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Foreword from the Convention Chairs

The AISB’11 call for symposium proposals particularly  encouraged events drawing more strongly 
on the cognitive science aspect of the AISB remit. The result is a coherent programme with a very 
strong interdisciplinary  character, which is also matched in the choice of plenary speakers. The 
three symposia looking at the interaction between Computing and Philosophy, the prospect of 
machine consciousness and the quest for a new, comprehensive intelligence test, form a coherent 
unit where the eternal questions of who we are and what makes us so are asked from a dual Human-
Machine perspective. The Symposia on Active Vision, Computational Models of Cognitive 
Development and Human Memory  for Artificial Agents demonstrate how better understanding of 
the nature and basis of cognitive processes can advance work on Artificial Intelligence and, 
inversely, how computational models of these processes can help better to understand them. The 
prominent multi-agent design and modelling paradigm links the Symposium on Social Networks 
and Multi-agent Systems with the one on AI and Games. Finally, the Symposium on Learning 
Language Models from Multilingual Corpora, which brings together some of the first attempts in 
this area, can also be seen through the prism of such a general notion in Philosophy and Linguistics 
as semiosis, and the dual role of sign and interpretant that text plays in translations.

We are delighted that after another ten successful years in its long history, the AISB convention is 
returning to the University  of York. The 2011 convention takes place on the brand-new Heslington 
East campus, the result of a multi-million pound expansion that  is now the new home of the 
Department of Computer Science, and hosts the Excellence Hub for Yorkshire and Humber, a new 
incubator for interdisciplinary research and interaction between academia and industry. The last few 
years have seen a strong involvement of the Computer Science Department in such interdisciplinary 
collaboration through the York Centre for Complex Systems Analysis (YCCSA), and we hope that 
this convention will provide a boost for more synergy between York departments, with other 
institutions conducting AI-related research in the region, and beyond. As the programme shows, we 
have also made an effort to promote cooperation with industry and use the convention to support 
school outreach. The convention format makes it  perfect for establishing dialogue and collaboration 
in new areas of research, as well as across disciplines, and we hope that this year, it will play again 
this role to the full. We want to thank everyone who has contributed to it or otherwise made this 
event possible and wish all participants a fruitful and enjoyable time in York.

Dimitar Kazakov and George Tsoulas
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Preface to the Proceedings of the Symposium on architectures for Active Vision 

 

This Symposium of the AISB Convention took place on 4 - 5 April 2011 at the University of York, 
United Kingdom, supported by the Society for the Study of Artificial Intelligence and Simulation of 
Behaviour. 
 
The symposium theme was “Architectures for Active Vision” – that is, the control of vision and 
visual attention. The Symposium has been organized partly as a result of the activity of the Active 
Vision Network, a collaboration between the universities of Leeds, Sheffield and York supporting 
work spanning psychology and computer science. The Network is funded by the White Rose 
Consortium. Some of the results of work carried out by the Network are presented in this 
Symposium. 

Vision is arguably the most researched function of the brain. Nonetheless, high level visual 
information processing is still poorly understood. A major problem in perception is the volume of 
information acquired by the body's sensors. Passive approaches to selection of information may 
deal with the overload by focussing processing on particularly salient inputs. Active vision takes the 
further step of directing the acquisition of information in a goal-directed manner, in which top-
down information plays an important role, possibly overriding saliency in selection of actions. This 
shift in perspective connects vision with important issues for cognitive systems as a whole, such as 
action selection, planning and goal-driven behaviour. 

The symposium brought together researchers with interests in brain architectures for active vision, 
the neural basis for action selection in vision, and in the high level modelling in software of 
structure or mechanisms from the visual system. Contributions spanned theory and experiment from 
neurobiology, through cognition to bio-inspired software applications.  
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Functional brain architecture underlying eye movements Melanie Burke1, Claudia Gonzalez1 and Graham Barnes2 
1Institute of Psychological Sciences, University of Leeds, U.K. 2Faculty of Life Sciences, 

University of Manchester, U.K.  
Abstract: In everyday life, in order to perceive the world around us we make thousands of eye movements to people and objects of interest. We make these eye movements in order to place the high acuity region of the retina, known as the fovea, onto the region of interest. Furthermore, when watching a moving target our brain must be able to predict (or anticipate) the target motion in order to place the fovea on the moving target of interest. This prediction is a feature of all motor systems in the body and is thought to help avoid the inherent neural delays observed in the processing of information in the brain. A network of brain areas involved in the process of generating, inhibiting and predicting eye movements to stationary and moving targets will be presented.  
1 INTRODUCTION In order to see the world around us we need to place the high acuity region of the fovea in the eye onto the area or object of interest. The high acuity region of the eye allows us to view the world in full colour and high definition with a resolution close to 576 megapixels [1]. This high acuity region of the fovea is limited in spatial extent to the area of high density cones 

and subtends only around a 1mm diameter of the back of the eye. Due to this spatial limitation of high acuity within the eye, the eye must move in order to inspect a scene, read a newspaper or watch TV. Based on mainly attentional processes, we make hundreds of thousands of goal directed eye movements every day which mainly comprise a series of saccades and smooth pursuit. Saccadic eye movements (SAC) are a fast ballistic type of eye movement commonly between 300 and 600˚/s [2]. Their primary function is to re-direct gaze from one area to another. These gaze shifts can be either involuntary (or externally driven) based on attentionally salient cues such as looking towards a loud bang or brightly coloured poster, or voluntary (or internally driven) based more on purposeful behaviour such as reading [3,4].  Smooth pursuit (SP) on the other hand involves much slower eye movements with speeds between approximately 10 and 40˚/s [2]. These eye movements are primarily used for looking at a single item or object when either the object or ourselves are in motion. The ideal 
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function of smooth pursuit is to match the speed of the eye with the speed of the motion so the object remains within the foveal region. It was previously assumed that smooth pursuit cannot be initiated in the absence of a visual target (i.e. must be reflexive) [5]. More recently it has been found that smooth pursuit can be 
voluntary/volitional (internally driven) [6] but only the target is predictable.  

Figure 1. An example of reflexive smooth pursuit (SP, blue trace) and saccadic (SAC, red trace) eye movement traces for randomly presented targets appearing or moving to the left or right of the screen. The black line indicates target motion/position (taken from Burke and Barnes, 2006 [7]). In order to address the differences between a more internal versus a more external generation of goal-directed behaviour we used a visually-guided (externally driven) and memory-guided (internally driven) paradigm in our study. To do this we took advantage of an important feature of both smooth pursuit and saccadic eye movements have (and in fact most other motor systems), by using their ability to predict or anticipate motion. Without this ability to predict we would not be able to perform simple behavioural operations such as catch a 

ball, cross the road or drive a car. This ability is a fundamental unconscious feature of motor responses and uses an internal model (derived from memory) to drive the response. The visually-guided reactive responses on the other hand, rely on vision and external cues to drive the response, and is thus more externally driven.  This paper will focus on these two types of eye movements (SP and SAC) under both visually-guided (reflexive) and memory-guided (predictive) conditions to visual targets. It will compare and contrast their relative behavioural hallmarks and neuro-physiological underpinnings.  
2 METHODS Methods are as reported previously in [7] and [8]. Twelve healthy participants performed experiments in both the lab, and the fMRI scanner. Subjects were between the ages of 20 – 39 years and 7 were female. 
Paradigms: Subjects performed 5 different tasks in 5 blocks containing 8 individual trials in a row. Tasks were random saccade (RND SAC), predictive saccade (PRD SAC), random smooth pursuit (RND SP) and predictive smooth pursuit (PRD SP) and a control (CON). The pursuit tasks involved following a smoothly moving step-ramp target either left or right at 15 or 30˚/s outward and 
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then back to the centre of the screen. The saccade task induced a saccade by a target appearing either to the left or right of the fixation cue and then back to centre. Details of the timing of the individual trials are shown in figure 2. Each block contained 8 target presentations either to the left or right of the fixation 8 times in a row (see figure 1 for an example of a SP and SAC random block). If all 8 targets were the same, this comprised a PRD task else each target was random and comprised the RND tasks. The control task (CON) used the same timing as the other tasks (as shown below), however only fixation was required throughout the 8 trials. For details of data methods and analysis for the eye data please refer to Burke and Barnes 2006 [7]. 

 

Figure 2: A representation of the timings a single trial for RND SP, PRD SP, RND SAC and PRD SAC. T1 is initial central fixation, this is followed by a gap (blank screen) and then T2 is target motion (for SP) or position (for SAC) (image from Burke and Barnes, 2006 [7]). Experiments were performed inside the laboratory using an infra-red limbus eye-tracker (IRIS Scalar Medical, BV, CRS Ltd, 

UK) to record eye movements (see figure 3). Likewise a limbus eye-tracker was also used in the scanner to record eye movements (MR-eyetracker, CRS Ltd, UK) alongside BOLD related brain activations. We recorded activity in the brain using a 1.5T Philips Intera Scanner with SENSE head coil. Details of the fMRI methods, parameters and analysis can be found in Burke and Barnes (2008) [8]. 
3 BEHAVIOURAL RESULTS We found a clear dichotomy of data for the eye movements when the target was presented either randomly (visually-guided) (shown in blue in figure 3) or repeated to induce prediction (memory-guided) (shown in red in figure 3). Both pursuit (graph A) and saccadic eye movements (graph B) revealed this effect. This behavioural data reveals a clear prediction, by all subjects, to the predictable targets, and reflexive responses to the randomize targets as expected. For further details refer to Burke and Barnes 2006 [7]. 
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Figure 3: The mean latency for each subject is shown as the grey lines for each target velocity (15 and 30˚/s) or amplitude (15 or 30˚) for the pursuit trials (A) and the saccade trials (B). The Blue squares indicate the mean and standard deviation of all subjects to the random trials, and the red squares the mean and standard deviation to the predictive trials (data from Burke and Barnes, 2008 [8]).  
4 BRAIN RESULTS We found both overlapping and segregated activity in the production of smooth pursuit and saccadic eye movements to visual targets. Pursuit revealed higher activity than baseline (CON task) in; frontal eye fields (FEF), inferior temporal gyrus (ITS), prefrontal cortex (PFC), middle temporal cortex (MT), the cerebellum and brainstem. The saccades revealed higher activity than baseline (CON task) in the supplementary eye fields (SEF), middle temporal gyrus (MTG), frontopolar regions (FP), prefrontal cortex (PFC) and cerebellum. In both types of eye movement negative activity was observed in early visual areas V1 and V2. 

 

Figure 4: Mean results from all subjects for the pursuit only tasks and the saccade only task in which data for the random and predictive trials have been united and a baseline (CON) condition removed. The warm colour indicates positive activity in comparisons to baseline and the cooler colours are more negative activity (taken from Burke and Barnes, 2008[8]). 
5 CONCLUSIONS Based on the findings published in Burke and Barnes 2008 and 2006, the following conclusions can be drawn (as summarised in figure 5). There are clear overlaps in the brain during the production of smooth pursuit and saccadic eye movements to visual targets, despite difference in their behaviour and function to visual targets. We have also found additional distinctions in the 
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network of brain areas involved in generating more external (reflexive or direct) versus more internally (memory or indirect) driven responses during vision.  

 

Figure 5: A diagrammatic representation of the brain areas involved in generating internally-driven responses (indirect pathway) or externally driven responses (direct pathway) for both saccades and smooth pursuit. Saccade dominant areas are shown in white and pursuit dominant in gray (figure taken from Burke and Barnes, 2008 [8]). 
6 ACKNOWLEDGEMENTS This work was supported by the Medical Research Council (MRC) and Manchester Wellcome Trust Clinical Research Facility (WTCRF). We also acknowledge the help and support of the staff at the WTCRF.  
 

7 REFERENCES  [1]http://www.clarkvision.com/articles/eye-resolution.html). [2] Robinson DA. (198l) Control of eye movements. In Handbook of physiology, 
Section I: The nervous system, 2. American Physiological Society: Bethesda, MD.  [3] Remington, R. (1980). Attention and saccadic eye movements. Journal of 

Experimental Psychology: Human 
Perception and Performance, 6, 726-744.  [4] Hoffman JE, Subramaniam B. (1995). The role of visual attention in saccadic eye movements. Percept. Psychophysics. 57(6):787-795.   [5] Carl JR, Gellman RS. (1987) Human smooth pursuit: stimulus-dependent responses. J Neurophysiol. 57:1446-1463.  [6] Barnes GR, Asselman PT. (1991) The mechanisms of prediction in human smooth pursuit eye movements. J Physiol (Lond) 439: 439-461.  [7] Burke MR, Barnes GR (2006) Quantitative differences in smooth pursuit and saccadic eye movements. Exp Brain Res, 175(4):596-608. [8] Burke MR, Barnes GR (2008) Brain and behaviour: A task dependent eye movement study. Cerebral Cortex, 18(1): 126-135.   
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Vision in natural behavior 

Benjamin W. Tatler 

University of Dundee 

Successful completion of many everyday activities requires that foveal vision is allocated to the 
right place at the right time. Models of gaze allocation in complex scenes are derived mainly 
from studies of static picture-viewing. From these studies the dominant theoretical framework to 
emerge has been that of image salience or visual conspicuity: that properties of the stimulus play 
a crucial role in guiding the eyes. It is now clear that salience-based schemes are poor at 
accounting for many aspects of picture-viewing and fail completely in the context of natural task 
performance.  

These failures of the basic image salience model have led to the development of more complex 
models that incorporate higher-level factors, such as expectations about where objects will be 
and what they will look like. However, there are more problematic issues for developing models 
using the picture-viewing paradigm. First, there are problematic conceptual assumptions that do 
not stand up to scrutiny. Second, models based on the picture-viewing paradigm are unlikely to 
generalize to a broader range of experimental contexts, because the stimulus context is limited, 
and the dynamic, task-driven nature of vision is not represented. A particular problem with 
picture-viewing has been the use of the “free-viewing” task as an attempt to isolate “task free” 
vision. Models developed from static scene viewing paradigms may be adequate models of how 
we look at pictures, but are rather inappropriate models of how we use gaze in other situations. 

Videos are increasingly used to provide more realistic, dynamic scenes for developing models. 
Accounting for dynamic properties is important and recent models based on video viewing show 
considerable promise. However, unnatural aspects of movies such as editorial cuts and the 
framing within a monitor still pose problems for models.  

For ecologically valid models of gaze allocation it is important to study vision in the context of 
natural behaviour in real environments. Developing computational models of gaze allocation that 
can generalise across many instances of natural behaviour is a difficult goal. However, we see 
already from studies of gaze selection in natural behaviour that there is an emerging and 
consistent set of principles for gaze selection. A key principle is that of anticipation or prediction 
by the oculomotor system. Forward models have been implicated as important principles for 
models of perception, but do not feature in models of gaze allocation. Framing fixation selection 
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in terms of  predictions from forward models allows us to explain ubiquitous aspects of fixation 
selection that cannot be explained within conspicuity-based models.  

Gaze allocation on the basis of predictions from internal forward models highlights the need to 
understand how these internal models are constructed. Building internal forward models requires 
learning and as such modelling efforts for gaze allocation must encompass this learning. The 
reward system offers a promising candidate for the neural implementation of the learning that is 
required for deploying gaze in natural behaviour. Sensitivity to reward is found throughout the  
neural circuitry involved in controlling eye movements. Models of gaze allocation on the basis of 
reward are emerging and have been used to successfully describe aspects of complex behaviour. 
Reward-based models of gaze allocation provide a promising direction for the field and offer the 
building blocks for developing a theoretical model of eye guidance in natural behaviour.  
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A biologically based model of active vision
Alex Cope and Kevin Gurney 1

Abstract

How do we decide where to look next in a cluttered visual envi-
ronment? How are top-down and bottom-up information combined
to guide the fovea to points of interest? Here we seek to address
these questions using a biologically based model of primate vi-
sion. In this model task driven object selection in the visual sys-
tem’s ventral, ‘what’, stream influences spatial selection in the dorsal
‘where’ stream, by deploying visual attention in the form of feed-
back down the ventral stream. Our model predicts the form of this
attentional feedback, reproduces trends from a wide range of visual
psychophysics data, including that of [5] and [28], and provides a
framework for understanding the neural mechanisms behind visual
search.

1 Introduction

Active vision, the interrogative approach that most higher visual or-
ganisms take to investigating the visual world, is a subset of a larger
competency - that of action selection. In most interactions with an
organism’s external environment multiple motoric choices will be
available, and the selection of the correct motor action to suit the
organism’s current environment is of great importance. In the visual
system this action selection problem can be seen as follows: given a
complex visual scene, with several areas of detail that require foveal
fixation to resolve, the organism must decide which area to fixate
first. How this selection is made is an interesting and challenging
problem, even given that in the visual motor system there is only one
way to fixate a given visual area - this being in stark contrast to the
reach motor system, where multiple motor sequences can achieve the
same final state (e.g. reaching for a pen can be done in many ways).

Selecting the most useful fixation requires combining the bottom-
up information about the visual scene (for example, high contrast
areas contain more infomation), and the top-down requirements of
the current behavioural task (for example, locating a red pen). This
model seeks to investigate how the anatomy of the primate visual sys-
tem produces these types of task driven behaviour, and in doing so
answer the following questions: what is the biological substrate of ac-
tion selection as undertaken in active vision, and how does task infor-
mation influence action selection, and thereby mediate the bottom-up
sensory information, in the primate brain?

By primarily focusing on replicating the key anatomy of the visual
system, and biological accuracy, rather than a model of a specific
task, the work presented here aims to elicit a greater understanding
of mechanisms involved in primate vision.

1 University of Sheffield, UK, email: k.gurney@sheffield.ac.uk

1.1 Psychophysics

Visual psychophysics has several well established paradigms that
can provide behavioural metrics for active vision, and chief amongst
these is visual search [23, 26]. This paradigm involves a participant,
human or animal, locating a target stimulus amongst distractor stim-
uli. A wide range of task variations exist, though for the purposes of
this paper the predominant variation is used. Here a single, unique,
target is placed amongst a field of distractor stimuli on a blank back-
ground. The subject must locate the target as quickly as possible and
report success. The time from trial onset to the report of success (re-
action time) is recorded as the principal behavioural metric, and the
number of distractors that are present in the search array (array size)
is the principal variable.

Behaviour in these visual search tasks is traditionally divided into
two categories; efficient, in which reaction time does not vary with
array size, and inefficient, in which there is a positive correlation be-
tween reaction time and array size. Traditional models [23, 26, for
example] modelled these two behaviors by having two stages of vi-
sual processing, an initial parallel stage to perform efficient search,
and an inefficient serial stage if the first stage could not make a clear
decision. The idea of a serial process has little support in neurophys-
iology [3] however, and further evidence indicates a continuum of
search behaviours from inefficient to efficient [4, 5].

1.2 Anatomy and neurophysiology

In the primate brain, the visual system is traditionally divided into
two processing ‘streams’ [24]. After the entry of visual information
into the cortex in primary visual cortex (V1) one stream travels in
a dorsal direction, and the other in a ventral direction. The dorsal
stream is often referred to informally as the ‘where’ stream, and
maintains a topographic retinotopic mapping of visual space. The
ventral stream is informally referred to as the ‘what’ stream, and is
characterised by the receptive fields (RF) of neurons further along
the stream responding to more complex stimuli, while spatial map-
ping is simultaneously lost (resulting in larger neuron RF). The ven-
tral stream can therefore also be considered as an ‘object recogni-
tion’ system. Since the ventral stream discards spatial information
regarding the objects it recognises, the location on the visual field of
task relevant objects must be obtained in order to accurately guide
a saccades to them. Evidence suggests [13, 7], and it has been pre-
viously proposed [25] that visual attention via feedback down the
ventral stream is the mechanism used by the primate brain to recover
an object’s location. Spatial information is encoded in a ‘log-polar’
mapping [22], with radial distance from the fovea - distorted by a
‘cortical magnification factor’ (CMF) (e.g. [18]) - on one axis, and
transverse angle on the other.
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Figure 1. Diagram of the model showing modelled regions, excepting basal ganglia intrinsic connectivity, and connection patterns. See section 2. Grids
represent modelled areas, arrows represent connections between areas. Cones are representative the spatial extent of connectivity in the model’s ventral stream

hierarchy.

2 The Model

In this section an overview of the model will be presented. The model
replicates the anatomy (see section 1.2) with a bidirectional ventral
stream object recognition hierarchy up to anterior inferior temporal
cortex (AIT) from V1 [6], and a dorsal stream to the frontal eye fields
(FEF). It integrates a modified model of the oculomotor system from
[1]. Spatial mapping is in a biological log-polar form, as described
in section 1.2. Selection is performed in AIT [2], where there is an
object-based, largely spatially invariant visual map [19, 10], and in
FEF [21], where there is a retinotopic spatial visual map. This se-
lection is performed by closed loops of neural connections involving
cortex, the basal ganglia, and thalamus. For details see Figure 1. The
combined behaviour of these two selection mechanisms in determin-
ing saccade targets was investigated.

In the model the dorsal stream consists of Lateral Intrapariatal cor-
tex (LIP), and the Frontal Eye Fields (FEF). Both areas have a spatial,
retinotopic, mapping and have been found to represent the locations
of behaviourally relevant objects in their activity [9][20], with FEF
showing activity reflecting the visual decision making process [15].
In the model this selection is performed by a closed loop of neu-
ral connections through cortex, the basal ganglia, and thalamus. The
basal ganglia has been implicated in selection between competing ac-
tion channels [17] and gating oculomotor actions [11]. Selection in
the dorsal stream of the model acts upon a spatial map, representing
the likelihood of behaviourally task-relevant objects being present
(the behavioural salience) at each location on the visual field. This
salience map is produced as the output of the ventral stream of the
model.

The model’s ventral stream consists of a hierarchy of increasingly
spatially invariant cortical areas linked by anatomically distinct feed-
forward and feedback excitatory connections. The receptive fields of

the neurons increase up the stages of the feedforward hierarchy. The
complexity of the stimuli the neurons are tuned to likewise increases
by combining stimuli represented at the previous stage together. Spa-
tial invariance increases by means of a MAX operation at each stage
(see [12]). Within each receptive field in the feedforward pathway
there is competitive processing to represent the strongest, and thus
most likely, stimulus representation for that region. At the top of
the hierarchy, in IT, there is almost no spatial information. Here the
task information - the current goal of the model, what it is trying to
achieve - is introduced by modulating the activity of the neuron rep-
resenting the task-relevant object by a hand crafted top-down bias
signal.

As described in section 1.2, the highest layers of the ventral hier-
archy contain little spatial information about where objects are on
the visual field, and this information must be recovered to direct
gaze to behaviourally relevant objects. Evidence suggests that this
is achieved by visual object-based attention [13, 7]. In experiments,
not reported here, several methods of achieving object-based atten-
tion through feedback connections in the ventral stream were tested,
finding that distinct feedforward and feedback paths were necessary
to recover spatial information about the chosen objects reliably.

The method used in the model to recover the spatial information
proceeds as follows. In the highest visual area of the model very
coarse spatial information is used, in combination with the most com-
plex representations of stimuli, to drive attention to the segments of
the visual field containing evidence of the objects biased by the top-
down signal. Since the most complex representations are used, this
attention provides high specificity to distinguish the chosen objects
from task irrelevant objects, which compensates for the coarse spa-
tial scale. At the next level down in the hierarchy this attentional
signal is now constrained to certain segments of the visual field by
the higher visual area. This coarse attention is then combined with
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Figure 2. A simple example of the mechanism for feedback. Black
represents active neural units, white inactive. Three base features are

combined into intermediate features, then full objects. One object is biased.
The product of the bias, and the evidence at each location, provides the

attentional bias to the next level. In the next level the product of the
attentional bias and the bottom-up evidence is once again combined, and the
product of the two at each spatial location, and for each sub-object, provides
the attentional bias from the final level, thus highlighting strongly the desired

objects, and weakly a close object that shares a feature. Selection in the
dorsal stream will drive gaze to the correct objects.

recognition of less complex stimuli, consisting of parts of the objects
in the higher layer. Where there is top-down attention AND a part
of the object, feedback continues. While these object parts are less
specific to the objects to be located, the constraint of the coarse at-
tention from the higher level compensates for this, and there will be
less attentional bias erroneously provided to parts of object shared by
other, task irrelevant, objects, as to be biased these must now lie in
the same part of the visual field as the objects to be located. This pro-
cess repeats down the hierarchy, slowly recovering the likely target
identity. Figure 2 shows a simplified example.

In addition to the object salience map from the ventral stream,
selection in the FEF operates on a salience map from the superior
colliculus (SC). The SC responds to changes in luminance: the ap-
pearance, disappearance, and movement of objects [27]. A salience
map of this information also enters the FEF selection loop.

In order to focus the investigation on visual selection we chose a
highly limited feature set (much less complex than that of human vi-
sion). The objects recognised by the model consist of seven segment
depictions of numbers, similar to those found on digital clocks (see
Figure 3). These objects therefore consist solely of unique spatial
arrangements of vertical and horizontally oriented line segments.

Figure 3. The object set used with the model.

The model is dynamic, using leaky integrator, rate-coded model
neurons. Connection patterns between neurons in the model are hand
crafted, as this allows a greater understanding of the behaviour of the
model. The model is implemented using a set of custom created neu-
ral simulation tools (ModLIN, Modular Leaky Integrator Neurons)

developed against the BRAHMS modular execution framework [14].

3 Experiment 1: Visual search - perceptual
learning

3.1 Methods
The visual search task was to locate a ‘6’ numeric digit amongst
‘5’ and ‘9’ digits and respond by making a single saccade to within
a 10 pixel radius of the correct location. Stimuli consist of 5 by 9
pixel digits with a fixed luminance, modulated by noise on a per pixel
basis, arranged on a 300 by 300 pixel ‘world’. A subregion of 150
by 150 pixels is taken from this world as the extent of the visual
field, saccades move this subregion within the world. The stimuli
are evenly spaced around the circumference of an imaginary circle
60 pixels in diameter. The log-polar mapping of the visual field was
calibrated to give the diameter of the imaginary circle as 24 degrees.
This gives a stimulus size of 2 by 3.6 degrees.

Two main conditions were used. First is the ‘naive’ condition. In
this condition the model is put into a state mimicking that of a partic-
ipant when first presented with a new visual search task. The target
and distractors are novel, and the model holds no complete internal
representation for the target as a ‘6’. Instead, in order to bias the ‘6’,
the top-down bias must influence the parts of the ‘6’, the top - which
is a ‘c’ shape, and the bottom - which is an ‘o’ shape. The ‘6’ shares
one of these parts with each of the ‘5’ and the ‘9’. In the second,
‘trained’, condition the model mimics a participant after hundreds
of trials on the visual search task. The model has a complete, but
weakly tuned, internal representation of a ‘6’, and top-down task in-
formation is provided by biasing this target representation. Since the
representation is weakly tuned, the model still finds some evidence
for a ‘6’ at the locations of the distractors. In all other aspects these
two conditions are identical. See figure 5 for a diagram of the two
bias conditions. These two conditions attempt to reproduce the effect
of perceptual learning as demonstrated in [5].

Figure 4. Top: Diagram of experimental procedure and example trials.
Fixation is shown, then at 0.2 seconds into the trial the search array is

shown. The model responds with a saccade with latency RT (reaction time).
The saccade is either (A) correct if the ‘6’ is fixated or (B) incorrect if a

distractor is fixated.

Array sizes of 2, 4, 8 and 10 stimuli were used for each main con-
dition. Twelve evenly spaced locations around the circle were used
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Figure 5. Diagram of the neural representations biased in the ‘naive’ (A)
and ‘trained’ (B) conditions.

for the target location, and the distractor locations evenly distributed
around the circle based on the target location, with equal numbers of
each distractor type where possible. 10 repetitions were performed
for each target location. The experiment proceeded as follows. A fix-
ation point was presented at the centre of the circle. After 0.2 sec-
onds, by which time the model had reached a steady state, the fix-
ation point was removed, and the search array presented. The trial
was terminated when the model made a correct saccade. If the model
failed to make a correct saccade within 4 seconds of the search array
being presented the trial was considered an error and terminated. See
Figure 4 (left).

3.2 Results
Figure 6 (right) shows the results of this experiment. Linear regres-
sion of the data gives search slopes of 73.3ms/item for the ‘naive’
condition, and 42.4ms/item for the ‘learned’ condition. This shows a
flattening of the search slope with perceptual learning in the model.
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Figure 6. Graph showing the change in search time with varying number
of distractors for the ‘learned’ (red), and ‘naive’ (blue) conditions. Error bars

reflect standard errors. Bottom right: Graph from [5] showing perceptual
learning over subsequent days of trials.

4 Experiment 2: Visual search - efficient vs
inefficient

4.1 Methods
Two visual search tasks are used. For the condition A search task the
model is required to find a horizontal bar amongst vertical bar dis-
tractors. The condition B task is to locate a ‘6’ numeric digit amongst
‘5’ and ‘9’ digits, with biasing as in the ‘trained’ task. In both tasks
a correct response is determined by the model making a saccade to
within a 10 pixel radius of the the correct location, regardless of how
many saccades this correct saccade takes to make.

In condition A the stimuli consist of five pixel by one pixel ver-
tically and horizontally oriented bars. Stimuli in condition B consist
of 5 by 9 pixel numeric seven segment display digits. The stimuli are
randomly placed in a 150 by 150 pixel search array, making sure that

there is a minimum centre to centre separation between stimuli of 17
pixels. The environment is as described in Section 3.1.

Array sizes of 2, 6, 12 and 24 stimuli were used for each condition.
480 repetitions were performed for each condition and array size.
A fixation point was presented at the centre of the array. After 0.2
seconds, by which time the model had reached a steady state, the
fixation point was removed, and the search array presented. The trial
was terminated either when the model made a correct saccade, in
which case the time was noted, or when four seconds from array
presentation had elapsed, in which case the trial was considered an
error. For each case (condition and search array size) 480 trials were
run.
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Figure 7. Top left: Graph showing average reaction time against
search array size for condition A (red, triangles) and condition B

(blue, circles) visual search tasks. Top right: Graph showing average
number of saccades taken to locate the target in the for condition A
(red, triangles) and condition B (blue, circles) visual search tasks.

Error bars reflect standard errors. Bottom: Graph from [16],
showing inefficient, (circles) and two types of efficient (triangles),

search tasks (dashed lines are two subjects, solid is average).

4.2 Results

The principal result is shown in Figure 7 (left). The behaviour of
the model parallels that found in human and primate subjects, with
search times for the simple features in condition A being essentially
flat or independent of the search array size, with a search slope of
3 ms/item. Condition B, on the other hand, in which the target and
distractors shared partial features, on the other hand, showed a strong
dependence of search on the number of stimuli in the search array,
with a search slope of around 42 ms/item. The number of fixations
taken also demonstrates the same pattern found in human subjects
(Figure 7, right).
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5 Experiment 3: Visual search - effects of stimulus
onset

5.1 Experiment 3a: Stimuli and procedure

The visual search task was to locate a ‘6’ numeric digit amongst
‘5’ and ‘9’ digits and respond by making a saccade to within a 10
pixel radius of the the correct location. The stimuli and procedure
are chosen to match as closely as possible those used in [28]. Stimuli
and the world are as described in Section 3.1. The stimuli are evenly
spaced around the circumference of an imaginary circle 42 pixels
in diameter. The visual field was calibrated to give the diameter of
the imaginary circle as 4.0°. The stimulus are 0.48° by 0.86°, which
maintains the stimulus height from [28].

There are two main conditions. In the ‘onset’ condition, a fixation
point appears at the centre of the imaginary circle. This is maintained
for 1.0 seconds as in the original paper. When the fixation point is
extinguished the search array of three or seven digits appears. In the
second, ‘non-onset’, condition an array of figure-eight placeholders
surround the fixation point, and on removal of the fixation point after
1.0 seconds segments of the placeholders are removed to reveal the
search array. Trials are terminated when the target is located by a
correct saccade, or considered an error if after four seconds the target
is not located (see Figure 8). As in the original paper, reaction times
(RT) greater than twice the mean were discarded.

Twelve locations for the target were used, and forty trials were run
for each target location, each display size, and each condition. Equal
numbers of each distractor type were used and the locations of the
distractors were randomised for every trial. This gives a total of 1920
trials.

5.2 Experiment 3b: Stimuli and procedure

The task, stimuli and environment are as in section 5.1. Once again,
there are two main conditions. In both conditions a fixation point ap-
pears and figure-eight placeholders appear on six of the seven search
array locations. In the onset condition the target appears at the un-
masked search location, in the non-onset condition one of the dis-
tractors appears at the unmasked location (See Figure 9).

Twelve locations for the target were used, and forty trials were run
for each target location, each display size, and each condition. Equal
numbers of each distractor type were used and the locations of the
distractors were randomised for every trial. This gives a total of 1920
trials.

5.3 Results

For experiment 3a the mean RT for the onset and non-onset condi-
tions for displays of three and seven elements, along with standard
errors, are shown in Figure 10. These results show the same effects
as those reported by [28] and [8].

The mean RT for the onset and non-onset conditions along with
standard errors, for displays of three and seven elements, are shown
in Figure 11. As can be seen from the graph, the data follows the
same trends as those reported by [28].

Figure 8. Diagram of the procedure for experiment 3a - (A) Onset
condition: there are no masks over the search array positions. (B) Non-onset

condition: figure ‘8’ masks appear over the search array positions.

Figure 9. Diagram of the procedure for experiment 3b - (A) Onset
condition: the target appears at the unmasked location. (B) Non-onset

condition: a distractor appears at the unmasked location.

Figure 11. Results for Experiment 3b (bottom left) and experimental data
from [28] (bottom right). Reaction time is plotted as a function of display
size for the onset (red / circles) and non-onset (black / squares) conditions,

respectively.
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Figure 10. Results for Experiment 3a (top left) and experimental data from
[28] (top right). Reaction time is plotted as a function of display size for the
onset (red / unfilled circles) and non-onset conditions (black / filled circles),

respectively.

6 Discussion

The results above demonstrate that the model, constrained by the
anatomical and functional evidence from the brain, is capable of re-
producing a range of psychophysical data. The power of the model
to explain these results arises from the anatomical constraints of the
model, which provide a clear correspondence between the model and
brain function.

The mechanisms that give rise to efficient and inefficient search
behaviours in the brain, as well as the shift from inefficient to effi-
cient search obtained through extensive repetition of a specific visual
search target and distractor stimulus set [5], can be explained by this
model.
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Figure 12. Activity in layer LIP of the model. The layer is log-polar
mapped and activity is averaged over 100 iterations to remove noise. Top

left: trained model on perceptual learning task. Bottom left: naive model on
perceptual learning task. Top right: inefficient stimuli on efficient vs

inefficient task. Bottom right: efficient stimuli on efficient vs inefficient task.

Figure 13. Plot of maximum cell activity on each radial column of layer
FEF of the model through time. Top: Example trial for Onset Experiment 3a

- onset condition. Bottom: Example trial for Onset Experiment 3a -
non-onset condition. Phasic activity due to onset moves from mask onset
(bottom) to array onset (top), thus speeding selection of the first saccade.

In inefficient search the ability of the ventral stream to differen-
tiate between target and distractor is poor. The model suggests that
this effect is caused in part by there being no single target represen-
tation, but instead representations for parts of the target, e.g, a red
vertical bar could be represented as the features red, and vertical bar.
Additionally poor tuning of the target representation can affect the
efficiency of the search. In this case the representation of the target
and distractors would span a greater amount of feature space, with
the tuning curves overlapping each other. The result in both of these
cases is the same, the distractors sharing close features with the target
receive a portion of the bias intended for the target, due to the shared
feature representations, or to the overlap in feature space. This re-
sults in a salience map input into the FEF from the ventral stream
that contains more distributed activity, and therefore more ambiguity
in target choice. This leads to greater difficulty locating the target,
both during covert selection in the brain, and overt shifts of gaze,
leading to greater reaction times as the number of stimuli increases.
After hundreds of trials of the same target and distractor stimulus
set, the ability of the ventral stream to differentiate between target
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Figure 14. Example trial for Onset Experiment 3b - onset condition.
Phasic activity due to onset boosts activity of the unmasked object, thus

increasing the chance of it being fixated first saccade. This leads to efficient
search behaviour when the target is unmasked object, as in this trial.

and distractor improves, and the salience map provided to the FEF
is less ambiguous. The result of this is that the number of distractors
has a reduced effect on reaction time. Efficient targets, are able to
be distinguished very easily from the first encounter by being dis-
tant in feature space. Figure 12 shows these two cases. In the case
the perceptual learning task the improvement is due to a slightly less
ambiguous salience map, so the effect on the reaction time slope is
weaker. In the case of the inefficient vs efficient search task the dif-
ference in ambiguity in the two salience maps is much greater, and
therefore the difference in behaviour is much more pronounced.

The results from the onset task can also be explained by the model.
These effects are caused by the combination of phasic salience map
from SC with the object salience map from the ventral stream. The
results for experiment 3a (see Figure 10) arise from the phasic onset
being moved from the array onset to the mask onset. This leads to
slower selection of the first saccade target, and thus a shift in the
time taken to find the target. Since the onset drives the first saccade
this shift is largely independent of the number of distractors. Figure
13 shows the neural activity in the FEF during example trials.

In experiment 3b (see Figure 11) a similar effect occurs, however
in this case the phasic onset only affects one object, increasing the
chance of that object being fixated on the first saccade. If this object
is the target then the behaviour becomes similar to efficient search,
however if the object is not the target, normal inefficient search pro-
ceeds. Figure 14 shows the neural activity in the FEF during example
trials.

These explanations are possible due to the strong biological basis
of the model, which provides a clear link between the behaviour and
the neural mechanisms involved.
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Multi-modal visual attention for robotics active vision
systems - A reference architecture

Martin Hülse, Sebastian McBride and Mark Lee 1

Abstract. This work introduces an architecture for a robotic active
vision system equipped with a manipulator that is able to integrate
visual and non-visual (tactile) sensorimotor experiences. Inspired by
the human vision system, we have implemented a strict separation
of object location (where-data) and object features (what-data) in the
visual data stream. This separation of what- and where-data has com-
putational advantage but requires sequential fixation of visual cues in
order to create and update a coherent view of the world. Hence, vi-
sual attention mechanisms must be put in place to decide which is
the most task-relevant cue to fixate next. Regarding object manip-
ulation many task relevant object properties (e.g. tactile feedback)
are not necessarily related to visual features. Therefore, it is impor-
tant that non-visual object features can influence visual attention. We
present and demonstrate visual attention mechanisms for an active
vision system that are modulated by visual and non-visual object fea-
tures.

1 Introduction
Robotic systems interacting in a truly autonomous fashion in uncon-
strained environments is one of the most challenging research and
engineering topics in robotics. Solving these problems has been a
major driver for the development of the field of cognitive robotics
whereby biological systems, where many of the problems of auton-
omy have been resolved, are used as putative templates for robotic
architectures. In the context of animals, cognition is defined as the
process of acquiring and using knowledge about the world for goal-
orientated purposes. One of the most fundamental aspects of this
process is the ability to locate (where) and identify (what) objects
within the environment and, to be able to do this in the context of an
ever-changing visual scene due to body, head and eye movement.
With this attribute, however, comes the problem of data handling
due to the immense amounts of visual information that potentially
has to be processed. Biological systems have again resolved this is-
sue through the phenomenon of visual attention whereby objects and
events of high relevance are placed at the centre of the visual scene at
high resolution, whilst less relevant visual information are either kept
at low resolution or not maintained within the visual field. In other
words, visual attention is a mechanism that allows the allocation of
resources to the most critical components of the agent’s environment.
The ability to do so is largely due to the mechanism of saccade and
the graded number of visual sensors across the retina (highest at the
centre [fovea] decreasing outwards) with continuous fixations allow-
ing a single egocentric precept of the agent’s immediate environment

1 Intelligent Robotics Group, Department of Computer Science,
Aberywtwyth University,SY23 3DB, Wales, UK, email: {msh, sdm,
mhl}@aber.ac.uk

to be created. In addition, critical components of the agent’s envi-
ronment that drive visual attention can be largely categorized into
two areas; objects and events that have high intrinsic saliency (due
of high luminance, contrast or movement ) or those that are relevant
to the current task. This is commonly referred to as bottom-up ver-
sus top-down visual attention respectively and has often been used
as an inspiration or framework for the development of robotic archi-
tectures, e.g. [8]. A potential extension of this type of architecture is
use of non-visual features to modulate visual attention. For example,
using non-visual sensorimotor experiences (e.g. hardness of object)
to modulate visual attention in the context of a set task (reach for
hard objects). In this paper, we present a computational architecture
for a robotic active vision system and a manipulator that encapsu-
lates bottom-up versus top-down visual attention but expands this
concept towards added multi-modal (visual and tactile) modulation
of the system.

The architecture presented here is termed cognitive in the sense
that it is inspired by cognitive science, brain research and also devel-
opmental psychology. Furthermore, it adheres to the generalised me-
chanics of human retina as described above, with high resolution in
the center with low resolution on the periphery, to create an active vi-
sion system where saccades allow visual information to be gathered
from an extended egocentric space. A critical feature of this architec-
ture is the existence of a common reference frame to allow a) the use
of an active vision system, b) the ability of cross-modal modulation
and c) the transformation of visual stimuli into reach target coordi-
nates. The reader will see that from an engineering perspective this
exploitation of such a common reference frame saves computational
costs with respect to processing time and memory.

The three objectives of this paper are, therefore, firstly, to present
a computational framework that enables an active vision system
equipped with a manipulator to integrate robustly multi-modal visual
and non-visual sensor experience. Secondly, to demonstrate the dif-
ferent ways in which non-visual sensorimotor experiences can modu-
late visual attention in terms of fixation patterns. Thirdly, to promote
this architecture as a reference architecture for humanoid and an-
thropomorphic robot systems for visual attention and object manipu-
lation. As we will outline, this reference architecture offers an exper-
imental setup for validating different cognitive models and therefore
it is a promising tool for developing new hypotheses and deriving
insight about the nature and biology of visual attention and object
manipulation.

2 Robotic Setup

Our robotic scenario includes an active vision system and a manipu-
lator, i.e. a robot arm equipped with an 3 finger hand system, Fig. 1.
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Figure 1. Robotic setup including robotic arm and hand systems and an
active vision system.

Together, robot arm and hand systems (SCHUNK GmbH & Co. KG)
have 14 DOF (degree of freedom). Each finger has two segments and
each of these segments is equipped with one pressure sensitive sensor
pad providing tactile feedback when grasping an object.

The active vision system consists of two cameras (both provide
RGB 1032x778 image data) mounted on a motorised pan-tilt-verge
unit. Here, only two DOF, verge and tilt of the left camera, are used.
The motors are controlled by determining their absolute target po-
sition p, or the change of the current position ∆p, given in radians
(rad). In its default position the vision system is oriented towards the
robotic manipulator which is mounted on a table where it can grasp
and replace objects (coloured balls).

3 Computational Architecture
Our architecture combines four basic functions: image processing,
object fixation, reaching towards and finally, grasping of objects (Fig
2). Central element is the spatial memory which modulates the cur-
rent visual input represented in the gaze space. The spatial mem-
ory stores object locations and is itself modulated by object features
stored in the feature memory. In the following this architecture and
the processes of feature modulation are be explained in detail.

3.1 Basic functions
Image processing. The image processing of the original RGB camera
image data is aimed at mimicking the retina of the human eye. These
properties are simulated by dividing the original camera RGB data
into two data streams. One stream is fed by image data from a small
predefined region around the image center having maximal resolu-
tion. The second stream starts with a scaled down resolution of the
image. Hence, we get one low resolution image of the whole visual
scene and a high resolution image of the image center. At this point
both streams contain colour information.

The low resolution color image is further filtered with respect to
three colours components (red, blue and green) and changes in the
image data (movement). The individual filter outputs are linearly
combined and normalised generating a saliency map. Each pixel in
this map has a real value in the range [0.0,1.0] indicating image re-
gions of red, blue, green, or movement. The domain this saliency

map is represented is called retinotopic space or retinotopic refer-
ence frame.

Due to the linear combination and normalisation the resulting
saliency map can highlight specific colour components. Hence, it
might be that red image regions are amplified while blue regions ap-
pear with low intensity, even if in the original image the blue regions
show much higher intensity than red regions. The process of saliency
map generation is here also called spatial filtering because it provides
image regions which later will be used to derive potential fixation and
reaching targets.

It is worth noting that this simple purely colour and movement
based saliency map can be replaced by any other mechanisms gen-
erating more advanced saliency maps (see for instance the classical
approach [7]). Furthermore, it must be emphasised that the final spa-
tial filter output does not have any reference to the original colour
data. The specific object features can be derived from the high reso-
lution image data only.

Feature filters are applied to the image center of the high resolution
image data. Here, specific feature filters can indicate properties about
shape or texture. In this scenario again we made use of colour filters
only. Hence, a 3-dimensional vector (feature vector, vv) is provided
indicating the intensity of red, green and blue. Obviously, this feature
vector can be easily extended by other feature measures.

At this point one can see that the original RGB image data is trans-
formed into two data streams: one delivers a low resolution saliency
map and the other a feature vector vv. Although very simplified and
considering colour components (R, G, B) and image changes only
this implementation mimics the separation of what (feature) and
where (spatial) information.

Object fixations. Since visual features can only be detected from
the image center, the camera must fixate the object in order to get
access to its particular feature vector vv. The fixation of an object
is generated by saccadic camera movements or eye saccades which
bring a selected image region into the image center, the fovea. In
former experiments we have demonstrated how such eye saccades
can be learned by a robotic active vision system [3]. In this scenario
the saliency map refers to potential fixation targets. An eye saccade
mapping maps a specific image (X ,Y )-coordinate to the relative mo-
tor movements ∆p. When executing these relative motor movements,
the selected image regions is placed into the image centre, where fea-
ture vector vv is derived from.

In more recent studies we have also shown that if the current ab-
solute motor positions of the active vision system p are given then
the relative motor movements ∆p derived from the eye saccade map-
pings can be used to estimate the final absolute motor positions if a
saccade towards the stimulus would be executed [4]. Applying this
estimation for each stimulus in the saliency map we actually map
all stimuli (X ,Y )∗ from the retinotopic reference frame into the gaze
space. The gaze space is defined by the range of absolute motor po-
sitions of the active vision system. The set of motor positions < p >∗

derived from the saliency map is called local gaze space since it rep-
resents the stimuli in the current visual field which is only a small
part of scene visually accessible.

The gaze space is the domain of the action selection process for
saccadic camera movements. Action selection is the process of se-
lecting the most salient stimulus p in gaze space, followed by the ex-
ecution of the corresponding motor command which drives the cam-
era motors into position p. The eye saccade is said to be successful
if after the execution the image centre of the saliency map contains
non-zero entries. This state information is detected and provided by
the spatial filter (see Fig. 2). If the eye saccade was successful then
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Figure 2. Computational architecture for active vision and visual guided reaching and grasping.

the absolute position p of the current active vision system (a point in
the gaze space) is stored in the spatial memory. The domain of the
spatial memory is global because it can also contain stimuli which
refer to locations outside the current visual field of the camera.

The spatial memory is necessary to prevent exclusive fixations of
the same stimuli (IOR). Stimuli in the spatial memory inhibit stimuli
in the local gaze space having the same p-coordinates. Thus, current
saliency values are modulated resulting in lower saliency values if
the camera has already fixated these stimuli. The entries in the spatial
memory have a decay value and get removed after a defined period of
time. Therefore, the camera system will repeatedly saccade towards
salient objects but will never “get caught” by the most salient object.

In addition, the intensity of the decay is modulated by the features
each p is associated with. Features can be visual and non-visual and
are stored in the visual memory where it is also defined how each
feature modulates the decay. The parameters E and H are given for
each feature class which determine the saliency of each object once
the system has fixated it. Thus, after a saccade the saliency of an
objects is defined by the features and their E and H values. This is
what we call task modulation and we will explained this process later
in detail.

Reaching, grasping, and tactile feedback. Having all potential fix-
ation targets represented in the gaze space we had shown that these
coordinates in gaze space can be mapped into the reach space and
vice versa by a previously learned mapping [5, 6]. Thus, for any se-
lected fixation target the corresponding reach coordinates can be de-
rived instantly. Once the arm systems starts a reaching action the

related gaze space coordinates modulate the gaze space data fed
into the action selection process. In our architecture this is called
the reaching modulation of the gaze space leading to an increased
saliency of the stimuli representing the reaching target while all the
other stimuli are inhibited. Consequently, the camera system remains
fixated to the spot where reaching and grasping are performed un-
til these manipulator-object interactions are finished. The continuous
fixation of the target object during the whole reaching and grasping
process guarantees that the current fixation point p can easily be as-
sociated with the corresponding visual vv and tactile features vt and
the reach target coordinates vr. These associations of p with specific
visual and non-visual feature values are essential to generate a task
driven visual attention and visual search.

The grasping provides tactile data. Here, we only measure the sum
of all pressure values in order to indicate the “hardness” of an object.
Very soft objects with pressure values lower than a given threshold
are mapped to value 0 otherwise this value is 1.

3.2 Gaze space modulation

The spatial memory stores motor configurations representing fixation
locations. As we have already mentioned, this is used to modulated
the current visual input, in terms of highlighting task relevant visual
and non-visual stimuli. In the following we provide the formal de-
scription of the modulation applied in our robotic system.

Starting at the point where the set of non-zero entries in the current
saliency map (X ,Y )∗ are transformed into a set of absolute motor po-
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sitions < p >∗ which we also refer to as the local gaze space Glocal .
Each p in Glocal has the saliency value of the corresponding (X ,Y )-
coordinate. In our implementation the spatial filter is a summary of
four different filter processes: three colour component and the move-
ment filters. The final saliency value s for each pixel is calculated as
follows:

s =
!w ·!s

4

=
1
4
·





sR
sG
sB
sV



 ·





wR
wG
wB
wV



 , (1)

where si,wi ∈ R and 0.0 ≤ si,wi ≤ 1.0. The elements sR,G,B,V are the
intensity values delivered by the specific filters (red, green, blue and
movement). Each intensity is scaled with a given parameter wi and
finally, the normalisation guarantees that the saliency value s remains
in the closed interval [0,1]. In the following we call this saliency
values also activation values.

For any p in the local gaze space the activation value fo(p) is
defined as:

fo(p) =

{
s, p ∈ Glocal

0, otherwise
(2)

where s ∈ R and 0.0 ≤ s ≤ 1.0, the value refers to the output of the
spatial filter / saliency map.

A simple inhibition mechanism for the stimuli the system has al-
ready fixated is provided by the spatial memory Gsm. It stores p-
coordinates representing successful saccades. Each of these coordi-
nates is associated with an activation value fsm which is determined
by the the time a which is the time passed since p was added to Gsm:

fsm(p) =

{(
1− a

M
)
, p ∈ Gsm

0, otherwise
(3)

where M,a ∈ N, 1 ≤ M and 0 ≤ a ≤ M. Here, the variable a is the
age of p while M is the maximal time a coordinate is stored in the
spatial memory, both given in seconds. If a > M then p is removed
from Gsm.

The process we call spatial modulation is the modulation of the
activation values fo by the activation values fsm. This is done by
creating a new set Gglobal :

Gglobal = Glocal ∪Gsm. (4)

We refer to the set Gglobal as the global gaze space since it can contain
any configuration of the active vision system, in particular configu-
rations outside the current visual field of view.

The activation values fs for all p ∈ Gglobal are calculated as fol-
lows:

fs(p) = fo(p)− fsm(p),

= s−
(

1− a
M

)
, (5)

where −1.0 ≤ fs(p) ≤ 1.0 since 0.0 ≤ fo, fsm ≤ 1.0.
Obviously, the resulting activation value fs is determined by the

original activation or saliency value and the time passed since the
stimulus was fixated by the system. The diagram in Fig. 3 illustrates
the linear change of this activation value over the time a, if the stimuli
was not fixated since p has been stored in the spatial memory. One
can see, when the maximal remaining time is reached (a = M), the
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Figure 3. Activation values over time undergoing spatial modulation.
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Figure 4. Activation values over time undergoing spatial and feature
modulation for different excitation and inhibition levels.

activation value is back to its original value s. While at the beginning,
when the stimuli was fixated and the corresponding p-coordinate
stored, a = 0, the activation value is (s−1). One can also see that the
activation values can also be zero or negative at the beginning. In the
diagram of Fig. 3 the two extreme cases are shown. The dashed line
shows the case when the original saliency value is maximal s = 1.0,
while the doted line represents minimal saliency values, i.e. s close
to zero. Furthermore, in the diagram a threshold T , 0 ≤ T ≤ 1 is indi-
cated. T is a parameter of the action selection process. If the selected
stimuli has an activation value smaller T then no eye saccade is exe-
cuted. In other words p values having activation values below T are
not fixated. The white region in the diagram indicates the domain of
activation values which can trigger a fixation action.

The activation values fs only consider the spatial relation. The
modulation by object features includes an additional scaling factor
for the activation values in the spatial memory:

f f (p) = fo(p)− fsm(p) ·
(

H +1
E +1

)
,

= s−
(

1− a
M

)
·
(

H +1
E +1

)
, (6)
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where H,E ∈R and 0 ≤ H,E. There can be different E and H values
for each p. The diagram shown in Fig. 4 illustrates the evolution of
activation values over time for different parameter settings of E and
H while s is fixed.

Obviously, the activation value never exceeds the original activa-
tion value s generated by the spatial filter. For any parameter settings
of E and H the final activation value (a = M) is equal s. The change
of the activation values over a is determined by the ratio of H to E.
For H << E we get high activation values at the beginning and a gra-
dient close to zero, while for H >> E the gradient is large and the
initial activation values are low. Interesting, for any given threshold
T < s there is always a parameter settings of E and H guaranteeing
that the activation value is never below T . In such a case the corre-
sponding stimuli p can always trigger a fixation action.

3.3 Task modulation
The parameter values E (level of excitation) and H (level of inhibi-
tion) are determined by the features associated with the correspond-
ing stimuli p. Therefore, we call the calculation of f f the feature
modulation. Feature modulation can be seen as being processed on
top of the spatial modulation since it is just an additional scaling of
the activation values in the spatial memory.

During the interaction with an object (fixation, reaching, grasping)
feature values are classified by the feature memory. Hence, while
interacting with an object its location p (where data) can be linked
with its features (what data). Each feature class i refers to specific
excitation and inhibition values Ei and Hi. Thus, the final E and H
values result from the combination of the individual excitation and
inhibition values associated with p.

Since individual excitation and inhibition values and their combi-
nation determine the final modulation of the activation value of p, we
call the assignment of Ei and Hi for each feature class and the calcu-
lation of the final E and H values for each p in the spatial memory
the task modulation. Task modulation determines the activation val-
ues for each p and therefore, the likelihood that an object is selected
for interaction (fixation, reaching and grasping). This selection prob-
ability can be influenced by the features associated with the object,
which can be visual and non-visual features.

4 Experiments and results
In the following we present experiments demonstrating different
types of feature modulation. In all the experiments the capacity of
the spatial memory is 20 seconds, M = 20; while the threshold for
triggering eye saccades T is fixed as well with T = 0.1.

4.1 Direct colour feature association
The first set of experiments shows feature modulation by colour fea-
tures derived from feature vector vv (see Fig. 2).

The system behaviour is measured in terms of fixation patterns.
Over a period of 500 seconds the number of saccades and the fixation
time in seconds is recorded. The fixation time is the time between two
saccades. In addition, for each saccade we record the p-value and
the corresponding features class. Hence, for each saccade we know
which object the system has fixated, the feature classes perceived and
how long the object was fixated.

Out of these data we have derived the absolute number of sac-
cades, total fixation time and average fixation time for each object
present. However, these measures are summarised with respect to

the feature classes. The way we have measured fixation patterns is in
accordance with [9] where fixation patterns of humans are analysed.

Before data are recorded the system is running for 100 seconds in
order to let it settle for the specific parameter configurations. In this
scenario four balls are placed on the table, two red and two blue ones.
No reaching or grasping actions are executed. Thus, the objects are
not moved. The excitation and inhibition values are pre-defined for
each colour class (red [R] and blue [B]).

The results are shown in Fig. 5. The data of one parameter setting
are summarised in one column. Each column represent one run over
500 seconds.

4.1.1 Spatial modulation only

The data presented in column A to G show the runs without direct
feature modulation, i.e. E = 0 and H = 0. Only the weighting !w in
the spatial filter is different (see Eq. 1). The saliency weighting pa-
rameters are indicated by the filling of the circles labelled “saliency
weighting”. Black filled cycles refers to colour blue and grey to red.
For column A to D we have wB = 1.0 and wR = 0.25,0.5,0.75,1.0.
This means that the blue regions in the saliency map have their max-
imal value, i.e. the intensity as it is perceived by the camera. While
the original intensity of red regions is reduced by factor wR. Vice
versa, starting at column D we have wR = 1.0, while the blue regions
are scaled down following the same regime.

The different weightings in the spatial filter lead to different
saliency maps with respect to the sensitivity to red and blue regions.
For column A the saliency value for blue is maximal, while red re-
gions show low saliency values. Hence, blue objects are more likely
to have high activation values and therefore, are more likely to be
selected as fixation target. We have the opposite in column G, where
red regions are highlighted while the blue have low saliency values.

Consider the different saliency weightings in column A - G, Fig. 5.
The absolute number of saccades towards a colour class C = {R,B}
increases if the weighting parameter wR or wB increases.

The total fixation time for a colour feature increases 1.) with the
corresponding w-value and 2.) with decreasing w-value of the other
colour class. See for instance the total fixation time for colour class
red (second diagram in Fig. 5 column A - G). Here, the total fixation
time increases when wR is increased. With column D the total fixation
time continuous to rise although the wR remains the same. Therefore,
the additional increase must be caused by the decrease of wB.

Regarding the average fixation time, it seems that this value is not
determined by its weighting term w. The mean value of the fixation
time increases only if the weighting of the other colour class is re-
duced, i.e. other features become less salient.

The white labelled regions in the diagrams refer to unknown
colour features. This refers to the cases where an object was not com-
pletely centered leading to the classification of the feature vector vv
as unknown (colour feature class U).

As base line for all the feature modulation experiments we selected
the saliency weighting in column E, wB = 0.75 and wR = 1.0. Apply-
ing this saliency weighting, the system produces the most balanced
response to red and blue objects. The number of saccades towards the
two colour classes is nearly the same and the average fixation time is
quite similar compared with the other weightings.

4.1.2 Feature modulation

Direct feature modulation was tested in three different variations that
biased the system towards a particular colour class, either red or blue.
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Figure 5. Bottom-up and direct feature modulation

As an example, assume we want to bias the system towards colour
class red, R. This can be done by three different strategies:

1. excitation only: ER = 9 while other Ei and Hi values are zero
(column H in Fig. 5),

2. inhibition only: HB = 9 while other Ei and Hi values are zero
(column I),

3. excitation and inhibition: ER = HB = 9 while other E and H
values are zero (column J), and

calculating the final excitation and inhibition values E and H as fol-
lows:

E = ∑
i

Ei, H = ∑
i

Hi.

For biasing the system towards colour feature class B (see column
K, L and M) the corresponding values of E and H have to be altered
accordingly.

Comparing direct feature modulation with the base line (spatial
modulation only) then the fixation patterns change decisively (Fig.
5). Feature modulation in terms of the excitation of a specific feature
class (column H, J, K and M) leads to a rise in the absolute number of

saccades towards objects of this colour class. The total fixation time
towards objects associated with the excited colour feature class in-
creases too, while a decrease of the mean fixation time for all feature
classes can be observed.

When having inhibition only (column I and L), one can see a de-
crease in the numbers of saccades towards the inhibited feature class.
There is also a decrease of the total fixation time and a lower aver-
age fixation time, compare to the non-inhibited feature classes. With
respect to the base line there appears no change in the total number
of saccades, while the average fixation time and total fixation time
increase for all colour classes.

Comparing the feature modulation data with each other, there
seems to be no noticeable difference between doing excitation only
(column H and K) and the combined excitation-inhibition strategy
(column J and M).

There are also similar patterns between feature modulation data
and spatial modulation. Having feature modulation by inhibition only
then patterns emerge which have similarities with the two ends of
the spectrum of spatial modulation data (column A and G). The data
presented in column G are quite similar to the data in column I. The
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same can be said about column A and L, where the system is biased
towards blue by saliency weighting (A) and via the inhibition of red
(L). Hence, saliency weighting and direct feature modulations can
produce similar fixation patterns.

4.2 Direct reach space feature association
In this scenario we have use feature associations with the reach space
to bias the vision system towards the “right side” (feature class RG)
of the robot manipulator which defines the reach space. In this sce-
nario on both sides of the robot arm one red and one blue object is
placed. Since reach location can directly associated with gaze space
location, no reaching and grasping action is executed, and therefore
the scenario is static. The capacity of the spatial memory was set to
20 seconds. The saliency weighting was set up as in column E of Fig.
5, wB = 0.75 and wR = 1.0. There were no feature associations es-
tablished between the colour classes. Feature associations were only
established between the two reach space classes LE (left) and RG
(right). Hence, the fixation patterns are only modulated by the direct
feature associations with the reach space classes.

We present three runs, each one over a time of 600 seconds. The
first provides the base line, where there is no bias towards feature
class LE or RG. This is formally written as: ELE = ERG = HLE =
HRG = 0. Thus, the final excitation and inhibition values are zero
since: E = ELE +ERG and H = HLE +HRG

In the second run, the system was biased towards the left side of
the robot arm by inhibiting the right side only: HRG = 9 while all the
other values are zero. Therefore, we have H = 9 and E = 0.

Finally, in the third run we biased the system towards the robot’s
arm right side by excitation of the corresponding feature class RG:
ERG = 9 while all the others values are zero and therefore, we have
H = 0 and E = 9.

The resulting fixation patterns are presented in Fig. 6. These dia-
grams show the number of saccades towards the four individual ob-
jects. The spacial position is indicated by gaze space coordinates.
Absolute motor positions of the verge left motor larger ≈ 0.1rad
represent the left side of the robot arm (LF); while verge positions
less or equal 0.1 represent the right side of the arm (RG). When in-
hibition or excitation of the right side takes place then the number of
saccades towards the objects on the left and right side differ signifi-
cantly. Since blue and red objects are on both sides it is obviously the
spatial association that causes these differences. Hence, difference in
the total number of object fixations between the manipulators left
and right side can only be generated by non-visual spatial feature
associations, not by the visual features.

4.3 Indirect tactile feature association

Cross-modal feature modulation is here demonstrated in a scenario
where we have two red and tow blue balls. The blue ones are soft
and the red ones hard. Hence, while grasping them they can easily be
classified by the system according to the two tactile features classes
SO (hard) and HA (soft). The excitation values for the tactile fea-
ture classes are set as follows: ESO = HHA = 0 and EHA = HSO = 9.
which expresses a preference towards hard objects while soft should
be avoided. All other excitation and inhibition values are zero. Fur-
thermore, the saliency weighting we apply is wR = wB = 1.0. Thus,
without any feature modulation the active vision system is slightly
biased towards blue objects, see column D in Fig. 5.

The task of the system is to fixate an object, to pick it up and put it
back on the table at a new position. As we have already mentioned in
the introduction of our architecture due to reaching modulation the
active vision keeps the object fixated while reaching and grasping are
executed. After the object is placed back there is a time period of 35
seconds where the system is not allowed to trigger a reach action.
After this period of time reaching and grasping actions are triggered
as soon as an object is fixated. It is by chance which object is picked
up since objects are repeatedly fixated. Thus, a preference of objects
picked up should reflect the preference in the object fixated which is
here modulated by cross-modal feature associations between colour
and tactile features. Whether this is the case is tested in this experi-
ment where objects are continuously re-located by the robot.

The system’s behaviour is measured in terms of the objects picked
up. Here we recorded only the first 25 reach and grasp actions (see
Table 1).

Two runs are presented. In the first run, the base line, there is
spatial modulation only. Consequently, object fixation and reaching
driven by the saliency weighting only which has a bias towards blue
objects.

In the second run cross-modal feature associations between colour
and tactile feature classes are generated as well as direct feature as-
sociations with the colour classes. Other direct feature associations
are not established. Therefore, a bias of fixating and picking up hard
objects can only be caused by the cross-modal association between
tactile and colour classes. It can not be caused by the direct features
association with the tactile feature classes because they are not gen-
erated in this setup.

The results are shown in Table 1. The left part of the table shows
the run of spatial modulation and the right part summarises the results
for cross-modal learning. Each row indicates which object the robot
picked up. The individual balls are referred to here as A and B for
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each colour (red and blue). At the bottom of the table the total number
of picked up objects are given for each individual object as well as
for the colour class. For spatial modulation only we see that more
blue than red objects are picked up. This correlates with the bias
towards blue objects generated by the saliency weighting. If cross-
modal learning takes place (right part of the table), then more red
than blue objects are picked up, because the system has learned to
associate the red objects with “hard tactile feedback” which leads to
a highlighting of red objects due to feature modulation.

Table 1. Results of cross-modal learning

base line cross-modal
red blue red blue

grasp object object object object
action A B A B A B A B

1 × ×
2 × ×
3 × ×
4 × ×
5 × ×
6 × ×
7 × ×
8 × ×
9 × ×

10 × ×
11 × ×
12 × ×
13 × ×
14 × ×
15 × ×
16 × ×
17 × ×
18 × ×
19 × ×
20 × ×
21 × ×
22 × ×
23 × ×
24 × ×
25 × ×

total 7 3 6 9 9 7 4 5
total 10 15 16 9

5 Conclusion

We started with the assumption that if visual attention is task de-
pendent it ought to be modulated by visual and non-visual features.
In this work we have introduced a computational architecture for a
robotics active vision system equipped with a manipulator that is able
to demonstrate such a modulation of visual attention in terms of ob-
servable fixation patterns.

Central element of this architecture is the usage of the gaze space
defined by the active vision motor system. This gaze space approach
is computational very efficient because it provides a global reference
frame for object locations. When applying the gaze space the amount
of data needed to create a global reference frame is several orders of
magnitude less compared with a retinotopic reference frame [1, 10].

The gaze space also provides a robust computational substrate for
the integration of what (visual and non-visual features) and where
(location) information. Having solved the problem of synchronisa-
tion of visual and non-visual what- and where-data in general, we
are able to separate feature filtering from spatial filtering in the vi-
sual data (similar to the human retina). This separation has additional

computational advantage and better scalability when applying visual
feature filters of higher complexity and computational costs.

All these points make our architecture a promising reference
framework for the modelling and engineering of robotics active vi-
sion and visual guided reaching and grasping. Nonetheless, the cur-
rent robotic implementation presented shall be seen as only the first
complete system which validates the our computational architecture.
The modularity of the architecture allows to replace all the modules
by more advanced processes.

First candidate of such replacements are the modules of the vi-
sual feature and spatial filter. They could be replaced by other and
more comprehensive methods without changing the essentials of this
architecture.

Furthermore, instead of pre-defining feature classes in the feature
memory they could be the result of self-organised learning processes.

The action selection process we applied is a simple winner-takes-
all mechanism, which is currently subject of being replaced with a
more effective process based on an artificial neural network imple-
mentation [2].

All the feature associations, the modulation processes of the gaze
space and the mappings could also be subject to be implemented by a
different computational paradigm, e.g. by artificial neural networks.

Finally, future developments of this architecture needs to address
the representation of more complex objects. Here, we are able to in-
tegrated visual and non-visual multi-modal sensorimotor experience.
However, for more complex objects more visual and non-visual fea-
tures must be processed which will include hierarchical organisations
providing different combinations of low-level features.
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A visual novelty detection filter based on bag-of-words
and biologically-inspired networks

Y. Gatsoulis1 and E. Kerr and J.V. Condell and N.H. Siddique and T.M. McGinnity

Abstract. The ability of a robot system to learn continuously until
the end of its cycle is a desired feature and consists a difficult chal-
lenge for the robotics research community. One of the main compo-
nents necessary for effective continuous learning is the behaviour of
a robot of identifying and focusing its attention to novel patterns, and
has been an active area of research over the last decade, considering
the large number of surveys that have been published recently.

This paper presents the initial steps of a larger work which is con-
cerned with continuous learning driven by novelty detection as an
intrinsic motivation. For the learning structure and the novelty detec-
tion filter we use a bag-of-words model combined with unsupervised
biologically inspired neural networks, both for the generation of the
vocabulary and the learner/classifier.

1 INTRODUCTION

One of the main challenges in artificial intelligence is to build robotic
systems that are capable of continuous operation and learning of new
skills. Key research issues for the realisation of such artificial agents
are knowledge representation structures and methods that support cu-
mulative learning and novelty detection.

In its primitive form the problem of novelty detection is to iden-
tify new, novel patterns that have never been seen before [8, 10, 15].
It consists an important ability of a number of biological cognitive
organisms as it reduces computational load by selecting and guiding
attention to areas of “interest”, and it has seen an increasing interest
in the last decade considering the number of works and surveys that
have been recently published [8, 9, 10, 2, 4].

A more formal description of the problem of novelty detection is
as follows. An agent is trained on a set of perceptual patterns X =
x1, x2, . . . , xn using a training method F and forming a knowledge
database K = F (X). At time t an observation o is considered novel
if it differs significantly from what is already known, i.e. from K,
using a novelty detection filter N to identify the level of novelty and
the particular parts that are novel. The observation o is then inserted
in the training set X as a new training pattern xk, updating the agent’s
knowledge K. In the majority of cases the novelty detection filter
and the training methods are one and the same (N ≡ F ) because
the diversity error of o with K, computed and needed by the learning
step of F , is considered to be the novelty metric.

Previous published work [3] has discussed some key issues and
characteristics needed for the effective operation of novelty detec-
tion filters in cumulative learning tasks, and also compared different
categories of novelty detection methods as presented from the recent

1 University of Ulster, Intelligent Systems Research Centre, UK, email:
i.gatsoulis@ulster.ac.uk
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Figure 1. Habituated self-organising map (image adopted from [11])

surveys. In particular it was identified that the novelty detection fil-
ters should operate online, and be dynamic and expandable.

This paper presents the first steps of a biologically inspired nov-
elty detection filter based on previous work with habituated self-
organising maps, combined with a bag-of-words classifier of images.

2 METHODS
2.1 Habituable Neural Networks
A habituable neural network is a novelty filter that has the purpose
of learning to recognize known features and evaluate their novelty
based on the frequency with which these input stimuli have been
seen recently was presented in [11]. It is based on a Kohonen map
with habituated synapses linking the nodes of the network to an out-
put node, as shown in Figure 1. A habituated synapse decreases in
strength as its connected nodes fire, and increases in strength when
already known stimuli are not seen for some time. The behavioural
phenomenon of habituation has its roots in biology, and as mentioned
by [11], cross-citing [17], it is thought to be one of the simplest forms
of plasticity in the brain of a large number of organisms.

The model of habituation and dishabituation being used in this
work is the one suggested by Stanley [16] who used the first-order
differential equation shown in Equation 1.

τ
dh(t)
dt

= α[h0 − h(t)]− S(t) (1)

where,

h0 : is the initial value of the habituation level.
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Figure 2. Behaviour of a node’s habituation for different values of the
habituation constant τ

τ,α : are constants controlling the habituation and dishabituation
rate.

S(t) : is the activity of the unit.

This habituation model was integrated in unsupervised learning
with self-organising maps (SOM) and successfully validated in ear-
lier related experimental work [12], in which a robot learns the sonar
representation of corridor environments. In these experiments the
robot was able to learn and habituate over the training environment,
but when a feature was changed and not observed for some time,
then the novelty filter showed increasing levels of novelty over this
particular feature.

The habituated SOM works as follows. Each unit of the SOM has
an associated habituation variable that changes according to Equa-
tion 1. The habituation variable decreases when the winner unit of
the SOM and its neighbours that best match the perceived object fire,
while the habituation variables of the rest “irrelevant” units remain
either unaffected, or increase so that the objects they represent are be-
ing forgotten. This is achieved by propagating the activity of the unit
S(t) = e−||ξ−ws||, where ξ is the input pattern and ws is the weights
vector of the unit s [13]. This behaviour is graphically shown in Fig-
ure 2 by the blue or the yellow straight line. Regarding the rates of
habituation and dishabituation, these are controlled by the two con-
stant variables τ and α respectively. It is mentioned in [11] that in
their experiments a value of τ = 3.33 reduces the habituation value
to 90% of its original value within 5 iterations. Figure 2 shows that
when τ increases, the system takes longer to habituate on a perceived
pattern.

We have initially experimented with habituated neural networks
with visual systems [3]. In this paper we extend it as we combine
the habituated neural networks with a bag-of-words model in vision,
more specifically the classifier part of the bag-of-words. The bag-of-
words model is explained next.

2.2 Bag-of-words model for vision
The bag-of-words (BoW) model has its roots in natural language pro-
cessing where it was used to represent and classify documents ac-
cording to the frequency of particular words existing in a dictionary.
The produced histograms are then the representations of the docu-
ments.

!"#$%&"'()*'+,!(#$-*)./0+.

!0#$12'30$
45./&3+'2

!'#$12'30$65/4$
70'/)+0.

!8#$12'30$65/4$
95.)'*$6&+8.

!7#$-*'..5750+

Figure 3. Bag-of-words technique
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Figure 4. Experimental procedure

The BoW technique has been adopted by the machine vision re-
search community to describe and classify images in the same man-
ner, by using histograms of the frequencies of “visual words” from a
dictionary that exist in the image.

The bag-of-words technique consists of the following generic
steps, shown in Figure 3.

1. Extract a set of feature descriptors, such as SIFT, SURF, etc., from
a perceived image (Figure 3.(a)).

2. Learn a visual vocabulary (Figure 3.(b) & (c)), by training an un-
supervised structure (e.g. k-means, SOM, etc.) to the extracted
features of the perceived image.

3. For a given vocabulary and a set of feature descriptors of an image,
compute the histogram of the frequency of visual words that match
these feature descriptors (Figure 3.(d) & (e)).

4. Train a classifier (e.g. support vector machine, SOM, etc.) with
the produced histograms (Figure 3.(f)).

2.3 Experimental procedure
The experimental procedure used is described next, and it is also
shown schematically in Figure 4.

1. The source images (Figure 4(a)) are drawn from three different
categories of objects, these being 32 forks, 22 mugs and 8 plates
(see Figure 5). All images are rectangular and rescaled to a fixed
resolution of 300 × 300 pixels. Three quarters of them are used
for training (24 forks, 16 mugs and 6 plates), and the remaining
one quarter is used for validation purposes (8 forks, 6 mugs and 2
plates).

2. The SURF (Speeded Up Robust Features) [1] descriptors are iden-
tified next (Figure 4(b)). These descriptors are scale and rotational
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Figure 5. Sample objects

invariant. The number of features was between 3-122 (mean =
28) for the forks, 81-270 (mean = 142) for the mugs, and 63-454
(mean = 209) for the plates.

3. The SURF descriptors are then used for training the dictionary of
visual words ((Figure 4(c)), which is Kohonen SOM. The size of
the SOM is 10×10, and it is sufficient for this small number of ob-
jects, however, it is noted that a dynamically expandable learning
structure is needed for long-term operation and learning of many
objects. A radius of 1 unit around the best-matching unit was se-
lected as the size of the training neighbourhood, in order to avoid
destructive learning as much as possible. Finally, a learning rate
of η = 0.2 was selected [14].

4. A histogram representing the image in terms of the frequency of
the visual words from the dictionary that correspond to each one
of the SURF descriptors of the image is generated (Figure 4(d)).

5. The generated image histograms are used for training a classi-
fier, which is a habituable neural network of size 10 × 10, and
trained with a fixed learning rate η = 0.2, and a training neigh-
bourhood of radius of 1 unit around the best-matching unit, sim-
ilarly to the vocabulary. Training proceeds until the system is ha-
bituated with all perceptions, controlled by a fixed threshold set to
0.2. The habituation levels are calculated according to Equation 1,
with h0 = 1, α = 1.05 and τ = 3.33, similarly to [12].

6. The system is validated using the validation set with learning
switched off. Performance is measured by checking whether the
winner node and its neighbourhood of radius of 1 unit corre-
sponds to a cluster representing the object correctly. This is done
using a simple voting mechanism we employed. In more detail
this is as follows, by counting the number of nodes in the win-
ner’s neighbourhood that correspond to winner nodes in the train-
ing set. So for example, for one mug in the validation set there
were 3 nodes that correspond to winner nodes of mugs from the
training set, while 1 node corresponded to a fork training im-
age. As such the “classification confidence” would be in this case
3/4 = 0.75 > 0.5, and hence classified correctly as a mug.

3 RESULTS

The training of the classifier was completed after 2899 epochs, with
5 iterations over the complete training data until all habituation lev-
els dropped below the fixed threshold (0.2). It was then validated
with the validation data set according to the procedure described in
Section 2.3, step 6. The classification performance of the habituated
neural network is shown in Table 1.

As the results show the network has an accuracy of 81.25%.
All the forks were classified correctly and with absolute confidence

Table 1. Validation data (F: Fork, M: Mug, P: Plate)

Name Nodes (F:M:P) Confidence (p) Classification
Fork 1 2:0:0 1 !
Fork 2 8:0:0 1 !
Fork 3 1:0:0 1 !
Fork 4 6:0:0 1 !
Fork 5 4:0:0 1 !
Fork 6 6:0:0 1 !
Fork 7 2:0:0 1 !
Fork 8 4:0:0 1 !
Mug 1 1:3:0 .75 !
Mug 1 1:3:0 .75 !
Mug 2 1:2:0 .67 !
Mug 3 0:4:0 1 !
Mug 4 3:1:0 .25 ! – fork
Mug 5 0:1:2 .33 ! – plate
Mug 6 0:4:0 1 !
Plate 1 0:2:1 .33 ! – mug
Plate 1 0:0:1 1 !
Forks 1 100%
Mugs .665 66.67%
Plates .665 50%
Total .833 81.25%

p = 1. Both in the mugs and the plates categories were some mis-
classifications and even when the objects were correctly classified the
confidence score for the mugs, where there is more than once case,
it has not always been an absolute agreement. In fact as it is seen
from the results plates can be mis-classified as mugs and vice-versa.
A possible explanation for these mis-classifications is that some of
the mugs and some of the plates may have similar “decorations”, and
therefore share some common feature descriptors. The inability to
tell with confidence what these objects are, signify that these objects
are novel. The robot can learn about them, and starting with a high
value of dishabituation it will be trained with these patterns as inputs
until it habituates on them, i.e. until the robot becomes “bored” on
observing and learning these patterns.

Overall, it can be said that despite the few mis-classifications the
system has performed satisfactory and provides a promising start for
further expansions.

4 DISCUSSION
This paper has presented a bag-of-words model where the vocabu-
lary and the learner/classifier are replaced with unsupervised learn-
ing equivalents. Specifically, the vocabulary was a Kohonen SOM,
and the classifier was a habituated neural network [11].

The most related work is that of Kinnunen et al. [5, 6, 7], which de-
scribes a bag-of-words model based on unsupervised Kohonen maps.
The model that was implemented is a typical bag-of-words model
except that Kohonen self-organising maps were used for learning the
visual vocabulary. In their previous work [6] they have shown that
the SOM approach outperforms the typical k-means algorithm for
vocabulary generation.

The work presented in this paper can be seen as an extension
to Kinnunen et al. research, where we are using a habituated self-
organising map as the learner/classifier of a bag-of-words model; the
habituation behaviour directs the robot to learn novel areas. It con-
sists initial steps in a bigger project investigating cumulative learn-
ing using novelty detection filters as the driving mechanisms for ex-
ploratory learning.

We are planning to investigate next the effects of online generation
of the vocabulary with simultaneous online training of the classifier
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with a real robot manipulator equipped with a camera.

ACKNOWLEDGEMENTS
This work was supported by EU FP7-ICT-2007-3: 2.2 Cognitive Sys-
tems, Interaction and Robotics PROJECT: IM-CLeVeR (2009-2013).

REFERENCES
[1] H Bay, A Ess, T Tuytelaars, and L Vangool, ‘Speeded-Up Robust Fea-

tures (SURF)’, Computer Vision and Image Understanding, 110(3),
346–359, (June 2008).

[2] V. Chandola, A. Banerjee, and V. Kumar, ‘Anomaly detection: A sur-
vey’, ACM Computing Surveys, 41(3), 1–58, (2009).

[3] Y. Gatsoulis, E. Kerr, J.V. Condell, N.H. Siddique, and T.M. McGin-
nity, ‘Novelty detection for cumulative learning’, in Proc. of Towards
Autonomous Robotic Systems 2010 (TAROS’10), pp. 62–67, Plymouth,
UK, (2010).

[4] V. Hodge and J. Austin, ‘A survey of outlier detection methodologies’,
Artificial Intelligence Review, 22(2), 85–126, (October 2004).

[5] Teemu Kinnunen, Unsupervised visual object categorization, Ph.D. dis-
sertation, Lappeenranta University of Technology, 2008.

[6] Teemu Kinnunen, JK Kamarainen, Lasse Lensu, and H, ‘Bag-of-
features codebook generation by self-organisation’, in Advances in Self-
Organizing Maps, (2009).

[7] Teemu Kinnunen, Joni-Kristian Kamarainen, Lasse Lensu, and Heikki
Kalviainen, ‘Unsupervised Visual Object Categorisation via Self-
organisation’, in 2010 20th International Conference on Pattern Recog-
nition, pp. 440–443. IEEE, (August 2010).

[8] M. Markou and S. Singh, ‘Novelty detection: a review part 1: statistical
approaches’, Signal Processing, 83(12), 2481–2497, (December 2003).

[9] M. Markou and S. Singh, ‘Novelty detection: a review part 2: neu-
ral network based approaches’, Signal Processing, 83(12), 2499–2521,
(December 2003).

[10] S Marsland, ‘Novelty detection in learning systems’, Neural Computing
Surveys, 3, 157–195, (2003).

[11] S. Marsland, U. Nehmzow, and J. Shapiro, ‘A real-time novelty detector
for a mobile robot’, in Proc. of the EUREL Conference on Advanced
Robotics Systems, (2000).

[12] S. Marsland, U. Nehmzow, and J. Shapiro, ‘On-line novelty detection
for autonomous mobile robots’, Robotics and Autonomous Systems,
51(2-3), 191–206, (May 2005).

[13] S. Marsland, J. Shapiro, and U. Nehmzow, ‘A self-organising network
that grows when required’, Neural Networks, 15(8-9), 1041–1058, (Oc-
tober 2002).

[14] U. Nehmzow, Mobile Robotics: A Practical Introduction, Springer–
Verlag, London, 2nd edn., 2003.

[15] R. Saunders and J.S. Gero, ‘The importance of being emergent’, in
Proc. of the Conference on Artificial Intelligence in Design, (2000).

[16] J. C. Stanley, ‘Computer simulation of a model of habituation’, Nature,
261(5556), 146–148, (May 1976).

[17] R. F. Thompson and W. A. Spencer, ‘Habituation: A model phe-
nomenon for the study of neuronal substrates of behaviour’, Psycho-
logical Review, 73(1), 16–43, (1966).

32



A modular reinforcement learning model for human
visuomotor behavior in a driving task

Brian Sullivan∗

brians@mail.utexas.edu
Leif Johnson†

leif@cs.utexas.edu
Dana Ballard†

dana@cs.utexas.edu

Mary Hayhoe∗

mary@cps.utexas.edu

March 7, 2011

Abstract

We present a task scheduling framework for
studying human eye movements in a realistic 3D
driving simulation. Human drivers are modeled
using a reinforcement learning algorithm with
“task modules” that make learning tractable and
provide a cost metric for behaviors. Eye move-
ment scheduling is simulated with a loss mini-
mization strategy that incorporates expected re-
ward estimates given uncertainty about the state
of environment. This work extends a previous
model that was applied to a simulation of walk-
ing; we extend this approach using a more dy-
namic state space and adding task modules that
reflect the greater complexity in driving. We also
discuss future work in applying this model to
navigation and fixation data from human drivers.

1 Introduction

Humans formulate and execute complex visuo-
motor action sequences while performing real-
world tasks like driving or playing sports. Pre-
vious work has explored the role that visually
“salient” [5] features play in making saccades,

∗Department of Psychology, University of Texas at
Austin

†Department of Computer Science, University of
Texas at Austin

but this research has focused largely on 2D im-
ages or videos where human subjects are observ-
ing the scene and not actively participating in a
visuo-motor task. In contrast, when performing
tasks in natural environments, humans interact
with the world and high-level cognitive goals and
reward [3, 6] play an important role in the exe-
cution of eye movements. However, the mecha-
nisms underlying these task-driven saccades are
not well understood.

This paper presents a high-level, task-based
scheduling framework for studying human eye
movements in a realistic, 3D driving simulation.
Our primary aim is to present an abstract frame-
work for interpreting human eye movement be-
havior that explicitly represents task demands,
reward and perceptual uncertainty. This ap-
proach allows modeling of visual behavior over
long time scales that has not been typically ad-
dressed in vision science. Our model is quite
abstract in that no image processing is used and
major simplifications are made to ease the pro-
cess of modeling driving behavior. The model is
still in development and we focus here on provid-
ing a technical report of our methodology and a
review of the current state of ongoing research.

We model human drivers computationally us-
ing a reinforcement learning algorithm that
breaks the complex state space of driving into
several “task modules” that make learning com-
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putationally tractable [7]. Modules also provide
a cost metric that allows direct comparison of
the relative values of different behaviors. In
our model, eye movement scheduling attempts
to minimize the expected loss of reward given
the current knowledge of the state of the world
and the uncertainty in the state estimate. From
a high level, eye movements are directed toward
targets in order to reduce uncertainty about po-
tentially high-reward portions of the state space.

2 Background

Prior research suggests that although human
vision has massively parallel inputs from the
retina, due to attentional and memory limita-
tions many visuo-motor computations are serial
[3]. Studies have found that humans often em-
ploy active vision strategies of gathering specific
and discrete pieces of visual information as a task
develops [4, 2]. These data suggest that one ap-
proach to model goal directed human vision is
to use serial “visuo-motor task modules,” some-
times referred to as visual routines [1, 11]. These
modules perform very specific computations in
isolation (e.g., finding a road landmark to con-
trol steering), but when coordinated over time
with other modules, complex behaviors can be
achieved.

With this type of approach, a scheduling
problem arises: What visuo-motor computations
should be carried out and when should they be
executed? Our work presents one solution to
this scheduling problem by using reward values
and uncertainty to solve the arbitration of vi-
sual computations. This work extends a previ-
ously developed reinforcement learning model [9]
that has been successfully applied to a simulated
three-task walking world with static obstacles
and goals.

Sprague and Ballard simulated a humanoid
walking down a sidewalk with obstacles and “lit-
ter” to be picked up. Their algorithm has dis-
tinct perceptual and motor components. Vi-
sual computations were broken down into com-
ponents for avoidance of obstacles, “picking up”

items and sidewalk following. Each of these mod-
ules has a dedicated visual computation that
finds the distance and angle to the sidewalk,
obstacles and litter. The motor system uses
this state information to navigate (turn left,
turn right or go straight) using a control pol-
icy learned via reinforcement learning. Only
one visual module at a time can run to get
a new update of state information. Idle mod-
ules are allowed to update their representations
via a Kalman filter, introducing uncertainty into
their state estimates. The perceptual arbitra-
tion system selects a module to be updated with
new sensory information. Crucially, the percep-
tual arbitration algorithm uses reward estimates
from the motor component and estimates of state
uncertainty in the perceptual system to choose
which module to update.

The present research applies a similar method-
ology to a simulated driving task. In compari-
son to walking, the driving task requires a more
complex and dynamic state space and has more
task modules to address the greater variety of
available tasks while driving. After briefly intro-
ducing reinforcement learning and describing the
driving simulation, we present some preliminary
results and then conclude with a description of
future work in applying this model to navigation
and fixation data from human drivers in a real-
istic 3D car simulation.

3 Reinforcement Learning

Reinforcement learning (RL) [10] is a goal-
focused learning framework that directly mod-
els the interaction between learner and environ-
ment. RL finds a mapping between a current
environmental state and an appropriate action
to execute in that state. In our application, we
use RL to find a control policy that maps en-
vironmental states to actions to control steering
and velocity of a simulated car. Our specific im-
plementation of the state and actions spaces is
presented in section 4.

Here we present a brief primer on the RL
framework, focusing on the Q-learning [12] vari-
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ant of the algorithm. A learning agent (LA)
maintains a vector st of discrete variables de-
scribing the state of the world over a series of
discrete time steps t = 1 . . . T . At each time
step, the LA chooses a discrete action at that will
maximize the available reward. Positive or nega-
tive reinforcement rt is given to the LA whenever
st is a state that achieves some goal or subgoal,
specified by the modeler as part of the construc-
tion of the world. The LA receives supervision
only in the form of these explicit reward values,
which are often nonzero only for a small fraction
of world states.

During training, the LA constructs an exhaus-
tive Q table Q(st, at) of the expected rewards
that are attainable by taking each action from
each state in the world. If the LA takes an ac-
tion at when the world is in state st, it observes
the resulting state st+1 and its associated reward
rt+1 on the following time step. Using a learn-
ing rule, the LA can then update Q(st, at) so
that over time this Q value becomes closer to
the “expected future reward” for (st, at). The
LA adjusts the Q values by following the gradi-
ent of the error in Q:

Q(st, at) ← Q(st, at) + α∆Q(st, at)

where α ∈ [0, 1] is a learning rate parameter (set
to 0.2 for our simulations) and ∆Q is the di-
rection of the greatest observed change in Q at
(st, at).
The optimal Q values reflect both the imme-

diate reward in a state, and all future rewards
attainable from that state, discounted exponen-
tially by the number of time steps required to
reach those future states. Thus ∆Q takes the
form

∆Q(st, at) = rt+1 + γQ̂(st+1)−Q(st, at)

where rt+1 is the reward available in state st+1

(which follows state st after taking action at)
and γ is a parameter called the discount factor.
Values of γ near 0 cause the LA to rely more
on immediate rewards for the Q values, while
values near 1 blur the distinction between im-
mediate and future reward, allowing the agent

to postpone immediate rewards for potentially
larger future rewards. For our simulations, we
set γ = 0.95.

A simple yet powerful learning rule for Q̂(st+1)
is simply the Q value associated with the subse-
quent action selected by the agent:

Q̂(st+1) = Q(st+1, at+1)

This rule, called SARSA learning, ensures that,
along any given sequence of state/action pairs
that are actually chosen by the agent, the ex-
pected rewards obey the discounting enforced by
the γ parameter. Our simulation uses the Q val-
ues to choose an action using a softmax rule,
where the probability of choosing action at when
the world is in state st is given by

p(at|st) =
exp (Q(st, at))∑
a exp (Q(st, a))

.

3.1 GM-SARSA

Traditional RL operates within a single joint
state space that must represent all task-relevant
aspects of the world simultaneously. Because the
LA must visit each state/action pair multiple
times during learning to formulate an accurate
estimate of the Q values, a large state space leads
to slower convergence during learning. In com-
plex environments, RL is much more efficient if a
learner is allowed to focus just on the state vari-
ables that are relevant for a particular task. In-
stead of running the driving simulation in a joint
state space that represents all possible variables
of interest simultaneously, we used the technique
GM-SARSA [8] to split the world into small task
modules.

In GM-SARSA, each task module i = 1 . . . N
has a separate state space andQ table, Qi(sit, at),
but the tasks share a common action space.
When the LA needs to select action at, it uses
the state estimates s1t , . . . , s

N
t for each task to

retrieve the corresponding vectors of Q val-
ues Q1(s1t , ·), . . . , QN (sNt , ·). These vectors are
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summed, and the result

Q∗(at) =
N∑

i=1

Qi(sit, at)

is used in the decision rule to select the best ac-
tion.

The SARSA learning rule maintains the cor-
rectness of task learning with multiple modules.
Because the action at is shared among all mod-
ules, the Q tables can be updated correctly even
though at might not have corresponded to the
highest-reward action for any of the individual
task modules.

4 Modular RL for Driving

Our driving world consists of C ≈ 20 cars that
drive in the lanes of a simulated world including
a four-lane road (two lanes in each direction),
cars, and pedestrians. Two of the cars in the
world have special roles: car 1 is controlled by
the learning agent in the simulation, and car 2
is called the “pace car” and is described in more
detail below. Cars 3 . . . C serve mostly as ob-
stacles for the learning agent. Figures 1 and 4
show screenshot of the simulations, before and
after we have projected it into the human driv-
ing environment, respectively.

All non-learning agent cars move in the same
direction and are constrained to drive along one
of two tracks that represent the two available
lanes on the road. Each car thus maintains
three scalar variables that describe its state in
the world: δc represents the distance (in meters)
traveled along the track by car c, σc represents
the speed (in meters per second) of the car on its
track, and λc ∈ {0, 1} represents the lane that
car c currently occupies. In the 3D simulation
for humans, described below, these scalars are
mapped to lane positions in a realistic virtual
world.

All agents other than the learner move at a
fixed speed along one track, but these states
change randomly on average every 1000 time
steps to prevent the LA from overlearning a

Figure 1: The simulated RL driving world con-
sists of the LA (black dot), a pace car that the
LA is rewarded for following (blue dot), and sev-
eral other agents that the LA is punished for
hitting (red dots). Each car has a “flag” whose
length indicates the car’s speed. Lanes for driv-
ing are shown as curvy colored lines, even though
to the RL agents the lanes are one-dimensional.

static world. When choosing new values, cars
2 . . . C draw a new speed uniformly from [0,Σ]
(where Σ is the maximum speed allowed for any
car, set to 20 m/s in our simulations) and a new
track uniformly from {0, 1}.

4.1 Task Modules

The RL model uses several modules coordinated
over time to drive, limited to a basic set that
could be applied to data from human drivers.
These modules are dedicated to tasks for avoid-
ance, following another car, and simply driving
forward. Figure 2 shows a graphical represen-
tation of the state space used by each module
discussed below. Additionally, Figure 3 (page 8)
shows a high level overview of the scheduling
model and how modules are coordinated.

4.1.1 Forward Progress

With predetermined lanes, the LA is encouraged
to move around the track by a task module that
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provides a small positive reward RΣ whenever
the LA is moving at speed greater than Σ

2 . With-
out this task module, the LA tends to stop mov-
ing, which no humans do in the 3D driving sim-
ulator. The state space for this task is simply
the speed of the LA, divided into Nσ uniformly
spaced bins. In active lane following, the LA
keeps track of the relative speed between the
closest portion of road, the angle of this scalar,
the distance to the road and the angle between
the LA and the road.

4.1.2 Car Following

The LA receives a positive reward Rf for follow-
ing the pace car at a fixed distance of 10 m, with
a relative speed of 0 m/s (i.e., whenever the LA is
following behind the pace car and both cars are
going the same speed). The state space for this
module consists of three dimensions: the lane
indicator, the relative distance, and the relative
speed. The lane indicator is an ordered pair from
{0, 1} × {0, 1} that represents the lanes for the
LA and the pace car. The relative distance is
given by max(min(δ2 − δ1, D),−D), where D is
a constant (set to 200 m in our simulations) that
represents the maximum distance the LA can
discriminate. This dimension is quantized into
Nδ uniformly spaced bins. Similarly, the relative
speed is given by max(min(σ2 − σ1,Σ),−Σ) and
is quantized into Nσ uniformly spaced bins.

4.1.3 Car Avoidance

The LA receives a negative reward Rc for collid-
ing with any of the other cars in the world. A
world state is considered a collision whenever

|max(min(δ∗ − δ1, D),−D)| < 2D

Nδ

and the relative speed between the LA and the
obstacle is less than 0. This task uses the same
state space as the following task described above.
The driving simulation includes one task mod-
ule that tracks the closest obstacle (including the
pace car) to the LA at every time step, but could

Figure 2: A learned policy for pedal control in
the following task when the LA and Pace car are
in the left lane. Blue indicates slow down, red
speed up and white do nothing. The box with
dashed lines indicates the portion of state space
most frequently visited by the LA.

easily include more such modules representing
the states of the next-closest obstacles.

4.2 Action Space

While each module tracks different information
in the world, they share the same set of actions.
Given the current state of the world, the LA can
read out the Q estimates for each module and
evaluate the optimal action via GM-SARSA. The
action space for each module contains a steer-
ing component and a velocity component. The
actions are discretized such that steering con-
trol has three options: staying in the same lane,
changing to the right lane, or changing to the left
lane. Similarly, velocity control features three
options: speed up, stay at the same speed, or
slow down.
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4.3 Training and Evaluation

Training takes place over 1000’s of episodes that
start with a randomly configured world. When-
ever a task module is in the same state for 10
time steps or collides, the world is then reset and
a new training episode begins. In reset, all cars
2 . . . C are placed by randomly selecting a lane,
position, and speed from uniform distributions
across the full ranges of these variables. The LA
is placed behind the pace car and this distance
grows with the number of training episodes.

Results with the RL model are preliminary, an
example of a learned policy for following pedal
control is in Figure 2. Due to state space com-
plexity, it only shows when the LA and the pace
car are in the same lane. Since the state space
is large, the dashed box indicates the area fre-
quently visited and well-learned. The LA pedal
control decreases speed when relative speed is
less than zero and increases when greater. Addi-
tionally, when the pace car is close it slows down
and speeds up when far away. Results with other
modules are similar but more in depth analysis
and simulation are in progress.

5 Eye Movements

5.1 Perceptual Arbitration

In the learning framework presented so far, the
LA always has access to accurate state infor-
mation. This is not the case in a real driving
task, where a human driver with limited visual
resources must fixate specific targets over time
to resolve their true locations or speeds. There-
fore, we follow the approach developed for a more
static walking task [9] and incorporate the notion
of state uncertainty into our model.

Instead of making a decision based on perfect
state knowledge, the LA maintains an estimate
of s̃it for each task module i in the driving sim-
ulation. This state estimate consists of a proba-
bility distribution over the entire state space; the
most likely state of the world corresponds to the
mode of this distribution, but the world might

have changed since the LA last took an accu-
rate state measurement (e.g., by foveating some
object like the pace car).

When choosing an action, the LA multiplies
its state estimate distribution with the learned Q
tables, yielding an expected reward metric. For
a given task module b, the loss &b incurred for not
updating a module’s state estimate is the differ-
ence in expected value between the reward that
the LA might receive if it had perfect state in-
formation and the estimated value of the reward
Q̃b given the action a∗ that would be selected by
the current (imperfect) state information:

&b =

E



maxa



Qb(sb, a) +
∑

i"=b

Q̃i(si, a)









−
∑

i

Q̃i(s̃i, a∗)

This loss function can be used to guide the LA’s
perceptual resources during a simulation. Fig-
ure 3 (page 8) shows a diagram of the informa-
tion flow in the computational model.

6 Future Work

The computational modeling work described in
this paper forms part of a larger attempt to
quantify and analyze human visual behavior in
a realistic driving task. The model is in develop-
ment and we are currently working to improve
learning and add additional behaviors for deal-
ing with pedestrians and oncoming cars. Addi-
tionally, because the model provides quantitative
costs for various actions that the LA can take in
the world, a major focus of our future work is to
use the model to provide a plausible mechanism
for explaining eye movements of human subjects
navigating in a world involving multiple distinct
tasks.

Our lab has a virtual reality driving simulator,
consisting of driving platform with pedals and a
steering wheel, a head tracking system, and a
head mounted display (HMD). An eye tracker
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Figure 4: The state space of the RL simulation
can be projected easily into a 3D virtual reality
driving simulation in the lab. Human subjects
see this sort of view of the driving environment
as they drive around in the virtual world.

is mounted on the HMD. Preliminary data has
been collected from human subjects driving in
a realistic urban environment with a pace car,
other cars and pedestrians present; see Figure 4
for an example screenshot from the environment.

Preliminary analysis of human fixation data
suggests that distributions of fixations are in-
consistent with simple scheduling models (e.g.
round robin), suggesting a scheduler like the one
presented here may have more utility. While the
current application of our methodology to driv-
ing is still in development, we believe that this
general framework is a powerful and unique ap-
proach to understanding human vision and may
also have broader application in the construction
of computer vision systems.
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Figure 3: Flow diagram of the task-module scheduling architecture. Following the numeric labels,
(1) the system initializes with a set of sensory readings about the world. Each task module has a
representation of their state space that is (2) mapped to a learned action policy via the GM-SARSA
algorithm. This mapping allows the driving agent to (3) output a steering and velocity command to
drive the car. The actions taken (4) have some effect in the world that changes the world state. (5)
Using information on potential rewards and state uncertainty, the perceptual arbitration algorithm
chooses the module most in need of update to its world state estimate. (6) In this example the Car
Following module is chosen to be updated and is able to gain access to new sensory information.
The other modules cannot update and are forced to propagate estimates of their world state using
a Kalman filter. This perception and action loops repeats itself each time step as the driving agent
traverses through the environment.
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A Dynamical Model of Feature-Based Attention with
Strong Lateral Inhibition to Resolve Competition Among

Candidate Feature Locations
David G. Harrison1 and Marc De Kamps

Abstract. When subjects are instructed to attend to an object de-
fined by a feature in the visual field, e.g. a shape element, a colour,
or a direction of motion, one finds correlates of this feature in neural
activity across all retinotopic locations in low level areas in visual
cortex, even in locations far removed from the neurons representing
the object of interest. Next to the well established phenomenon of
spatial attention, there is another form of attention which is feature-
based, but not location specific. While feature-based attention has
been demonstrated convincingly, its role is not well established. In
earlier work we have suggested that is role is to help to prepare eye
movements (or other motor actions) to the object of interest. In or-
der to be able to do so, the location of the defining feature must first
be established. In a single-object scene this is trivial, but in a multi-
object scene the feature must be located among distractors. While
we showed there that the retinotopic position of the object can be re-
trieved by an interaction between top-down attention-driven activa-
tion and stimulus-driven activation in lower visual areas, we did not
model the dynamics of the selection process explicitly. Here we show
that if one does this, one must resolve a competition process between
the location of interest and those of the distractors. The process is de-
cided by feature-based attention, but in order to implement this com-
petition lateral inhibitory connections are required, in line with the
‘biased-competition model’. We will show that this process enables
an unambiguous determination of the location of the target object
and that the effect of the lateral inhibition is the effective shrinkage
of receptive fields around an attended object which has been reported
in several experiments.

1 INTRODUCTION
The amount of visual information entering the eye would overwhelm
the brain’s visual processing capability if the entire retinal input is
processed equally at all locations [19]. In order to perceive visual
objects in detail, the object of interest is brought into focus on the
fovea. The mechanism by which we designate what is of interest is
described as visual attention. The ability to visually attend to an ob-
ject is so crucial to visual perception it has been argued that “to see
is to attend” [25].

Three types of visual attention have been described: attention may
be deployed to a location (spatial attention), an individual object
(object-based attention), or to a collection of features (feature-based
attention). Object-based attention may be described as an example
of feature-based attention, as evidence [17] suggests that object rep-
resentations are composed of distributed sub-object, feature building

1 University of Leeds, UK, email: pab2dgh@leeds.ac.uk

blocks bound together as the neural object representation as needed,
or determined, by the visual stimulus.

1.1 SPATIAL ATTENTION

Motter [15] describes spatial attention as shrinking the receptive
field around the attended to object. We achieve a similar effect with
feature-based attention through lateral inhibition of cortical feature-
binding circuits with receptive fields containing non-matching fea-
tures to an endogenously initiated attentional template in the ventral
stream. The lateral inhibition from non-matching populations sub-
dues activity in neighbouring populations, effectively removing ex-
ternal stimuli in their receptive fields from further visual processing.
Regions with few mismatches between the attentional template and
stimulus driven activity project excitatory activity to a separate corti-
cal area in the dorsal stream, where the saccade necessary to foveate
the object may be generated.

In the contrast-gain model of spatial attention [18], the effective
contrast of stimuli at an attended location are increased, providing
a greater neural response of neurons with receptive fields at the at-
tended location, compared to their response without attention.

In order for spatial attention to be applied, the location of inter-
est must first be selected. If the location is unknown, a visual search
needs to be performed to determine locations from known proper-
ties of the object before spatial attention can be engaged. Neural
mechanisms to determine the location for spatial attention have been
described in the literature, such as saliency [10] or priority maps
[1]. Priority maps, like saliency maps, code for a location of in-
terest from visual stimuli, but includes top-down influences in ad-
dition to bottom-up. The model we present here generates spatial
saliency maps through the interaction of neural activity in top-down
and bottom-up visual pathways. Influence of top-down flow is neces-
sary to sustain output to the dorsal stream once a location for atten-
tion has been determined. See [24] for a review of visual search.

1.2 FEATURE-BASED ATTENTION

Feature-based attention describes the deployment of attention to
known properties of the visual array. These properties are simple
features such as colour, orientation and direction of motion [21].
Feature-based attention enhances the response of neurons which
code for the attended to feature [13]. Feature-based attention is used
to detect the presence of the features in the visual array, then uses
the attentional map to resolve the location of those features. As the
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location of these features is not know prior to the onset of feature-
based attention, the feature templates must act across the visual field
[22, 3, 13, 19, 4, 26].

The top-down feature template interacts with bottom-up activity
in two ways. In the feature-similarity gain principle [12] the sensi-
tivity of neurons which code for the presence of the attended feature
is enhanced, whilst neurons which do not code for the attended fea-
ture are suppressed. In the biased competition model of feature-based
attention [14, 7, 8], stimuli within a feature-selective neuron’s recep-
tive field compete for neural representation. When only a preferred
stimulus is present within the receptive field and matching feature-
based attention is applied, the response of the neuron is maximal.
When an additional non-matching stimuli occurs in the receptive
field the competition is biased in favour of those stimuli which match
the coded for feature, causing a suppression of non-matching stim-
uli and increased response to the matching stimuli. When attention is
applied to the non-preferred stimulus, the response of the neuron is
suppressed, but still greater than the response of the neuron when the
preferred stimulus is absent.

The existence of the feature-similarity gain principle and the bi-
ased competition model as mechanisms for feature-based attention
are not mutually exclusive mechanisms. Rather, it has been argued
that the feature-similarity gain principle predicts the biased competi-
tion model [3].

1.3 ATTENTIONAL CAPTURE
Visual attention may be deployed voluntarily, as in visual search or
Posner cuing paradigms, but may also be initiated from external stim-
uli. Sudden changes in the visual input, such as an unexpected flash,
will create a neural activity in populations coding for the location of
the external change. This effect of breaking into conscious percep-
tion of a salient but irrelevant stimulus at a non-attended location is
an example of ‘implicit attentional capture’ [20]. When attentional
mechanisms are not engaged, attention may be briefly captured by
this new stimulus, termed ‘explicit attentional capture’ [20]. Once
the cause of stimulus has been ascertained, the stimulus may be
ignored, with a concomitant reduction in the representative LIP
activity, or actively attended, maintaining the location activity in LIP.

The neural correlates of visual attention have been much studied
(see [1] for a recent review). We build upon a model of feature-based
attention to resolve the binding problem which occurs from a dis-
tributed object representation [22], by adding a mechanism of lateral
inhibition to resolve a collection of features to spatial locations.

2 THE MODEL
The model consists of two artificial neural networks, one modelling
the bottom-up flow of stimulus activities and the other modelling the
top-down flow. The bottom-up network is a feed-forward network of
five layers corresponding to V1, V2, V4, posterior inferotemporal
(PIT) and anterior inferotemporal (AIT) visual areas. A widening
receptive field in higher layers allows AIT neurons to project across
the entire V1 layer, allowing objects to be recognised in all locations.
This network is trained using backpropagation to associate objects
presented at the V1 layer, to individual neurons in AIT. V1 consists of
4 feature layers which detect lines of 45◦ orientations, and objects are
presented by direct stimulation of neurons in the appropriate feature
layer to simulate neural inputs from the lateral geniculate nucleus
(LGN), which we do not model.

Once the forward network has been trained to recognise the ob-
jects, it is used to train the top-down network through Hebbian learn-
ing: each training pattern is evolved through the forward network
and conditions reciprocal connection weights in the reverse network.
This mechanism creates the attentional template.

With the forward and reverse artificial neural networks trained,
they are then converted into a dynamical model as neural populations
of Wilson-Cowan differential equations [23]. During this conversion
the neurons in the forward and reverse networks are converted to
a neural circuit separating out positive and negative activities in the
ANN’s to two spiking neuron populations, with one of the pair’s pop-
ulations implicitly coding for the negative activities. The architecture
and conversion of the model into dynamical populations is detailed
in [6].

Layers of neural circuits are created between layers V2, V4 and
PIT of the converted forward and reverse networks to detect cor-
related neural activations in paired populations of the forward and
reverse networks. Correlating activations in the forward and reverse
networks is achieved through implementing the disinhibition mech-
anism described in [22]. We extended this disinhibition circuit with
two inhibitory populations, to create a mechanism to inhibit the ac-
tivity of neighbouring circuits when there is a mismatch of activities
in the disinhibition circuit.

Figure 1 shows the populations of the disinhibition circuit in grey,
and matching populations in the forward and reverse network as
positive-forward (Pf) and positive-reverse (Pr), likewise Nf and Nr
for the negative populations. Open triangles represent excitatory con-
nections, and black triangles inhibitory. If we consider a stimulus-
driven activation in Pf, the excitatory-positive (Ep) and gating posi-
tive (Gp) populations of the disinhibition circuit receive equal rates of
excitatory spikes. The Ep population is inhibited by Gp, but there is
a small delay in inhibition as the driving activity in Pf passes through
Gp. This delay allows the attentional capture mechanism, as there is a
brief output of Ep to LIP from increases in the spike rate of Pf. How-
ever, the inhibitory output of Gp is itself inhibited by the inhibitory-
positive (Ip) population if there is matching positive activity in the
reverse population, Pr.

The Ep population sends excitatory projections to the LIP layer,
but also excites the inhibitory-lateral-inhibition population (ILI),
which in turn inhibits the lateral-inhibition population (LI) from re-
ducing the output to LIP of neighbouring circuits. Due to the mu-
tually exclusive activities in the positive and negative populations,
it is guaranteed that the disinhibition circuit can only receive strong
excitatory spikes from one reverse and one forward population at a
time2.

In the situation of matching positive activity in the forward and
reverse network just described (and analogously for matching nega-
tive activity), the circuit will output excitatory spikes to LIP from the
Ep population, while the inhibitory spikes from LI to neighbouring
circuits is prevented by inhibition from ILI. Now we consider a mis-
match of activities in the forward and reverse networks. If, for exam-
ple, Pf and Nr have high activity, Gp is not inhibited by Ip, shutting
off the output to LIP and ILI from Ep in a few tens of milliseconds.
With no inhibitory activity from ILI, the excitatory input to LI from
Nr is unchecked and neighbouring populations of Ep and En neurons
are inhibited.

It is worth stressing that the circuit only produces lateral inhibi-
tion on mismatches in the (implied) sign of the forward and reverse
networks. We can consider the spike rate of populations in the for-
2 Baseline activity, such as thermal noise, may cause occasional low level

rates, but these are not significant.
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ward network to be the weight of evidence from the visual array,
and the spike rate of the reverse populations as the expectation of a
positive or negative value in the receptive field of the circuit if that
receptive field was to contain the searched for feature. Thus strong
evidence and strong expectation output a strong excitatory activity
to LIP, whereas some evidence and high expectation is inconclu-
sive. Similarly, strong evidence which contradicts a strong expec-
tation suggests the sought for feature is probably not in the receptive
field, and this confidence is passed on to neighbouring circuits via
lateral inhibition. If neighbouring circuits have strong evidence of a
match, they can compete with the inhibition, and the most confident
circuit (i.e. that with the highest initial activity) wins the competition.

The benefits of mismatches being determined as opposite signed
activities allow a non-linear selection of matches and mismatches
and allows for slight differences between instances of objects belong-
ing to the same category. This non-linearity is desirable, so the use
of lateral inhibition to inhibit neighbouring neurons on mismatches
allows only neurons to survive the attentional template that are in
regions with high correlation between stimulus and attentional tem-
plate, without the mechanism running away and completely extin-
guishing matches throughout the visual pathway. In this way, spuri-
ous matches of individual populations are prevented from generating
salient regions in LIP.

The model is implemented using MIIND [5], a computational neu-
roscience framework, for modelling the artificial neural networks and
the simulation of the neural dynamics.

Ep/En

Ep/En

Ep/En

LIP

LIP

Pf

Gp

Ep

Nf

Gn

En

Pr

Ip

LI

Nr

In

ILI

Figure 1. Disinhibition circuit with lateral inhibition. Grey nodes form the
disinhibition circuit: Ep: excitatory population (positive), Gp: gating

population (positive), Ip: Inhibitory population (positive). En, Gn, In denote
negative populations. ILI: Inhibitory lateral inhibition population, LI: Lateral
inhibition population inhibits positive/negative neighbouring populations of
the forward network. ’f’ suffix denotes populations from forward network,
’r’ suffix denotes populations from reverse network. Black triangles denote

inhibitory synapses, white shows excitatory synapse.

3 RESULTS
The forward network was created as a 16× 16 grid of neurons, con-
sisting of four feature detectors for lines at 45◦ orientations, and four

AIT neurons to code for each of the square, diamond, horizontal
cross and diagonal cross as seen in the top left layer of the following
figures. Each shape was presented to V1 by direct stimulation of the
appropriate feature neurons. Each shape was presented at every loca-
tion in V1 which allowed the shape to be contained wholly, to avoid
border effects. As the shapes are simple, training continued until the
global network error, measured as the sum of differences between
expected and actual AIT activity for every training exemplar, was
below 10−5.

Simulations were then run by converting the trained ANN’s into
dynamical networks as previously described. During the conversion
the inputs patterns presented to V1 were varied, as was the attentional
template, selected by activating an AIT population in the reverse net-
work. The connectivity of the disinhibition and lateral inhibition cir-
cuit could also be modified at this stage to create simulations from
identical inputs with and without lateral inhibition, by removing the
projections from LI to neighbouring populations.

Figure 2. Final activity of network without lateral inhibition. The spread
of activity across LIP shows no clear locus for spatial attention. From the

left, the columns show the stimulus driven pathway of the ventral stream, the
top-down stream, the disinhibition layers, then an LIP layer on the right. The
rows of the first 3 columns show V1 (top), V2, V4, PIT and AIT (bottom).

Figure 2 shows an image of a simulation without lateral inhibition
at the end of the two second simulation. Inputs to V1 and AIT were
constant, so the image shows the steady state of the network. The
bottom row of the image shows four AIT populations of the forward
network, all showing high activity, demonstrating the presence of the
four types of objects in the input array. Next to these are the four AIT
populations of the reverse network, showing high activity in the left
most population which codes for squares. The three layers above, are
PIT, V4 and V2. The third column shows matching activity in the
forward and reverse layers, and shows the activity of the Ep and En
populations of the disinhibition circuits. Output of these populations
is mutually exclusive, allowing activity of both populations to be vi-
sualised as a single element. Strong positive activity (Ep) is coloured
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black, strong negative activity (En) the lightest grey, and zero activity
the middle grey in the depicted colour bar.

The interesting image in figure 2 is the activity in the LIP layer.
Without lateral inhibition, the high levels of activity in the forward
network causes a high level of activity across the LIP layer, and this
activity is poorly correlated with the location of activity in V1. This
shows that busy visual scenes with stimuli across the visual array
prevents a winning location being clearly resolved, and therefore the
location to direct covert attention or generate a saccade to cannot be
determined. This image shows the need for large scale inhibition to
reduce the location noise in LIP.

Enabling lateral inhibition raises a number of interesting events in
the neural dynamics. Visualisation software shows shifting patterns
of activity in the disinhibition network and the LIP layer through
the time course of the simulation. All simulations were run for 1.5
seconds and activation rates for each 5 millisecond period were
recorded. Due to space constraints only three images are given in
this paper, showing the more interesting features of the simulation.

Figure 3. Network activity with lateral inhibition, trained on all locations,
30ms after stimulus onset. Prior to top-down activation, the stimulus

activations cause location activity in LIP, demonstrating attentional capture.
The layout is as described in figure 2.

Figure 3 shows a snapshot of the network 30 milliseconds after
stimulus presentation. At this early stage the forward network causes
activity in the Ep/En and Gp/Gn populations, but Ep/En is not yet in-
hibited by Gp/Gn so LIP receives excitatory spikes from all locations
containing the presented objects. The image of the LIP layer shows
high activity in the four quadrants corresponding to the activity in
V1. This demonstrates the capture of attention by new visual stimuli.
Spatial or feature-based attention would maintain activity in some (or
all) of these active regions. However, in this simulation these activi-
ties are ignored.

After 500 milliseconds, the AIT population coding for squares
becomes active and the attentional template is propagated to lower
layers, gating the stimulus initiated activity to LIP at matching lo-

cations. The temporal nature of the dynamic simulation allows the
time course of this disinhibition to be captured. While not shown in
the images, location activity in LIP is first generated from activity in
higher layers, and supplemented with activity from lower layers as
the spread of activations from the attentional template descends the
reverse network.

Figure 4. Network activity with lateral inhibition, trained on all locations,
350ms after simulation of the AIT population coding for the square. The

layout is as described in figure 2.

Figure 4 shows the network activity 350 milliseconds after activa-
tion of the AIT population in the reverse network. Competition in the
disinhibition layers has finished, leaving a single population of high
spike rates being output to LIP. Neighbouring populations are also
elevated above baseline, as their influence on LIP can be seen. How-
ever, this activity is barely visible on the image. Similarly, the areas
of LIP activity seen in figure 3 are slightly elevated above baseline,
as the inhibition of the Ef/En populations is not total.

Figure 5 shows the state of the simulation 1 second after activation
of the cue population. This image demonstrates the location of the
searched for feature persists with the application of attention. This
contrasts with the LIP activity shown in figure 3, which is rapidly
subdued.

In order to test the robustness of the model, simulations were gen-
erated with one to five objects in various positions of the visual array.
In all cases the location of the resulting LIP activity covered at least
part of the target object in V1. The model was able to resolve the
location of objects even when distractor objects were overlaid on the
target. Figure 6 shows an example of this, with the target square being
partially obscured by an overlaid diamond. Comparison of figures 5
and 6 shows the activity in LIP to be slightly reduced. This reduction
in activity occurs due to neurons with both the target and distractor in
the receptive field experiencing more inhibition, and less excitatory
stimulation as their receptive fields are effectively reduced in size.

46



Figure 5. Network activity with lateral inhibition, trained on all locations,
500ms after stimulation of the square AIT population in the reverse network.

The image shows maintained activity in LIP for locations of attended
features. The layout is as described in figure 2.

Figure 6. Network activity with lateral inhibition, trained on all locations,
500ms after stimulation of the square AIT population, with the target square

(top left) partially obscured. The layout is as described in figure 2.

4 DISCUSSION

Motter [15] showed that the shrinking of the receptive field around an
attended object is accompanied by an enhancement of stimulus activ-
ity (in the forward network) in neurons within that receptive field in
the ventral pathway. Currently the model shrinks the receptive field
to inside the boundary of the attended object. Increasing activity in
the forward network will help borderline circuits neighbouring the
receptive field to win their competitions with their inhibitory neigh-
bours, and expand the receptive field. This could be achieved in the
ventral stream by augmenting the disinhibition circuit to project exci-
tatory connections from Ep/En to neighbouring Pf/Pn populations, or
by reciprocal excitatory connections from the dorsal stream. As lat-
eral inhibition affects the Ep/En populations of the disinhibition cir-
cuit, modulation of the Pf/Pn populations through such mechanisms
is feasible with the current architecture. Future work will investigate
this process.

By the same argument, the model provides the effect described by
the contrast-gain model of spatial attention [18]. Although adaptation
of the contrast response function of neurons is not modulated by the
model, an inhibition of populations which do not contain the attended
feature causes a gain in the signal to noise ratio. This is achieved by
reducing the noise, rather than an active increase in the signal.

Despite the model not incorporating a method of directly elevating
the neural representation of a feature through increased excitatory
spike rates, both the feature-similarity gain and biased competition
behaviours are exhibited. Feature-similarity is achieved by reducing
the activity in non-matching locations, boosting the matching neu-
rons’ representations by a relative increase to background activity
levels, rather than an absolute increase in spike rates. The same is
true for biased competition: the representation of mismatched fea-
tures is inhibited, so total incoming spike rates in the receptive field
is reduced when a distractor object inhabits part of the receptive field
compared to the receptive field containing only matching stimuli.

The attentional capture mechanism was not demonstrated in the
simulations depicted here. However, we have run trials with activity
in the reverse network prior to presentation of stimuli to V1. This
models a Posner-like paradigm of a cue being presented and held in
memory briefly before presentation of an array of targets and distrac-
tors. In simulations of this type, the location of the matching objects
are not extinguished in LIP after the stimulus driven pulse of activ-
ity. While we do not provide direct evidence here, this can be seen
from the architecture of the disinhibition circuit: stimuli matching the
attentional template never receive the inhibition from Gp/Gn popu-
lations as they are already inhibited by activity from the top-down
(reverse) network. Evidence for the modulation of activity in the the
ventral stream through the action of attention without bottom-up vi-
sual stimuli has been demonstrated to act throughout the visual field
[19], as exhibited by this model. Furthermore, this model predicts a
reduction in LIP activity resulting from sudden stimuli onset when
feature-based attention is already applied and the new stimulus does
not contain the attended feature.

When the input array contains multiple objects to be attended, the
objects’ locations are found by appropriate activations in LIP. A form
of inhibition of return could be implemented to resolve the multi-
ple candidate locations to an ordered list of eye movements, based
on criteria such as largest spike rate, or largest area of activity. The
model as presented does not use the activity in LIP to generate ac-
tions or saccades, but the required neural information for such actions
is available for use by these mechanisms.
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5 CONCLUSION

We have shown that the use of an attentional template coupled with
lateral inhibition of circuits neighbouring mismatched bottom-up and
top-down populations can provide a resolution of targets from dis-
tractors in a mixed visual array. The lateral inhibition and disinhibi-
tion mechanism employed by the model allows for lateral inhibition
for feature-based attention, while still supporting attentional capture:
excitatory output to the dorsal stream (LIP) only occurs when the
stimulus-driven activity is large enough (low pass filter), or when the
attentional template matches.

We interpret our use of a top-down attentional template in combi-
nation with the bottom-up activity as a simple form of a priority map
[2]. Attention effectively gates the output of the ventral stream [14]
to visual areas in the dorsal stream, where planning of actions can
be initiated. The inhibitory mechanism in effect causes the receptive
field of neurons to shrink around the attended to object, as described
by Motter [15, 16] and others [9, 1], while implementing a biased
competition [7] between neurons coding for different features within
a receptive field, and inhibiting activity of neighbouring neurons with
distractor objects with their receptive field [11]. It should be possible
to model other neural correlates associated with the deployment of
attention, such as elevated bottom-up activity from attended stimuli,
within the presented framework.
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Abstract.
We present the Neural Pipeline - a novel multi-layered com-

putational system that can control information flow without
recourse to an external or internal clock. Information flow is
demand-driven and the multi-layer coordination problem is
solved in a distributed fashion. The architecture, structure
and dynamics of the layers and their interconnections are in-
spired by biological neural networks, that operate robustly
even in the absence of rhythmic control.

The system consists of multiple recurrently connected lay-
ers of leaky integrate-and-fire neurons with feed-forward ex-
citation and feed-back inhibition to the previous layer. Given
an appropriate balance of excitation and inhibition, the net-
work will respond to inputs by sequentially propagating the
input signal across the layers. The backward inhibition tem-
porarily silences additional inputs while a layer is performing
a computation. The behaviour in this operational regime is
dubbed ‘correct’. Under- or over-inhibition lead to two other
behavioural regimes of this system. The parameters that most
influence the type of behaviour are found to be the range of
internal weights, the overall strength of external inhibition
and the degree of connectivity.

We introduce supervised learning in a three-layer Neural
Pipeline, by interpreting each of the three layers as a liq-
uid state machine. The system is demonstrated to success-
fully recognise a set of six shapes on each of its layers inde-
pendently. As would be expected in this set up, the specific
patterns of connectivity within a layer are not important for
learning to take place.

The potential for future work is discussed based on these
preliminary results. Ideas include exploring the storage capac-
ity of the network, separation of input patterns and the uses
of such an architecture including the separation of a stream
of inputs into its component parts.

1 Introduction

Visual recognition tasks using digital computers tend to be
split into separate processing stages, with the timing of the
flow between stages controlled by a global clock. It is impor-
tant in computational systems that data appear in the correct
order. When a result from one process is fed through as the
input to another function, it is imperative that the first com-
putational process completes successfully before the second

function reads the value. If the second function starts before
the first is complete it will use whatever is on its input, either
an old value or worse a junk value.

The more general term for such a computational architec-
ture is a pipeline. In a computer pipeline each processing task
is split up into a number of subprocesses. Each of these sub-
processes takes the same amount of time to execute and the
computer hardware allows all of the subprocesses to operate
at the same time [5]. This is advantageous when compared
to a single process because of improved throughput when se-
quential inputs are provided. For example if the entire process
takes 50ms to complete and it is split into 5 subprocesses that
take 10ms each to run. Once the pipeline is ‘full’ (so that all
of the processing stages are in use) one result can be provided
every 10ms, rather than every 50ms if there was no pipeline.
A global clock is used to keep all of the processing units in
time.

In computer pipelines it is up to the designer to break down
the overall function into same sized tasks. The processing
stages of the visual stream, rather than being designed, have
evolved. They may have evolved so each stage takes the same
time to complete, but biological systems may use other meth-
ods for coordinating their information flow. In the same way
it could be an advantage to have a computer system itself
construct the timing of flow through the processing stages,
because the design problem would be simplified by removing
the global clock. Asynchronous systems (for an introduction
see [13]) do not have one global clock, rather each process op-
erates using its own clock. This can be of particular use when
the system components operate in parallel or are distributed.
As nervous systems are parallel and distributed they are of
interest for inspiration when designing these types of system.

Nervous systems must also process information in a par-
ticular order. For example; when processing sound such as
speech the syllables must be processed in the right order. It is
not known whether the brain uses a clock in order to process
this type of information. There are different rhythms present
in the brain from alpha rhythms to delta rhythms. It is pos-
sible these rhythms may perform a role in timing but it is
not generally understood how the brain regulates time. An
overview of the different experiments and models to identify
this is given in [6].

Biologically inspired computation borrows and simplifies
biological components where they may be useful while remain-

49



ing free from the limitations imposed upon biological systems.
There are many examples of biologically inspired computa-
tion, but the field of interest here is artificial neural networks.
A good introduction to the field is provided in [3]. Using this
paradigm we construct a biologically inspired system that can
process data, through different computational stages, in a par-
ticular order, without the aid of a clock. The ‘Neural Pipeline’,
introduced in this paper, combines the controlled flow of a
computational pipeline with coordination using local activity
in groups of neurons. The architecture is similar to the synfire
chain controlled by inhibition presented in [12]. The two main
differences between the two architectures are the presence of
lateral connections within a layer in the Neural Pipeline, and
the use of the layers themselves to provide inhibitory input
rather than an external source.

A Neural Pipeline is structured so that it behaves as a com-
putational pipeline. Each layer is a laterally connected group
of neurons. Each layer passes information forward to the next
layer. The neural architecture differs from a traditional com-
puting pipeline in that the timing of information flow is not
designed around a clock, rather flow is gated by the activity
in each layer.

The Neural Pipeline has been used to perform charac-
ter recognition and it learns as a multi-layered Liquid State
Machine (LSM). Liquid State Machines were introduced by
Maass et al in [8]. They are neural networks with two distinct
parts; the ‘liquid’ is a set of randomly interconnected neu-
rons and the ‘readout map’ is a set of output neurons that
are connected to the liquid. Inputs are presented to the liq-
uid layer and it becomes active. It is then possible for the
output neurons to be trained to identify which input was pre-
sented. Only the connections between the readout layer and
the liquid are trained. LSMs have two important properties:
‘separation’ relating to the liquid and ‘approximation’ relat-
ing to the readout. Separation is a measure of how distinct
two different inputs appear to be in the liquid. Approxima-
tion is how easily the internal states can be transformed to a
particular output on the readouts.

The remainder of the manuscript is organised in the fol-
lowing way. The Neural Pipeline architecture is described in
section 2). The simulation environment used to test the archi-
tecture along with our specific implementation of the neurons
and synaptic connections is introduced in section 3. The three
fundamental behaviours of the pipeline are described and
analysed (section 4). Section 5 presents our learning exper-
iments and results. Directions for future work are presented
with the Conclusions in section 6.

2 Architecture

The Neural Pipeline architecture is a layered neural network
composed of leaky integrate and fire (LIF) neurons (for a neu-
ron model description see [7] chapter 1). LIF neurons were
chosen for several reasons: they represent a simple model of
spiking neurons and therefore strike a balance between com-
putational efficiency and biological realism. They are also used
in LSMs in [8] allowing for easier comparison with these re-
sults.

Each layer has an equal number of excitatory and inhibitory
neurons. The type of neuron dictates the sign of all its out-
puts, so an excitatory neuron has only positive outputs and

an inhibitory neuron only negative ones. This format has been
chosen to follow Dale’s principle [1] as most neurons in verte-
brates follow this principle.

The internal connections are the lateral connections within
a layer. Each neuron in a layer has the same number of output
connections. For each neuron, each of its output connections
is attached to a neuron within the same layer. The target neu-
ron for each connection is chosen at random from all of the
neurons in the layer, with each neuron having the same prob-
ability of being chosen. Self connections and multiple connec-
tions are permitted. The level of connectivity is an important
parameter in governing the overall behaviour of the pipeline
as shown in section 4. The weights on these connections are
all set to +w for excitatory connections and -w for inhibitory
ones. All delays are set to have the same value.

A variation is to use weight values randomly chosen from a
range 0 to +w for excitatory connections and 0 to -w for in-
hibitory connections. This variation matches the structure of
the liquid layer that LSMs use in [8]. This allows the same liq-
uid to be applied to different computational problems without
the need for training. It is, however, possible to train the liquid
in order to improve its performance for a specific task. Heb-
bian learning [10] and Particle Swarm Optimisation (PSO) [4]
have been used to increase the separation of inputs within the
liquid.

The pipeline is constructed by connecting the layers with
external connections. There are excitatory feedforward con-
nections between consecutive layers (X connections in figure
1). These connections propagate the signal through the neu-
ral pipeline. The connections on the input layer provide the
system input to the ‘input neurons’ in the first layer. For ex-
ample in the shape experiment in section 5, a 9 by 9 grid is
provided as an input, so the first 81 neurons in the first layer
serve as input neurons. Between all other layers each neuron
in layer n provides input to a different randomly chosen subset
of neurons from layer n+1.

Figure 1. The external connections between layers

There are also feedback connections between layers, labelled
Y in figure 1. These connections are inhibitory and are used
to suppress activity in layer n-1 when layer n becomes active.
There is a time delay on these inhibitory connections to allow
the layers some time to operate before they are shut off. This
delay could be placed on either the feedforward or feedback
connections. The inhibitory connections run from all neurons
in layer n to all neurons in layer n-1.

This external connectivity appears to violate Dale’s princi-
ple, because all of the neurons, including the excitatory ones
have inhibitory connections. This could be corrected using in-
hibitory inter-neurons from the excitatory neurons. For ease
of implementation however these neurons are not present in
the simulations, rather the connection is inhibitory.
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Connection Yn (figure 1) is used to inhibit the final layer.
This inhibitory connection has a suitable delay to cause in-
hibition after the last layer has had time to become active.
When uninhibited the layer continues to spike rapidly after
the first stimulus, until the end of the simulation. This causes
a problem when sequential inputs are provided, because the
last layer continuously inhibits the previous layer. This pre-
vents any subsequent inputs reaching the output. This type
of behaviour can also be seen when the inhibition is too low
as described in section 4.

The inhibition is added from the input so that it is the
arrival of a stimulus that triggers inhibition in the final layer.
Clearly it is possible that the last layer could inhibit itself,
or be inhibited by any of the other layers. The reason for
choosing the input is to allow dynamic operation. If the delay
on line Yn (in figure 1) is longer than the time taken for the
activity to reach Bn, then the stimulus will suppress its future
self. If the delay is shorter than the time for activity to reach
Bn then the last layer (Bn) is permitted to remain active
until another input is presented to the pipeline. This allows
for inputs that may take different times to compute.

3 Simulation Environment

Neuron Model
Leaky IAF neuron

Variable name Value Description
V th -69.931 Threshold voltage in

mV
E L -70.0 The resting potential

of the membrane in
mV

C m 250.0 Membrane capaci-
tance in pF

tau m 10.0 The time constant of
the membrane in ms

t ref 2.0 Length of the refrac-
tory period in ms

V reset -70.0 The reset voltage in
mV

tau syn 2.0 Synaptic alpha func-
tion rise time in ms

Table 1. Neuron parameters

Model Summary
Internal excitation 0.5
Internal inhibition -0.5
External excitation 5.0
External inhibition -0.3

Internal delay 1.0 ms
External excitatory delay 1.0 ms
External inhibitory delay 5.0 ms

External excitatory connectivity 10%

Table 2. Connection parameters

The neural pipeline architecture has been simulated using
the Neural Simulation Tool (NEST) [2]. There are other sim-
ulation environments that could have been chosen, but the

objective here is not to review which would be best in this
case. The choice is to use a simulation environment rather
than not use one.

The parameters of the Neural Pipeline have not been tuned
to enhance performance for each experiment. The parameters
were set to achieve desired behaviour for a Neural Pipeline
with 100 neurons per layer. They were unchanged for the ex-
periment using different sizes of layer as described in section
5. This demonstrates some robustness in the system.

The neuron parameters for the iaf neuron used in simula-
tions are given in table 1 and the connection parameters in
table 2. The equations for this model can be found in [9]. The
synapses used are of the type static synapse.

4 Behaviour

When the pipeline is presented with a stream of two or more
sequential inputs it can exhibit one of three types of be-
haviour. Examples of these three types are illustrated in fig-
ure 2 when a stream of two inputs is presented 30ms apart.
All neurons are initialised to be silent, having experienced no
prior activity and there is no background noise.

The desired behaviour is shown in figure 2 b). In this case
activity from both stimuli can be seen in each of the layers,
and importantly the activity is suppressed again after activa-
tion. ‘Over inhibited’ behaviour is shown in figure 2 a). In this
case the inhibition from layer 2 is too strong, because the sec-
ond input does not produce any activity in the first layer and
therefore any subsequent layers. This is the more preferable
of the two undesired types of behaviour, because it is possible
to resend the second input at a later time and for the pipeline
to behave correctly. Therefore the definition of over inhibited
behaviour is dependent on the required time between inputs,
here 30ms. The least desirable type of behaviour is shown in
figure 2 c), this is known as ‘under inhibited’. When there is
too little inhibition between layers n-1 and n, layer n fails
to suppress the activity in n-1. This means that layer n-1
continues to fire and prevents any other activity from being
provided as input. If this occurs then the pipeline needs to be
flushed of activity before any further inputs can be provided.

The random connectivity in the network means that even
when using the same parameters there is variability in the be-
haviour between runs. Although it is not possible to guaran-
tee ‘correct’ behaviour there are certain parameters that can
be used to improve the number of runs that operate in the
region of correct behaviour. The three most important param-
eters used to influence the behaviour are the internal weights,
external inhibition and the connectivity. Figure 3 shows the
importance of the connectivity and internal weights. For all
three internal weight values (graphs a, b and c) the number of
correct runs decreases as the connectivity is increased. Each
bar represents a total of 100 individual runs. With weights of
+3 and -3 (Figure 3 graph c) only the lowest tested connectiv-
ity (10 connections per neuron) has 100% correct behaviour.
The importance of internal weights is illustrated when this is
contrasted with (Figure 3 graph a) where the internal weights
are +1 and -1. Here there is 100% correct behaviour with up
to 60 connections per neuron.

It is also important to note that the parameters choices are
fairly robust, for example when the internal weight is well cho-
sen, there is a much wider choice of connectivity where there
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Figure 2. Examples of the three types of behaviour that can be
exhibited by the neural pipeline

is 100% correct behaviour. Also even with poor parameter
choices (e.g. internal weights at +3 and -3 and 90 connec-
tions per neuron) some runs are correct, so if the time taken
to optimise parameters was at a premium poorer parameter
settings could be used with more runs of the experiment to
achieve enough correct runs.

The importance of the external inhibition parameter was
confirmed when beginning the shape learning experiment out-
lined in section 5. In this instance the number of inputs was
increased from 5 (used to test the code initially) to 81. This
large increase in inputs caused an increase in the activity in
each layer and increased the number of ‘over inhibited’ runs.
Reducing the inhibition from -0.6 to -0.3 allowed correct be-
haviour with 81 inputs.

Figure 3. How the behaviour changes as the internal
connectivity and internal weights are changed. Each bar

represents 100 individual simulations.

5 Learning

The Neural Pipeline has been trained to recognise a set of six
shapes on each of three layers as shown in figure 4. These six
shapes are shown in figure 5 and were chosen so that there
is some overlap, in active inputs, between them. The shapes
are presented (at 1 spike per ms) for 10ms to layer 1 at the
start of the simulation. Before this all neurons are silent. The
81 inputs are connected to 81 of the 100 neurons in the first
layer. There are 100 neurons per layer with 6 readout neurons
on each layer, one for each of the input shapes. The simulation
is run for 100ms.

The readout neurons are fully connected to the layer and
the initial weights on these connections are randomised be-
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Figure 4. The neural pipeline architecture with readout
neurons used for learning six shapes

Figure 5. The shapes that the pipeline has been trained on a)
circle, b) square, c) triangle, d) plus, e) cross and f) rectangle

tween 0 and the ‘internal excitation’ value of 0.5. The weights
are trained using the delta learning rule [11] to identify the
input shapes at a particular time window. The times of all
of the spikes that occur in the layer are recorded and divided
into time windows of 5ms (as shown in figure 6). The first
chronological set of unique windows all with non-zero values
is used to train the network. The windows must be unique for
each shape so that the system can recognise that pattern as
belonging to a single shape. They must be non-zero because
with no spikes it is not possible for the readouts to fire.

The readout neurons are trained to spike any number of
times when their shape is the presented input, but to remain
silent when the input presented is not their shape. So for each
shape only one readout neuron will spike. Training is carried
out until this is true for all of the readout neurons.

Figure 6 shows the response in each layer when the square
shape as shown in figure 5b is presented at the input. Each
unit of the graph represents the number of times that each
neuron has fired in the time window. The square is presented
only to layer 1 and can be seen appearing at time 2 as a regular
pattern, when rearranged into a grid this is identical to the
square input shown in 5 so is still identifiable as a square by
eye. By the time the square has reached the second layer it is
no longer identifiable by eye as a square, but the system can
be trained to associate that pattern with ‘square’.

The six shapes have been tested on one set of arbitrarily
chosen internal connections. To determine that a set of in-
puts can be learnt with different sets of internal connections
a smaller experiment was run 100 times. 50 neurons were used
per layer, with 10 different inputs of size 40. Of the 40 input
bits each pattern had 5 active bits and 35 inactive ones. The

Figure 6. The activity in each layer produced when a square is
applied to the input.

reduction in neurons per layer and the number of active input
bits (when compared to the shape experiment) was chosen to
decrease the simulation time as this experiment was to be
repeated 100 times. Only the first layer readout was trained.

All 100 trials successfully learnt the series of inputs, show-
ing that a specific connection structure is not necessary to
allow patterns to be learnt. The average connectivity is im-
portant in determining behaviour, as outlined in section 4.

6 Conclusion and Future Work

It has been shown that the Neural Pipeline exhibits three dif-
ferent types of behaviour; under inhibited, correctly inhibited
and over inhibited. Three of the system parameters, the inter-
nal weight values, connectivity and external inhibition, were
identified as being important when trying to increase the level
of correct behaviour.

The Neural Pipeline has been successfully trained to recog-
nise a set of six shapes on each of three layers. The influence of
specific connection choice on the ability to learn successfully
was tested, to identify whether it is likely that the system
will fail to learn the presented inputs. All 100 runs success-
fully learnt a set of 10 inputs. This illustrates that the system
is not dependent on a particular set of connections.

The work presented here is an introduction to the architec-
ture itself and an illustration of the potential that it has for
future work. There are several avenues to explore from this
work. These include the capacity of the layers or how many
unique input shapes they can learn. This is related to the
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separation property of LSM. Here a maximum of 10 different
shapes have been learnt but it would be useful to consider
what the maximum possible is depending on the parameters
that are used. The separation of input patterns in itself is also
a consideration for future work, particularly whether separa-
tion decreases in later layers. The influence of the variation
(described in section 2) to use a range of values for internal
weights upon separation can also be examined.

A hypothesis that could be tested is that; the Neural
Pipeline with n neurons in each of l layers may be able to
improve capacity when compared to a single layer LSM with
nl neurons. Each layer could be used to identify a different
subset of the patterns, this may take the form of a coarse filter
on the earlier layers and finer ones in later layers. This would
allow the system to remove the inputs that are ‘definitely’ a
particular shape earlier and focus later layers on shapes that
are harder to identify. The readout neurons from earlier layers
could be used to influence the output from the later layers.
Should this hypothesis be shown to be true it would provide
an advantage that this multi-layered LSM has over a single
layered one.

Multi-layered LSMs have been considered in the context of
vision in [14] in their model of the mammalian visual system.
The Neural Pipeline maps naturally onto a multi-layer pro-
cess such as vision, with the different layers each representing
a layer of the visual cortex. It would be interesting to inves-
tigate whether the Neural Pipeline architecture provides an
explanation for the control of processing in structures such as
the visual cortex.

Possible applications of a Neural Pipeline would be to sep-
arate a stream of inputs into its individual component parts
or for each of the layers to identify different characteristics
of the input. For example attributes such as the shape of an
object, its location and colour.

The introduction to Neural Pipelines presented here serves
as a stepping stone from which to show that the architecture
can be applied to real computer vision problems.
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Visual search performance can be enhanced by
instructions that alter eye movements

David J. Yates and Tom Stafford1

Abstract.
Recent evidence suggests that subjects perform better on some vi-

sual search tasks when they are instructed to search the display pas-
sively rather than actively [3, 4]. We have extended this finding in two
ways: an additional neutral instructions condition established a base-
line result and the subjects eyes were tracked during the experiment.
Our results show that passive instructions lead to faster searching in
a hard visual search task compared to either neutral or active instruc-
tions. This result indicates that we adopt a more active strategy by
default and can be made to improve in some tasks by simply follow-
ing instructions to search more passively. Our eye tracking analysis
shows that the experimental instructions, which make no reference to
the eyes, lead to systematic differences in the way the subjects search
the display. Specifically, the subjects in the passive group take longer
to initiate their first saccade, locate the target more quickly, and are
faster to make a button press once the target is located. Much like the
visual search results, the neutral instructions led to eye movements
that were much more like the eye movements of the active group.
This finding suggests that the instructions alter our search perfor-
mance by changing the way we move our eyes. The potential impli-
cations for real-world visual search are discussed.

1 Introduction
Anecdotal evidence suggests that we are more efficient at visual
search tasks when we are relaxed or adopt a more passive approach.
In 2006, Smilek and colleagues [3] sought to formalise and demon-
strate this effect by giving subjects different instructions prior to a
visual search task. Half the subjects were given passive instructions,
which told the subject “to be as receptive as possible, and let the
unique item “pop” into your mind”. The other half were given active
instructions, which asked the subjects “to be as active as possible
and “search” for the item” (the full instructions can be found in [3]
p.548-549). The results of the experiment were clear: in line with the
anecdotal evidence, subjects given the passive instructions performed
significantly better than the subjects given active instructions.

Smilek concluded that the different instructions lead to the sub-
jects adopting different “cognitive strategies”, with the passive in-
structions giving fast automatic processes more influence over spa-
tial attention and active instruction leading to a greater reliance on
slow and unnecessary executive control processes. This explanation
was further evidenced in a second experiment where they showed
that subjects searched more efficiently on the hard visual search task
when given a concurrent memory task.

The current study seeks to address two issues with the original
Smilek experiment. The first issue is the lack of a control condition,
1 University of Sheffield, Sheffield. Email: t.stafford@sheffield.ac.uk

which would establish a baseline result. Without this it is difficult
to conclude whether passive instructions made the subjects better,
active instructions made them worse, or both. If the passive instruc-
tions improve performance over a baseline result, this suggests that
our performance on this visual search task is sup-optimal and can
be improved. Such a finding could have implications for some real-
world, two-dimensional visual search tasks, such as CCTV operators.

The second issue is that eye movements were not recorded during
the experiment. If the instructions are leading to systematic changes
in the way the subjects move their eyes, then this could be informa-
tive of the mechanism for the passive versus active advantage. For
example, length of fixation has been shown to have a systematic ef-
fect on search. Hooge and Erkelens [2] found that subjects who made
longer fixations selected better locations for their next fixation, and
so located the target faster. This suggests that longer fixations allow
subjects more time to accumulate evidence on the best location to
move their eyes to next.

We predict, therefore, that the passive instructions are leading to
subjects taking longer on each fixation, which will have the knock-on
effect of them making better eye movements and locating the target
faster compared to active subjects. Furthermore, if the instructions
have their effect by moving the subjects along a passive–active con-
tinuum, we predict that the subjects given neutral instructions will
fall somewhere between these two extremes.

During the running of this experiment, Watson and colleagues [4]
published a replication of the Smilek experiment with eye tracking.
Their hypothesis was similar to that proposed here, and their results
will be reviewed alongside ours in the Discussion.

2 Methods

The experiment is a replication and extension of Experiment 1 in [3],
where the reader is referred to for further details. The subjects were
required to search for a circle that had a gap on either the left or right
hand side amongst distractor circles that had a gap on both sides. The
difficulty of the target discrimination was altered by having either a
large gap in the target (easy condition) or a small gap (hard condition)
(see Figure 1 for examples of display types).

The easy and hard conditions were presented in two blocks of 144
trials and the order of presentation was counterbalanced between
subjects. A target was present in every trial accompanied by either
one, three or five distractors, and subjects were asked to indicate
what side the gap was on as quickly and accurately as they could.
Subjects were given 12 practice trials at the start and were given a
break between the two blocks.
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Figure 1. Examples of easy (left) and hard (right) search displays (taken
from [3].

The current experiment differs from the Smilek experiment in two
ways. First, a ‘neutral’ instructions condition was added, which sim-
ply stated:

“The best strategy for this task, and the one that we want you
to use in this study, is to respond as quickly and accurately as
you can.”

Second, we included eye tracking throughout the experiment. The
centre of the left pupil of the subject was tracked at a sample rate of
60 Hz using a head mounted, infra-red video-based eye tracker (IS-
CAN RK-500). The addition of eye tracking meant that a nine-point
calibration procedure was carried out before each block of trials, and
head movements were restricted during the experiment using a chin
rest.

42 subjects aged between 16 and 31 (M = 20.0 years, SD = 3.0
years) participated in the experiment (35 Female, 7 Male). 35 of the
subjects took part in return for course-credit towards their undergrad-
uate Psychology degrees. All subjects had normal or corrected-to-
normal vision and were naı̈ve as to the purpose of the experiment.
The subjects all gave their informed consent to take part in the exper-
iment and the procedures were in accordance with the ethical stan-
dards of the Department of Psychology Ethics Sub-Committee and
British Psychological Society Guidelines.

The 42 subjects were split evenly between the instruction condi-
tions and between the order of difficulty. However, seven subjects
were removed from the eye movement analysis because their eye
movement data was not reliable.

3 Results

3.1 Visual Search

The mean correct reaction times (RTs) for the easy and hard condi-
tions can be seen in Figures 2 and 3 respectively. The mean correct
RTs were analysed by a mixed analysis of variance (ANOVA) that
assessed the within-subject factors of search difficulty (easy, hard)
and set size (2, 4 and 6) and the between-subject factors of instruc-
tion (neutral, passive and active) and order (easy first, hard first). A
multiple comparisons post-hoc test with Bonferroni correction was
then performed to determine any significant differences between the
three instructional groups. The full results of these tests can be seen
in Table 1.

!!!!!! " # $

%"&&

'&&

$&&

(&&

)&&

*&&

%&&&

%%&&

!"#$!%&"

'
"(
)$
*"
(+
#%,
)$
-%
.
"$
/.
01

!"#$%&'

(&))*+"

,-$*+"

Figure 2. Points and error bars represent the mean correct RTs for the easy
condition, ± SEM
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Figure 3. Points and error bars represent the mean correct RTs for the hard
condition, ± SEM

The ANOVA and post-hoc tests revealed that there was a signifi-
cant effect of instructions, with passive instructions leading to signif-
icantly faster performance than active instructions. However, unlike
the results of [3], there was no significant interaction with set size,
indicating that passive subjects are faster at searching but there is no
significant change to the slope of their search function.

To look at the effect of the experimental instructions in more de-
tail, we analysed the data separately in the easy and hard conditions.
This revealed that instructions had a substantial effect on the speed
of search when search was hard (F(2,36) = 6.70, p = .003), but the
effect of instructions was only approaching significance in the easy
condition (F(2,36) = 3.24, p = .051). In the hard condition, the pas-
sive instructions led to significantly faster performance than either
the active (p = .004) or neutral (p = .037) instructions, but there was
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no difference between the active and neutral conditions (p = 1). In
the easy condition the passive subjects were significantly faster than
the active subjects (p = .048), but there was little or no difference be-
tween neutral and passive (p= .427) or neutral and active (p= .927).

There was a significant effect of order of difficulty in the hard
condition (F(1,36) = 9.24, p = .004) but not the easy condition
(F(1,36) = 0.38, p = .541). Subjects performed significantly better
on the hard task if they completed it after the easy task rather than
before. However, this effect did not interact with set size or instruc-
tions.

The same ANOVA was also run on the number of errors made in
each condition to ascertain whether the subjects in the passive condi-
tion were trading response speed for accuracy. This analysis showed
that there was no significant difference between the number of er-
rors made between instructional groups, (F(2,36) = 1.00, p = .379).
In addition, combining errors and reaction times to form a single
“search inefficiency” measure does not significantly alter the results
so has not been presented here.

Table 1. Mean Correct RT: Mixed ANOVA Results.

Source df F p
Difficulty 1,36 205.28 .000
Diff×Instructions 2,36 .51 .606
Diff×Order 1,36 20.27 .000
Diff×Instructions×Order 2,36 1.08 .349
Set Size 2,72 648.18 .000
Set Size×Instructions 4,72 1.96 .109
Set Size×Order 2,72 .16 .852
Set Size×Order×Instructions 4,72 .10 .982
Diff×Set Size 2,72 61.03 .000
Diff×Set Size×Order 4,72 1.30 .279
Diff×Set Size×Order 2,72 1.64 .200
Diff×Set Size×Order×Instructions 4,72 .40 .807
Instructions 2,36 5.37 .009
Order 1,36 1.27 .267
Instructions×Order 2,36 .41 .669

Multiple Comparisons p
Neutral versus Passive .109
Neutral versus Active .920
Passive versus Active .008

3.2 Eye Tracking

In order to make a direct comparison with the results of [4], each trial
was split into three epochs, which are defined as follows. Epoch 1 is
the time it takes the subject to initiate the first saccade, or the saccadic
latency. Any saccadic latencies shorter than 100ms were considered
anticipatory and removed. Epoch 2 is the time between the initiation
of the first saccade and the eye fixating the target quadrant. The target
quadrant was defined as a square region centred on the target and
extending 0.5◦ beyond the edges of the item. Epoch 3 is the time
between the eye fixating the target for the first time and the subject
making their button press response.

Tables 2, 3 and 4 shows the results of the same mixed ANOVA
and post-hoc tests used on the visual search data for epochs 1, 2 and
3 respectively. Figure 4 shows the collapsed data for time spent in
each epoch by experimental instructions.

Epoch 1: The ANOVA revealed that passive subjects took signif-
icantly longer to initiate their first saccade (M = 166.95 ms, SD =

23.33 ms) compared to either neutral (M = 148.95 ms, SD = 17.46
ms) or active subjects (M = 148.06 ms, SD = 14.80 ms).

Table 2. Epoch 1: Mixed ANOVA Results.

Source df F p
Difficulty 1,29 8.38 .007
Diff×Instructions 2,29 .72 .493
Diff×Order 1,29 .06 .810
Diff×Instructions×Order 2,29 .15 .860
Set Size 2,58 47.80 .000
Set Size×Instructions 4,58 .72 .583
Set Size×Order 2,58 .98 .381
Set Size×Order×Instructions 4,58 .44 .780
Diff×Set Size 2,58 .44 .647
Diff×Set Size×Order 4,58 .39 .814
Diff×Set Size×Order 2,58 1.15 .324
Diff×Set Size×Order×Instructions 4,58 1.52 .208
Instructions 2,29 5.04 .013
Order 1,29 1.32 .260
Instructions×Order 2,29 .18 .840

Multiple Comparisons p
Neutral versus Passive .042
Neutral versus Active 1.000
Passive versus Active .027

Epoch 2: The passive subjects found the target significantly faster
(M = 260.65 ms, SD = 70.11 ms) than the active subjects (M =
315.69 ms, SD = 84.53 ms). The subjects given neutral instructions
fell between these two points (M = 297.54 ms, SD = 51.42 ms), but
were more closely aligned with the active group.

Table 3. Epoch 2: Mixed ANOVA Results.

Source df F p
Difficulty 1,29 97.36 .000
Diff×Instructions 2,29 .22 .800
Diff×Order 1,29 9.89 .004
Diff×Instructions×Order 2,29 .25 .783
Set Size 2,58 264.82 .000
Set Size×Instructions 4,58 1.06 .386
Set Size×Order 2,58 2.08 .134
Set Size×Order×Instructions 4,58 2.04 .100
Diff×Set Size 2,58 10.57 .000
Diff×Set Size×Order 4,58 .52 .720
Diff×Set Size×Order 2,58 .96 .390
Diff×Set Size×Order×Instructions 4,58 .17 .952
Instructions 2,29 3.64 .039
Order 1,29 1.15 .293
Instructions×Order 2,29 .90 .418

Multiple Comparisons p
Neutral versus Passive .279
Neutral versus Active 1.000
Passive versus Active .039

Epoch 3: The passive subjects responded significantly faster once
they found the target (M = 340.80 ms, SD = 53.93 ms) compared to
the active subjects (M = 416.96 ms, SD = 92.98 ms). The subjects
given neutral instructions again fell between these two points (M =
402.06 ms, SD = 70.57 ms) but were more closely aligned with the
active group.

57



Table 4. Epoch 3: Mixed ANOVA Results.

Source df F p
Difficulty 1,29 81.05 .000
Diff×Instructions 2,29 .21 .809
Diff×Order 1,29 3.56 .069
Diff×Instructions×Order 2,29 1.21 .312
Set Size 2,58 5.60 .006
Set Size×Instructions 4,58 .35 .840
Set Size×Order 2,58 1.62 .207
Set Size×Order×Instructions 4,58 2.96 .027
Diff×Set Size 2,58 1.53 .225
Diff×Set Size×Order 4,58 .69 .604
Diff×Set Size×Order 2,58 .76 .472
Diff×Set Size×Order×Instructions 4,58 .71 .587
Instructions 2,29 4.49 .020
Order 1,29 1.10 .303
Instructions×Order 2,29 .56 .578

Multiple Comparisons p
Neutral versus Passive .103
Neutral versus Active 1.000
Passive versus Active .025
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Figure 4. Points and error bars represent the collapsed group means for
each epoch by experimental instructions, ± SEM.

4 Discussion
This study first of all confirms the findings of both Smilek [3] and
Watson [4]: there was a clear speed advantage to being in the passive
group compared to the active group. However, the neutral, baseline
condition allow us to extend these findings, and conclude that 1) the
passive instructions led to significant speed advantages compared to
the baseline in the hard visual search task, and 2) the visual search
performance of the neutral instructions group was much more closely
aligned to the performance of the active group. This suggests that, on
this task at least, we adopt a more active search strategy by default
and can be made to improve by simply being instructed to search
more passively beforehand.

During the running of this experiment, Watson and colleagues [4]
published a replication of the Smilek experiment, with some minor

alterations, and with the addition of eye tracking. They predicted that
subjects would spend more time on individual fixations in the passive
group, sampling fewer locations of the display but in more detail.
Active subjects, they predicted, would spend more time “looking”,
sampling more locations but at a cost in fidelity. Their results were in
line with their prediction: passive subjects gazed at the centre of the
display for longer before making their first saccade. Furthermore,
passive subjects were more likely than active subjects to fixate the
target in three or fewer saccades and were faster to respond once
they had found it.

Our eye tracking analysis intentionally copied the analysis meth-
ods of Watson and colleagues [4], splitting the data in to three epochs
so that the two sets of results could be directly compared. Our results
are clear and follow the same pattern: passive subjects took longer to
initiate their first saccade, they located and fixated the target quicker
and responded with a button press faster. However, we are able to ex-
tend Watson’s findings in the same way that we were able to extend
Smilek’s findings: by showing that the neutral instructions led to eye
movements that more closely resembled the eye movements of the
active group, which mirrors the differences in performance between
the instructional groups in the visual search results.

This finding suggests that the instructions are having their ef-
fect on search speeds by altering the way the subjects move their
eyes. Therefore, we predict that the advantage of passive instruc-
tions would carry over to other visual search tasks that are primar-
ily carried out by moving the eyes, but would be drowned out in
search tasks that involve more gross movements of the head and/or
body. Indeed, early evidence from Waton’s lab indicates that this is
the case: the effect of passive and active instructions does not carry
over to real-world situations that involve head and body movements
[1]. However, in instances where search takes place on a small, 2-
dimensional display such as a monitor, we predict that there would
still be an advantage to instructing searchers to do so more passively.
This finding could have potential implications for jobs that require
this kind of search, such as CCTV operators or baggage scanning
at airports. We plan further work to establish the conditions that are
necessary to elicit the passive versus active advantage.
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