around. The programmed controller
is run with a cycle time of 0.1 seconds for 1000 sec-
onds. This results in 10000 samples of training data.
The data is then used to generate a rule base, which
manages to reproduce the entire cockroach-like be-
havior using 100 association rules. In particular, the
method manages to reproduce the time-limited turn
in step 1 by including the pre-processed ambient-light
sensor in the rules controlling the rotation.

5 Summary

We have demonstrated how association rules can be
used by intelligent robot controllers for learning re-
active and semi reactive behaviors. Two techniques
to extend the reactive paradigm in this context have
been presented. One road-sign-following task uses
perceptual decay to achieve a memory of the type of
the latest road sign. Another pre-processing of sen-
sor data introduces habituation and makes it possible
to implement a sequenced light-avoiding cockroach
behavior.
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Table 1: Performance for road sign controller. Majority voting is used when more than one rule fires. The error
rate is much higher than for the simple wall following task. The difference between the training error e tr and test
error ete is an indication of overfitting.

Strength #rules etr% ete% 0rule% 1rule% 2rules% 3rules% >3rules%
1.00 31 1.0 5.0 9.6 66.5 18.9 3.2 1.8
0.98 33 0.9 4.9 6.5 66.8 20.7 4.0 1.9
0.95 43 0.5 2.4 0.0 26.8 46.9 10.2 16.1
0.90 56 3.1 4.7 0.0 7.7 44.4 21.1 26.8
0.85 66 4.7 6.0 0.0 7.1 26.8 31.1 35.0
0.80 76 4.2 6.2 0.0 6.2 23.2 2.8 67.8
0.75 87 7.1 9.9 0.0 5.9 0.6 9.1 84.4
0.70 97 6.0 9.1 0.0 5.9 0.3 6.4 87.4

Turn Left ! Turn Right !

Goal

Robot

Figure 1: The road sign problem, adapted from Linåker and Jacobsson (2001), in which the robot has to decide
on a left or right turn in each junction, depending on the past stimulus from the road signs. Our approach is to
add a perceptual decay to the road sign perception. The robot switches between a left- and right-wall following
behavior to perform the turnings in the crossings.
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Table 2: Part of generated rule base for road sign controller. The binary RS variable controls left- and right-wall
following.

Rule No. Coverage Support Strength
ir1 = 2 ∧ ir2 = 2 ⇒ y = −3 1 4 4 1.00
ir0 = 1 ∧ ir1 = 2 ⇒ y = −3 2 4 4 1.00
ir1 = 2 ∧ RS = 2 ⇒ y = −3 3 6 6 1.00
ir0 = 1 ∧ ir2 = 1 ∧ ir6 = 1 ⇒ y = −3 4 3 3 1.00
ir1 = 1 ∧ RS = 2 ⇒ y = −3 5 67 67 1.00
ir2 = 2 ∧ ir3 = 0 ⇒ y = −3 6 2 2 1.00
ir2 = 1 ∧ ir6 = 2 ∧ ir7 = 1 ⇒ y = 3 7 2 2 1.00
ir4 = 2 ∧ ir6 = 1 ⇒ y = 3 8 7 7 1.00
ir4 = 2 ∧ ir7 = 1 ⇒ y = 3 9 2 2 1.00
ir2 = 1 ∧ ir4 = 1 ⇒ y = 3 10 26 26 1.00
ir1 = 1 ∧ ir4 = 2 ⇒ y = 3 11 4 4 1.00
ir0 = 1 ∧ ir4 = 2 ⇒ y = 3 12 2 2 1.00
ir4 = 2 ∧ RS = 0 ⇒ y = 3 13 25 25 1.00
ir3 = 2 ∧ RS = 0 ⇒ y = 3 14 32 32 1.00
ir0 = 2 ∧ ir1 = 0 ∧ RS = 2 ⇒ y = 0 15 94 94 1.00
ir4 = 0 ∧ ir5 = 2 ∧ RS = 0 ⇒ y = 0 16 148 148 1.00
ir1 = 2 ∧ RS = 0 ⇒ y = −1 17 8 8 1.00
ir1 = 2 ∧ ir2 = 0 ⇒ y = −1 18 6 6 1.00
ir0 = 1 ∧ ir5 = 1 ∧ ir6 = 1 ⇒ y = −1 19 3 3 1.00
ir0 = 1 ∧ ir6 = 1 ∧ RS = 0 ⇒ y = −1 20 3 3 1.00
ir0 = 1 ∧ ir7 = 1 ∧ RS = 0 ⇒ y = −1 21 7 7 1.00
ir0 = 2 ∧ RS = 0 ⇒ y = −1 22 13 13 1.00
ir3 = 0 ∧ ir5 = 1 ∧ ir6 = 0 ∧ RS = 0 ⇒ y = −1 23 116 116 1.00
ir4 = 0 ∧ ir5 = 1 ∧ RS = 0 ⇒ y = −1 24 142 142 1.00
ir4 = 1 ∧ RS = 2 ⇒ y = 1 25 13 13 1.00
ir1 = 0 ∧ ir2 = 2 ∧ RS = 2 ⇒ y = 1 26 101 101 1.00
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Figure 2: Two ways of introducing non reactivity by pre-processing of sensor data. The perceptual decay enables
extended response to a stimulus. The habituation enables a sequence of two behaviors as a response to a stimulus.

2. Light ON 
here 3. Hiding

place

1.Starting
point

Figure 3: A robot emulating a cockroach’s light-avoiding behavior. Between 1. and 2. the light is off and the robot
moves around randomly, while avoiding obstacles. At 2 the light is switched on and the robot turrns 180 degrees,
moves until it hits a wall, which it follows until it reaches a hiding place, where it turns around and stops.

61



Goal level imitation with emergent repertoires.

Bart Jansen�

�Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

bartj@arti.vub.ac.be

Abstract

In this document we present computer simulation experiments on goal level imitation. We investigate
how the study of imitation at the population level can be extended from action level to goal level
imitation. We provide an imitation game in which agents learn to detect intentions in the actions of
other agents. Agents then imitate the goals of other agents behaviour rather than their exact actions.

1 Introduction

Imagine a mother painting a wall using a paint roller.
When her youngest daughter observes her mother
paint, the child wanders around and sees her doll on
the ground. She takes the doll and starts to rub the
doll on the wall. The other daughter enters the room
and sees mother and daughter ”painting” the wall.
She joins them, wanders around and finds a brush on
the ground. Using the brush, she starts painting as
well.

Both children imitate their mother’s painting. The
youngest child imitates the exact actions she sees her
mother perform, although she uses the wrong tools.
The other child does not imitate the exact actions,
which is not possible since she’s using a brush. How-
ever, her actions will have the same effect as her
mother’s actions.

This example1 clearly illustrates the difference be-
tween action level and goal level imitation (Byrne
and Russon, 1998). Goal level imitation is similar
to effect level imitation (Demiris and Hayes, 1997),
in which the effect on the play board rather than the
intention is imitated.

In the field of robotics, it was soon recognized that
imitation is a powerful mechanism to learn robots to
execute a wide range of tasks (Billard and Hayes,
1997; Dautenhahn and Nehaniv, 2002; Kuniyoshi
et al., 1994). An agent based perspective on imita-
tion was proposed in order to be able to answer 5 es-
sential questions on imitation (Dautenhahn and Ne-
haniv, 2002): Who, when, what and how to imitate
and what makes a successful imitation. Often, those
five issues were studied in interactions between a sin-
gle teacher and a single student, in which the teacher

1adapted from the well known example in (Nehaniv and Daut-
enhahn, 2000).

starts with a set of skills and transfers them to the
student. Later on, the importance of a population ap-
proach was stressed. It was shown how students can
act as teachers, once matured enough. Even cyclic in-
teraction patterns between a set of agents were stud-
ied (Alissandrakis et al., 2004).

We have argued in previous work (Jansen, 2003;
Jansen et al., 2003, 2004) that in a true population
approach, roles can not be fixed, nor can the interac-
tion pattern be fixed. In other words, at any time any
agent randomly selected from the population can imi-
tate any other agent randomly selected from the same
population.

In this document, we follow the same rationale
to investigate how agents can learn to imitate inten-
tional behavior. Little work has been done on goal
level imitation in robotics. We believe that ideas on
goal level imitation from developmental psychology
might enrich the learning by demonstration research
in robotics.

Detecting intentions in other agents’ actions is a
hard problem. Since there is a many-to-many rela-
tion between actions and intentions, the actions them-
selves do not provide enough information to extract
intentions from it. Therefore, other (external) infor-
mation must be taken into account by the agent in or-
der to detect the intention of the behaviour. External
information might include prior knowledge about the
agent performing the action and cues in the context
(Meltzoff, 1995; Searle, 1984). These bits of extra in-
formation constrain the huge search space of possible
intentions of the agents actions. Supporting evidence
was found in experiments with 9 months old infants.
Even at this very young age they seem to use infor-
mation external to the observed behaviour to interpret
the intentionality of the behaviour (Woodward et al.,
2001).
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In this document a computer simulation experi-
ment is proposed in which agents learn to imitate
the intentions of the behaviour of other agents. The
computer simulations serve as a proof of concept be-
fore transferring the goal level imitation to physical
robots. We have successfully deployed this approach
before in our research on action level imitation. Now
the intentions, rather than the precise actions are imi-
tated.

2 Imitating goals

Instead of considering a single teacher and a single
student and the imitative process by which the student
learns from the teacher, we consider a population of
agents in which agents do not have fixed roles. The
smallest population consists of only two agents. In
previous work, we have reported successful imitation
in populations containing up to 50 agents. The ex-
perimental setup for this work differs from previous
experiments on action level imitation in that agents
now can manipulate objects. In order to allow them
to do so, every agent has its own play board it can ob-
serve and manipulate. Agents can also observe other
agents perform actions on their boards.

Obj-1

Obj-3

Obj-2

Figure 1: An example of the play board the agents
can interact with.

An agent’s play board is a simple two dimensional
blocks world. Manipulation is done by a limited set
of action primitives. These primitives include for in-
stance moving a block one cell to the left, one to the
right, ... Every agent has its own set of primitives,
thus allowing for heterogeneous populations. In the
work presented here, we assume homogeneous pop-
ulations. We do not study the emergence of (possi-
ble shared) action primitives, so action primitives are
built in or acquired earlier in this work.

Agents can observe the manipulations on each
other’s play board. They can recognize simple rela-
tions between objects like left-of? and above?. We
assume that all agents have the same built in set of

relations they can detect. Agents can categorize their
play board by concatenating such relations.

As the goals the agents have in this experiment are
expressed as properties of the play board, goals can
be represented by a concatenation of these relations
as well. For an agent, a goal represents the desire to
obtain a play board satisfying certain conditions. For
instance, suppose that the goal of the agent is

(AND
(above? obj-1 obj-2)
(left-of? obj-3 obj-2)
(left-of? obj-1 obj-3))

and that the play board is the one depicted in fig-
ure 1, then the agent could for instance execute the
following sequence of actions

(AND (up obj-1)(down obj-2))

in order to obtain a play board in which the speci-
fied goal holds.

It is important to notice that every agent acts upon
its individual play board. The experimental setup was
designed deliberately in that manner to illustrate that
the mere copying of actions would not result in suc-
cessful imitation. Thus, if agents simply copy the ac-
tions the other agents perform, the imitative success
is always very low as it is very unlikely to obtain the
same goal with the same set of actions, simply be-
cause the initial configurations of the blocks are dif-
ferent. Having separate play boards for all agents is
not crucial and does not hinder social learning: goals
are learnt by observing the other agents’ actions in
their own play board.

2.1 Interactions

The interactions between agents are defined by imi-
tation games. An imitation game is played with only
two players. These are selected randomly from the
population. Many games are played in the popula-
tion, such that every agent interacts with many others.

The imitation game starts by randomly selecting
two agents from the population. One agent will take
the role of initiator, while the other agent takes the
role of imitator. The initiator randomly selects a
goal from its repertoire and builds a plan for reach-
ing this goal. Actions are performed according to
this plan. The imitator observes this sequence of
actions and selects from its own repertoire the goal
that best matches the perceived actions. The imitator
now builds a plan for this goal and acts accordingly.
The initiator observes this action sequence and veri-
fies whether its initial goal holds in the resulting play
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Figure 2: A cycle in the imitation game: the initia-
tor selects a goal, builds a plan for it and executes
appropriate actions. The imitator observes the action
sequence and categorizes it in terms of its own goals.
The imitator builds a plan for the categorized goal and
acts accordingly.

board of the imitator. If that is the case, the game suc-
ceeds, otherwise it fails. If any of the previous steps
of the game failed, the game fails as well. At the end
of the game the initiator sends a single bit of feed-
back to the imitator, such that both agents know the
outcome of the game. Both agents update their reper-
toires, depending on the outcome of the game. The
overview of the game is shown in figure 2. Pseudo
code for this interaction pattern is given in table 1.
In the pseudo code E stands for the current config-
uration of the play board, C is the set of competing
goals, while G is the repertoire of learnt goals.

2.2 Components

The imitation game requires the agents to have mul-
tiple capabilities. Agents need to have a repertoire to
store goals, they need a planner, the ability to recog-
nize the goal of the other agent’s actions, a learning
mechanism and the ability to observe and perform ac-
tions. For each of these skills, we have implemented
a very simple approach allowing us to investigate a
minimalistic set up in which a simple kind of goal
level imitation can be demonstrated.

2.2.1 Repertoires of goals

The agent maintains a repertoire of goals. Initially,
this repertoire is empty. During the imitation game,
the agent can add new goals to this repertoire and
delete unsuccessful goals. Therefore, success and us-
age counters are associated with every goal.

0.1 0.5 0.9 0.3 0.4 0.5 0.2 Goals

Goals that hold in

the current state

Goals that do not hold in

the previous state but do

in this state

0.9 0.10.5

detected goal competing goals

0.1 0.50.9

0.1 0.30.9 0.5

Figure 3: Interpretation of the observed actions as in-
tentional behaviour. Every box represents a goal from
the repertoire, together with its score.

2.2.2 Planner

This component constructs a plan for achieving a
given goal, starting from a given play board. In
our implementation, we use A∗ search with a sim-
ple heuristic function, including checks for repeated
states. If the search takes too long, it is aborted and
the planning process fails. Even in this simple blocks
world, the search space is huge. Suppose an m-by-n
blocks world, containing k blocks. If an agent has
a repertoire of l action primitives, every block can
be moved by l actions, if they don’t move the block
outside the play board. The bigger the play board,
the less likely this is. With k blocks, this results in
a branching factor of at most kl. If the agents for
instance can move a block in any of the four direc-
tions, the branching factor is kl − 1 (since one ac-
tion always restores the previous configuration) with
l = 4 − 2

m − 2

n .

2.2.3 Goal recognition

It is obvious that recognizing goals in behaviour re-
quires the agents to be able to interpret the actions
of the others as intentional behavior. Just as hu-
mans seem to use external information in this pro-
cess, the agents do so as well. They assume that
the other agents’ cognitive capabilities are the same
as their own. For instance, agents perform only rel-
evant actions and do not deliberately confuse other
agents with their behaviour. They explicitly assume
that other agents do that as well. If an agent for in-
stance wants to put a block A on top of a block B, no
other blocks than A and B are manipulated unless this
is required in order to be able to put A on top of B.

Moreover, agents maintain a repertoire of known
goals. Any observed behavior is categorized as one
of the stored goals. As the repertoire of known goals
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is only a very limited subset of all possible goals in
the agents’ play board, this severely constrains the in-
terpretation process. Learning is done by extending
and restricting the repertoire of known goals, or by
modifying goals in the repertoire.

The agent observes the actions performed by the
other agent as a sequence of play boards. In order
to recognize the goal of these actions, the agent se-
lects the best matching goal from its own repertoire
of goals. For every goal in its repertoire the agent
verifies whether the goal holds in the last play board
of the action sequence and does not hold in the first
play board of the action sequence. If such goals exist,
the most successful goal is selected from this subset.
All other goals in this subset are called ”competing
goals”. This process is illustrated in figure 3.

2.2.4 Learning mechanism

Learning consists of several components: addition of
new goals, deletion of unsuccessful goals and updat-
ing of the scores of goals. At the beginning of every
game agents add new random goals to their reper-
toires with a small probability. When the imitator
fails to detect the goal of the initiator’s action, the
game fails. In such case, the imitator constructs a ran-
dom goal that is fulfilled in the observed play board
and adds it to its repertoire. Goals that were not suc-
cessful in the past are removed from the repertoire.

A usage counter and a score are associated with
every goal. The usage counter of a goal is increased
whenever an agent tries to fulfil this goal during the
imitation game. Maintaining scores for every goal
serves two purposes. It allows us to discriminate suc-
cessful from unsuccessful goals, such that unsuccess-
ful goals can be removed from the repertoire. Sec-
ondly, the score is used in the categorization of ob-
served actions into goals. From all goals that hold for
a particular sequence of play boards, the most suc-
cessful is selected as the category of the observed ac-
tion. Thus, by influencing the scores of the goals,
categorization is influenced directly. If imitation was
successful, we want to reinforce the goals that were
used, thus we increase their success scores. This will
increase the probability that those goals that were
successful in previous games are used in later cat-
egorization. By decreasing the scores of all com-
peting goals, this effect is further enhanced. When
the game fails, the opposite reasoning is followed.
Since the goal that was used does not lead to suc-
cessful imitation, the probability of using it in sim-
ilar cases should decrease; therefore its score is de-
creased, while the scores of the competing goals are
increased. A threshold function is used to ensure

that the scores of all goals remain between 0 and 1.
Pseudo-code of these processes is listed in table 2.

Initiator Imitator

E1 ← random play board E2 ← random play board

C1 ← ∅ C2 ← ∅
if G1 = ∅ new-goal(G1) if G2 = ∅ new-goal(G2)

g ← random from G1

p1 ← build plan for g

E1 ← execute p1 on E1

observe action sequence A2

grec ← goal from G2 that

best matches A2 for E1

C2 ← all other matching
goals

p2 ← build plan for grec

E2 ← execute p2 on E2

observe play board E2

if g holds in E2

send feedb. “success”

else

send feedb. “failure”

update(g, feedb., G1, C1) update(grec, feedb., G2, C2)

do-other-updates() do-other-updates()

Table 1: Pseudo code of the imitation game for goal
level imitation. The pseudo code for the update func-
tions and some auxilaries is given in table 2.

3 Experimental setup and results

The experiments reported in this paper were per-
formed in simulation. The block worlds of the agents
consisted of a grid of 5 by 5 cells. Three objects
were present in the world, placed initially at random
positions. Agents can categorize the world they ob-
serve by using the predicates left-of?(obj-1,obj-2) and
above?(obj1,obj2). All agents in this first experiment
have the same four action primitives: move-up(obj),
move-down(obj), move-left(obj) and move-right(obj).
An experiment with only two relations in a 5-by-5
grid world with only three objects and with only four
actions might seem too much a toy problem. Al-
though the total number of representable goals with
length less than L is finite in this set up, it is huge.
The number of goals that are actually learnt by the
agents is only a fraction of this search space. In ev-
ery game the probability of adding a random new
goal (*addprobability*) is 0.05. Goals that were used
more than 7 times with a score of less than 0.3 were
removed from the repertoires. ∆ was set to 0.05.

The experiments were repeated ten times. There-
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update(g, signal, G, Competing)

g.usage← g.usage + 1

if signal = “success”

g.score← σ(g.score + ∆)

∀g′ ∈ Competing do g′.score = σ(g′.score−∆)

else

g.score← σ(g.score−∆)

∀g′ ∈ Competing do g′.score = σ(g′.score + ∆)

new-goal(G)

g ← random goal

G← G ∪ g

σ(x) =

{

0 if x < 0
1 if x > 1
x if 0 ≤ x ≤ 1

do-other-updates(G)

∀g ∈ G do

if g.score < *throwawaythreshold* and

g.usage > *minimumuses*

G← G \ g

with probability *addprobability* do new-goal(G)

Table 2: Update procedures in the intentional imita-
tion game.

fore results show average values and 95% CI. The
graphs in figure 4 shows the imitative success and
the number of goals that a population of only two
agents developed during 10000 imitation games. In
figure 5, the same results are shown for a population
consisting of ten agents. The imitative success is cal-
culated as the fraction of successful imitation games
over the last 100 games. Results show how the reper-
toires of goals steadily increase, while the imitative
success slowly increases up to 70%.

Whether the population contains two or ten agents,
imitative success remains about 70%, suggesting that
this type of imitation game scales well with larger
population sizes. The number of learnt goals however
in populations with ten agents is only one-fifth of the
number of goals in populations with two agents, sim-
ply because in the larger population on every agent
only participates in one-fifth of the games on average.

Results should be compared to a baseline exper-
iment in which every agent in the population starts
with a pre-programmed and fixed repertoire of ran-
dom goals. In that case, the imitative success is 50%
(verified experimentally). The clearly above random
success ratio combined with the fact that a repertoire
of goals steadily emerges, proves that the agents are
developing a repertoire of goals that enables them to
successfully imitate intentional behaviour.

However, there are two important issues that can
not be neglected. The success ratio of 70% is much
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Figure 4: Imitative success and number of goals de-
veloped in an imitation game between two agents
over 10000 games.
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Figure 5: Imitative success and number of goals de-
veloped in an imitation game between ten agents over
10000 games.

below the success ratio of 95% observed in imitation
of actions, as shown in previous work. The lower
success ratio is not a surprise, since the problem is
much harder than learning to imitate simple actions.
Moreover, the learning mechanism that is used is very
simple. Learning consists of three components in
this case: adding random goals, deleting unsuccessful
scores and keeping a scoring mechanism. However,
once created, a goal is never modified.

Secondly, the number of learnt goals seems to in-
crease without bond. Relating the results back to
previous work on emergent repertoires of actions,
this can easily be explained. In learning actions, the
agents learn to discretise the continuous action space
by inventing a repertoire of categories for the actions.
In that case, the number of learnt actions tends to in-
crease without bound as well. However, by introduc-
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ing the concept of a merging operator, which merges
actions that resemble each other too much, the num-
ber of actions stabilizes after a while. A good merg-
ing operator was however not yet established for the
current work since there is no continuous space any-
more with an associated distance function. Moreover,
noise on the perception and execution of actions re-
sulted in actions that could not be distinguished from
each other, even though they are different. In the sim-
ulation experiments presented here, no noise is intro-
duced in the simulation.

4 Discussion

The imitation game as described in this document
provides a computational simulation of goal level im-
itation, i.e. not the actions but the goals of the actions
of the agents are imitated. One could however argue
that effects instead of goals are imitated in this work.
It is true that goals are represented as relations among
objects; however they are not purely effects. Agents
categorize the play boards they observe in terms of
known goals. This entails that the agents will not per-
form the same actions, neither will they imitate by ob-
taining the same blocks configuration, i.e. the same
effect. Any configuration of blocks for which the goal
holds, will result in success.

As this is work in progress, results are preliminary
and both the precise dynamics of the game and the
learning mechanism are subject to change. However,
this document shows how a population of agents—
starting with empty repertoires—succeeds in con-
structing a repertoire of shared goals. The repertoires
are constructed by local interactions only; agents are
not endowed with telepathic capabilities. Sharedness
of the repertoires of goals, which is thus an emer-
gent property, means that the repertoires of the differ-
ent agents are sufficiently similar to enable successful
imitation. By constructing these shared repertoires of
goals, the agents gradually learn to successfully rec-
ognize goals in the other agent’s behavior. Since we
provide the agents with a built-in planning module,
agents can successfully imitate goals as soon as they
can recognize them.

5 Conclusion

In this document we have presented preliminary re-
sults on simulation experiments of imitation of inten-
tional behaviour. Through imitation, a population of
agents learns to recognize the intentions in the actions
of the others. Gradually, they develop a repertoire

of goals they can detect and pursue. The repertoire
grows by creating random goals and by creating goals
when imitative attempts fail. By maintaining a scor-
ing mechanism and by removing unsuccessful goals,
only those goals that can be observed, pursued and
discriminated remain. Every agent has its own differ-
ent play board it acts on, such that simple action level
imitation is guaranteed to fail.
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Abstract

Coupling internal inverse and forward models gives rise to on-line simulation processes that may be
used as a common computational substrate for action execution, planning, recognition, imitation and
learning. In this paper, multiple coupled internal inverse and forward models are arranged in a hier-
archical fashion, with each level of the hierarchy interacting with other levels through top-down and
bottom-up processes. Through experiments involving imitation of a human demonstrator performing
object manipulation tasks, this architecture is shown to equip a robot with a multi-level motor ab-
straction capability. This is then used to solve the correspondence problem in action recognition. The
architecture is inspired by biological evidence.

1 Introduction

Research has shown the direct involvement of the hu-
man motor system when observing, as well as imitat-
ing, actions performed by others (Meltzoff and De-
cety, 2003). This, along with the neuroscientific dis-
covery of mirror neurons in area F5 of the macaque
monkey premotor cortex, which respond when both
performing and observing the same action (Rizzo-
latti et al., 2002), has led to the proposition of a
mirror system underlying the recognition and under-
standing of behaviour (Fadiga and Craighero, 2003).
This system is compatible with the simulation the-
ory of mind-reading (Gordon, 1999), and connections
have been made between the two (Gallese and Gold-
man, 1998). Much progress has been made in build-
ing artifical models of the mirror system, particularly
using internal models (Demiris, 1999). Such mod-
els have been deployed onto robots, so as to investi-
gate the practical aspects of using the simulation the-
ory to understand and imitate the behaviour of other
robots and of humans (Demiris and Johnson, 2003,
2004). Experiments with this approach have demon-
strated that recognising the actions of a human re-
quires a robot to apply a motor abstraction capabil-
ity to observed actions, otherwise the recognition is
impossible due to differences in human–robot mor-
phology, and the much greater size of the human ac-
tion space compared to that of the robot (Johnson
and Demiris, 2004). In this paper that abstraction is

achieved through modeling the motor system as a hi-
erarchy of multiple coupled internal inverse and for-
ward models.

2 Background

2.1 Inverse Models
Inverse models represent functionally specialised
units for generating actions to achieve certain goals.
The generic inverse model takes as input the current
state of a system, a goal state that is the system’s de-
sired state, and produces as output the action required
to move the system from its current state to the goal
state (Narendra and Balakrishnan, 1997; Wada and
Kawato, 1993). In the control literature, the inverse
model is known as a controller and its outputs are
control signals; when applied to robotics, the current
state is the state of the robot and its environment, and
the outputs are motor commands.

In the architecture described in this paper there are
multiple inverse models, used at different levels of
a hierarchical action execution and recognition sys-
tem. When using multiple inverse models, each in-
verse model is considered valid for a specific goal or
set of goals; that is, it can be used to achieve those
goals. Thus, the purpose of an inverse model can
be defined in general terms by the region of the goal
space for which it is valid, and in specific terms at a
single point in time by a particular goal taken from
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within that region. For example there may be an in-
verse model “grasp object”, whose purpose is to be
able to grasp a variety of possible objects. The further
specification of the goal, such as specifying which ob-
ject is to be grasped, may be supplied to the inverse
model as a goal parameter.

There are situations in which an inverse model may
or may not generate output. These situations are rep-
resented in the inverse model by the following states:

• If an inverse model is producing output from a
current state and set of goal parameters, then it
is in the state of executing.

• If, through comparison, the inverse model cal-
culates that the current state is sufficiently close
to the specified goal state, then no action is re-
quired. In this situation, the inverse model is
complete.

• The inverse model may be presented with a cur-
rent state that renders it unusable, as regards its
purpose. The inverse model is then ineligible.
An example would be a “Place object on table”
inverse model, when there is no object.

• Although the current state may make the inverse
model eligible for use, there may be a specified
goal parameter for which the inverse model can-
not produce any action that will result in it be-
coming complete. In this case, the inverse model
is not applicable. An example would be the
“Place object on table” inverse model when the
object placement location has been obstructed.

The inverse model states defined above are consid-
ered binary states.

The inverse models described in this paper are not
equipped with explicit initial knowledge as to the re-
gion of the goal space for which they are applicable.
Instead, the inverse models determine whether or not
they are capable of achieving a specific goal through
an ongoing, active, simulation process, which per-
forms action planning and results in action genera-
tion. This simulation planning requires the use of a
forward model.

2.2 Forward Models
The generic forward model takes as input the current
state of the system and the control signals acting on
the system, and offers as output a prediction as to
the next state of the system (Jordan and Rumelhart,
1992). In this architecture, multiple forward models
are coupled to inverse models to create a simulation

process. This approach is similar to that used in other
internal model-based systems (Wolpert and Kawato,
1998; Wolpert et al., 2003). When coupled to an in-
verse model, a forward model receives the action out-
put from the inverse model through an efference copy.
The forward model then generates a prediction of the
state that would result, if the action was to be per-
formed. This prediction can then be used for action
planning and action recognition, as described in sec-
tion 3 below.

2.3 Abstraction in Recognition
The architecture described here achieves action
recognition by matching internally generated actions
to observed external actions. In doing so, it is solv-
ing the correspondence problem (Nehaniv and Daut-
enhahn, 2002; Alissandrakis et al., 2002). When us-
ing robots to recognise and imitate actions performed
by a human, solving the correspondence problem is
made more complicated by the difference in morphol-
ogy. This difference can lead to considerable dispar-
ities between the actions the robot would use to ac-
complish a task, and the actions the human uses to
accomplish the same task in a demonstration. If the
difference in morphology is small, i.e. if the robot is
humanoid but with fewer degrees of freedom, then the
robot can be equipped with a human motion model
for action generation, which will bring the robot’s ac-
tions closer in nature to that of the human demonstra-
tor (Simmons and Demiris, 2004).

However, if the robot’s morphology is so dissimi-
lar to that of a human that it cannot produce human-
like actions, then this is a direct problem for using
simulation theory for action recognition in robots. To
address this issue, the motor system is developed as
a hierarchical architecture, in which actions are pre-
pared before execution using inherently more abstract
simulation processes at higher levels of the hierarchy,
a strategy similar to that used in (Haruno et al., 2003).
Motor abstraction for successful recognition of ob-
served human actions is then accomplished by using
the higher levels of the hierarchy in a simulation the-
ory approach.

3 The Hierarchical Architecture

3.1 Overview
The hierarchy is constructed using multiple coupled
inverse and forward models. Figure 1 gives an
overview of a hierarchy of K levels. The lowest level
of the hierarchy contains a set of primitive inverse
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models Ip, which generate motor commands Mt at
each timestep to directly activate motor units (Ben-
tivegna and Atkeson, 2002). The forward model in
this level is a forward kinematics model of the robot,
and thus offers predictions as to the trajectory that
results from executing a motor command.

Higher-level inverse models generate actions that
are sent down to the lower levels of the hierarchy
for further interpretation and elaboration. Actions at
higher levels are thus a more abstract representation
of the eventual motor behaviour of the robot. The
higher-level forward models offer predictions as to
the outcomes and internal states of the inverse models
in the lower levels that would result from the action,
when it is interpreted in the level below. For exam-
ple, an inverse model “grasp object” will have an out-
come state “holding object = true”, and the “gripper
close” inverse model will then become ineligible for
use. Thus the coupling of the high level forward and
inverse models provides a simulation capability that
is abstract over spatial and temporal trajectory, and
which can be used for abstraction in action planning
and recognition.

3.2 Action Representation

At the lowest level of the hierarchy, the primitive in-
verse models generate actions that are motor com-
mands, meaning that they directly stimulate their in-
tended motor units in order to realise the given action.
At higher levels, inverse models generate actions that
are represented by action graphs and goal parameter
vectors. These actions require further elaboration at
lower levels to enable final execution.

Action graphs are constructed as directed acyclic
graphs, in which the nodes are inverse models and
the edges specify the sequence of inverse model ex-
ecution. These inverse models may produce actions
that are themselves constructed as action graphs and
goal parameter vectors, which are then passed on to
the lower level of the hierarchy.

The recursive formulation of the action graph for
action representation allows for a multi-level hierar-
chy of inverse models in action generation. An action
is performed by traversing the action graph. The in-
verse models encountered are executed in the lower
levels with the goal parameters supplied by the goal
parameter vector until they are complete, and then the
traversal continues.

An action graph is represented throughout the ar-
chitecture by its adjacency matrix, denoted ψ (Jain
and Krishna, 2003). To construct ψ, the N inverse
models in the lower level of the hierarchy are enumer-

ated 1, . . . , n, so as to index the rows and columns of
ψ during its construction. To demark the beginning
and end of an action, and to facilitate computation
and processing, the marker nodes start and end are
introduced. ψ then becomes an (N+2)×(N+2) ma-
trix. The adjacency matrix is constructed such that if
there is a directed edge from node i to node j (i→ j)
then the matrix element in the ith column and jth row
of ψ (ψij) equals one (ψij = 1), otherwise it is set
to zero (ψij = 0). Thus, when parsing the matrix,
an entry of “1” indicates that there is an edge from
the node specifying the column to the node specify-
ing the row, and an entry of “0” indicates no connec-
tion. When executing an action using ψ, the matrix
is interpreted in a breadth-first manner, so that all the
inverse model nodes leading to a single node must be
completed before moving on to executing that subse-
quent node. This allows an action to be comprised of
many parallel-executing components. An example of
an action graph is given in Figure 2(A), and an exam-
ple of ψ is given in Figure 2(C).

The goal parameter vector, denoted λ, has an en-
try for each of the N inverse models enumerated as
for the action graph. If a particular inverse model re-
quires no goal parameters, then its respective entry in
λ remains zero.

3.3 Efferent Signals
When a higher-level inverse model generates an ac-
tion, that action is sent in the form of an adjacency
matrix and goal parameter vector as an efferent signal,
to the level beneath in the hierarchy. The subsequent
evaluation of the ensemble {ψ, λ, I} of the adjacency
matrix ψ, the goal parameter vector λ, and the set I of
inverse models, results in the generation of more spe-
cific actions, and those actions are propagated all the
way down the hierarchy, until the action becomes a
motor command Mt and is eventually realised in the
motor units.

3.4 Afferent Signals
Proprioceptive information for joint configurations,
and exteroceptive information regarding objects in
the environment, are continually provided by sensor
units. This information is arranged into the current
state vector St and is sent up through the hierarchy
as an afferent signal. Every level of the hierarchy re-
ceives this signal. For higher levels, the state infor-
mation is supplemented by the status of the inverse
models in the previous level, i.e. whether those in-
verse models are complete, eligible, applicable, or
executing. Along with the efferent signals from the
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Figure 1: A K-level hierarchy of coupled inverse and forward models. The same architecture is used for both
performing an action and recognising actions. The lowest level contains a set of primitive inverse models denoted
Ip. Fp is the forward model for these primitives. St,r is the state of the robot at time t, and Ŝt is the predicted
state at time t. The D in each level indicates a time delay, which is used to bring the prediction temporally in-line
with the current state for meaningful comparison.

level above, this afferent flow of status information
provides for reciprocal connections between the lev-
els of the motor system.

3.5 Simulation Processes

The dashed lines in Figure 1 mark the feedback
generated from the closing of two simulation loops.
These simulation loops may be used for action exe-
cution, planning, recognition, and learning, depend-
ing on the requirements of the robot.

3.5.1 Inner Loop

The inner simulation loop is used for planning and
modulating an on-going action during action genera-
tion. The inverse model generates multiple action hy-
potheses that it postulates will achieve the specified
goal parameters. The action hypotheses are tested on
the forward model, resulting in predicted states that
are sent back to the inverse model. The inverse model
can then use these predicted states in substitution for
the current state, creating a simulation process that
allows it to plan actions into the future, by searching
the possible action space. Through comparison with

the goal parameters, the inverse model converges to
an action solution. There may be many potential
action solutions that accomplish a given goal. The
most appropriate solution at any given time is se-
lected by a winner-takes-all mechanism, on the ba-
sis of the smallest action-graph depth, and sent to the
level below. All the levels perform the same simula-
tion process continually, and in parallel. The result
is a distributed on-line hierachical control model that
directly and indirectly modulates an action as it un-
folds.

If, through the inner-loop simulation process de-
scribed above, an inverse model determines that it is
unable to achieve its goal, then this “not applicable”
state is signalled as part of the overall state of the in-
verse models in that level (other states are complete,
eligible, and executing). The afferented robot state in-
formation is supplemented by this inverse model state
information as it reaches each higher level. The com-
bined state information is then used in the outer sim-
ulation loop.
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Figure 2: An example of an (A) action graph. ’S’ and ’E’ are start and end nodes, respectively. (B) enumerated
inverse model set I and (C) adjacency matrix ψ, for an action “Grasp Object” generated by a high-level inverse
model. In this example, nodes 1, 2, and 3 execute in parallel, and each must become complete before 4 can be
executed.

3.5.2 Outer Loop

The outer loop is a prediction-comparison process.
The forward model produces a prediction Ŝt as to
the result of the supplied action solution, and this is
buffered by the delay component D, before compar-
ison with the actual resulting state, St. The result-
ing prediction error Pe may be used both for action
generation and learning of forward and inverse mod-
els when the supplied current state is the agent’s own
(Haruno et al., 2003), or action recognition and im-
itation learning, when the current state is that of an
observed actor (Demiris and Hayes, 2002; Demiris
and Johnson, 2003). In this architecture, the predic-
tion error is calculated as being the sum over the n
state elements, of the absolute difference between the
predicted state and the actual state:

Pe =

n
∑

i=1

∣

∣

∣
St,i − Ŝt,i

∣

∣

∣
(1)

3.6 Recognition and Imitation

The same arrangement of structures, as shown in Fig-
ure 1, is used for action recognition as well as execu-
tion. In recognition, the state input to the architecture
is not taken from the robot, but is derived from visual
observation of the demonstrator. All the inverse mod-
els in every level of the hierarchy that are “eligible”
for execution, and not “complete”, are then executed
in parallel. The inverse models in a particular level
compete with the other inverse models in that level
for confidence, which is awarded at each time step
to inverse models that match well with the perceived
action. A winner-takes-all selects the inverse model
with the highest confidence at any point in time as
being the recognised action. The robot’s motor hard-
ware is taken off-line to prevent physical “mirroring”
of the perceived action, by inhibiting the motor com-
mands generated by the primitive inverse models in

the lowest level of the hierarchy. When recognition
is complete, imitation may proceed by executing the
observed action.

3.7 Confidence Calculation
3.7.1 Lowest Level

The inverse models compete for confidence. At each
timestep, the inverse model with the lowest prediction
error Pe is rewarded, and the rest of the inverse mod-
els are punished. The inverse model with the lowest
prediction error has its confidenceCt rewarded as fol-
lows:

Ct =



















Ct−1 +
1

ε
if Pe < ε

Ct−1 +
1

Pe

otherwise

(2)

The other inverse models have their confidences
punished, according to:

Ct =
Ct−1

2
(3)

Initial confidences are zero for all inverse models.
In the following experiments, εwas chosen to be 0.04.

3.7.2 Higher Levels

The forward models predict the outcomes and inter-
nal states of the lower-level inverse models that are
the components of the action input. Thus, the higher-
level inverse models are rewarded when the predic-
tion error Pe is less than ε, and their confidences are
reset when they become complete:

Ct =







Ct−1 + α if Pe < ε

0 if inverse model is complete
(4)
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Figure 3: Confidence levels of primitive inverse models in the lowest level of the hierarchy during a demonstration
of picking up an object and placing it back on the table. The sequence of movements is: move to object → move
object away from table → move object to table → move away from object. The confidence values have been
normalised at each time step.

As the prediction error is less than ε only at spe-
cific times, the confidence is never punished and the
inverse models do not compete for confidence. Ini-
tial confidences are zero for all inverse models. In the
experiments that follow, α was chosen to be 10.

4 Implementation
To demonstrate the architecture, it was implemented
in a two-level hierarchy on a robot in an experimen-
tal scenario involving the recognition and imitation
of object manipulation actions performed by a human
demonstrator.

The lower level of the hierarchy was populated
with six primitive inverse models, “gripper open”,
“gripper close”, “move to object”, “move away from
object”, “move object to table”, and “move object
away from table”. The higher level was equipped
with the inverse models “grasp object” and “place ob-
ject”, both of which accomplished their goals by com-
bining the low-level primitives into action graphs. To
simplify the implementation, only one object and one
table were used, restricting the goal parameter space.

4.1 Robot Platform
The Peoplebot is equipped with a Canon VCC4 pan-
tilt-zoom (PTZ) camera, two degrees of freedom
gripper, and sonar and infra-red sensors. In these ex-
periments, the camera was used as the main tracking
and range-finding sensor. The sonar and the infra-red
sensors were not used. All processing was done in
real-time, with one full iteration of the architecture’s
mainloop executing in 0.5 seconds. The software was
written in C++ for an AMD Athlon 64, which con-

trolled the robot remotely over a wireless ethernet
link.

4.2 Visual Systems
The visual tracking of the object and the hand was
accomplished using the CAMShift algorithm (Brad-
ski, 1998), working on a hue and saturation histogram
back-projection of camera images taken at a pixel
resolution of 640 × 480 and at 2 frames per sec-
ond. The low frame rate was deliberately chosen
to reduce noise in the visual signal. The ARToolkit
(Billinghurst et al., 2001) was used to determine the
robot’s position relative to the table, as stereo vision
was not available on the robot. Depth information
was thus obtained by affixing an 8 cm × 8 cm marker
to the table’s midpoint.

5 Experiments
The object manipulation actions chosen for the exper-
iments were the common tasks of picking an object
up from a table, and placing an object onto a table.
These behaviours are well suited to the robot used, an
ActivMedia Peoplebot, with its mobile platform and
gripper assembly.

The robot was positioned facing a table, upon
which was placed an object that was readily manipu-
lable by both the robot and the human demonstrator.
In these experiments, the object used was a tub. The
initial robot-table distance was 1 m, sufficient for the
robot’s camera to view the entire scene, including the
table, object, and the hand of the demonstrator as she
moved to place or pick up the object. The demon-
strator was unfamiliar with the operational details of
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Figure 4: Confidence levels of inverse models in the higher level of the hierarchy during a demonstrations of
grasping an object and placing an object.

the architecture, and was instructed when to start the
demonstration. If the robot recognised the demon-
strated action then it performed the action for itself,
completing the cycle of imitation.

6 Results

Figures 3 and 4 show typical results from the exper-
imental trials. Figure 3 shows the confidence levels
of four primitive inverse models in the lowest level
of the hierarchy during a demonstration of picking
up and placing the object (the primitive inverse mod-
els shown in this graph are “Move to object”, “Move
object away from table”, “Move object to table”, and
“Move away from object”). The architecture achieves
successful recognition, ascribing high confidence lev-
els to the primitive inverse models that generate tra-
jectories that match with the observed actions. The
progression of the confidence values shows the com-
petition between inverse models during transitional
stages of the action, where one inverse model builds
up confidence at the expense of the others (iterations
12-14, 24-26, and 30-31). The duration of a recog-
nised action can be seen as the length of time that the
confidence level for a particular primitive remains at
1.

Figure 4 shows the confidence levels of the two in-
verse models in the higher level of the hierarchy. The
peaks in the confidence clearly demark the “grasp ob-
ject” action and the subsequent “place object” action.
The higher-level inverse models do not match on ac-
tion trajectory, but on subgoals during an action, re-
sulting in a more abstract recognition that clearly dis-
tinguishes different observed behaviours.

7 Discussion

For large numbers of inverse models in any given
level of the hierarchy, an adjacency matrix becomes
a memory-inefficient means of action representation.
The computational cost of adding inverse and for-
ward models is therefore less than the overall mem-
ory cost. However, due to the directed nature of the
action graphs, the matrix ψ is sparse, and can be ef-
ficiently managed through the use of look-up tables.
It is expected that on modern computers the system
could handle up to and beyond a hundred inverse and
forward models.

Although the abstraction architecture is capable of
recognising actions performed in different ways, the
visual system is sensitive to the speed at which the ac-
tions are performed. This results in situations where
recognition may not be successful. If the demonstra-
tor moves too slowly, then noise in the visual sys-
tem overcomes the movement signal and lower-level
recognition fails, although higher-level recognition
may succeed. Recognition at all levels fail if the hu-
man performs the movement too fast for the architec-
ture to extract a reasonable signal.
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Abstract

We present a strategy whereby a robot follows a developmental pathway to (i) explore its own visuo-
motor capabilities, (ii) understand its surrounding environment, (iii) become aware of people acting in
the environment and finally imitate observed actions. We describe some results of the different devel-
opmental stages, involving perceptual and motor skills, implemented in our humanoid robot, Baltazar.
In addition to the overall system, another important contribution is the use of a two-phase, uncalibrated
algorithm for object grasping. The last phase is driven under closed-loop vision based control, where
the Jacobian is learned online.

1 Introduction

“Friendly” and social interaction between robots and
humans is a grand challenge for robotics. Due to
the diversity of actions/tasks to be performed and the
range of possible interactions with objects and hu-
mans, it would be impractical (if not impossible) to
explicitly pre-program a robot with such capabilities.
Instead, such systems must be able to learn by them-
selves what tasks to execute and how they should be
performed, which requires sophisticated motor, per-
ceptual and cognitive skills.

To address these challenges, we (as well as other
researchers) adopt two fundamental metaphors: (i)
learning by imitation as a powerful means to teach
a complex humanoid-like (social) robot and (ii) a de-
velopmental approach that can balance the complex-
ity of the system at the various levels of functional
performance.

Learning by imitation is likely to become the pri-
mary form of teaching such social, cognitive robots.
Let us consider a system able to learn how to solve
some tasks by imitation, e.g. by observing a human
manipulating a set of objects. This problem of skill
transfer has three major difficulties: (i) how to gather
task-relevant information? (ii) how to convert the
data that are valid for a human for a robot? and (iii)
how to infer the important parts of the demonstration
(e.g. “understand” the task).

Several approaches have been adopted to gather the

Figure 1: Baltazar. A 14 degrees of freedom hu-
manoid torso.

information for imitation. Schaal et al. (2003) use an
exoskeleton to capture kinematic data. Oztop and Ar-
bib (2002) rely on some marks to get visual features
for hand detection and grasping, in the context of im-
itation and modeling of the Mirror neurons. Lopes
and Santos-Victor (2003) exploit task-contextual bias
to modulate the information extraction process. Im-
itation and skill transfer between systems with dif-
ferent bodies (kinematics, dynamics and skills) was
addressed by Nehaniv and Dautenhahn (1998) using
an algebraic formulation (bodies with different skills
were considered). For the case of a humanoid robot,
Nakaoka et al. (2003) introduce adaptation of the tra-
jectories to be able to guarantee the correct balance
during task execution.

Kuniyoshi et al. (1994) proposed one of the first
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works in imitation, a system able to learn how to
imitate an assembly task by extracting a hierarchi-
cal description of the task. Billard et al. (2004) ad-
dress the problem of inferring the important parts of
the task by casting it into an optimization framework.
Zöllner and Dillmann (2003) present a system where
two hand tasks are imitated, using information about
the functionality of each object and handling tempo-
ral task restrictions, in a symbolically manner.

Even if imitation can allow a robot to learn an ex-
tremely large variety of tasks, it is clear that it re-
quires the robot to have several sophisticated motor,
perceptual and cognitive capabilities. Hence, build-
ing such complex skills can become an overwhelm-
ing task in itself. For learning one particular skill,
many other systems may need to be present and their
inter-connections properly established.

The developmental perspective, as proposed by
e.g. Weng (1998), is a new paradigm aiming at
overcoming this complexity problem, of learning and
properly integrating many perceptual, motor or cog-
nitive skills.

The robot should “start” with a minimal subset of
core capabilities (as newborns do) to bootstrap learn-
ing mechanisms that, through self-experimentation
and interaction with the environment and other hu-
mans, would progressively lead to the acquisition of
new skills, adapted to particular contexts, and having
the system integrating all the learning methods inter-
nally. Metta (1999) used a developmental approach
for a robot that successively acquired vergence, sac-
cade and vestibular control, as well as head-arm co-
ordination.

Amongst the capabilities required to interacting
with objects, understand their spatial configuration
and learning by imitation, perception is perhaps the
most fundamental. They allow gathering (task or con-
textually relevant) information and training samples
for all other forms of learning. Then, some motor
capabilities need to be in place before the robot can
start interacting with the world and providing “cali-
bration” information for other modules (e.g. relating
depth information from vergence with arm length).

The development of imitation capabilities requires
an appropriate definition of the sequence of learning
steps to reach that goal, as well as adequate perfor-
mance evaluation methods to decide when to switch
to higher developmental levels. In other words, it is
important to define the overall hierarchy of develop-
mental stages and the skills that must be acquired at
each level. Table 1 shows the structure we adopt for
the main developmental stages the robot (or a hu-
man infant Arśenio (2004); Natale (2004)) will go

through: (i) Learning about the self; (ii) Learning
about objects and the world and (iii) Learning about
others and imitation.

For each stage in this “developmental pathway”,
we show the set of skills to be acquired, and the time
line explaining the restrictions governing the system.
We do not distinguish between innate versus learned
behavior in biological systems (“the nature versus
nurture” question). Instead, we just request all the
modules to be present before the system can develop
to the next level.

Table 1: Developmental pathway for the Perceptual
and Motor capabilities (initalic the modules that are
learnt by the robot)

Time line Perceptual/Motor Capabilities

↓ self-awareness

eye vergence
random movements

Arm-headcoordination
near-space mapping

↓ world-awareness

near-space mapping
visually initiated reaching

visual control of grasp

↓ imitation
detection of other’s actions

imitation of tasks

In the first developmental level, the robot acquires
very simple and yet crucial capabilities: vergence
control and object foveation/tracking. Then, by ex-
ecuting random arm movements, in a self exploratory
mode, it begins to coordinate head and arm config-
urations, by creating a arm-head map. This map is
accurate enough to allow for reaching and grasping
objects in easy positions.

In the second developmental stage, the robot builds
a map of the surrounding area (object positions
and identification). Driven by attentional cues, the
robot engages in more challenging grasping tasks, for
which the previously learned arm-head map is not
sufficiently accurate. For that reason we propose a
novel method for visually controlled grasping, which
improves over time and ensures the necessary robust-
ness.

Previous approaches for object grasping were ei-
ther completely visual controlled Kragic et al. (2002),
with problems in guaranteeing the presence of the
hand in the visual field, or completely open-loop Na-
tale (2004) with no capability of error correction. In-
stead, we combine the two modalities, with an open-
loop phase moving the effector to the field of view
followed by a closed-loop method with the precision
necessary to put the effector in contact with the ob-
ject.
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At the final developmental stage, the presence of a
demonstrator will elicit a task imitation behavior, that
will decompose the actions and them replicate with a
given metric. For this purpose, the system must be
able to decompose the observed action into the rele-
vant key elementary actions that must be executed for
performing a task.

To conclude, our main contributions are two-fold.
On one hand we present a developmental strategy
for humanoid robots, according to widely accepted
stages in developmental psychology. On the other
hand, we propose a visually guided grasping pro-
cess, where learning is driven by the motivation to
precisely grasp objects, that continuously adapts over
time (open ended learning).

All experiments in the paper were implemented in
our humanoid robot, Baltazar, equipped with a4 dof
binocular head, a6 dof arm and an11 dof (under-
actuated by 4 motors) hand. The robot is shown in
Figure 1 and described in detail in Lopes et al. (2004).

In Section 2 we present the development of self
awareness. Section 3 deals with the understanding of
the world and the interaction with objects. Imitation
learning of tasks is presented in Section 4. Conclu-
sions and future work are drawn in Section 5.

2 Self-Awareness

Humans take a long time before becoming self-
sufficient. Knowing how to walk, how to recognize
objects, understanding how to solve a task, interact-
ing with objects, are very difficult tasks, and only af-
ter several years all mechanism necessary are avail-
able and reliable. Becoming aware of its own body
and then start to coordinate it is the first step to sur-
vival. Infants have several mechanism guiding its de-
velopment.

For the case of the head-eye system, voluntary con-
trol appears very early. Some reflexive movements
are evident from birth (head-righting reflex Payne and
Isaacs (1999)) but voluntary control becomes appar-
ent only at the end of the first month. A five-month
old child already shows a good control. This con-
trol of the head will enable the tuning of the vision
system to start looking at (and understanding) the en-
vironment. In van der Meer et al. (1995) there is a
discussion about the significance of neonate’s, appar-
ently, random arm movements.

Several reflexes allow newborns to look to their
hand. The “Asymmetric Tonic Neck Reflex” can be
elicited when the baby is prone or supine. When the
head is turned to one side or the other, the limbs on
the face side extend while the limbs on the opposite

side flex. This reflex is believed to facilitate the de-
velopment of an awareness of both sides of the body
as well as help develop eye-hand coordination.

The interaction between eyes and hand is very im-
portant. This interaction will allow the newborn to
tune its eyes, distinguish depth and recognize touch-
able objects. For a baby exploring the hand, how it
moves and how it looks will be the most interesting
thing in the first few months. Learning to make it do
what it wants to do, will be a very complex learning
task. In the end the reward will be tremendous: being
able to predict hand movements and to touch objects.

In this section we present the capabilities allowing
the system to be aware of its own body and to learn
how to coordinate it.

2.1 Near-Space perception

The near-space contains the touchable objects and our
own body. Being able to understand what happens
there is fundamental. Bernardino and Santos-Victor
(2002) suggest a method where the disparity between
images is used, together with some neuronal-based
filters, to segment objects at different depths. The
head can be moved to look toward the hand using
disparity as a feedback signal to control it. Figure
3 shows a result of verging on an object. This same
mechanism will later be used to map object positions.

2.2 Arm-Head Coordination

Many tasks need a very fine Arm-head coordination.
Object manipulation is only possible with precise vi-
sual control of the hand. In order to coordinate Arm
positions with Head position, we are going to create
anArm-Head Map. This map is bidirectional. If the
head position is fixed moving the arm to the mapped
position puts the hand in the fovea of the two eyes. If
the arm is fixed, we can visually locate it by moving
the head to the mapped position.

Several approaches can be used to learn this map.
In Lopes and Santos-Victor (2003), a neural network
was used to map from arm feature points to joint
angles. In D’Souza et al. (2001), a very powerful
method is used to learn inverse kinematics of a hu-
manoid. Vijayakumar and Schaal. (2000) created a
method,Locally Weighted Projection Regression, that
will be used for learning the map. This method is lin-
ear with the number of samples and every new sample
can be added easily. As it is not capable of extrapo-
lating, the working space must be well covered in the
training set.

The data set is gathered by self-observation. The
arm is moved around in the space, while the hand is
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tracked and foveated. Figure 2 shows the hand being
moved to the front of the eyes by using theHead-
Arm map. The quality of this map is good enough to
guarantee that the hand is always in the image but not
in the fovea. In our experiments, the average error is
about5cm, corresponding to15% of the image.

Figure 2: Head-Hand Coordination

This map will enable the system to reach and, in
special cases, grasp objects. This will be very moti-
vating and in the next level object grasping will de-
velop further.

2.3 Attention Mechanism

When looking around us some objects attract more
our attention than others. This is related to the ur-
gency of each task and to reduce the amount of infor-
mation to process. Context may influence the atten-
tion drawn by some objects, (e.g. food when hungry).
In our approach, the attentional process depends on
the developmental stage. In the beginning, the hand
is the main focus of attention, facilitating the learn-
ing of the Head-Arm Map. Also salient objects in
the scene attract the system’s attention in a bottom-
up process. Later on, in the second stage, Baltazar
will search around him, pay attention to all objects,
one at a time and create a map of the nearby area.
In the final stage, attention will be driven toward the
person doing the demonstration and the manipulated
objects. In these later stages, attention becomes grad-
ually more driven in a top-down, context and task de-
pendent manner.

3 World Awareness

As the robot gains control over its own perceptual and
motor capabilities, it gets more and more interested
in exploring its surrounding world. This exploratory

motivation will call for the development of more ad-
vanced manipulative capabilities as opposed to the
rudimentary skills available during phase one.

For object grasping, it is necessary to have sev-
eral motor programs: the arm must be able to ap-
proach the object (reaching) before finally grasping
it, the hand must be able to have a stable grasp and
pre-shaping can be necessary for faster movements
or moving objects. However at this stage all the robot
can do is to fixate at salient objects and approach
them in a primitive form of grasping. The develop-
ment path will require the following new skills:

1. detect object’s positions in the nearby space and
store this information in some sort of represen-
tation (near space map).

2. learn how to reach objects in a controlled man-
ner, using visual feedback, and grasp them.

This section describes algorithms that solve all
these steps, allowing a robot to move on to the next
developmental level, where it gains awareness of oth-
ers (humans or robots) and the actions they perform.
In addition to the reaching step based on theHead-
Arm Map presented in Section 2, we propose a new
algorithm to grasp objects based on visual servoing
techniques estimated online.

Figure 3: Verging on an object. Left (4) and right
(+) eye.

3.1 Near-Space (Objects) Mapping

There is neurological evidence of spatial aware neu-
rons that are active when movement or objects are
present near the skin Rizzolatti et al. (1977). It is also
known in developmental psychology that infants be-
came aware of the near and far space very early. It is
very useful to know where an object is and whether
it can be grasped or not. After all the time spent in-
teracting with its own hand, the system can already
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distinguish objects at different depths and search for
the desired one.

By this exploratory behaviour, we create a map of
the localization of objects around us - the periper-
sonal map - through various steps:

1. Find an object in the visual space

2. Foveate on this object

3. Memorize the object position in head (proprio-
ceptive) coordinates (ΘHead).

Through exploration, the robot thus creates a men-
tal image of the surrounding space. The position of
the objects are memorized in terms of head (proprio-
ceptive) coordinates. In Figure 4 Baltazar is search-
ing for “fruits” around him where different objects
are assumed to have different colours.

Figure 4: Mapping object positions in head coordi-
nates.

3.2 Object Grasping - a two step ap-
proach

Infants start reaching objects without any visual feed-
back. The movement is only initiated with vision but
not guided throughout the entire action. In case of
failure, the movement restarts from the beginning.

At the first stage of development, the estimated
Arm-Head mapallows the system to (crudely) move
the hand towards an object. Hence, if a simple trajec-
tory is followed, the hand may well succeed in touch-
ing the object. The problem with this (open-loop) ap-
proach is the absence of a mechanism for error cor-
rection. This is the reason why babies in this phase
restart the grasp quite often, instead of correcting it
Payne and Isaacs (1999).

The second stage of object reaching relies on vi-
sual feedback, coping with the problem of error cor-
rection. TheHead-Arm mapis used to move the hand

to the objects vicinity. Then, accurate positioning is
achieved by visual guidance in closed loop. With this
phase, it is possible to grasp objects in a reflex type
manner, the hand closing after touch.

The method presented in D’Souza et al. (2001)
could be used here. Their approach consists in map-
ping motor positions and velocities to image veloci-
ties, using a very strong statistical learning approach,
yielding good results. The disadvantages arise from
the lack of extrapolation capabilities and by not hav-
ing an explicit Jacobian estimation, thus needing
more time to gather the information, and preventing
the use of well studied visual servoing control algo-
rithms.

We adopted a visual servoing perspective, de-
scribed by e.g. Hutchinson et al. (1996). However,
although it is possible to solve the problem with an
algebraic formulation, we adopted a model-less way,
as it allows the system to learn and develop from its
own experience. A particularly useful method for on-
line estimation of visual motor relations is presented
by Jaegersand (1996). The imageJacobian(J) relat-
ing image changes (∆y) caused by motor movements
(∆θ), can be interactively estimated by:

Ĵ(t + 1) = Ĵ(t) + α

(
∆y − Ĵ(t)∆θ

)
∆θT

∆θT ∆θ

whereα denotes the Jacobian update rate. To move
the system to the desired image positiony∗, we apply
the following control law:

∆θ = g
(
J+ (y∗ − y)

)
whereJ+ represents the pseudo-inverse ofJ and the
functiong(.) can be chosen to have a exponential, lin-
ear or any other type of convergence.

In order to deal with a larger workspace and to
incorporate some open-loop movements, we had to
improve the existing algorithm. More details can be
found in the Appendix A. Figure 5 shows the result-
ing behavior of the system while grasping objects.
The hand is closed after sensing the contact with the
object. The capability of pre-shaping the hand will
only develop at a later stage. For small grasping ve-
locities, this type of movements can be sufficient, but
bigger velocities will require learning some form of
pre-shaping and predicting the time of contact with
the object.

At this point in development, the system can not
only control its own body and perceptual abilities but
also perform relatively complex manipulation tasks,
memorize objects spatial configurations, search for
objects, etc. It is then ready to start looking at hu-
mans or other robots and the tasks they perform.
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Figure 5: Several frames in the sequence from the ini-
tial position resulting from theHead-Arm Map, then
the visual guided part and finally the object grasping.

4 Imitation

Figure 6 shows an example of a task being exe-
cuted. It consists of picking up some objects and
moving them around. To imitate this task, the robot
will first need to understand the spatial relations of
objects around the demonstrator (understand the far
space). Then, understanding the near space becomes
fundamental to establish correspondence between the
demonstrator perspective its own (self) viewpoint (i.e.
the blue object is on the left of the demonstrator, but
it is in front of me). After the observation of the
demonstration movements, the important task mo-
ments must be extracted and segmented. Finally the
task is repeated by the robot, using the task descrip-
tion and all the modules previously learned. The fol-
lowing sections will provide details on the different
modules developed at this stage.

Figure 6: Several frames of the task demonstration.

4.1 Far-Space Interpretation

Understanding events and object’s localizations at far
distances (i.e. more than the arm can reach) is differ-
ent from mapping our surrounding space. The frame
of reference will no longer be our own body, instead
we describe object’s positions relative to another per-
son, this is specially useful for imitation learning.
Object’s position will be codified in terms of allo-
coordinates. Some simplifying assumptions can be
made about depth in order to reduce the complexity
of scene reconstruction.
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4.2 Task Segmentation

The actions and movements of the demonstrator must
be segmented and codified in a way useful for imita-
tion. We developed a method consisting in a multiple
object tracking and a task point detector. When doing
manipulation our hand will occlude objects very fre-
quently. Grasping and releasing can be very difficult
to detect. Being the hand the only actuator enables
the usage of information to deal with occlusions. Ev-
ery object can have three movement models: static,
moving and being moved. When an object is moving
its velocity profile can be predicted with Newtonian
dynamics, when being moved is has the same veloc-
ity as the hand. The algorithm will mark every point
in the trajectories of the objects that satisfy the fol-
lowing constraints: all object are static, the hand is
not moving and the hand is not occluding any object.

The task is then codified by having objects with
their physical properties (shape and color) and their
spatial relations (A between B and C;A right of B or
A left of B).

The complete sequence shown in Figure 6 has 234
frames, this sequence was processed online and the
task points, shown in Figure 7, were automatically
extracted. We can see that the system succeeds in
detecting what frames are important to describe the
task.

4.3 Imitation

As mentioned in Gergely et al. (2002), imitation goals
are not always very clear. In our case the imitation
task will proceed in order to have the same spatial
relations. In case the demonstrator has made a move-
ment and there is no difference in the ordering of
objects (Figure 7), the robot will mimic the absolute
spatial positions. We can see that all the modules de-
veloped until this point were essential to be able to
replicate the task at hand.

5 Conclusions/Future Work

We have presented a developmental route for a hu-
manoid robot1 to acquire increasingly more complex
skills.

The robot first learns about it’s own body and sur-
rounding environment. All information is gathered by
self-exploration. The quality of the Arm-head coor-
dination achieved in this phase is sufficiently good to
ensure that the hand always remains in the image and

1see http://vislab.isr.ist.utl.pt/baltazar for videos showing the
experiments in this work

that objects can be grasped in simple cases. In a sec-
ond phase, motivated to further interact with objects,
the system develops a closed-loop control behavior
capable of precise grasping. It also creates a map of
the interesting objects in the surrounding space. In
the final developmental phase, people acting in the
environment are the major source of information. The
observed tasks are segmented in special points in or-
der to finally imitate the task.

The developmental pathway allows the robot to ac-
quire new skills on top of the existing (learned) ca-
pabilities. We described results of the various de-
velopmental stages of the system: the vergence and
object tracking system, the learning of the Arm-
head map, the visually initiated object grasping sys-
tem and a new solution to visually guide grasping.
The method consists in two phases: an open-loop
controller putting the hand close to the object, and
a closed-loop vision-based controller for precisely
touching the object. This method does not need cali-
bration and can be learned on-line in a very efficient
way. In the future, we will focus our efforts on the as-
pects of learning the interaction between people and
objects.

A Visual Grasp

In this section we present a generalization of the
method suggested by Jaegersand (1996), to be used
to visually control the arm. The imageJacobian(J)
relating image changes (∆y) caused by motor move-
ments (∆θ), can be iteratively estimated by:

Ĵ(t + 1) = Ĵ(t) + α

(
∆y − Ĵ(t)∆θ

)
∆θT

∆θT ∆θ

whereα is the Jacobian update rate. To move the
system to the desired image positiony∗, we can apply
the following control law:

∆θ = g
(
J+ (y∗ − y)

)
whereJ+ represents the pseudo-inverse ofJ andg(.)
can be chosen to have a exponential, linear or any
other kind of convergence.

When the working volume is very large the Ja-
cobian can no longer be accurately estimated with
only one linear model. To solve this we propose a
new method. With only one linear model the up-
date mechanism must be fast enough to have an ac-
curate model for each region. In the case of open-
loop movements the system can no longer update the
model and a specific model for the new region must
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Figure 7: Segmentation of a task. Notice that from the third to the fourth image there is no difference in the
ordering of the object, just their absolute distances. These relevant points where extract online from a video
sequence with 234 frames.

already be present. The workspace should be parti-
tioned in several regions,Ri, i = 1 . . . N . At each
instant the distancec is measure between the current
position and all the regions, the selected JacobianJ
is the one corresponding to the nearest areaRi. We
use a Mahalanobis distance with covarianceD. The
covariance can be updated online to reduce the num-
ber of regions and to better adjust the linear model to
the non-linear system. Trying to update the regions
center creates problems by overlapping regions and
with region transitions.

The Jacobian update rate (α) should be larger when
the model is inaccurate and then reduced to improve
convergence. One measure to access the model qual-
ity (mq) can be:

mq(t) = mq(t− 1) + γ < ∆y, Jk∆θ >

γ is a decaying factor and< . > represents inter-
nal product.mq is positive when the observed move-
ments has a direction error less than90 degrees.

The regions centersxi may correspond to motor
featuresx = θ, visual featuresx = y or a com-
bination of them. With visual features there is the
possibility of doing planning in visual space but there
are different motor positions that give the same visual
features and should have different linearizations.

Table 2 presents the complete algorithm for doing
the visual controlled grasp.

J+ must be carefully implemented. As some di-
rections are not observed, the Jacobian inversion will
be very unstable. To solve this problem the pseudo

Table 2: Uncalibrated Visual Servoing Algorithm

To move the system to the desired image positiony∗

1. Choose the regionRi corresponding to the ac-
tual statex:

ci = (x− xi)T Di(x− xi)

Ri : min
i

ci

if max ci < C create a new areal with xl = x,
Dl = D andJl = Ji. ChooseRi = Rl.

2. apply the control law:

∆θ = Ki
J+

i (y∗ − y)∥∥J+
i (y∗ − y)

∥∥
3. observe image changes∆y

4. make the update to the modeli corresponding to
positionx with:

Ĵi = Ĵi + αi

(
∆y − Ĵi∆θ

)
∆θT

∆θT ∆θ

5. if |y∗ − y| > E goto1
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inverse is implemented with a SVD method and any
singular values less than10% of the larger are treated
as zero.

Chaumette (1998) show some problems present in
Visual servoing methods. Our method solves the
problem of the Jacobian derivation and the calibra-
tion of the robot and cameras. In general these meth-
ods are sensitive to initial positions, being prone to
fall in local minima but, in our approach, the system
always starts near the final position due to theHead-
Arm map, thus making convergence easier.

We made several experiments to access the quality
of the resulting algorithm. Our system measures a
specific dot in the hand with two cameras giving an
image position of the hand(ul, vl) for the left eye and
(ur, vr) for the right eye. The features are calculated
as follows:

y =

 ul+ur

2
vl+vr

2
ul − ur


This gives position and distance information estima-
tion of the hand related to the head. The head was
maintained fixed and four arm joints were used. The
distance between the central point of each zone was
10 degrees. The Jacobian update rate was equal in
all regions and choosen asα = 0.1 while mq < 0
andα = 0.01 while mq > 0.

Figure 5 shows some quantitative results of the
grasp sequence shown in Figure 5 using our proposed
algorithm. The hand was positioned near the object
using theHead-Arm map. The resulting error corre-
sponds to about8 cm. The associated image error is
corrected in the final phase (visually controlled) with
a linear convergence rate.
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Abstract

The ability to imitate others enables human infants to acquire various social and cognitive capabilities.
Joint attention is regarded as a behavior that can be derived from imitation. In this paper, the devel-
opmental relationship between imitation and joint attention, and the role of motion information in the
development are investigated from a viewpoint of cognitive developmental robotics. It is supposed
in my developmental model that an infant-like robot first has the experiences of visually tracking a
human face based on the ability to preferentially look at salient visual stimuli. The experiences allow
the robot to acquire the ability to imitate head movement by finding an equivalence between the hu-
man’s head movement and the robot’s when tracking the human who is turning his/her head. Then,
the robot changes its gaze from tracking the human face to looking at an object at which the human
has also looked at based on the abilities to imitate a head turning and gaze at a salient object. Through
the experiences, the robot comes to learn joint attention behavior based on the contingency between
the head movement and the object appearance. The movement information which the robot perceive
plays an important role in facilitating the development of imitation and joint attention because it gives
an easily understandable sensorimotor relationship. The developmental model is examined in learning
experiments focusing on evaluating the role of movement in joint attention. Experimental results show
that the acquired sensorimotor coordination for joint attention involves the equivalence between the
human’s head movement and the robot’s, which can be a basis for head movement imitation.

1 Introduction

Neonatal imitation is a remarkable capability in hu-
man development. Such behavior might tell us that
infants can associate their own action with others’
action they see. The ability to imitate enables in-
fants to acquire social identification and further so-
cial and cognitive capabilities (Meltzoff and Moore,
1997). Through the experiences of reproducing oth-
ers’ action, infants come to be able to understand the
meaning of the action and the others’ intention. Joint
attention (Scaife and Bruner, 1975; Butterworth and
Jarrett, 1991; Moore and Dunham, 1995) is one of the
capabilities that can be derived from imitation. It is
defined as a behavior to look where someone else is
looking by following his/her gaze. In other words,
joint attention is regarded as a type of imitative be-
havior that one turns one’s own head and eyes towards
the same side as another turns his/hers.

In this paper, the developmental relationship be-
tween imitation and joint attention, and the role of

movement information in the development are dis-
cussed. Many researchers in cognitive science and
developmental psychology have been investigating
the capabilities of imitation and joint attention as
the basis for infant development (Moore and Dun-
ham, 1995). However, it is difficult to find the study
in which the developmental relationship between the
two abilities was examined. As described above, joint
attention is an imitative behavior to copy others’ head
and eyes turning. It can emerge in infant-caregiver in-
teractions when either of them, mostly a caregiver,
introduces an object into their dyadic interactions
based on the imitation. Considering the developmen-
tal progress from the dyadic to the triadic interaction,
i.e. joint attention, is important for understanding the
social and cognitive development in infants. This pa-
per presents the developmental progress by which an
infant-like robot incrementally learns to imitate and
establish joint attention through interactions with a
human caregiver. It is discussed from a standpoint of
cognitive developmental robotics (Asada et al., 2001)
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what capabilities a robot should be equipped with
for interacting with an environment and learning the
experiences, and how a caregiver should encourage
and support the robot’s development. As a key for
the consecutive development from imitation to joint
attention, a robot employs movement as its percep-
tual information. It is known in infant development
that the motion information facilitates the develop-
ment of the two abilities, e.g. (Vinter, 1986; Moore
et al., 1997). Infants are more able to imitate oth-
ers’ action and comprehend others’ gaze when they
are presented with the behavior with the movement
rather than without the movement. On the basis of
the knowledge, a learning model by which a robot ac-
quires joint attention ability through the experiences
of head movement imitation by using motion infor-
mation is proposed.

The rest of the paper is organized as follows. First,
the findings about imitation and joint attention in in-
fants are referred, in which the role of movement in
the development is suggested. The finding of head
movement imitation is also indicated, which is con-
sidered as a basis for joint attention development.
Then, the current robotics models of imitation and
joint attention are reported. Various models have
been proposed with the aim of investigating infant
development and/or constructing intelligent robots.
The problems that the models did not deal with the
developmental progress between imitation and joint
attention and did not utilize motion information are
pointed out. Next, a developmental model by which
a robot learns joint attention based on head move-
ment imitation is proposed. By utilizing motion infor-
mation, a robot incrementally learns to imitate head
movement and achieve joint attention without anya
priori or symbolic representation for perceptual in-
formation given by a designer. Experiments that ex-
amined the validity of the model by using an infant-
like robot are then described. Finally, discussion and
ongoing work are given.

2 Related work on imitation and
joint attention

2.1 Findings from infant studies

Meltzoff and Moore (1977, 1989) investigated the
ability to imitate in infants at a few days or a few
weeks of age. They found that infants were able to
imitate facial and manual gestures and head move-
ments demonstrated by an adult. On the basis of the
finding, Meltzoff and his colleagues (Meltzoff and

Moore, 1997; Rao and Meltzoff, 2003) proposed an
active intermodal mapping model as the mechanism
for early facial imitation. According to their model,
infants can imitate an action by evaluating the equiv-
alence between the action they see and their own ac-
tion in a supra-modal representational space. In con-
trast, Jacobson (1979) suggested that facial and man-
ual gestures of infants could be elicited by the presen-
tation of a moving object. She showed that a moving
pen and a ball were as effective as the tongue model
of an adult in eliciting tongue protrusion by infants,
and that a dangling ring elicited as much hand open-
ing and closing as the adult hand model. This find-
ing suggests that the motion information which in-
fants perceive plays an important role in their early
imitation. Vinter (1986) also indicated the signifi-
cance of motion information in infant imitation. She
showed that infants were more likely to imitate facial
and manual gestures when they were presented with
the gestures with the movement rather than without
the movement. The reason was conjectured that the
movement which infants perceive is effective in en-
coding their perceptual information.

Joint attention development has also been sug-
gested to be facilitated by motion information. Moore
et al. (1997) compared the infants’ ability to learn
gaze following when infants were presented with
the final static state of an adult’s head turning and
the ability when infants were presented with the
head turning with the movement. Their compar-
ison showed that only infants presented with the
movement were able to learn to establish gaze fol-
lowing. Lempers (1979) studied the developmental
change in the ability to comprehend deictic gestures
of infants at 9 to 14 months of age. His observa-
tional results showed that motion information helped
younger infants to understand others’ pointing and
gaze. Corkum and Moore (1998) investigated the ori-
gin of joint attention and found that infants have a de-
velopmental stage at which they respond sensitively
to the movement of an adults’ gaze shift. They also
examined the learning performance of joint attention
in infants by presenting the infants with unnatural sit-
uations in which an interesting target appeared in the
opposite side to the direction of an adult’s head turn-
ing. Their examination showed that infants did not
acquire the behavior to look at the object by turn-
ing to the opposite side of the head turning, but ac-
quired the behavior to follow the adult’s head turning
although they could not find any object. This means
that the learning mechanism of joint attention is not
only based on the contingency between the adult’s
head turning and the object activation but also facil-
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itated by the physical characteristics of the adult ac-
tion, i.e. the direction of the head movement. I sup-
pose from the result that infants learn the relationship
between their own action and others’ action before
learning to find an object based on the others’ cue.

2.2 Computational and robotic models

In order to investigate infant development and/or con-
struct intelligent robots, computational and robotic
models of imitation and joint attention have been
proposed based on the findings from infant stud-
ies. Demiris and his colleagues (Demiris and Hayes,
1996; Demiris et al., 1997) constructed a model of
head movement imitation based on the scheme of
the active intermodal mapping proposed by (Melt-
zoff and Moore, 1997). Their model enabled a robot
to imitate a human’s head movement by establishing
an equivalence between the human’s head posture,
which was estimated from the movement detected as
an optical flow, and the robot’s posture, which was
given as encoder values. Scassellati (1999) built a
humanoid robot that could imitate yes/no nods of a
human. In his model, a robot recognized the yes/no
nods by detecting the cumulative displacement of a
human face in the robot’s vision and then drove the
fixed-action patterns for moving the robot’s head as
an imitative behavior.

The author (Nagai et al., 2002, 2003) proposed de-
velopmental models by which a robot learned joint at-
tention through interactions with a human caregiver.
I investigated how a robot with limited and immature
capabilities could acquire the joint attention ability
based on the evaluation from a caregiver or based
on the robot’s ability to autonomously find a sen-
sorimotor contingency through its experiences. Tri-
esch and his colleagues (Carlson and Triesch, 2003;
Lau and Triesch, 2004) introduced the scheme of
reward-based learning for a computational develop-
mental model of gaze following. They suggested that
the infant abilities of preferential looking, habitua-
tion, and reward-based learning, and an environmen-
tal setup in which a caregiver looks at an object that
an infant prefers to look at can be a basic set for the
emergence of gaze following. Shon et al. (2004a,b)
constructed a model by which a robot acquired the
ability to establish joint attention based on the imita-
tion of a human’s head movement. In their model, the
imitation was achieved based on the scheme of the in-
termodal equivalence mapping (Meltzoff and Moore,
1997). In other words, a robot could imitate a head
movement by turning its head to the same posture as
that of the human, which was estimated from an im-

age pattern of the human head. Then, the imitation of
the head movement enabled a robot to achieve joint
attention by finding an object at which the human was
looking based on a probabilistic model.

However, these models of robotic imitation and
joint attention have problems that they did not utilize
motion information detected from visual perception
and that they learned the mechanism to estimate the
posture of a human head by using the exact posture
which could not be detected by a robot. The follow-
ing section presents a developmental model by which
a robot consecutively learns to imitate and establish
joint attention by utilizing both static and motion in-
formation detected by itself.

3 Joint attention development
based on head movement imi-
tation

3.1 Developmental progress

The developmental progress of joint attention via
head movement imitation is shown in Figure 1. The
development is based on the infant abilities to interact
with an environment and learn the experiences and
encouragement by a caregiver.

An infant is supposed to have the capability to
preferentially look at salient visual stimuli, such as
a bright colored object and a human face. This basic
capability enables an infant to interact with an envi-

infant caregiver

joint attention

preferential looking at
a human

face
a salient
object

equivalence learning

contingency learning

head-movement
imitation

face-to-face
interaction

introducing
an object into
the interaction

Figure 1: The developmental progress of joint atten-
tion via head movement imitation.
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Figure 2: A learning model of joint attention based on head movement imitation. The visual attention controller
enables a robot to have experiences of preferentially looking at a human face and a salient object. Through the
experiences, the robot learns the sensorimotor coordination to imitate a head movement and achieve joint attention
through the lower three modules.

ronment and have experiences for learning to imitate
and establish joint attention. In early development,
an infant often has dyadic interactions with a care-
giver because of the caregiver’s encouragement. A
caregiver attempts to involve an infant in face-to-face
interactions and emotionally communicate with the
infant by showing facial expressions and head move-
ments. The caregiver’s movement drives the infant
to visually track the caregiver’s face as an interest-
ing target, which provides experiences for learning to
imitate head movement. In other words, when the
caregiver turns his/her head vertically or laterally, the
infant also turns his/her head to almost the same di-
rection by tracking the caregiver’s face. As the result,
the infant finds an equivalence between the move-
ment of the caregiver’s head and that of the infant’s
and consequently acquires the ability to imitate head
movements.

In parallel with or following the learning of head
movement imitation, an infant starts to learn to
achieve joint attention. A caregiver introduces an ob-

ject, at which an infant prefers to look, into their
dyadic interactions by presenting the infant with the
object near the line of the infant gaze. The caregiver
attempts to control the infant attention by moving the
object and shifting the caregiver’s own gaze to the ob-
ject. The caregiver’s encouragement drives the infant
to change his/her attention target. The infant shifts
his/her gaze from looking at the caregiver to looking
at the object based on the abilities to imitate the care-
giver’s head movement and preferentially look at a
salient object. This provides an experience for learn-
ing joint attention. The infant can acquire the sen-
sorimotor coordination for joint attention by finding
a contingency between the caregiver’s gaze shift and
the appearance of the object.

3.2 Learning model of joint attention
based on head movement imitation

Figure 2 shows a proposed model by which a robot
incrementally learns to imitate head movements and
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establish joint attention. The model consists of four
modules: a visual attention controller, an image fea-
ture detector, a learning module, and a coordinator.
The visual attention controller enables a robot to have
experiences of looking at salient visual stimuli. The
latter three modules enable the robot to learn the sen-
sorimotor coordination for imitation and joint atten-
tion through the above experiences.

3.2.1 Visual attention controller

The visual attention controller enables a robot to
have fundamental experiences for the development.
This module enables a robot to preferentially look
at salient visual stimuli, such as a human face and
a bright colored object, in an environment. A human
face and a salient object are respectively detected by
template matching and using color information from
a peripheral camera image. Figure 3 (a) shows an
example of the peripheral image, in which a human
face and a yellow object are indicated by rectangles.
In this case, the robot is controlling its gaze to look
at the human face at the center of the image. A mo-
tor command to look at the object can be generated
by multiplying the horizontal and vertical displace-
ment between the object and the center of the image
by scalar values.

3.2.2 Image feature detector

The image feature detector extracts visual informa-
tion needed to achieve imitation and joint attention.
The detector extracts the edge imageE of a human
face and the optical flowF of the human’s gaze shift
from foveal camera imagesIt−1, It. An example of
the detected features is shown in Figure 3 (b)-(d), in
which (b) shows the foveal camera image when the
robot is gazing at the human face as shown in (a),
and (c) and (d) show the edge image and the optical
flow detected from the center area (168× 168 pixels)
enclosed by a rectangle in (b). The position of the en-
closed area is fixed at the center of the foveal image.
The foveal and peripheral cameras are mechanically
fixed and controlled to gaze at a visual target at the
center of the peripheral image.

The edge imageE is generated by orientation se-
lective filters. Four filters that are selective with
respect to four orientations(e1, e2, e3, e4) =
( , @, , �) extract edge imagesEn, wheren =
1, . . . , 4, each of which includes one oriented edge.
The value of each pixelEn(x, y) is calculated as

En(x, y) =
{

1 if εn(x, y) > εthreshold
0 otherwise,

(a) peripheral camera image (b) foveal camera image:It

(c) edge image:E (d) optical flow:F
(e) motor output:
oe′f

Figure 3: An example of input-output datasets, in
which (a) and (b) show a peripheral and a foveal cam-
era image when the robot is looking at the human; (c)
and (d) show the edge image and the optical flow de-
tected from the center area in (b); (e) shows motor
output to follow the human gaze, which is encoded in
motion direction selective neurons.

where

εn(x, y) =

∣∣∣∣∣∣

1∑

i=−1

1∑

j=−1

αn(i, j)I(x + i, y + j)

∣∣∣∣∣∣

−
∣∣∣∣∣∣

1∑

i=−1

1∑

j=−1

βn(i, j)I(x + i, y + j)

∣∣∣∣∣∣
. (1)

(x, y) indicate a position in a camera image, and the
coefficients,αn(i, j) andβn(i, j), are given as

�1 = �3 =

[
0 0 0
0 1 1
0 −1 −1

]
, �1 = �3 =

[
0 0 0
0 1 −1
0 1 −1

]
,

�2 = �4 =

[
0 1 0

−1 0 1
0 −1 0

]
, �2 = �4 =

[
0 1 0
1 0 −1
0 −1 0

]
,

where

αn =




αn(−1,−1) αn(0,−1) αn(1,−1)
αn(−1, 0) αn(0, 0) αn(1, 0)
αn(−1, 1) αn(0, 1) αn(1, 1)


 .

(2)
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Figure 3 (c) shows the edge imageE combiningEn

(n = 1, . . . , 4), in which edges with one of the four
orientations, , @, , and�, are colored red, cyan,
blue, and green, respectively. The edge image pro-
vides information to estimate the static direction of
the human head and allows the robot to acquire the
accurate sensorimotor coordination to achieve head
movement imitation and joint attention.

The image feature detector also extracts the opti-
cal flow F . The center area of the foveal image is
divided into small areas called receptive fields (24×
24 pixels). The optical flowF k in thek-th receptive
field is calculated as the cumulative displacement of
the image feature in the receptive field over ten image
frames:

F k =

[ ∑10frames(xk − px)∑10frames(yk − py)

]
, (3)

where(xk, yk) and(px, py) are the center position
of thek-th receptive field inIt and that of the corre-
sponding image area detected by template matching
in It−1, respectively. Figure 3 (d) shows the optical
flow detected when the human changes her gaze from
looking straight at the robot’s camera to looking at the
yellow object shown in (a). Like the edges, the flows
are drawn with four colors. Although the optical flow
cannot provide enough information to infer the exact
direction of the human head compared with the edge
information, it gives a rough but easily understand-
able relationship with the movement direction of the
human’s head turning. Therefore, the flow informa-
tion should enable the robot to quickly acquire rough
sensorimotor coordination for head movement imita-
tion and joint attention.

In addition, the flow information is utilized as a
cue for the robot to control the timing of its own head
turning. The temporal change in the amount of the
optical flow indicates the start and end of a human’s
head turning. In other words, when the flow becomes
zero after exceeding an upper threshold, this means
that a human has shifted his/her head direction from
looking at one location to looking at another and is
gazing at a certain location. Based on this mecha-
nism, the robot obtains the input data of the optical
flow when the flow has a maximum value and the
edge image when the flow becomes zero. This en-
ables the robot to immediately follow a human’s head
turning without any explicit cue.

3.2.3 Learning module

This module learns the sensorimotor coordination be-
tween the edge input and motor output and between

activities of input neurons
in the edge-NN:

edge image: E k

a k
e

(a) the encoding of edge input

a k
f

F koptical flow:

activities of input neurons
in the flow-NN:

(b) the encoding of flow input

Figure 4: The encoding of detected image features
into the input neurons, in which (a) and (b) show the
encoding of edge and flow inputs into the four orien-
tation selective neurons and the eight directions se-
lective neurons, respectively. The length of a line in
each circle denotes the activity of the neuron.

the optical flow and motor output through two inde-
pendent neural networks (see Figure 2). The neural
network for the edge input (the edge-NN) consists of
three layers: input, hidden, and output layers, because
edge information is difficult to interpret into the hu-
man’s head direction. In contrast, the neural network
for the optical flow input (the flow-NN) has two lay-
ers: input and output layers, because flow information
gives an easily understandable relationship with the
motor output to imitate the human’s head movement
and achieve joint attention.

Input to the edge-NN is represented as activities of
four kinds of neurons that are selective to four orien-
tations. Figure 4 (a) shows edge input encoding into
the selective neurons. The activities of the four neu-
ronsak

en
(n = 1, . . . , 4) in the k-th receptive field

are calculated as

ak
en

= Ek
n/ max

k

4∑
m=1

Ek
m,

where Ek
n =

∑
xk

∑
yk

En(x, y). (4)

En(x, y) is given by (1), andEk
n means the amount

of the edgeen in thek-th receptive field. In the bot-
tom of Figure 4 (a), the length of a line in each circle
shows the activity of each neuron. No line means that
the activity is zero.

Like the encoding of edge input, the optical flow
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is encoded in eight kinds of neurons that are selec-
tive to eight directions(f1, f2, . . . , f8) = (←, ↖
, . . . , ↙) as shown in Figure 4 (b). The activities of
the eight neuronsak

fn
(n = 1, 2, . . . , 8) in thek-th

receptive field are calculated as

ak
fn

=

{
F k · un/max

k
‖F k‖ if F k · un ≥ 0

0 otherwise,
(5)

whereF k is given by (3), andun are unit vectors in
eight directions. The activities of the eight neurons
are also drawn as the length of the arrows as shown
in Figure 4 (b). The methodology of coding edge and
flow information is based on physiological evidence
that the visual cortex in some animates has orienta-
tion selective neurons (Hubel and Wiesel, 1959) and
motion direction selective neurons (Barlow and Hill,
1963). The similarity in the representation of edge
and flow inputs leads to the possibility that the robot
translates a well-acquired sensorimotor coordination
in the edge-NN or the flow-NN into the other.

Outputs from the edge- and flow-NNs are repre-
sented as the activities of eight neurons,oe′n andofn

(n = 1, . . . , 8), which are selective to eight mo-
tion directions(e′1, . . . , e′8) = (f1, . . . , f8) = (←
, . . . , ↙), respectively. Figure 3 (e) shows an exam-
ple of the activities of the output neurons. The rep-
resentation is similar to that of encoded optical flow
data. The activities of the output neurons are decoded
into a motor command∆θ to move the robot’s head
by the coordinator described in the next section.

3.2.4 Coordinator

This module coordinates motor outputs from the
edge- and flow-NNs. In the experiments discussed
here, the robot uses a simple method that generates a
motor command∆θ by decoding the mean value of
the two outputs:

∆θ =
[

∆θpan

∆θtilt

]
=

[
gpan

∑
n unxoe′fn

gtilt

∑
n unyoe′fn

]
, (6)

wheregpan andgtilt are scalar gains;unx anduny are
the horizontal and vertical components inun; oe′fn is
the mean value ofoe′n andofn . A motor command to
move the robot’s head is represented as displacement
angles in the pan and tilt directions.

3.3 Learning processing

Employing the model, a robot has two-staged learn-
ing. First, a robot learns the sensorimotor coordina-
tion to imitate head movements. As a human turns

his/her head vertically and laterally in front of the
robot, the robot also turns its head to almost the same
direction by tracking the human face based on the vi-
sual attention controller. Through the experiences,
when the robot detects simultaneous activation of the
input and output neurons that are selective to the same
directions in the flow-NN, it learns the equivalence of
the movement by multiplying the connecting weights
between the neurons. This leads to the ability to imi-
tate head movements. Next, the robot learns the sen-
sorimotor coordination for joint attention. The human
starts to introduce an object into the human-robot
dyadic interactions. When the human shifts his/her
gaze direction from the robot to the object by turning
his/her head, the robot first imitates the head move-
ment based on the acquired sensorimotor coordina-
tion and then changes its gaze from looking at the
human to looking at the object based on the visual
attention controller. This provides a sensorimotor ex-
perience of joint attention. The robot learns the sen-
sorimotor coordination in the edge- and flow-NNs by
back propagation based on the input-output dataset
obtained in the above process and consequently ac-
quires joint attention ability.

4 Preliminary experiment

4.1 Experimental setup

As a preliminary experiment, the model was evalu-
ated with a focus on the role of movement in learn-
ing joint attention. The model was implemented into
an infant-like robot, calledInfanoid (Kozima, 2002),
shown in Figure 5, which was developed by our group

Figure 5: Human-robot joint attention, in which an
infant-like robot, calledInfanoid, is looking at the
stuffed toy that the human is looking at.
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as a tool for investigating the cognitive development
in human infants. Infanoid has a stereo-vision head
with three degrees of freedom (DOFs) in its neck (one
for the pan and two for the tilt directions) and three
DOFs in its eyes (two for the each pan and one for
the common tilt directions). Each eye has two color
CCD cameras: a peripheral camera and a foveal cam-
era, and the two camera images from the left eye were
used in the experiment. The three DOFs in the neck
were used to move the robot’s head while the three
DOFs in the eyes were fixed at the center positions.
The displacement angle∆θtilt derived from (6) was
equally divided into the two tilt DOFs in the neck.

A human sat face to face with Infanoid and inter-
acted with it by using a salient object. In every trial,
the human replaced the object at random positions
and then changed her gaze from looking at the robot
to looking at the object by turning her head. The hu-
man always looked at the object in front of her face.

4.2 Evaluating the role of movement in
learning joint attention

The role of motion information in learning joint at-
tention was evaluated. In this experiment, Infanoid
learned to establish joint attention without learning
to imitate. In other words, the robot learned a con-
tingency between the human’s head turning and the
object appearance to acquire the sensorimotor coordi-
nation for joint attention through the edge- and flow-
NNs without using any pre-acquired sensorimotor co-
ordination to imitate head movements.

Figure 6 shows the changes in joint attention per-
formance over the learning period, in which the hori-
zontal and vertical axes respectively denote the learn-
ing step and the success rate of joint attention. The
success of joint attention means that the robot looks
at the object at which the human is looking within±8
degrees of error. The learning experiment was con-
ducted off-line by repeatedly using 200 input-output
datasets acquired beforehand, and the sensorimotor
coordination acquired through learning was evalu-
ated in joint attention experiments every 200 learning
steps. The red line plots the result when the model
used both the edge and flow inputs. The blue and
green lines plot the results when the model used only
the edge or the flow input, respectively. The graph
shows the mean result of fifty experiments with dif-
ferent initial conditions and its standard deviation.
Comparing the results for when the robot used either
the edge or the flow input, it is confirmed that the flow
input accelerated the start-up time of learning while
the edge input gradually improved the task perfor-
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Figure 6: The change in the task performance of joint
attention over the learning period. The red, blue, and
green lines indicate the results when the model uti-
lized both the edge and flow inputs, only the edge
input, and the flow input, respectively.

mance. This complementary result can be expected
from the characteristics of the two inputs. By using
both the edge and flow inputs, the model enabled the
robot to quickly acquire the high performance of joint
attention by combining the advantages of the two in-
puts.

4.3 Joint attention experiment after
learning

The acquired sensorimotor coordination was evalu-
ated in joint attention experiments. Figure 7 (a) and
(b) show the two cases of input-output datasets when
the robot attempted to achieve joint attention based on
the acquired NNs. In case (a), the human shifted her
gaze from looking at the robot to looking at an object
in the outer left side of the foveal image. In case (b),
the human shifted her gaze direction from the robot to
an object in the outer lower right of the foveal image.
The upper side of each figure shows the change in the
foveal image when the robot shifted its head direc-
tion based on the output from the coordinator shown
in the lower side. From these results, we can see that
both the edge-NN and the flow-NN generated appro-
priate output to achieve joint attention. In these two
cases, the robot was able to find the object at which
the human was looking and establish joint attention.
The success rate of joint attention with the same per-
son as in the learning experiment was 90% (18/20 tri-
als). In addition, we can confirm from this result that
the flow-NN acquired one-to-one correspondence be-
tween the activities of the input and output neurons.
The direction of the motor output from the flow-NN is
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foveal image (before gaze shift)

o e’fmotor output:

o e’

edge image: E

optical flow: F

motor output:

o fmotor output:

(after gaze shift)

(a) In the case that the human shifted her gaze direction from the
robot to an object in the outer left side of the foveal image.

foveal image (before gaze shift)

o e’fmotor output:

o e’

edge image: E

optical flow: F

motor output:

o fmotor output:

(after gaze shift)

(b) In the case that the human shifted her gaze direction from the
robot to an object in the outer lower right of the foveal image.

Figure 7: The input-output datasets when the robot
attempted to achieve joint attention based on the ac-
quired NNs. The robot was able to establish joint at-
tention in these two cases.

clearly corresponding with the same direction of the
optical flow. This means that the sensorimotor equiv-
alence, which should be acquired through imitation
learning, is also utilized in joint attention.

5 Discussion and ongoing work

This paper has presented a developmental model by
which a robot learns joint attention based on head
movement imitation. The preliminary experiments
showed that the model accelerated the learning of
joint attention by using movement information and
that the equivalence of self and other movement was
utilized to achieve joint attention. This result supports
the idea that joint attention emerges through the expe-
riences of head movement imitation. Ongoing work
is to examine that learning to imitate head movements
facilitates the development of joint attention. This is
expected to lead to the possibility to reveal the role
of other neonatal imitation, such as tongue protrusion
and hand opening-closing, in the development of so-
cial and cognitive capabilities of infants. Another is-
sue to be solved is to develop a mechanism that en-
ables a robot to recognize not only head directions
but also gaze directions. It was assumed in the ex-
periments that a human shifted his/her gaze by turn-
ing his/her head and looked at an object in front of
his/her face. This assumption is likely in joint atten-
tion by infants. However, infants can acquire the abil-
ity to recognize gaze directions. To solve the prob-
lem, I will apply a mechanism that changes the res-
olution of the receptive fields in the NNs as learning
proceeds. Such mechanism will increase the resolu-
tion around the image area including important facial
features, e.g. eyes and mouth, and consequently en-
able a robot to acquire the ability to recognize gaze
directions.
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Abstract 

 
Evidence exists for a form of imitation, vocal segmentation, by a Grey parrot: Data show that the 
bird understands that his labels are comprised of individual units that can be recombined in novel 
ways to create a novel referential vocalization; that is, a novel act. Previous data suggested, but 
could not substantiate, this behaviour. Such evidence implies that a parrot not only has phonological 
awareness but also demonstrates true imitation, and has implications for programming speech. 
 

1   Introduction 
Given that imitation primarily involves the inten-
tional copying of an otherwise improbable, novel act 
(Thorpe, 1963), the intentional, referential reproduc-
tion of a novel English vocalization by a Grey parrot 
(Psittacus erithacus) is a likely candidate for imita-
tive behavior. And, given that imitation can also be 
seen as the integration of a number of familiar ac-
tions in novel ways to produce that novel act (e.g., 
Piaget, 1962; review in Arbib, 2002), of particular 
interest is what happens when the targeted novel 
vocalization can be constructed from related ele-
ments already in the parrot’s repertoire. This par-
ticular type of combinatory behavior is actually a 
form of vocal segmentation. Successful segmenta-
tion shows that the bird understands that his existent 
labels are comprised of individual units that can be 
recombined in novel ways to create novel vocaliza-
tions. Previous data suggested, but could not sub-
stantiate, this behavior; current data does just that. 
Moreover, such evidence implies that a parrot has 
phonological awareness. 

Demonstrating segmentation by Grey parrot 
would be an important milestone in comparing ani-
mal and human cognitive and communicative abili-
ties. Although Grey parrots already use elements of 
English speech referentially (Pepperberg, 1999),1 
                                                 
1 No claim is made that Alex’s speech is isomorphic with human 
language (e.g., Alex cannot discourse about the weather), only 
that the elements that he does produce have been documented as 
being used referentially; labels are both understood and used in 
contexts that differ from and extend beyond training conditions. 

these birds are still sometimes regarded as mindless 
mimics. At least two reasons exist for that belief. 
One reason, that avian imitation of English speech 
does not involve intentional, accurate reproduction 
of human articulatory acts (as far as is possible with 
parrot anatomy), has been countered previously 
(e.g., Patterson and Pepperberg, 1994, 1998; Pep-
perberg, 2002). Another reason involves segmenta-
tion: Only limited evidence exists that parrots, or 
any animal taught a human communication code, 
can indeed segment the human code, that is, recom-
bine existing labels intentionally either to describe 
novel situations or, for example, to produce a phrase 
to request novel items—rather than simply produce 
several referential labels that, by chance, appropri-
ately apply to the situation (Fouts & Rigby, 1977; 
Pepperberg, 1999; Savage-Rumbaugh et al., 1993). 
Such intentional creativity is, in contrast, common 
in the earliest stages of normal human language 
acquisition (de Boysson-Bardies, 1999; Greenfield, 
1991; Marschark, Everhart, Martin, & West, 1987; 
Tomasello, 2003). Another form of segmentation, 
the intentional recombination of existing phonemes 
(parts of words) or their approximations to create or 
reproduce what is for the subject a novel targeted 
utterance (Greenfield, 1991; Peperkamp, 2003), has 
not previously been reported in animals; it is not 
only considered basic to human language develop-
ment (Carroll, Snowling, Hulme, & Stevenson, 
2003), but also a uniquely human trait.  

Such phonetic awareness, which requires under-
standing that words are made up of a finite number 
of sounds that can be recombined into an almost 
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infinite number of patterns (limited only by the con-
straints of a given language)—the parsing of a com-
plex entity into pieces that are then integrated into a 
new schema that represents the imitated act (Arbib, 
2002)—has additionally been considered a trait that 
is acquired over time. Children, for example, appar-
ently shift from recognizing and producing words 
holistically (a simple form of imitation, Studdert-
Kennedy, 2002; Arbib, in press) to recognizing 
words as being constructed via a rule-based phonol-
ogy sometime around three years of age or later 
(Carroll et al., 2003; Vihman, 1996); furthermore, 
manipulation of individual parts of words is pre-
sumed to require development of an internal repre-
sentation of phonological structure (Byrne & 
Liberman, 1999). That is, in order to sound out—
i.e., to imitate, rather than mimic—a novel label, the 
child must segment the stream of sound into discrete 
elements, recognize a match between those elements 
and elements (or close approximations) that exist in 
its own repertoire, and then recombine these ele-
ments in an appropriate sequence (see Gathercole & 
Baddeley, 1990; Treiman, 1995; Arbib, in press). 
Moreover, children’s ability to focus on the sounds 
of words and sound elements of words rather than 
solely on word meaning appears to be assisted by 
training in sound-letter associations (Carroll et al., 
2003; Mann & Foy, 2003). Most animals, lacking 
speech, are never exposed to, nor trained nor tested 
on, such issues of phonological awareness or imita-
tion, nor are they expected to have internal represen-
tations of phonemes.2

Evidence now exists for this form of imitation 
(vocal segmentation, phonological awareness) by a 
Grey parrot: Here I show that my oldest speech-
trained subject, Alex, understands that his labels are 
made of individual phonological units that can be 
recombined in novel ways to create novel vocaliza-
tions. Such evidence implies that parrots not only 
use English labels referentially, but also understand 
how such labels are created from independent sound 
patterns. I also suggest that the bird’s ability is in-
deed a learned behaviour, is not uniquely human, 
and is dependent upon having considerable experi-
ence with English speech and sound-letter training. 
My younger birds, lacking such training, do not en-
gage in such behaviour. Of specific interest is that 
this behaviour occurred in contrast to my parrots’ 
customary patterns of label acquisition and demon-
strates the steps the bird goes through in producing 
the imitated label. 

 
2   Method 
                                                 
2 Nonhuman primates have been trained and tested on their abil-
ity to segment human speech sounds (e.g., Newport et al., 2004), 
but not on sound-letter associations or on productive recombina-
tion of speech elements. 

2.1   Subjects 
Subjects were two Grey parrots (Psittacus 
erithacus). Alex, 27 years old, had had 26 years of 
intense training in interspecies communication 
(Pepperberg, 1999); Arthur, 3½ years old, had had 
the equivalent of about a year of comparable 
interspecies communication training. The birds live 
in a laboratory setting at all times. Their housing 
and day-to-day care have been previously described 
(e.g., Pepperberg & Wilkes, 2004). Using the train-
ing technique described below, Alex had previously 
learned to identify, request, refuse, categorize, and 
quantify a large number (>100) of objects referen-
tially using English speech sounds (Pepperberg, 
1999), and Arthur had already acquired four referen-
tial labels (Pepperberg & Wilkes, 2004). 
 
2.2 General Procedures 
Grey parrots in my laboratory generally learn refer-
ential English speech (e.g., to comprehend and pro-
duce labels for objects, colors, shapes; to answer 
questions about concepts of number, category, rela-
tive size, absence, same/different) via training with 
the Model/Rival (M/R) procedure. (Pepperberg, 
1999). This procedure, introduced by Todt (1975) 
and adapted by Pepperberg (1981), involves three-
way interactions between two human speakers and 
the avian student. While the bird watches, two hu-
mans handle an object in which the bird has demon-
strated interest; one (the trainer) then questions the 
other (the parrot’s model and rival for the trainer’s 
attention) by using phrases like “What’s here?”, 
“What toy?”, “What do you want?” etc. The trainer 
rewards correct responses with the object, thus 
demonstrating a label’s referentiality (the connec-
tion between the label and the object to which it 
refers) and functionality (e.g., showing how the la-
bel can be used, as in a request). Humans model 
errors (e.g., poor pronunciation or other errors simi-
lar to the bird’s at the time) and demonstrate the 
consequences of erring by having the trainer say 
“No!”, look away, and briefly remove the object 
from sight; a correction procedure then follows. The 
parrot is also questioned and rewarded for an at-
tempt or scolded for an error. Humans exchange 
roles of trainer and model on a regular basis, thus 
showing that one individual is not always the ques-
tioner and the other the respondent; the bird thus 
learns to interact with all the humans. Without such 
role reversal, a bird interacts with only the human 
acting as trainer (Todt, 1975). By involving the par-
rot in these interactions, the humans can adjust train-
ing to the bird’s level (e.g., successively requiring 
better pronunciation). 

This technique was used to train both Arthur and 
Alex on the label “spool”. Arthur was trained first. 
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After Arthur’s training, Alex began to show interest 
in the object, which he had previously ignored. 
Subsequent to Arthur’s training, Alex, when given 
the item, began to chew it apart or roll it around his 
play stand. We therefore decided to initiate M/R 
training on the object for Alex. 
 
2.3 Phoneme Training 
For several years, Alex had received M/R training to 
associate Arabic letters B, CH, I, K, N, OR, S, SH, 
T with their corresponding appropriate phonological 
sounds (e.g., /bi/ for BI), with the plastic or wooden 
labels as his reward. Although his accuracy was 
greater than chance (generally about 50%, p<.01, 
chance of 1/9), it was never high enough (i.e., 
~80%) to claim he had mastered the task. 
 
2.4 Taping and Sonagraphic Analysis 
Birds were taped with an AKG-70 microphone di-
rectly into an IBM T20 computer; wav. files were 
edited with Audacity and made into sonagrams by 
Dr. Diana Reiss (Wildlife Conservation Society, 
NYC) and Dr. Donald Kroodsma (UMass-Amherst) 
using Raven (Cornell Laboratory of Ornithology). 
An additional sonagram of Alex’s and my formants 
was made by Dr. Ofer Tchernichovski (CCNY) with 
Sound Analysis Pro (http://ofer.sci.ccny.cuny.edu). 

 
3 Results 
The present data for my oldest subject, Alex, were 
obtained after our youngest subject, Arthur, had ac-
quired the label spool to refer to wooden or plastic 
bobbins. The birds’ labels usually appear in sessions 
initially as rudimentary patterns—first a vocal con-
tour, then with vowels, finally with consonants (Pat-
terson & Pepperberg, 1994, 1998) and Arthur’s pro-
duction followed the customary acquisition pattern, 
that is, beginning with /u/ (“ooo”) and ending with a 
distinct, fully-formed “spool” (/spul/; see Figure 1A;  
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Sonagram of (A) Arthur’s “spool”: (B) 
Pepperberg’s “spool” 

 
the IPA transcription is approximate; Arthur used 

more of a whistle than an actual /p/ and vowel 
sound). Although Arthur occasionally mis-identified 
the object as “wool” or “wood” (some of his other 
labels at the time, Pepperberg & Wilkes, 2004), with 
“wood” sometimes being a correct response for the 
object’s material and “wool” being a reasonable 
phonological error, he did not consistently use such 
labels during training and was correct 87.5% on 
testing (Pepperberg & Wilkes, 2004).  

Unlike Arthur, and unlike his usual form of ac-
quisition, Alex, during training after watching Ar-
thur playing with the object, began using a combina-
tion of existing phonemes and labels to identify the 
object: /s/ (trained independently in conjunction 
with the Arabic letter, S) and wool, to form “s” 
(pause) “wool” (“s-wool”; /s-pause-wUl/; Fig. 2).  

 

 
Figure 2: Sonagram of Alex’s “s-wool” 

 
Note that no labels existed in Alex’s repertoire 

that contained /sp/, nor did he have the labels “pool” 
or “pull”, or any other label that included /Ul/; he 
did have labels such as “paper”, “peach”, “parrot”, 
“pick”, etc (Pepperberg, 1999). He retained this “s-
wool” formulation for almost a year of M/R train-
ing, with no change whatsoever in the form of his 
production, although normally only about 25 M/R 
sessions (at most, several weeks of training) are 
sufficient for learning a new label (Pepperberg, 
1999). The third parrot in the lab, Griffin, who was 
just beginning training on phonemes, and who heard 
exactly the same information from Arthur’s ses-
sions, did not exhibit this behaviour. 

At the end of this year-long period, Alex sponta-
neously produced “spool”, perfectly formed (/spul/; 
see Fig. 3), when I rewarded Arthur with the spool 
for producing the label. Thus, Alex added the /p/ 
phoneme and also shifted the vowel toward the ap-
propriate /u/ sound. (Interestingly, both Alex’s and 
my /u/’s are dipthongs, differing slightly from stan-
dard American English productions; Patterson & 
Pepperberg, 1994); note Alex’s vowel changes from 
Fig. 2 to Fig. 3). Because the label “spool” appeared 
without any intermediary form from that of “s-
wool”, no statistical or other analysis of the process 
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of change was possible.3
 

 
 

Figure 3: Sonagram of Alex’s “spool” 
 
Alex’s and Arthur’s productions differ signifi-

cantly in auditory and sonagraphic patterns (see 
Figs. 1A, 3; .wav files on request), so that Alex did 
not simply learn to mimic Arthur’s production; Ar-
thur’s utterance incorporated a avian whistle-like 
quality whereas Alex’s utterance sounded distinctly 
human. Alex’s vocal pattern more closely resembles 
mine (see Fig. 1B), even though I did less than one-
tenth of the M/R training. I had, however, done the 
majority of training on wool almost 20 years earlier 
(Pepperberg, 1999). In general, Alex’s formant 
structures closely approach, although are not identi-
cal to, my own (Fig 4; see Patterson & Pepperberg, 
1994, 1998 for detailed analyses of the similarities 
and differences between Alex’s and my speech acts; 
Alex’s patterns all closely approach mine, although 
identity is impossible by virtue of the difference in 
vocal tract sizes and Alex’s lack of lips). 4
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Figure 4C: Pepperberg’s formants for the /p/ and 

vowel part of “spool”. 
 
 

4   Discussion 
As noted above, parrots usually acquire labels by 
building the sound patterns gradually, beginning 
with vowels (Patterson & Pepperberg, 1994, 1998). 
Such behaviour may simply reflect the relative ease 
with which sounds that are more tonal can be pro-
duced relative to those that require, for example, 
plosive qualities in a subject lacking lips. Neverthe-
less, completely-formed new labels did occasionally 
materialize after minimal training and without overt 
practice (Pepperberg, 1983). In these cases, however 
(e.g., Alex’s production of “carrot” the day after 
asking us what we were eating, or of the novel label 
“banerry” to refer to an apple), such utterances ap-
peared fully-formed, with immediacy and no overt 
practice (Pepperberg, 1999). Even though the label 
generally contained sounds already in the repertoire 
(e.g., for “carrot”, the /k/ from key, the remainder 
from parrot; “banerry” was derived from “banana”-
“cherry”), neither my students nor I could convinc-
ingly argue that Alex had deliberately parsed labels 
in his repertoire to match a targeted utterance or to 
form novel vocalizations. A related argument could 
be made for Alex’s abilities to referentially produce 
A
ure 4 A,B: Closeup of (A) Alex’s fo
el part of “s-wool”, (B) Alex’s form

vowel part of “spool” 
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Beckers, Nelson, and Suthers (2004) fo
 placement and formation of true forman
ions. 

words that form minimal pairs (Patterson & Pepper-
berg, 1998). So, although Alex could state “Want 
corn” versus “Want cork”, or “Want tea” versus 
“Want pea” (and refuse the alternatives), which 
suggests an ability to segment phonemes from the 
speech stream (somewhat like nonhuman primates; 
B
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ession with the 
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s. 
r discussion of 
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see Newport et al., 2004), we could not claim that he 
deliberately parsed these labels when learning to 
produce them. 

That is, we could not claim that he acoustically 
represented labels as do humans with respect to pho-
netic categories and understood that his labels are 
made of individual elements that can be recombined 
in various ways to produce new ones. Possibly 
production of “carrot” was potentiated by his al-
ready being able to manipulate his vocal tract to 
produce such sounds, or the new labels were simply 
created from phonotactically probable sequences 
involving beginnings and ends of existent labels 
(Storkel, 2001), or, in the case of “banerry”, from 
semantic relations. Moreover, data (Patterson & 
Pepperberg, 1994, 1998) demonstrating that he (a) 

100

mailto:impepper@media.mit.edu


recognizes small phonetic differences (“tea” vs 
“pea”) as meaningful, (b) produces initial phonemes 
differently depending upon subsequent ones (/k/ in 
“key” vs “cork”), and (c) consistently recombines 
parts of labels according to their order in existent 
labels (i.e., combines beginnings of one label with 
the ends of others—after analyzing over 22000 vo-
calizations, we never observed backwards combina-
tions such as “percup” instead of “cupper/copper”; 
Pepperberg, Brese, & Harris, 1991), merely imply 
but did not prove that he engages in such top-down 
processing (Ladefoged, 1982).   

Even the two closest behaviour patterns previ-
ously reported that suggest some form of label pars-
ing (Pepperberg, 1990; Pepperberg et al., 1991), 
which both involve solitary sound play, differ from 
the bootstrapping described here. In one behaviour, 
Alex produced strings such as mail chail benail in 
private practice before producing the targeted, 
trained label nail (Pepperberg et al., 1991). The nail 
situation differs from bootstrapping in that the com-
binations of phonemes did not seem to be a deliber-
ate attempt to create a new label from specific sound 
patterns that resembled the target, but rather to be 
deliberate play within a range of existent patterns in 
an attempt to hit on a correct pairing that matched 
some remembered template. That is, Alex’s behav-
iour demonstrated an understanding of the combina-
tory nature of his utterances, but did not show that 
he understood how to segment the novel targeted 
vocalization exactly, then match its components to 
those in his repertoire in order to create trained la-
bel. In the second behaviour (Pepperberg, 1990), 
Alex babbled strings such as grape, grain, chain, 
cane in the absence of specific objects but in the 
presence of his trainers. Although these labels could 
quickly be referentially mapped onto physical ob-
jects, we had no reason to believe that production of 
such babbled strings was intentional, other than to 
gain the attention of trainers. Note that with the ex-
ception of grape, such labels would not have been 
used in the laboratory. The rhyme awareness dem-
onstrated in these behaviour patterns, although sepa-
rate from phoneme awareness, is still considered 
closely aligned to children’s language skills (see 
Mann & Foy, 2003), and again supports the argu-
ment that Alex views his labels as being constructed 
from individual sound patterns. 

The current data, when taken in combination 
with previous evidence, however, suggests that at 
least one parrot, much like a child, can actually ap-
ply a phonological rule derived from knowledge of 
its repertoire: recognize that sounds such as “car” 
and “pet” can be recombined for use in identifying 
and creating a totally distinct object—carpet—
whose label has no referential correlation to the 
original utterances. That is, Alex appeared to form 
the closest match based on segmentation and on-

set+nucleus+rhyme (Storkel, 2002). Arguably, the 
data presented here could be considered stronger if 
Alex had had the labels pull or pool in his repertoire 
and had initially produced either “s (pause) pull” or 
“s (pause) pool”. Note, however, that /p/ is particu-
larly difficult for a parrot, lacking lips, to produce 
(Patterson & Pepperberg, 1998); Alex’s first at-
tempts at “peach”, for example, sounded like 
“cheech” (Neal, 1996), and Patterson and I (1998) 
have suggested that he may be using a form of eso-
phageal speech for /p/. I thus believe that his pro-
duction of “s-wool” is actually more important, be-
cause, not having exact matches, he took the closest, 
readily-available sounds in his repertoire (i.e., 
“wool” is the only label out of approximately 50 
documented in his repertoire that resembles “spool”) 
to form the initial attempts at a novel vocalization, 
and by so doing, made the process transparent to his 
human trainers. 

Another interesting issue exists concerning 
Alex’s behaviour, and addresses the issue of 
whether he has simply shown a sensitivity to sound 
similarity. Exactly because of the difficulty of pro-
ducing /p/, Alex may have used “s-pause-wool” as a 
way of initiating the vocalization such that two 
known utterances provided the overall structure and 
the pause was a place filler, somewhat like that oc-
casionally used by young children, until he could 
learn how to insert the /p/ and adapt the vowel. Spe-
cifically, Peters (2001) suggests that children use 
certain sounds as fillers (a “holding tank”) to pre-
serve the number of syllables or the prosodic rhythm 
of the target vocalization until the standard form is 
learned (note also Leonard, 2001). Even though 
Alex used a pause, rather than another phoneme, his 
behaviour suggests (but, of course, does not prove), 
that he had an awareness of the need for something 
additional and somewhat different to complete the 
vocalization. Simply omitting or closing the gap—
and responding on the basis of sound similaritly—
would have produced /swUl/ (“swull”), not /swul/ 
(“swooool”). 

One might, of course, question whether this sin-
gle instance of combinatory behaviour qualifies as 
evidence of phonological awareness in a nonhuman. 
Arguably, Alex may have applied a phonological 
rule for combining utterances without truly under-
standing the basis for the rule. Such an argument 
could, indeed, be made for the labels that he pro-
duced in the absence of referents (i.e., in apparent 
sound play, Pepperberg, 1990), but the specificity 
and consistent use of the “s-wool” combination ar-
gues against such an alternative explanation, as well 
as against that of “babble-luck” (a fortuitously cor-
rect but accidental combination, Thorndike, 1943). 
Here, Alex had to have discriminated and extracted 
the appropriate speech sounds of the target label 
“spool”, generalized these to the closest related 
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items in his repertoire, fit the existent sounds to-
gether—apparently including a pause to maintain 
spacing for an absent sound—in a particular serial 
order so as to add to his lexicon, and additionally 
had to link the novel phonology referentially with a 
specific item. The uniqueness of the behaviour (i.e., 
the single reported instance) is also not remarkable: 
For the past several years, Alex’s training has con-
centrated on concept, rather than label, acquisition, 
and he has had few opportunities to engage in novel 
label learning. Interestingly, in recent training on the 
label “seven”, his first attempts have been 
“ss….nnnn”, which also suggest some phonological 
awareness. 

It is now possible to return to the initial argu-
ment, that Alex’s vocal segmentation provides evi-
dence for true imitation, rather than mimicry. ‘Mere’ 
mimicry can be defined as the purposeless duplica-
tion of an act (for a bird, it would be rote reproduc-
tion of human speech without referential content), 
behaviour that lacks cognitive complexity and inten-
tionality. But if an act is performed because the imi-
tator understands its purpose—to reach a goal, be it 
an object or intentional communication, otherwise 
impossible to obtain—then the act is intentional, 
complex, likely indicates cognitive processing, and 
provides evidence for true imitation. As stated in the 
introduction, Alex’s data demonstrate that he under-
stands that his existent labels are comprised of indi-
vidual units that can intentionally be recombined in 
novel ways to create referential, novel vocalizations. 

Whether such data can be used to argue for a 
parrot’s understanding of a phonetic ‘grammar’ 
(e.g., Fitch  & Hauser, 2004) is unclear: Although 
the data suggest that Alex can generate novel mean-
ingful labels from a finite set of elements, the rule 
system he demonstrated was relatively limited. Nev-
ertheless, the data presented here add another in-
triguing parallel between Alex’s and young chil-
dren’s early label acquisition (Pepperberg, 1999). 
For children, manipulation of individual parts of a 
word implies the existence of internal representa-
tions of words as divisible units, and normal chil-
dren proceed in a fairly standard manner from bab-
bling to full language. Alex does not have and will 
not likely reach the level of any young child—that 
is, in terms of grammar go beyond use of simple 
sentence frames such as “I want X” and “I wanna go 
Y”, where X and Y are appropriate object or loca-
tion labels—but any strides that a bird makes toward 
language-like ability—such as, for example, com-
prehending recursive conjunctive sentences5 or 

                                                 
5 For example, given various trays each holding seven objects of 
several  colors, shapes, and materials, Alex can respond to que-
ries of “What object/material is color-A and shape-B?” versus 
“What shape is color-A and object/material-C?” versus “What 
color is shape-B and object/material-C?” (Pepperberg, 1992). 

demonstrating the kind of vocal segmentation de-
scribed here—helps us understand the similarities 
and differences between humans and non-humans.  

These findings may also be of use in two ways 
for computer scientists who are trying to develop 
speech skills in their atavars and robots. First, as 
Patterson and Pepperberg (1994, 1998) have demon-
strated, Alex produces most of his utterances with 
little variation in his first formant, and most of the 
variation in his second (and possibly third). Thus 
speech modelling may be simplified if based on 
avian, rather than human, productions (note 
Schwartz, Boë, & Bessière, 2001). Second, Alex’s 
pattern of acquisition might suggest how approxi-
mations and iterations can be used for the construc-
tion of novel speech sounds from existent pro-
grammed vocalizations, providing additional assis-
tance to existent algorithms (see Higashimoto and 
Sawada, 2002; Nishikawa et al., 2002; Yoshikawa et 
al., 2003a, b).  

In sum, I suggest that Alex’s training on both 
referential labeling and sound-letter association has 
engendered levels of phonological awareness, vocal 
segmentation, and imitation that need to be ad-
dressed when arguing for (a) human uniqueness and 
(b) the exclusive use of humans as the bases for 
computational models. 
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Abstract 

Recent behavioural and neuroimaging studies found that observation of biological action, but not 
of robotic action, elicits imitation and activates the ‘mirror neuron system’ in the premotor cortex 
(Kilner, Paulignan, and Blakemore, 2003; Castiello, Lusher, Mari, Edwards, and Humphreys, 
2002; Meltzoff, 1995; Tai, Scherfler, Brooks, Sawamoto, and Castiello, 2004).  This implies that 
the actions of other people and of mechanical devices are processed in categorically different 
ways.  However, if the mirror system develops through learning (Heyes, 2001), generalisation 
should result in  some activation when observing robotic action.  We asked subjects to perform a 
prespecified action on presentation of a human hand or a robotic device in the final posture of the 
same action or the opposite action (Heyes, Bird, Johnson, and Haggard, 2004; Stürmer, 
Ascherschleben, and Prinz, 2000).  Both the human and the robotic stimuli elicited automatic 
imitation: the prespecified action was initiated faster when it was cued by the same action than 
when it was cued by the opposite action.  However, even when the human and robotic stimuli 
were of comparable size, colour and brightness, the human hand had a stronger effect on 
performance.  These results point to the shape of the human hand as a source of features 
distinguishing human from robotic action.  They also suggest, as one would expect if the mirror 
neuron system develops through learning, that to varying degrees both human and robotic action 
can be ‘simulated’ by the premotor cortex (Gallese and Goldman, 1998). 

 
1    Introduction 

A number of studies have shown that action 
perception can influence action production.  For 
example, in a reaction time (RT) paradigm Brass, 
Bekkering, and Prinz (2001) asked participants to 
execute a prespecified action (moving their index 
finger up or down) as soon as they saw another 
person’s index finger begin to move up or down.  
An ‘automatic imitation’ effect was obtained such 

that upward movements were executed faster in 
response to upward movements than to downward 
movements, and vice versa for the execution of 
downward movements.  Thus, even when the 
executed movement is simple, and has been 
prepared in advance, action perception can influence 
action production.  
 
Interactions between action perception and 
production are thought to be mediated by structures 
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in the premotor and parietal cortices.  The most 
widely-cited evidence in support of this view comes 
from electrophysiological studies of ‘mirror 
neurons’ in the premotor cortex (e.g. Gallese, 
Fadiga, Fogassi, and Rizzolatti, 1996; Rizzolatti, 
Fadiga, Gallese, and Fogassi, 1996) and inferior 
parietal lobule (Fogassi, Gallese, Fadiga, and 
Rizzolatti, 1998; Gallese, Fogassi, Fadiga, and 
Rizzolatti, 2002) of the macaque monkey.  These 
cells fire both when the monkey performs an action 
and when it watches another monkey perform the 
same action.  Functional magnetic resonance 
imaging (fMRI) has indicated areas with similar 
properties in the human premotor cortex and parietal 
lobes (e.g. Iacoboni et al., 1999; Buccino et al., 
2001).  
 
Evidence is accumulating that activation in ‘mirror 
neuron’ circuits, and behavioural phenomena like 
automatic imitation, occur when the stimulus action 
is biological, but not when it is robotic.  For 
example, Castiello (2002) required participants to 
reach out and grasp an object after observing a 
human or a robot hand reaching for and grasping a 
similar object.  When the stimulus hand was human, 
but not when it was robotic, the size of the object 
grasped by the stimulus hand influenced aspects of 
participants’ action such as maximum grip aperture 
and time to reach peak velocity.  Furthermore, using 
positron emission tomography (PET), Tai et al. 
(2004) found significant activation in the left 
premotor cortex when participants observed 
grasping actions performed by a human model, but 
not when the same actions were performed by a 
robotic model.  
 
These results can be interpreted in at least two ways.  
First, they may indicate that the actions of other 
people and of mechanical devices are processed in 
categorically different ways.  If this hypothesis is 
correct, one would not expect observation of robotic 
action to give rise to automatic imitation even when 
the robotic stimuli are as perceptually salient as 
human action stimuli.  Second, results such as those 
of Castiello (2002) may indicate that, whereas both 
human and robotic movement stimuli give rise to 
motor activation, human movement stimuli typically 
receive more motor processing than robotic 
movement stimuli.  According to this hypothesis, 
the difference between the two stimulus types is 
quantitative rather than qualitative.  If it is correct, 
equally salient human and robotic movement stimuli 
should both elicit automatic imitation, and the 
human stimuli should have a stronger effect on 
performance.  
 
The Associative Sequence Learning (ASL) model of 
imitation supports the second, quantitative 

hypothesis over the first, qualitative hypothesis.  It 
suggests that the capacity to imitate is learned in a 
Hebbian fashion; through experience which causes 
concurrent activation of visual and motor 
representations of the same action.  Hand 
movements are perceptually transparent (Heyes and 
Ray, 2000), and therefore self-observation is likely 
to provide much of the experience contributing to 
hand movement imitation.  However, insofar as 
robotic hands are visually similar to human hands, 
one would expect them to benefit from 
generalization of the ‘training’ received during self-
observation.  
 
The present study aimed to determine whether 
human and robotic stimulus hands, matched on a 
range of physical dimensions, would both elicit 
automatic imitation, but to different degrees.  
 
2    Procedure and Results 
 
We presented participants with four hand types; 
human naturalistic, human schematic, robotic 
naturalistic and robotic schematic (see Figure 1).  In 
order to control kinematic variables we used static 
rather than moving stimuli.  In addition, schematic 
stimuli were matched for size, luminance and 
colour, and only differed in shape.  Naturalistic 
stimuli were matched as far as possible on these 
dimensions.   
 

C D

A B

C D

A B

 
 Figure 1.  Experimental stimuli: A human 
naturalistic, B human schematic, C robotic 

naturalistic, D robotic schematic.  Images depict 
hand in a neutral posture (warning stimulus).   

 
Within a block, participants made the same response 
(opening or closing) in every trial.  They were 
instructed to execute this movement as soon as a 
hand in a neutral posture on the computer screen 
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(the warning stimulus) was replaced by an opened 
or closed hand (the imperative stimulus).  On 
compatible trials, the posture of the stimulus hand 
matched the end-point of the participant’s response, 
and on incompatible trials, the stimulus hand was 
presented in the alternative posture.  To control for 
spatial compatibility effects, the orientation of the 
participant’s responding hand was orthogonal to that 
of the stimulus hand.  Reaction times were recorded 
using EMG from the first dorsal interosseus muscle 
of the right hand.  
 
The results showed that responding was faster on 
trials where stimulus movement type was 
compatible with response movement type, 
supporting previous findings of automatic imitation 
(e.g. Brass, Bekkering, and Prinz, 2001).  There was 
a larger effect of automatic imitation with human 
stimuli than with robotic stimuli.  This finding 
supported previous research suggesting human 
stimuli activate mirror systems to a greater extent 
than robotic stimuli (e.g. Tai et al., 2004).  As some 
of our human and robotic stimuli were matched on 
all physical dimensions other than shape, the shape 
of a hand seems to be sufficient to modulate 
automatic imitation.  
 
However, we still observed some automatic 
imitation with robotic hand stimuli.  This implies 
both human and robotic action can be ‘simulated’ by 
the premotor cortex to varying degrees (Gallese et 
al., 1998), and is consistent with what one would 
expect if the mirror neuron system develops through 
learning (Heyes, 2001).  
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Abstract

We consider the issues that arise from an examination of the continuum between two social learning
paradigms that are widely used in robotics research: (i) following or matched-dependent behaviour
and (ii) static observational learning. We use physical robots with minimal sensory capabilities and
exploit controllers using neural network based methods for agent-centred perception of model angle
and distance. The robot is first trained to perceive the dynamic movement of a robot model carrying
a light source, then the robot learns by observing the model demonstrate a behaviour and finally it
attempts to re-enact the learnt behaviour. Our results indicate that a dynamic observation using rotation
performs significantly better than static observation. However given the embodiment of the robot a
dynamic strategy using both rotational and translational movement becomes more problematic. We
give reasons for this, discuss lessons learned for combining these types of social learning and make
suggestions for requirements for imitator robots using dynamic observation.

1 Introduction

In this paper we build on our previous research (Saun-
ders et al., 2004) in considering the issues that
arise from an examination of the continuum be-
tween two social learning paradigms that are widely
used in robotics research: (i) following or matched-
dependent behaviour and (ii) static observational
learning. Our motivation in examining these issues
is the belief that an understanding of the mecha-
nisms underlying social learning should be consid-
ered as a prerequisite for building adaptive and intel-
ligent robots. We believe that social learning leads
to an acceleration of the acquisition of intelligent be-
haviour (Zentall, 2001; Galef and Heyes, 1996; Daut-
enhahn and Nehaniv, 2002) with the promise of eas-
ier robot task acquisition, increased behavioural com-
plexity and ultimately some form of cultural trans-
mission (Alissandrakis et al., 2003). In this respect
we focus on the mechanisms supporting Imitation1

with experiments with physical robots in an attempt
to simplify and focus on key aspects of imitative
processes. The background of this paper is an on-

1We take Thorndike’s 1898 classical definition of imita-
tion (Thorndike, 1898) as “ learning how to do something by seeing
it done” but extended to include non-biological agents (Mitchell,
1987).

going investigation of social learning and the in-
teraction between both human/robot and robot/robot
pairs to understand the social dimension of imita-
tive behaviour. The perspective of both the imi-
tator and the imitatee and the problems of percep-
tion and action encountered by both are considered.
Our starting point is the different imitator perspec-
tives which are widely applied in paradigms used
in robotics imitation research, namely following be-
haviour (Hayes and Demiris, 1994; Billard and Daut-
enhahn, 1997; Dautenhahn, 1994) and static observa-
tion behaviour (Kuniyoshi et al., 1994; Gaussier et al.,
1997; Bentivegna and Atkeson, 2002; Schaal, 1997;
Matarić et al., 1998; Alissandrakis et al., 2003).

From a psychological/ethological viewpoint fol-
lowing is more rightly considered as matched-
dependent behaviour (Zentall, 2001). The imitator
observes and immediately matches the behaviour of
the model as it is being performed, staying close to
the model. For example rats can be trained to follow a
lead rat through a maze which they then learn to nav-
igate (Miller and Dollard, 1941). The rats may have
no idea of intentionality of the lead rat and can be
trained to follow other salient (including non-animal)
stimuli, this behaviour is sometimes called discrimi-
nated following.
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Likewise, static observation by the imitator who
stays at a fixed location is related to the ethologi-
cal/psychological notion of observational learning.
Here the behaviour of the demonstrator is copied after
it is observed carrying it out. Typically the demon-
strator and imitator operate within a shared context
but at a distance from one another. For example
Norway Rats apparently develop food preferences by
smelling the breath of a conspecific (Galef and Heyes,
1996), without reference as to whether the demon-
strating rat becomes ill or dies. These examples hint
at some interesting but not widely researched fea-
tures of imitative behaviour in the relationship be-
tween static observation of, and active participation
in, an event to be imitated.

In our previous research (Saunders et al., 2004)
we considered the extremes of a purely reactive fol-
lowing behaviour and contrasted that against a static
observational behaviour using some simple exper-
iments with Khepera miniature robots. Two con-
trollers were designed to allow either a reactive fol-
lowing behaviour or a static observation behaviour.
Each robot either followed or statically observed an-
other robot making various geometric shapes over
varying terrain. In both cases the robot could learn
the observed behaviour and attempt to re-enact it. The
model was perceptable by the imitator due to place-
ment a small light bulb on top of the model. No
explicit communication was permitted between the
model and imitator; in fact the sensory information
was basically the perceived brightness of the moving
light bulb. The research results from these experi-
ments identified trade-offs that are summarised in the
spectrum table shown in figure 1.

The results indicated that there was a clear trade-
off between positional accuracy obtained from static
observation and the advantages of direct perception-
action coupling available from following. This lack
of precision during following we called impersistence
to reflect the fact that the robot is always reacting to
the latest sensor reading and not persisting to meet
the goal signalled by the previous reading. We be-
lieved that the accuracy available from static obser-
vation was unsurprising, given that static observation
allows the design of the robot controller to concen-
trate exclusively on angle and distance perception and
apply more complex and engineered methods to this
task. We believed that similar complexity in observa-
tional systems were also engineered into most other
social learning robotics experiments.

The relative simplicity of the following paradigm
also hid some key advantages, in that the robot was

Spectrum of TradeSpectrum of Trade--Offs for Following vs. Observational LearningOffs for Following vs. Observational Learning

Following Observation

Computational Complexity

Sharing Context with Model

Perspective

Sensory Motor Coupling

Impersistence

Model Avoidance

May Require co-operation

Requires sophisticated perception

Lack of sensory feedback

Conversion from very different 
sensor values to motor outputs

highlow

partial

transformed

“seeing”

shared

direct

“feeling”

tight distant

Figure 1: The table summarises the key aspects re-
vealed by the previous research experiments (Saun-
ders et al., 2004) with extremes of each aspect shown.
Comparative costs are shown in the boxes. The
current research considers mixed approaches which
might allow the balance of these costs and benefits.

able to directly map its perceptions against its motor
actions. It was thus able to learn much about the
environment directly and relatively cheaply. How-
ever to achieve positional accuracy, more complex
observational algorithms were required, but observa-
tion alone was insufficient to completely assess the
physical complexities of the environment. We said
that there may be an argument for suggesting that
observation could be most effective after a following
episode, i.e. observation could fine-tune already
stored movement patterns. Similarly there may be an
appropriate time to ‘see’ (observe from a distance)
as opposed to ‘feel’ (follow, experiencing the same
context) in social learning. A mixed approach
may be valuable, this approach corresponding to
intermediate positions or switching in the spectrum
table shown. One could imagine for example cases
where the observation is less static e.g. several
follow-observe-follow cycles, or where a series of
static observations are made prior to each episode of
following behaviour.

Dynamic Observation. In this paper we consider in
more detail some of the effects of allowing a more dy-
namic observational approach. We study the quality
of the imitation attempt from the imitator’s perspec-
tive in two experiments using either an ‘observe and
rotate’ or an ‘observe and move’ strategy to match the
movement patterns of the model. These successively
augment static observation, respectively, by adding
orienting rotational changes to allow the imitator to
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track the model (observe and rotate) or by adding ro-
tation and translation.

2 Experimental Overview

For our experiments we use a controller previously
designed (Saunders et al., 2004) to investigate the

imitation of movements using static observation
and extend it to provide a mechanism to investigate
dynamic imitation. All experiments are carried out
in real-time on physical robots (i.e. simulation is not
used) on a desktop in a typical busy academic envi-
ronment with light levels varying during the day.

Figure 2: The picture shows the experimental plat-
form. The Khepera acting as a model has a small
bulb placed on top of it. The imitator is shown track-
ing the model which is tracing out a triangle.

We examine the behaviour of the imitator when
imitating various geometric shapes made by the
model. We consider intermediate positions in the
spectrum table in two experiments to examine the
effects of a mixed observation and movement exe-
cution strategy. Both experiments involve dynamic
observation which combines both observation and
movement.

Observe and Rotate. The first experiment extends
the static observational perspective by allowing the
robot to alter its orientation so as the better exploit it
sensory facilities. The embodiment of the Khepera
robot is such that the majority of the light sensors are
in front of the wheels, with two sensors at the back.
The estimation of distance is therefore more accurate
when the robot is able to employ all of its front facing
sensors as it is receiving more information from the
environment. To ensure that these sensors are in an
optimal position we program the circular Khepera
robot to rotate in place orienting toward the model.

The rotation is such that the imitator will attempt
to directly face the model if the model’s angle with
respect to the imitator exceeds a given threshold.
However, if the imitator has to rotate to achieve this
then all subsequent observations must be converted
back to the original reference frame in order to replay
the imitation. To achieve this conversion, accuracy
in measuring how far the robot has turned is critical
to this process. We tested threshold angles of 0, 30,
60 and 90 degrees. In both this and the experiment
described below the model was preprogrammed to
make 4 geometric shapes. The first was a 10cm
radius circle around the imitator, the second a 10cm
circle 5cm in front of the imitator. The third and
fourth a triangle and T-Shape 5cm in front of the
imitator.

Observe and Move. The second experiment allows
the robot to record a sequence of observations of
the model and then attempt to use a given subset of
these observations to imitate the model’s movement
sequence. Once the imitator has completed this part
of the imitation it recommences observing.

In a two-dimensional parameterisation of the spec-
trum, different social learning mechanisms are given
by varying both the number n of observations and
the number m of movements made by the imitator. A
single observation is an estimation by the imitator of
the model’s angle and distance from the imitator. A
movement is the transformation and execution by the
imitator of observations to motor-commands in order
to achieve the same effect.

These mechanisms however present a series of
challenges due to the fact that after each movement
sequence the robot’s memory of previous observa-
tions will be from a different perspective from the
current observation set. This is because the imitator,
after partially replaying the imitation (by transform-
ing a subset of the observed vectors) will find that
the remaining observations need to take account of
the new observation position. Furthermore, the new
observation position may not be optimal for accurate
readings, therefore a rotation (as in experiment 1) will
be necessary. To then replay the next part of the imi-
tation the effect of the rotation must be reversed and
subsequently a transformation of the observations re-
performed.

3 Controller

The controller used in both experiments relies on
computing the distance and angle from the imitator
to the moving model and storing these observation
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points as a list of two element vectors. Prior to
observing, the robot first learns how to measure
angles and distance.

Learning to Measure Angles. The robot is first
trained to accurately compute the angle of the light
from the centre of the imitator. A number of meth-
ods were evaluated including using a light com-
pass (Nehmzow, 1993), or computing the angle by
using vector summation of the inputs to each of the
light sensors (Arkin, 1998). However both of these
methods were not accurate and suffered from incor-
rect readings especially when none of the robot’s sen-
sors were directly facing the light. A new method,
which we call environmental sampling, was grounded
in sensory experience and is to some extent nearer to
a biological solution: the robot is allowed to learn
about light angles simply by observing them. As the
Khepera is a circular robot it rotates in a circle in the
presence of the model. It detects when the circle is
complete by polling its wheel encoders and stopping
when the appropriate value has been exceeded. (Dur-
ing the turn it reads its light sensors every 200ms. A
robot turning at 8mm/s would typically poll it sensors
65 times.) As the speed of the turn is constant the
time interval between readings can thus be converted
to an angle. Each of the sensor readings are then nor-
malised. This has two effects, firstly that of making
distant readings of angle equivalent to closer read-
ings, and secondly allowing these values to be loaded
directly as weights into a neural network (a counter-
propagation network (Hecht-Nielson, 1988)). This is
a fully connected feed-forward three layer network.
The first layer takes the normalised input of the 8 light
sensors,

the number of middle layer neurons is set to the
number of times the robot was able to poll its sensors
and the final layer used to output the conversion of
these values to angles. Using this technique has a
number of advantages. Firstly that the network can
be built as the environment is observed, secondly
there are no additional training steps i.e. there is no
further training of the neural network, thirdly the size
of the network is directly related to the internal rota-
tion speed, sensor modality and sensor polling time
of this particular robot and finally that the method is
partially resilient to sensor failure. There are some
biological observations which may show similar
(though not equivalent) mechanisms in animals. For
example young bees appear to record the image of
their hive from many angles and positions around it:
they fly in and out of the hive varying their circular
flight path each time (Murphy, 2000).

Learning to Measure Distance. For distance mea-
surements various mechanisms were also assessed. A
first approach was to use triangulation, exploiting the
fact that accurate angle measurement was now pos-
sible. The approach measured the light angle from
the model, moved the imitator a fixed distance and
then read the new angle. This allows the computation
of the original distance using the two angles and the
travelled distance. However this mechanism was un-
reliable for two reasons, firstly that, over small move-
ment distances (which minimised errors in the odom-
etry readings from the wheel encoders), the derived
angle would be small and tiny errors in the angle mea-
surement would result in an amplified error in the dis-
tance computation, secondly if the model was mov-
ing, the measurements/movement combination of the
imitator could never be fast enough to resolve the po-
sition of the model accurately. An alternative method
based on environmental sampling was used for the an-
gle computation, the light sensors being summed as
vectors as the robot turned. This exploited the fact
that sensors directly facing the light would have a
larger effect on the vector magnitude than those fur-
ther away. The robot was trained by rotating at in-
creasing 1cm distances from the light source. The
vector magnitude was then held in a lookup table in-
dexed by angle and distance. Using this method gave
a reasonable distance accuracy to about 25 cm from
the robot at an angle between approximately 30◦ to
150◦ in front of the robot. However, outside these
parameters the distance accuracy was very poor.

Following these procedures the robot can compute
both angle and distance without further training.

Observing Angles. After the learning phase is
complete the network operates by feeding a nor-
malised sensor vector to the input layer and receiving
the angle from the output layer. The network is
thus operating as a pattern matching mechanism.
Automatic interpolation between observed values is
achieved by setting the middle layer ‘winning nodes’
to a value greater than 1.

Observing Distance. During the observation phase
the angle is computed, followed by magnitude of the
vector summation2, the two values providing the key
to the lookup table to yield distance.

Altering the Angle of Observation. In both exper-
iments the robot collects a set of angles/distances
from itself to the model whilst the model is moving.

2Refer to (Saunders et al., 2004) for details.
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The imitator cannot poll its sensors when it itself
is moving. Thus in a fixed time period the number
of possible observations when the imitator is not
moving will be higher than when the imitator is
moving. In the first experiment the imitator can
either not move or rotate to face the model once a
threshold angle has been exceeded (see figure 3). The
lower the threshold angle the greater the rotational
movement of the robot to face the imitator when
the angle is exceeded. The higher the angle, the
smaller the rotational movement, but the robot will
move more often. In our previous research we had
fixed the imitator position and allowed it to observe
the moving model. The model was at all times in
front of the imitator and therefore within range of
angle/distance computation mechanism. We now
allowed the model to be both in front of the imitator
and at any angle around the imitator. By varying
the rotation threshold we can then examine both the
effect of rotational movement size and the effect of
frequency of movement on the imitation attempt.

Time Averaging and Way Points. In both exper-
iments the recorded observations are smoothed us-
ing a simple moving average. The smoothed trajec-
tory is then thresholded to yield a set of way points.
This procedure is necessary for two reasons. Firstly
to eliminate the effect of noisy observations and sec-
ondly to avoid two observation points being too close
to one another - this closeness causing large and po-
tentially damaging changes in the robot’s motor sys-
tems if replayed directly. The imitator uses the de-
rived way points to then imitate the model’s trajec-
tories. In the second experiment this procedure is
only applied when computing the required move-
ment. Any unused observations (which result from
the movement index being less than the observation
index - see experiment 2 below), remain unmodified
as these may be subject to geometric transformation
following the actual movement of the imitator.

4 Experimental Results

In our experiments we compared imitation behaviour
on four simple patterns. These were a triangle, a cir-
cle enclosing the imitator, a circle observed ahead of
the imitator and the letter T. The triangle was chosen
because of the sharp changes of direction at each ver-
tex, the circle because of its continuous shape and the
letter T because of the need to reverse direction and
remap the shape. We emphasise that our goal was
not to design robots that perfectly imitate geometric
shapes but rather investigate relevant aspects of the

imitation attempt using a more dynamic approach in
observational learning.

4.1 Experiment 1 - Dynamic Observa-
tion with Rotation Only

Details of Set-up. In each case the imitator is placed
at the centre of the experimental platform (shown as
point 0,0 on the graphs in figure 4) facing forward
(at 90◦ along the positive Y-axis). The model is
pre-programmed to move according to the prescribed
shape. A threshold rotation angle is then set and the
imitation run commenced for a fixed period. The
threshold supplies a range of values around the front
of the robot. For example, setting a threshold of say
60◦ means that if the imitator perceives the model
within a forward range of 60 − 120◦ (see figure 3)
no rotation will be applied. If however the model

60º

Robot remains static if model perceived within this viewing angle

Threshold

60º
Threshold

Robot rotates if model perceived in angles in excess of this angle

0°180°

90°

Figure 3: Rotation Threshold. In this example the im-
itator will not move at values between 60◦ and 120◦.
Between 61◦ and 121◦ the imitator will rotate to face
the model.

moves to, say, 50◦ the imitator will rotate so that the
model is directly in front of it, and thus be, from the
imitator’s new perspective, at 90◦. The higher the
threshold angle (to the limit of 90◦) the more often
the imitator will move to match the model but it will
rotate by a smaller amount. If the threshold is set
to zero, then the imitator will only move when the
model is outside the range 0 − 180◦, however the
robot will then rotate by at least one quarter of its
circumference.

Results. Figure 4 shows the results from a test with
the enclosing circle. The robot is placed facing for-
ward along the positive Y-axis. After the run the
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Figure 4: Dynamic Observation with Rotation Only.
Imitative Behaviours for an enclosing circle. The first
diagram shows the result with no rotation, the final
four graphs show rotation at 0◦, 30◦, 60◦ and 90◦ de-
grees thresholds. The continuous line shows the path
of the model, dotted line the imitator observations,
crosses the smoothed observation and large dots the
way points which are replayed by the imitator.

imitator robot attempts to re-enact the observed be-
haviour. The large dots on the graphs show the way
points, these being the path that the imitator will take
when replaying the imitation. The first graph shows
the imitation when no rotation has been applied and
thus where only static observation is taking place. As
expected at angles outside the angle/distance range
the imitation is poor. The second graph shows the
first example of a dynamic observation with the imi-
tator moving only when the model moves outside the
range 0 − 180◦. Two extreme observation points are
shown reflecting the inability of the distance/angle
sensor to correctly measure the distance. However,
once the 180◦ or 0◦ angle is exceeded the robot turns
and starts again to make reasonably accurate read-
ings. On imitation replay the outlying readings are
smoothed away. The situation is further improved at
30◦ when the sensory apparatus is always in range but
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Figure 5: Dynamic Observation with Rotation Only.
Imitative Behaviours for T-Shape The two graphs
show results with rotation at 60◦ and 90◦ thresholds.

the number of moves small. However at 60◦ and 90◦

the situation is ambiguous. We would suggest that the
imitation is slightly less accurate. This may be due to
the increasing effect of odometry errors as the num-
ber of moves increases. This is especially true at 90◦

where there would be a small movement for every 1◦

change on the model’s position.

Results for the forward circle and triangle (not
shown) were less marked, however the robot was
subject to less movement due to the constrained
angles presented by both shapes. The T-Shape
however is more interesting (see figure 5). The
nature of the shape meant that at 0◦, 30◦ and 60◦ the
imitated trajectories were broadly similar, however
at 90◦ the robot was affected again by odometry drift
and a similar worsening of readings ensued.

Analysis. These effects show some of the advantages
and disadvantages of a tracking mechanism described
above. Observing whilst not moving (static observa-
tion) has the key advantages of being fast and thus
able to make more observations in a given time pe-
riod (given the sequential nature of the observe/move
scenario presented here). There are no odometry con-
cerns as the imitator is not moving and the energy
required would be lower than for a moving imitator.
The major disadvantage is of course that the model
can move into imitator blind spots. The advantages of
the tracking imitator (dynamic observation with rota-
tion only) is that blind spots can now be seen, how-
ever this is offset by the disadvantages of increasing
odometry errors as more movement is carried out, a
higher energy cost, and more complex computation
as reference frame adjustments are continuously re-
quired. However at a particular movement/rotation
ratio, which for this robot appears to be around 30◦,
there appears to be a point where accuracy is opti-
mised. This suggests an clear strategy - expend en-
ergy and computational costs by moving only when
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Imitation Sequence with 2:1 observation:move Index

1 1

1

Imitator Model

1

1 2

1 2

3

2

3

4

Imitator observes Model at 1

Imitator observes Model at 2

Imitator observes Model at 3

Imitator duplicates Model (1-2)

Model simulatnously moves to 4

Imitator observes Model at 4

Imitator

Imitator

Model

Model

Model2Imitator

2

3

Imitator duplicates Model (2-3)

Model simulatenously moves to 1

Imitator observes model at 1

ModelImitator

3 4

1

1 2

1

1 2

3

Imitator duplicates Model (3-4)

Model simultenously moves to 2

Imitator observes model at 2

ModelImitator

3 4
4

1 2

1

Figure 6: Analysis of Observation and Movement In-
dex. In the analysis the model describes a square
pattern. Here we see the imitator using a observa-
tion:movement index of 2:1 and successfully match-
ing it. Similar successful matching will always occur
when the movement index is set to 1 regardless of the
observation ratio.

not to do so would give incorrect results. Or more
simply - keep still until movement is almost neces-
sary (in our case when the model goes beyond the
30◦ threshold into ’peripheral’ vision).

4.2 Experiment 2 - Dynamic Obser-
vations: Varying Observation and
Movement Cycles

Theoretical Results and Detailed Set-up. This ex-
periment explored how movement and observation
might be intermixed. This was attempted by vary-
ing the number of look-ahead observations against an
equal or

smaller number of moves. Thus the robot would
first make an initial observation 3 and then subse-
quently observe for n cycles and then move, based
on these observations, m times. This procedure
iterated throughout the imitation attempt. Prior
analysis of this method, using the imitator and model
represented as points (see figures 6 and 7) suggested
that accurate imitation may only be possible if the
number of moves were set to 1. To simplify the
analysis we assumed that the imitator and model
moved at approximately the same constant speed.

3For each move two observation vectors are required, therefore
at the start of the run one additional observation is made.

Imitation Sequence with 2:2 observation:move Index

1 1

1

Imitator Model

1

1 2
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Imitator observes Model at 1

Imitator observes Model at 2

Imitator observes Model at 3
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Model simultaneously moves via 4 to 1

Imitator observes Model at 1

Imitator

Imitator
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Model

ModelImitator

1

3
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Imitator observes model at 2

ModelImitator

3 4

1 2

1
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3

Imitator duplicates Model (3-1-2)!

Model simultenously moves to 4 via 3
ModelImitator

3 4

1 2

3

1 2 1

4

2

Figure 7: Analysis of Observation and Movement In-
dex. This example shows the imitator an index of 2:2.
When the movement index is set above 1 the imitator
always fails to match the pattern.

Additionally, due to the control system of the
robot, observation and movement execution are not
possible in the same time step. We then imagined
three scenarios cyclically alternating n observations
(o) of model transitions with m moves (x) by the
imitator (note: it is not possible to imitate further
than our observed sequence, and therefore n is
always larger or equal to m). The first scenario was
of n observations to 1 move e.g. 1:1 o-o x o x o x o
x ..., secondly a scenario where there are an equal
number of observations and moves but where both
are greater than 1, e.g. 2:2 o-o-o x-x o-o x-x o-o x-x
... and finally where n is greater than m and both are
greater than 1 e.g. 3:2 o-o-o-o x-x o-o-o x-x o-o-o
x-x .... Figure 7 shows an example of the failure
to correctly match the movement pattern when the
move index is set higher than 1. This occurs because
the imitator has failed to observe one or more critical
points in the model’s move sequence. The effect is
similar to the impersistence problem we noted when
analysing ‘following’ behaviour (Saunders et al.,
2004), however rather than failure to complete or
persist in its goal, as was the case for following, here
the problem is one of ‘inattentiveness’. The imitator
is blind to the moves of the model. This problem
occurs at all values of n and m which are larger than
1. Figure 7 shows an example of this when n:m is
set to 2:2.

Results. The robot was tested on a series of index
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Figure 8: Dynamic Observation: varying Observa-
tion and Movement cycles. The results show the in-
ability of the imitator to correctly replay the model’s
path. In this case a triangle shape.

values on each geometric shape presented by the
model. Figure 8 shows an example of the physical
robot using a 5:1 n:m index on the triangle shape.
The imitator fails to match the model. Similar
failures occurred in all attempts with the physical
robot on all shapes. This was initially surprising,
however the difficulty became clear once the actual
imitator movement was considered.

Analysis. The simplicity of the point analysis above
hides some crucial implementation issues. For ex-
ample the robot can only move in the direction of
its fixed wheels (i.e. it cannot arbitrarily move side-
ways), therefore a rotation may be necessary to ori-
ent the robot to the correct movement vector signalled
from the model. Also, the Khepera has a fixed place-
ment of sensors around its circular wheelbase. In or-
der to correctly ‘focus’ on the model the robot must
be in the appropriate sensor range. Thus the rotation
mechanism described in experiment 1 was employed.
Therefore in addition to the move or moves calculated
from the observations we may have up to 2 additional
moves: one to focus the sensors on the model and the
other to orient the imitator for its move. Whilst these
moves are being carried out the problem of ‘inatten-
tiveness’ is compounded. Two further issues were
also apparent. Firstly, each move is accompanied by
a small odometry error. The total error therefore in-
creases as the number of moves increases. Secondly,
the smoothing effect of time averaging has little or
no effect when attempting to model a small number
of moves. This means that unsmoothed noisy obser-
vations are replayed leading subsequently to a poor
imitation attempt.

We believe that the failure of the imitation is due
primarily to the constraints imposed by the embodi-
ment of this particular robot and might be obviated if

the sensory apparatus was independent of the actuator
mechanism e.g. distance/angle sensors which rotated
and were focusable independently of movements of
the main robot body. Such a mechanism is in fact
used by (Gaussier et al., 1997) in their experiments.
In fact there are no known imitating animals whose
observation sensors cannot focus at least somewhat
independently of the orientation of their bodies.

5 Discussion

In this research we have started to examine some of
the practical issues which face an imitator when try-
ing to use a dynamic observational behaviour. Here
the problems of perception, perspective and action
must be considered. We have greatly simplified the
problem domain by restricting the imitative actions
to that of replaying geometric shapes and have
used simple robots with fixed sensor embodiments
and with limited perceptual capabilities. We have
previously suggested that a ‘following’ behaviour, al-
though limited in its imitative accuracy, has the major
advantage of computational simplicity and the added
value of direct interaction with the environment
through proprioceptive polling of its actuators whilst
moving. We do not suggest that this opportunity to
‘feel’ the environment is exclusive to a following
strategy and accept that there are alternative and
probably better ways to proprioceptively explore
the environment. However this strategy has the
straightforward merits described above. It is also
true that both a follower and an static observer are
necessarily out of phase with the model and for this
reason it seems that the follower’s sensory cues may
not be more appropriate than an observer’s, however
work by (Billard and Dautenhahn, 1997) showed
that the these cues are dependent on the distance be-
tween a follower and the model and within a critical
distance the follower’s sensory cues become very
relevant. What we describe here is an initial attempt
to provide a movement mechanism to an observer
in order to combine the advantages of observational
accuracy with the feedback obtained from actively
exploring the environment. Clearly a simple and
modular solution to this task would be to keep to
the ‘extreme’ behaviours and simply apply each
strategy in turn e.g. follow-statically observe-follow.
One of the aims of this research has been to explore
the challenges faced in combining these strategies
whilst retaining the positive aspects of both. The
experiments themselves are clearly limited as we are
constrained both by the sensor embodiment of the
robot and its internal control system, but we believe

116



valuable lessons still emerge.

Suggestions for Imitators Dynamically Observing
from a Fixed Location. Our first experiment
showed that dynamic observation with rotation was
successful in that it allowed the model to pass out
of view of the imitator and be reacquired. It was
superior to static observation alone in this respect and
it appeared that the benefit of tracking accuracy could
be balanced against the cost of rotation frequency
and rotational movement based on a turn threshold.
Thus to retain observational accuracy, rotational
movement should be limited so that odometry errors
are minimised in their effect on the geometric trans-
forms required to replay the imitation. Thresholds
near the periphery of vision balance these factors.
In robotics the issue of errors from odometry drift
is clearly not new, however the literature on robotic
observational imitation seem rarely to cite it as being
a problem for a moving imitator.

Suggestions for Imitators that Observe and Move.
Our second experiment showed that with this par-
ticular robot, dynamic observation with movement
of the imitator was extremely difficult and failed to
replicate with reasonable accuracy the model’s path.
Our theoretical analysis suggested that the ‘inat-
tentiveness’ problem may be soluble for a dynamic
observational imitator where the movement value is
set to unity. This region in our spectrum corresponds
with the methods of other research (Wit, 2000)
where a single solution to this issue is considered.
However the need to make additional movements
over and above those required to track the model
means that the movement value can never be unity
for an embodiment where the sensor orientation is
completely fixed for a fixed body orientation. Thus
the imitation will be poor.

Possible Solutions. A solution to this might be in-
dependent sensing and actuator mechanisms. We en-
visage that such a system would additionally employ
independent computation facilities for both mecha-
nisms to allow continuous and parallel calculation of
model position. Thus appropriate movement vectors
could be sent to the actuators reducing unnecessary
movements and the associated additional odometry
drift. The sequential nature of the move-sense cy-
cle on our robot may mean that accurate dynamic ob-
servation is very difficult, however other control sys-
tems employing a parallel cycle may provide solu-
tions. There may also be simpler alternatives, for ex-
ample the model may repeat the pattern and the im-

itator might manage to fill the gaps caused by earlier
inattentiveness, or the model might simply wait for
the imitator.

Even in our own human experience it appears
much harder to both partially replay an imitation and
observe the model before the model has finished its
actions. Animals in fact may have obviated this issue
by evolving alternative mechanisms. In this respect
the recent neurological evidence of ‘mirror neurons’
in primates and humans (Gallese et al., 1996) and
their role in action perception may play a consider-
able role in static observational learning with the im-
itator experiencing perhaps as good a corrrelation to
its own behavioural patterns whilst statically observ-
ing as when attemping to match movements directly.
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Abstract

This work follows from a research project, in which we investigate the underlying mechanisms of
human imitation and develop a neural model of its core neural circuits. The present paper presents
a model of a neural mechanism by which an imitator agent can map movements of the end effector
performed by other agents onto its own frame of reference. The model mechanism is validated in
simulation and in a humanoid robot to perform a simple task, in which the robot imitates movements
performed a human demonstrator.

1 Introduction

Imitation is the ability to recognize, learn and repro-
duce others’ actions. This powerful cognitive mech-
anism is fundamental for the transmission of knowl-
edge and skills within the same species and across
species. It is also at the basis of primates’ social
communication. One can distinguish the numerous
forms of imitation behavior displayed in nature ac-
cording to levels of complexity. In its simplest form,
imitation can be reduced to a sensorimotor mapping
that transforms sensory information, usually visual,
into corresponding motor commands. Such basic im-
itation would be displayed as a form of “emulation”
or of “social facilitation” (Heyes, 2001). Moreover,
Bekkering et al. (2000) have shown that imitation is
generally goal-directed, that is children and adults
tend more to reproduce the goal of an demonstrative
act, rather that the exact sequence of movements lead-
ing to it. Indeed, compared to “mimicry”, this mecha-
nism doesn’t require any body correspondence. What
to imitate preponderates on how to imitate. Then,
in its most complex form, imitation leads to or re-
quires more complex cognitive capabilities, such as
the recognition of conspecifics and the attribution of
others’ intentions or states of mind (Billard, 2002). It
is often referred to as “true imitation” i.e. the ability
to reproduce and learn new motor skills which are not
part of the imitator’s current motor repertoire. In true
imitation, the imitator must be capable to extract the
purpose of a given sequence of movements, namely

to be capable of action understanding1.
In this paper, we aim at exploring the mechanisms

underlying mimicry. Despite not being directly in-
volved in the most common imitation mechanism that
is goal-directed imitation, it is important to note, as
mentioned by Wholschläger et al. (2003) that

it seems that if the goal is clear (or absent), then
the course of the movement plays a more central
role in imitation. One might also say therefore,
that the movement itself becomes the goal.

Thus, the question we will develop here is how one
can map motions performed by others onto his/her
own perspective, and more precisely while consider-
ing the end effector trajectory, i.e. the hand of the
demonstrator. Indeed, as simple as it appears to be
to Ethologists, mimicry remains complex in terms of
the basic cognitive capabilities it requires, such as
the capacity to perform arbitrary frames of references
transformations and to generate coherent sensorimo-
tor mappings. Such cognitive processes are funda-
mental and necessary for more complex forms of im-
itation. They remain, however, ill-understood. We
argue that a better understanding of the brain mecha-
nisms underlying mimicry is necessary to provide the
stages for understanding and modeling the leap from
simple to complex forms of imitation in animals.

While the behavioral processes of imitation have
been the focus of studies in Ethology and develop-

1An action is understood here as a goal-directed sequence of
movements.
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mental Psychology for centuries, evidence of corre-
lated neural processes is much more recent. Studies
of brain lesions resulting in degenerate imitative be-
haviors (apraxia or echopraxia) were the first to give
some insight into the brain areas responsible for im-
itation, pointing to generic areas in the frontal and
parietal cortices (Lhermite et al., 1986; Shimomura
and Mori, 1998). The field revived a new life with
the discovery in 1992 of the mirror neurons system,
direct-mapping mechanism between visual and mo-
tor systems. For recall, mirror cells respond both
when the animal performs and sees a goal-directed
sequence of movements, hence, suggesting that a
direct-mapping mechanism between visual and motor
system exists for the purpose of linking conspecifics’
or humans’ action observation with self motor ex-
ecution. The mirror neurons were first detected in
the macaque monkey premotor cortex (PM), posterior
parietal cortex (PPC) and superior temporal sulcus
(STS) (Fogassi and Gallese, 2002; Rizzolatti et al.,
1996). Later, brain imaging studies of the human
brain highlighted numerous areas, such as STS, PM
and Broca (Nishitani and Hari, 2000; Iacoboni et al.,
1999; Decety et al., 2002). While the discovery of
the mirror neuron system is certainly a key step to-
ward a better understanding of the brain mechanisms
underlying primates’ ability to perform various forms
of imitation, one has yet to clearly spell out the role of
the mirror neuron system as part of the general neural
processes for imitation.

Mirror neurons are relatively far from the brain ar-
eas receiving primary sensory information. They re-
act, thus, to highly processed stimuli, represented in a
goal-centered frame of reference (FR). A proposal by
Burnod et al. (1999) suggested that the series of FRs,
required for transferring information in retina-based
FR into a body-centered FR, is encoded by different
cells along the visual pathway, following a sensory
gradient of increasing complexity. Indeed, along the
visual pathway (the “what stream”), the information
flows from the primary visual cortex (V1) to the tem-
poral lobes, including the inferior temporal area (IT)
and the superior temporal sulcus(STS). IT contains
populations of neurons that separately exhibit sensi-
tivity to a variety of objects. Some of these popula-
tions are sensitive to the size and orientation relative
to an viewer-centered FR, whereas others react in an
object-centered FR (Booth and Rolls, 1998). Simi-
larly, neurons in macaques’ STS, have been found to
respond to specific human body parts and correlate
with various quantities such as the position, rotation
and translation of limbs, hands, faces, eyes; as well
as with complex motions such as walking. Perrett

et al. (1989) showed that the FRs in which these neu-
rons seem to react are multiple. Moreover, there is
a body of evidence that spatial visual properties such
as direction, orientation and size of objects are also
encoded in PPC (Sakata et al., 1999). Finally, con-
cerning the distance of the target objects and observed
bodies, neurons activities in the ventral pathway and
parietal cortex have been shown to correlate this pa-
rameter, firing differently for close or far stimuli in
a modulatory fashion (Dobbins et al., 1998; Sakata
et al., 1980). All these regions are tightly coupled
and form a complex network (Wise et al., 1997) that
plays a fundamental role in primates ability to re-
produce movements and goal-directed actions, such
as transforming viewer-centered information into an
other-centered representation.

In former work (Arbib et al., 2000; Billard and
Matarić, 2001), we started developing computational
models of the complete visuomotor pathway under-
lying imitative behavior. In this paper, we present
a neural model that accounts for the ability to per-
form arbitrary frame of reference transformations and
to display mimicry of hand motions. The model
attempts, once the goal has been clearly identified,
to explain the core circuits underlying the ability to
map goal-directed motion performed by others into a
frame of reference located onto one’s own body. Such
basic imitative behavior is displayed both by mon-
keys and humans.

2 A Mimicry Task

The mimicry task we consider in this paper is illus-
trated in Figure 1. It consists of the following: An
imitator and a demonstrator face one another. The
demonstrator produces various movements with his
right hand. The imitator tries to reproduce the demon-
strator’s actions simultaneously (immediate imita-
tion). The imitator attempts to reach to the same lo-
cation as the demonstrator’s hand in its own frame
of reference. For instance, when the demonstrator’s
hand performs a circular trajectory on his left side,
the imitator has to perform a similar hand motion on
his own left, independently on the demonstrator’s ori-
entation. Indeed, the imitator could face the observer,
be on a profile view or even be turned upside-down.
It must be able to still perform the correct frame of
reference transformation.

However simple this task appears to be, it is non
trivial to model the neural processes that underly
it. Thus, we describe a distributed neural model,
inspired from neurophysiological evidence of pop-
ulation vector coding, that is able to perform such
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Figure 1: Illustration of the frames of reference trans-
formation required to transfer the target from the
demonstrator’s view point to that of the imitator.

transformations. As an illustration, we implement
this mechanism into a robotic platform using a mini-
humanoid robot shown in Figure 8, to perform imme-
diate imitation of hand drawings produced by a hu-
man demonstrator.

2.1 The Frames of Reference Problem

Consider the core problem tackled in this paper: How
does the central nervous system perform frames of
references transformation in order to build a body-
centered or object-centered representation?

In mathematical terms, as illustrated on Figure 1,
the question is how can we transform a vector ~v given
in a referential R into ~v ′ in R′, knowing the vector
~vT across the origins of the two referentials, and the
axes of the referential R ′ itself, expressed in R. We
assume that R and R′ are given by

R = {O,~e1, ~e2, ~e3}

R ′ = {O ′, ~e ′

1, ~e
′

2, ~e
′

3}

where OO ′ = ~vT, and ~e ′

i, ~ei, ∀i ∈ {1..3} corre-
spond to the principal axes, as unit vectors, of the
demonstrator’s body and of the observator’s body, re-
spectively. These axes correspond to the right-left,
feet-head and back-front axes, respectively. The ori-
entation of R′ with respect to R is given by the rota-
tion matrix MR ′ :

MR ′ =
¡

~e ′

1 ~e ′

2 ~e ′

3

¢

. (1)

By writing down the classical transformations across
referentials and considering MR as an identity ma-
trix, we get the following forward and inverse equa-

tions:

~v = MR ′~v ′ + ~vT

⇔

~v ′ = M¡1

R ′ (~v ¡ ~vT). (2)

If we consider now that MR ′ is orthonormal, we
know that M¡1

R ′ = MT
R ′ . This allows us to rewrite

the previous equation using the dot product and we
find:

~v ′ =
∑

i∈{1..3}

¡

~e ′

i · (~v ¡ ~vT)
¢

~ei. (3)

Such transformation can thus be reduced to a combi-
nation of relatively simple (from a neurophysiologi-
cal point of view) vectorial operations, consisting of
sums, dot products, and unitary vector scaling.

This way, the vector ~v ′ pointing to the target in
the demonstrator’s referential can be directly mapped
into the imitator-centered referential, so that the
demonstrator’s target is considered as the imitator’s
one.

2.1.1 Population Vector Coding

We use the population vector coding paradigm as a
neurophysiological substrate for representing each of
the vectors of our referentials.

In this paper, we define a population as an ensem-
ble of neurons whose distributed firing activities are
correlated to a single macroscopic quantity that is a
vector ~v in a given frame of reference R. In such
populations, each neuron is tuned to a preferred di-
rection ~r, i.e. its firing activity is maximal when ~v

and ~r are collinear and point to the same direction,
and decrease as ~v diverges from ~r. Then, in order
to extract the information from a populations of neu-
rons, as originally proposed by Georgopoulos (1996),
we use the population vector. Considering that each
neuron votes for its preferred direction proportionally
to its firing activity, by taking the average of all these
votes, we obtain the vector encoded by this popula-
tion, i.e. the population vector.

2.1.2 View Sensitive Cells Defining Referentials

As mentioned in Section 1, we know from neurophys-
iology that neurons in STS and IT are sensitive to dif-
ferent orientations or views of bodies and objects, re-
spectively. These neurons firing activities have also
been shown to be correlated to different frames of
references, mainly in a viewer, object or goal cen-
tered reference frame. Moreover, these populations
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of neurons exhibit a large range of preferred direc-
tions, tending to cover uniformly the possible orien-
tation given rotations around the three principal axis.

In order to model these cells, we assume that
there are three distinct populations of neurons encod-
ing separately the three principal axis of a observed
body or object. This principle might be consistent
with neurophysiological data despite not being com-
pletely experimentally proved. Indeed, to our knowl-
edge, there are no neurophysiological experiments
that have systematically tested the response of ori-
entation sensitive cells to the complete ensemble of
possible orientation. Indeed, usually sole the classical
rotations along the three principal axis were tested.

2.2 The Model

This section presents a summary of a neural model
for frames of reference transformations that we have,
in its major parts, already proposed in Sauser and Bil-
lard (2005). For more information on the mathemat-
ical development and on the implementation details,
please refer to this paper. The novelty here, concerns
the parallel use of three principal axes determining
a frame of reference, rather than a set of angles that
code for a series of rotations that are performed seri-
ally.

2.2.1 An attractor network

Let us consider Ω, a continuous population of neu-
rons where each unit participating in the population
is characterized by its preferred direction ~r. In this
paper, the preferred directions are assumed to be uni-
formly distributed along a 3 dimensional subspace
Γ = {~r ∈ R

3 | ‖~r‖ = 1}, that corresponds to the sur-
face of a unitary sphere. The response of the whole
population, the population vector, is given in a con-
tinuous form by

~P =
1

κ

∮

Γ

f
¡

u~r

¢

~r d~r (4)

where κ = 2π
3

is a normalization factor, u~r the neu-
ron’s membrane potential with preferred direction ~r,
and f(u~r) its firing activity. f is a non-linear function
equal to f(x) = max(0, x).

Let us now consider an attractor network (Salinas
and Abbott, 1996) made of a fully connected popula-
tion of neurons whose dynamics is governed by

τ u̇~r = ¡u~r +

∮

Γ

w~r ′
→~r f(u~r ′) d~r ′ + x~r

w~r ′
→~r = γ(η) (~r ′ · ~r) (5)

ΩoΩ

h

v
v

hv

v
v

h

h

v

Figure 2: On the left, architecture of the two layers
neural network producing a non-linear composition
of its inputs. On the right, the symbolic illustration of
this network as will be used further in the paper.

where w~r ′
→~r are the lateral weights that exhibit sym-

metric, rotation invariant, and center surround ex-
citation inhibition characteristics, x~r is the external
synaptic input, and γ(η) is a scaling factor depend-
ing on the network parameter η ∈]0, 1[ that controls
the influence of the lateral weights2. Assuming that
the network input x~r is composed of a vectorial and a
constant homogeneous input of the form given by

x~r = ~r · ~v + h

= βv (~r · ~rv) + h (6)

where βv = ‖~v‖ and ~rv = ~v
‖~v‖

. We have shown that
the activity profile of this network converges toward
a stable state that can be approximated by

u?
~r ≈ h +

1

χ(η)
(~r · ~v) +

1

η
h (~r · ~rv) (7)

where χ(η) = 1 ¡ γ(η)π
3

. We can see that the ap-
proximation of this activity profile reflects both the
vectorial and constant inputs, plus a modulatory term,
which is the result of the interactions of the recurrent
connectivity.

2.2.2 A Two Layers Neural Network

As seen on Equation 7, the current attractor network
produces, as an output, a sum of vectorial and con-
stant terms. In order to strictly keep the multiplicative
term and thus have a network capable of producing a
non-linear composition of its two input sources, we
build a two layers neural architecture as illustrated
in Figure 2. The first layer consists of the attractor
network. The second layer is composed of another
population ΩO, o for output, without lateral weights.
It receives projections from the recurrent population

2In the present case of populations representing 3D vectors,
γ(η) =

(

π
3

(

2 + 3 η ¡ η3
))

¡1, such that Equation (5) has a non
trivial state of convergence.
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Figure 3: The architecture and connectivities of the
gain field. The spheres containing a referential and
a vector correspond to populations of neurons coding
for a vector in a given referential.

using one to one synapses, and inhibitory inputs cor-
responding to the vectorial and constant inputs of
the recurrent population with an appropriate scaling,
such that

xO

~r = η
¡

f(u~r) ¡ h ¡
1

χ(η)
(~r · ~v)

¢

. (8)

Considering that the neurons of ΩO support an imme-
diate integration mechanism such that uO

~r = xO

~r , we
obtain, after a substitution in the previous equation
using (7), that the firing rate converges toward

f(uO

~r ) = f

(

η
¡

f(u~r) ¡ h ¡
1

χ(η)
βv(~r · ~rv)

¢

)

≈

{

h (~r · ~rv) ~r · ~rv > 0, h > 0
0 otherwise.

(9)

This network is capable of encoding independently
two separate quantities, that are the direction ~rv and
the amplitude h, regardless of the intensity of the di-
rectional input βv . In vectorial terms, this means that
given a vector ~v and a scalar h, the output population
vector will tend toward h ~v

‖~v‖
. Therefore, this model

can be used to form a vectorial basis, inspired from
classical linear algebra. Moreover, it will also be the
building block of a bigger network, the gain field.

2.2.3 The Gain Field

In order to combine two different sources of vecto-
rial information, we propose a model of gain field
that follows an architecture and connectivity shown
in Figure 3. It consists in an assembly of build-
ing blocks, described in Section 2.2.2, that define a

new dimension denoted by ~s ∈ Γ. The external in-
puts come from two different vectorial sources repre-
sented by a modulatory population Ωmod and an vec-
torial population Ωv, that encode the vectors ~vmod

and ~v, respectively. They are separately applied to
each dimension of the gain field, ~r and ~s, respectively.
Hence, the input for each neuron ~r of each layer ~s in
the gain field ΩGF is defined by

xGF

(~r,~s) =

∮

wmod→GF

~r ′
→~r f(umod

~r ′ ) d~r ′ +

∮

wv→GF

~r ′
→~s f(uv

~r ′) d~r ′

= (~r · ~vmod) + (~s · ~v) (10)

Then, if we substitute this equation into (9), we ob-
tain that the gain field output firing activity converges
toward

f(uGFO

(~r,~s) ) ≈ βv(~s · ~rv)(~r · ~rvmod
)

≈ (~s · ~v)(~r · ~rvmod
) (11)

From this, we can see that the activity profile of the
gain field output is symmetric and that the peak is
located at the intersection of the directions currently
encoded by both source populations. Moreover, con-
sidering the amplitude of its activity, sole the ampli-
tude of ~v is taken into consideration in this network.
This property allows transformations that guarantee
that the amplitude of the transformed vectorial quan-
tity is preserved (Sauser and Billard, 2005).

2.2.4 Projections on Principal Axis and Others
Centered Frame of Reference

The final step, and the new part of our model, is to
show how our neural network model can perform ar-
bitrary frames of reference transformations by apply-
ing the principles mentioned in Section 2.1 (see Equ.
(3)). As shown in Figure 4, we consider five sources
of information arising from five populations of neu-
rons that encode ~e ′

i, i ∈ {1..3}, ~v and ~vT. In order
to compute the dot product, we need three gain fields
whose modulatory inputs are connected to the popu-
lations coding for the principal axis ~e ′

i∈{1..3}
, while

their vectorial inputs are linked to the difference be-
tween populations coding for ~v and ~vT that are con-
nected using excitatory and inhibitory synapses, re-
spectively. These gain fields project then to another
population that will receive the result of the trans-
formation: the vector ~v ′ in a body or object cen-
tered frame of reference using the following synaptic
weights, ∀i ∈ {1..3}

wGFOi→v
′

(~r,~s)→~r ′
=

1

κ2
(~r · ~s) (~r ′ · ~ei). (12)
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Figure 4: The architecture and connectivities of the
model that can perform frames of reference transfor-
mations.

Then, using the activity profile of the gain fields de-
scribed by Equation (11), each neuron of the final
population receives a synaptic input equal to

xv
′

~r ′ =
∑

i∈{1..3}

∮

f
³

uGFOi

(~r,~s)

´

wGFOi→v
′

(~r,~s)→~r ′
d~r d~s

=
∑

i∈{1..3}

¡

(~v ¡ ~vT) · ~e ′

i

¢

(~r ′ · ~ei)

= ~r ′ · ~v ′ (13)

This equation means that this population is now en-
coding ~v ′ in a body or object centered frame of refer-
ence.

2.3 Experimental Setup

We implemented this system in a kinematic simulator
of a pair of demonstrator - imitator humanoid avatars

StereoVision

Frames of

reference

transformations

Inverse Kinematics

Robot Control

in referential R'

in referential R

R

vTve'1 e'2 e'3

r r r

v M v vR T´ ( )'= −
−1

r

v´

r

v´

r

r

f v( )́=
−1

θ

PID controller

Figure 5: Overview of the system implementation on
a robotic platform. The surrounding dotted rectangle
indicates the parts used the simulation.

(see Fig. 6) and in a humanoid robot, as shown in Fig-
ure 8. An overview of the overall system architecture
is illustrated in Figure 5. The visual system consists
in two webcams connected to a color-based stereo vi-
sion software that allow the tracking of specific col-
ors marks in 3D space. The human demonstrator is
placed in front of the cameras, with three different
color marks on the left and right of his torso, and on
his hand. Assuming that he is always in a standing
posture the two marks on the body are sufficient to
uniquely determine the demonstrator’s principal axis,
that are ~e ′

i, i ∈ {1..3}. The visual system also pro-
vides the body and hand position in a viewer centered
frame of reference, ~vT and ~v, respectively. These in-
formation are fed into our neural network in order
to compute the target location in the demonstrator’s
body centered reference frame. It is directly applied
to a self-centered frame of reference that gives the
imitator its own target. In order to allow the robot
to reach the target, this position of the target with re-
spect to the imitator is fed to an inverse kinematic al-
gorithm adapted from Wang and Verriest (1998), that
provides the sequence of joint angles to the robot.

3 Results

3.1 Mimicry of hand gestures

We conducted simulations, in which the demonstrator
avatar draw 8 different figures. Figure 7 shows su-
perimposed the trajectories performed by the demon-
strator and the imitator. Demonstrated and imitated
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Trajectory

Figure 6: One avatar is drawing a figure while the
other imitates the demonstrated trajectory.

movements show a high qualitative resemblance.
However, one can observe a systematic shift in space
and a slight deformation of the figure. This is an arti-
fact resulting from the non-uniformity of the distribu-
tion of preferred directions in our neural population3.
In other words, the neural populations produce a non-
uniform map of their inputs, resulting in a slight de-
formation of the three dimensional representation of
the target vectors.

We, then, conducted experiments, in which a hu-
manoid robot imitated 4 trajectories produced by a
human demonstrator. Figure 8 shows, superimposed,
the trajectories of the demonstrator’s and imitator’s
hand for the four examples. We can observe that
the results are similar to those obtained in simulation.
The imitation is qualitatively good. However, it suf-
fers from a systematic shift in space and rescaling in
amplitude. In addition, the use of a stereovision sys-
tem for recording demonstrated and imitated trajecto-
ries creates a new source of errors.

Figure 7: Eight trajectories followed by the demon-
strator’s hand (dotted lines) and by the imitator’s hand
(plain lines) in simulation.

3In Sauser and Billard (2005), we showed that only a "quasi"
uniform distribution of preferred directions can be obtained using
iterative algorithms.

Figure 8: Top Figure: Hoap-2 a mini-humanoid robot
built by Fujitsu, provided with 25 degrees of freedom,
including 4 on each arm. The robot imitates a human
trajectory forming an “S”, while tracking the demon-
strator’s gesture using a pair of fixed cameras. Bot-
tom Figure: Four trajectories followed by the demon-
strator’s hand (dotted lines) and by the robot’s hand
(plain lines) in simulation.
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Figure 9: Error recorded during a simulation batch
where populations with different parameters were
given random input vectors and referentials.

3.2 Error measures

In addition to the errors that appear by discretizing
continuous equations, the approximation we made in
our mathematical development (see Equ. (7)) is a
source of systematic errors between the theoretical
resulting vector, denoted by ~v ′?, computed with clas-
sical algebraic equations, and the result ~v ′ produced
by our network. To quantify them, we define Eβ , the
error on the amplitude, and Eθ, the error on the direc-
tion, by

Eβ(~v ′, ~v ′?) =
| ‖~v ′‖ ¡ ‖~v ′?‖ |

‖~v ′?‖
(14)

Eθ(~v
′, ~v ′?) = acos

(

~v ′ · ~v ′?

‖~v ′‖ ‖~v ′?‖

)

(15)

that correspond to the relative difference between
their norms, and to the angle they form, respec-
tively. Figure 9 shows the errors Eβ and Eθ that were
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measured during a simulation batch where random
vectors where transformed into random referentials.
The different curves correspond to different network
sizes. First, we can see as expected that the bigger
is a population, the smaller are the errors. Second,
consistently with our previous work (Sauser and Bil-
lard, 2005), the parameter η has a ambivalent influ-
ence on the network. On the one hand, small values
increase the importance of the recurrent connections,
hence increasing the errors due to an imperfect distri-
bution of preferred directions. On the other hand, big
values induce more errors due by our mathematical
approximations (see Equ. (7)). These two properties
explain why, on the left of the figure, an optimum can
be observed.

4 Discussion and Conclusion

The model, presented in this paper, provides an ex-
ample of neural mechanism for the representation of
others in a self-centered frame of reference. As such,
it is an important step toward a full-scale imitation
model. Indeed, as illustrated in this paper, a model for
solving the frames of reference transformation prob-
lem provides us automatically with a simple imita-
tion mechanism. Note that the present model does
not yet explain the tendency humans have to perform
imitation in mirror fashion when reproducing mean-
ingless gesture, and when demonstrator and imitator
face each other (Wholschläger et al., 2003). It only
shows a solution to the frame of reference problem.
Note that the model could be extended to address this
issue. The preference for mirror imitation could sim-
ply be an effect of early visual processing, occurring
prior to the frame of reference transformation, that
would represent the demonstrator’s body in a refer-
ential that reflect best the natural symmetries of the
human body; presenting motions perceived visually
on the left handside of the imitator by corresponding
motion on the left handside of the imitator.

Another important aspect not yet addressed by our
model is how the rescaling of the demonstrator’s mo-
tions to the imitator’s body is performed. In the
present implementation, rescaling is done by hand,
providing a vector of an appropriate size to the net-
work, so that the resulting vector after convergence
lies within the robot’s range of motion. The model
could be extended to encapsulate explicitly the rescal-
ing aspect, by exploiting the multiplicative nature of
the network. Moreover, such a neural representation
would be in accordance with biological evidence that
neurons located in the visual cortex fire in response
to the size of an object, regardless of the distance to

the object (Dobbins et al., 1998; Sakata et al., 1980).

There is as yet no evidence to support our model’s
hypothesis that orientation sensitive cells in the vi-
sual areas STS and IT are grouped in populations
that encode the principal axes of the demonstrator’s
body. If evidence of such an encoding was to be
found, this would suggest that such groups of neu-
rons may form a basis (in the vectorial sense) of a
goal centered representation of hand motion. Un-
fortunately, to our knowledge, no systematic exper-
iment have shown a complete description of single
cell sensitivity to all possible orientations. Note that
if these cells were to encode the three principal axes,
this would offer a highly redundant representation of
motion. One could consider less redundant forms of
encoding 3D frames of reference. However, as dis-
cussed by Marr (1982), such representations are dif-
ficult to determine and the three axes representation
remain the most natural representation for 3D frames
of reference. Furthermore, Deneve and Pouget (2003)
proposed a model that deals with a two dimensional
object-centered representation using basis functions.
The authors argue that a redundant neural substrate is
well-suited to reduce neural noise and to simplify the
complexity of single cell computation.

The time required for the model to perform a FR
transformation is independent on the orientation of
the two frames of reference. Such a result is in con-
tradiction with the observation that humans produce a
longer reaction time, when required to perform men-
tal rotations in an "unusual" orientation, such as shift-
ing an image upside-down. One could, however,
imagine that another mechanism is at play. In ab-
sence of visual input, such a mechanism would set
the principal axes of the demonstrator’s referential to
a default state (i.e. setting the preferred directions of
the network in our model to a default value), express-
ing the imitator’s expectation that the demonstration
would stand vertically and would face him. In this
case, the network’s state in our model will take more
time to match unusual visual orientations; hence, re-
producing the expected observation. Note that the de-
lay could also be due to a longer processing phase
during preprocessing of the visual field, for recogniz-
ing the body features (used then to set the landmarks
for determining the axes).

Finally, we showed that frame of reference trans-
formation performed by the model result in quali-
tative discrepancies between demonstrated and imi-
tated trajectories, while ensuring a high qualitative
resemblance across demonstrated and imitated mo-
tions. Note that humans show also imprecision in
their imitation, if other constraints, such as an align-
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ment to landmarks, are not specified or absent. In
future work, we will compare the imprecisions made
by the model to those done by human imitators.

The model’s implementation we presented in this
paper focused on a body-centered frames of reference
transformation. The model is, however, quite general
and could, also, be applied to object-centered repre-
sentations. The later representation being crucial to
performing several daily tasks. In future work, this
model will be adapted to form both object- and goal-
centered representations in order to provide context
dependent information for goal-directed imitation.

Acknowledgments This work was supported
by the Swiss National Science Foundation, through
grant no 620-066127 of the SNF Professorships pro-
gram.

References
M. Arbib, A. Billard, M. Iacoboni, and E. Oztop. Mirror neurons,

imitation and (synthetic) brain imaging. In Neural Networks,
volume 13 (8/9), pages 953–973, 2000.

H. Bekkering, A. Wohlschläger, and M. Gattis. Imitation of ges-
tures in children is goal-directed. Quarterly Journal of Experi-
mental Psychology, 53(1):153–164, 2000.

A. Billard. Imitation: A review. In The Handbook of Brain Theory
and Neural Network. 2nd Edition. Michael A. Arbib (editor),
pages 566–569. MIT Press, 2002.
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Abstract 
 

People often nonconsciously imitate other people and imitation has positive consequences for the 
interaction. We argue that imitation not only has consequences for the way in which an imitated 
person feels towards the imitator, but that imitation also changes the way in which the imitated per-
son feels towards other people in general. In two studies participants were unobtrusively imitated by 
a confederate and the effects on interpersonal closeness were measured. Experiment 1 showed that 
imitated participants feel closer to non-specified other people in general compared to non-imitated 
participants. Experiment 2 replicated this result using a seating distance measure. Together, these 
studies reveal that imitation has consequences that go beyond the dyad. Now the challenge is to 
look for a system, which can explain this implicit imitation recognition 
 
 

1   Introduction 
Imitation is often nonconsciously used as a tool to 
influence people (Cheng & Chartrand, 2003; Lakin 
& Chartrand, 2003). When imitation goes unnoticed, 
several beneficial consequences arise. For one, imi-
tation increases liking and rapport in interactions 
(Bailenson & Yee, 2004; Chartrand & Bargh, 1999; 
Suzuki, Takeuchi, Ishii, & Okada, 2003).  It also 
increases pro-social behavior (Van Baaren, Holland, 
Kawakami, & van Knippenberg, 2004). In the pre-
sent studies, we want to start to investigate how this 
happens. That is, why do we like imitators more 
than non-imitators, and why do we behave more 
pro-socially towards them? 

1.1   The Positive Consequences of Imita-
tion 
In many commercial books on influence and making 
friends, imitation is offered as one of the means to 
create a good impression on or rapport with others 
(e.g Lieberman, 2000). There is now experimental 
evidence that this occurs. Several studies that ma-
nipulated imitation by having one individual either 
mimic another person or not found positive conse-
quences of subtle imitation. The developmental psy-
chology literature documents evidence that infants 
react more favorably towards adults who imitate 
them than adults who do not (Asendorpf, Warkentin, 

& Baudonniere,1996; Meltzoff, 1990). In these stud-
ies, however, it is unknown whether these infants 
are aware or unaware of the imitation. Humans have 
a predisposition to unwittingly and automatically 
mimic the behaviors of others (Chartrand & Bargh, 
1999; Prinz, 1990). It usually occurs nonconsciously 
and remains unnoticed. 
 Positive consequences have been observed for 
this nonconscious mimicry of body movements and 
speech variables. In a typical experiment, a partici-
pant and a confederate work on an irrelevant task. 
During that task, the confederate mimics (or not) the 
posture, mannerisms, and behaviors of the partici-
pant after a short delay. These can be gestures or 
movements such as face-rubbing, foot-shaking, 
playing with a pen, orientation of the body (avoiding 
movements that indicate power or status), or speech 
variables such as using the same phrases of speech. 
After this imitation manipulation, the dependent 
variable is assessed, which is often an evaluation of 
or behavior towards the confederate.  
 Chartrand and Bargh (1999) found that partici-
pants who were subtly mimicked by a confederate 
liked that confederate more and had smoother inter-
actions with that confederate.  Interestingly, similar 
consequences have been observed in human-
computer interactions. Bailenson and Yee (2004) 
had a realistic interface agent (i.e., an avatar using 
virtual reality technology) either imitate the partici-
pant’s head movements or perform different head 
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movements. The imitating interface agents were 
rated as more likeable and more persuasive than the 
non-mimicking avatars. Similarly, Suzuki, Takeu-
chi, Ishii, and Okada (2003) found that mimicry of 
certain properties of a participant’s voice by a com-
puter agent led to more favorable evaluations of the 
computer agent.  Thus, the evaluative consequences 
of imitation are not unique to human-human interac-
tions, although it should be noted that the avatars 
were very lifelike and thus were treated as human. 
 Van Baaren et al. (2004, Experiment 1) found 
that being imitated not only influences evaluations 
such as liking or rapport, but also makes people be-
have in a  more pro-social manner. In the first study, 
an experimenter unobtrusively imitated participants 
(or not). After the imitation manipulation the ex-
perimenter left the room and returned a short while 
later while carrying some pens and papers. Upon 
entering the room, the experimenter “accidentally” 
dropped the pens. The dependent variable was 
whether participants got off their chairs and started 
to help (a measure used by Macrae & Johnston, 
1998). The results revealed that imitated participants 
were considerably more helpful than non-imitated 
participants.  
 What was confounded in the above study, and in 
several other studies of the consequences of imita-
tion, is that the effects of imitation were measured 
vis-a-vis the imitator. This is important to note, be-
cause it could theoretically be possible that the ef-
fects of imitation are not restricted to the dyad and 
the imitator. Perhaps the effects extend beyond the 
relation between the imitator and the imitated. Per-
haps it affects the imitated person in a more funda-
mental way. It is possible that imitation makes one 
more pro-social towards other people in general. 
This is exactly what was observed in two experi-
ments (Van Baaren et al. 2004, Experiment 2 and 3). 
Imitated participants behaved more pro-socially 
towards a second experimenter and gave more 
money to a charity than non-imitated participants. 
Do the observed effects on people other than the 
imitator suggest that being mimicked makes one feel 
closer to other people in general?  

1.2   The Present Studies 

In the present studies we investigate whether imita-
tion leads to increased interpersonal closeness, and 
more specifically, whether imitation makes people 
feel closer to other people in general. In two studies 
participants were imitated or not and their subjective 
connectedness towards undefined others (Experi-
ment 1) or unknown others (Experiment 2) was as-
sessed. 

 

2   Experiment 1 

2.1   Method 

2.1.1   Overview 
 
Participants enrolled in an “advertisement study”, 
during which they rated 10 advertisements on some 
irrelevant dimensions. During that task, following 
the procedure by Chartrand and Bargh (1999), an 
experimenter imitated the posture, gestures, and 
mannerisms of half the participants. The other half 
of the participants was not imitated. After this task, 
participants filled in a questionnaire designed to 
measure how close participants felt to “people in 
general”. 
 
2.1.2   Participants and design 
 
Twenty-six participants (17 women and 9 men) 
were paid $2 for their participation in this study. 
The experiment had a single factor (behavior: 
imitation or no-imitation) between-subjects design. 
 
2.1.3   Procedure 
 
Upon arrival at the laboratory, participants were led 
into a room by the experimenter and seated behind a 
desk. The participant’s chair half-faced the 
experimenter. The experimenter, who was blind to 
the hypothesis, seated himself behind a desk and 
explained that the experiment was a advertisement 
study that tested the reaction of people to certain 
types of ads. The task of the participant was to look 
at each of the 10 ads and take about 30 seconds to 
describe his or her feelings toward the specific ad. 
The experimenter wrote down the answers on the 
note-pad in front of him. During the task, the 
experimenter would imitate the behaviors of half the 
participants. Specifically, the orientation of the body 
(forward or backward) and the position of the arms 
and legs were imitated after a several-second delay. 
In addition, gestures such as touching one’s face or 
hair were (contra-laterally) imitated. The other 
participants were not imitated, which meant that the 
experimenter had to actively avoid having the same 
posture and gestures. The experimenter was trained 
to mimic (and to anti-mimic), but was unaware of 
the hypothesis. 
 After the advertisement task, participants were 
given a modified Inclusion-of-the-Other in-the-Self-
Scale (IOS-scale, Aron, Aron & Smollan, 1992) that 
was designed to measure the closeness they felt to-
wards other people in general. The closeness task 
depicted six pairs of circles, which were increas-
ingly overlapping with each other. The instructions 
explained that one of the circles represented the par-
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ticipant and the other circle represented “other peo-
ple in general.” The participant had to indicate how 
close he or she felt towards “other people in gen-
eral” by selecting one of the six pairs of circles. 
Higher numbers indicate a smaller felt distance.  

 
Figure 1. Inclusion-of-the-Other in-the-Self-Scale. 

 
After this task, the participant was thanked, paid and 
debriefed. Importantly, no participant indicated 
awareness of the imitation. 
 
2.1.4   Results and Discussion 
 
To test the prediction that participants who were 
imitated would show a greater closeness to “other 
people in general”, the scores on the closeness ques-
tionnaire were submitted to a 2 (Behavior: imitation 
or no-imitation) X 2 (Gender: male or female) be-
tween subjects analysis of variance. As expected, a 
main effect for Behavior was found, F(1,22) = 6.46, 
p < .02. Participants who had been imitated by the 
experimenter felt closer to people in general (M = 
4.3) than the participants that had not been imitated 
(M = 3.5). In addition, a main effect for gender was 
found, F(1,22) = 7.64, p < .02, confirming that 
women feel closer to other people (M = 4.2) than 
men (M = 3.2). No interaction was found (F < 1). 
During the debriefing, no participant indicated 
awareness of the imitation (or lack thereof) or of its 
effect on the dependent variable. 
 These results confirmed the hypothesis that imi-
tation increases interpersonal closeness towards 
undefined others thereby extending previous find-
ings that imitation increases liking, rapport and pro-
social behavior. The present data show that, after 
being imitated, people also feel closer to others. It is 
important to note that it is an increased closeness to 
“others in general,” not toward any specific person. 
This finding is consistent with the finding that imita-
tion also stimulates pro-social behavior to people 
other than the imitator, indicating that its effects are 
diffuse and not specifically targeted at one single 
person (Van Baaren et al., 2002). 
 The results of Experiment 1 furthermore indi-
cated that women feel closer to others in general 
than men. Following the reasoning by Cross and 
Madson (1997), this effect may be explained by 
different socialization process of men and women in 

Western societies. If women pay more attention to 
and are more concerned with relationships, it is 
likely that this interdependent construal of the self is 
associated with a reduced interpersonal distance and 
more empathy.  
 Instead of using an abstract measure of interper-
sonal distance, in Experiment 2, we examined the 
consequences of imitation on a concrete, behavioral 
level. Specifically, seating distance from the imita-
tor was measured (see Macrae, Milne & Boden-
hausen, 1998). 

3   Experiment 2 

3.1   Method 

3.1.1   Overview 

During an ostensible interview, half of the 
participants were imitated by an experimenter. Af-
terwards, all participants were asked to take a seat in 
an adjacent room, where a bag, a jacket, and some 
documents on one of the chairs indicated the pres-
ence of another person. The dependent variable was 
the distance (measured in number of chairs) between 
the occupied chair and the chair on which the par-
ticipant chose to sit. 
 
3.1.2   Participants and design 
  
 Fifty-eight undergraduates (35 women and 23 men) 
were paid $2 for their participation in this study. 
The experiment had a single factor (Behavior: 
imitation or no-imitation) between-subjects design. 
 
3.1.3   Procedure 
 
Upon arrival at the laboratory, participants were led 
into a room by a male experimenter, who informed 
them that they would take part in two separate stud-
ies. In the first study, the experimenter interviewed 
the participant about their travelling behavior (with 
the help of a questionnaire). During the interview, 
he unobtrusively imitated (contra-laterally) the pos-
ture and behavioral mannerisms of the participants 
randomly assigned to the imitation condition. In the 
no-imitation condition, participants were treated 
likewise by the experimenter, except that they were 
not imitated. It is important to note that in the no-
imitation condition, the experimenter was actively 
avoiding imitation, which meant that he had to pay 
as much attention to the participant and the partici-
pant's behavior as in the imitation condition. 
 After the imitation manipulation (the bogus in-
terview), the participants were thanked and asked to 
take a seat in an adjoining room while waiting for 
the second study. The experimenter made clear he 
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would not be supervising the second study and that a 
different experimenter would pick up the partici-
pant. In this waiting room, there were five chairs 
placed side by side along one of the walls. On top of 
the leftmost chair, a bag, a jacket and some docu-
ments were placed, thereby indicating the presence 
of another (and unknown) person. The distance be-
tween the "occupied" chair and the chair on which 
the participant chose to sit was an implicit measure 
of interpersonal closeness, the dependent variable 
(Holland et al., 2004; Macrae et al., 1998). After a 
short wait, a new experimenter entered the waiting 
room to pick up the participant for the (irrelevant) 
second study, and wrote down on which chair the 
participant sat. Finally, the participant was thanked, 
paid, and debriefed. Importantly, no participant in-
dicated awareness of the imitation. 
 
3.1.4   Results and Discussion  
 
To test the prediction that participants who were 
imitated would choose to sit closer to an unknown 
other, the distance between the participant's chair 
and the occupied chair was submitted to a 2 (Behav-
ior: imitation or no-imitation) X 2 (Gender: male or 
female) between subjects analysis of variance. As 
expected, a main effect for behavior was found, 
F(1,54) = 6.68, p < .05. Participants who had been 
imitated by the experimenter sat closer to the occu-
pied chair (M = 1.47) than the participants that had 
not been imitated (M = 1.96). No main effect of 
Gender or interaction between Gender and Behavior 
were obtained. 
 These results replicate Experiment 1 and provide 
further evidence that imitation makes people feel 
closer to other people in general. Interestingly, the 
observed main effect of gender in Experiment 1 was 
not replicated in Experiment 2, although other work 
has recently found such a gender effect on seating 
distance (Holland et al., 2004). 

4   General Discussion 
The present studies demonstrate that being imitated 
has consequences beyond the dyad. Although it may 
be the case that imitation creates a “special bond” 
between the person who is being imitated and the 
imitator, the effects are not restricted to that dyad. 
Being imitated affects people more profoundly; it 
makes them feel closer to others in general. How 
might this work? 
 Participants are not aware of being imitated, but 
still they are affected by it. Although admittedly 
speculative, it is possible that on a non-conscious 
level one registers that one’s perception and action 
are in synchrony, an implicit form of imitation rec-
ognition (Nadel, 2002). This signal may function as 

a proprioceptive cue that subsequently influences 
the way in which we interact with our environment. 
A challenge to future research is to examine whether 
in fact such a signal exists. Does synchrony between 
one’s own actions and the actions one perceives 
another person perform indeed result in observable 
activity? There is quite some evidence for a close 
link between perception and action (Prinz, 1990; 
Iacoboni et al., 1999) and this could provide an ar-
chitecture from which the implicit sensation of be-
ing imitated may occur.   
 Of course, these findings do not mean that imita-
tion only had consequences for the imitated person 
and not for the specific dyad. It seems more likely 
that these are additive effects. First, imitation has 
positive consequences for the specific relationship 
in which imitation occurs: relatively more liking and 
rapport. In addition, being imitated changes one's 
interaction with, and possibly perception of, the 
environment more fundamentally. More research is 
needed to investigate this.  Hopefully this will bring 
about a fuller, more sophisticated understanding of 
human interaction. 
 A challenge to future research is to examine 
whether in fact such a signal exists. Does synchrony 
between one’s own actions and the actions one per-
ceives another person perform indeed result in ob-
servable activity? There is quite some evidence for a 
close link between perception and action (Prinz, 
1990; Iacoboni et al., 1999) and this could provide 
an architecture from which the implicit sensation of 
being imitated may occur.   
 Of course, these findings do not mean that imita-
tion only had consequences for the imitated person 
and not for the specific dyad. It seems more likely 
that these are additive effects. First, imitation has 
positive consequences for the specific relationship 
in which imitation occurs: relatively more liking and 
rapport. In addition, being imitated changes one's 
interaction with, and possibly perception of, the 
environment more fundamentally. More research is 
needed to investigate this.  Hopefully this will bring 
about a fuller, more sophisticated understanding of 
human interaction. 
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