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Foreword from the Convention Chairs

The AISB’11 call for symposium proposals particularly encouraged events drawing more strongly
on the cognitive science aspect of the AISB remit. The result is a coherent programme with a very
strong interdisciplinary character, which is also matched in the choice of plenary speakers. The
three symposia looking at the interaction between Computing and Philosophy, the prospect of
machine consciousness and the quest for a new, comprehensive intelligence test, form a coherent
unit where the eternal questions of who we are and what makes us so are asked from a dual Human-
Machine perspective. The Symposia on Active Vision, Computational Models of Cognitive
Development and Human Memory for Artificial Agents demonstrate how better understanding of
the nature and basis of cognitive processes can advance work on Artificial Intelligence and,
inversely, how computational models of these processes can help better to understand them. The
prominent multi-agent design and modelling paradigm links the Symposium on Social Networks
and Multi-agent Systems with the one on Al and Games. Finally, the Symposium on Learning
Language Models from Multilingual Corpora, which brings together some of the first attempts in
this area, can also be seen through the prism of such a general notion in Philosophy and Linguistics
as semiosis, and the dual role of sign and interpretant that text plays in translations.

We are delighted that after another ten successful years in its long history, the AISB convention is
returning to the University of York. The 2011 convention takes place on the brand-new Heslington
East campus, the result of a multi-million pound expansion that is now the new home of the
Department of Computer Science, and hosts the Excellence Hub for Yorkshire and Humber, a new
incubator for interdisciplinary research and interaction between academia and industry. The last few
years have seen a strong involvement of the Computer Science Department in such interdisciplinary
collaboration through the York Centre for Complex Systems Analysis (YCCSA), and we hope that
this convention will provide a boost for more synergy between York departments, with other
institutions conducting Al-related research in the region, and beyond. As the programme shows, we
have also made an effort to promote cooperation with industry and use the convention to support
school outreach. The convention format makes it perfect for establishing dialogue and collaboration
in new areas of research, as well as across disciplines, and we hope that this year, it will play again
this role to the full. We want to thank everyone who has contributed to it or otherwise made this
event possible and wish all participants a fruitful and enjoyable time in York.

Dimitar Kazakov and George Tsoulas
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Analysis of Power Networks
among the Actors of a Social Organization

Paul Chapron, Christophe Sibertin-Blanc', Francoise Adreit’

Abstract. The Sociology of the Organized Action studies how
social organizations are regularized, due to the balancing process
between the power relationships of the social actors. A
formalization of this theory allows drawing power social
networks of an organization. On the other hand, the Social
Network Analysis has developed efficient tools to improve the
understanding of the structure and behavior of social networks.
The paper shows how these tools are fruitfully applied to power

networks.

1 INTRODUCTION

The Sociology of the Organized Action [3][4][8] studies how
social organizations (for example a firm) are regularized as a
result of the balancing process among the power relationships
between the social actors. A formalization of this theory allows
designing models of social organizations and to simulate the
“social game” [17][13][16]. Therefore, it is possible to draw
various power networks among the actors of a social
organization, from the potential power of the actors or from their
effective power, in a specific state of the organization.

On the other hand, Social Network Analysis (SNA) studies
the structure of relations between actors who are tied by some
kind of social relationship (like friendship, collaboration, counsel
and so on) [20]. In this context, [10] analyses the structure of
relations inside organizations to infer power relationships
between the actors from their positions (see also [15]).

The purpose of this paper is to start directly from power
networks of a social organization designed from the SOA
formalization, and to study how the tools proposed by SNA can
improve their understanding. Especially, the centrality metric
allows investigating properties of the power like its intensity, its
diversity and its scope.

In section 2, we briefly present the Sociology of the
Organized Action and how its formalization enables to provide a
formal definition of the power of an actor. Then, we recall the
definitions of some concepts of the Social Network Analysis
(section 3) and we introduce, in section 4, the different power
networks that can be drawn from the SAO formal model of an
organization. In section 5, we propose an analysis of the power
networks with the SNA’s tools.
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2 A FORMALIZATION OF THE SOCIOLOGY
OF THE ORGANIZED ACTION

2.1 A brief introduction to the Sociology of the
Organized Action

The Sociology of the Organized Action (SOA) [3][4][8] is a
well-experienced theory, acknowledged by more recent theories
of organizations [5]. It aims at discovering and explaining the
real functioning of social organizations, or so called Concrete
Systems of Action (CSA), beyond their formal rules (in the form
of organization charts, directive instructions, position
descriptions, protocols and so on), and it focuses on the
regularization phenomenon which ensures their relative
synchronic stability.

The SOA assumes that an organization is a social construct
that is both the produce and the shape of the interactions among
its member actors. Moreover, it assumes that each actor behaves
strategically although he has only bounded rationality
capabilities [19]. Therefore the behavior of each actor is neither
totally conditioned by the organizational rules that constrain him,
nor induced by purely individual factors. And it is strategic as it
intends to realize the actors’ aims, or goals, would they be
conscious or not.

To get the means to achieve his goals, every actor seeks to
have enough power to be able to preserve or increase his
autonomy and acting capacity within the organization.
According to the SOA, his power results from the mastering of
one or several uncertainty zones (UZ) that enable him to behave
in a way that is unpredictable for other actors and consequently
to set, to some extent, the exchange rules in his relations with
others. The UZs are the media of the power relationships
between the actors; each UZ involves one (or several) resource
needed for the action, and thus it is both a constraint and an
opportunity. Each social actor both controls some UZs and
depends on some others, so that they are reciprocally [18]
dependent on each other.

2.2 The meta-model to describe the structure of an
organization

Purposing to enable the design of models of social organizations,
we rely on a meta-model as an abstraction that catches the
constitutive concepts and properties of social organizations [16]
[13]; it can be instantiated on specific cases as models of
concrete organizations.
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Figure 1. The meta-model of the structure of organizations

The meta-model is shown in figure 1, as a UML class
diagram. It is composed of a class Actor and a class Relation,
linked by the associations Control and Depend. Actors are the
active entities who handle the relations. Each relation is
controlled by a unique actor, the only one able to change its
state. Each actor distributes his stakes over the relations he is
dependent on. Thus, every actor gets some impact from each of
these relations, given by the effect() function applied to the state
of the relation, weighted by the stake of the actor. Consequently,
he gets some capability, or action capacity, as an aggregation of
the impacts he receives from all the relations he depends on. He
also exerts some power, as an aggregation of capacities he grants
to the actors who depend on the relations he controls.

These elements will now be described in more details (see
also [16]).

Resources and Relations

Every relation is founded on an organization’s resource, or a set
of resources in conjunction with one another (see figure 2), and
it is controlled by a single actor. Resources are physical or
cognitive elements required to achieve some actions, so that their
availability is necessary for some actors. A relation refers to a
certain type of recurrent interactions among actors about a
specific use of the resources it is based on. Thus, the controller
of a relation, who is in a position to determine how the resources
are available to the others, controls to what extent the dependent
actors are able to reach their goals.
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Figure 2. A representation of the resources and the goals, behind
the relations and the actors' stakes of the meta-model

The state attribute of a relation represents how the supporting
resources are managed by its controller, that is the behavior of
the controller actor with regard to these resources. It is defined
inside a space of behavior SB, representing the set of behaviors

3 . .. .
Resources and goals are implicit, not in the meta-model

that the actor can choose to manage the relation. This space of
behavior is represented for any relation as the interval SB = [-
1;1]. This interval is bipolar: -1 represents the least cooperative
behaviors of the controller, 1 represents the most cooperative
behaviors, while the zero value stands for neutral behaviors.

The actor who controls a relation may change his behavior by
using the function move() that changes the value of the state of
the relation. An actor modifies his behavior towards a greater or
lower cooperation with regard to his previous behavior.

The state of a relation determines the availability of the
underlying resources, i.e., how each dependent actor is granted
to use them according to his needs. So, the state of a relation
produces an effect on every depending actor: his capacity to use
the resources as he would like. Therefore, the greater the effect
for a given actor, the more useable the resource, and the larger
his capacity of action to reach his goals. Effects take values on
an arbitrary scale from -10 to 10:

worst access = -10, ..., neutral = 0, ..., optimal access =10.

Effect values are given by an effect() function, which is
defined depending on the nature of the relation. The effect,()
function of a relation r is defined as:

effect, : Ax SB, ---> [-10, 10]
where A stands for the set of actors, SB, for the space of
behavior of the relation r, and [-10, 10] is the range of action
capacity.

Actors and their Stakes

Actors and resources are defined in relation one to another, in a
dialogical way: something is a resource if and only if some
actors depend on it, and someone is an actor if and only if he
masters some needed resources, and thus some relations. The
SOA assumes that actors are strategic: they have goals that lead
them to find some ways to reach them. According to the relative
importance of his goals and the necessity of resources to reach
these goals (see figure 2), each actor distributes stakes on the
relations; we assume that each actor has 10 stake marks to
distribute over the relations. The more valuable a resource for an
actor, the higher his stake on the supported relation. Stakes are
represented by numerical coefficient, on an arbitrary scale:

null = 0, negligible = 1,... ,significant = 5,... , critical = 10.

Capability and Power of Actors
Defining the state of an organization as the vector of every
relation state, each state of an organization allows considering
the aggregation of the effects of the relations on an actor, over all
the relations he depends on, weighted by the stake he puts on
each relation. Such a quantity depicts the overall ability for an
actor to gain access to the resources he needs to reach his goals,
weighted by the relative importance of these resources regarding
his goals. It measures, for an actor, his action capacity.

Under the hypothesis that there are no interferences between
the use of resources, when the organization is in the state s = (s,
...» Sm), this action capacity is defined as:

action_capacity(a,s) = Y g impact,(a,s) (@))]
where
impact,(a,s) = stake(a,r) * effect,.(a,s) 2)

By controlling some relations, every actor contributes to the
action capacity of the actors who depend on these relations, i.e.
to the access of the resources they need. The influence of an
actor on the action capacity of another one, i.e. how much action
capacity he gives to him, fits the concept of power, a core



concept in the SOA. The power exerted by an actor a on an actor
b in a state s of the organization, is defined as:

power(a,b,s) = Zr (S R; a controls r | impaCtr (b’ Sr) s (3)
the global power of an actor a is defined as:

power(a,s) = Y, € apower(a, b, s)°. “)
and the total amount of power within the organization as:

power(s) =Y, o € apower(a, b, s) “4)

The meta-model is completed with a couple of elements (e. g.
constraints between the states of relations and solidarities
between actors) that are not necessary to consider in this paper
(see [16] for more details).

2.3 The social game of an organization
According to the meta-model, the model of an organization is a
structure including:
e A, the (finite and non-empty) set of actors;
R, the (finite and non-empty) set of relations;
control : R — A;
state : R — SB, =[-1, 1];
stake : A x R — [0, 10] such as
Vae AY  _gstake (a,r)=10,and an actor a is said

to be dependent on a relation r iff stake(a, r) > 0;
e effect: Rx Ax[-1,1] — [-10, 10].

Such a structure defines a "social game" where each actor
looks for having a satisfying level of capability. To realize this
meta-goal, each actor adjusts his behavior by modifying the state
of the relations he controls. By this way, he modifies the
capability of the actors who depend on these relations and,
indirectly, his own capability. The game is over when a
stationary state is reached: the organization is in a sustainable
state, since the actors no longer look for modifying the state of
the relations because each one is satisfied by his level of
capability.

2.4 The SocLab software environment

The SocLab environment allows editing (the model of) the
structure of an organization compliant with the meta-model, to
display the value of relevant indicators (action capacity, power,
see also section 4), to explore the states of the organization (e.g.
the ones that maximize or minimize the capacity or the power of
an actor, the Nash equilibriums, ...). Implementing the model of
an organization as a MultiAgents System (where the agents
represent the actors of the model) and giving to the agents a
behaviour model, SocLab allows the actors to play the “social
game” and to reach socially feasible states of the organization,
by simulation [13]. See [6] for more details about the
representation of the agents and the simulation algorithm.

[1] reports the use of SocLab for the assessment of the social
acceptability of new agricultural policies in the upstream part of
the Gers river's basin.

* We may also distinguish the positive power that retains only the
positive impacts from the negative power.

3 METRICS IN SOCIAL NETWORK
ANALYSIS

We purpose in this paper to relate the model of an organization
presented in section 2 to tools proposed by the Social Network
Analysis. Therefore, we present in this section this tools.

SNA describes social structures as networks of well specified
ties that bind individuals or organizations one to another. Using
concepts of network theory, it aims to reveal the context in
which the interactions between the individuals occur, providing
some insights about the effect of the structure on these
interactions. Sexual relationships, friendship or financial
transaction networks are some of the famous kinds of social
networks having been studied (see [11][20]).

The nature of the social relationship which defines a social
network is crucial: it determines the type of investigated network
and the meaning of every metric used to characterize a node, an
edge or the whole network.

The standard structure of networks in SNA is an undirected
graph i.e. a graph where nodes are tied by a symmetric binary
relation, as most of the relations types covered by SNA imply
reciprocity in the course of interactions.

When the goal of a SNA study is to seize the power between
the members of a social organization, the relations are restrained
to more specific kinds of relationship, such as information
communication, support or counsel taking relations. In these
more specific networks, it is commonly admitted that power
arises from occupying an advantageous position in the social
relationship network [2].

The measure of the advantage provided by a particular
position in a network uses three well-known metrics: the degree
centrality, the closeness centrality and the betweenness
centrality.

Degree centrality is defined as the number of ties a node is
connected to. A node with a high degree centrality is a node
which is directly connected to many nodes of the network, so
that the corresponding individual has many opportunities to
interact with others.

Closeness centrality refers to the distance between a node and
the others. A node with a high value of closeness centrality is a
node which is relatively near of the other nodes [7].

1
Ccloseness (a) - ZﬂEVd(a”B)

where d(a,f) stands for the (geodesic) distance between
vertices a and . A high degree centrality of an individual also
relates to his possibility to interact with many others, even in an
indirect way.

Betweenness centrality addresses the occurrence of a node on
the (shortest) paths that link the other nodes to each other [20].

Chetweenness (@) = Z (_U;:,(a))

a#L+yeV By

where a, f§ and y are vertices of the network, aﬁystands for the
shortest paths from 8 to y that contains «a.

A node with a high value of betweenness centrality has the
possibility to be involved in many transactions that flow in the
network.

The combination of these three metrics allows a node to be
characterized regarding its importance in the network. This
importance comes both from the number of nodes it can affect
(its mean of action) and from the distance that separates it from



the others (its action’s range). As obvious as it may seem, the
centralities scores that rely on the distance between two nodes
only make sense if the length of a path between these two nodes
is relevant regarding the nature of the relation. It requires that the
relations should somehow be transitive in order for a node to
affect another one which it is not directly connected to.

Another metric currently used in SNA is the structural
equivalence that reflects, for a pair of nodes, to what extent they
are connected to the same nodes of the network. Two nodes said
to be structurally equivalent share the same set of constraints and
opportunities in the network.

Since having two nodes in a situation of exact structural
equivalence is very rare, SNA commonly turns to numerical
methods to measure the degree of structural equivalence that is,
the similarity of nodes connections profiles [9].

4 FROM ORGANIZATION MODELS TO
NETWORKS OF POWER

In section 2, we have presented the meta-model whereby we
construct organization models. An organization model describes
explicitly the structure of the set of relations that ties the actors
one to another. Several networks of actors can be extracted from
this structure. Since every actor controls at least one relation in
the organization and depends on at least one relation he does not
control, these networks are always strongly connected.

The first kind of network to be extracted from an organization
model is an actor-relation digraph. An arc (a, r) represents a
control relation from an actor a to a relation r, and an arc (r, a)
represents a dependency from an actor a on a relation r.

The other kinds of networks to be extracted are directed actor
graphs, in which an arc (a, b) represents a control-dependency
relation i.e. a controls a relation on which b depends. As the
SNA deals with actor graphs, we mainly focus on this second
kind of networks in this paper.

These networks can be weighted with various measures that
are either related to a specific state of the organization
(contextual actor network) or only depend on the structure of the
organization (structural actor network).

The contextual actor networks reflect a particular state of the
organization. An arc (a, b) may be weighted by the aggregated
impacts that b receives from the relations controlled by a, that is
power(a, b, s). This network expresses the power that a exercises
on b. In the (frequent) case where both power(a, b, s) and
power(b, a,, s) are not null, only the arc with the highest value
may be retained, labelled with the (positive) value of their
difference, expressing the relative power of actors one on
another. Another way of doing is to label undirected arcs by the
sum of the absolute value of powers, expressing the intensity of
the interactions between two actors.

In such networks, the actors nodes can be labelled with
various indicators, such as the capability or the power (see
section 2.2), or the autonomy of an actor (his capability to
prevent others to control the resources he needs)., computed in
the given state. We define the autonomy of an actor a as the sum
of every impact received from relations that a itself controls.

The structural actor networks reflect structural properties of
the organization, i.e. properties that are not computed for a given
state. The structures of these networks are the same as those of
the contextual ones, but they are weighted with state-
independent measures.

For example, a structural network can be labelled with the
minimum or maximum possible values of a contextual network,
or by the mean value or the differences between these values.
This kind of network is used to get insights on the range of
situations of dependence in which the actors could be.

In order to highlight the importance of some specific
resources of the organizations, relations nodes may be weighted
by their relevance, defined as the sum of the stakes put by the
actors on them.

The Figure 3 shows an example of a structural actor-relation
network where actors are displayed as circle nodes and relations
as square nodes. Plain arrows reflect control and dotted arrows
reflect dependence relation. The size of squares represents the
relevance of the relations.
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Figure 3. Actor-Relation Network showing the relative
relevance of relations in an organization network (from SocLab)

In order to represent the amplitude of the effect a relation may
have on an actor, arcs in actor-relation digraphs can be weighted
by the strength of the relation on the actors who depend on it,
defined as follows :

strength(r,a) = max {effect, (r,x)-effect, (r,y)} ; x,ye SB,

The same operation can be performed regarding the power of
an actor: actors nodes might be labelled with the structural
power indicator, that is the amplitude of its global power :

structural power(a,s)=max{power(a,x)-power(a,y)}, x,ye [1.SB

Finally, following the SOA idea that, for an actor, power
arises from the mastering of uncertainty zones that allows him to
behave in an unpredictable way, representing the level of
uncertainty in actor power networks would be useful to clarify
power relationship in an organization.

One way of measuring this degree of uncertainty is to
consider the standard deviation of relations states values,
computed from the results of numerous simulations of the actors
behavior regulation. Since these values reflect the diversity of
behaviors that an actor could adopt concerning the handling of
the resources he controls, weighting the arcs of a structural actor



network with these values reflects the degree of uncertainty in
the network.

5 ANALYSIS OF POWER NETWORKS

The theory of social networks has developed many tools to
analyse properties of social networks (see section 3). According
to the nature of the links that are considered, these properties
enable to improve the understanding of the social structure that
is described by the network. As power and dependency
relationships are essential for the functioning of any
organization, especially for the SOA theory, we propose in this
section to analyse them with the tools of social networks to
investigate properties of the power such as its intensity, its
diversity or its scope,

The SocLab environment allows displaying tables that show
the values of the various kinds of links between actors that have
been presented in section 4. However, power relationships are
not just a dyadic matter, because they spread among the actors
and, most often, there are several actors that depend on one
relation [14]. So, a network representation of these relationships
enables to get a global view of the distribution of these relations,
in addition to the local view focusing on each actor.

In the following, we will not consider the specificities of the
different kinds of networks that have been introduced in the
previous section; we just consider networks of power
relationships (that we will call power networks).

In these networks, the arcs are labelled and directed, unlike
social networks that are usually considered in SNA. The output
arcs of a node are related to the power of the corresponding
actor, while its input arcs are related to his action capacity

Distant power
The SNA make the assumption that the relations are transitive in
order for a node to affect another one which is not directly
connected to (see section 3). In the case of power networks, this
means that we assume some transitivity of power relationships:
if actor a exerts some power on actor b and the latter some
power on actor ¢, then actor a exerts an indirect power on c. This
view is compliant with the principles of the SAO regarding the
behaviors of social actors: for the SAO, the actors “exchange
their behaviors” the one with another, so that the behaviour of an
actor (i.e. the power he exerts) depends on his capability (i.e. the
power that he receives) [8].

How does the power of an actor a on another actor b
propagates to a third actor ¢, depending on the power of b on ¢?

We can consider that the behavior of » depends on a, let us
call it the influence of a on b, to the extent of his dependency
with regard to a, in other words the relative power that a exert on
b, that is:

influence(a, b) = power(a, b)/capacity(b), 5
so that:
power(a, c) = influence(a, b) * power(b, c). (6)

Moreover, if a controls two actors b; and b, who control c,
then the power of a on ¢ must be defined as:
power(a, c) =Y, , influence(a, b;) * power(b;, c).
More generally, if we have a chain of power dependency a,,
aj, ..., a, from an actor a, to an actor a,, the distant power of a,
on a,, is then evaluated as:
powery(ag a,)=(11o. .1 influence(a;, a;,;)) * power(a,.;, a,). (7)

Notice that this formula of distant power generalizes the
definition of power given in 2.2 (3) in the case a and b are
directly linked. The distant power exerted by an actor a on
another actor b is given by the (a,b)™ entry of the following
matrix product:

Infé-1xp
Where Infis the matrix of influence, whose (i,j)" entry, Inf; j» 18
influence(i,j), d is the length of the shortest path between nodes i
and j and P is the matrix of (direct) power whose (i,j)" entry, P;
is power(ij).

jo

Centrality of output arcs: intensity, diversity and scope of the
power

In a power network, the intensity of the power of an actor, that is
his amount of power, is given by the sum of the labels of the
output arcs of the node.

The degree centrality of this node reported to the output arcs,
i.e. the number of output arcs, indicates the diversity of the
power, that is, the number of means that are at the corresponding
actor’s disposal to exert his power. Having a high diversity
power gives the actor the possibility to choose the most
appropriate means to exert power according to the current
situation, and thus to be well equipped to face various
configurations of the organization.

The closeness centrality of a node (reported to the output
arcs) is related to the scope of the corresponding actor’s power,
that is how far and how many actors the actor is able to
influence. Closeness centrality compute the length of the paths;
to evaluate what can circulate along these paths, we consider the
sum of the distant powers exerted by an actor on all the other
ones:

2 »E apowery(a, b) cf. (7),

possibly divided by the total Power of the organization (4’) to

get a normalized value.

Centrality of input arcs: distributed dependency and pressure
The input arcs of a node express both the action capacity
received by the corresponding actor and his entailed dependence
on other actors.

A high level of input degree centrality means that the actor
does not depend on a single or few actors, but his dependency is
distributed on several actors; thus, he can expect that in the case
of the defection of some actor(s), others will compensate his
loss, especially if they are in conflict with the defecting actor(s).
As for the output arcs, the actor seems to be well equipped to
face various configurations of the organization.

The closeness centrality of a node (reported to the input arcs)
expresses the pressure that the actor has to endure from others
and, symmetrically to the output arcs case, it may be evaluated
by >,€ a power, (b, a). However, we have to consider that a
also exerts some distant influence (5) on b, since the network is
strongly connected. The network representation of power
relationships gives evidence of their looping nature, and this
point deserves to be further investigated [14].

Actors’ structural position

In usual social networks, two actors who are structurally
equivalent are in some way interchangeable, they feature no
specificity and thus they are potentially not endowed with high
power possibilities. In the case of power networks, the structural
equivalence has to be examined distinguishing the similarities of



output and inputs arcs. We propose the interpretation shown in
table 1.

output arcs
same different
input | same coalition solidarity
arcs different conflict

Table 1: interpretation of actors’ structural equivalence

If two actors have the same input arcs and different output
arcs, they depend on the same actors and have similar goals, at
least goals that require the same capability. They are prone to
influence the actors they depend on in the same direction, even
to make the organization to evolve in the same direction. They
show solidarity since their interests coincide, what is good for
one of them does for the other one too.

Two actors that have the same output arcs but different input
arcs exert the same power upon others but they have different
goals. Thus they have divergent interests in the social game and
it is likely that each one would like eliminate the other one in
order to exert the totality of the power on the actors who depend
on them. They are concurrent and each one would take benefice
of a weakening of the other one.

Finally, two actors having the same input and output arcs are
equivalent in the sense of SNA; they are redundant actors. In this
situation, they would have advantage to constitute a coalition, if
it is not already the case, to coordinate their action and jointly
reinforce their power and their action capacity.

6 CONCLUSION

In this paper, we analyse power networks with tools of the Social
Network Analysis. We construct these power networks from
organization models elaborated with the SocLab meta-model
which formalizes a well-established theory of the sociology of
organization, the Sociology of the Organized Action. The meta-
model defines structural and contextual measures which can be
used to weight the nodes and the arcs of these networks.

The SNA, when it considers relations among the actors of an
organization, intends to infer the power relationships between
the actors from their positions in social networks, assuming that
social actor are able to transform their structural advantage into a
behavior that expresses their power [12]. Our proposition starts
from networks that already describe the actors’ power positions
and thus investigate more finely properties of the power (for
example its intensity or its diversity). However, the power
networks constructed with the SAO and SocLab models are not
the result of a direct observation like the SNA networks.
Therefore, their accuracy is more questionable.

There are other concepts of SNA which deserve to be applied
to power networks. For example, the diameter of a network (i.e.
the length of the longest shortest paths between two nodes) can
be interpreted as power centralization. Concerning the
betweenness centrality, it would be interesting to distinguish
different cases according to the autonomy level of the actors.

Finally, other measures can be used to weight power
networks. It would be interesting to extend this work by using
other measures and analysing these power networks.
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The “Logic” of Power.
Hints on How my Power Becomes his Power

Cristiano Castelfranchi 1

Abstract. We analyze how the power of an agent creates social
power over the other agents; how an agent acquires new powers,
and a given power becomes a different power; how a power is
transferred from one agent to another one and accumulated; how
co-powers require coordination. What is power ‘alienation’ and
‘subjection’, and a power 'capital’.2

1 POWER: THE OTHER (DARK)SIDE OF
DEPENDENCE

One of the most important effects of dependence is that it
creates "power-over" [1]:
<1> if Y depends on X (as for his goal Gy: that P)
automatically X gets a “power-over” Y: the
power of letting/making Y to realize/achieve his
goal Gy: that P.

X comes to have an "incentive/reward power"’: X can
provide to Y the reward of the realization of P; and can
"promise" this (incentive); or can prevent Y's satisfaction,
or threatening that NotP (negative incentive). But:
<2> given that X controls positive/negative incentives
for Y, she can use these incentives for inducing Y
to do or not to do something (Ay). X gets an
"influencing-power" on Y.

However, there are some conditions for that:
- X has to know about her "power-over", otherwise
she cannot "exercise" it, use it on purpose for
influencing Y;*

! Institute for Cognitive Sciences and Technologies — CNR.
cristiano.castelfranchi@istc.cnr.it.

Our title is a tribute to Ingmar Porn and his book on “The Logic
of Power”, although here there is no formal logic at all and
“logic” is used in the other theoretical sense.

2 I'm grateful to Rosaria Conte, Tarek El Sehity, Luca
Tummolini for relevant discussions and hints on these issues.

3 In our vocabulary "incentive/reward power" is just another
term for "power over"; since "power-over" is not the power of
control (the sociological power) over another agent for inducing
him to do or not to do something (this is for us the "influencing
or command power"); but it is just the power-over his Goal:
frustration or satisfaction.

* Awareness is a condition for a full power; without awareness I
cannot really "exercise" it for my purposes. [1]

- 'Y has to know, to believe about X's "power-over"
his goal; and about X's request or expectation about
Ay.

- What X wants to impose/induce in Y must be less
costly for Y than what she promises or treats to
Y. Y's dependence must be more important
(value of P, no alternatives, etc.) than the costs of
the required action Ay.

- Y must be able and in condition (must have the
"power-of") performing the required/induced
action Ay (and X and Y have to believe so).

- X is interested in some outcome of Ay; some part
of Ay outcomes realizes some goal of X (Gx: that

Q).
1.1 More complex relations

Of course, this basic principle is too simple; there are
many important aspects in the Dependence relations that
introduce complexity in the derived power relations. Let’s
just mention some of them.

- The Dependence of Y on X can be more or less strong;
this depends on the value of the goal Gy for Y, and on the
alternatives (OR Dependence) Y has in that
context/network. Given the “degree” of Y’s dependence
on X, there is a different degree or strength of X’s
“power-over” (and “influencing power”) over Y.

- An OR-dependence link [3] [9], where Y has alternatives
reduces X’s “power over” Y, since X has potential
competitors; has not the “monopoly” of Y’s need. X gets
the power of promising, but not so much the power of
threatening Y (see below).

- An AND-dependence link, where Y needs, for his goal
Gy, both X’s action/resource and Z’s action/resource,
makes the derived power relation really complex: since
X’s exercise of her power requires the coordinated use of
Z power. X actually depends on Z as for her “power over”
Y (they have a "co-power over", see below).

We will put aside here these more sophisticated relations,
since we want to focus here on other dynamics and issues.

2 POWER TRANSFER AND APPROPRIATION

Since/if X decides to resort to Y, to use/exploit Y's
"power-of", this means that - in some measure - she is



dependent on Y (as for that outcomes of Ay); has not the
"power-of" achieving alone that outcome/goal Q. ° Thus:
<3> X transforms her "power-of" P [Gy] (for which Y
is dependent on X, and X gets "power-over" Y) in
her "power-of’ Q [Gx], although "mediated" by
Y

X's "power-of"" P ==>° X's "power-of" Q

X was lacking the "power-of' Q, but thanks to her
"power-of" P (relevant for Y) she gets a new power for
her own goals (power expansion).

X has appropriated a "power-of" of Y for her own goals;
she controls it; she has expanded her powers: now it is (in)
her power.

Y's "power-of" Q is now appropriated by, transferred to X
(especially if X can systematically control it, and induce Y
to perform the needed action - See "subjection”
definition).

X does not simply acquire one "power-of" Y but a sub-set
n of Y's powers N (fig. 1):

N
MRIMLOT 2

Figure 1.

n = all those powers of Y whose cost (in performing the
action) is inferior to the value of the incentive controlled
by X.

Thus, X's powers (power-of) increase in such away: + ny.

3 PROPAGATION & ACCUMULATION

Suppose now that X knows that Y's "power-of"
(appropriated by X) is a possible reward/incentive for Z,;

> This might be a case of "Weak Dependence": X is able to
perform action A by herself, but she decides to rely on Y. In our
theory, "weak dependence" is a sub-case of true Dependence. In
fact, when X is only “weakly depending on Y™ she fully depends
on Y for the large/broad goal G’ but not for G (sub-part of the
outcomes of G'), that she is able and in condition to achieve
alone.

6 . . . .
This arrow just represents a “generates”, “produces” relation.

that Z likes or worries about the outcome of Y's Ay, that
is: Y's "power-of" is a "power-over" Z.

X may be interested (have the goal) to use/exploit Y's
power in this direction; for punishing/rewarding Z, or as
incentive for Z. This might be X's goal Gx in relation to
Ay outcomes: to use it towards Z.

Since Y's exercise of his own original "power-of" is now
under X's control (induction or inhibition) X gets a
"power-over" Z.

X's "power-influencing" Y ==> (mediated by
Y "power over" Z) ==> X's "power-over" Z ==> X's
"power-influencing" Z

<4> X gets a new "power-over" and '"power of
influencing" Z, just thank to her “power of
influencing” Y

x I~ Ty z

Figure 2.

And so on. X's powers (power-of) increase in such away:
tny+nz...

Notice 1. We have derived X's "power of influencing" Y
(etc.) from her "power-of" and "over" some goal of Y
(reward, incentive).

However, what really matters for this vicious (or virtuous)
circle is the "power of influencing" Y, on whatever basis.
The "power-over" is in fact only one possible basis and
origin of the "power of influencing". Other bases are - for
example - Y's imitation, admiration for X; or X's
authority; etc. If X has for whatever reasons an
"influencing power" on Y, X can exploit Y's powers and
"power over" Z, for acquiring and exercising "power
over" and "of influencing" on Z.

Notice 2. Not necessarily Y would be able to personally
use his power over Z; X might be able to prevent that:
thus Y does not fully has his power, does not really
"dispose" of it. This makes Y's powers even more powers
of (under the control of) X. (see 4.)

Notice 3. X can use Z powers both against Y or pro Y.
Not only:

T A

e I

X Z

Figure 3.

But also



x 7 My T Ty

Figure 4.

Let’s supposed that Z has — in turn — possible “power-
over” Y, in this case X (thanks to Z) strengthens her
power-over Y.

X can now use her own, Y’s, and Z’s powers pro or
against W. And so on.

4 NOT AGGRESSION ONLY

A power is not per sé good or bad, benefic or malefic.
Any power has two faces: a benevolent and a malevolent
one. X could either let/make Y realize his goal, or
frustrate it. However, since the goals of Y can be
achievement or aversion goals there actually is an
important asymmetry in Powers and Power relations.

In any kind of Power-over, X can frustrate or satisfy Y;
can make him happy or unhappy. However, in one case
“happy” means some gain, while unhappy means no gain,
while in the other case “happy” simply means no harm,
and unhappy means a loss.

Thus, we have to distinguish between:

Harm/Loss Power-over (HP):

the Power of X of producing a loss, some harm to Y.
Where the “good” is do not lose, do not receive harm; to
remain as before. HP gives a choice (two possible
actions/outcomes): harm /no-harm to Y.

Gain Power-over (GP):

the Power of X of producing a gain for Y.

Where the “good” is increasing Y’s wealth, welfare, and
the “bad” is to remain as before. GP gives a choice (two
possible actions/outcomes): gain /no-gain to Y.

Given the psychological asymmetry of subjective value
between losses and gains, and given that possible harms
elicit an “avoidance” response, that has priority, the HP is
more influencing, persuasive. And the situation is
perceived by Y as coercive, not really a “free” choice.

X is perceived by Y as threatening, hostile, bad. In the GP
X is perceived as more cooperative, promising.” However,
the HP activates a tendency to escape from that relation,
and searching for promising, improving relations.

7 Actually this is the distinction between “true/deep” Promises
vs. “deep” Threats. [5]

Frequently both forms of power coexist and are exploited
for building stable relations.

4.1 Active/Passive Power Exercise

Another fundamental asymmetry is between power
exercised by performing an action (Active Power) vs.
power exercised by abstaining from an action (Passive
Power). For example, in HP X can actively produce Y’s
harm (for example, by beating him) or can simply let
happen something bad for Y that she might prevent (for
example, do not providing medical care to Y).

While crossing the two distinctions HP (with its two
moves/results) and GP (with its two moves/results), and
Active/Performing vs. Passive/Abstaining we find 4 x 2
interesting power-relation forms: See Figure 5.

ACTION A ACTIVE (by | “aggression”
producing doing A) HARM: Y worst
HARMS than before
HARM- idem PASSIVE “sparing” NO
POWER (abstaining HARM: Y like
from A) before
ACTION A’ | ACTIVE (by | “protect” NO
preventing doing A”) HARM: Y like
HARMS before
idem PASSIVE “do-not-
(abstaining protect”
from A”) HARM: Y worst
than before
ACTION A | ACTIVE (by | “good-to”
producing doing A) GAIN: Y better
GAINS than before
GAIN- idem PASSIVE “no-good-to”
POWER (abstaining NO GAIN: Y
from A) like before
ACTION A’ ACTIVE (by | “no-good-to”
preventing doing A”) NO GAIN: Y
GAINS like before
idem PASSIVE “good-to”
(abstaining GAIN: Y better
from A’) than before
Figure 5.

5 THREATS VS PROMISES ASYMMETRY

To get influence X has to signal that she disposes of the
"power-over" Y (Z, W, ...). But not necessarily she have
to perform the relative (threatened/promised) action:

A Threat will be successful only if the "power-over" will

NOT be exercised. In case of obedience the threatened
action will NOT be performed (threat kept) [2].

10



A Promise works if X's "power-over" Y is believed,
although, in case of obedience, the action must be also
actually performed, spent (promise kept).

This is the serious economic asymmetry between threat
and promise. Threat is very convenient for the influencer
(threatener); if it works she has to spend nothing!
However (also for this reason and because - as we said - it
focuses on losses and harms) the threat induces more
rebellion and escaping, and thus requires heavy costs of
surveillance, anti-rebellion, etc.

6 “RIGHTS”: THE POWER OF THE WEAK

There is another fundamental and basic form of power-
acquisition from the others, of the “empowerment” of X
by the others; not just when the others pass their powers to
X, give her the control over their personal powers (skills,
competences, resources); as we have just seen.

Does X (with her personal skills and resources)
really/fully have the “power-of” G1 when she is in a
social context, that is, in a “common word” with other
agents, with the possibility not only of “positive
interferences” (realizing goals by exploiting the others
action and outcomes) but also of “negative interferences”
[3]: when the others’ activity can create obstacles to X’s
actions and block the achievement of X’s goals?

In this context, paradoxically X’s basic “power-of” G1
depends on the others and depends on X power to prevent
or block Y’s interference, in order to freely exercise her
abilities and accessing her resources.

X’s “influencing-power” over the others gives X the full
“power-of” G1. The “influencing power” is a basis of the
“power-of”’; the individual “power-of” acquires a social
connotation and ground.®

In this perspective, there is another crucial mechanism not
based on X’s deterrent power and direct influencing the
others. Suppose that X would not be able to block Y/Z or
to prevent Y/Z’s interference; however, if Y and Z
spontaneously refrain from interfering on X’s exercise of
his “power-of” G1, and simply “let”, “permit” to X to
achieve her goal, they are actually “empowering” X in a
peculiar way. Not by transferring to X their own “powers-
of” but practically “permitting” to X to do a given action,
to access a given resource.

A tacit agreement on this, and shared expectations about,
are the basis of “rights” and their “recognition” not at the
legal/formal level but at the interpersonal level, when
“rights” are just precedence rules claimed by X and

¥ This is for us the meaning of Hobbes' claim that: “power is

simply no more but the excess of the power of one above that of

another” [10] (L.viii.4), and the reason of Weber’s notion of
power immediately defined in a social perspective and over the
others.

acknowledged (and given) by the others. "Rights" are a
fundamental form of social “granting/acquisition” of
“power-of ’:  the power of the weak, of those who
wouldn’t have coercion power over the others. And this
remains true also for the legal granting of rights, where the
“authority” takes care of the weakest. Not only the
strongest ones can acquire powers from the others, by
violence or alliance, but also the weakest.

7 DEFINITIONS

X’s impressive power of control and “power-of” are
due to the subordination (see below) of the others, to the
alienation (see below) and concentration (§ 3, 4, 9) of
their powers.

7.1 "Subjection"

Y is "subject", subservient, obedient to X, he "submits" to
X, when he decides of not opposing, resisting to or
negotiating case by case X's influencing acts (that become
"orders", "commands"), but of just executing them, just
obeying.
Since he has accepted (taken note or desired) that X's has
a "power over" him (rewards/incentives; either threats and
harms, or prizes) and can influence him.
Y does not simply have time by time the goal:

(i) If X asks Ay ==> Goaly Ay

but he has the generalized goal:
(ii) For any value of Ay (If X asks Ay ==> Goaly Ay)
and (i) becomes just an instantiation of (ii).

In other terms, Y passes from a local, occasional
Commitment towards X [4], to a generic one about
obeying to X or at least cooperating with X/Group.

And X passes from an occasional promise or threat
towards Y (for influencing him "now and here") to a
general Commitment to protect Y (or do not harm Y), to
reward Y, or to share with Y the benefits of the collective
power. They rely on reciprocal fidelity and loyalty.

7.2 "Alienation"

Is Y aware of the fact that X has (disposes of) his powers?

That X has powers because Y passes to her his powers,

gives his power (by his "submission")? In a sense, is Y

aware of his “loosing” that power. Y does not fully

understand that X is dependent on him, not only the other
9 . . .

way around °. Y just realizes, considers that he does

° Also because this dependence is asymmetric, and because in
our common sense the concept of "dependence" has a
hierarchical connotation. Of course, this is a partial analysis of
“alienation”.
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something for X in exchange for something from X
(avoiding harm, getting a prize). He doesn't fully realize
the "transfer" of power mediated by X's "power-over" Y.
Especially with a group G Y operates in/for G in order to
give power to G (or X, the boss) and to receive some
benefit or valuable identity. He doesn't really perceive that
without his role and contribution X/G would be nothing.
Also because there is a cognitively difficult "collective"
phenomenon, and it wouldn't be really true that, without
Y, X or G would be nothing. Only a collective defection
would make collapse X/G and would reveal its derived
and indirect power. He perceives G and X as per sé
endowed by the power that he (the members) is/are
actually conferring/passing to it/him.

The individual defection of Y would in fact just expose Y
either to losing gains or to retaliation; psychologically
confirming that the power is of the G/X, not "mine".

8 CO-POWERS AND THE MULTIPLICATION
OF POWERS

The impressive accumulation and multiplication of X's
powers are not only due to the indirect/mediated use of the
personal powers (§ 2, 3 & 7), but to another phenomenon:
the existence of "co-powers".
<85> Not only X acquires part of Y's powers (ny) and of
Z's powers (nz), .... but she acquires powers that
neither Y nor Z individually have; powers they
have only if/when they act together and in a
coordinated way.

For example, individually Y or Z or W have no power (or
very limited power) of intimidating/threatening J, but
together (as a gang) they get this result; analogously, the
working capacity of Y+Z+W is greater than the sum of
Y's individual isolated work and Z's individual work and
W's individual work.
To be true, even the fact that Y has an "influencing
power" on Z and can exercise it, becomes a "co-power"
after that X has appropriated it and controls it. In fact, Y's
depends on X as for performing or not the action,
exercising or not his "power over" Z. Thus this power and
the consequent "influencing-power" being transferred to X
and mediated by Y is now a "co-power" of them.
However,

<6> An effective "co-power" presupposes coordination

of the actors' actions and powers.

This clearly is one of the possible benefits and functions
of the power concentration under X and of "command"
positions.

In order to really have a power and exercise it, as we said,
X has to know that she disposes of it; the same for
coordinating different powers. The same for the others:

they have to know/believe to be dependent on X and
accept to be subject to X.

However, not necessarily the coordinated co-operators
know of each other (this depends on the need or not for a
decentralized coordination among the executors). And this
is an additional reason for the non-awareness of the co-
power (alienation). In any case, as we said, X has to
signal that she disposes of the "power-over" Y, Z, W, ...

9 POWER LIKE MONEY

As we said, X’s “Power-of” for Gy (P), and the following
“Power-over” Y and the acquisition of Y’s “Power-of”
Gx (Q), is in fact a Transformation of the power. The
original power of X was good for realizing P, but now —
thanks to the social mediation, to its utility for and
acceptance by  other agents (with  different
goods/skills/resources) — it transcends its original “use”

and “use value™:
<7> The original power becomes valuable, usable for
new goals, that is, for new “uses”. It becomes
multi-purpose or better for an open-use: it might
be useful for an open set of potential uses/goals
depending on the powers of the other accessible

agents.

Similarly to money (which actually is a very special form
of Power-over the others’ goals and thus of Influencing-
Power) Power-over is now a “means” for whatever
“end”. And it can also be “stored”, not immediately
exercised and spent, in view of future possible uses. It also
acquires an “exchange value”: X can exchange her Power-
of or over in change on n possible Powers of the other
agents. Her power is on a market of Powers circulation.
This is the main reason why social power becomes an end
per sé, a final motive (not immediately instrumental, not
already "in view" of some use), and why there is a lot of
competition for acquiring '"power-over" and "of
influencing". X and Z might compete with each other for
acquiring Y's powers and Y's subjection, like for any other
scarce resource, especially if multi-purpose.

The controlled powers of the others are a fundamental
"capital" to be cumulated, disputed, invested, and
exploited for social (or socially mediated) goals.

10 APPENDIX: “TRIBUTE” TO AXELROD

This power concentration process is very close (and in
part captured by) Axelrod's "Tribute model" about the
aggregation of political actors [6] [7]. A part that Axelrod
interest is more restricted and specific: modeling the
emergence of political entities and of nations; it is true
that his model captures some of the main issues of power
aggregation (but it doesn't explicitly focus very much on
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power transfer, dependence, etc., while dependence
relations apply also to macro-agents and institutions [8]).
Axelrod well defines the emergence of a new level "actor"
"entity", agent, in terms of:
(a) subordination and control of the other actors, rather
stable, without rebellion, etc.;
(b) collective action, cohesive attitude towards the
outside actors; protection of the weak members;
(c) recognition of the new emergent entity as an
unitary agent, by the others.
Moreover Axelrod stresses the "commitment" between the
parties and its acquisition and loss.
The main difference is that he lacks a basic general theory
of power forms and dynamics. On the one side, he
presents a rather unilateral, unbalanced view of "power
over" the others (and thus of the "concentrated" power).
The emphasis is only (mainly) on threat power, on
violence, on harms and losses or on protection from that
or renounce to that. Much less importance has the
aggregation (and even subordination) due to buying favors
and services, to corruption, to remuneration. When Y
depends on X (and X gets "power-over" Y) this is not
primarily related to harms, aggression, protection, ..; it is
equally related to Y's desires, needs, ambitions
satisfaction and to possible "prizes". On the other side,
the role of immaterial good looks underestimated:
identity, recognition, membership, role, ..... power
increment, power-over, hierarchy, security, ... as valuable
and rewarding per sé. Not just "wealth", or aggression
power (military force).
We need a theory of power dynamics based on a adequate
theory (spectrum) both of human motivations and of the
various sides and forms of power.

11 CONCLUSIONS & FUTURE WORK

This paper explains how the power of an agent creates
social power over the other agents; how an agent acquires
new powers, and a given power becomes a different
power; how a power is transferred from one agent to
another one and accumulated; how co-powers require
coordination. What is power ‘alienation’ and ‘subjection’.
Not only new powers are acquired by an agent but those
powers are multi-purpose: a fundamental "capital" to be
cumulated, disputed, invested, and exploited for social (or
socially mediated) goals.

It is also argued that power of influencing and subjection
are not only due to harm-power and threats; that there is a
fundamental economic asymmetry between promising and
threatening, and that there are several (active and passive)
ways for harming or benefiting somebody.

This preliminary — somewhat systematic but informal -
theory about power transformations, transferring,
accumulation, transitivity, —multi-purposiveness, etc.
obviously should:

- on the one side, be formalized in some formal logic of
action;

- on the other side, be object of social simulation studies
and network dynamics modelling.

Everybody focuses on "cooperation" or on "games", but
the issue of dependence and power relations and dynamics
is the real background and preliminary theory for that [9].
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How detailed should social networks be for labor
market’s models ?

Zach Lewkovicz! Samuel Thiriot> and Philippe Caillou®

Abstract. Many empirical studies emphasis the role of social net-
works in job search. The social network implied in this process is
known to be characterized by complex properties, including com-
munities, homophily or more or less strong ties. Nevertheless, pre-
vious models of the labor markets fail to capture the complexity of
social networks, as each specific network requires the development
of specific algorithms. In this paper, we rather rely on an indepen-
dent generic network generator for creating detailed networks de-
scribing friendships, colleagues, communities and various degrees of
connectivity. We build a simple model of the labor market in which
individuals find positions solely through their acquaintances, and up-
date their network when being hired. This original experimental set-
ting facilitates the analysis of various characteristics of networks on
the labor market, including various size, more or less friendships,
or the impact of communities. Experiments confirm the “strength of
weak ties” phenomenon. However, the initial characteristics of the
network like communities are shown to be destroyed by the implau-
sible mechanisms described into this simplistic model; this suggests
that the impact of plausible networks on models’ dynamics may only
be studied when the mechanisms of this model are plausible as well -
in other words, ”a model is only as descriptive as its most implausible
components”.

1 Introduction

1.1 Empirical evidence on the use of social
relationships in labor markets

Field studies on job search highlighted several stylized facts. First,
(Stylized fact 1), it appears that searching and finding a job implies
the use of social acquaintances to retrieve information [16, 17] (see
[10] for a review). As an illustration, Granovetter’s studies indicate
that about 50 percents of jobs are found through friends, relatives and
other social contacts [7]. As done since decades in sociology [23]
and economics [11], this social structure is commonly represented
using the social network metaphor: each individual is assimilated to
a node, with communication links being represented as edges in this
network. From an economic viewpoint, the communication of job
opportunities through social relationships may lead to incomplete in-
formation in the market, thus possibly leading to a market efficiency
lower than the optimal one.

Secondly (stylized fact 2), all ties are not used in the same way
by job seekers, nor lead to the same information. Since the famous
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Granovetter’s studies on job search [9, 8], it became common to dis-
tinguish weak and strong ties; strong ties in a social network reflect
frequent interactions between individuals, while weak ties typically
lead to less frequent and less personal relationships. Moreover, strong
ties are more local, because they are mainly created and maintained
because of common workplaces (co-workers), life-places or other ac-
tivities (near family, friends); typically, the clusters observed in so-
cial networks are mainly made of strong ties. Weak ties are more
random in the network; they correspond to old friendships born at
school or far family. Granovetter observed that despite of long dis-
tance and rare interactions, weak ties are more efficient for finding
job opportunities than strong ties: strong ties correspond to less diver-
sified people who may communicate easily but receive the very same
information, while weak ties link more different people exposed to
different types of information. These observations were replicated on
different countries and populations (see [19, p.5] and [10] for detailed
reviews).

The third stylized fact (stylized fact 3), shared by all empirical
studies on social networks [6, 23], underlines the complex nature
of these social networks. First, the position of agents on their so-
cial environment is far from being random; at the dyadic level, it ap-
pears that people tend to bond together when they have close socio-
demographic characteristics or interests (homophily), or more gener-
ally that the existence of a social tie depends on the properties of in-
dividuals (assortativness). The use of social acquaintances to search
for jobs often changes with location and demographic characteristics.
Living in the same location increase the probability of co-working,
as do similar socio-demographic characteristics [2]. Moreover, com-
plex patterns are robustly observed in real networks at the scale of
the triad (strong clustering or transitivity rate, intuitively correspond-
ing to the “friends of my friends are also my friends” effect). The
recent stream of statistical analysis of large networks [15] also high-
lighted network-scale properties of real networks, including the fre-
quent presence of biased distribution of degree of connectivity (most
people have few ties, while few trust a big number of relationships).

1.2 Previous models of the labor market with
information transmission

Models of the labor market progressively took into account the styl-
ized facts described before. First, the use of social networks for con-
veying information was added to the models[3]; Montgomery [14]
highlighted how heterogeneity in the efficiency of job search could
arise from structural characteristics. Cahuc and Fontaine [5] showed
that these networks lower the efficiency of the market and lead to the
existence of several local equilibria instead of a global one.

Some authors described different kinds of links in their networks
(multiplex networks) in order to recreate weak and strong ties. No-
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tably, Tassier [20] developed an algorithm that enables to tune the
proportion of local vs. random social links across the population.
This study enabled the reproduction of the Granovetter’s strength of
weak ties effect, and proved the importance of the ratio local/random
links on market efficiency.

Some recent models also described attributes of agents, that are
created according to their position in the network, in order to com-
ply with stylized fact 3. Bramoullé and Saint-Paul [4] describe ho-
mophily on salarial status by giving a higher probability for two in-
dividuals having the same employment status to be linked together.
Tassier [19] used an ethnicity attribute for the agents, and studied
the sensitivity of the market to more or less overlapping between
communities (see also [10] for a detailed review of existing models).
Unsurprisingly, the impact of the social network appears to be strong
at different scales: the initial position of agents over the network im-
pacts their probability of finding a job, communities may be more
or less efficient depending to their endogenous structure, while all
these local phenomena also create different levels of efficiency at the
population scale.

In short, both empirical and theoretical studies agree on the impact
of local properties of networks on labor markets’ efficiency. Mod-
els taking into account the complexity of networks remain rare and
limited: they only assess the impact of one specific detail (ethnicity,
spatialization, etc.) on the market’s dynamics. Many other properties
of real networks, like the frequent presence of biased distribution of
connectivity, remains unexplored. The difficulty to generate “plausi-
ble” detailed networks probably constitutes an explanation of these
choices.

1.3 Open questions

Despite of the increasing number of models devoted to the study of
the labor market, several questions remain open, including:

e How to generate “rich” networks, that is networks having several
of the properties observed in real networks ? This generation is
mandatory for the study of the impact of these properties to the
dynamics of the labor market. However, generating such a net-
work constitutes a difficult question in itself, which was not solved
for the previous models, thus limiting these studies on networks’
impact to only one attribute or three links types. In short, this tech-
nical limitation on networks generation forbids the computational
study of the impact of these numerous complex properties.

o How realistic should an initial network be for models of the labor
market in which the network evolves ? Previous works studied
either the impact of a static and detailed network on simulations
(e.g. [19]), or the evolution of a simple network ([18]). Coupling
these dynamics may increase (or lower) the sensitivity of the mod-
els to the initial network. Once the sensitivity of such a model
is known, the incorporation of social networks into a descriptive
model of labor market may become possible.

1.4 Outline

In the next section we will describe the two components of our ex-
perimental setting: the use of a generic network generator for con-
structing the initial networks and a simple model of the labor market.
In section 3 we show some results of experiments focused on the ef-
ficiency of various link types for finding a job, and on the evolution
of networks. As discussed later (4), these experiments suggest that
using “rich” initial networks is useless if the dynamics of the model
is unrealistic enough for changing its initial structure.

)
Firms :

A - evaluate employees()
- fire employees()

Individuals : y
B - contact acquaintances()
- candidate for jobs()

- work()

b t++

Firms :
- hire candidates()

Figure 1. A whole cycle in the simulation

2 Model and Experimental setting
2.1 Model of the labor market

We keep our model as simple as possible in order to catch the most
fundamental aspects of the labor market itself. We present here the
agents participating in the simulation, its protocol and properties (hy-
pothesis) that we use.

2.1.1 Agents

Two types of agents are used in the model: Individual agents and
Firm agents. Firm agents propose jobs and hope to fill them with
Individual agents who propose their labor and hope to occupy the
jobs.

An Individual agent can be in one of these two states: An Em-
ployed agent is currently occupying a job. Unemployed agents do
not have a job, but they are looking for one. An Individual agent is
described by its gender, state and the acquaintances it has.

A Firm agent offers jobs, hires and fires Individual agents. Jobs
are represented as objects belonging to Firms. A job can be in either
Filled (An Individual agent is currently occupying this job) or Vacant
(the job is not filled and the Firm agent would like to hire an Individ-
ual agent to occupy it). A firm agent is described by its size which is
the number of jobs (vacant or filled) it possesses.

2.1.2  Protocol

A cycle in the simulation takes place in 3 parts (see Figure 1). First
(A), Firms lay off some of their employees with a random probability
p-fire (=10%).

In the second part (B) Individual agents interact. If they unem-
ployed, they look for a job. In this basic model, individuals may only
find jobs using their social acquaintances (as done previously [1]).
The Individual agents may contact their friends, colleagues etc. Then
they candidate to all the vacancies they encounter.

In the last part of the cycle (C) Firms iterate all their vacancies.
If a vacancy got no candidature requests, it stays vacant. When a va-
cancy has several candidates, the Firm chooses randomly a candidate
to be hired under the condition that it will not hire an individual who
it just laid off. As soon as an individual is hired, his new colleagues
are added to his set of “colleague” acquaintances; however, in order
to forbid agents to know the entire population, colleagues are then
removed randomly from this list of acquaintances, in order to keep
the list of colleagues to at most max_colleagues (parameter). As a
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consequence, individuals remember past colleagues from past posi-
tions; however, the older the colleague, the higher the probability to
break this tie.

2.1.3 Hypothesis

The structure of the simulated labor market and the interactions be-
tween the agents follow the hypothesis listed in table 1.

1. The numbers of jobs and Individual agents in the simulated labor market
are equal. That means the a situation of zero unemployment is possible.

2. The numbers of jobs and Individual agents are constant throughout the
simulation. That means that Firm agents cannot destroy nor create new
jobs and the Individual agents do not age nor enter or leave the simulation.

3. Firms are passive in the process of job searching. They do not advertise
their vacancies and therefor do not spend time nor money in trying to im-
prove their chances of filling their vacancies.

4. Individual agents in the state of unemployment are constrained to look for
a job. They may not stay in unemployment without an active action of
job-search (leave to inactivity).

5. Unemployed individuals contact there social networks: Spouse, old col-
leagues, friends and spouse’s colleagues. In order to look for vacancies.
All vacancies encountered are listed and a candidature is sent to each one
of them.

. Unemployed individuals candidate to all vacancies they encounter.

7. In order that an agent be able to communicate vacancies to a job-seeker,
he has to be employed. In this case he communicates vacancies available
in the firm in which he is employed.

8. Job selection (matching) is purely random; this hypothesis simplifies the
analysis of the dynamics, as all workers have theoretically equal proba-
bilities to be hired, the only bias being induced by their position on the
network (as done in [19]).

9. Worker agents are fired in a pure random way. They stay employed until
they are fired. They may not quit the firm.

[=)}

Table 1. Hypothesis

2.2 Social network

The YANG network generator [21] stands as a generic tool dedicated
to the generation of plausible networks for social simulation. Its prin-
ciple is to accept rich parameters in order to reconstruct plausible
networks from rules at the local scale. Resulting networks are multi-
plex (different kinds of relationships), mixed (directed or undirected
links) and attributed (each individual has attributes and is positioned
in a plausible social neighborhood). We set the parameters in order
to (i) generate a population of agents, which includes both individual
and firms, and (ii) to create an initial matching between firms and
agents, as well as the numerous social links. Note that all individuals
are assumed to be potential workers.

Link types are provided as couples {name, directionality}. In
this application, we use here as link types: {{married, undi-
rected },{worksInFirm, directed},{colleagues, undirected},{friends,
undirected} }.

The network generator accepts as many discrete agents’ attributes
as desired. We define here the attributes listed in Table 2. Attributes
of agents are described in YANG as random variables in a Bayesian
network. This formalism enables the description of interdependen-
cies between attributes. Probabilities associated with these variables
are defined as follows: agentTypes takes value "firm’ with probabil-
ity 0.1 and ’individual’ with probability 0.9, leading the generator to
create one firm per nine individuals. In the same way, gender take

attribute domain depends on

agentType {firm, individual } {o}

gender {notRelevant, male, female} {agentType}

salarialStatus {notRelevant, employed, un-  {agentType}
employed}

auto friends_degree {0..10} {agentType}

auto_wedding_degree {0,1} {agentType}

auto_eco_indegree {0..20} {agentType}

auto_eco_outdegree {0..20} {salarialStatus }

Table 2. Agents’ attributes. Attributes in italic correspond to the degree of
connectivity for generation rules.

’male’ and ’female’ values with probability 0.5 for individuals and
value 'notRelevant’ for firms. At initialization, 10% of the workers
are not tied to firms and will have to find a job*. Attributes in ital-
ics in Table 2 correspond to the degree of connectivity for various
generation rules described below. In practice, the degree for friend-
ship (attribute auto_friends_degree) will be set to 5 or 2, depending to
the experiments. In and out degree of connectivity for the matching
of firms (auto_eco_indegree and auto_eco_outdegree) respectively de-
scribe the number of links getting out of an individual (1 if employed,
0 else) and going in a firm (9 for all firms in the first experiments).

method
attributes

rule name
wedding

principle

create links ’spouses’ between males
and females for 80% of agents with
max degree 1

create links ’worksInFirm’ between
individuals having ’employed’ as
salarialStatus and firms

when an agent Al *worksInFirm’ A2,
and another agent A3 ’worksInFirm’
A2, then create a link "colleague’ Al
and A3

create links ’friendship’ between indi-
viduals in pure random way

match attributes

colleagues transitivity

friendsRandom  attributes

Table 3. Generation rules

The last parameters of the generator are the generation rules’,
which describe how the links are actually created in the population.
YANG accepts two types of generation rules: “attributes rules” re-
fer to generation rules that match two agents depending to their at-
tributes, while “transitivity rules” propose the creation of links at the
triadic scale by transitivity. We define the generation rules described
in Table 3. The spirit of these rules, which will be applied in this
order, is to create wedding links; then, to attribute to each worker a
firm; then, to create links between all the colleagues; last, to create
friendship links randomly across the population.

The YANG network generator uses all of these parameters for gen-
erating random networks of size N. It first creates the whole popula-
tion, each agent being given a combination of the possible attributes
values. This population is stored in an SQL database. Then, the gen-
erator applies all the generation rules, by retrieving agents that may
be tied together by SQL set operations on the population. The soft-
ware that implements the generator also provides dynamic visual-

4 Which will generate initially 10% of unemployment.

5 Note that attributes rules always implicitly take into account the degree
described before as an attribute of the agent. Laso Note that some of these
rules are changed in some experiments.
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Figure 2. Example of a initial network used as a parameter.

ization of the network generation in order to check their plausibil-
ity. More details on this algorithm are provided in [22]. The detailed
parameters are provided as supplementary material for reproduction
purpose®. An example of a resulting network is depicted in Figure 2.

It is important to note that, as this network generator is random,
the generated population may be slightly biased; for instance, the
actual proportions of agents and firms may be 85/15 instead of the
theoretical 90/10. As a consequence, the number of positions and
individuals in sometimes not strictly equal in generated networks.
To solve this problem, when networks are loaded, open positions are
removed randomly if positions are too numerous, or open positions
are added if workers are too numerous.

2.3 Implementation

Our model was implemented in Java (1.6) under the platform
Repast’. In order to get the results we present here we used 1 000
agents : 900 Individuals and 100 Firms. The generation of the simu-
lations took place in 2 stages. First we generated the network which
defined the number of agents, their characteristics and the relation-
ships between them. Then we used this network in order to initialize
the population of agents that interacts during the execution of the
simulation. During this execution we gathered several statistic data
which we will present and analyze in the next section.

3 Experiments

At initialization, the state of the population depends on the construc-
tion of the model: ~ 10% of individuals are employed by a firm; the
rate of open positions is exactly the same. At each step, each agent
has a probability of 10% to be fired (firing rate fixed to 0.1). Agents
initialized as unemployed attempt to find one of the available posi-
tions in their social neighborhood.

Once unemployed, each agent candidates through his 5 friends (or
2, depending to the experiment), his spouse (if married) and his 5 col-
leagues (with maz _colleagues set to 5). In practice, the colleagues
of the position he last quit are useless, as this firm cannot hire him

6 Note for reviewers: sourcecode and parameters will be soon shared on a
website like openabm for enabling reproduction.
7 http://repast.sourceforge.net

immediately. Also, candidatures are only allowed at degree 2 (in-
dividuals candidate to positions available in the firms of their neigh-
bors). If a position is open in its neighborhood, the individual may be
hired by this firm; in such a case, he discovers several new colleagues
(and forgets few old ones, such that his total number of colleagues
remains under maz_colleagues).

As an individual always keeps his initial friends, and remembers
some old colleagues, he accumulates a set of acquaintances which is
more and more efficient to find positions in new firms. Experiments
prove that with this dynamics, he may even “travel” across the net-
works while he discovers new open positions, new colleagues, and
SO on.

During the experiments, we measure the unemployment rate, the
average number of firms visited by individuals, and the efficiency of
each link type for finding a position.

3.1 The incontestable strength of weak ties
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Figure 3. Efficiency of the various link types during a typical run of the
model for 5 friends and 5 colleagues.

parameters | Unempl- links efficiency firms
rate colleagues  friends  spouse | count

same size for firms

5 friends 1.9% 36.9% 54.7% 8.5% 16.57

2 friends 3.0% 55.3% 323%  12.3% | 13.98

fat-tailed distribution of firms

5 friends 2.1% 38.1% 53.0% 8.9% 16.62

2 friends 3.2% 54.6% 329%  12.4% | 1391

Table 4. Unemployment rate, efficiency of the various link types, and
average number of previous positions per agent, for various combinations of
parameters.

In this first set of experiments, we explore which links, in this
simple model of labor market, enable people to find positions after
being fired. The first simulations are run with as many friends as col-
leagues (5). We observe for each simulation the unemployment rate,
the efficiency of each linktype for finding a position, and the total
number of firms each individual worked for. As depicted in Figure 3,
a typical run starts with a stabilization phase in which agents which
were initialized as unemployed in the network search and find jobs.
Then, the unemployment rate stabilizes around a certain level (which
reflects the market’s efficiency) whilst the agents are being fired and
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search for positions in other firms through their social acquaintances.
In order to compare several parameters, we measure the aggregated
value for all the indicators after 300 steps for one hundred simula-
tions for each set of parameters (one different network is loaded for
each simulation).

Simulations reflect the Granovetter’s strength of weak ties: even
if individuals have the very same number of friends and colleagues,
they actually find most of their positions (55%) through friendship,
which is twice as much through colleague links (35%). This effect
is explained by the position of these neighbors; while colleagues are
mainly aware of the positions available in the former firm in which
the individual worked (which can no more hire him), friends are dis-
persed randomly across the population. Even when we decrease the
number of friends to 2 (with 5 colleagues), these links still perform
relatively better than colleagues links (Table 4). In this last case how-
ever, some unemployed individuals fail to find positions, leading to a
higher unemployment rate of 3.0%.

All the firms in these experiments had exactly 9 positions; we now
experiment a fat-tailed distribution of firms® in order to assess its im-
pact on the market. As reflected by aggregated results (Table 4), the
unemployment rate increases slightly: open positions are transmit-
ted by the workers of the firm, which are more numerous for bigger
firms. Except this minor change in unemployment rate, the dynamics
of the model does not seem to change by this distribution of firms’
sizes; notably, the efficiency of each link type remains similar.

3.2 Describing communities: from order to
randomness

Evidence from sociological studies demonstrate the strong cluster-
ing of populations (see 1.1). As our experimental framework en-
ables to tune the structure of networks easily, we drive several ex-
periments based on networks structured in communities of differ-
ent sizes. These communities are characterized by a large major-
ity of social links which are endogenous in each community, with
only few links creating “shortcuts” between communities. We expect
these communities to lower the ability of individuals to find positions
opened in other communities, which would lead to a higher unem-
ployment rate and - as a side effect - a lower number of previous
workplaces per agent. Inspired by the work of [19], we first created
three main areas with only a few links between them. We expected
a higher unemployment rate, which was surprisingly not observed in
the experiments. As a consequence, we designed a highly clustered
network in order to study this phenomenon.

In this experiment, we add a ’community” attribute to agents (both
firms and individuals). This attribute takes values between 1 and 100
with equal probability (each community has the same size). Endo-
geneity is strong in this network: friendships only occur in the same
community, as do spouse links. Positions are initially filled by indi-
viduals belonging to the same community or to close neighbors. For
instance, firms in position 50 only hire individuals from communi-
ties 49, 50 and 51. As a consequence, initial colleague links are only
created at degree three in these communities. The resulting network
constitutes a kind of one-dimensional lattice of diameter 24, as de-
picted in Figure 4. This network is obviously unrealistic and is only
used for understanding why communities appear to have such a low
impact on the models’ dynamics.

In such a highly clustered and large diameter network, we would
expect a lower unemployment rate; even if the lowest possible un-

8 50% of the firms have 5 positions, 30% 10 positions, 10% 15 positions, 5%
20 positions and 5% 30 positions.

—— workinFirm
colleagues
friend

B individu
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Figure 4. Example of network with one hundred communities.

employment rate is reached, it should take numerous steps before
agents “move” from one part of this large network to another. One
more time, experiments contradict this intuition; the unemployment
rate is close to the ones obtained in previous experiments. Individuals
also explore the same number of firms (~14.4 in average), despite of
the absence of shortcuts in the initial network.

3.2.1 Unrealistic dynamics passes over realistic initial
networks

30

T T
average path length

25 g

20 H g

wof \ g

Figure 5. Evolution of network size during steps

An analysis of the social network at different steps reveals how
quickly it shrinks (Figure 5). After 300 steps, the average path length
in this network is as low as 3.18. Agents changing positions appear
to create shortcuts quite rapidly. This leading to a small-world effect
already measured in previous experiments [18]. This (possibly) un-
realistic drop in network diameter is probably explained by several
unrealistic processes in the model:

e There is no cost for changing community for agents as would be
expected in reality (time, psychological cost, relocation cost) nor
costs for repeated change of community (or area).

e Only colleague links are partly changed when individuals are
hired; friendship links remain stable and conserve the very same
communication power (same efficiency for finding information).
In real settings, a higher distance would change these friendship
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links, which were first created in the same community, into weaker
ties.

This observation may be thought to be an interesting analogy of
job markets in which workers are highly mobile and positions are
mainly discovered through social acquaintances. Typically, this could
be the case of research positions, with post-docs moving from labo-
ratory to laboratory, thus improving not only their own efficiency of
finding positions, but also enabling their friends to discover positions
in their old laboratories.

Beyond the case of labor markets, this phenomenon underlines
an interesting methodological point for agent-based simulation: the
plausibility of a model is as strong as the weaker plausibility of its
components. Providing networks with many details - even if plausible
or real - is useless if the dynamics that change this network later
is unrealistic. In our example, we increased the plausibility of the
initial network, but we did not describe a plausible hiring process; we
should haven taken into account both the relocation cost (changing
community) and the lower strength of old friendship links.

4 Discussion

In this paper, we set up a framework for exploring the impact of a
detailed networks on the dynamics of a simple labor market model.
We used the YANG standalone network generator for generating net-
works having diversified properties such as various link types, de-
grees of connectivity, firm sizes or the presence of communities. This
initial network evolves as individuals discover colleagues when they
are hired in new firms. In this simplistic model, interpersonal com-
munication is the only way to discover job positions.

We first studied the efficiency of the various link-types used in the
model. These preliminary studies confirm the “’strength of weak ties”
famous phenomenon: as they are created in a random way across the
population, friendship links enable individuals to discover open po-
sitions in others firms, while colleague links remain focused on the
last firms visited by the individual. We have to moderate this observa-
tion by the fact that these links were not exactly described as “weak”:
weak links suppose a small probability to interact, and including such
a lower probability would probably reduce their efficiency. Neverthe-
less, given these observations, using a network generator that enables
the description of different link types, appears to be mandatory to
build plausible models of labor markets.

We used the versatility of our experimental setting for creating
clustered networks in which agents’ attributes determined their be-
longing to groups. Surprisingly, the creation of networks, segre-
gated into weakly interconnected communities, did not lead to strong
shift in unemployment rate. Indeed, the parameters led to frequent
changes in the network (firing rate at 10%). Moreover, the evolu-
tion of the network, instead of the initial construction of the network,
did not take into account the attributes of agents; as a consequence,
this dynamics quickly “changed” the initial structure, making the ini-
tial characteristics of the network secondary regarding this evolution.
This last observation may be generalized beyond the limited scope of
labor markets: in this kind of model in which the network is dynami-
cally changing during the simulation, the use of a "more descriptive”
network is useless if this evolution is based on implausible behaviors.

Given this first analysis of the evolution of a “rich” initial network
into an agent-based model of the labor market, we plan to limit the
destruction of the initial network by associating probabilities of in-
teraction to link types. Once the deformation of the network will be
limited, further inquires will be driven on the impact of various initial
structures to the models’ dynamics.

Then we would like to couple these social networks with more
descriptive models of labor markets (like [12, 13]) in order to study
their impact on the labor market’s outcomes studied.
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Considering baseline homophily when generating
spatial social networks

Sascha Holzhauer], Friedrich Krebs' and Andreas Ernst’

Abstract. Social networks have become an important part of
agent-based models, and their structure may have remarkable
impact on simulation results.

We propose a simple but powerful approach for spatial agent
based models which explicitly takes into account restrictions and
opportunities imposed by effects of baseline homophily, i.e. the
tendency to build up relationships with others that are similar.
The resulting network thus reflects social settings and
furthermore allows the modeller to influence network properties
by adjusting agent type specific parameters. Especially the
maximum extension of the search radius and the value by which
the radius is extended allows for control of clustering and agent
type distribution of personal networks.

1 MOTIVATION

The generation of social networks is an important issue in
agent-based modelling. The network structure might have
considerable impact on certain processes like opinion formation
[5], information exchange for problem solving [10], or advice
[22]. Furthermore, [4] investigates the impact of network
structure in a model of racial segregation and comes to the
conclusion that the structure of the social network, and
especially its relation to physical space, has significant effects on
the results of social simulation.

Usually, simulations generate social networks according
either to the small world algorithm proposed by [21] ([8; 9]) or
to preferential attachment [1]. These methods focus on
producing networks whose global, i.e. network level properties
like average path length, clustering coefficient, and degree
distribution are as similar as possible to empirically found
values. However, these methods neglect local circumstances as
well as actor properties and preferences and/or require global
network knowledge during the generation. Whereas such aspects
may be insignificant with respect to rather theoretical
applications they might play a key role in many social science
simulations, for instance in modelling for policy consulting.

Social networks are mostly characterised by what is often
called the homophily principle. That is, people tend to build up
relationships with others that are similar in some or many
personal and socio-demographic attributes like age, gender,
ethnic origin, educational background, or income. Thus,
homophily narrows the people's social world in a fundamental
way and influences their access to information, the way they are
forming attitudes and the persons they meet. [11] distinguishes
between baseline and inbreeding homophily. The former
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describes the phenomenon that people often live in surroundings
with similar others. Consequently, the chance to spend time with
that group and build up acquaintances is higher because of the
composition of potential others. As a result, more trust occurs in
such groups of similar people and network flows of information
may increase. On the other hand, barriers between groups may
exist which hinder information to spread [19]. The latter term
describes the explicit tendency for persons to choose friends that
have similar views, related occupations and like the same
hobbies above the opportunity set.

[2] present an elaborated model based on social distance
attachment that takes inbreeding homophily into account. The
probability to link is derived from the sum of distances between
individuals regarding each value of a vector representing the
individuals' social coordinates. Resulting networks are compared
with empirical data of the PGP (pretty good privacy) web of
trust, and convincing similarity is obtained with respect to
assortativity (i.e., the tendency that highly connected persons
tend to have links to others with a high degree and vice versa)
and a hierarchical community structure. However, the authors do
not consider asymmetrical relationships. One way to accomplish
directed networks is to define an individual’s position in the
social space for both in-going and out-going links.

[6] proposes a network generation method based on social
circles [16]. Similar to [2] agents are located on a kind of social
map according to certain, e.g. socio-demographic, properties.
Whereas [2] proposes a city-block based distance measure (L)
[6] applies an Euclidean based measure (L,). Agents whose so-
called reaches of a specific radius around their position on the
map match each other’s get connected. Again, this approach is
not suitable for asymmetrical relationships. Furthermore,
whereas it is possible to reflect agent specific ego network sizes
by different reaches the two-dimensional map does not allow for
placing agents according to more than two properties.

For his agent-based simulation [20] accounts for inbreeding
homophily tendencies and connects agents according to their
network preferences, i.e. the number of desired relationships and
the liking either for similar or sometimes even dissimilar
persons. The author further discriminates between normative, i.e.
influencing, and informational ties. Finally, deviations are
defined with respect to the number of relationships, the amount
of correct relation types, and the number of desired similar and
dissimilar ties. Agents then shall be connected in ways that
minimise these deviations.

We propose a network generation process that takes into
account baseline as well as inbreeding homophily. Since we
build up a spatially explicit social simulation we are mainly
interested in the spatial restrictions and opportunities actors face
when they make up relationships. An actor may only connect to
those others who are available within the boundaries he is
agitating. For instance, the choice of network partners may vary
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whether someone lives in a dense urban environment with
manifold others to choose from, or in a sparsely populated rural
area.

2 OUR APPROACH

An important and comprehensive source of heterogeneity of
people is their grouping according to sociological lifestyles.
Because of societal liberalisation social norms based on social
classes decay and individuals experience more autonomy.
Lifestyles seek to capture perceivable patterns of behaviour,
symbolic integration and underlying orientations as expressions
of that autonomy. Lifestyles are thus meant to be a more relevant
grouping of individuals and households [18]. We apply the
Sinus-Milieus® [17] that are commonly used in commercial
market research, but also in environmental research [14]. Sinus-
Milieus® group individuals or households along the classical
dimension of social status given by income and education, and
supplement this grouping by a second dimension that reflects
social value orientations like tradition, modernisation and re-
orientation.

The empirical base for the results presented in this paper is a
dataset of spatially referenced socio-demographic data of the
target region of Northern Hesse located in the centre of
Germany. Data originate from a 2007 survey by Microm® [12].
The geographical reference units are cells that comprise one to
several hundred households depending on population density.
For each of the cells we extract the number of households
belonging to each of four different lifestyles: Leading lifestyles
are characterised by the pursuit of prestige as well as wealth and
occupation of leadership positions. Traditional lifestyles are
often adopted by worker families that desire security and order.
The mainstream strives for professional and societal
establishment and harmonic circumstance, whereas a hedonistic
lifestyle is characterised by the search for pleasure, sometimes
with little resources, and often the denial of conventions.

In order to apply our network generation approach
considering baseline and inbreeding homophily we first initialise
an agent population such that the distribution of lifestyles among
agents and the agents’ location reflect the empirically observed
spatial distribution of lifestyles. To do so we first determine the
number of required representatives for each lifestyle in every
data cell. Then, we initialise each agent as a representative for
ten households of a specific lifestyle and place it normally
randomly close to the respective cell in a GIS (see figure 1). The
resulting population setup is empirically founded and provides
spatial relationships between agents as well as lifestyle
heterogeneity.

Since we are interested in processes of social influence we
model relationships between agents as asymmetrical ties that are
represented by directed links in a network. These links have their
origin in the influencer and lead to the agent that is being
influenced. Therefore, the in-degree of an agent’s personal
network (also referred to as ego network) specifies the number
of network partners that influence that agent. Table 1 presents
the lifestyle specific network preferences.

*  Leading life styles (516)

e Traditional life styles (790)
Mainstream (100)
Hedonistic life styles (1174)

Figure 1: Points represent agent positions within the model
region whereas colors specify the agent’s lifestyle. Numbers
in brackets are the amount of agents of that lifestyle. The
total number of agents within the model region is 3480.
Cumulations indicate three smaller cities. Blue shaded circles
show a search radius of 2000m around an agent in rural area
and an agent within a city.

Leading Traditional | Mainstream Hedonistic

In-degree 15 5 5 10
p_rewire 0.2 0.05 0.1 0.2
p_links to

Leading 0.8 0.0 0.0 0.2
Traditional | 0.6 0.3 0.1 0.0

Main- 0.6 0.1 0.3 0.0

stream

Hedonistic | 0.5 0.0 0.0 0.5

Table 1: Expert rating of lifestyle network preferences.
Whereas members of leading and hedonistic lifestyles have
far reaching networks and thus are assigned a high rewiring
probability, people of traditional lifestyles do not. Data is
based on [15].

The network generation is divided into two parts, the
establishment of local links and the rewiring process. Each
single part is processed iteratively for all agents. As depicted in
figure Figure 2 the first part starts with collecting and shuffling
all agents within the current search radius which is initially given
by START SEARCH_RADIUS. For every potential partner that
is not yet connected with the focal agent it is decided according
to the lifestyle specific probability (see p_links in table 1) if it
should be linked to the focal agent.
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for all agents

request potential partner
- in current radius

Y

shuffle potential partners

v

» for potential partner in radius

no

not yet connected?

yes

¥

NO | accept potential partner's life
style with probability p[life style]

L 2

v

required number of partner reached?

connect

A ; no
MAX_SEARCH_RADIUS reached?

A no
Extend radius by X_SEARCH_RADIUS

Figure 2: Course of local network generation (rewiring not
included)

If the number of required network partners is not reached
but all collected agents are treated, more agents are collected
from around the focal agent within a current radius that is
extended by X SEARCH_RADIUS. This loop is repeated until
either the number of required network partners is satisfied or
maximum radius (MAX_ SEARCH_ RADIUS) is reached.

The approach to select surrounding agents as they come
considers the local lifestyle composition and reflects baseline
homophily. However, this way the algorithm accounts not only
for groups of similar agents that stick together but also for
opposite situations when one cannot establish connections to
those people one would like to. Applying lifestyle specific
preference probabilities when accepting or rejecting a potential
network partner reflects inbreeding homophily finally.

After each agent is connected locally the global rewiring
process takes place during the second part. For each agent and
every existing local link, with probability P REWIRE (see
p_rewire in table 1) the link is rewired to a randomly chosen
agent from the entire model region. The random target agent
selection is repeated until the found agent is accepted according
to the lifestyle specific preferences probabilities (p_links).

The emerging distant links result in the small world effect
with high clustering and low average path lengths. On purpose
the new partner's lifestyle needs not to be the same as that of the
originally linked: The composition of network partners within
direct surroundings is characterised by the local lifestyle
distribution (baseline homophily) and therefore does not entirely
reflect the focal agent's network partner preferences (p_links).
Determining the lifestyle during rewiring anew may correct this
lifestyle composition of network partners towards imbreeeding
homophily and thus is desired.

3RESULTS

We implemented our spatial agent-based model in Repast
Simphony [7]. Data is exported to a database and processed by R
[13; 3]. Results are averaged over five independent model runs
with different random seed.

We compare the results of our proposed algorithm that takes
baseline homophily into account with an ideal network builder
and a small world generator [21]. The ideal network builder
tracks the lifestyle of network partners and allows a link between
the focal agent and a potential alter only if the focal agents has
not yet built enough connections to other representatives of the
alter’s lifestyle.

To evaluate the appropriateness of certain algorithm
variations and parameter settings we introduce some quality
measures. The deviation from preferred lifestyle distribution of
partners (preference deviation) compares the desired personal
network's lifestyle composition with the actual one. The measure
sums up the deviation for each of the four lifestyles. The
deviation from preferred in-degree to the actual number of
influencing others is referenced to as in-degree deviation.
Furthermore, we consider the average path length (average
network distance of all node pairs in the network) and the global
clustering coefficient, also known as transitivity index, which in
our case is the number of all existing triples divided by the total
number of triangles, i.e. potential triples.

It is important to note that the measures highly depend on the
distribution of agents across the model region, especially with
respect to lifestyles. Our model region as depicted in figure 1 is a
rather rural area with three small cities. For agents in the centre
of the area it will be quite hard to satisfy their links with respect
to inbreeding homophily. This is especially true for people of
leading lifestyles that occur very sparsely in the centre but like to
connect predominantly to other people of a leading lifestyle.

There are some parameters to adjust the network's
characteristics. Whereas the MAX_SEARCH_RADIUS defines
the geographical area within which agents may search for
partners, X SEARCH_RADIUS denotes the value by which the
search radius is extended in case the current radius is not far
enough to fulfil the number of partners the agent desires.
Furthermore, the rewiring probability influences the amount of
rather distant links.

Figure 3 shows the network in-degree deviation as a function
of MAX SEARCH RADIUS. The smaller the radius, the less
space is given to fulfil the agents’ preferences regarding the
lifestyle distribution of their social network. The algorithm
considering baseline homophily yields lower deviations for
larger radii since it allows connections to alteri that do not match
the preferred lifestyle distribution. Of course, regarding network
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preference deviation the ideal network builder performs better
since that is its purpose. As figure 4 clearly indicates, with
increasing MAX SEARCH RADIUS the deviations can be
reduced. Leading lifestyles improve only slightly since the
overall number within the model region is limited. In terms of
modelling realistic social networks a specific deviation is desired
for certain lifestyles since it reflects social settings.

Deviations from preferred indegree in %

40

e~ BL Leading
—8—  BL Traditional

=) BL Mainstream
BL Hedonistic
= -#- |D Leading
®- |D Traditional
° ID Mainstream
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Deviations from preferred indegree in %
-80
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Figure 3: Percental Network in-degree deviation with raising
MAX_SEARCH_RADIUS. Negative values indicate that
actual degree is smaller than preferred. For smaller radii,
the algorithm considering baseline homophily (BL — dashed
lines) yields higher deviations from the preferred in-degree
(number of influencers) than the ideal network builder (ID —
solid lines).
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Figure 4: Deviations from milieu-specific network partner
preferences with raising MAX_SEARCH_ RADIUS.
Compared to the ideal network builder (ID-solid lines) the
baseline algorithm (BL — dashed lines) results in higher
deviations (apart from hedonists). With increasing
MAX_SEARCH_RADIUS deviations become smaller.

As figure 5 shows, the average distance to a neighbour is
considerably lower in networks from the proposed builder. Of

course, this is due to the local search for neighbours the small
world generator does not take into account. As the rewiring
probability raises also the average distance increases.
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Figure 5: Average distance to a neighbour in meters. Since
the small world generator does not explicitly consider spatial
proximity, the distance is larger.

The rewiring probability relaxes the
MAX SEARCH RADIUS in the way that it allows the agents to
choose the more agents deliberatively within the entire
simulation area the higher the probability is. Furthermore, it is in
particular responsible for the small world properties and thus
affects the average path length and the clustering coefficient.
The global clustering coefficient gives an important hint towards
the empirical foundation of the proposed network generation
algorithm. The higher the amount of local links that are rewired
globally the lower is the clustering coefficient (see figure 6)
length and lower is the average path (see figure 7) [21].

Clustering coefficient (global)

Clustering coefficient (global)
005 010 045 020 025 030 035 040

0.10 0.15 020 0.25 0.30 035 0.40 045 0.50
p_rewire

Figure 6: The global clustering coefficient drops strongly

when more and more local links are globally rewired. The
small world generator yields a much higher clustering.
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Figure 7: The Average path length decreases along with the
establishment of more distant relationships.

As figure 8 indicates, variations in the rewiring probability have
also a minor impact on the network preference deviations.
Whereas for the proposed algorithm deviations decrease because
rewiring guarantees a partner of desired lifestyle, network
produced by the ideal network builder do not benefit from
rewiring. That is because the target agent is not guaranteed to be
of the desired lifestyle.
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Figure 8: For the baseline homophily considering approach,
deviations from preferred lifestyle distribution of network
partners decrease with increasing rewiring probability since
rewiring supports partners of desired lifestyle.

Figure 9 shows the effect of altering the X SEARCH
RADIUS, that is the radius by which the search radius is
extended in case the number of required partners can not be
fulfilled, has on the clustering coefficient. If the search radius is
raised slowly, agents are forced to build up connections with
nearby agents which supports local clustering. However, since a
smaller search radius reduces the opportunity set, the network
preferences deviation is lower for higher values for
X _SEARCH_RADIUS.
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Figure 9: Raising X SEARCH_RADIUS when the initial
search radius is rather small (20m). The clustering
coefficient is higher for small values of X SEARCH_
RADIUS when agents are forced to build up rather local
connections.

Finally, we investigate the impact of the baseline homophily
considering approach on the out-degree distribution, i.e. the
number of network partner a focal agent may influence.
Compared to the ideal network builder agents are assigned more
outgoing relationships. The reason is that the baseline homophily
concept is less strict in the selection of alteri. Leading lifestyles
(dark green line) are especially central in the network (figure
10).

Degree Distribution

—— Baseline: Leading

—— Baseline: Traditional
Baseline: Hedonistic

= = ldeal: Leading

= = |deal: Traditional
Ideal: Hedonistic

P(k)
000 005 010 0.15 020 025 030 035 040

Figure 10: Distribution of out-degree for
MAX_SEARCH_RADIUS of 2500m and X SEARCH_
RADIUS of 100m. Since the baseline algorithm is more
flexible in assigning partners degree distributions are shifted
to the right.

In comparing the baseline homophily considering network
generator with a small world generator we find that the latter
yields somewhat smoother network properties (e.g., see
clustering coefficient in figure 6). However, taking the principles
of baseline homophily into account might question the realism of
that widespread network generator’s foundation. As figure 11
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shows, the proposed network generator results in moderate
assortative mixing, due to local restriction in partner selection.
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Figure 11: The average degree of nearest neighbours as a
function of degree shows moderate assortative mixing
(MAX_SEARCH_RADIUS: 3000m, rewiring of 0.1,
X_SEARCH_RADIUS: 500m).

4 DISCUSSION

We proposed a simple but powerful approach to generate
social networks for spatial agent based models. It seeks to reflect
realistic, natural settings of the model region and also shows
desired, empirically grounded network properties like short
average path length, considerable clustering, and moderate
assortativity. Therefore, we describe an alternative to the
widespread small world algorithm which lacks realistic
groundings with respect to local interactions.

The resulting network may be adjusted by setting the
MAX SEARCH_RADIUS (to set the moving radius of actors
which might differ considerably from area to area and from life
style to life style), the X SEARCH RADIUS (the radius by
which the search radius is extended as long as more agents are
required to choose from and MAX SEARCH RADIUS is not
reached), and the P REWIRE (to account for network parts that
outreach the local region). Furthermore, the lifestyle preferences
of each agent type may be adjusted. The
MAX SEARCH RADIUS provides an adequate regulator to
adjust milieu-specific radii of action and thus reduce the network
preference deviation while preserving clustering.
X SEARCH RADIUS helps to control the clustering
coefficient, while p_rewire has an impact on the average path
length.

Probably the greatest challenge in modelling social
networks is gaining adequate empirical data about the relations
modelled actors have. An advantage of our approach is that
every parameter could be more or less empirically measured. For
instance, the MAX_SEARCH_RADIUS is determined by the
area a person normally agitates within. The network size and
preferences regarding life styles could be gained by analysing
personal networks of an adequate amount of representatives of
each life style. However, since such explorations are quite

demanding and expensive one most often has to guess values
from experience or consult experts in the field.

In the future we seek to further explore the parameter space
of the network generation in order to predict the properties of
resulting networks more thoroughly. Emphasis is placed on the
interplay between the mentioned parameters. For instance, both
the rewiring probability and X SEARCH: RADIUS have an
impact on the global clustering coefficient. Besides it is worth to
explore heterogeneous, lifestyle specific parameters.

A possible extension is to allow agents to start their search
within a specific annulus around their home coordinates and then
broaden it simultaneously to the inner and the outer area. This
would account for people that refuse to make connections within
their direct neighbourhood. Furthermore, extensions in the
direction of incorporating geographical and social distance as
proposed by [2] is expected to be fruitful.
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Selected Models for Agent-based Simulation of Social
Networks

Federico Bergenti' and Enrico Franchi and Agostino Poggi?

Abstract. In this paper we review some classic models of the static
structure of complex networks with the objective of finding a good
model for simulating a large-scale, technology-enabled social net-
work. First, we outline the basic properties that characterise such so-
cial networks with respect to other networks. Then, we briefly discuss
some classic network models and their properties, and, finally, we
match the properties of the models against the characterising features
of social networks. In the end, we present an agent-based framework
we are building to experiment with network generation models.

1 INTRODUCTION

The notable interest of today’s research on social networks is largely
justified by their adoption as a unifying metaphor in very relevant
Web-centric services like Facebook and many others. The inherently
large scale of such services calls for automated techniques capa-
ble of promoting their potentials to unforeseen levels in terms of
offered functionality and performance. Such automated techniques
are still far from real-world practice because the impact of a novel
algorithm (e.g., a friendship-discovery algorithm) cannot be easily
assessed. This is the reason why we need effective tools to study,
experiment and validate innovative techniques capable of providing
concrete evaluation on the net results of the introduction of a novel
proposal into a social network. Agent-based simulation is very help-
ful to this respect because it provides solid approaches for testing
new ideas in silico before trying to put them into practice.
Agent-based simulation is now a consolidated field of research,
and likewise it is the application of its results to social networks.
However, the use of agent-based simulation for a large-scale,
technology-enabled social network still lacks an accepted, formal
model of network meant to generate suitable (artificial) networks for
running experiments. In this paper we review some classic network
models and briefly show their characteristics from the point of view
of generating networks for running simulated experiments. We rank
such models and we identify the model best suited for our purposes.
This paper is organised as follows: in next section we introduce
some metrics that are generally applicable to all networks and that
we will use to characterise social networks. Such metrics are very
common in network theory and we review them just to provide a
common notation and a precise understanding of concepts. In Sec-
tion 3 we survey some of the most classic network models and we
briefly present some results on the metrics that we introduced in
the previous section. In Section 4 we provide a characterisation of
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federico.bergenti @unipr.it

2 Dipartimento di Ingegneria dell’Informazione, Universita degli Studi di
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large-scale, technology-driven social networks using the identified
metrics and in Section 5 we review the discussed network models
and we show how well each model can be used to produce networks
that exhibit the structure of a social network. In Section 6 we in-
troduce some preliminary work on agent-based simulation, based on
the more successful generative models. Finally, in Section 7 we draw
some conclusions and sketch a possible line of work.

2 NETWORKS METRICS AND MEASURES

In this section we briefly review some classic metrics which give in-
sight on the network structure. The metrics we have chosen are some
of the most widely studied in network analysis and together they give
a rough idea of the structure of a network; we also outline some cor-
relation in the chosen metrics. In this paper we do not deal with ad-
vanced analysis techniques, such as community or cluster detection,
since most of the papers we discuss in the following sections do not
deal with them at all as well and consequently the results could not
be compared.

In this paper, the properties taken into account are: (i) average
shortest path length/diameter; (ii) clustering coefficient; (iii) degree
distribution; (iv) assortativity coefficient; (v) navigability.

Before introducing the metrics, we introduce the notation we use.
With A we refer to the adjacency matrix of the analysed network.

If u is a node in a directed network, (i) the in-degree kI is the
number of incoming edges ZZ Asy; (i) the out-degree k3" is the
number of outgoing edges Zj Ay (iii) ky is the sum of the in-
degree and the out-degree. For undirected networks, the degree k.,
is the total number of edges of u.

With (-) we refer to the expected value of a quantity. We usually
omit the elements participating in the sum, when it is clear from the
context. For example we simply write (k) instead of (k;),, to refer
to the average degree of the nodes in the network.

In order to compare directed and undirected networks, we ensure
that the directed networks are highly symmetrical. The measure of
how symmetric is an undirected network is called reciprocity (or sim-
ply symmetry). If m is the number of edges in the network and A
is the adjacency matrix of the network, then the reciprocity coeffi-
cient is i Zij A;j;Aji. The coefficient is trivially 1 for undirected
networks. The social networks analysed all show a high symmetry
coefficient, and we will not deal with it further.

Classic metrics in network analysis are the average shortest path
length (ASPL), the characteristic path length (CPL) and the diame-
ter. Let v and v’ be two vertices in the network, then L(v,v') is the
length of the shortest path connecting v to v’ (also called geodesic
path). The closeness L; of a node 4 is the mean of the geodesic dis-
tance between ¢ and all the vertices reachable from it, that is to say:
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L;i = (L(i, 7)) - The shortest path length and the characteristic path
length are the mean and the median value of all the L; respectively.
The diameter is the longest geodesic path.

In the context of network analysis the diameter, the CPL and the
ASPL) are said to be short if they depend logarithmically from the
number of nodes in the network.

A link e = (u,v) is a shortcut (or long-range 1ink) in the network
G = (V,E)if Lgr(u,v) > 1 where G’ = (V, E '\ {e}); otherwise
it is a local or short-range link.

Another very important metric in the context of social networks is
the clustering coefficient C, which is the mean of all the local clus-
tering coefficients C;, where C; is is the fraction of pairs of neigh-
bours of ¢ which are also connected [38]. A different and non equiv-
alent definition is given in [32], where the clustering coefficient is
defined as the fraction of paths (u, v, w) of length two in a network
G = (V, E) for which {(u,v), (v, w), (w,u)} C E holds.

The degree distribution of a network is simply the frequency dis-
tribution of vertex degrees. py, is the fraction of vertices in the net-
work with degree k. If the network is undirected, then there are two
different degree distributions: the in-degree distribution and the out-
degree distribution. Although in principle they can be very different,
in practice in the examined contexts they are very similar (because
the analysed networks are highly symmetric) and consequently we
simply refer to the degree distribution. We say that a network has a
power-law degree distribution with exponent v if px, o< k™ 7. v is
also called the scaling exponent and networks whose degree distri-
bution is a power-law are usually called scale-free, because of the
scale invariance property of power-law, i.e., if f is a power-law with
exponent vy, f(c-x) =a(cx)? =¢” -az” = f(x) < f(z).

Scale-free networks are of particular interest to us since: (i) essen-
tially all the networks analysed in Section 4 are scale-free; (ii) in [10]
it has been proved that a wide category of scale-free networks have
short diameter because they are scale free. To be more precise, it has
been proved that if the network has a power-law degree distribution
of exponent +, the diameter d is

loglog N v € (2,3)
d= < logN/loglogN ~=3 @))
log N ¥>3

Another very important property related to the degree distribu-
tion is the assortativity coefficient r, which is basically the Pearson
product-moment correlation coefficient of degree between pairs of
linked nodes. A network is assortative if it has positive assortativity
coefficient. The definition of r is:

. (kikj) — (ki) (Kj) @

V(82) = 0)) ((2) = (k)?)

The last property of social networks we take into account is the
navigability. We say that a network is navigable if it exists a simple
decentralised algorithm that is able to deliver a message to any node,
starting from any node, in polylogarithmic number of steps. With
“simple” we mean that each node passes the message to a single
neighbour using some ranking function to decide which one. The
ranking function must not encompass global knowledge of the long-
range links. The delivery time of an algorithm is the expected number
of steps required to reach the target, randomly choosing the start and
the end node.

3 MODELS FOR SIMULATED NETWORKS

In this section we show some models to generate random graphs
which we would like to use to simulate social networks.

The first and still most studied model of random graphs is the
Erdés-Rényi model (ER) G(n,p) [15, 33]. G(n,p) is a probability
distribution over the set of all graphs with n nodes. The p parame-
ter indicates that an edge is placed between any given pair of nodes
with probability p. Consequently, (i) each individual graph is cho-

sen with probability p™ (1 — p)(Z)_m; (ii) the expected value of the
number of edges is (m) = (’2‘) p; (iif) the expected mean degree is
(k) = (n — 1)p; (iv) the expected diameter is log n; (v) the degree
distribution tends to a Poisson distribution for large n; (vi) the clus-
tering coefficient is given by C' = (k)/(n — 1).

Another very important model is the Strogatz-Watts model (SW)
introduced in [38]. The model starts with a closed linear structure
where each node is connected with s neighbours and then the lo-
cal connections are rewired to remote nodes with probability p. The
rewired connections are usually shortcuts. p is a parameter govern-
ing the transition from the very regular lattice (p = 0, no rewiring)
to G(n,p), where p = nk/2 (g) In this model, the mean degree
is exactly . The other metrics are rather hard to derive for this
model, however, a minor variant of this model has been analysed in
[9, 31, 35]. In this variant the shortcuts are added without removing
the local connection. To be more precise, for each link in the lat-
tice a shortcut is added with probability p. Consequently the average
number o of long-range links each node gains is px according to the
distribution:

_ e (PR)” 3)
ol

The average shortest path length is logarithmic with the size of the

network, at least for large networks and the clustering coefficient is:

Do

_ 3k=2)
¢= 4(k — 1) + 8kp + 4rp? @

In [20] a model using somewhat similar ideas although starting
from a different regular structure is presented. In the paper the start-
ing structure is a 2D grid where each node is connected to its neigh-
bours and shortcuts are added. A shortcut between node w and v
is added with probability proportional to d(u,v)~ %, where d is the
Manbhattan distance between nodes u and v in the grid, « is a param-
eter. This model has been extended to use a k-dimensional mesh as a
starting structure. In [36] there are several results on the diameter of
such networks: (i) if a € [0, k] then the diameter is ©(log n); (if) if
a € (k,2k) then the diameter is polylogarithmic; (i) if « > 2k
then the diameter is polynomial; (iv) for a = 2[ the diameter length
is still an open problem. The clustering coefficient is naturally quite
high (coming from a very regular structure).

However, the most interesting property of this model is that the
delivery time T of any decentralised algorithm in the 2D grid based
model is:

Q (n=7%) if0<a<2
T=< ©O(log’n) ifa =2 (5)
Q (ne=2/emD) ifa > 2

Similar results have been given for the k-dimensional grid models,
where a = 2 is substituted by o = k.

In [21] the group model is presented. The model is not really a
model for generating a network, however it can be used to make any
network navigable adding some shortcuts. The process starts creating
a finite family S over the set of nodes V' satisfying the following
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conditions for some A € (0,1)and 8 > 1: () V € S; (i) S; € S
and |S;| > 2 such that v € S, then there exists S; € S such that
S; C S;and |S;| > min(Ag, g — 1); (iii) if a) S, Sj, Sk ... are in
S, b) have size at most ¢ and ¢) v is in their intersection, then their
union has size at most g/3.

The sets in S are called groups. These conditions hold taking as
the groups the balls determined by the Manhattan distance on the
k-dimensional grid, for example.

Let g(u, v) be the size of the minimum group in S containing both
u and v. A group-based model with structure S, exponent o and out-
degree m is a network where for each node u a shortcut to v has been
added with probability proportional to f(g(u,v)) and f(z) =< z¢
and the process is repeated for m times.

In [21, 22] Kleinberg proved that for a network (V| E), given
an arbitrary finite family S of sets over V' satisfying properties (i),
(ii) and (iii), there is a decentralised algorithm with polylogarithmic
delivery time in the group-based model with structure S, exponent
a = 1 and out-degree m = clog? n for a sufficiently large constant
c. He also gave negative results for the existence of such algorithm
for both a« < 1 and o > 1. The group-based model is a meta-model.
Most metrics depends on the underlying network structure; however,
we can expect a reduction of the diameter due to the added links.

Another important meta-model is described in [13]: the authors
show a procedure to turn a wide variety of network topology in navi-
gable small-worlds. As for the group model, most metrics depend on
the original network topology.

Popular models to generate scale-free networks are the ones based
on preferential attachment (PA), where links are added more often
to nodes with higher degree. In this family of methods the network
is generated through multiple steps. At each step some edges and
links are added or removed according to some rules that vary from
model to model. A popular model of this family is the Barabdsi-
Albert model (BA) described in [5]. The BA model starts with ng
nodes and no edges. At each step a new node with m random links
is added. The m links are directed towards node with probability
proportional to their degree. The BA model generates only networks
whose degree distribution is a power-law with exponent 3, on the
other hand other preferential-attachment models yield scale-free net-
works with any exponent.

In [10] it has been proved that being scale-free with a degree v > 2
implies having a short (polylogarithmic) diameter. Considering that
the diameter is an upper bound of the geodesic paths in the network,
the results also bounds the characteristic path length. No such results
are available on navigability, it is however reasonable to use the meta-
models to add such a property.

The basic PA process or the BA model do not generate networks
with high clustering coefficient. For example, it has been empirically
found that for a BA graph C' ~ n~°"®. No analytical method to
compute C for the BA model is known [4].

A method to increase the clustering coefficient is mingling PA
steps with triadic closure (TC) steps. During the TC step, if a link
between v and v was added in the PA step, then it is added also a
link between u and a random neighbour w of v. This model yields
networks with high clustering coefficient and has been extensively
studied in [18, 37].

Another model in the family of PA models is the biased preferen-
tial attachment described in [23]. The set of nodes V' is partitioned in
three sets P, I and L. At each new step (i) a new node is added to the
network and is assigned to one of the three sets according to a dis-
tribution of probability p; (ii) e > 0 edges are added to the network.
Essentially both p and € are parameters that can be tuned; there is

also a third parameter . D” is a probability distribution such that
for each node u:

B+1) - (ku+1) uwel
D x{ ky+1 wel (6)
0 otherwise

The € edges are added according the following rule: for each edge
(u,v), u is chosen with distribution Do and (i) if u € I, v is a new
node and is assigned to P; (ii) if u € L, v is chosen according to
D7. In [23] there are no analytical results about the network metrics.
However, the authors claim they were able to reproduce parameters
they measured in two real social networks (Yahoo 360 and Flickr).
Consequently we expect that, at least for some choice of parameters,
the methods yields a network with high clustering coefficient, short
diameter and power-law degree distribution.

The last model we review is called transitive linking [11]. The
model is somewhat similar to the PA model with the addition of the
TC step. However, the model also accounts for the possibility that
nodes leave the network. In every step of the method two things oc-
cur: (i) a random node is chosen, and it introduces two other nodes
that are linked to it, resulting in a new link (this is the transitive link-
ing, in short TL); (if) with probability p a node is chosen and removed
from the network and its edges are removed as well and replaced with
another node with one random edge. If the node chosen in (i) does
not have two edges, then it introduces himself to another random
node. The parameter p dictates how often someone is removed from
the social network and is assumed to be much smaller than 1.

When p < 1 the TL dominates the process and the degree distri-
bution is essentially a power-law with a cutoff for larger k, as nodes
have finite lifetime. For larger values of p the two different process
concur to form an exponential degree distribution, while for p ~ 1
the degree distribution is essentially Poisson distribution. For p < 1
the clustering coefficient is rather large and can be determined with
the relation 1 — C' = p((k) — 1); as p decreases (k) grows. For ex-
ample, for p = 0.01, (k) = 49.1 and C' = 0.52. The authors also
calculated that:

log(n/ (k)
log (‘<k (>k7)<k>)

4 ANALYSIS OF REAL-WORLD SOCIAL
NETWORKS

In the early studies on social networks, the first step was the long
manual gathering of data regarding the social network itself, using in-
terviews or other ad-hoc methods. Consequently the social networks
taken into account were relatively small and biases could be intro-
duced by the sampling method.

With the widespread adoption of social networking systems by
huge amount of people, it became possible to study social networks
of unprecedented size. In this section we review a number of papers
analysing different online social networks (OSN).

In Table 1 we have gathered metrics from some papers where ex-
isting social networks have been measured [1, 2, 3, 30]. When in the
original paper a datum is missing, we placed “n.a.” (not available)
in the table. Moreover, some papers reported distinct in-degree and
out-degree distributions: we used the notation ~You /. In [3] the re-
searchers found out that Cyworld has two different scaling regions,
one with v = 4 and one with v = 1, the crossover occurs between
k = 10® and k = 10*. Consequently, in the table we reported  for
Cyworld as (4;1).

ASPL =~ +1 (7
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Table 1. Basic metrics for a selection of online social networks

Online Social Network | Refs. | Users | Links | % of V' k C CPL d ¥ r
Club Nexus [1,2] | 2496 | 10119 100% 8.2 0.17 4 13 n.a. n.a.
Cyworld [3] 12M | 191 M | 100% 31.6 0.16 32 16 41 -0.13
Cyworld Testimonial [3] 92 K 0.7M | 0.77% 15.3 0.32 72 | na. n.a. 0.43
Orkut [3] 100K | 1.5M 0.3% 30.2 0.3 38 | na. 3.7 0.31
Orkut [30] 3M | 223M | 11.3% | 106.1 | 0.171 | 4.25 9 1.50 0.072
Flickr [30] | I,8M | 22M | 269% | 1224 | 0.313 | 5.67 | 27 | 1.74/1.78 | 0.202
Live Journal [30] 5M 77TM | 954% | 1697 | 0.330 | 5.88 | 20 | 1.59/1.65 | 0.179
Youtube [30] | 1,1M 5M 429 | 0.136 | 5.10 | 21 | 1.63/1.99 | -0.033

While some researchers had access to the full body of data from
the analysed online social network, most of them had still to resort to
sampling techniques and consequently we reported the percentage of
the social network they claim they have sampled. For further details
on the sampling techniques we refer to the original papers.

In principle, sampling can introduce the same biases typical of ear-
lier studies; nonetheless, the greatly increased amount of data avail-
able is a positive factor in its own right. The biases may be the reason
why different studies on the same OSN find different values on the
same metrics. However, the general trends are confirmed by all the
studies we reviewed, and the general structure of online social net-
works appears not unlike that of offline social networks.

In fact, sociologist have known since a long time that social net-
works are highly clustered and OSNs show high clustering as well
(e.g., in [17]). Like offline social networks, OSNs have a relatively
high clustering coefficient C, orders of magnitude higher than that
of random graphs. The actual value of the coefficient exhibits a large
variability. Moreover it appears that this coefficient varies much for
the same network depending on which data was available and how
the researchers obtained it.

For example in [3] the measured clustering coefficient for Orkut is
0.31, while in [30] it is 0.17. Usually clustering coefficient is not uni-
form for nodes of different degree. For example in Cyworld [3] the
nodes with degree k& < 500 have a high local clustering coefficient,
while friends of nodes with higher degree are not tightly clustered.
This contributes to the relatively small global clustering coefficient.

Social networks have short characteristic path length and online
social networks do not deviate, confirming the intuition that they ac-
tually are small-worlds; measured values of CPL vary between 4 and
6, which is consistent with expected values for small-world networks
of comparable size [2, 30]. It is also interesting that studies taking
into account the evolution of such social networks point out that the
CPL varies in time: typically there is a period when the distance be-
tween users increases (which happens when many new users join)
and then when the network becomes more dense the CPL and diam-
eter fall [3, 23, 24, 25].

All the analysed OSNs present a power-law degree distribution;
however, the coefficient differ greatly and some OSNs have the coef-
ficient ~y of the power-law smaller than 2 [2, 3, 23, 30]. It should be
noted that while some of the considered networks are undirected,
links have a very high level of symmetry and in-degree and out-
degree distributions are very similar, most nodes in-degree and out-
degree differ less than 20% of their value [30].

It is usually believed that human social networks are assortative
[34]. However, this may not always be the case, some OSN have a
negative assortativity coefficient. For example, Cyworld has a nega-
tive assortativity coefficient. In fact, the metrics of the social network
depends much on the meaning the participants give to the links: a

subgraph of Cyworld using a stronger notion of friendship shows a
positive assortativity coefficient, reverting the trend of the complete
Cyworld network. Although the assortativity coefficient is a very im-
portant property for a network, according to the present results, we
believe that its positiveness should not be regarded as an absolute
property of OSNs.

Club Nexus [1] is the only online social network among those re-
viewed so far for which experiments on navigability have been per-
formed. However, the network proved to be too sparse to be suc-
cessfully navigable. In fact the notion of “friend” implied in the so-
cial network was quite too strong with respect to the notion of “ac-
quaintance” used in [12, 29] or even in other online social networks
analysed in [1]. It is however generally believed that social networks
should exhibit this property, considering the experiments in [29, 12].
We should notice that in [1] it is not proved that the students of Club
Nexus were not able to route messages, but that greedy algorithms,
using data provided from the OSN were not able to do it. We would
also like to point out that for Club Nexus social network the expected
average degree (k) = 8.2, which is a value much lower than that re-
ported in the other social networks.

Another important experiment regarding navigability of social net-
works has been performed in [28]. The OSN taken into account is
LiveJournal, mainly because many users provide information on their
geographical position and the authors wanted to investigate impor-
tance of geography in the distribution of shortcuts, which are the ones
mainly responsible for the short paths and consequently for short de-
livery times. The idea that geography is an important factor had al-
ready been studied in [19].

The authors have experimentally proved using simulation that the
network is navigable; however, they also discovered that the network
does not have the long-range links distributed according to Klein-
berg’s claims, i.e., with probability proportional to the square of the
distance, as the network has been placed on a 2D mesh.

However, they argue that the right heuristics for the greedy algo-
rithm should not be the plain geographical distance, but the ranking
function #(u, v) = [{w : d(u,w) < d(u,v)}|. Using  as the rank-
ing function, the probability that w is linked with v is proportional to
Flu,v) "L

5 ANALYSIS OF SIMULATED NETWORK
MODELS

All the methods presented in Section 3 fail to catch some aspect of
real world social networks, especially considering how different is
the structure of the various OSNs we reviewed in Section 4.

It is not surprising that the Erdds-Rényi model fails to describe so-
cial networks: people do not establish relationships purely by chance,
regardless of affinity and geographical distance. The degree distribu-
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tion also deviates from that of the networks analysed in Section 4:
they have a power-law degree distribution instead of a Poisson distri-
bution. Moreover, in social processes, the average number of connec-
tions a person has does not depend on the size of the network [14].
Consequently if we used the ER model with a constant number of
connections, C' — 0 as n — oo.

The SW model was introduced to cope with the shortcomings of
the Erdds-Rényi model, in particular the very low clustering coef-
ficient. In the SW model for a very large interval of p values the
resulting graph is both highly clustered (like the starting lattice) and
shows short characteristic path length like ER random graphs.

However, the degree distribution that can be derived from Equa-
tion (3) (see [33] for mode details) is very different from the power-
laws found in real social networks, which usually have right skewed
degree distributions [34]. Another shortcoming of this model is that
it is not navigable, as proved in [20].

The 2D grid, the multi-dimensional grids and the group based
models proposed in [20, 21, 22] are all navigable. However, the au-
thor is well aware that “the full range of factors that contribute to the
observed structure (referring to real world networks) will be too in-
tricate to be fully captured by any simple model” [22]. In particular,
these models seem too unrealistic and too far from reasonable net-
work formation processes to be used for network simulations, as real
social network are not based on extremely regular topologies [24].

Classic preferential attachment models fail to yield highly clus-
tered graphs in most their variants and are consequently unsuitable
to model a social network. Indeed, the models have been developed
to explain the metrics of citation networks. However, many variations
on the original model which have a rather high clustering coefficient
have been proposed in order to explicitly model social networks.

For example, the biased preferential attachment model described
in [23] was built from the ground to reproduce some metrics of real
world social networks. In fact, the model does not only yield a static
social network with realistic properties but the whole dynamic gen-
eration process mimics the ones if the OSN the authors analysed.

The transitive linking model also looks very promising. People is
far more likely to make friends with friend of friends [17]. The im-
portance of adding explicit triadic closure steps has also been proved
in [24], where the authors showed that regular PA, without steps
adding local links between friends of friends failed to model real
social networks. The other metrics are also compatible with the ex-
perimental data of Section 4.

In fact, we have chosen few metrics in order to simplify the anal-
ysis. The clustering coefficient is a coarse measure of the structure
of the network. Community detection algorithms could give further
insights on the fine-grained structure of social networks. Moreover,
from studies such as [3, 23, 24, 26] it is clear that OSN are consti-
tuted by distinct areas with very different structure and we believe
that this should be taken into account. In the present study we are
only concerned with the metrics of the final network, with little fo-
cus on the metrics along the process itself, while in [23, 24, 26] the
authors deal with processes which reproduce OSN metrics during
the whole formation process. We decided to consider only the static
analysis of the resulting network because: (i) many models are not
meant as proper processes, since what looks like a process is in fact
only an algorithmic description; (i) it is particularly difficult to sam-
ple large social networks over long periods of time and consequently
there is less data on the issue. Moreover, we are mostly interested in
performing simulations on the final network. Nonetheless, it is worth
noting how processes which are inspired by actual human behaviour
[11, 18, 23, 37] are some of the most promising models.

6 SIMULATION MODELS IMPLEMENTATION
AND EXPERIMENTATION

The two most promising models among the ones we analysed have a
common pattern: when an edge has to be added to the network (i) a
node is randomly selected; (ii) the selected node “chooses” the other
end of the link.

Agent-based simulation is extremely well suited for these kind of
problems. A controller agent selects the agent(s) that are going to add
a link and then each of these agents chooses the other end of the link.
All the logic of the selecting the starting nodes is embedded in the
controller agent and the logic of choosing the edge endpoint is in the
agents.

We have started experimentation with such a system and we found
that the flexibility of this model is significant. For example, once the
regular PA model is implemented, adding also the biased preferen-
tial attachment model [23] is a matter of few lines of code. In general,
models where there are different “kind” of nodes become easily ex-
pressible, to the point that each node can in principle be different
from all the other agents.

Another variation we are exploring and which would be trouble-
some for analytic models is that the “receiver” of the link could
refuse the link; this makes even more sense in the context of individ-
ual agent preferences and is in general part of the very agent model.

Models based on PA strategies have distinct ages: steps are per-
formed sequentially. An agent-based simulation allows to explore
network generation algorithms with unusual time patterns, e.g.,
where each agent can independently activate with a given probability
p at any time or where agents have different sociality, which means
that agents choose how many edges to activate.

In order to investigate these topics, we started an experimenta-
tion using HDS [6], Heterogeneous Distributed System, that is a
software framework that aims at simplifying the realisation of dis-
tributed applications by merging the client-server and the peer-to-
peer paradigms and by implementing all the interactions among all
the software entities of a system through the exchange of messages.
This software framework allows the realisation of systems based on
two types of software entities, actors and servers, that can be dis-
tributed on a (heterogeneous) network of computational nodes (from
now called runtime nodes). Actors have their own thread of execu-
tion and perform tasks interacting, if necessary, with other software
entities through synchronous and asynchronous messages. Servers
perform tasks on request of other actors. HDS is implemented using
the Java language and takes advantage of preexistent Java software
libraries and solutions for managing concurrency and distribution.

HDS has been already used for implementing some agent based
applications [6, 7] and provides two different ways for the deploy-
ment of actors and servers that allow either: (i) to assign a thread to
each actor and server; or (ii) to share a thread among a set of actors
and servers. Therefore, HDS can be easily used for simulating social
networks where individuals are represented by agents implemented
on the top of HDS actors. Moreover, with HDS it is possible to take
advantage of the typical interaction protocols used by FIPA compli-
ant agent based systems [16]. Finally, the simulation size is scalable
by both: (i) distributing the agents on a set of computational nodes;
and (if) managing the execution of the agents of a computational node
through a single thread.

Another HDS feature we used extensively is possibility to add
composition filters [8] at runtime. Composition filters can be used
to manipulate or replicate messages without making the agents code
any more complex. For our simulation we find very useful to repli-
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cate all the messages which add edges or nodes to monitoring agents
which hold the model of the whole network and can compute the
metrics or provide visualisation. With composition filters, the logic
is not embedded with the simulation code and resides externally: this
way it is more easily customisable.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we have compared analytic metrics of different network
generation models with data from real online social networks. We
have found that some models account for some properties of the real
OSNs. There is strong need for more analysis of real OSNs, possibly
obtaining full data-sets, as crawls often have strong and difficult to
evaluate biases.

The simulation system we have built, although at an early stage,
is able to generate networks according to some basic models, but it
is designed for extensibility. We plan to extensively test navigability
on the networks we generate, potentially super-imposing some meta-
model which guarantees that property over non-regular structures.
We also plan to further explore behavioural generation models, ex-
ploiting agent-based models to reproduce patterns related to human
behaviour.

Of course, it is still an open question the extent to which predic-
tions valid for artificially generated social networks are valid for real
online social networks. This issue is however not easily dealt with in
general. However, results look promising [27] and with more sophis-
ticated network models it is likely that simulation is going to be an
increasingly important technique for social network related studies.

Moreover, our long term goal is using the generated networks to
perform simulations. In this scenario, even though none of the mod-
els perfectly reproduces a real social network, performing simula-
tions on many different synthetic networks generated with multiple
models may lead to meaningful conclusions nonetheless.
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Time-Varying Graphs and Social Network Analysis:
Temporal Indicators and Metrics

Nicola Santoro’, Walter Quattrociocchi?2 Paola Flocchini®, Arnaud Casteigts3, and Frederic Amblard*

Abstract. Most instruments - formalisms, concepts, and metrics -
for social networks analysis fail to capture their dynamics. Typi-
cal systems exhibit different scales of dynamics, ranging from the
fine-grain dynamics of interactions (which recently led researchers
to consider temporal versions of distance, connectivity, and related
indicators), to the evolution of network properties over longer periods
of time. This paper proposes a general formal approach to study net-
works’ structural evolution for both atemporal and temporal indica-
tors, based respectively on sequences of static graphs and sequences
of time-varying graphs that cover successive time-windows. All the
concepts and indicators, some of which are new, are expressed using
a time-varying graph formalism recently proposed in [10]. Experi-
mental results of the application of atemporal metrics applied to a
portion of the scientific community of arXiv are provided.

1 Introduction

Social networks have drawn a lot of attention in the past few years,
and the analysis of their dynamics represents a pressing scientific
challenge. The research efforts in this area strive to understand the
driving forces behind the evolution of social networks and their
articulations within social dynamics, e.g., opinion dynamics, the
epidemic or innovation diffusion, the teams formation and so on
([7, 11, 14, 18, 27, 29, 33, 34, 35, 37, 38]). In other words, it is
known that individuals are influenced (e.g. concerning their opinion)
through their social network, it is also known that individuals take
into account others’ attributes when deciding to evolve their social
network, but yet qualitatively not much is known concerning the dy-
namical patterns that are produced by such an interplay.

Curiously enough, everybody agrees on the stance that social net-
works are dynamic, e.g. individuals join, participate, attract, com-
pete, cooperate, disappear, and affect the shape and strength of the
network and its relationships. Yet, the current instruments (defini-
tions, models, metrics) are mainly drawn for static networks and gen-
erally fail to capture the evolution of phenomena and their dynamical
properties — temporal dimension — focusing instead on structural [23]
or statistical aspects [39] of the systems. As stated in [28], the central
problem in this area is the definition of mathematical models able to
capture and to reproduce properties observed on the real networks.

The increasing availability of real datasets (e.g. e-mails logs, on-
line forums, or meta-data on scientific publishing), as well as devel-
opment of smartphones, vehicular networks, and satellite networks
have recently fostered research on dynamic networks and caused
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the appearance of new dedicated concepts. In particular, early works
around transportation and delay-tolerant networks (those networks
characterized by an absence of instant end-to-end connectivity) have
led to the concept of journey [6] - also called schedule-conforming
path [2], time-respecting path [20, 24], or temporal path [12, 42, 43].
Journeys can be seen as a particular kind of path whose edges do not
necessarily follow one another instantly, but instead induces waiting
times at intermediate nodes.

A direct consequence of considering journeys instead of paths is
that all the concepts usually built on top of paths can in turn take a
temporal meaning. This includes the concept of temporal distance [6]
- also called reachability time [20], information latency [25], or tem-
poral proximity [26] -, which accounts for the minimal speed of in-
formation propagation between two nodes, and the concept of tem-
poral connectivity [3] based on the existence of journeys. On the so-
cial network side, recent studies focused on measuring the temporal
distance between individuals based on e-mail datasets [25, 26] or
inter-meeting times [43]. Very recently, temporal betweenness and
temporal closeness were also considered in a social network context
in [32, 41]. All these temporal indicators complete the set of atempo-
ral indicators usually considered in social network analysis, such as
(the usual versions of) distance and diameter, density, clustering co-
efficient, or modularity, to name a few. It is important to keep in mind
that these indicators, whether temporal or atemporal, essentially ac-
counts for network properties at a reasonably short time-scale (fine-
grain dynamics). They do not reflect how these properties evolve
over longer periods of time (coarse-grain dynamics).

In this paper, we propose a general approach to look at the evolu-
tion of both atemporal and temporal indicators. Looking at the evo-
lution of atemporal indicators can be done by representing the evolu-
tion of the network as a sequence of static graphs, each of which rep-
resents the aggregated interactions over a given time-window. Atem-
poral indicators can then be normally measured on these graphs and
their evolution studied over time. The case of temporal indicators is
more complex because the corresponding evaluation cannot be done
on static graphs. The proposed solution is therefore to look at the
evolution of temporal indicators through a sequence of shorter time-
varying graphs, which are temporal subgraphs of the original time-
varying graph, covering successive time-windows. We discuss sev-
eral examples of indicators, both temporal and atemporal, some of
which are new. The evolution of some atemporal indicators is ac-
companied with recent experimental results from [36], based on on-
line data on scientific networking consisting of dated co-authoring
and citation records. We first present the time-varying graph (TVG)
formalism from [10], which we use to express all temporal concepts
and evolution properties in a concise and elegant way. We then dis-
cuss the two suggested approaches to study the evolution of atempo-
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ral and temporal indicators, respectively.

2 Dynamic Networks as Time-Varying Graphs

This section presents the time-varying graph formalism (TVG) re-
cently introduced in [10]. This formalism is semantically equivalent
to other graph formalisms, like that of evolving graphs [16], but sug-
gests in comparison an inferaction-centric point of view. This point
of view was also present in the time-labelling function of [24], but
only for punctual contacts and latencies. The TVG formalism allows
us a concise and elegant formulation of temporal concepts and prop-
erties.

2.1 The TVG Formalism

Consider a set of entities V' (or nodes), a set of relations F' between
these entities (edges), and an alphabet L accounting for any prop-
erty such a relation could have (labels); thatis, E C V x V x L.
The definition of L is domain-specific, and therefore left open —a
label could represent for instance a particular type of relation in a
social network, a type of carrier in a transportation networks, or a
communication medium in communication networks. For general-
ity, L is assumed to possibly contain multi-valued elements (e.g.
<satellite link; bandwidth of 4 MHz; encryption available;...> ). The
set E enables multiple relations between a given pair of entities,
as long as these relations have different properties, that is, for any
e1 = (z1,y1,\1) € E,ea = (22,92, \2) € E, (11 = 22 Ay =
Y2 A A1 :)\2) —> e1 = ea.

The relations between entities are assumed to take place over a
time span 7 C T called the lifetime of the system. The temporal
domain T is generally assumed to be N for discrete-time systems or
R for continuous-time systems. We denote by time-varying graph the
structure G = (V, E, T, p, (), where p : E x T — {0, 1}, called
presence function, indicates whether a given edge is present at a given
time, and ¢ : E x T — T, called latency function, indicates the time
it takes to cross a given edge if starting at a given date.

Such a formalism can arguably describe a multitude of different
scenarios, including:

e Transportation networks - e.g. aviation, where nodes are the cities,
directed edges are regular flights, whose departure dates are given
by punctual presences, and flight duration by non-nil latencies.

e Communication networks - e.g. wireless mobile networks, where
an edge is present whenever its two endpoints are within range, the
latency corresponding here to the time to propagate a message.

e Complex systems, among which social networks - e.g. scientific
networks, where the nodes are scientists, and the edges (possibly
both directed and undirected) account for example for citations or
collaborations.

These examples illustrate the spectrum of models over which the
TVG formalism can stretch. As observed, some contexts are intrisi-
cally simpler than others and call for restrictions (e.g. directed vs.
undirected edges, single vs. multiple edges, punctual vs. lasting rela-
tions). Further restrictions may apply. For example the latency func-
tion could be decided constant over time, over the edges, over both,
or simply ignored. In fact, a vast majority of work in social networks
does not require such information (e.g., the propagation time of an
email is of little interest to the understanding of a community behav-
ior). Since the scope of this paper is social network analysis, we will
deliberately omit the latency function and consider TVGs described
asG=(V,E, T,p).

2.2 Journeys and related Temporal Concepts

A crucial concept in time-varying graphs is that of journey which
is the temporal extension of the notion of path, and forms the basis
of most recently introduced temporal concepts. A sequence of cou-
ples 7 = {(e1,t1), (e2,t2) ..., (ex, tx)}, such that {e, ea, ..., e }
is a walk in G, is a journey in G if and only if Vi,1 < ¢ < k,
plei,t;) = 1 and t;41 > t;. We denote by departure(J), and
arrival(J), the starting date ¢; and the last date ¢y, of a journey 7,
respectively. Journeys can be thought of as paths over time from a
source to a destination and therefore have both a fopological and a
temporal length. The topological length of 7 is the number | 7| = k
of couples in J (i.e., the number of hops); its temporal length is its
end-to-end duration: ||J|| = arrival(J) — departure(J).

Let us denote by J™ the set of all possible journeys in a time-
varying graph G, and by J*(u,v) C J* those journeys starting at
node v and ending at node v. In a time-varying graph, there are three
natural distinct measures of distance, and thus three different types
of “minimal” journeys.

e The shortest distance from a node u to a node v at time ¢ is simply
d*(u,v) = Min{|T| : T € T*(u,v) A departure(J) > t}.

e The foremost distance from u to v at time t is 6'(u,v) =
Min{arrival(J) —t: J € T*(u,v) A departure(J) > t}.

e The fastest distance from u to v at time ¢ is defined as 5t (u,v) =
Min{||T|| : T € T*(u,v) A departure(J) > t}.

A journey J € J*(u,v) with departure(J) > t is said
to be shortest at time ¢ if |J| = 6% (u,v); foremost at time t if
arrival(J) —t = 6'(u,v); and fastest at time t if |7 || = 6*(u, v).

Whether in the contexts of social networks or communication net-
works, a number of higher concepts have been recently defined on
top of these. They include new meanings of connectivity and con-
nected components [3], temporal eccentricity and temporal diame-
ter [6], or temporal betweenness and temporal closeness [41], among
others. As discussed in the introduction, these concepts allow for
novel insights on the way nodes interact at a small time-scale (fine-
grained dynamics), but do not reflect the way the network evolves at
over longer periods of time (coarse-grain dynamics).

3 Capturing the Evolution

In this section we introduce a framework to study the behavior of net-
work parameters (or indicators) during the lifetime of a time-varying
graph. Two types of indicators are described: atemporal and tempo-
ral ones. Atemporal parameters are defined on static networks and
their evolution over time can be observed by measuring them over
sequences of static graphs, where each graph of the sequence cor-
responds to the aggregation of interactions that occur in a given in-
terval of time (we call them footprints of a TVG). Temporal indi-
cators, on the other hand, are only defined on time-varying graphs,
taking into account their temporal nature. The evolution of such in-
dicators requires to consider a sequence of (non-aggregated) time-
varying graphs, each of which corresponds to a temporal subgraph
of the original one for the considered interval.

3.1 Evolution of Atemporal Indicators
3.1.1 Methodological approach

TVGs as a sequence of footprints. Given a TVG G =
(V,E,T,p), one can define the footprint of this graph from ¢; to
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t2 as the static graph G[*1:12) = (V, Elf1:t2)) such that Ve € E, e €
Eft2) s 3t € [t1,t2), p(e,t) = 1. In other words, the foot-
print aggregates interactions over a given time window into static
graphs. Let the lifetime 7 of the time-varying graph be partitioned
in consecutive sub-intervals 7 = [to, 1), [t1,t2) ... [ti, tit1),- .
where each [tx,tr+1) can be noted 7. We call sequence of foot-
prints of G according to 7 the sequence SF(r) = G™,G™,....
Considering this sequence with a sufficient size of the intervals al-
lows to overcome the strong fluctuations of fine-grain interactions,
and focus instead on more general trends of evolution. Note that the
same approach could be considered with a sequence of intervals that
are overlapping (i.e., a sliding time-window) instead of disjoint ones.
Another axis of variation can be considered whether or not the set of
nodes in each G™ is also varying, e.g. being restricted to nodes that
have at least one adjacent edge in E™* (which is the case in the ex-
perimental results shown below).

Looking at atemporal parameters. Since every graph in SF' is
static, any classical network parameter (degree, neighborhood, den-
sity, diameter, modularity, efc.) can be directly measured on it. When
observing the evolution of a parameter over SF, one can achieve dif-
ferent levels of granularity by varying the size of the footprint in-
tervals. Depending on the parameter and on the application, differ-
ent choices of granularity are more appropriate to capture a mean-
ingful behavior. At one extreme, each interval could correspond to
the smallest time unit (in discrete-time systems), or to the time be-
tween any two consecutive modification of the graph. In these cases
every footprint corresponds to an instant snapshot of the network,
and the whole sequence becomes equivalent to the evolving graph
model [16]. At the other side of the spectrum, i.e. taking 7 = 7, the
sequence would consist of a single footprint aggregating all interac-
tions over the network lifetime.

3.1.2 Indicators and Discussions

We now discuss the definitions and peculiarities of a set of atemporal
parameters, some of which are illustrated upon recent experimenta-
tions results (from [36]) on the hep-th (High Energy Physics Theory)
portion of the arXiv website. The dataset consists of a collection of
papers and their related citations over the period from January 1992
to May 2003. For each paper the set of authors, the dates of on-line
deposit, and the references to other papers are provided. There are
352 807 citations within the total amount of 29 555 papers written
by 59 439 authors. From the dataset we extract the network of the
most proficient authors - i.e., the authors of papers which received
more than 150 citations. In all the example charts, a one-year time
window is used.

Evolution of the Density. One important and widely used indica-
tor aimed at measuring the network structure is the density, which
measures how close it is to a complete graph. The density of a graph
G = (V, E) is defined as:

E|
D= ——7—7—o
Vi (V-1
The evolution of the density could be observed by looking at its
trend over the sequence of footprints SF = G™,G™,...,G™. The

trend of this value reflects the network’s topology formation during
time from a global perspective. It could be useful in many cases, such
as in the study of transportation networks, e.g. to see how the equip-
ment (number of roads, railways, flights connections...) increases

over time. Figure 1 provides another example showing a trend of un-
densification observed in the above-mentioned scientific publishing
network.
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Figure 1. Evolution of the density.

This counter-intuitive trend can be explained by an increasing
number of authors. (Recall that these experimentations considered
that the set of nodes in the footprint sequence was varying among
the G™s, based on the existence of adjacent edges in the considered
footprints.)

Evolution of the Clustering Coefficient. The clustering coeffi-
cient is used in social network analysis to characterize architectural
aspects. Several studies (e.g., [19, 44]) suggest that in general nodes
tend to create tightly compact groups characterized by a relatively
high density of ties. Roughly speaking, the clustering coefficient of
a node indicates how close to a clique its neighborhood is. It is for-
mally defined in [44] as

(o) : uv € N(@))|
O = " deg(w)(degla) — 1)

The average clustering coefficient of a graph can then be defined
as the average over all nodes:

1
AC = W > C(a)

zeV

As for the density, the evolution of these properties could be ob-
served through measuring it on the footprints of SF. An increasing
or decreasing trend of clustering coefficient would typically capture
the formation or dismemberment of social communities at a global
scale. An example is provided on Figure 2, still with the same dataset,
which shows that the connectivity first tends to be sparse, then after
a phase transition around 1999, the nodes start to cluster into denser
sub-communities.

Evolution of the Modularity. Modularity measures how the struc-
ture of a given network is modular, i.e., how it can be decomposed
into subparts. It also quantifies the quality of a given network di-
vision into modules or communities. Networks with high values of
modularity are characterized by dense intra-module connections and
sparse inter-module connections.

The modularity of a pair of nodes v and v is defined as

_ deg(u) * deg(v)
]\4(%7 U) = T
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Figure 2. Average Clustering Coefficient Evolution

The most common use of modularity is the detection of commu-
nity structures (e.g. [4]). Such an indicator, if observed over time,
can provide very interesting hints for the analysis of complex dy-
namic networks, in particular for the evolution of their structures and
groups formation. It could also enable to see whether communities
tend to specialize and/or homogenize. Figure 3 shows the evolution
of the average modularity over the sequence of footprints of our sci-
entific networking example.
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Figure 3. Evolution of the Modularity

In a similar way as for the clustering coefficient, the evolution of
modularity exhibits a phase transition around 1999 that separates a
monotone trend from a decreasing one. This means that nodes first
tends to form separate groups, which at some point start to inter-
connect with each other into a smaller number of larger groups (for-
mation of communities). Modularity and clustering coefficient are
clearly related. It was shown for example in [1] that networks with
the largest possible average clustering coefficient are found to have a
modular structure, and at the same time, to have the smallest possible
average distance between nodes.

Evolution of the Degree Power Law. Real world networks are
“scale-free”, in the sense that their node degree distributions follow
a power-law that is not affected by the size of the network. Such a
power law indicates that the fraction F' of nodes that have degree k
decreases as F'(k) ~ k™7, where v € R is a parameter that varies
among different types of networks; its value is generally in the inter-
val [2, 3].

The evolution of the power law over time could reflect for exam-
ple the arrival or departure of hubs - nodes that interconnect several
groups. Figure 4 shows the evolution of the power law exponent over
the sequence of footprints of our dataset. As our example deals with

the network of most proficient authors, i.e. a subset of the dataset,
the values in Fig 4 are slightly different from the traditional refer-
ence values. In particular, the graphic shows how closely the degree
distribution of a graph follows a power-law scale at each time inter-
val. The higher the values, the more unequal is the distribution of
connections within the nodes of the network.
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Figure 4. Evolution of the degree power law

Notice that the curve in Figure 4 provides additional details about
the interaction pattern evolution of the network. As the evolution of
the clustering coefficient shows an increase of the clustered structure
of the network, and the modularity indicates that such an increase
is characterized by the connection among separated groups, the de-
crease of the degree power law shows that the interconnection pro-
cess is driven by nodes with low degree acting as hubs within groups.

Evolution of the Conductance. Social networks are intensively
studied not only with respect to their structure, but also regarding the
interactions occurring on top of them. For instance, several studies
focused on information diffusion within groups based on a process
of social influence (influential networks [21]). Such a process was
intensively studied under the name of viral marketing (see for in-
stance [15]) to predict the propagation time of a message over a net-
work. It was recently shown in [13] that the conductance - a measure
that characterizes the time of convergence of a random walk toward
its uniform distribution - plays an important role in “push-pull” based
dissemination strategies. The conductance of a graph is defined as the
minimum conductance over all the possible cuts (S, S) in this graph
(a cut is a partition of the nodes into two disjoint subsets). The con-
ductance of a cut (S, S) is defined as

|(zes, yes) € El
min(|(x657y€‘/) S E|a |(m6§7y€V) € El)

»(9) =

The evolution of conductance might reveal how the links of a net-
work are organizing according to the distance between nodes, and
indirectly reflect a process of self-optimization (or deterioration) of
the network efficiency.

3.2 Evolution of Temporal Indicators
3.2.1 Methodological approach

Most temporal concepts — including all those mentioned at the end
of Section 2.2 — are based on replacing the notion of path by that
of journey. As a result, they can be declined into three versions de-
pending on the type of distance considered (i.e., shortest, foremost,
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fastest). Since journeys are paths over fime, the evolution of param-
eters based on journeys cannot be studied using a sequence of ag-
gregated static graphs. For example, there might be a path between
2 and y in all footprints, and yet possibly no journey between them
depending on the precise chronology of interaction. To analyze the
evolution of such parameters, we need to use a more powerful tool:
a sequence of time-varying graphs.

TVGs as a sequence of (shorter) TVGs. Subgraphs of a time-
varying graph G = (V, E, T, p) can be defined in a classical manner,
by restricting the set of vertices or edges of G. More interesting is the
possibility to define a temporal subgraph by restricting the lifetime
T of G, leading to the graph G’ = (V, E’, T, p) such that

e T'CT
o EE={ecE:3teT :pt)=1}
o o/ E' x T — {0,1} where p'(e, t) = p(e, t)

In the same way as for the sequence of footprints SF, we can now
look at the evolution of a TVG through a sequence of shorter TVGs
ST(7) = G™,G™, ..., in which the intervals are either disjoint or
overlapping.

3.2.2 Indicators and Discussions

Evolution of the (temporal) Distance. The basic concept of this
class of indicators is that of distance. In particular, there are three dif-
ferent types of distances - shortest, fastest, and foremost - that are re-
spectively noted d(u, v), 8(u, v), and §(u, v). As discussed in the in-
troduction, these concepts of distance are central in various contexts
and were recently subject to several studies. Algorithms to compute
optimal journeys according to the three types of distances are avail-
able in [6]. (Distributed analogues of these algorithms were recently
proposed in [8] and [9].) Computing the distance gives an idea of
how reachable the nodes are from each other, and thereby constitutes
a general bound on dissemination speed.

A concept symmetric to the one of temporal distance is that of
temporal view, introduced in [25] in the context of social network
analysis. The temporal view (or simply view) that a node v has of
another node u at time ¢, denoted ¢, +(u), is defined as the latest
(i.e., largest) ' < t at which a message received by time ¢ at v could
have been emitted at u; that is, in the TVG formalism,

max{departure(J) : J € T (u,v) A arrival(J) < t}.

This concept could, as that of distance, be declined into three ver-
sions (the above one is symmetric to the foremost distance). Studying
the evolution of temporal distances or views over a sequence of tem-
poral subgraphs reflects how close in time, or in hops, the nodes tends
to become. It serves as a basis to most of the indicators discussed be-
low.

Evolution of the (temporal) Diameter and Eccentricity. The
three journey-based versions of eccentricity and diameter were first
discussed in a communication network context [6]. The eccentricity
of anode u in a TVG G can be defined in terms of shortest journeys
as

e(u) = max{d(u,v) :v € V}

where d can be substituted by §(u,v) or §(u, v) to obtain the fore-
most eccentricity €(u), or the fastest eccentricity €(u), respectively.
The eccentricity of a node directly reflects its reachability capacity,

and therefore the impact it can have on the network. Such a param-
eter could have a particular significance in some field of research,
e.g. in epidemics, the existence of nodes with a high temporal eccen-
tricity could be associated with the possibility for a virus to survive
long-enough to reinfect people. Three versions of the diameter natu-
rally follow based on those of eccentricities: maz{e;(u) : u € V},
maz{e;(u) : u € V}, and maz{€;(u) : u € V'}. The foremost ver-
sion of the temporal diameter was specifically studied in [12] from
a stochastic point of view by Chaintreau et al., but to the best of our
knowledge, the evolution of the temporal diameter or eccentricities
have never been considered yet. Looking at them could reveal com-
plex social parameters, e.g., considering the evolution of standard de-
viations among node eccentricities could reflect how a network tends
to create fairness or inequalities among its participants.

Evolution of the (temporal) Centrality. One of the most impor-
tant properties of social networks’ structures is the so-called notion
of power. As a shared definition of power is still object of debate, the
design of metrics able to characterize its causes and consequences
is a pressing challenge. In particular the social network approach
emphasizes the concept of power as inherently relational, i.e., de-
termined by the network topology. Hence, the focus must be put on
the relative positions of nodes. In order to characterize such a prop-
erty the concept of centrality has emerged. The simplest centrality
metric, namely the degree centrality, measures the number of edges
that connect a node to other nodes in a network. Over the years many
more complex centrality metrics have been proposed and studied,
including Katz status score [22], a-centrality [5], betweenness cen-
trality [17], and several others based on random walk [30, 40], the
most famous of which is the eigenvector centrality used by Google’s
PageRank algorithm [31]. The temporal adaptation of these concepts
is meaningful, and Kleinberg et al. have shown in [25] that nodes
that are topologically more central are not necessarily central from a
temporal point of view, whence the concept of temporal centrality.
Studying the evolution of these over time could in turn shed light on
how “powerful” nodes tends to emerge in a network. Betweenness
and closeness are two well-known measures of centralities.

Temporal betweenness. The betweenness of a node in a static graph
measures the occurrences of that node within the shortest paths of
other nodes [17]. A temporal version of the betweeness based on
foremost journeys was considered in recent work by Tang et al. [41].
The definition can be generally formulated as

|d'(u, v, )]
2. |d(u, v)|

vAUAGEV

B(q) =

where |d(u, v)| is the number of shortest journeys between v and v in
the time varying graph G™¢, and |d’ (u, v, q)| is the number of shortest
journeys, among them, that pass through ¢q. We can analogously de-
fine the temporal betweeness in terms of foremost or fastest distance,
by substituting d(u, v) with 8(u, v) or 6(u, v).

Temporal closeness. In a static context, the closeness measures the
mean of the shortest paths between a node and all the other reachable
nodes [17]. It can be formally defined as

TC(u)= Y

veV\u

d(u,v)
HweV:3J € J*(u,w)}

and again, possibly declined to a shortest, foremost (6(u,v)), or
fastest (0 (u, v)) versions. As one will certainly notice, this parameter
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is highly related to that of temporal eccentricity, and yet, both have
appeared in very different fields of research. This illustrates again
how general both the temporal concepts and the formal tools can be.
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Adaptive Security Scheme for Open Networks

Julia Schaumeier' and Jeremy Pitt> and Moez Draief® and Pallapa Venkataram

Abstract. Existing security solutions have had only limited suc-
cess in addressing the diversity of attacks on different types of open
and decentralised networks. Furthermore, they do not differentiate
between intentional violation and unintentional or accidental mal-
function. As an alternative to ‘lock down’, we propose a generic,
re-configurable and adaptive network security scheme. This scheme
combines social networks with multi-agent systems, by interleaving
opinion formation and belief revision processes in an agent’s archi-
tecture. The operation of the proposed scheme is animated with a
possible application to a security problem in an open system.

1 INTRODUCTION

Open systems and networks offer substantial advantages in terms of
scale, opportunity and generativity. They can be operationally suc-
cessful because the system design is predicated on an assumption
of co-operation, and as a result conflict resolution can be pushed to
either the application layer or the physical layer [23]. The system
is then tolerant of transience, mobility, resource contention, hetero-
geneity, and accidental malfunction, and can recover from sub-ideal
behaviour [1].

The real problems start when the assumption of cooperation is
void. These problems range from selfish behaviour due to conflict-
ing goals, through to deliberate, malicious behaviour to disrupt or
destroy the system. In addition, targeted attacks can be launched on
a network. They come either from outside and usually compromise
several agents, or from agents within the network who can even join
their forces for a more effective attack. Possible attacks include de-
nial of service, data tampering or resource depletion. Several ways to
defend an attack are described in the literature, but most methods are
tailored to either specific types of attacks or specific networks, as it
is impossible to address all of them at once.

Arguably, existing security solutions have had only limited success
in addressing the diversity of attacks on different types of open and
decentralised networks. For example, computationally intensive key-
based authentication schemes are inappropriate in resource-limited
environments such as sensor networks. Similarly, insurance and pro-
tection schemes are predicated on knowing the nature of the attack
beforehand, which is dependent on a pre-emptive event recognition
mechanism. Furthermore, lacking a ‘cognitive’ dimension, they do
not easily differentiate between intentional violation and uninten-
tional or accidental malfunction. Finally, there is always the risk of
doing the attackers job for them. For example, if the security response
to a potential battery exhaustion denial-of-service attack in an ad hoc
network itself consumes excessive resources, then the attacker does
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not even need to launch an attack to bring down the network. The
system’s own response to the threat alone is enough.

Therefore open system designers must anticipate both accidental
misbehaviour but best efforts to restore functionality, and intentional
misbehaviour yet best efforts to destroy functionality. As an alterna-
tive to ‘lock down’, i.e. to reject the open systems concept, a security
scheme is required that:

complements cryptographic and game-theoretic techniques,

is generic and scalable to different classes of networks,
differentiates between intentional and unintentional errors, and
adapts to a changing environment.

In previous work [6], we proposed to interleave social networks
and multi-agent systems based on norm-governed specifications.
Opinion formation was used to determine regulations for agent be-
haviour from an external perspective and could prove useful in deal-
ing with selfish behaviour which was non-compliant with system
specifications.

In this work, we propose to extend the scheme for open and ad
hoc networks. The new security scheme is intended to be applica-
ble to different types of networks, and to allow for detection and re-
covery from concerted attacks as well as unintentional errors and/or
selfish behaviour. To this end, complementary aspects of multi-agent
systems and social networks are integrated into the internal architec-
ture of an agent, to evaluate the behaviour of other agents according
to the agreed regulations. In particular, agents exchange their lim-
ited perception of the environment, and by taking the views of their
neighbours into account, they revise their beliefs about an appropri-
ate security policy.

The rest of the paper is organised as follows. The second section
introduces different types of open networks, classifies them and high-
lights their security issues with emphasis on intentional and uninten-
tional errors. Section 3 presents an open network to point out the
necessity of the proposed security scheme. The scheme itself is then
discussed in section 4 and envisioned in section 5. Afterwards, con-
clusions and further work are mentioned in section 6.

2 SECURITY IN OPEN NETWORKS

The networks in question are open, decentralised and heterogeneous.
That means agents are joining and leaving the network anytime and
don’t have a publicly known internal architecture. They might be
selfish and pursue conflicting goals, or they might just be unable to
perform specific tasks. This can be caused by accident, necessity or
design, but all aspects lead to a sub-ideal behaviour of the network.

2.1 Types of open networks

We identify three different types of open networks.
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A wireless sensor network (WSN) is formed by a collection of
sensor nodes that are distributed in the environment and are typically
resource constraint. They sense events like temperature, particle den-
sity or speed, and process this information via the (ad hoc) network
(see [4]). The nodes then either perform actions autonomously, like
the intervention in a production process, or collect and forward data
to a base station. How information is processed in particular depends
on the networks’ specifications. There can be a determined or perpet-
ually redefined node hierarchy, sensors can be fixed or mobile, alert
or sleeping, etc. Summarised, the topology in the underlying graph
can be ever-changing and algorithms have to be tailored accordingly.

Vehicular ad hoc networks (VANet) provide a service for traffic
management, passenger safety and driver assistance. Sensors are in-
stalled in vehicles to monitor unexpected changes in the environment.
These might be an accident behind a curve, a traffic jam or a danger-
ously overtaking car. To process the individually sensed information,
vehicles in the vicinity form an ad hoc network and then commu-
nicate with either other vehicle clouds or fixed road side units. The
main difference to most WSNs is the sporadic connectivity and the
relatively short contact time between vehicles. [16] provides impor-
tant details about the nature of and security problems in VANets.

A Virtual Organisation (VO) is a way to manage projects and com-
panies in a decentralised manner. Collaborating parties can be from
multiple disciplines to share their knowledge and access to facilities,
such as data bases, software and computing power (see i.e. [7]). The
main advantage is that employees can work from any location at any
time. Furthermore a VO can quickly be set up to the needs of specific
tasks across the boundaries of various physical or virtual institutions.
Typically, a VO 1is organised as decentralised as possible in order
to maintain scalability and mobility since projects involve more and
more people and span over the whole planet. To run a company un-
der such conditions VOs base very much upon trust and reputation,
whereas the notion of trust occurs in different layers. Not only in
computing devices, but also on an interpersonal level, therefore dif-
ferent schemes to verify authentication and integrity are needed.

2.2 Network classification

Table 1 compares important features that help characterising WSNss,
VANets and VOs. These features represent the most important as-
pects, but can be further extended. Depending on the exact specifica-
tions of the considered network, the given values may vary as well.

The table demonstrates different classes of applications for which
open systems and networks are appropriate and advantageous. How-
ever, it also demonstrates the wide variance in specific properties, and
for many dependent properties, the extent to which these properties
are contingent on the application or operating environment.

The range and scale of this diversity raise specific issues in dealing
with intentional security attacks, as considered in the next section.

2.3 Security issues

As with any other network, open networks face potential security
attacks. We expect an open network to have the following security
objectives (i.e. [18]): Data Confidentiality, Data Authentication, Data
Integrity, Data Freshness or Availability and Graceful Degradation.
That means the targets are manifold. There is the node itself, the
communication stack, traffic or service, key management protocols,
identities, synchronisation protocols, etc. Depending on the specific
characteristics they become even more vulnerable, for example due
to limited resources or lack of authentication.

Many of the attacks are targeted on the communication stack:
jamming of the physical layer, targeted attacks on the protocol, and
flooding or desynchronisation on the transport layer (i.e. [22]). Fur-
thermore the network layer is vulnerable to wormholes and spoofed,
altered or replayed packets, as well as selective forwarding. To
achieve a denial of service, an attacker for example floods the net-
work with packets or sends a huge amount to a specific target in or-
der to decrease the performance. This might in return lead to severe
damages in the real world, depending on the purpose of the network.
The list of possible attacks is by far not complete. Furthermore, de-
pending on the type of network, more specific attacks come into play.

Another problem of networks where any node can join is that some
devices are simply unable to meet the system requirements all the
time. Thus, unintentional errors might occur. However, they might
also occur due to security attacks. Therefore we have to deal with
unintentional errors caused by accident or necessity, unintentional
errors induced by intentional security attacks, and intentional errors.

2.4 Typical security approaches

In closed or centralised networks, error detection proves to be a valid
approach to fight against intentional and unintentional errors. The
outcome can then be used to modify the networks’ regulations and
security settings. In open, decentralised and autonomously working
networks, error detection is no longer useful in most of the cases.
Different security approaches have been investigated so far. Among
the defences range prevention via protection or damage limitation via
insurance, i.e. against epidemics or specific targets and links. Numer-
ous papers look into their game theoretic aspects, such as [3, 8, 19].
The major drawback of these mechanisms is, that the type of attack
has to be known beforehand to efficiently secure the network. More-
over unintentional failures are not taken into account, which can lead
to perturbations of the systems that destabilise the Nash equilibria.

A standard in network security is cryptography. Most schemes rely
on an existing shared secret basis of two agents in order to exchange
keys for securing their actual network traffic. This is a problem when
it comes to mobile or vehicular ad-hoc networks, as nodes do not
have any prior contact information when they first access the network
or move around and discover “new” nodes.

Khalili et al. [11] propose a scheme for ad-hoc networks that
doesn’t rely on any pre-shared keys and reduces the amount of mes-
sages that have to be sent in order to exchange a key. The keying
mechanism uses network coding, which allows every agent to re-
construct the key by recombining information obtained from a fixed
number of nodes. This is a powerful tool for closed systems, where
an adversary has to compromise more nodes than the fixed amount,
but in open networks this information is accessible for everybody.

Other approaches include countermeasures like package leashes,
client puzzles, authentication or encryption schemes, see [18]. But as
already indicated above, none of the investigated methods to secure
ad hoc networks suited our needs. The main constraints therefore are
the openness, heterogeneity and unpredictability of open networks.
Moreover current security schemes do not or cannot distinguish in-
tentional and systematic violation from unintentional failures, and
are often tailored to a specific network.

2.5 Summary

Summing up, there are several different open networks and many
different attacks that can be launched at these networks. Although
most of the network/attack combinations have an existing security
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Table 1.

Comparison of selected network characteristics

Network feature Sensor Network VANet Virtual Organisation
resource constrained yes no a few devices
time constrained usually yes definitely depends on business
mobility limited high, but organised yes, but slow
data authentication preferable required required
sender authentication required difficult (privacy) required

hops multi multi + single single

base stations optional yes n.a.
communication range short short + long variable
destination of information is specific node depends no often yes
destination of information is physical area depends yes usually not
error tolerance depends none depends

key distribution at initialisation challenging by trusted parties
user density depends on app low to start with n.a.

human interaction yes better not high

solution, it is almost impossible to anticipate what type of attack is
going to happen in decentralised networks. That makes many ap-
proaches, like insurance for example, inapplicable and existing secu-
rity schemes only offer a partial solution. Furthermore they do not
have sufficient flexibility to distinguish between intentional and un-
intentional errors.

Draief et al. [6] present a scheme where a social network is com-
bined with a norm-governed system. Agents correlate in different
roles to self organise their network by agreeing on external rules,
so to pursue personal and network goals. We propose to extend this
scheme by considering the internal architecture, based on the same
idea of agents assessing each other’s behaviour with respect to these
agreed external rules. Thus a configurable and adaptive scheme is
produced that can be tailored to different network types and responds
to security threats at runtime.

3 SCENARIO

This section introduces a simple open network where the security
scheme will be applied to later on.

Imagine an open network, see figure 1, where the nodes, or work-
ing units, have to deliver packets to various destinations, but have
only a limited communication range. Thus, the packets have to be
sent via intermediate units before they reach their destination. If a
unit forwards a packet successfully it gets a certain payoff, the same
holds for an own packet that reaches the final destination D.

The network can be represented as a multi-agent system

My = (A, ACT, N;)

where A; is the set of working units at time ¢, ACT is the set of
possible actions and N is the adjacency list at time ¢, or rather the
units in the neighbourhood that are able to reach each other.

Several actions that can follow upon events or past actions of the
neighbourhood in each time slice are possible. These are ACT =
{wait, forward, accept, drop}, and the main event is packet gets
ready for delivery along with the status variables stack, for ready
packets, and payoff. To ensure the packets to be forwarded, the fol-
lowing algorithm is executed.

In every time-slice ¢, a packet gets ready with a certain probability
© and a unit is in one of the three stages:

1. Unit is idle (or waiting for packets to be forwarded to them)

Figure 1.

Working units in an open network

2. Unit tries to forward, preferably to a unit nearest D
3. Unit is waiting for their forwarded packet to be accepted

The rules during each stage are:

1. if packets are forwarded to them, accept one:
if packet got here too often already: unit drops it *h
. t+1
otherwise — 2
if a packet is remaining in stack it Y}
t+1
else — 1
2. if the destination is D 25 1
if target unit is not in stage 1:
if too many delivery attempts: unit drops the packet o
otherwise choose a different unit 5 2
else target unit is in stage 1 s
3. if packet is not accepted:
. . . 1
if too many delivery attempts: unit drops the packet lad |
. . Lt
otherwise choose a different unit <= 2
t+1
else packet gets accepted — 1

Incoming packets have priority over own packets but if there are
packets from more than one unit coming in, some of the packets have
to be refused. Those units then have to look for a different unit to
forward their packet to. In case they tried every neighbour a certain
amount of times, they are allowed to eventually drop the packet.
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The algorithm can be tailored to any specific network by using
the characteristics mentioned in table 1. As an example, the working
units and packets can be replaced with the following arguments:

WSN VANet VO
unit sensor car service
packet reading  TCP/IP-packet  service-request

The forwarding approach of the units is effective under the as-
sumption of cooperation, not if a unit starts to act selfishly, for ex-
ample floods the network with own packets (denial of service), drops
every incoming packet, or spoofs them to get a higher payoff for “for-
warded” packets. One can imagine various of the previously men-
tioned attacks to happen in the network. But not only intentional er-
rors are possible, a working unit might just be short of resources and
therefore not be able to forward the packets according to the protocol.

Thus it is essential for the units to communicate and to smartly use
this information to revise their beliefs of the environment.

4 PROPOSED SECURITY SCHEME
4.1 Motivation

How can gossiping help to distinguish between different types of er-
rors? Consider the network of figure 1, especially the units A to E. If
unit A is experiencing drop by E at time ¢, that might be considered
as an unintentional error, but if a drop happens at ¢, ¢t + 1, ¢ + 2 and
t + 3, it looks like intention. Drops can be detected by integrating a
drop-count variable into the unit and prevented by punishment mech-
anisms. Now assume that E' drops a packet of A in t, a packet of B in
t 4 1, and so on. For each unit this looks like a one-off unintentional
error and no countermeasures will be instantiated. But by gossiping
about the unreliable unit F, units A..D will eventually find out that
E behaves intentionally maliciously.

This shows that communication is necessary for open systems to
solve security problems, as well as revising and adopting epistemic
beliefs according to the changing environment.

In order to address intentional and unintentional errors of the
working units, the multi-agent system gets extended with a social
network where everybody is able to gossip and reason about success-
ful deliveries, unreliable neighbours or other issues that appear in the
network. This helps the units to find out who the disrupting entities
are and whether they are malicious or malfunctioning. It then allows
them to take appropriate countermeasures, like excluding the mali-
cious units from the network, but gives malfunctioning units another
chance.

4.2 Adaptive network security scheme

The proposed scheme is as follows:

An open network, such as from the scenario in section 3, is ex-
tended with a social network where everybody is able to gossip and
reason about successful forwarding, unreliable neighbours or other
issues that appear in the network (see [6]). This enables them to find
out who the disrupting entities are and allows them to take appropri-
ate countermeasures, like excluding malicious nodes from the whole
network whilst adjusting requirements for malfunctioning ones.

The three mechanisms behind gossiping and reasoning are:

e opinion formation
e belief revision including forgiveness
e action selection

Every agent A has a set of beliefs A 4 (¢) that contains views about
the state of the network, other agents, principles, problems in ques-
tion, actions, etc. From time to time, they want to find out whether
their beliefs are still valid or should be updated, or whether new top-
ics of discussion emerged in the neighbourhood or the changed state
of the network augments the scope of actions. Every agent A also
holds a set of opinions O4(t) that he uses to form his own opinion
depending on different opinions that other agents might have on a
specific topic, moreover it influences the beliefs. Using the pool of
different beliefs, an agent can then select the most appropriate action
to achieve the pursued goals.

The new architecture of the multi-agent system will be denoted as

At = <U7A7O;f17f27f3>t’

where
t
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Figure 2 illustrates how agent A gets from an issue in question,
here 1, to specific actions.
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Figure 2. Internal architecture of an agent

The specific mechanisms that are chosen for f1, fo and f3 are left
to the user.

Thus we obtain a generic, configurable and adaptive scheme to
enhance security in open networks. Meaning, by adjusting the cor-
responding characteristics from table 1, the scheme can be used for
any network, especially either of the mentioned types from section
2.1, and will then adapt to changes in the environment at runtime.

5 ENVISIONMENT

In this section, we perform a sort of ‘thought experiment’ to illustrate
the interleaving of the opinion formation and belief revision modules
and its application to a security problem in an open network.

5.1 Scenario

Consider five agents A..FE connected in an arbitrary network. Sup-
pose E drops a packet from A. In a one-off encounter, A cannot
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be sure if this was an intentional or unintentional violation of the
forward_packet rule. A gives E the benefit of the doubt. Suppose
though E drops one packet each from A, B, C and D. In isolation,
each of them gives E the benefit of the doubt. But: “to lose one looks
like misfortune; to lose two looks like carelessness; to lose four looks
like intention”. If the four agents could pool their experiences, they
might not be so forgiving.

Therefore, as a first pass of the proposal, we will instantiate pro-
cess fi1 with a simple opinion formation model, and process f> with
a forgiveness module which uses collective knowledge to revise sub-
jective beliefs.

5.2 Opinion Formation

For example, process fi could be a variation of the Discrete Agent
Model of Krause [9]. In this model, each agent a € {A..E} main-
tains a real value a;(t) which represents a’s ‘opinion’ or ‘position’
on issue 7 at time ¢. a; (t) and ) are linked to the belief revision part.
€ is a bounding threshold, and there may be n issues, 1 < 7 < n.

These values are synchronously updated in discrete time steps ac-
cording to the equation:

. Zb: d¢(a,b)<e bz(t)

ai(t+1) = +a;(t), be{A.E},

Zb: d¢(a,b)<e 1

where d(., .) measures the distance in a chosen (i.e. physical) norm.

That way each agent updates its opinion on issue ¢ in the next time
slice by computing the average value of its neighbours’ opinions in
the current time slice. This is done for each issue.

Note this model has been extended to a continuous agent model
in [2] and in [15] to consider the ‘trustworthiness’ of the opinions’
sources by considering the affinity to, and confidence in, one agent to
another. However the above model is suitable for present purposes.

5.3 Forgiveness

Action selection in an open network is a trust decision: it is a willing-
ness to expose oneself to risk. To make such a decision, it is necessary
firstly to hold two beliefs [10]: that there is a rule, and that someone
else’s behaviour will conform to that rule; and secondly to make a
computation: what is the probability that someone’s behaviour will
conform to that rule, and what is the benefit/cost if someone’s be-
haviour does/does not conform to that rule [13].

For this to be a trust decision there has to be an element of risk: if
the error in the trust decision is zero, it is not a trust decision. There-
fore, there is always a possibility that the decision may be wrong, and
an essential element of trust, often overlooked, is what to do when the
trust decision is wrong.

In [20, 21], a forgiveness mechanism was proposed for decision-
making about violation of norms. This was not based on reputation,
which is a quantitative punishment mechanism, but instead on for-
giveness, which is a qualitative repair mechanism. From psycholog-
ical literature, forgiveness is known to stimulate voluntary acts of
recompense, reduce a negative predisposition towards an offender,
and accentuate a positive motivation for self-repair.

The forgiveness framework defined in [21] comprises eleven con-
stituent signals (severity, frequency and intent of the offence; apol-
ogy or reparation; utility and frequency of beneficial relationship;
and familiarity, similarity, and shame or embarrassment) underlying
the four positive motivations relating to the nature of the offence, re-
medial action, historical record and empathic relationship. This was

implemented using a fuzzy inference system (FIS) which used fuzzy
rules to compute a fuzzy value for each of the four positive motiva-
tions from the respective signals, which were themselves combined
by a FIS to output a forgiveness decision (see Fig. 3).

Offence severity —»

Offence frequency —~ Offeonce
Intent —» (25%)
Apology —» Repair
Action of reversal —» (25%)

Forgiveness
FIS1 decision (d)

Benefits utility —»- History
Benefits frequency —»~ @ W

Visible acknowledg. —»
Prior familiarity —»
Similarity —»

Empathy
(25%)

Figure 3. Forgiveness framework

5.4 Example

We can now see how these two processes can be interleaved. Suppose
instead of the 11 constituent signals being related to subjective expe-
rience, they were also opened up as issues in the opinion formation
model, i.e.:

A1 = offence_severity
Az = offence_frequency
A1 = similarity

and likewise for agents B, C, etc.

Let us now suppose that the opinion of an agent on the frequency
of an offence at time ¢ is given by >, 1/2"~ (™! where t, are
the times of offences. Note at the time of evaluation ¢, opinion will
be reported at time ¢ — 1, so the offence will have occurred at time
t — 2, so the opinion will by 1/2 if an offence occurs in the last but
one time slice, 1/4 in the time slice before that, and so on; and so
sums to 1 if there is an offence in every time slice. (There can only
be one drop packet violation per time slice: if there is a packet in the
agent’s queue and there is no forward packet event.)

Now, for the first dropped packet, A might trigger the rule in FIS2:

if severity is low and frequency is low and intent is low
then judgment of offence motivation is 0.2

and because the frequency is 1/2 its value is considered low and a
low value will be given to this motivation, therefore increasing the
likelihood of forgiveness.

If A suffers no more dropped packets, then the frequency of of-
fence will start low and rapidly tail off.

However, by aggregating the opinions using the equation above,
by the time of the fourth dropped packet, and depending on how the
fuzzy membership function for this signal for A has been defined, it
might be now that A’s opinion of the frequency (of offence) is high,
and we might trigger the rule in FIS2 that:

if severity is low and frequency is high and intent is low
then judgment of offence motivation is 0.6

and consequently this could lead to a very different forgiveness deci-
sion from FIS1.
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Possibly, this mechanism is prone to manipulation and we have to
ensure that gossiping and forgiveness mechanisms cannot themselves
be exploited for other types of attacks. However, no agent necessar-
ily knows another’s membership function so the number of packets
that could be ‘safely’ dropped over any given time period cannot
be computed in advance. In any case, the general security and error-
handling principles can be seen to be at work: forgiveness for one-off
or unintentional norm violations, no forgiveness for systematic of in-
tentional norm violations.

6 SUMMARY & CONCLUSIONS

In summary, this is a position paper that proposes an extension to
a social networks and multi-agent systems adaptive security frame-
work, by exploiting the internal architecture of an agent. We con-
sidered how opinion formation, based on gossiping principles and
algorithms from social networks, could be interleaved with belief re-
vision algorithms based on multi-agent systems principles, such as
autonomy (local control over local beliefs and decisions) and auto-
nomicity (the proposed forgiveness framework is essentially a self-
repair mechanism).

Note that we do not contradict the assumption that the internal
structure is unknown in open systems. All the security scheme pred-
icates is the communication of an opinion and of a decision; how
these mechanisms are actually implemented is unknown. We have
given one instantiation which (by animation) appears to help deal
with intentional drop-packet actions in a common open network sce-
nario.

At this point, this work is still ongoing, and we have at least four
specific steps of future work to prove the concept contained in the
proposal. The ‘thought experiment’ is not enough, therefore we need
to implement the current proposal to test its properties, in MatLab or
other agent/network simulation environments such as PreSage [12].
Then we will investigate other opinion formation models such that
of [15] and its interleaving with epistemic belief revision algorithms
specified by [5]. Furthermore, we will determine whether the param-
eters representing the networks’ characteristics (see Table 1) make
the scheme effective against different types of attacks in different
types of networks. Finally, we need to deploy the mechanisms in real
networks to their actual performance, as it is often the case that mech-
anisms such as we propose operate differently ‘in the field’ than in
the lab. The pay-off from a successful investigation will be to disen-
tangle one-off unintentional error from intentional malpractice, from
repeated unintentional errors, and so on.

In normative and social systems, rules and regulations, and in-
dividual behaviour with respect to those rules and regulations, are
open to interpretation, latitude, and license. For example, a funda-
mental principle of Robert’s Rules of Order [17], the standard defi-
nition of keeping order in deliberative assemblies, meetings, etc., is
that “anything goes unless someone objects”. Furthermore, the for-
giveness mechanism proposed here was inspired by a thorough study
of the role of forgiveness in restoring order in social systems in the
psychological literature.

We have tried to reproduce those mechanisms in our proposed
adaptive security scheme for open networks. The alternative, as
pointed out in [23], is that computer code itself becomes law, in
which case various forms of perfect enforcement are available, for
example by pre-emption, injunction, and surveillance. However,
these security mechanisms, create a lock down and while supposedly
eliminating ‘bad’ behaviour and preventing security attacks, also cur-
tail good behaviour, such as generativity (a system’s capacity to pro-

duce unexpected, unanticipated and un-designed-for change [23]).
We see the same problem with open networks: security mechanisms
aimed at ‘perfect enforcement’ using techniques such as key-based
authentication or game theory might, in principle, eliminate ‘bad’
behaviour and mitigate security attacks. On the other hand, they will
almost certainly curtail the potential advantages of open systems and
networks, specifically those relating to organised adaptation and the
emergence of complex behaviour [14].
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Rooting opinions in the minds: a cognitive model and a
formal account of opinions and their dynamics

Francesca Giardini | Walter Quattrociocchi 2 and Rosaria Conte 3

Abstract. The study of opinions, their formation and change, is
one of the defining topics addressed by social psychology, but in re-
cent years other disciplines, like computer science and complexity,
have tried to deal with this issue. Despite the flourishing of different
models and theories in both fields, several key questions still remain
unanswered. The understanding of how opinions change and the way
they are affected by social influence are challenging issues requiring
a thorough analysis of opinion per se but also of the way in which
they travel between agents’ minds and are modulated by these ex-
changes. To account for the two-faceted nature of opinions, which
are mental entities undergoing complex social processes, we outline
a preliminary model in which a cognitive theory of opinions is put
forward and it is paired with a formal description of them and of their
spreading among minds. Furthermore, investigating social influence
also implies the necessity to account for the way in which people
change their minds, as a consequence of interacting with other peo-
ple, and the need to explain the higher or lower persistence of such
changes.

1 Introduction

The studies about opinions, persuasion and social influence are foun-
dational and pressing issues in social psychology; however, within
this discipline, the dynamics of opinions at the level of population
has been underestimated. There are also other disciplines that have
shown a great interest regarding such an issue, ranging from political
science ([17]) passing through socio-physics ([7]) up to complexity
science ([18]). Understanding opinions, describing how they are gen-
erated and revised, and how fare opinions travel over the social space
both as a consequence of social influence and as one of the main
means through which social influence unfolds, is crucial for grasp-
ing a deeper understanding of human social cognition and behaviors.

Investigating opinions requires to take into account two levels of
explanation: the individual and the social level. Social psychology
has been mainly interested in explaining this first level, trying to de-
scribe the complex interplay of affective, cognitive and behavioral
aspects that make opinions emerge. On the other hand, scholars from
computer science and physics have tried to explain how different
opinions can coexist or how they are modified through social inter-
actions, treating opinions as objects that are exchanged and revised
according to certain mechanisms that are quite far from the reality
of cognitive and social processes. In both cases there is a reduction-
ist fallacy that works in apparently different ways but it affects both
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these approaches, leading them to treat opinions either as a set of
unrelated specific elements or as a unidimensional object that has
nothing in common with a cognitive representation.

We claim that opinions are highly dynamical representations re-
sulting from the interplay of different mental representations and af-
fected by the mental states of other individuals in the same network.
Aim of this work is to provide an interdisciplinary account to de-
scribe how social influence leads to opinion formation, evolution and
change. Moving from a characterization of opinions as mental repre-
sentations with specific features, we will try to model how opinions
are generated within the agents’ minds (micro-level) and how they
spread within a network of agents (macro-level). When explaining
the emergence of macro-social phenomena we need to know what
happens at the micro-level, i.e. what drives human actions and deci-
sions in order to understand how individuals’ representations and be-
haviors can give rise to socially complex phenomena and how those
affect agents’ actions. Without explaining how opinions are formed
and manipulated within the individuals’ minds, it is very difficult to
account for the way in which they change as an effect of social in-
fluence. Our aim is to understand whether and how heterogeneous
agents, endowed with different beliefs and goals, may come to share
a given viewpoint and what consequences this sharing has on agents’
behaviors. We are interested in providing answers, at least partially,
to the following questions: What is an opinion? What mechanisms
lead people to change their opinions? How can individuals resist to
changes? What are the mechanisms of influence acting within and
between individual minds? How does social impact affect agents’
elaboration of new or contrasting information?

As opinion is still a debated concept within several disciplines,
either its conceptualization or formalization are hard tasks. In partic-
ular, the actual instruments -e.g. metrics, formalisms does not allow
for a tight definition accounting for a) the relationships between opin-
ions and other epistemic representations and b) their dynamics both
at social and individual level. In this paper we approach a preliminary
formal definition of opinions by means of Time Varying Graphs [8]-
e.g. a new formalism aimed at characterizing dynamically evolving
systems as shown in [23, 22].

In section 2, a brief review of the state of the art is provided to in-
troduce the main theories of opinions developed in the field of social
psychology and to discuss more recent advances in opinion dynam-
ics. Section 3 is devoted to the description of our model, in which a
definition of opinions as specific mental representations and cogni-
tively founded hypotheses about their diffusion and change will be
put forward. In section 4 a preliminary formal account of how opin-
ions are generated and how they can change is provided. In section 5
some conclusions are drawn and future directions are suggested.
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2 State of the Art

Social psychologists have devoted much attention to the study of
opinions’ formation and spreading, but a comprehensive and defi-
nite model allowing for an operational and generative account is still
missing. Providing a comprehensive review of social psychology lit-
erature is beyond the scope of this work, but in this section we will
discuss some of the main theories in order to underline how partial is
the picture of opinions emerging from these studies.

In general, opinions are treated as synonyms for different men-
tal objects, as beliefs [20], or more frequently, attitudes. Opinions
are often conceptualized as attitudes [19], [15], [21] or they are used
as interchangeable terms that have in common the fact of being af-
fected by social influence and persuasion [25]. Allport [3] recog-
nizes the difference between attitudes and opinions but he nonethe-
less considers the measurement of opinions as one way of identify-
ing the strength and value of personal attitudes. An alternative view
contrasts the affective content of attitudes with the more cognitive
quality of opinions that involve some kind of conscious judgements
[12]. Crespi [9] considers individual opinions as “judgemental out-
comes of an individual’s transactions with the surrounding world”
(p-19), emphasizing the interplay between what he calls an attitudi-
nal system and the external world characterized by the presence of
other agents and different subjective perceptions. Opinions are the
outcomes of a judging process but this does not mean that they are
necessarily rational or reasoned, although Crespi recognizes that they
need to be consistent with the individual’s beliefs, values and affec-
tive states. As other authors already pointed out [1], many models
of opinion and social influence do not provide careful definitions of
what an opinion is and how it is affected by social influence. This
happens to be true also for theories of persuasion, like the social im-
pact theory [16], a static theory of how social processes operate at the
level of the individual at a given point in time. Part of this theory has
been developed usign computational modeling by Nowak, Szamrej
and Latan [2]. In their model, individuals change their attitudes as a
consequence of other individuals’ influence. In parallel with the idea
that social influence is proportional to a multiplicative function of the
strength, immediacy, and number of sources in a social force field
[16], [13] suggest that each attitude within a cognitive structure is
jointly determined by the strength, immediacy, and number of linked
attitudes as individuals seek harmony, balance, or consistency among
them. Although very interesting, this account fails to distinguish be-
tween attitudes and beliefs and does not explain how inconsistencies
can be resolved. The effect of communication on opinion formation
has been addressed by different disciplines from within the social and
the computational sciences, as well as complex systems science (for
a review on attitude change models, see [1]). One of the first works
on this topic has focused on polarization, i.e. the concentration of
opinions by means of interaction, as one main effect of the ”social
influence” [11], whereas the Social Impact Theory’ [2] proposes a
more dynamic account, in which the amount of influence depends on
the distance, number, and strength (i.e., persuasiveness) of influence
sources. As stated in ([7]), an important variable, poorly controlled
in current studies, is structure topology. Interactions are invariably
assumed as either all-to-all or based on a spatial regular location (lat-
tice), while more realistic scenarios are ignored.

Turning our attention to complex systems science, one of the most
popular model applied to the aggregation of opinions is the bounded
confidence model, presented in [10]. Much like previous studies, in
this work agents exchanging information are modeled as likely to ad-
just their opinions only if the preceding and the received information

are close enough to each other. Such aspect is modeled by introduc-
ing a real number €, which stands for tolerance or uncertainty ([7])
such that an agent with opinion x interacts only with agents whose
opinions is in the interval |z — €,z + €.

The model we present in this paper extends the bounded confi-
dence model by providing a cognitively plausible definition of opin-
ion as mental representations and identifying their constitutive ele-
ments and their relationships.

2.1 Main Advances

This work aims at outlining a non-reductionist cognitive model of
opinions and their dynamics. Differently from the models reviewed
above, we first provide a definition of opinions as mental representa-
tions presenting specific features that make their revision and updat-
ing more or less easy and enduring. Moreover, grounding opinions in
the minds allow us to take into account not only direct processes of
revision triggered by the comparison with others’ different opinions,
i.e. social influence, but also revisions based upon changing in other
mental representations supporting that opinion.

The computational model introduced in this paper is intended to
provide a preliminary unifying framework to define opinions and to
characterize their dynamics in an easy but non-reductionist approach.
Opinions in several models of opinion dynamics are considered to
change according to social influence, we try to outline what is social
influence and the way the social network structure affects the agents’
opinions.

3 A Cognitive Theory of Opinions

Opinions can be described as configurations of an individual’s be-
liefs, values and feelings that can be conditionally activated. This
means that, for instance, starting from my feeling of aversion toward
mathematics and as a consequence of having met a rude friend of
friends who happened to teach math at school, when asked about
my opinion on the time kids should spend in studying mathemat-
ics, I can form or, better, activate an opinion according to which the
less time they spend the better it is. Opinions stem from the condi-
tional activation of different kinds of mental representations, that can
have a propositional content or, as in the case of attitudes and feel-
ings, they can be more evaluative. However, there is a specific feature
that distinguishes an opinion from other kinds of mental objects. An
opinion is an epistemic representation, thus it is a belief in which
the truth-value is deemed to be uncertain. Opinions refer to objects
of the external world that can not be told to be either true or false.
This impossibility to say whether the content of a representation is
true or false is what makes a mental representation an opinion, as
opposed to a piece of knowledge, for instance. This basic feature can
be paired with the presence of an attitude, i.e. an evaluative compo-
nent that specifies whether the individual likes or dislikes the topic.
In general, attitudes are present when the topic is somehow involving
for the subject, so he is positively or negatively inclined toward it.
When this is not the case, we have “factual opinions”, like in the
following example. If someone is required to say when Mozart died,
he can know the correct answer or not, but this is not a moot point.
On the contrary, the causes of Mozart’s death are debatable because
without knowing where he was buried it is impossible to analyze the
bones and to ascertain what killed him. This means that we know
that Mozart died in 1791 but there are contrasting opinions about the
causes of his death, and, even if there exist one true opinion, none
can tell which is the truth. On the other hand, when opinions involve
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also evaluative components or facts, the opinions result from the ac-
tivation of a pattern of related representations like knowledge, other
opinions, but also goals. This view allows us to describe opinions
as non-static patterns of relationships in which different representa-
tions are linked through a variety of different linkages. This work is
meant to address the origin and changing of opinions thanks to these
inter-relationships.

An opinion is characterized by the three following features. First,
the truth value can not be verified (or it is not relevant). In general,
opinions are representations whose truth value can not be assessed
through direct experience. The topic of the opinion can not be ex-
perienced and then it is impossible to say whether a given object is
true or false. If I ask someone about his opinion on the military inter-
vention in Afghanistan, he can not tell me that his opinion, whether
positive or negative, is true, because it is not possible to test an al-
ternative state of the world in which the intervention has not taken
place and then asses which state was the best. Nonetheless, he can
tell me that he has a strong opinion or that he is very confident in it
because he has many supporting beliefs (e.g. Talibans’ regime had
to be fighted, civilians needed the intervention, the world is a safer
place after the intervention, etc) and even some goals (for instance,
feeling safer) related with that opinion. This is to say that the lack of
an assessable truth value is totally independent from the confidence
one has in his opinions. We can have strong or weak opinions, but
our confidence does not depend on the fact that something is known
to be true, given the impossibility to assess its truth-value.

The second feature is the degree of confidence which is a subjec-
tive measure of the strength of belief and it expresses the exent to
which one’s opinion is resistant to change. The degree of confidence
depends on the number of supporting representations, and the higher
this number the stronger an opinion will be. Castelfranchi, Poggi [6]
made a distinction between confidence coming from the source and
confidence coming from the degree of compatibility that a given be-
lief has with pre-existing beliefs. It is interesting to notice that rep-
resentations do not need to be about the same topic or to belong to
the same set to form a coherent network. If we take the Afghanistan
example, we can easily imagine that a negative opinion about the
military intervention could be supported by a general belief about
the right of other countries to intervene in internal disputes or by
negative evaluations about the US foreign policy, or even by knowl-
edge about the roles played by URSS and US in Afghanistan during
the Cold War. These beliefs are not exclusively related to the target
opinion and they can have stronger or weaker connections with other
opinions. The stronger the confidence in these beliefs and the higher
their number, the stronger will be the confidence in that opinion.

Finally, the sharing of an opinion, i.e. the extent to which a given
opinion is considered shared, is another crucial feature. The sharing
may heavily affect the degree of confidence, making people feel more
confident because many other individuals have the same opinion. The
sharing is the outcome of a process of social influence, through which
agents’ opinion are circulated within the social space and they can
become more or less shared. This dimension is crucial, but it is also
true that it carachterize other social beliefs, like reputation.

It is worth noticing that there are other kinds of beliefs that are
really close to opinions but, at a closer investigation, there are some
important differences. Reputation can be one of these, because it is
shared and it is also carachterized by a varying degree of confidence.
But, unlikely opinions, reputation has a truth value because it refers
to someone’s behaviors or actions that were actually exhibited (or
that were reported as such, but we do not want to address here the
issue of lying) and reported to other people. Reality matters in rep-

utation, whereas it is much less relevant in opinions, as witnessed
also by the fact that reputation does not have to be convincing (i.e.
supported by some reasoning or arguments), whereas opinions have.

4 Toward a Formal Definition
4.1 Preliminaries
4.1.1 Time Varying Graphs

The temporal aspects of our opinion model is based on Time-Varying
Graphs (TVG) formalism, a generic mathematical framework [8] de-
signed to deal with the temporal dimension of networked data and
to express their dynamics from an interaction-centric point of view
[26].

Consider a set of entities V' (or nodes), a set of relations F between
these entities (edges), and an alphabet L accounting for any property
such that a relation could have (label); thatis, E CV x V x L. L
can contain multi-valued elements.

The relations (interactions) among entities are assumed to take
place over a time dimension (continuos or discrete) 7 the lifetime
of the system which is generally a subset of N (discrete-time sys-
tems) or R (continuous-time systems). The dynamics of the system
can subsequently be described by a time-varying graph, or TVG,
G=(V,E, T,p,(), where

e p: ExT — {0,1}, called presence function, indicates whether
a given edge or node is available at a given time.

e (: ExT — T,called latency function, indicates the time it takes
to cross a given edge if starting at a given date (the latency of an
edge could vary in time).

4.1.2 The underlying graph

Givena TVG G = (V,E, T, p,(), the graph G = (V, E) is called
underlying graph of G. This static graph should be seen as a sort
of footprint of G, which flattens the time dimension and indicates
only the pairs of nodes that have relations at some time in a given
time interval 7. In most studies and applications, G is assumed to be
connected; in general, this is not necessarily the case. Note that the
connectivity of G = (V, E) does not imply that G is connected at a
given time instant; in fact, G could be disconnected at all times. The
lack of relationship, with regards to connectivity, between G and its
footprint G is even stronger: the fact that G = (V, E) is connected
does not even imply that G is “connected over time”.

4.1.3 Edge-centric evolution

From an edge point of view (relationships within epistemic repre-
sentations), the evolution derives from variations of the availabil-
ity. TVG defines the available dates of an edge e, noted Z(e),
as the union of all dates at which the edge is available, that is,
Z(e) = {t € T : p(e,t) = 1}. Given a multi-interval of avail-
ability Z(e) = {[t1,t2) U [ts, t4)...}, the sequence of dates ¢1, t3, ...
is called appearance dates of e, noted App(e), and the sequence of
dates t2, t4, ... is called disappearance dates of e, noted Dis(e). Fi-
nally, the sequence t1,t2, ts3, ... is called characteristic dates of e,
noted St (e).
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4.1.4 Graph-centric evolution

From a global standpoint, the evolution of the system can be derived
by a sequence of (static) graphs Sg¢ = G1, G2.. where every G;
corresponds to a static snapshot of G such that e € Eg, <=
Pit; t;+1)(€) = 1, with two possible meanings for the t;s: either
the sequence of ¢;s is a discretization of time (for example ¢; = 1);
or it corresponds to the set of particular dates when topological
events occur in the graph, in which case this sequence is equal to
sort(U{Sr(e) : e € E}). In the latter case, the sequence is called
characteristic dates of G, and noted S1(G).

4.2 Modeling Epistemic Representations

An opinion is an epistemic representation of a state of the world with

respect to a given object p. It is defined on a three dimensional space

defined by: a) the objective truth value Ty, a subjective truth value,

namely 7’ and a degree of confidence d. with respect to the object p.
More formally we can state that:

Definition 1 an epistemic representation of a state of the world m €
M is a quadruplet p, Ty, Ts, d. defined by a preposition p related to
a given object O, and two variable T, and T defined on R. The d. €
R respectively quantifying the “real* truth value of an information,
namely the objective truth value, the perceived truth values, and the
degree of confidence, with respect to the preposition p.

By varying the dimensions of the domain of 7, and T, we can
define a taxonomy of the epistemic representation of the world that
can be summarised as follows:

Definition 2 An epistemic representation my, = {p,To,Ts,dc} is
knowledge when T, = Ts.

Definition 3 An epistemic representation my = {p,T,,Ts,dc} isa
belief when 0 < T, < 1IN0 <Ts <1.

Definition 4 An epistemic representation mo = {p,To,Ts,dc} is
an opinion when 0 < T, < 1N0<Ts < 1.

4.3 Opinions and Individuals

We can define an epistemic representation graph as a network of epis-
temic representation immerged in a dynamic network in a given time
interval and the links state the correlation among them. Let us con-
sider a set V' of mental representation (or nodes), interacting with
one another over time. Each relation among the mental representa-
tion can be formalized by a quadruplet ¢ = {u,v,t1,t2}, where
u and v are the involved mental representations (either beliefs, or
knowledge or an opinion), ¢; is the time at which the correlation oc-
curs, and t» the time at which the relation terminates. A given pair of
nodes can naturally be subject to several such interactions over time
(and for generality, we allow these interactions to overlap). Given a
time interval 7 = [tq,t») C T (where ¢, and t, may be either two
dates, or one date and one infinity, or both infinities), the set C(7)
(or simply C) of all interactions occurring during that time interval
defines a set of intermittently-available edges E(7) C V x V, such
that:

Yu,v € V, (u,v) € E(T)

1
= 3t € [ta,ts), (u,v,t1,t2) €EC(T) = 1 <t < to M

that is, an edge (u, v) exists iff at least one interaction between w and
v occurs, or terminates, between t, and t,. The intermittent avail-
ability of an edge e = (u,v) € E(T) is described by the presence
function p: E(T) x T — {0,1} such thatVt € T,e € E(T):

ple,t) =1 <= F(u,v,t1,t2) € C:t1 <t <t 2)

The triplet G = (V, E, p) is called an epistemic representation
graph, and the temporal domain 7 = [t4,t) of the function p, is
the lifetime of G. We denote by Gy, .+ the mental representation sub-
graph of G covering the period [tq, tp) N [t, )

Hence, a sequence of couples J = {(e1,t1), (e2,t2),...}, with
e; € Eandt; € T foralli, is called a journey in G iff {e1, ea, ...} is
awalk in G and for all 4, p(e;, t;) = 1 and t;41 > t;. Journeys can
be thought of as paths over time from a source node to a destination
node (if the journey is finite).

Let us denote by 7S the set of all possible journeys in an epistemic
representation system G. We will say that G admits a journey from a
node u to a node v, and note 37,y € J§, if there exists at least
one possible journey from w to v in G.

4.4 Opinion Dynamics and Society

One of the most famous formalisms aimed at describing the process
of persuasion is the “Bounded Confidence Model” (BCM) where
agents exchanging information are modeled as likely to adjust their
opinions only if the preceding and the received information are close
enough to each other. Such an aspect is modeled by introducing a
real number €, which stands for tolerance or uncertainty such that an
agent with opinion «x interacts only with agents whose opinions is in
the interval ]x €, X + € [. Neverthless the wide, massive and cross-
disciplinary use of the BCM ([18, 14]) ranging from “viral market-
ing” to to the Italians’ opinions distortion played by controlled mass
media ([24, 4, 5, 14]). Such a model does not provide an explanation
of the phenomena yielding to the tolerance value, it is just assumed
as a static value.

In this work we will outline which are the factors affecting the ac-
ceptance or the refuse of one another opinion. In particular, how can
we formalize comparison of two or more opinions? Recalling that
a mental representation is a preposition with the truth value defined
by two variable T,,7s € R and d. € R respectively quantifying
the “real” and the perceived truth value and the degree of confidence
with respect to a given object or proposition. And considering that
such mental representations are modeled as set of time connected
entities of the form G = (V, E, p) we can now provide some defini-
tions aimed at describing the process of persuasion.

Assuming that an epistemic representation system, which is by na-
ture adaptive, when facing with external events, reacts to the stimulus
by activating only a subset of its components. For instance, consider
the example where an agent x is questioned by an agent y about his
opinion on a given target.

What does happen in the 2’s mental representation system? How
can we quantify z’s attitudes to change or not is opinions regarding
a given matter of fact?

According to our model the epistemic representation system of x,
as reaction to the external stimulus posed by the y’s question, will
perform journey within the elements that in its mind are related
with the target of the question and on this base will be able to com-
pare its opinion with the one owned by y.

Definition S (relational-)connected component induced by an exter-
nal event in G, is defined as a set of nodes V' C V such that
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Yu,v € V’, 3T (w,w) € TG. Then G is said connected if it is itself
a connected component (V' = V).

Since all nodes in V" are defined by an objective truth value 7" and
a degree of confidence (perceived truth value) d, it is obvious that
the resistence to an opinion to change is denoted by these values in
all the nodes in V.

5 Conclusions

In this preliminary work we tried to sketch a cognitively grounded
dynamic model of opinions, in which we defined these mental repre-
sentations as carachterized by the presence of three specific features.
Differently than psychological theories of opinions that usually pro-
vide rich definitions that are too complex to be reduced to measurable
variables, we isolated three main constitutive elements that charac-
terize this kind of mental representations. On the other hand, we tried
to overcome the reductionist approach of opinion dynamic models,
in which the richness of human cognitive processes is substituted by
easy-to-compute factors poorly related to actual human behaviors.
For this reason, we proposed to apply time-varying-graph to develop
a formal model able to account for the way in which opinions are
generated and change as a function of the presence and opinions of
other agents in the network.

We are perfectly aware of the complexity of this issue and this
work represents a preliminary attempt to merge the cognitive com-
plexity of opinions with a rigorous formal approach, but there are
many problems that we need to address. First, the cognitive model
should be refined and specific hypotheses about opinion revision and
diffusion should be put forward. Moreover, the robustness of the for-
mal model will be tested and such a model will be implemented in
cognitive multi-agent system in order to explore the parameter space
upon which our model has been defined. Our ultimate aim is to build
up a simulation environment in which agents endowed with heteroge-
neous representations of the external world interact and this leads to
the creation of new opinions, the disappearing of some of the previ-
ous ones and, in general, to different distributions of representations
in the population.
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Multilevel and Agent-Based Modelling in the Analysis of
Differential
School Effectiveness

Mauricio Salgado and Elio Marchione

Abstract. Multilevel Models (MLM) have pioneered the analysis
of hierarchical data, with two or more levels. Agent-Based Models
(ABM) are also used to analyse social phenomena in which there
are two or more levels involved. This paper addresses the integra-
tion between MLM and ABM. To provide a basis of comparison,
we focus on differential school effectiveness analysis, where MLM
has been well studied, using data from the London Educational Au-
thority’s Junior Project. A MLM is fitted and an ABM of pupils’
educational attainment using a social network structure is built. We
reports the results of both models and compare their performances in
terms of predictive power. Although the fitted MLM outperforms the
proposed ABM, the latter still offers a reasonable fit and provides a
causal mechanisms to explain differences in school performance that
is absent in the MLM.

1 Introduction

During the last thirty years education researchers have developed
models for judging the comparative performance of schools, in what
has been known as differential school effectiveness [13, 17]. These
variable-based models, which have achieved great sophistication, de-
termine the extent to which schools improve pupils’ educational at-
tainment. Among those models, Multilevel Models (MLM) are very
popular, since they allow the analysis of data that have a hierarchi-
cal structure, with two or more ‘levels’ (e.g., pupils and schools)
[14]. However, despite their sophistication, variable-based models do
not provide causal explanations for the observed social phenomenon
[12]. Thus, MLM are well-suited to identify those differences, but
they do not explain why those differences might emerge in the first
place, since they do not uncover the generative mechanisms that
bring about those differences. When researchers want to understand
why some social phenomenon emerges, agent-based models (ABM)
might be the best alternative. ABM is a computational method to
experiment with models composed of autonomous agents that inter-
act within an environment [10]. For instance, researchers might use
ABM to explain differential school effectiveness by focusing on the
dynamic of the social networks that shape and are shaped by pupils’
interactions within and outside school. Whilst ABM is explanatory,
MLM is a sophisticated way for description and hypotheses testing.
Nevertheless, the integration of multivariate analysis, such as MLM,
and the modelling of generative mechanisms, such as ABM, is a cru-
cial methodological issue.

L CRESS: Centre for Research in Social Simulation, Department of Sociol-
ogy, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom,
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This paper explores that possibility by formalising an ABM to ex-
plain differential school effectiveness. It describes an ABM to un-
derstand the effects of pupils’ interactions in educational attainment
using a network structure and a methodological strategy to cope with
the integration of MLM and ABM. We begin this paper with a brief
account of MLM models in education research (Section 2). Then,
we describe the data we are using (Section 3) and we use multilevel
modelling to evaluate possible group effects and the extent to which
differential school effectiveness is present in the data (Section 4). We
present our proposed ABM to explain differential school effective-
ness (Section 5), explaining the model entities, interactions and main
dynamics. The last part of the paper describes a comparison between
both modelling techniques (Section 6) and it finishes with the further
work we are going to undertake and some strengths and limitations
of our approach (Section 7).

2 Multilevel models in education research

In the context of educational research, MLM were developed to ad-
just simple comparisons of school mean values by using measures of
pupil prior achievement and other variables to take account of selec-
tion and other procedures that are associated with pupils’ achieve-
ment but not related to any effect that the schools themselves may
have on achievement [11, 19]. Thus, a simple two-level, variance
components, model based on data from a random sample of schools
can be written as follows, where subscripts ¢ refers to pupil, and j to
the school:

Yij = Bo + Brzij + uj + ey,
(1)
uj ~ N (O,Ui) , eij ~ N (O,ag)

where y;; and x;; respectively are the response variable and prior
achievement, and u; is an underlying school effect or residual (which
is associated with school organization, teaching, etc.). As is usual,
this model assumes that e;; and w; are uncorrelated and also un-
correlated with any explanatory variable—i.e. it assumes that any
possible dependences that may result from, for example, school se-
lection mechanisms are accounted for. Posterior estimates #; with
associated confidence intervals are typically used to rank schools in
so-called ‘league tables’ or used as ‘screening devices’ in school im-
provement programmes.

Model (1) can be elaborated by introducing further covariates such
as socio-economic background or peer group characteristics, to make
additional adjustments, satisfy the distributional assumptions or in-
vestigate interactions. In addition, it is typically found that models
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such as Model (1) require random coefficients, where, for example,
the coefficient of prior achievement varies randomly across schools.
In this case, using a more general notation, we have

Yij = Boij + Br%ij,
Boij = Bo + uoj + eij,

B1j = P1 + u1y, )

€ij ~ N (O, a?) )

. 2
( s > ~N (07 Q) Q= ( Tuo 2 >
U1j Ou0l Oyl

The Multilevel Model (2) has also been extended to include further
levels of hierarchy, such as education board or authority, and random
factors which are not contained within a simple hierarchy, such as
area of pupil residence or school attended during a previous phase of
education. Such designs are known as ‘cross-classification’. In any
case, when we use a MLM, we assume that the group level makes a
difference that explains the total variance of the dependent variable
[9]. Therefore, we need to identify how important the group level
differences are (i.e., to identify the importance of the ‘school effect’),
or the proportion of the total variance accounted for the group level.
A convenient summary of this effect is the ‘interclass-correlation’
coefficient (ICC), given by the formula

2
Oy

on + o2

The proposed ABM should describe a similar pattern, that is, it
should reproduce the school effects or differences in the school effec-
tiveness that are in the data as shown by a pattern of high interclass-
correlation. The advantage of complementing MLM with a ‘bottom-
up’ approach lies not only in its power to replicate some previous
discoveries, but also in the identified causal mechanisms that might
bring about the differences in school effectiveness. In the following
section we describe the main components and dynamics of such an
ABM.

p= 3)

3 Data

In order to implement a two-level model, we used a subsample from
the The London Education Authority’s Junior School Project Data
for pupils’ mathematics progress over 3 years from entry to junior
school to the end of the third year in junior school [13]. This was a
longitudinal study of around 2000 children. Our subsample consists
of 887 pupils from 48 schools, with five relevant variables, namely:

e D School, an identification number assigned to each school, from
1to 48,

e Social Class, a dummy variable representing father’s occupation,
where ‘Non Manual Occupation’” = 1 and ‘Other Occupation’ =0,

o Gender, a dummy variable representing pupils’ gender, where
‘Boy’ =1 and ‘Girl’ = 0, and

o Math3 and Math5, pupil’s score in math tests in year 3 and in year
5 respectively.

This data enable us to perform a two-level model (pupils grouped
in schools). We estimated an unconditional means model [18], which
does not contain any predictors but includes a random intercept vari-
ance term for groups, and it is defined as Y;; = yoo+wuo;+7ij, where

the dependent variable is a function of a common intercept yoo and
two error terms: the between-group error term, uo;, and the within-
group error term, r;;. This model is useful since we can get two es-
timates of variance from it: 790 for how much each groups’ intercept
varies from the overall intercept (yoo), and o2 for how much each
individuals’ score differs from the group mean. An analysis of this
model showed that the ICC (see Equation (3)) equals to 0.119, so an
important portion of the variance (12%) is explained by the pupils’
group membership. Further, the overall group mean reliability test
[4] of the outcome variable equals 0.67, although several schools
have quite low estimates. In fact, just 22 over 48 schools have group
mean reliability over 0.7, which is the conventional value to deter-
mine whether groups can be reliably differentiated. Finally, we get
from our unconditional means model that the intercept variance oo
is significantly different from zero, x?(3) = 52.3, p < .0001. There-
fore, the analysis shows that fitting a MLM is a sensible decision.

However, given the great heterogeneity among the schools in our
subsample, which is particularly salient in relation to the group mean
reliability, we decided to perform our analysis and simulations con-
sidering just those 22 schools that described high estimates in this
test, representing 558 pupils. By doing so, we will be working with
data that describes stronger group effects. Both the exploratory na-
ture of our research and the early experimental stage we are facing
justify this decision.

4 Fitting a Multilevel Model

The multilevel models used for the analysis of later mathematics
outcomes (i.e., year 5) were elaborated to take account of relevant
background factors and prior attainment (i.e., year 3). We elaborated
different models and compared them in order to evaluate their over-
all fit. Table (1) shows the results of these comparisons. We fit a
base model, Mode! 0, whith no predictors but just random intercepts.
Model I considers one predictor, in this case previous attainment, and
the intercepts of the groups were allowed to vary randomly . Model
2 includes to the previous model background factors for each pupil,
namely: gender and social class. Finally, Model 3 was fitted consid-
ering both previous attainment and background factors and, addition-
ally, the slopes of previous attainment were allowed to vary randomly
across the 22 schools considered. The results shown in Table (1) es-
tablish that Model 3, which allows random slopes, has a significantly
better fit to the data in comparison to the random intercept model
(i.e., Model 2), x*(2) = 6.8, p = 0.034.

df AIC BIC log Lik

Models
Model 0 3 3858.127  3871.257 —1926.064
Model 1 4 3660.438  3677.945 —1826.219
Model 2 6 3659.913  3686.174 —1823.957
Model 3 8 3657.157  3692.170 —1820.578
Tests X2 p-value
Ovsl 199.689 < 0.001
1vs2 4.525 0.104
2vs3 6.757 0.034

Table 1. Comparison of Fitted Models

Figure (1) depicts the slopes of previous attainment in Math 3
for each of the 22 schools selected for the analysis. From these
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plots it seems likely that there is some slop variation, something that
complements the information presented in Table (1), where the log
likelihood results indicate that a model with the random effect for
the pupil’s previous attainment in Maths is significantly better than
the model without these random effects. Therefore, a random slope
model is selected for the analysis. This means that, in order to estab-
lish whether the schools were differentially effective, previous attain-
ment was allowed to vary randomly at both the pupil and the school
levels.
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Figure 1. Scatterplots for Each of the 22 School in the Analysis

The results from fitting a model with a random slope for prior
maths attainment, controlling by gender and social class, are shown
in Table (2) and they can be interpreted following Equation (2). As
we can see, the average intercept across all the schools [y equals
12.65 (std. error 1.79) and the average slope for Math 3 across the
22 schools 31 equals 0.6 (std. error 0.05). Both parameters are sig-
nificant. However, the individual school slopes u1; vary around the
average slope with a standard deviation estimated as 0.14. The in-
tercepts of the individual schools wug; also differ, with a standard de-
viation estimated as 6.04. In addition, there is a negative covariance
between intercepts and slopes 0,01 estimated as —0.98, suggesting
that schools with higher intercepts tend to have lower slopes. Finally,
the pupils’ individual scores vary around their schools’ lines by quan-
tities e;;, the level 1 residuals, whose standard deviation is estimated
as 5.17.

The two control variables included in our model, gender and social
class, perform differently. In fact, just social class (i.e., ‘Nonman’ in
Table (2)) is making a contribution to the model, with an estimated
regression coefficient of 1.17 (std. error 0.53, p < 0.05). Conse-
quently, pupils whose father’s occupation is non-manual have an ex-
pected advantage of 1.17 points in Math 5 in comparison to those
students whose father’s occupation is manual. On the other hand,
gender (i.e., ‘Boy’ in Table (2)) does not contribute to the predic-
tive power of the model, since its regression coefficient is quite low,

—0.02 (std. error 0.44) and, consequently, it is not significant.

Parameters (Outcome Variable: Math 5)

Random Effects
Estimate
St. Dev. (o) Intercept 6.04
Math 3 0.14
Residual (e;;) 5.17
Math 3/Intercept —0.98

Fixed Effects

Estimate Std. Error
Coefficients (8,,;)  Intercept 12.65%** 1.79
Math 3 0.60*** 0.05
Nonman 1.17* 0.53
Boy —0.02 0.44

Note. Signif. codes: *** = p < 0.001, ** = p < 0.01,* = p < 0.05.

Table 2. Parameters of Random Slope Model for Previous Attainment

With the information obtained from our MLM, predictions might
be carried out for every pupil in one of the 22 schools. Thus, for
instance, let us take a boy student from school 32, whose previous
attainment in Maths at year 3 was 22, and whose father’s occupation
is classified as manual. From our MLM we know that the group-
intercept for this school ug,32 equals 6.7869 and its group-slope for
previous attainment w1 32 equals —0.1418. These values are incor-
porated into Equation (2) and we obtain that the predicted value in
Math 5 for this student ~ 29.5.

5 The Proposed ABM

The ABM we propose addresses the problem of explaining the dif-
ferences in school effectiveness by taking into account the inputs of
knowledge that every student receives from her social environment
(i.e., the other individuals with whom the student interacts) in re-
lation to one specific subject they are supposed to learn. Thus, our
model considers the relevant social network in which the pupil is
embedded.

5.1 Theoretical framework

The importance of taking into account the network in which a pupil
is embedded in order to explain her educational attainment is well
established in the literature. Since the observational study carried out
by Rist [16] in the seventies, educational researchers are aware of the
impact the student-teacher relationship might have on pupils’ learn-
ing. Thus, schools where teachers have higher expectations regard-
ing the future of their students might actually perform better com-
pared to others where teachers have lower expectations [7]. These
expectations determine which pupils are defined by the professor
as ‘fast learners’ and which ones as ‘slow learners’. By this way,
teachers behaviour contribute to the ‘self-fulfilling prophecy’, that
is, pupils that are considered ‘slow learners’ in advance receive less
attention and educational feedback, and consequently, they perform
worst compared to pupils who are considered ‘fast learners’ in ad-
vance. Equally important are the pupils’ characteristics within the
classroom, which effect on children’s educational achievement has
been well documented. Beckerman and Good [3] studied this el-
ement and they discovered that classrooms in which more than a
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third of the children were ‘high-aptitude’ students and less than a
third of them were ‘low-aptitude’ performed better than those class-
rooms in which the opposite relation was true. Their results indicated
that both high- and low- aptitude students in the first kind of class-
room had greater achievement gains than comparable students in less
‘favourable classrooms’. These findings are consistent with the ‘peer-
effect” hypothesis, something that has been modelled by using Social
Network Analysis [6] (however, see [8] for disconfirmatory evidence
of peer-effect on educational achievement). Finally, the cultural cap-
ital that pupils’ families hold has an important effect on students per-
formance [5, 20], being stablished the association between higher
social class and lower cultural capital. Hence, previous research in
the field allows us to focus on three dimensions that are relevant to
explain school differential effectiveness: (a) educational feedback or
training in the subject pupils receive; (b) pupil-pupil interactions and
(c) pupil’s cultural capital. These three social dimensions of educa-
tion determine the elements we aim to model.

5.2 ABM description

The ABM was designed upon two basic assumptions. The first as-
sumption deals with the way in which pupils’ learning of one spe-
cific topic evolves over time. It seems reasonable to assume that this
learning can be modelled as a logarithmic function of the educational
feedback or training received in the subject. Thus, following a loga-
rithmic model, learning growth as a function of number of trainings
describes an initial period of rapid increase, followed by a period
where the growth in learning slows. Some specific contexts seems to
validate this assumption empirically (see, for instance, [2]).
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Figure 2. Simulated Pupils’ Learning Curve

Therefore, in order to model pupils’ learning in maths over time
(that is, from year 3 to year 5), we define a students’ learning curve.
Firstly, we assume that learning maths is a continuum process start-
ing at training O and ending when the knowledge of maths is mea-
sured in year 5 (or Math 5). We arbitrarily define 1,000 as the num-
ber of trainings for the entire learning process. This operationalises
the teacher-pupil contact time throughout all the learning process.

Figure (2) shows the students’ learning curve employed in the pro-
posed ABM. Simulated students’ marks are, therefore, worked out as
a function of the number of trainings they have undertaken. The re-
lation between marks and trainings is a logarithmic function defined
between 0 and 1,000 that returns values between 0 and 40. We also
assume that when the test Math 3 was applied, students have learned
half of the topics they were supposed to learn on the subject. Further,
since both Math 3 and Math 5 range between 0 and 40, we transform
Math 3 by dividing it by 2. Secondly, we assume that the number of
trainings students undertake depends on the socialisation processes
within their schools. By socialisation we mean all those practices
and rules that eventually generate stable groups of students. A group
is stable when its members do not want to leave, that is, they are
‘happy’ as members of the specific group. Let g, be a stable group in
a school j and s;;; a student in such a group. Let math3y, be the av-
erage of Math 3 scores of group g, then the amount of trainings that
the students in group k agree to undertake is given by the following
equation:

tk: — (€2~math3k)m (4)

Then, the simulated student’s score simMath5;, is shown in
Equation (5), where tir = tx + tmaths,i and tya¢ns3,s is the num-
ber of trainings the pupil had had when her attainment was measured
as Math 3.

stmMathb;, = log (ti;g%gg) )

The second assumption is related to the group formation mecha-
nisms. We propose a refinement of Resnick and Wilensky’s model
[15]. There is an initial number of spots where students can hang
out at. Students staying at the same spot conform a group. Following
the specialised literature, we assume that group formation rules is
a permanent tradeoff between individual characteristics and institu-
tional factors [1]. Thus, in our ABM pupils’ tolerances towards their
schoolmates vary across schools. These tolerances define, in turn,
students’ comfort levels within a group. If they are in a group that
has, for example, a higher percentage of people of the opposite sex
than school’s tolerance, then they are considered ‘uncomfortable”,
and they leave that group to the next spot. Movement continues until
everyone at the school is “comfortable” with their group. The final
number of groups might be smaller than the number of spots. Tak-
ing into account the available data (see Section (3)), we define three
tolerance levels: Educational tolerance, that reflects the students tol-
erance of having others with different attainments in Math 3; Gender
tolerance indicates the students tolerance for people of the opposite
sex; and Social class tolerance, the pupils tolerance for different so-
cial class. If just one of these these three tolerances were not meet,
the pupil will leave the group. Tolerance levels range between 0 and
1 and corresponds to the proportion of similar pupils within each
group. Figure (3) shows the students network at the end of a simu-
lation for school 32. Male and female pupils are coloured blue and
pink respectively; rounded and squared shaped nodes represent low
and high social class respectively; and previous attainment in Math
3 is labelled on students’ icons. In this scenario education, gender
and class tolerances are 0.9, 0.3 and 0.9 respectively. As we can see,
there are 39 students in school 32 and 15 groups.

5.3 Experimental set

We performed a series of experiments with our ABM. The objective
of these experiments was to find a set of tolerance levels for each
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Figure 3. Simulated Students Social Network in School # 32

school that minimises the differences between the data and the sim-
ulations results. Thus, let d; be such a difference for school j. Then,

dj = |math5; — simMath| /2 (6)
i=1

where mathb; and simMathb; are the score in Math 5 of student
1 obtained from the real data and from the simulations respectively.
In the example shown in Figure (3), dz2 = 2.231, which means that
the simulated score in Math 5 differs, in average, form the data in
+2.231 units. In order to explore the parameter space of the model,
we run 126, 720 simulations. The latter number of simulation repre-
sents all the possible combination of the three tolerance levels vary-
ing among 0.3, 0.5, 0.7 and 0.9 and the number of spots varying
among 15, 20 and 25 across the 22 schools considered in this study.
In order to have more robust results, we run each setting for 30 times
and then took the average of d; as the aggregate outcome.

6 Integrating MLM and ABM

Table (3) shows the main results obtained from our experimental
set. There, we present the average distance (in the same units as the
real data) between the predicted scores and the real scores in Math
5 for both the multilevel model (‘MLM (d;)’) and the simulation
(‘ABM (d;)’) respectively. The results are grouped according to the
22 schools we included in our study. As well, in this table we show
the number of groups (‘Final Groups’) in which all the pupils were
happy with their group membership, given the values in the ‘Toler-
ance Levels’ for education, gender and social class (see the last three
columns of Table (3). Recall that these three last variables were set as
simulation parameters, and the specific values presented in the table
correspond to those combinations at the school level that minimise
the distance between the simulated and the real data scores in Math
5. Some remarks might be established.

Firstly, by comparing the average distances between the two mod-
els, we see that the predictions MLM outperform the predictions of
the ABM, so the former is more accurate. However, the distances

Tolerance Levels

School Num. MLM ABM Final Edu.  Gender Soc.
Id Pupils (dj) (dy) Groups Class
1 25 2.88 3.36 13 90% 50% 30%
4 24 2.26 3.12 12 90% 90% 50%
5 25 1.53 2.26 12 90% 70% 90%
8 26 1.41 2.82 12 90% 70% 30%
9 21 1.67 291 12 90% 70% 30%
11 22 2.21 3.10 12 90% 30% 70%
12 19 3.03 3.55 12 90% 50% 30%
20 28 1.60 2.62 12 90% 30% 70%
22 18 2.18 3.63 10 90% 30% 70%
23 21 1.43 3.19 12 90% 90% 50%
25 20 2.60 3.50 11 90% 30% 50%
26 19 1.85 2.79 12 90% 70% 50%
29 20 2.30 3.36 12 90% 70% 30%
30 35 1.03 2.56 14 70% 90% 70%
31 22 2.30 3.60 12 90% 70% 50%
32 39 1.72 2.71 15 90% 30% 90%
33 25 1.22 3.04 12 90% 30% 90%
35 27 1.01 2.44 13 90% 70% 30%
41 38 2.46 3.25 16 90% 30% 70%
45 30 1.58 2.62 12 90% 30% 70%
46 62 2.24 2.96 15 90% 90% 70%
47 22 1.85 3.61 12 90% 50% 90%
Table 3. Experimental Results

of the ABM are not high either; in fact, the overall distance equals
3.04 in a scale of 40 points. Thus, the proposed ABM, despite its
simplicity, offers a reasonable fit with the data. Secondly, the sim-
ulation results suggest a high educational tolerance, since most of
values equal 90% (except from school 30, in which the tolerance
level equals 70%). On the other hand, the tolerance levels of social
class and gender vary across the schools. Therefore, the group forma-
tion mechanism in our simulation seems to be ruled by the variables
social class and gender, and previous attainment in maths does not
constitute a variable that discriminates between groups. Thirdly, the
hypothesised mechanism that bring about the differences in school
effectiveness, based on social interactions among pupils and group
formation according to tolerance levels defined at the school level,
seems to be justified. Actually, the simulation results indicate that
the mechanism of group formation helps to minimise the distance
between the predicted and the real scores, allowing a better fit with
the data. For instance, when we compare the number of groups with
the number of pupils, we can see that in general we have less groups
than students in each school (for a graphical example, see Figure 3).
If the numbers of groups made no difference in the simulation, then
the number of groups and the number of pupils would tend to be sim-
ilar (at least in those schools with number of pupils < 25). This is
clearly not the case. Therefore, the pupils’ social networks seem to
be important to explain the differential effectiveness among schools.

7 Concluding Remarks

In this paper we have presented and integrated the results of two
models to address differential school effectiveness. The first one is a
MLM, where the hierarchical nature of educational processes is con-
sidered. The second one is an ABM, where the social mechanisms
that might generate school effects in pupil attainments are formalised
and explored. We found that MLM provides reasonably accurate pre-
diction, whereby ABM highlights likely differences across schools
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that might affect pupils’ learning performances. This is a promising
study that will be further developed. More sophisticated ABM will
be designed to produce prediction as accurate as MLM ones. Further-
more, data coming from the ABM will be fed into the MLM model
until the former produces results similar to those in the real data. All
in all, integrating a social mechanism based approach of educational
phenomena with a hierarchical understanding of these process will
be more and more reliable and accurate.
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